Merge tag 'fixes-for-v3.8-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[deliverable/linux.git] / arch / s390 / mm / vmem.c
1 /*
2 * Copyright IBM Corp. 2006
3 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4 */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
18
19 static DEFINE_MUTEX(vmem_mutex);
20
21 struct memory_segment {
22 struct list_head list;
23 unsigned long start;
24 unsigned long size;
25 };
26
27 static LIST_HEAD(mem_segs);
28
29 static void __ref *vmem_alloc_pages(unsigned int order)
30 {
31 if (slab_is_available())
32 return (void *)__get_free_pages(GFP_KERNEL, order);
33 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
34 }
35
36 static inline pud_t *vmem_pud_alloc(void)
37 {
38 pud_t *pud = NULL;
39
40 #ifdef CONFIG_64BIT
41 pud = vmem_alloc_pages(2);
42 if (!pud)
43 return NULL;
44 clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 #endif
46 return pud;
47 }
48
49 static inline pmd_t *vmem_pmd_alloc(void)
50 {
51 pmd_t *pmd = NULL;
52
53 #ifdef CONFIG_64BIT
54 pmd = vmem_alloc_pages(2);
55 if (!pmd)
56 return NULL;
57 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
58 #endif
59 return pmd;
60 }
61
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
63 {
64 pte_t *pte;
65
66 if (slab_is_available())
67 pte = (pte_t *) page_table_alloc(&init_mm, address);
68 else
69 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
70 if (!pte)
71 return NULL;
72 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
73 PTRS_PER_PTE * sizeof(pte_t));
74 return pte;
75 }
76
77 /*
78 * Add a physical memory range to the 1:1 mapping.
79 */
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
81 {
82 unsigned long end = start + size;
83 unsigned long address = start;
84 pgd_t *pg_dir;
85 pud_t *pu_dir;
86 pmd_t *pm_dir;
87 pte_t *pt_dir;
88 pte_t pte;
89 int ret = -ENOMEM;
90
91 while (address < end) {
92 pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
93 pg_dir = pgd_offset_k(address);
94 if (pgd_none(*pg_dir)) {
95 pu_dir = vmem_pud_alloc();
96 if (!pu_dir)
97 goto out;
98 pgd_populate(&init_mm, pg_dir, pu_dir);
99 }
100 pu_dir = pud_offset(pg_dir, address);
101 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
102 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
103 !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
104 pte_val(pte) |= _REGION3_ENTRY_LARGE;
105 pte_val(pte) |= _REGION_ENTRY_TYPE_R3;
106 pud_val(*pu_dir) = pte_val(pte);
107 address += PUD_SIZE;
108 continue;
109 }
110 #endif
111 if (pud_none(*pu_dir)) {
112 pm_dir = vmem_pmd_alloc();
113 if (!pm_dir)
114 goto out;
115 pud_populate(&init_mm, pu_dir, pm_dir);
116 }
117 pm_dir = pmd_offset(pu_dir, address);
118 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
119 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
120 !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
121 pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
122 pmd_val(*pm_dir) = pte_val(pte);
123 address += PMD_SIZE;
124 continue;
125 }
126 #endif
127 if (pmd_none(*pm_dir)) {
128 pt_dir = vmem_pte_alloc(address);
129 if (!pt_dir)
130 goto out;
131 pmd_populate(&init_mm, pm_dir, pt_dir);
132 }
133
134 pt_dir = pte_offset_kernel(pm_dir, address);
135 *pt_dir = pte;
136 address += PAGE_SIZE;
137 }
138 ret = 0;
139 out:
140 flush_tlb_kernel_range(start, end);
141 return ret;
142 }
143
144 /*
145 * Remove a physical memory range from the 1:1 mapping.
146 * Currently only invalidates page table entries.
147 */
148 static void vmem_remove_range(unsigned long start, unsigned long size)
149 {
150 unsigned long end = start + size;
151 unsigned long address = start;
152 pgd_t *pg_dir;
153 pud_t *pu_dir;
154 pmd_t *pm_dir;
155 pte_t *pt_dir;
156 pte_t pte;
157
158 pte_val(pte) = _PAGE_TYPE_EMPTY;
159 while (address < end) {
160 pg_dir = pgd_offset_k(address);
161 if (pgd_none(*pg_dir)) {
162 address += PGDIR_SIZE;
163 continue;
164 }
165 pu_dir = pud_offset(pg_dir, address);
166 if (pud_none(*pu_dir)) {
167 address += PUD_SIZE;
168 continue;
169 }
170 if (pud_large(*pu_dir)) {
171 pud_clear(pu_dir);
172 address += PUD_SIZE;
173 continue;
174 }
175 pm_dir = pmd_offset(pu_dir, address);
176 if (pmd_none(*pm_dir)) {
177 address += PMD_SIZE;
178 continue;
179 }
180 if (pmd_large(*pm_dir)) {
181 pmd_clear(pm_dir);
182 address += PMD_SIZE;
183 continue;
184 }
185 pt_dir = pte_offset_kernel(pm_dir, address);
186 *pt_dir = pte;
187 address += PAGE_SIZE;
188 }
189 flush_tlb_kernel_range(start, end);
190 }
191
192 /*
193 * Add a backed mem_map array to the virtual mem_map array.
194 */
195 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
196 {
197 unsigned long address, start_addr, end_addr;
198 pgd_t *pg_dir;
199 pud_t *pu_dir;
200 pmd_t *pm_dir;
201 pte_t *pt_dir;
202 pte_t pte;
203 int ret = -ENOMEM;
204
205 start_addr = (unsigned long) start;
206 end_addr = (unsigned long) (start + nr);
207
208 for (address = start_addr; address < end_addr;) {
209 pg_dir = pgd_offset_k(address);
210 if (pgd_none(*pg_dir)) {
211 pu_dir = vmem_pud_alloc();
212 if (!pu_dir)
213 goto out;
214 pgd_populate(&init_mm, pg_dir, pu_dir);
215 }
216
217 pu_dir = pud_offset(pg_dir, address);
218 if (pud_none(*pu_dir)) {
219 pm_dir = vmem_pmd_alloc();
220 if (!pm_dir)
221 goto out;
222 pud_populate(&init_mm, pu_dir, pm_dir);
223 }
224
225 pm_dir = pmd_offset(pu_dir, address);
226 if (pmd_none(*pm_dir)) {
227 #ifdef CONFIG_64BIT
228 /* Use 1MB frames for vmemmap if available. We always
229 * use large frames even if they are only partially
230 * used.
231 * Otherwise we would have also page tables since
232 * vmemmap_populate gets called for each section
233 * separately. */
234 if (MACHINE_HAS_EDAT1) {
235 void *new_page;
236
237 new_page = vmemmap_alloc_block(PMD_SIZE, node);
238 if (!new_page)
239 goto out;
240 pte = mk_pte_phys(__pa(new_page), PAGE_RW);
241 pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
242 pmd_val(*pm_dir) = pte_val(pte);
243 address = (address + PMD_SIZE) & PMD_MASK;
244 continue;
245 }
246 #endif
247 pt_dir = vmem_pte_alloc(address);
248 if (!pt_dir)
249 goto out;
250 pmd_populate(&init_mm, pm_dir, pt_dir);
251 } else if (pmd_large(*pm_dir)) {
252 address = (address + PMD_SIZE) & PMD_MASK;
253 continue;
254 }
255
256 pt_dir = pte_offset_kernel(pm_dir, address);
257 if (pte_none(*pt_dir)) {
258 unsigned long new_page;
259
260 new_page =__pa(vmem_alloc_pages(0));
261 if (!new_page)
262 goto out;
263 pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
264 *pt_dir = pte;
265 }
266 address += PAGE_SIZE;
267 }
268 memset(start, 0, nr * sizeof(struct page));
269 ret = 0;
270 out:
271 flush_tlb_kernel_range(start_addr, end_addr);
272 return ret;
273 }
274
275 /*
276 * Add memory segment to the segment list if it doesn't overlap with
277 * an already present segment.
278 */
279 static int insert_memory_segment(struct memory_segment *seg)
280 {
281 struct memory_segment *tmp;
282
283 if (seg->start + seg->size > VMEM_MAX_PHYS ||
284 seg->start + seg->size < seg->start)
285 return -ERANGE;
286
287 list_for_each_entry(tmp, &mem_segs, list) {
288 if (seg->start >= tmp->start + tmp->size)
289 continue;
290 if (seg->start + seg->size <= tmp->start)
291 continue;
292 return -ENOSPC;
293 }
294 list_add(&seg->list, &mem_segs);
295 return 0;
296 }
297
298 /*
299 * Remove memory segment from the segment list.
300 */
301 static void remove_memory_segment(struct memory_segment *seg)
302 {
303 list_del(&seg->list);
304 }
305
306 static void __remove_shared_memory(struct memory_segment *seg)
307 {
308 remove_memory_segment(seg);
309 vmem_remove_range(seg->start, seg->size);
310 }
311
312 int vmem_remove_mapping(unsigned long start, unsigned long size)
313 {
314 struct memory_segment *seg;
315 int ret;
316
317 mutex_lock(&vmem_mutex);
318
319 ret = -ENOENT;
320 list_for_each_entry(seg, &mem_segs, list) {
321 if (seg->start == start && seg->size == size)
322 break;
323 }
324
325 if (seg->start != start || seg->size != size)
326 goto out;
327
328 ret = 0;
329 __remove_shared_memory(seg);
330 kfree(seg);
331 out:
332 mutex_unlock(&vmem_mutex);
333 return ret;
334 }
335
336 int vmem_add_mapping(unsigned long start, unsigned long size)
337 {
338 struct memory_segment *seg;
339 int ret;
340
341 mutex_lock(&vmem_mutex);
342 ret = -ENOMEM;
343 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
344 if (!seg)
345 goto out;
346 seg->start = start;
347 seg->size = size;
348
349 ret = insert_memory_segment(seg);
350 if (ret)
351 goto out_free;
352
353 ret = vmem_add_mem(start, size, 0);
354 if (ret)
355 goto out_remove;
356 goto out;
357
358 out_remove:
359 __remove_shared_memory(seg);
360 out_free:
361 kfree(seg);
362 out:
363 mutex_unlock(&vmem_mutex);
364 return ret;
365 }
366
367 /*
368 * map whole physical memory to virtual memory (identity mapping)
369 * we reserve enough space in the vmalloc area for vmemmap to hotplug
370 * additional memory segments.
371 */
372 void __init vmem_map_init(void)
373 {
374 unsigned long ro_start, ro_end;
375 unsigned long start, end;
376 int i;
377
378 ro_start = PFN_ALIGN((unsigned long)&_stext);
379 ro_end = (unsigned long)&_eshared & PAGE_MASK;
380 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
381 if (memory_chunk[i].type == CHUNK_CRASHK ||
382 memory_chunk[i].type == CHUNK_OLDMEM)
383 continue;
384 start = memory_chunk[i].addr;
385 end = memory_chunk[i].addr + memory_chunk[i].size;
386 if (start >= ro_end || end <= ro_start)
387 vmem_add_mem(start, end - start, 0);
388 else if (start >= ro_start && end <= ro_end)
389 vmem_add_mem(start, end - start, 1);
390 else if (start >= ro_start) {
391 vmem_add_mem(start, ro_end - start, 1);
392 vmem_add_mem(ro_end, end - ro_end, 0);
393 } else if (end < ro_end) {
394 vmem_add_mem(start, ro_start - start, 0);
395 vmem_add_mem(ro_start, end - ro_start, 1);
396 } else {
397 vmem_add_mem(start, ro_start - start, 0);
398 vmem_add_mem(ro_start, ro_end - ro_start, 1);
399 vmem_add_mem(ro_end, end - ro_end, 0);
400 }
401 }
402 }
403
404 /*
405 * Convert memory chunk array to a memory segment list so there is a single
406 * list that contains both r/w memory and shared memory segments.
407 */
408 static int __init vmem_convert_memory_chunk(void)
409 {
410 struct memory_segment *seg;
411 int i;
412
413 mutex_lock(&vmem_mutex);
414 for (i = 0; i < MEMORY_CHUNKS; i++) {
415 if (!memory_chunk[i].size)
416 continue;
417 if (memory_chunk[i].type == CHUNK_CRASHK ||
418 memory_chunk[i].type == CHUNK_OLDMEM)
419 continue;
420 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
421 if (!seg)
422 panic("Out of memory...\n");
423 seg->start = memory_chunk[i].addr;
424 seg->size = memory_chunk[i].size;
425 insert_memory_segment(seg);
426 }
427 mutex_unlock(&vmem_mutex);
428 return 0;
429 }
430
431 core_initcall(vmem_convert_memory_chunk);
This page took 0.040586 seconds and 6 git commands to generate.