Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[deliverable/linux.git] / arch / x86 / Kconfig
1 # Select 32 or 64 bit
2 config 64BIT
3 bool "64-bit kernel" if ARCH = "x86"
4 default ARCH != "i386"
5 ---help---
6 Say yes to build a 64-bit kernel - formerly known as x86_64
7 Say no to build a 32-bit kernel - formerly known as i386
8
9 config X86_32
10 def_bool y
11 depends on !64BIT
12 select CLKSRC_I8253
13 select HAVE_UID16
14
15 config X86_64
16 def_bool y
17 depends on 64BIT
18 select X86_DEV_DMA_OPS
19 select ARCH_USE_CMPXCHG_LOCKREF
20 select HAVE_LIVEPATCH
21
22 ### Arch settings
23 config X86
24 def_bool y
25 select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI
26 select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
27 select ARCH_HAS_FAST_MULTIPLIER
28 select ARCH_HAS_GCOV_PROFILE_ALL
29 select ARCH_MIGHT_HAVE_PC_PARPORT
30 select ARCH_MIGHT_HAVE_PC_SERIO
31 select HAVE_AOUT if X86_32
32 select HAVE_UNSTABLE_SCHED_CLOCK
33 select ARCH_SUPPORTS_NUMA_BALANCING if X86_64
34 select ARCH_SUPPORTS_INT128 if X86_64
35 select HAVE_IDE
36 select HAVE_OPROFILE
37 select HAVE_PCSPKR_PLATFORM
38 select HAVE_PERF_EVENTS
39 select HAVE_IOREMAP_PROT
40 select HAVE_KPROBES
41 select HAVE_MEMBLOCK
42 select HAVE_MEMBLOCK_NODE_MAP
43 select ARCH_DISCARD_MEMBLOCK
44 select ARCH_WANT_OPTIONAL_GPIOLIB
45 select ARCH_WANT_FRAME_POINTERS
46 select HAVE_DMA_ATTRS
47 select HAVE_DMA_CONTIGUOUS
48 select HAVE_KRETPROBES
49 select GENERIC_EARLY_IOREMAP
50 select HAVE_OPTPROBES
51 select HAVE_KPROBES_ON_FTRACE
52 select HAVE_FTRACE_MCOUNT_RECORD
53 select HAVE_FENTRY if X86_64
54 select HAVE_C_RECORDMCOUNT
55 select HAVE_DYNAMIC_FTRACE
56 select HAVE_DYNAMIC_FTRACE_WITH_REGS
57 select HAVE_FUNCTION_TRACER
58 select HAVE_FUNCTION_GRAPH_TRACER
59 select HAVE_FUNCTION_GRAPH_FP_TEST
60 select HAVE_SYSCALL_TRACEPOINTS
61 select SYSCTL_EXCEPTION_TRACE
62 select HAVE_KVM
63 select HAVE_ARCH_KGDB
64 select HAVE_ARCH_TRACEHOOK
65 select HAVE_GENERIC_DMA_COHERENT if X86_32
66 select HAVE_EFFICIENT_UNALIGNED_ACCESS
67 select USER_STACKTRACE_SUPPORT
68 select HAVE_REGS_AND_STACK_ACCESS_API
69 select HAVE_DMA_API_DEBUG
70 select HAVE_KERNEL_GZIP
71 select HAVE_KERNEL_BZIP2
72 select HAVE_KERNEL_LZMA
73 select HAVE_KERNEL_XZ
74 select HAVE_KERNEL_LZO
75 select HAVE_KERNEL_LZ4
76 select HAVE_HW_BREAKPOINT
77 select HAVE_MIXED_BREAKPOINTS_REGS
78 select PERF_EVENTS
79 select HAVE_PERF_EVENTS_NMI
80 select HAVE_PERF_REGS
81 select HAVE_PERF_USER_STACK_DUMP
82 select HAVE_DEBUG_KMEMLEAK
83 select ANON_INODES
84 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
85 select HAVE_CMPXCHG_LOCAL
86 select HAVE_CMPXCHG_DOUBLE
87 select HAVE_ARCH_KMEMCHECK
88 select HAVE_ARCH_KASAN if X86_64 && SPARSEMEM_VMEMMAP
89 select HAVE_USER_RETURN_NOTIFIER
90 select ARCH_BINFMT_ELF_RANDOMIZE_PIE
91 select HAVE_ARCH_JUMP_LABEL
92 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
93 select SPARSE_IRQ
94 select GENERIC_FIND_FIRST_BIT
95 select GENERIC_IRQ_PROBE
96 select GENERIC_PENDING_IRQ if SMP
97 select GENERIC_IRQ_SHOW
98 select GENERIC_CLOCKEVENTS_MIN_ADJUST
99 select IRQ_FORCED_THREADING
100 select HAVE_BPF_JIT if X86_64
101 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
102 select ARCH_HAS_SG_CHAIN
103 select CLKEVT_I8253
104 select ARCH_HAVE_NMI_SAFE_CMPXCHG
105 select GENERIC_IOMAP
106 select DCACHE_WORD_ACCESS
107 select GENERIC_SMP_IDLE_THREAD
108 select ARCH_WANT_IPC_PARSE_VERSION if X86_32
109 select HAVE_ARCH_SECCOMP_FILTER
110 select BUILDTIME_EXTABLE_SORT
111 select GENERIC_CMOS_UPDATE
112 select HAVE_ARCH_SOFT_DIRTY if X86_64
113 select CLOCKSOURCE_WATCHDOG
114 select GENERIC_CLOCKEVENTS
115 select ARCH_CLOCKSOURCE_DATA
116 select CLOCKSOURCE_VALIDATE_LAST_CYCLE
117 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
118 select GENERIC_TIME_VSYSCALL
119 select GENERIC_STRNCPY_FROM_USER
120 select GENERIC_STRNLEN_USER
121 select HAVE_CONTEXT_TRACKING if X86_64
122 select HAVE_IRQ_TIME_ACCOUNTING
123 select VIRT_TO_BUS
124 select MODULES_USE_ELF_REL if X86_32
125 select MODULES_USE_ELF_RELA if X86_64
126 select CLONE_BACKWARDS if X86_32
127 select ARCH_USE_BUILTIN_BSWAP
128 select ARCH_USE_QUEUE_RWLOCK
129 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
130 select OLD_SIGACTION if X86_32
131 select COMPAT_OLD_SIGACTION if IA32_EMULATION
132 select RTC_LIB
133 select HAVE_DEBUG_STACKOVERFLOW
134 select HAVE_IRQ_EXIT_ON_IRQ_STACK if X86_64
135 select HAVE_CC_STACKPROTECTOR
136 select GENERIC_CPU_AUTOPROBE
137 select HAVE_ARCH_AUDITSYSCALL
138 select ARCH_SUPPORTS_ATOMIC_RMW
139 select HAVE_ACPI_APEI if ACPI
140 select HAVE_ACPI_APEI_NMI if ACPI
141 select ACPI_LEGACY_TABLES_LOOKUP if ACPI
142 select X86_FEATURE_NAMES if PROC_FS
143 select SRCU
144
145 config INSTRUCTION_DECODER
146 def_bool y
147 depends on KPROBES || PERF_EVENTS || UPROBES
148
149 config PERF_EVENTS_INTEL_UNCORE
150 def_bool y
151 depends on PERF_EVENTS && CPU_SUP_INTEL && PCI
152
153 config OUTPUT_FORMAT
154 string
155 default "elf32-i386" if X86_32
156 default "elf64-x86-64" if X86_64
157
158 config ARCH_DEFCONFIG
159 string
160 default "arch/x86/configs/i386_defconfig" if X86_32
161 default "arch/x86/configs/x86_64_defconfig" if X86_64
162
163 config LOCKDEP_SUPPORT
164 def_bool y
165
166 config STACKTRACE_SUPPORT
167 def_bool y
168
169 config HAVE_LATENCYTOP_SUPPORT
170 def_bool y
171
172 config MMU
173 def_bool y
174
175 config SBUS
176 bool
177
178 config NEED_DMA_MAP_STATE
179 def_bool y
180 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG
181
182 config NEED_SG_DMA_LENGTH
183 def_bool y
184
185 config GENERIC_ISA_DMA
186 def_bool y
187 depends on ISA_DMA_API
188
189 config GENERIC_BUG
190 def_bool y
191 depends on BUG
192 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
193
194 config GENERIC_BUG_RELATIVE_POINTERS
195 bool
196
197 config GENERIC_HWEIGHT
198 def_bool y
199
200 config ARCH_MAY_HAVE_PC_FDC
201 def_bool y
202 depends on ISA_DMA_API
203
204 config RWSEM_XCHGADD_ALGORITHM
205 def_bool y
206
207 config GENERIC_CALIBRATE_DELAY
208 def_bool y
209
210 config ARCH_HAS_CPU_RELAX
211 def_bool y
212
213 config ARCH_HAS_CACHE_LINE_SIZE
214 def_bool y
215
216 config HAVE_SETUP_PER_CPU_AREA
217 def_bool y
218
219 config NEED_PER_CPU_EMBED_FIRST_CHUNK
220 def_bool y
221
222 config NEED_PER_CPU_PAGE_FIRST_CHUNK
223 def_bool y
224
225 config ARCH_HIBERNATION_POSSIBLE
226 def_bool y
227
228 config ARCH_SUSPEND_POSSIBLE
229 def_bool y
230
231 config ARCH_WANT_HUGE_PMD_SHARE
232 def_bool y
233
234 config ARCH_WANT_GENERAL_HUGETLB
235 def_bool y
236
237 config ZONE_DMA32
238 bool
239 default X86_64
240
241 config AUDIT_ARCH
242 bool
243 default X86_64
244
245 config ARCH_SUPPORTS_OPTIMIZED_INLINING
246 def_bool y
247
248 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
249 def_bool y
250
251 config HAVE_INTEL_TXT
252 def_bool y
253 depends on INTEL_IOMMU && ACPI
254
255 config X86_32_SMP
256 def_bool y
257 depends on X86_32 && SMP
258
259 config X86_64_SMP
260 def_bool y
261 depends on X86_64 && SMP
262
263 config X86_HT
264 def_bool y
265 depends on SMP
266
267 config X86_32_LAZY_GS
268 def_bool y
269 depends on X86_32 && !CC_STACKPROTECTOR
270
271 config ARCH_HWEIGHT_CFLAGS
272 string
273 default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
274 default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64
275
276 config ARCH_SUPPORTS_UPROBES
277 def_bool y
278
279 config FIX_EARLYCON_MEM
280 def_bool y
281
282 source "init/Kconfig"
283 source "kernel/Kconfig.freezer"
284
285 menu "Processor type and features"
286
287 config ZONE_DMA
288 bool "DMA memory allocation support" if EXPERT
289 default y
290 help
291 DMA memory allocation support allows devices with less than 32-bit
292 addressing to allocate within the first 16MB of address space.
293 Disable if no such devices will be used.
294
295 If unsure, say Y.
296
297 config SMP
298 bool "Symmetric multi-processing support"
299 ---help---
300 This enables support for systems with more than one CPU. If you have
301 a system with only one CPU, say N. If you have a system with more
302 than one CPU, say Y.
303
304 If you say N here, the kernel will run on uni- and multiprocessor
305 machines, but will use only one CPU of a multiprocessor machine. If
306 you say Y here, the kernel will run on many, but not all,
307 uniprocessor machines. On a uniprocessor machine, the kernel
308 will run faster if you say N here.
309
310 Note that if you say Y here and choose architecture "586" or
311 "Pentium" under "Processor family", the kernel will not work on 486
312 architectures. Similarly, multiprocessor kernels for the "PPro"
313 architecture may not work on all Pentium based boards.
314
315 People using multiprocessor machines who say Y here should also say
316 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
317 Management" code will be disabled if you say Y here.
318
319 See also <file:Documentation/x86/i386/IO-APIC.txt>,
320 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
321 <http://www.tldp.org/docs.html#howto>.
322
323 If you don't know what to do here, say N.
324
325 config X86_FEATURE_NAMES
326 bool "Processor feature human-readable names" if EMBEDDED
327 default y
328 ---help---
329 This option compiles in a table of x86 feature bits and corresponding
330 names. This is required to support /proc/cpuinfo and a few kernel
331 messages. You can disable this to save space, at the expense of
332 making those few kernel messages show numeric feature bits instead.
333
334 If in doubt, say Y.
335
336 config X86_X2APIC
337 bool "Support x2apic"
338 depends on X86_LOCAL_APIC && X86_64 && IRQ_REMAP
339 ---help---
340 This enables x2apic support on CPUs that have this feature.
341
342 This allows 32-bit apic IDs (so it can support very large systems),
343 and accesses the local apic via MSRs not via mmio.
344
345 If you don't know what to do here, say N.
346
347 config X86_MPPARSE
348 bool "Enable MPS table" if ACPI || SFI
349 default y
350 depends on X86_LOCAL_APIC
351 ---help---
352 For old smp systems that do not have proper acpi support. Newer systems
353 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
354
355 config X86_BIGSMP
356 bool "Support for big SMP systems with more than 8 CPUs"
357 depends on X86_32 && SMP
358 ---help---
359 This option is needed for the systems that have more than 8 CPUs
360
361 config GOLDFISH
362 def_bool y
363 depends on X86_GOLDFISH
364
365 if X86_32
366 config X86_EXTENDED_PLATFORM
367 bool "Support for extended (non-PC) x86 platforms"
368 default y
369 ---help---
370 If you disable this option then the kernel will only support
371 standard PC platforms. (which covers the vast majority of
372 systems out there.)
373
374 If you enable this option then you'll be able to select support
375 for the following (non-PC) 32 bit x86 platforms:
376 Goldfish (Android emulator)
377 AMD Elan
378 RDC R-321x SoC
379 SGI 320/540 (Visual Workstation)
380 STA2X11-based (e.g. Northville)
381 Moorestown MID devices
382
383 If you have one of these systems, or if you want to build a
384 generic distribution kernel, say Y here - otherwise say N.
385 endif
386
387 if X86_64
388 config X86_EXTENDED_PLATFORM
389 bool "Support for extended (non-PC) x86 platforms"
390 default y
391 ---help---
392 If you disable this option then the kernel will only support
393 standard PC platforms. (which covers the vast majority of
394 systems out there.)
395
396 If you enable this option then you'll be able to select support
397 for the following (non-PC) 64 bit x86 platforms:
398 Numascale NumaChip
399 ScaleMP vSMP
400 SGI Ultraviolet
401
402 If you have one of these systems, or if you want to build a
403 generic distribution kernel, say Y here - otherwise say N.
404 endif
405 # This is an alphabetically sorted list of 64 bit extended platforms
406 # Please maintain the alphabetic order if and when there are additions
407 config X86_NUMACHIP
408 bool "Numascale NumaChip"
409 depends on X86_64
410 depends on X86_EXTENDED_PLATFORM
411 depends on NUMA
412 depends on SMP
413 depends on X86_X2APIC
414 depends on PCI_MMCONFIG
415 ---help---
416 Adds support for Numascale NumaChip large-SMP systems. Needed to
417 enable more than ~168 cores.
418 If you don't have one of these, you should say N here.
419
420 config X86_VSMP
421 bool "ScaleMP vSMP"
422 select HYPERVISOR_GUEST
423 select PARAVIRT
424 depends on X86_64 && PCI
425 depends on X86_EXTENDED_PLATFORM
426 depends on SMP
427 ---help---
428 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
429 supposed to run on these EM64T-based machines. Only choose this option
430 if you have one of these machines.
431
432 config X86_UV
433 bool "SGI Ultraviolet"
434 depends on X86_64
435 depends on X86_EXTENDED_PLATFORM
436 depends on NUMA
437 depends on X86_X2APIC
438 ---help---
439 This option is needed in order to support SGI Ultraviolet systems.
440 If you don't have one of these, you should say N here.
441
442 # Following is an alphabetically sorted list of 32 bit extended platforms
443 # Please maintain the alphabetic order if and when there are additions
444
445 config X86_GOLDFISH
446 bool "Goldfish (Virtual Platform)"
447 depends on X86_EXTENDED_PLATFORM
448 ---help---
449 Enable support for the Goldfish virtual platform used primarily
450 for Android development. Unless you are building for the Android
451 Goldfish emulator say N here.
452
453 config X86_INTEL_CE
454 bool "CE4100 TV platform"
455 depends on PCI
456 depends on PCI_GODIRECT
457 depends on X86_IO_APIC
458 depends on X86_32
459 depends on X86_EXTENDED_PLATFORM
460 select X86_REBOOTFIXUPS
461 select OF
462 select OF_EARLY_FLATTREE
463 select IRQ_DOMAIN
464 ---help---
465 Select for the Intel CE media processor (CE4100) SOC.
466 This option compiles in support for the CE4100 SOC for settop
467 boxes and media devices.
468
469 config X86_INTEL_MID
470 bool "Intel MID platform support"
471 depends on X86_32
472 depends on X86_EXTENDED_PLATFORM
473 depends on X86_PLATFORM_DEVICES
474 depends on PCI
475 depends on PCI_GOANY
476 depends on X86_IO_APIC
477 select SFI
478 select I2C
479 select DW_APB_TIMER
480 select APB_TIMER
481 select INTEL_SCU_IPC
482 select MFD_INTEL_MSIC
483 ---help---
484 Select to build a kernel capable of supporting Intel MID (Mobile
485 Internet Device) platform systems which do not have the PCI legacy
486 interfaces. If you are building for a PC class system say N here.
487
488 Intel MID platforms are based on an Intel processor and chipset which
489 consume less power than most of the x86 derivatives.
490
491 config X86_INTEL_QUARK
492 bool "Intel Quark platform support"
493 depends on X86_32
494 depends on X86_EXTENDED_PLATFORM
495 depends on X86_PLATFORM_DEVICES
496 depends on X86_TSC
497 depends on PCI
498 depends on PCI_GOANY
499 depends on X86_IO_APIC
500 select IOSF_MBI
501 select INTEL_IMR
502 ---help---
503 Select to include support for Quark X1000 SoC.
504 Say Y here if you have a Quark based system such as the Arduino
505 compatible Intel Galileo.
506
507 config X86_INTEL_LPSS
508 bool "Intel Low Power Subsystem Support"
509 depends on ACPI
510 select COMMON_CLK
511 select PINCTRL
512 ---help---
513 Select to build support for Intel Low Power Subsystem such as
514 found on Intel Lynxpoint PCH. Selecting this option enables
515 things like clock tree (common clock framework) and pincontrol
516 which are needed by the LPSS peripheral drivers.
517
518 config X86_AMD_PLATFORM_DEVICE
519 bool "AMD ACPI2Platform devices support"
520 depends on ACPI
521 select COMMON_CLK
522 select PINCTRL
523 ---help---
524 Select to interpret AMD specific ACPI device to platform device
525 such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
526 I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
527 implemented under PINCTRL subsystem.
528
529 config IOSF_MBI
530 tristate "Intel SoC IOSF Sideband support for SoC platforms"
531 depends on PCI
532 ---help---
533 This option enables sideband register access support for Intel SoC
534 platforms. On these platforms the IOSF sideband is used in lieu of
535 MSR's for some register accesses, mostly but not limited to thermal
536 and power. Drivers may query the availability of this device to
537 determine if they need the sideband in order to work on these
538 platforms. The sideband is available on the following SoC products.
539 This list is not meant to be exclusive.
540 - BayTrail
541 - Braswell
542 - Quark
543
544 You should say Y if you are running a kernel on one of these SoC's.
545
546 config IOSF_MBI_DEBUG
547 bool "Enable IOSF sideband access through debugfs"
548 depends on IOSF_MBI && DEBUG_FS
549 ---help---
550 Select this option to expose the IOSF sideband access registers (MCR,
551 MDR, MCRX) through debugfs to write and read register information from
552 different units on the SoC. This is most useful for obtaining device
553 state information for debug and analysis. As this is a general access
554 mechanism, users of this option would have specific knowledge of the
555 device they want to access.
556
557 If you don't require the option or are in doubt, say N.
558
559 config X86_RDC321X
560 bool "RDC R-321x SoC"
561 depends on X86_32
562 depends on X86_EXTENDED_PLATFORM
563 select M486
564 select X86_REBOOTFIXUPS
565 ---help---
566 This option is needed for RDC R-321x system-on-chip, also known
567 as R-8610-(G).
568 If you don't have one of these chips, you should say N here.
569
570 config X86_32_NON_STANDARD
571 bool "Support non-standard 32-bit SMP architectures"
572 depends on X86_32 && SMP
573 depends on X86_EXTENDED_PLATFORM
574 ---help---
575 This option compiles in the bigsmp and STA2X11 default
576 subarchitectures. It is intended for a generic binary
577 kernel. If you select them all, kernel will probe it one by
578 one and will fallback to default.
579
580 # Alphabetically sorted list of Non standard 32 bit platforms
581
582 config X86_SUPPORTS_MEMORY_FAILURE
583 def_bool y
584 # MCE code calls memory_failure():
585 depends on X86_MCE
586 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
587 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
588 depends on X86_64 || !SPARSEMEM
589 select ARCH_SUPPORTS_MEMORY_FAILURE
590
591 config STA2X11
592 bool "STA2X11 Companion Chip Support"
593 depends on X86_32_NON_STANDARD && PCI
594 select X86_DEV_DMA_OPS
595 select X86_DMA_REMAP
596 select SWIOTLB
597 select MFD_STA2X11
598 select ARCH_REQUIRE_GPIOLIB
599 default n
600 ---help---
601 This adds support for boards based on the STA2X11 IO-Hub,
602 a.k.a. "ConneXt". The chip is used in place of the standard
603 PC chipset, so all "standard" peripherals are missing. If this
604 option is selected the kernel will still be able to boot on
605 standard PC machines.
606
607 config X86_32_IRIS
608 tristate "Eurobraille/Iris poweroff module"
609 depends on X86_32
610 ---help---
611 The Iris machines from EuroBraille do not have APM or ACPI support
612 to shut themselves down properly. A special I/O sequence is
613 needed to do so, which is what this module does at
614 kernel shutdown.
615
616 This is only for Iris machines from EuroBraille.
617
618 If unused, say N.
619
620 config SCHED_OMIT_FRAME_POINTER
621 def_bool y
622 prompt "Single-depth WCHAN output"
623 depends on X86
624 ---help---
625 Calculate simpler /proc/<PID>/wchan values. If this option
626 is disabled then wchan values will recurse back to the
627 caller function. This provides more accurate wchan values,
628 at the expense of slightly more scheduling overhead.
629
630 If in doubt, say "Y".
631
632 menuconfig HYPERVISOR_GUEST
633 bool "Linux guest support"
634 ---help---
635 Say Y here to enable options for running Linux under various hyper-
636 visors. This option enables basic hypervisor detection and platform
637 setup.
638
639 If you say N, all options in this submenu will be skipped and
640 disabled, and Linux guest support won't be built in.
641
642 if HYPERVISOR_GUEST
643
644 config PARAVIRT
645 bool "Enable paravirtualization code"
646 ---help---
647 This changes the kernel so it can modify itself when it is run
648 under a hypervisor, potentially improving performance significantly
649 over full virtualization. However, when run without a hypervisor
650 the kernel is theoretically slower and slightly larger.
651
652 config PARAVIRT_DEBUG
653 bool "paravirt-ops debugging"
654 depends on PARAVIRT && DEBUG_KERNEL
655 ---help---
656 Enable to debug paravirt_ops internals. Specifically, BUG if
657 a paravirt_op is missing when it is called.
658
659 config PARAVIRT_SPINLOCKS
660 bool "Paravirtualization layer for spinlocks"
661 depends on PARAVIRT && SMP
662 select UNINLINE_SPIN_UNLOCK
663 ---help---
664 Paravirtualized spinlocks allow a pvops backend to replace the
665 spinlock implementation with something virtualization-friendly
666 (for example, block the virtual CPU rather than spinning).
667
668 It has a minimal impact on native kernels and gives a nice performance
669 benefit on paravirtualized KVM / Xen kernels.
670
671 If you are unsure how to answer this question, answer Y.
672
673 source "arch/x86/xen/Kconfig"
674
675 config KVM_GUEST
676 bool "KVM Guest support (including kvmclock)"
677 depends on PARAVIRT
678 select PARAVIRT_CLOCK
679 default y
680 ---help---
681 This option enables various optimizations for running under the KVM
682 hypervisor. It includes a paravirtualized clock, so that instead
683 of relying on a PIT (or probably other) emulation by the
684 underlying device model, the host provides the guest with
685 timing infrastructure such as time of day, and system time
686
687 config KVM_DEBUG_FS
688 bool "Enable debug information for KVM Guests in debugfs"
689 depends on KVM_GUEST && DEBUG_FS
690 default n
691 ---help---
692 This option enables collection of various statistics for KVM guest.
693 Statistics are displayed in debugfs filesystem. Enabling this option
694 may incur significant overhead.
695
696 source "arch/x86/lguest/Kconfig"
697
698 config PARAVIRT_TIME_ACCOUNTING
699 bool "Paravirtual steal time accounting"
700 depends on PARAVIRT
701 default n
702 ---help---
703 Select this option to enable fine granularity task steal time
704 accounting. Time spent executing other tasks in parallel with
705 the current vCPU is discounted from the vCPU power. To account for
706 that, there can be a small performance impact.
707
708 If in doubt, say N here.
709
710 config PARAVIRT_CLOCK
711 bool
712
713 endif #HYPERVISOR_GUEST
714
715 config NO_BOOTMEM
716 def_bool y
717
718 config MEMTEST
719 bool "Memtest"
720 ---help---
721 This option adds a kernel parameter 'memtest', which allows memtest
722 to be set.
723 memtest=0, mean disabled; -- default
724 memtest=1, mean do 1 test pattern;
725 ...
726 memtest=4, mean do 4 test patterns.
727 If you are unsure how to answer this question, answer N.
728
729 source "arch/x86/Kconfig.cpu"
730
731 config HPET_TIMER
732 def_bool X86_64
733 prompt "HPET Timer Support" if X86_32
734 ---help---
735 Use the IA-PC HPET (High Precision Event Timer) to manage
736 time in preference to the PIT and RTC, if a HPET is
737 present.
738 HPET is the next generation timer replacing legacy 8254s.
739 The HPET provides a stable time base on SMP
740 systems, unlike the TSC, but it is more expensive to access,
741 as it is off-chip. You can find the HPET spec at
742 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
743
744 You can safely choose Y here. However, HPET will only be
745 activated if the platform and the BIOS support this feature.
746 Otherwise the 8254 will be used for timing services.
747
748 Choose N to continue using the legacy 8254 timer.
749
750 config HPET_EMULATE_RTC
751 def_bool y
752 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
753
754 config APB_TIMER
755 def_bool y if X86_INTEL_MID
756 prompt "Intel MID APB Timer Support" if X86_INTEL_MID
757 select DW_APB_TIMER
758 depends on X86_INTEL_MID && SFI
759 help
760 APB timer is the replacement for 8254, HPET on X86 MID platforms.
761 The APBT provides a stable time base on SMP
762 systems, unlike the TSC, but it is more expensive to access,
763 as it is off-chip. APB timers are always running regardless of CPU
764 C states, they are used as per CPU clockevent device when possible.
765
766 # Mark as expert because too many people got it wrong.
767 # The code disables itself when not needed.
768 config DMI
769 default y
770 select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
771 bool "Enable DMI scanning" if EXPERT
772 ---help---
773 Enabled scanning of DMI to identify machine quirks. Say Y
774 here unless you have verified that your setup is not
775 affected by entries in the DMI blacklist. Required by PNP
776 BIOS code.
777
778 config GART_IOMMU
779 bool "Old AMD GART IOMMU support"
780 select SWIOTLB
781 depends on X86_64 && PCI && AMD_NB
782 ---help---
783 Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
784 GART based hardware IOMMUs.
785
786 The GART supports full DMA access for devices with 32-bit access
787 limitations, on systems with more than 3 GB. This is usually needed
788 for USB, sound, many IDE/SATA chipsets and some other devices.
789
790 Newer systems typically have a modern AMD IOMMU, supported via
791 the CONFIG_AMD_IOMMU=y config option.
792
793 In normal configurations this driver is only active when needed:
794 there's more than 3 GB of memory and the system contains a
795 32-bit limited device.
796
797 If unsure, say Y.
798
799 config CALGARY_IOMMU
800 bool "IBM Calgary IOMMU support"
801 select SWIOTLB
802 depends on X86_64 && PCI
803 ---help---
804 Support for hardware IOMMUs in IBM's xSeries x366 and x460
805 systems. Needed to run systems with more than 3GB of memory
806 properly with 32-bit PCI devices that do not support DAC
807 (Double Address Cycle). Calgary also supports bus level
808 isolation, where all DMAs pass through the IOMMU. This
809 prevents them from going anywhere except their intended
810 destination. This catches hard-to-find kernel bugs and
811 mis-behaving drivers and devices that do not use the DMA-API
812 properly to set up their DMA buffers. The IOMMU can be
813 turned off at boot time with the iommu=off parameter.
814 Normally the kernel will make the right choice by itself.
815 If unsure, say Y.
816
817 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
818 def_bool y
819 prompt "Should Calgary be enabled by default?"
820 depends on CALGARY_IOMMU
821 ---help---
822 Should Calgary be enabled by default? if you choose 'y', Calgary
823 will be used (if it exists). If you choose 'n', Calgary will not be
824 used even if it exists. If you choose 'n' and would like to use
825 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
826 If unsure, say Y.
827
828 # need this always selected by IOMMU for the VIA workaround
829 config SWIOTLB
830 def_bool y if X86_64
831 ---help---
832 Support for software bounce buffers used on x86-64 systems
833 which don't have a hardware IOMMU. Using this PCI devices
834 which can only access 32-bits of memory can be used on systems
835 with more than 3 GB of memory.
836 If unsure, say Y.
837
838 config IOMMU_HELPER
839 def_bool y
840 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
841
842 config MAXSMP
843 bool "Enable Maximum number of SMP Processors and NUMA Nodes"
844 depends on X86_64 && SMP && DEBUG_KERNEL
845 select CPUMASK_OFFSTACK
846 ---help---
847 Enable maximum number of CPUS and NUMA Nodes for this architecture.
848 If unsure, say N.
849
850 config NR_CPUS
851 int "Maximum number of CPUs" if SMP && !MAXSMP
852 range 2 8 if SMP && X86_32 && !X86_BIGSMP
853 range 2 512 if SMP && !MAXSMP && !CPUMASK_OFFSTACK
854 range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64
855 default "1" if !SMP
856 default "8192" if MAXSMP
857 default "32" if SMP && X86_BIGSMP
858 default "8" if SMP
859 ---help---
860 This allows you to specify the maximum number of CPUs which this
861 kernel will support. If CPUMASK_OFFSTACK is enabled, the maximum
862 supported value is 4096, otherwise the maximum value is 512. The
863 minimum value which makes sense is 2.
864
865 This is purely to save memory - each supported CPU adds
866 approximately eight kilobytes to the kernel image.
867
868 config SCHED_SMT
869 bool "SMT (Hyperthreading) scheduler support"
870 depends on X86_HT
871 ---help---
872 SMT scheduler support improves the CPU scheduler's decision making
873 when dealing with Intel Pentium 4 chips with HyperThreading at a
874 cost of slightly increased overhead in some places. If unsure say
875 N here.
876
877 config SCHED_MC
878 def_bool y
879 prompt "Multi-core scheduler support"
880 depends on X86_HT
881 ---help---
882 Multi-core scheduler support improves the CPU scheduler's decision
883 making when dealing with multi-core CPU chips at a cost of slightly
884 increased overhead in some places. If unsure say N here.
885
886 source "kernel/Kconfig.preempt"
887
888 config UP_LATE_INIT
889 def_bool y
890 depends on !SMP && X86_LOCAL_APIC
891
892 config X86_UP_APIC
893 bool "Local APIC support on uniprocessors"
894 depends on X86_32 && !SMP && !X86_32_NON_STANDARD
895 ---help---
896 A local APIC (Advanced Programmable Interrupt Controller) is an
897 integrated interrupt controller in the CPU. If you have a single-CPU
898 system which has a processor with a local APIC, you can say Y here to
899 enable and use it. If you say Y here even though your machine doesn't
900 have a local APIC, then the kernel will still run with no slowdown at
901 all. The local APIC supports CPU-generated self-interrupts (timer,
902 performance counters), and the NMI watchdog which detects hard
903 lockups.
904
905 config X86_UP_APIC_MSI
906 def_bool y
907 select X86_UP_APIC if X86_32 && !SMP && !X86_32_NON_STANDARD && PCI_MSI
908
909 config X86_UP_IOAPIC
910 bool "IO-APIC support on uniprocessors"
911 depends on X86_UP_APIC
912 ---help---
913 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
914 SMP-capable replacement for PC-style interrupt controllers. Most
915 SMP systems and many recent uniprocessor systems have one.
916
917 If you have a single-CPU system with an IO-APIC, you can say Y here
918 to use it. If you say Y here even though your machine doesn't have
919 an IO-APIC, then the kernel will still run with no slowdown at all.
920
921 config X86_LOCAL_APIC
922 def_bool y
923 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
924 select GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
925
926 config X86_IO_APIC
927 def_bool X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_IOAPIC
928 depends on X86_LOCAL_APIC
929 select IRQ_DOMAIN
930
931 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
932 bool "Reroute for broken boot IRQs"
933 depends on X86_IO_APIC
934 ---help---
935 This option enables a workaround that fixes a source of
936 spurious interrupts. This is recommended when threaded
937 interrupt handling is used on systems where the generation of
938 superfluous "boot interrupts" cannot be disabled.
939
940 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
941 entry in the chipset's IO-APIC is masked (as, e.g. the RT
942 kernel does during interrupt handling). On chipsets where this
943 boot IRQ generation cannot be disabled, this workaround keeps
944 the original IRQ line masked so that only the equivalent "boot
945 IRQ" is delivered to the CPUs. The workaround also tells the
946 kernel to set up the IRQ handler on the boot IRQ line. In this
947 way only one interrupt is delivered to the kernel. Otherwise
948 the spurious second interrupt may cause the kernel to bring
949 down (vital) interrupt lines.
950
951 Only affects "broken" chipsets. Interrupt sharing may be
952 increased on these systems.
953
954 config X86_MCE
955 bool "Machine Check / overheating reporting"
956 default y
957 ---help---
958 Machine Check support allows the processor to notify the
959 kernel if it detects a problem (e.g. overheating, data corruption).
960 The action the kernel takes depends on the severity of the problem,
961 ranging from warning messages to halting the machine.
962
963 config X86_MCE_INTEL
964 def_bool y
965 prompt "Intel MCE features"
966 depends on X86_MCE && X86_LOCAL_APIC
967 ---help---
968 Additional support for intel specific MCE features such as
969 the thermal monitor.
970
971 config X86_MCE_AMD
972 def_bool y
973 prompt "AMD MCE features"
974 depends on X86_MCE && X86_LOCAL_APIC
975 ---help---
976 Additional support for AMD specific MCE features such as
977 the DRAM Error Threshold.
978
979 config X86_ANCIENT_MCE
980 bool "Support for old Pentium 5 / WinChip machine checks"
981 depends on X86_32 && X86_MCE
982 ---help---
983 Include support for machine check handling on old Pentium 5 or WinChip
984 systems. These typically need to be enabled explicitly on the command
985 line.
986
987 config X86_MCE_THRESHOLD
988 depends on X86_MCE_AMD || X86_MCE_INTEL
989 def_bool y
990
991 config X86_MCE_INJECT
992 depends on X86_MCE
993 tristate "Machine check injector support"
994 ---help---
995 Provide support for injecting machine checks for testing purposes.
996 If you don't know what a machine check is and you don't do kernel
997 QA it is safe to say n.
998
999 config X86_THERMAL_VECTOR
1000 def_bool y
1001 depends on X86_MCE_INTEL
1002
1003 config VM86
1004 bool "Enable VM86 support" if EXPERT
1005 default y
1006 depends on X86_32
1007 ---help---
1008 This option is required by programs like DOSEMU to run
1009 16-bit real mode legacy code on x86 processors. It also may
1010 be needed by software like XFree86 to initialize some video
1011 cards via BIOS. Disabling this option saves about 6K.
1012
1013 config X86_16BIT
1014 bool "Enable support for 16-bit segments" if EXPERT
1015 default y
1016 ---help---
1017 This option is required by programs like Wine to run 16-bit
1018 protected mode legacy code on x86 processors. Disabling
1019 this option saves about 300 bytes on i386, or around 6K text
1020 plus 16K runtime memory on x86-64,
1021
1022 config X86_ESPFIX32
1023 def_bool y
1024 depends on X86_16BIT && X86_32
1025
1026 config X86_ESPFIX64
1027 def_bool y
1028 depends on X86_16BIT && X86_64
1029
1030 config X86_VSYSCALL_EMULATION
1031 bool "Enable vsyscall emulation" if EXPERT
1032 default y
1033 depends on X86_64
1034 ---help---
1035 This enables emulation of the legacy vsyscall page. Disabling
1036 it is roughly equivalent to booting with vsyscall=none, except
1037 that it will also disable the helpful warning if a program
1038 tries to use a vsyscall. With this option set to N, offending
1039 programs will just segfault, citing addresses of the form
1040 0xffffffffff600?00.
1041
1042 This option is required by many programs built before 2013, and
1043 care should be used even with newer programs if set to N.
1044
1045 Disabling this option saves about 7K of kernel size and
1046 possibly 4K of additional runtime pagetable memory.
1047
1048 config TOSHIBA
1049 tristate "Toshiba Laptop support"
1050 depends on X86_32
1051 ---help---
1052 This adds a driver to safely access the System Management Mode of
1053 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
1054 not work on models with a Phoenix BIOS. The System Management Mode
1055 is used to set the BIOS and power saving options on Toshiba portables.
1056
1057 For information on utilities to make use of this driver see the
1058 Toshiba Linux utilities web site at:
1059 <http://www.buzzard.org.uk/toshiba/>.
1060
1061 Say Y if you intend to run this kernel on a Toshiba portable.
1062 Say N otherwise.
1063
1064 config I8K
1065 tristate "Dell laptop support"
1066 select HWMON
1067 ---help---
1068 This adds a driver to safely access the System Management Mode
1069 of the CPU on the Dell Inspiron 8000. The System Management Mode
1070 is used to read cpu temperature and cooling fan status and to
1071 control the fans on the I8K portables.
1072
1073 This driver has been tested only on the Inspiron 8000 but it may
1074 also work with other Dell laptops. You can force loading on other
1075 models by passing the parameter `force=1' to the module. Use at
1076 your own risk.
1077
1078 For information on utilities to make use of this driver see the
1079 I8K Linux utilities web site at:
1080 <http://people.debian.org/~dz/i8k/>
1081
1082 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
1083 Say N otherwise.
1084
1085 config X86_REBOOTFIXUPS
1086 bool "Enable X86 board specific fixups for reboot"
1087 depends on X86_32
1088 ---help---
1089 This enables chipset and/or board specific fixups to be done
1090 in order to get reboot to work correctly. This is only needed on
1091 some combinations of hardware and BIOS. The symptom, for which
1092 this config is intended, is when reboot ends with a stalled/hung
1093 system.
1094
1095 Currently, the only fixup is for the Geode machines using
1096 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1097
1098 Say Y if you want to enable the fixup. Currently, it's safe to
1099 enable this option even if you don't need it.
1100 Say N otherwise.
1101
1102 config MICROCODE
1103 tristate "CPU microcode loading support"
1104 depends on CPU_SUP_AMD || CPU_SUP_INTEL
1105 select FW_LOADER
1106 ---help---
1107
1108 If you say Y here, you will be able to update the microcode on
1109 certain Intel and AMD processors. The Intel support is for the
1110 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4,
1111 Xeon etc. The AMD support is for families 0x10 and later. You will
1112 obviously need the actual microcode binary data itself which is not
1113 shipped with the Linux kernel.
1114
1115 This option selects the general module only, you need to select
1116 at least one vendor specific module as well.
1117
1118 To compile this driver as a module, choose M here: the module
1119 will be called microcode.
1120
1121 config MICROCODE_INTEL
1122 bool "Intel microcode loading support"
1123 depends on MICROCODE
1124 default MICROCODE
1125 select FW_LOADER
1126 ---help---
1127 This options enables microcode patch loading support for Intel
1128 processors.
1129
1130 For the current Intel microcode data package go to
1131 <https://downloadcenter.intel.com> and search for
1132 'Linux Processor Microcode Data File'.
1133
1134 config MICROCODE_AMD
1135 bool "AMD microcode loading support"
1136 depends on MICROCODE
1137 select FW_LOADER
1138 ---help---
1139 If you select this option, microcode patch loading support for AMD
1140 processors will be enabled.
1141
1142 config MICROCODE_OLD_INTERFACE
1143 def_bool y
1144 depends on MICROCODE
1145
1146 config MICROCODE_INTEL_EARLY
1147 def_bool n
1148
1149 config MICROCODE_AMD_EARLY
1150 def_bool n
1151
1152 config MICROCODE_EARLY
1153 bool "Early load microcode"
1154 depends on MICROCODE=y && BLK_DEV_INITRD
1155 select MICROCODE_INTEL_EARLY if MICROCODE_INTEL
1156 select MICROCODE_AMD_EARLY if MICROCODE_AMD
1157 default y
1158 help
1159 This option provides functionality to read additional microcode data
1160 at the beginning of initrd image. The data tells kernel to load
1161 microcode to CPU's as early as possible. No functional change if no
1162 microcode data is glued to the initrd, therefore it's safe to say Y.
1163
1164 config X86_MSR
1165 tristate "/dev/cpu/*/msr - Model-specific register support"
1166 ---help---
1167 This device gives privileged processes access to the x86
1168 Model-Specific Registers (MSRs). It is a character device with
1169 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1170 MSR accesses are directed to a specific CPU on multi-processor
1171 systems.
1172
1173 config X86_CPUID
1174 tristate "/dev/cpu/*/cpuid - CPU information support"
1175 ---help---
1176 This device gives processes access to the x86 CPUID instruction to
1177 be executed on a specific processor. It is a character device
1178 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1179 /dev/cpu/31/cpuid.
1180
1181 choice
1182 prompt "High Memory Support"
1183 default HIGHMEM4G
1184 depends on X86_32
1185
1186 config NOHIGHMEM
1187 bool "off"
1188 ---help---
1189 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1190 However, the address space of 32-bit x86 processors is only 4
1191 Gigabytes large. That means that, if you have a large amount of
1192 physical memory, not all of it can be "permanently mapped" by the
1193 kernel. The physical memory that's not permanently mapped is called
1194 "high memory".
1195
1196 If you are compiling a kernel which will never run on a machine with
1197 more than 1 Gigabyte total physical RAM, answer "off" here (default
1198 choice and suitable for most users). This will result in a "3GB/1GB"
1199 split: 3GB are mapped so that each process sees a 3GB virtual memory
1200 space and the remaining part of the 4GB virtual memory space is used
1201 by the kernel to permanently map as much physical memory as
1202 possible.
1203
1204 If the machine has between 1 and 4 Gigabytes physical RAM, then
1205 answer "4GB" here.
1206
1207 If more than 4 Gigabytes is used then answer "64GB" here. This
1208 selection turns Intel PAE (Physical Address Extension) mode on.
1209 PAE implements 3-level paging on IA32 processors. PAE is fully
1210 supported by Linux, PAE mode is implemented on all recent Intel
1211 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1212 then the kernel will not boot on CPUs that don't support PAE!
1213
1214 The actual amount of total physical memory will either be
1215 auto detected or can be forced by using a kernel command line option
1216 such as "mem=256M". (Try "man bootparam" or see the documentation of
1217 your boot loader (lilo or loadlin) about how to pass options to the
1218 kernel at boot time.)
1219
1220 If unsure, say "off".
1221
1222 config HIGHMEM4G
1223 bool "4GB"
1224 ---help---
1225 Select this if you have a 32-bit processor and between 1 and 4
1226 gigabytes of physical RAM.
1227
1228 config HIGHMEM64G
1229 bool "64GB"
1230 depends on !M486
1231 select X86_PAE
1232 ---help---
1233 Select this if you have a 32-bit processor and more than 4
1234 gigabytes of physical RAM.
1235
1236 endchoice
1237
1238 choice
1239 prompt "Memory split" if EXPERT
1240 default VMSPLIT_3G
1241 depends on X86_32
1242 ---help---
1243 Select the desired split between kernel and user memory.
1244
1245 If the address range available to the kernel is less than the
1246 physical memory installed, the remaining memory will be available
1247 as "high memory". Accessing high memory is a little more costly
1248 than low memory, as it needs to be mapped into the kernel first.
1249 Note that increasing the kernel address space limits the range
1250 available to user programs, making the address space there
1251 tighter. Selecting anything other than the default 3G/1G split
1252 will also likely make your kernel incompatible with binary-only
1253 kernel modules.
1254
1255 If you are not absolutely sure what you are doing, leave this
1256 option alone!
1257
1258 config VMSPLIT_3G
1259 bool "3G/1G user/kernel split"
1260 config VMSPLIT_3G_OPT
1261 depends on !X86_PAE
1262 bool "3G/1G user/kernel split (for full 1G low memory)"
1263 config VMSPLIT_2G
1264 bool "2G/2G user/kernel split"
1265 config VMSPLIT_2G_OPT
1266 depends on !X86_PAE
1267 bool "2G/2G user/kernel split (for full 2G low memory)"
1268 config VMSPLIT_1G
1269 bool "1G/3G user/kernel split"
1270 endchoice
1271
1272 config PAGE_OFFSET
1273 hex
1274 default 0xB0000000 if VMSPLIT_3G_OPT
1275 default 0x80000000 if VMSPLIT_2G
1276 default 0x78000000 if VMSPLIT_2G_OPT
1277 default 0x40000000 if VMSPLIT_1G
1278 default 0xC0000000
1279 depends on X86_32
1280
1281 config HIGHMEM
1282 def_bool y
1283 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1284
1285 config X86_PAE
1286 bool "PAE (Physical Address Extension) Support"
1287 depends on X86_32 && !HIGHMEM4G
1288 ---help---
1289 PAE is required for NX support, and furthermore enables
1290 larger swapspace support for non-overcommit purposes. It
1291 has the cost of more pagetable lookup overhead, and also
1292 consumes more pagetable space per process.
1293
1294 config ARCH_PHYS_ADDR_T_64BIT
1295 def_bool y
1296 depends on X86_64 || X86_PAE
1297
1298 config ARCH_DMA_ADDR_T_64BIT
1299 def_bool y
1300 depends on X86_64 || HIGHMEM64G
1301
1302 config DIRECT_GBPAGES
1303 bool "Enable 1GB pages for kernel pagetables" if EXPERT
1304 default y
1305 depends on X86_64
1306 ---help---
1307 Allow the kernel linear mapping to use 1GB pages on CPUs that
1308 support it. This can improve the kernel's performance a tiny bit by
1309 reducing TLB pressure. If in doubt, say "Y".
1310
1311 # Common NUMA Features
1312 config NUMA
1313 bool "Numa Memory Allocation and Scheduler Support"
1314 depends on SMP
1315 depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
1316 default y if X86_BIGSMP
1317 ---help---
1318 Enable NUMA (Non Uniform Memory Access) support.
1319
1320 The kernel will try to allocate memory used by a CPU on the
1321 local memory controller of the CPU and add some more
1322 NUMA awareness to the kernel.
1323
1324 For 64-bit this is recommended if the system is Intel Core i7
1325 (or later), AMD Opteron, or EM64T NUMA.
1326
1327 For 32-bit this is only needed if you boot a 32-bit
1328 kernel on a 64-bit NUMA platform.
1329
1330 Otherwise, you should say N.
1331
1332 config AMD_NUMA
1333 def_bool y
1334 prompt "Old style AMD Opteron NUMA detection"
1335 depends on X86_64 && NUMA && PCI
1336 ---help---
1337 Enable AMD NUMA node topology detection. You should say Y here if
1338 you have a multi processor AMD system. This uses an old method to
1339 read the NUMA configuration directly from the builtin Northbridge
1340 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1341 which also takes priority if both are compiled in.
1342
1343 config X86_64_ACPI_NUMA
1344 def_bool y
1345 prompt "ACPI NUMA detection"
1346 depends on X86_64 && NUMA && ACPI && PCI
1347 select ACPI_NUMA
1348 ---help---
1349 Enable ACPI SRAT based node topology detection.
1350
1351 # Some NUMA nodes have memory ranges that span
1352 # other nodes. Even though a pfn is valid and
1353 # between a node's start and end pfns, it may not
1354 # reside on that node. See memmap_init_zone()
1355 # for details.
1356 config NODES_SPAN_OTHER_NODES
1357 def_bool y
1358 depends on X86_64_ACPI_NUMA
1359
1360 config NUMA_EMU
1361 bool "NUMA emulation"
1362 depends on NUMA
1363 ---help---
1364 Enable NUMA emulation. A flat machine will be split
1365 into virtual nodes when booted with "numa=fake=N", where N is the
1366 number of nodes. This is only useful for debugging.
1367
1368 config NODES_SHIFT
1369 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1370 range 1 10
1371 default "10" if MAXSMP
1372 default "6" if X86_64
1373 default "3"
1374 depends on NEED_MULTIPLE_NODES
1375 ---help---
1376 Specify the maximum number of NUMA Nodes available on the target
1377 system. Increases memory reserved to accommodate various tables.
1378
1379 config ARCH_HAVE_MEMORY_PRESENT
1380 def_bool y
1381 depends on X86_32 && DISCONTIGMEM
1382
1383 config NEED_NODE_MEMMAP_SIZE
1384 def_bool y
1385 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1386
1387 config ARCH_FLATMEM_ENABLE
1388 def_bool y
1389 depends on X86_32 && !NUMA
1390
1391 config ARCH_DISCONTIGMEM_ENABLE
1392 def_bool y
1393 depends on NUMA && X86_32
1394
1395 config ARCH_DISCONTIGMEM_DEFAULT
1396 def_bool y
1397 depends on NUMA && X86_32
1398
1399 config ARCH_SPARSEMEM_ENABLE
1400 def_bool y
1401 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1402 select SPARSEMEM_STATIC if X86_32
1403 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1404
1405 config ARCH_SPARSEMEM_DEFAULT
1406 def_bool y
1407 depends on X86_64
1408
1409 config ARCH_SELECT_MEMORY_MODEL
1410 def_bool y
1411 depends on ARCH_SPARSEMEM_ENABLE
1412
1413 config ARCH_MEMORY_PROBE
1414 bool "Enable sysfs memory/probe interface"
1415 depends on X86_64 && MEMORY_HOTPLUG
1416 help
1417 This option enables a sysfs memory/probe interface for testing.
1418 See Documentation/memory-hotplug.txt for more information.
1419 If you are unsure how to answer this question, answer N.
1420
1421 config ARCH_PROC_KCORE_TEXT
1422 def_bool y
1423 depends on X86_64 && PROC_KCORE
1424
1425 config ILLEGAL_POINTER_VALUE
1426 hex
1427 default 0 if X86_32
1428 default 0xdead000000000000 if X86_64
1429
1430 source "mm/Kconfig"
1431
1432 config HIGHPTE
1433 bool "Allocate 3rd-level pagetables from highmem"
1434 depends on HIGHMEM
1435 ---help---
1436 The VM uses one page table entry for each page of physical memory.
1437 For systems with a lot of RAM, this can be wasteful of precious
1438 low memory. Setting this option will put user-space page table
1439 entries in high memory.
1440
1441 config X86_CHECK_BIOS_CORRUPTION
1442 bool "Check for low memory corruption"
1443 ---help---
1444 Periodically check for memory corruption in low memory, which
1445 is suspected to be caused by BIOS. Even when enabled in the
1446 configuration, it is disabled at runtime. Enable it by
1447 setting "memory_corruption_check=1" on the kernel command
1448 line. By default it scans the low 64k of memory every 60
1449 seconds; see the memory_corruption_check_size and
1450 memory_corruption_check_period parameters in
1451 Documentation/kernel-parameters.txt to adjust this.
1452
1453 When enabled with the default parameters, this option has
1454 almost no overhead, as it reserves a relatively small amount
1455 of memory and scans it infrequently. It both detects corruption
1456 and prevents it from affecting the running system.
1457
1458 It is, however, intended as a diagnostic tool; if repeatable
1459 BIOS-originated corruption always affects the same memory,
1460 you can use memmap= to prevent the kernel from using that
1461 memory.
1462
1463 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1464 bool "Set the default setting of memory_corruption_check"
1465 depends on X86_CHECK_BIOS_CORRUPTION
1466 default y
1467 ---help---
1468 Set whether the default state of memory_corruption_check is
1469 on or off.
1470
1471 config X86_RESERVE_LOW
1472 int "Amount of low memory, in kilobytes, to reserve for the BIOS"
1473 default 64
1474 range 4 640
1475 ---help---
1476 Specify the amount of low memory to reserve for the BIOS.
1477
1478 The first page contains BIOS data structures that the kernel
1479 must not use, so that page must always be reserved.
1480
1481 By default we reserve the first 64K of physical RAM, as a
1482 number of BIOSes are known to corrupt that memory range
1483 during events such as suspend/resume or monitor cable
1484 insertion, so it must not be used by the kernel.
1485
1486 You can set this to 4 if you are absolutely sure that you
1487 trust the BIOS to get all its memory reservations and usages
1488 right. If you know your BIOS have problems beyond the
1489 default 64K area, you can set this to 640 to avoid using the
1490 entire low memory range.
1491
1492 If you have doubts about the BIOS (e.g. suspend/resume does
1493 not work or there's kernel crashes after certain hardware
1494 hotplug events) then you might want to enable
1495 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
1496 typical corruption patterns.
1497
1498 Leave this to the default value of 64 if you are unsure.
1499
1500 config MATH_EMULATION
1501 bool
1502 prompt "Math emulation" if X86_32
1503 ---help---
1504 Linux can emulate a math coprocessor (used for floating point
1505 operations) if you don't have one. 486DX and Pentium processors have
1506 a math coprocessor built in, 486SX and 386 do not, unless you added
1507 a 487DX or 387, respectively. (The messages during boot time can
1508 give you some hints here ["man dmesg"].) Everyone needs either a
1509 coprocessor or this emulation.
1510
1511 If you don't have a math coprocessor, you need to say Y here; if you
1512 say Y here even though you have a coprocessor, the coprocessor will
1513 be used nevertheless. (This behavior can be changed with the kernel
1514 command line option "no387", which comes handy if your coprocessor
1515 is broken. Try "man bootparam" or see the documentation of your boot
1516 loader (lilo or loadlin) about how to pass options to the kernel at
1517 boot time.) This means that it is a good idea to say Y here if you
1518 intend to use this kernel on different machines.
1519
1520 More information about the internals of the Linux math coprocessor
1521 emulation can be found in <file:arch/x86/math-emu/README>.
1522
1523 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1524 kernel, it won't hurt.
1525
1526 config MTRR
1527 def_bool y
1528 prompt "MTRR (Memory Type Range Register) support" if EXPERT
1529 ---help---
1530 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1531 the Memory Type Range Registers (MTRRs) may be used to control
1532 processor access to memory ranges. This is most useful if you have
1533 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1534 allows bus write transfers to be combined into a larger transfer
1535 before bursting over the PCI/AGP bus. This can increase performance
1536 of image write operations 2.5 times or more. Saying Y here creates a
1537 /proc/mtrr file which may be used to manipulate your processor's
1538 MTRRs. Typically the X server should use this.
1539
1540 This code has a reasonably generic interface so that similar
1541 control registers on other processors can be easily supported
1542 as well:
1543
1544 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1545 Registers (ARRs) which provide a similar functionality to MTRRs. For
1546 these, the ARRs are used to emulate the MTRRs.
1547 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1548 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1549 write-combining. All of these processors are supported by this code
1550 and it makes sense to say Y here if you have one of them.
1551
1552 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1553 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1554 can lead to all sorts of problems, so it's good to say Y here.
1555
1556 You can safely say Y even if your machine doesn't have MTRRs, you'll
1557 just add about 9 KB to your kernel.
1558
1559 See <file:Documentation/x86/mtrr.txt> for more information.
1560
1561 config MTRR_SANITIZER
1562 def_bool y
1563 prompt "MTRR cleanup support"
1564 depends on MTRR
1565 ---help---
1566 Convert MTRR layout from continuous to discrete, so X drivers can
1567 add writeback entries.
1568
1569 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1570 The largest mtrr entry size for a continuous block can be set with
1571 mtrr_chunk_size.
1572
1573 If unsure, say Y.
1574
1575 config MTRR_SANITIZER_ENABLE_DEFAULT
1576 int "MTRR cleanup enable value (0-1)"
1577 range 0 1
1578 default "0"
1579 depends on MTRR_SANITIZER
1580 ---help---
1581 Enable mtrr cleanup default value
1582
1583 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1584 int "MTRR cleanup spare reg num (0-7)"
1585 range 0 7
1586 default "1"
1587 depends on MTRR_SANITIZER
1588 ---help---
1589 mtrr cleanup spare entries default, it can be changed via
1590 mtrr_spare_reg_nr=N on the kernel command line.
1591
1592 config X86_PAT
1593 def_bool y
1594 prompt "x86 PAT support" if EXPERT
1595 depends on MTRR
1596 ---help---
1597 Use PAT attributes to setup page level cache control.
1598
1599 PATs are the modern equivalents of MTRRs and are much more
1600 flexible than MTRRs.
1601
1602 Say N here if you see bootup problems (boot crash, boot hang,
1603 spontaneous reboots) or a non-working video driver.
1604
1605 If unsure, say Y.
1606
1607 config ARCH_USES_PG_UNCACHED
1608 def_bool y
1609 depends on X86_PAT
1610
1611 config ARCH_RANDOM
1612 def_bool y
1613 prompt "x86 architectural random number generator" if EXPERT
1614 ---help---
1615 Enable the x86 architectural RDRAND instruction
1616 (Intel Bull Mountain technology) to generate random numbers.
1617 If supported, this is a high bandwidth, cryptographically
1618 secure hardware random number generator.
1619
1620 config X86_SMAP
1621 def_bool y
1622 prompt "Supervisor Mode Access Prevention" if EXPERT
1623 ---help---
1624 Supervisor Mode Access Prevention (SMAP) is a security
1625 feature in newer Intel processors. There is a small
1626 performance cost if this enabled and turned on; there is
1627 also a small increase in the kernel size if this is enabled.
1628
1629 If unsure, say Y.
1630
1631 config X86_INTEL_MPX
1632 prompt "Intel MPX (Memory Protection Extensions)"
1633 def_bool n
1634 depends on CPU_SUP_INTEL
1635 ---help---
1636 MPX provides hardware features that can be used in
1637 conjunction with compiler-instrumented code to check
1638 memory references. It is designed to detect buffer
1639 overflow or underflow bugs.
1640
1641 This option enables running applications which are
1642 instrumented or otherwise use MPX. It does not use MPX
1643 itself inside the kernel or to protect the kernel
1644 against bad memory references.
1645
1646 Enabling this option will make the kernel larger:
1647 ~8k of kernel text and 36 bytes of data on a 64-bit
1648 defconfig. It adds a long to the 'mm_struct' which
1649 will increase the kernel memory overhead of each
1650 process and adds some branches to paths used during
1651 exec() and munmap().
1652
1653 For details, see Documentation/x86/intel_mpx.txt
1654
1655 If unsure, say N.
1656
1657 config EFI
1658 bool "EFI runtime service support"
1659 depends on ACPI
1660 select UCS2_STRING
1661 select EFI_RUNTIME_WRAPPERS
1662 ---help---
1663 This enables the kernel to use EFI runtime services that are
1664 available (such as the EFI variable services).
1665
1666 This option is only useful on systems that have EFI firmware.
1667 In addition, you should use the latest ELILO loader available
1668 at <http://elilo.sourceforge.net> in order to take advantage
1669 of EFI runtime services. However, even with this option, the
1670 resultant kernel should continue to boot on existing non-EFI
1671 platforms.
1672
1673 config EFI_STUB
1674 bool "EFI stub support"
1675 depends on EFI && !X86_USE_3DNOW
1676 select RELOCATABLE
1677 ---help---
1678 This kernel feature allows a bzImage to be loaded directly
1679 by EFI firmware without the use of a bootloader.
1680
1681 See Documentation/efi-stub.txt for more information.
1682
1683 config EFI_MIXED
1684 bool "EFI mixed-mode support"
1685 depends on EFI_STUB && X86_64
1686 ---help---
1687 Enabling this feature allows a 64-bit kernel to be booted
1688 on a 32-bit firmware, provided that your CPU supports 64-bit
1689 mode.
1690
1691 Note that it is not possible to boot a mixed-mode enabled
1692 kernel via the EFI boot stub - a bootloader that supports
1693 the EFI handover protocol must be used.
1694
1695 If unsure, say N.
1696
1697 config SECCOMP
1698 def_bool y
1699 prompt "Enable seccomp to safely compute untrusted bytecode"
1700 ---help---
1701 This kernel feature is useful for number crunching applications
1702 that may need to compute untrusted bytecode during their
1703 execution. By using pipes or other transports made available to
1704 the process as file descriptors supporting the read/write
1705 syscalls, it's possible to isolate those applications in
1706 their own address space using seccomp. Once seccomp is
1707 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1708 and the task is only allowed to execute a few safe syscalls
1709 defined by each seccomp mode.
1710
1711 If unsure, say Y. Only embedded should say N here.
1712
1713 source kernel/Kconfig.hz
1714
1715 config KEXEC
1716 bool "kexec system call"
1717 ---help---
1718 kexec is a system call that implements the ability to shutdown your
1719 current kernel, and to start another kernel. It is like a reboot
1720 but it is independent of the system firmware. And like a reboot
1721 you can start any kernel with it, not just Linux.
1722
1723 The name comes from the similarity to the exec system call.
1724
1725 It is an ongoing process to be certain the hardware in a machine
1726 is properly shutdown, so do not be surprised if this code does not
1727 initially work for you. As of this writing the exact hardware
1728 interface is strongly in flux, so no good recommendation can be
1729 made.
1730
1731 config KEXEC_FILE
1732 bool "kexec file based system call"
1733 select BUILD_BIN2C
1734 depends on KEXEC
1735 depends on X86_64
1736 depends on CRYPTO=y
1737 depends on CRYPTO_SHA256=y
1738 ---help---
1739 This is new version of kexec system call. This system call is
1740 file based and takes file descriptors as system call argument
1741 for kernel and initramfs as opposed to list of segments as
1742 accepted by previous system call.
1743
1744 config KEXEC_VERIFY_SIG
1745 bool "Verify kernel signature during kexec_file_load() syscall"
1746 depends on KEXEC_FILE
1747 ---help---
1748 This option makes kernel signature verification mandatory for
1749 kexec_file_load() syscall. If kernel is signature can not be
1750 verified, kexec_file_load() will fail.
1751
1752 This option enforces signature verification at generic level.
1753 One needs to enable signature verification for type of kernel
1754 image being loaded to make sure it works. For example, enable
1755 bzImage signature verification option to be able to load and
1756 verify signatures of bzImage. Otherwise kernel loading will fail.
1757
1758 config KEXEC_BZIMAGE_VERIFY_SIG
1759 bool "Enable bzImage signature verification support"
1760 depends on KEXEC_VERIFY_SIG
1761 depends on SIGNED_PE_FILE_VERIFICATION
1762 select SYSTEM_TRUSTED_KEYRING
1763 ---help---
1764 Enable bzImage signature verification support.
1765
1766 config CRASH_DUMP
1767 bool "kernel crash dumps"
1768 depends on X86_64 || (X86_32 && HIGHMEM)
1769 ---help---
1770 Generate crash dump after being started by kexec.
1771 This should be normally only set in special crash dump kernels
1772 which are loaded in the main kernel with kexec-tools into
1773 a specially reserved region and then later executed after
1774 a crash by kdump/kexec. The crash dump kernel must be compiled
1775 to a memory address not used by the main kernel or BIOS using
1776 PHYSICAL_START, or it must be built as a relocatable image
1777 (CONFIG_RELOCATABLE=y).
1778 For more details see Documentation/kdump/kdump.txt
1779
1780 config KEXEC_JUMP
1781 bool "kexec jump"
1782 depends on KEXEC && HIBERNATION
1783 ---help---
1784 Jump between original kernel and kexeced kernel and invoke
1785 code in physical address mode via KEXEC
1786
1787 config PHYSICAL_START
1788 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1789 default "0x1000000"
1790 ---help---
1791 This gives the physical address where the kernel is loaded.
1792
1793 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1794 bzImage will decompress itself to above physical address and
1795 run from there. Otherwise, bzImage will run from the address where
1796 it has been loaded by the boot loader and will ignore above physical
1797 address.
1798
1799 In normal kdump cases one does not have to set/change this option
1800 as now bzImage can be compiled as a completely relocatable image
1801 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1802 address. This option is mainly useful for the folks who don't want
1803 to use a bzImage for capturing the crash dump and want to use a
1804 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1805 to be specifically compiled to run from a specific memory area
1806 (normally a reserved region) and this option comes handy.
1807
1808 So if you are using bzImage for capturing the crash dump,
1809 leave the value here unchanged to 0x1000000 and set
1810 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1811 for capturing the crash dump change this value to start of
1812 the reserved region. In other words, it can be set based on
1813 the "X" value as specified in the "crashkernel=YM@XM"
1814 command line boot parameter passed to the panic-ed
1815 kernel. Please take a look at Documentation/kdump/kdump.txt
1816 for more details about crash dumps.
1817
1818 Usage of bzImage for capturing the crash dump is recommended as
1819 one does not have to build two kernels. Same kernel can be used
1820 as production kernel and capture kernel. Above option should have
1821 gone away after relocatable bzImage support is introduced. But it
1822 is present because there are users out there who continue to use
1823 vmlinux for dump capture. This option should go away down the
1824 line.
1825
1826 Don't change this unless you know what you are doing.
1827
1828 config RELOCATABLE
1829 bool "Build a relocatable kernel"
1830 default y
1831 ---help---
1832 This builds a kernel image that retains relocation information
1833 so it can be loaded someplace besides the default 1MB.
1834 The relocations tend to make the kernel binary about 10% larger,
1835 but are discarded at runtime.
1836
1837 One use is for the kexec on panic case where the recovery kernel
1838 must live at a different physical address than the primary
1839 kernel.
1840
1841 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1842 it has been loaded at and the compile time physical address
1843 (CONFIG_PHYSICAL_START) is used as the minimum location.
1844
1845 config RANDOMIZE_BASE
1846 bool "Randomize the address of the kernel image"
1847 depends on RELOCATABLE
1848 default n
1849 ---help---
1850 Randomizes the physical and virtual address at which the
1851 kernel image is decompressed, as a security feature that
1852 deters exploit attempts relying on knowledge of the location
1853 of kernel internals.
1854
1855 Entropy is generated using the RDRAND instruction if it is
1856 supported. If RDTSC is supported, it is used as well. If
1857 neither RDRAND nor RDTSC are supported, then randomness is
1858 read from the i8254 timer.
1859
1860 The kernel will be offset by up to RANDOMIZE_BASE_MAX_OFFSET,
1861 and aligned according to PHYSICAL_ALIGN. Since the kernel is
1862 built using 2GiB addressing, and PHYSICAL_ALGIN must be at a
1863 minimum of 2MiB, only 10 bits of entropy is theoretically
1864 possible. At best, due to page table layouts, 64-bit can use
1865 9 bits of entropy and 32-bit uses 8 bits.
1866
1867 If unsure, say N.
1868
1869 config RANDOMIZE_BASE_MAX_OFFSET
1870 hex "Maximum kASLR offset allowed" if EXPERT
1871 depends on RANDOMIZE_BASE
1872 range 0x0 0x20000000 if X86_32
1873 default "0x20000000" if X86_32
1874 range 0x0 0x40000000 if X86_64
1875 default "0x40000000" if X86_64
1876 ---help---
1877 The lesser of RANDOMIZE_BASE_MAX_OFFSET and available physical
1878 memory is used to determine the maximal offset in bytes that will
1879 be applied to the kernel when kernel Address Space Layout
1880 Randomization (kASLR) is active. This must be a multiple of
1881 PHYSICAL_ALIGN.
1882
1883 On 32-bit this is limited to 512MiB by page table layouts. The
1884 default is 512MiB.
1885
1886 On 64-bit this is limited by how the kernel fixmap page table is
1887 positioned, so this cannot be larger than 1GiB currently. Without
1888 RANDOMIZE_BASE, there is a 512MiB to 1.5GiB split between kernel
1889 and modules. When RANDOMIZE_BASE_MAX_OFFSET is above 512MiB, the
1890 modules area will shrink to compensate, up to the current maximum
1891 1GiB to 1GiB split. The default is 1GiB.
1892
1893 If unsure, leave at the default value.
1894
1895 # Relocation on x86 needs some additional build support
1896 config X86_NEED_RELOCS
1897 def_bool y
1898 depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
1899
1900 config PHYSICAL_ALIGN
1901 hex "Alignment value to which kernel should be aligned"
1902 default "0x200000"
1903 range 0x2000 0x1000000 if X86_32
1904 range 0x200000 0x1000000 if X86_64
1905 ---help---
1906 This value puts the alignment restrictions on physical address
1907 where kernel is loaded and run from. Kernel is compiled for an
1908 address which meets above alignment restriction.
1909
1910 If bootloader loads the kernel at a non-aligned address and
1911 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1912 address aligned to above value and run from there.
1913
1914 If bootloader loads the kernel at a non-aligned address and
1915 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1916 load address and decompress itself to the address it has been
1917 compiled for and run from there. The address for which kernel is
1918 compiled already meets above alignment restrictions. Hence the
1919 end result is that kernel runs from a physical address meeting
1920 above alignment restrictions.
1921
1922 On 32-bit this value must be a multiple of 0x2000. On 64-bit
1923 this value must be a multiple of 0x200000.
1924
1925 Don't change this unless you know what you are doing.
1926
1927 config HOTPLUG_CPU
1928 bool "Support for hot-pluggable CPUs"
1929 depends on SMP
1930 ---help---
1931 Say Y here to allow turning CPUs off and on. CPUs can be
1932 controlled through /sys/devices/system/cpu.
1933 ( Note: power management support will enable this option
1934 automatically on SMP systems. )
1935 Say N if you want to disable CPU hotplug.
1936
1937 config BOOTPARAM_HOTPLUG_CPU0
1938 bool "Set default setting of cpu0_hotpluggable"
1939 default n
1940 depends on HOTPLUG_CPU
1941 ---help---
1942 Set whether default state of cpu0_hotpluggable is on or off.
1943
1944 Say Y here to enable CPU0 hotplug by default. If this switch
1945 is turned on, there is no need to give cpu0_hotplug kernel
1946 parameter and the CPU0 hotplug feature is enabled by default.
1947
1948 Please note: there are two known CPU0 dependencies if you want
1949 to enable the CPU0 hotplug feature either by this switch or by
1950 cpu0_hotplug kernel parameter.
1951
1952 First, resume from hibernate or suspend always starts from CPU0.
1953 So hibernate and suspend are prevented if CPU0 is offline.
1954
1955 Second dependency is PIC interrupts always go to CPU0. CPU0 can not
1956 offline if any interrupt can not migrate out of CPU0. There may
1957 be other CPU0 dependencies.
1958
1959 Please make sure the dependencies are under your control before
1960 you enable this feature.
1961
1962 Say N if you don't want to enable CPU0 hotplug feature by default.
1963 You still can enable the CPU0 hotplug feature at boot by kernel
1964 parameter cpu0_hotplug.
1965
1966 config DEBUG_HOTPLUG_CPU0
1967 def_bool n
1968 prompt "Debug CPU0 hotplug"
1969 depends on HOTPLUG_CPU
1970 ---help---
1971 Enabling this option offlines CPU0 (if CPU0 can be offlined) as
1972 soon as possible and boots up userspace with CPU0 offlined. User
1973 can online CPU0 back after boot time.
1974
1975 To debug CPU0 hotplug, you need to enable CPU0 offline/online
1976 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
1977 compilation or giving cpu0_hotplug kernel parameter at boot.
1978
1979 If unsure, say N.
1980
1981 config COMPAT_VDSO
1982 def_bool n
1983 prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
1984 depends on X86_32 || IA32_EMULATION
1985 ---help---
1986 Certain buggy versions of glibc will crash if they are
1987 presented with a 32-bit vDSO that is not mapped at the address
1988 indicated in its segment table.
1989
1990 The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
1991 and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
1992 49ad572a70b8aeb91e57483a11dd1b77e31c4468. Glibc 2.3.3 is
1993 the only released version with the bug, but OpenSUSE 9
1994 contains a buggy "glibc 2.3.2".
1995
1996 The symptom of the bug is that everything crashes on startup, saying:
1997 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
1998
1999 Saying Y here changes the default value of the vdso32 boot
2000 option from 1 to 0, which turns off the 32-bit vDSO entirely.
2001 This works around the glibc bug but hurts performance.
2002
2003 If unsure, say N: if you are compiling your own kernel, you
2004 are unlikely to be using a buggy version of glibc.
2005
2006 config CMDLINE_BOOL
2007 bool "Built-in kernel command line"
2008 ---help---
2009 Allow for specifying boot arguments to the kernel at
2010 build time. On some systems (e.g. embedded ones), it is
2011 necessary or convenient to provide some or all of the
2012 kernel boot arguments with the kernel itself (that is,
2013 to not rely on the boot loader to provide them.)
2014
2015 To compile command line arguments into the kernel,
2016 set this option to 'Y', then fill in the
2017 the boot arguments in CONFIG_CMDLINE.
2018
2019 Systems with fully functional boot loaders (i.e. non-embedded)
2020 should leave this option set to 'N'.
2021
2022 config CMDLINE
2023 string "Built-in kernel command string"
2024 depends on CMDLINE_BOOL
2025 default ""
2026 ---help---
2027 Enter arguments here that should be compiled into the kernel
2028 image and used at boot time. If the boot loader provides a
2029 command line at boot time, it is appended to this string to
2030 form the full kernel command line, when the system boots.
2031
2032 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
2033 change this behavior.
2034
2035 In most cases, the command line (whether built-in or provided
2036 by the boot loader) should specify the device for the root
2037 file system.
2038
2039 config CMDLINE_OVERRIDE
2040 bool "Built-in command line overrides boot loader arguments"
2041 depends on CMDLINE_BOOL
2042 ---help---
2043 Set this option to 'Y' to have the kernel ignore the boot loader
2044 command line, and use ONLY the built-in command line.
2045
2046 This is used to work around broken boot loaders. This should
2047 be set to 'N' under normal conditions.
2048
2049 source "kernel/livepatch/Kconfig"
2050
2051 endmenu
2052
2053 config ARCH_ENABLE_MEMORY_HOTPLUG
2054 def_bool y
2055 depends on X86_64 || (X86_32 && HIGHMEM)
2056
2057 config ARCH_ENABLE_MEMORY_HOTREMOVE
2058 def_bool y
2059 depends on MEMORY_HOTPLUG
2060
2061 config USE_PERCPU_NUMA_NODE_ID
2062 def_bool y
2063 depends on NUMA
2064
2065 config ARCH_ENABLE_SPLIT_PMD_PTLOCK
2066 def_bool y
2067 depends on X86_64 || X86_PAE
2068
2069 config ARCH_ENABLE_HUGEPAGE_MIGRATION
2070 def_bool y
2071 depends on X86_64 && HUGETLB_PAGE && MIGRATION
2072
2073 menu "Power management and ACPI options"
2074
2075 config ARCH_HIBERNATION_HEADER
2076 def_bool y
2077 depends on X86_64 && HIBERNATION
2078
2079 source "kernel/power/Kconfig"
2080
2081 source "drivers/acpi/Kconfig"
2082
2083 source "drivers/sfi/Kconfig"
2084
2085 config X86_APM_BOOT
2086 def_bool y
2087 depends on APM
2088
2089 menuconfig APM
2090 tristate "APM (Advanced Power Management) BIOS support"
2091 depends on X86_32 && PM_SLEEP
2092 ---help---
2093 APM is a BIOS specification for saving power using several different
2094 techniques. This is mostly useful for battery powered laptops with
2095 APM compliant BIOSes. If you say Y here, the system time will be
2096 reset after a RESUME operation, the /proc/apm device will provide
2097 battery status information, and user-space programs will receive
2098 notification of APM "events" (e.g. battery status change).
2099
2100 If you select "Y" here, you can disable actual use of the APM
2101 BIOS by passing the "apm=off" option to the kernel at boot time.
2102
2103 Note that the APM support is almost completely disabled for
2104 machines with more than one CPU.
2105
2106 In order to use APM, you will need supporting software. For location
2107 and more information, read <file:Documentation/power/apm-acpi.txt>
2108 and the Battery Powered Linux mini-HOWTO, available from
2109 <http://www.tldp.org/docs.html#howto>.
2110
2111 This driver does not spin down disk drives (see the hdparm(8)
2112 manpage ("man 8 hdparm") for that), and it doesn't turn off
2113 VESA-compliant "green" monitors.
2114
2115 This driver does not support the TI 4000M TravelMate and the ACER
2116 486/DX4/75 because they don't have compliant BIOSes. Many "green"
2117 desktop machines also don't have compliant BIOSes, and this driver
2118 may cause those machines to panic during the boot phase.
2119
2120 Generally, if you don't have a battery in your machine, there isn't
2121 much point in using this driver and you should say N. If you get
2122 random kernel OOPSes or reboots that don't seem to be related to
2123 anything, try disabling/enabling this option (or disabling/enabling
2124 APM in your BIOS).
2125
2126 Some other things you should try when experiencing seemingly random,
2127 "weird" problems:
2128
2129 1) make sure that you have enough swap space and that it is
2130 enabled.
2131 2) pass the "no-hlt" option to the kernel
2132 3) switch on floating point emulation in the kernel and pass
2133 the "no387" option to the kernel
2134 4) pass the "floppy=nodma" option to the kernel
2135 5) pass the "mem=4M" option to the kernel (thereby disabling
2136 all but the first 4 MB of RAM)
2137 6) make sure that the CPU is not over clocked.
2138 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
2139 8) disable the cache from your BIOS settings
2140 9) install a fan for the video card or exchange video RAM
2141 10) install a better fan for the CPU
2142 11) exchange RAM chips
2143 12) exchange the motherboard.
2144
2145 To compile this driver as a module, choose M here: the
2146 module will be called apm.
2147
2148 if APM
2149
2150 config APM_IGNORE_USER_SUSPEND
2151 bool "Ignore USER SUSPEND"
2152 ---help---
2153 This option will ignore USER SUSPEND requests. On machines with a
2154 compliant APM BIOS, you want to say N. However, on the NEC Versa M
2155 series notebooks, it is necessary to say Y because of a BIOS bug.
2156
2157 config APM_DO_ENABLE
2158 bool "Enable PM at boot time"
2159 ---help---
2160 Enable APM features at boot time. From page 36 of the APM BIOS
2161 specification: "When disabled, the APM BIOS does not automatically
2162 power manage devices, enter the Standby State, enter the Suspend
2163 State, or take power saving steps in response to CPU Idle calls."
2164 This driver will make CPU Idle calls when Linux is idle (unless this
2165 feature is turned off -- see "Do CPU IDLE calls", below). This
2166 should always save battery power, but more complicated APM features
2167 will be dependent on your BIOS implementation. You may need to turn
2168 this option off if your computer hangs at boot time when using APM
2169 support, or if it beeps continuously instead of suspending. Turn
2170 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
2171 T400CDT. This is off by default since most machines do fine without
2172 this feature.
2173
2174 config APM_CPU_IDLE
2175 depends on CPU_IDLE
2176 bool "Make CPU Idle calls when idle"
2177 ---help---
2178 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
2179 On some machines, this can activate improved power savings, such as
2180 a slowed CPU clock rate, when the machine is idle. These idle calls
2181 are made after the idle loop has run for some length of time (e.g.,
2182 333 mS). On some machines, this will cause a hang at boot time or
2183 whenever the CPU becomes idle. (On machines with more than one CPU,
2184 this option does nothing.)
2185
2186 config APM_DISPLAY_BLANK
2187 bool "Enable console blanking using APM"
2188 ---help---
2189 Enable console blanking using the APM. Some laptops can use this to
2190 turn off the LCD backlight when the screen blanker of the Linux
2191 virtual console blanks the screen. Note that this is only used by
2192 the virtual console screen blanker, and won't turn off the backlight
2193 when using the X Window system. This also doesn't have anything to
2194 do with your VESA-compliant power-saving monitor. Further, this
2195 option doesn't work for all laptops -- it might not turn off your
2196 backlight at all, or it might print a lot of errors to the console,
2197 especially if you are using gpm.
2198
2199 config APM_ALLOW_INTS
2200 bool "Allow interrupts during APM BIOS calls"
2201 ---help---
2202 Normally we disable external interrupts while we are making calls to
2203 the APM BIOS as a measure to lessen the effects of a badly behaving
2204 BIOS implementation. The BIOS should reenable interrupts if it
2205 needs to. Unfortunately, some BIOSes do not -- especially those in
2206 many of the newer IBM Thinkpads. If you experience hangs when you
2207 suspend, try setting this to Y. Otherwise, say N.
2208
2209 endif # APM
2210
2211 source "drivers/cpufreq/Kconfig"
2212
2213 source "drivers/cpuidle/Kconfig"
2214
2215 source "drivers/idle/Kconfig"
2216
2217 endmenu
2218
2219
2220 menu "Bus options (PCI etc.)"
2221
2222 config PCI
2223 bool "PCI support"
2224 default y
2225 ---help---
2226 Find out whether you have a PCI motherboard. PCI is the name of a
2227 bus system, i.e. the way the CPU talks to the other stuff inside
2228 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
2229 VESA. If you have PCI, say Y, otherwise N.
2230
2231 choice
2232 prompt "PCI access mode"
2233 depends on X86_32 && PCI
2234 default PCI_GOANY
2235 ---help---
2236 On PCI systems, the BIOS can be used to detect the PCI devices and
2237 determine their configuration. However, some old PCI motherboards
2238 have BIOS bugs and may crash if this is done. Also, some embedded
2239 PCI-based systems don't have any BIOS at all. Linux can also try to
2240 detect the PCI hardware directly without using the BIOS.
2241
2242 With this option, you can specify how Linux should detect the
2243 PCI devices. If you choose "BIOS", the BIOS will be used,
2244 if you choose "Direct", the BIOS won't be used, and if you
2245 choose "MMConfig", then PCI Express MMCONFIG will be used.
2246 If you choose "Any", the kernel will try MMCONFIG, then the
2247 direct access method and falls back to the BIOS if that doesn't
2248 work. If unsure, go with the default, which is "Any".
2249
2250 config PCI_GOBIOS
2251 bool "BIOS"
2252
2253 config PCI_GOMMCONFIG
2254 bool "MMConfig"
2255
2256 config PCI_GODIRECT
2257 bool "Direct"
2258
2259 config PCI_GOOLPC
2260 bool "OLPC XO-1"
2261 depends on OLPC
2262
2263 config PCI_GOANY
2264 bool "Any"
2265
2266 endchoice
2267
2268 config PCI_BIOS
2269 def_bool y
2270 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2271
2272 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2273 config PCI_DIRECT
2274 def_bool y
2275 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2276
2277 config PCI_MMCONFIG
2278 def_bool y
2279 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2280
2281 config PCI_OLPC
2282 def_bool y
2283 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2284
2285 config PCI_XEN
2286 def_bool y
2287 depends on PCI && XEN
2288 select SWIOTLB_XEN
2289
2290 config PCI_DOMAINS
2291 def_bool y
2292 depends on PCI
2293
2294 config PCI_MMCONFIG
2295 bool "Support mmconfig PCI config space access"
2296 depends on X86_64 && PCI && ACPI
2297
2298 config PCI_CNB20LE_QUIRK
2299 bool "Read CNB20LE Host Bridge Windows" if EXPERT
2300 depends on PCI
2301 help
2302 Read the PCI windows out of the CNB20LE host bridge. This allows
2303 PCI hotplug to work on systems with the CNB20LE chipset which do
2304 not have ACPI.
2305
2306 There's no public spec for this chipset, and this functionality
2307 is known to be incomplete.
2308
2309 You should say N unless you know you need this.
2310
2311 source "drivers/pci/pcie/Kconfig"
2312
2313 source "drivers/pci/Kconfig"
2314
2315 # x86_64 have no ISA slots, but can have ISA-style DMA.
2316 config ISA_DMA_API
2317 bool "ISA-style DMA support" if (X86_64 && EXPERT)
2318 default y
2319 help
2320 Enables ISA-style DMA support for devices requiring such controllers.
2321 If unsure, say Y.
2322
2323 if X86_32
2324
2325 config ISA
2326 bool "ISA support"
2327 ---help---
2328 Find out whether you have ISA slots on your motherboard. ISA is the
2329 name of a bus system, i.e. the way the CPU talks to the other stuff
2330 inside your box. Other bus systems are PCI, EISA, MicroChannel
2331 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
2332 newer boards don't support it. If you have ISA, say Y, otherwise N.
2333
2334 config EISA
2335 bool "EISA support"
2336 depends on ISA
2337 ---help---
2338 The Extended Industry Standard Architecture (EISA) bus was
2339 developed as an open alternative to the IBM MicroChannel bus.
2340
2341 The EISA bus provided some of the features of the IBM MicroChannel
2342 bus while maintaining backward compatibility with cards made for
2343 the older ISA bus. The EISA bus saw limited use between 1988 and
2344 1995 when it was made obsolete by the PCI bus.
2345
2346 Say Y here if you are building a kernel for an EISA-based machine.
2347
2348 Otherwise, say N.
2349
2350 source "drivers/eisa/Kconfig"
2351
2352 config SCx200
2353 tristate "NatSemi SCx200 support"
2354 ---help---
2355 This provides basic support for National Semiconductor's
2356 (now AMD's) Geode processors. The driver probes for the
2357 PCI-IDs of several on-chip devices, so its a good dependency
2358 for other scx200_* drivers.
2359
2360 If compiled as a module, the driver is named scx200.
2361
2362 config SCx200HR_TIMER
2363 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2364 depends on SCx200
2365 default y
2366 ---help---
2367 This driver provides a clocksource built upon the on-chip
2368 27MHz high-resolution timer. Its also a workaround for
2369 NSC Geode SC-1100's buggy TSC, which loses time when the
2370 processor goes idle (as is done by the scheduler). The
2371 other workaround is idle=poll boot option.
2372
2373 config OLPC
2374 bool "One Laptop Per Child support"
2375 depends on !X86_PAE
2376 select GPIOLIB
2377 select OF
2378 select OF_PROMTREE
2379 select IRQ_DOMAIN
2380 ---help---
2381 Add support for detecting the unique features of the OLPC
2382 XO hardware.
2383
2384 config OLPC_XO1_PM
2385 bool "OLPC XO-1 Power Management"
2386 depends on OLPC && MFD_CS5535 && PM_SLEEP
2387 select MFD_CORE
2388 ---help---
2389 Add support for poweroff and suspend of the OLPC XO-1 laptop.
2390
2391 config OLPC_XO1_RTC
2392 bool "OLPC XO-1 Real Time Clock"
2393 depends on OLPC_XO1_PM && RTC_DRV_CMOS
2394 ---help---
2395 Add support for the XO-1 real time clock, which can be used as a
2396 programmable wakeup source.
2397
2398 config OLPC_XO1_SCI
2399 bool "OLPC XO-1 SCI extras"
2400 depends on OLPC && OLPC_XO1_PM
2401 depends on INPUT=y
2402 select POWER_SUPPLY
2403 select GPIO_CS5535
2404 select MFD_CORE
2405 ---help---
2406 Add support for SCI-based features of the OLPC XO-1 laptop:
2407 - EC-driven system wakeups
2408 - Power button
2409 - Ebook switch
2410 - Lid switch
2411 - AC adapter status updates
2412 - Battery status updates
2413
2414 config OLPC_XO15_SCI
2415 bool "OLPC XO-1.5 SCI extras"
2416 depends on OLPC && ACPI
2417 select POWER_SUPPLY
2418 ---help---
2419 Add support for SCI-based features of the OLPC XO-1.5 laptop:
2420 - EC-driven system wakeups
2421 - AC adapter status updates
2422 - Battery status updates
2423
2424 config ALIX
2425 bool "PCEngines ALIX System Support (LED setup)"
2426 select GPIOLIB
2427 ---help---
2428 This option enables system support for the PCEngines ALIX.
2429 At present this just sets up LEDs for GPIO control on
2430 ALIX2/3/6 boards. However, other system specific setup should
2431 get added here.
2432
2433 Note: You must still enable the drivers for GPIO and LED support
2434 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
2435
2436 Note: You have to set alix.force=1 for boards with Award BIOS.
2437
2438 config NET5501
2439 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
2440 select GPIOLIB
2441 ---help---
2442 This option enables system support for the Soekris Engineering net5501.
2443
2444 config GEOS
2445 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
2446 select GPIOLIB
2447 depends on DMI
2448 ---help---
2449 This option enables system support for the Traverse Technologies GEOS.
2450
2451 config TS5500
2452 bool "Technologic Systems TS-5500 platform support"
2453 depends on MELAN
2454 select CHECK_SIGNATURE
2455 select NEW_LEDS
2456 select LEDS_CLASS
2457 ---help---
2458 This option enables system support for the Technologic Systems TS-5500.
2459
2460 endif # X86_32
2461
2462 config AMD_NB
2463 def_bool y
2464 depends on CPU_SUP_AMD && PCI
2465
2466 source "drivers/pcmcia/Kconfig"
2467
2468 source "drivers/pci/hotplug/Kconfig"
2469
2470 config RAPIDIO
2471 tristate "RapidIO support"
2472 depends on PCI
2473 default n
2474 help
2475 If enabled this option will include drivers and the core
2476 infrastructure code to support RapidIO interconnect devices.
2477
2478 source "drivers/rapidio/Kconfig"
2479
2480 config X86_SYSFB
2481 bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
2482 help
2483 Firmwares often provide initial graphics framebuffers so the BIOS,
2484 bootloader or kernel can show basic video-output during boot for
2485 user-guidance and debugging. Historically, x86 used the VESA BIOS
2486 Extensions and EFI-framebuffers for this, which are mostly limited
2487 to x86.
2488 This option, if enabled, marks VGA/VBE/EFI framebuffers as generic
2489 framebuffers so the new generic system-framebuffer drivers can be
2490 used on x86. If the framebuffer is not compatible with the generic
2491 modes, it is adverticed as fallback platform framebuffer so legacy
2492 drivers like efifb, vesafb and uvesafb can pick it up.
2493 If this option is not selected, all system framebuffers are always
2494 marked as fallback platform framebuffers as usual.
2495
2496 Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will
2497 not be able to pick up generic system framebuffers if this option
2498 is selected. You are highly encouraged to enable simplefb as
2499 replacement if you select this option. simplefb can correctly deal
2500 with generic system framebuffers. But you should still keep vesafb
2501 and others enabled as fallback if a system framebuffer is
2502 incompatible with simplefb.
2503
2504 If unsure, say Y.
2505
2506 endmenu
2507
2508
2509 menu "Executable file formats / Emulations"
2510
2511 source "fs/Kconfig.binfmt"
2512
2513 config IA32_EMULATION
2514 bool "IA32 Emulation"
2515 depends on X86_64
2516 select BINFMT_ELF
2517 select COMPAT_BINFMT_ELF
2518 select HAVE_UID16
2519 ---help---
2520 Include code to run legacy 32-bit programs under a
2521 64-bit kernel. You should likely turn this on, unless you're
2522 100% sure that you don't have any 32-bit programs left.
2523
2524 config IA32_AOUT
2525 tristate "IA32 a.out support"
2526 depends on IA32_EMULATION
2527 ---help---
2528 Support old a.out binaries in the 32bit emulation.
2529
2530 config X86_X32
2531 bool "x32 ABI for 64-bit mode"
2532 depends on X86_64 && IA32_EMULATION
2533 ---help---
2534 Include code to run binaries for the x32 native 32-bit ABI
2535 for 64-bit processors. An x32 process gets access to the
2536 full 64-bit register file and wide data path while leaving
2537 pointers at 32 bits for smaller memory footprint.
2538
2539 You will need a recent binutils (2.22 or later) with
2540 elf32_x86_64 support enabled to compile a kernel with this
2541 option set.
2542
2543 config COMPAT
2544 def_bool y
2545 depends on IA32_EMULATION || X86_X32
2546 select ARCH_WANT_OLD_COMPAT_IPC
2547
2548 if COMPAT
2549 config COMPAT_FOR_U64_ALIGNMENT
2550 def_bool y
2551
2552 config SYSVIPC_COMPAT
2553 def_bool y
2554 depends on SYSVIPC
2555
2556 config KEYS_COMPAT
2557 def_bool y
2558 depends on KEYS
2559 endif
2560
2561 endmenu
2562
2563
2564 config HAVE_ATOMIC_IOMAP
2565 def_bool y
2566 depends on X86_32
2567
2568 config X86_DEV_DMA_OPS
2569 bool
2570 depends on X86_64 || STA2X11
2571
2572 config X86_DMA_REMAP
2573 bool
2574 depends on STA2X11
2575
2576 config PMC_ATOM
2577 def_bool y
2578 depends on PCI
2579
2580 source "net/Kconfig"
2581
2582 source "drivers/Kconfig"
2583
2584 source "drivers/firmware/Kconfig"
2585
2586 source "fs/Kconfig"
2587
2588 source "arch/x86/Kconfig.debug"
2589
2590 source "security/Kconfig"
2591
2592 source "crypto/Kconfig"
2593
2594 source "arch/x86/kvm/Kconfig"
2595
2596 source "lib/Kconfig"
This page took 0.08018 seconds and 6 git commands to generate.