c5c1ae0997e7b223128b009a220b899e22ffeb25
[deliverable/linux.git] / arch / x86 / boot / compressed / head_64.S
1 /*
2 * linux/boot/head.S
3 *
4 * Copyright (C) 1991, 1992, 1993 Linus Torvalds
5 */
6
7 /*
8 * head.S contains the 32-bit startup code.
9 *
10 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
11 * the page directory will exist. The startup code will be overwritten by
12 * the page directory. [According to comments etc elsewhere on a compressed
13 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
14 *
15 * Page 0 is deliberately kept safe, since System Management Mode code in
16 * laptops may need to access the BIOS data stored there. This is also
17 * useful for future device drivers that either access the BIOS via VM86
18 * mode.
19 */
20
21 /*
22 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
23 */
24 .code32
25 .text
26
27 #include <linux/init.h>
28 #include <linux/linkage.h>
29 #include <asm/segment.h>
30 #include <asm/boot.h>
31 #include <asm/msr.h>
32 #include <asm/processor-flags.h>
33 #include <asm/asm-offsets.h>
34
35 __HEAD
36 .code32
37 ENTRY(startup_32)
38 /*
39 * 32bit entry is 0 and it is ABI so immutable!
40 * If we come here directly from a bootloader,
41 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
42 * all need to be under the 4G limit.
43 */
44 cld
45 /*
46 * Test KEEP_SEGMENTS flag to see if the bootloader is asking
47 * us to not reload segments
48 */
49 testb $(1<<6), BP_loadflags(%esi)
50 jnz 1f
51
52 cli
53 movl $(__BOOT_DS), %eax
54 movl %eax, %ds
55 movl %eax, %es
56 movl %eax, %ss
57 1:
58
59 /*
60 * Calculate the delta between where we were compiled to run
61 * at and where we were actually loaded at. This can only be done
62 * with a short local call on x86. Nothing else will tell us what
63 * address we are running at. The reserved chunk of the real-mode
64 * data at 0x1e4 (defined as a scratch field) are used as the stack
65 * for this calculation. Only 4 bytes are needed.
66 */
67 leal (BP_scratch+4)(%esi), %esp
68 call 1f
69 1: popl %ebp
70 subl $1b, %ebp
71
72 /* setup a stack and make sure cpu supports long mode. */
73 movl $boot_stack_end, %eax
74 addl %ebp, %eax
75 movl %eax, %esp
76
77 call verify_cpu
78 testl %eax, %eax
79 jnz no_longmode
80
81 /*
82 * Compute the delta between where we were compiled to run at
83 * and where the code will actually run at.
84 *
85 * %ebp contains the address we are loaded at by the boot loader and %ebx
86 * contains the address where we should move the kernel image temporarily
87 * for safe in-place decompression.
88 */
89
90 #ifdef CONFIG_RELOCATABLE
91 movl %ebp, %ebx
92 movl BP_kernel_alignment(%esi), %eax
93 decl %eax
94 addl %eax, %ebx
95 notl %eax
96 andl %eax, %ebx
97 cmpl $LOAD_PHYSICAL_ADDR, %ebx
98 jge 1f
99 #endif
100 movl $LOAD_PHYSICAL_ADDR, %ebx
101 1:
102
103 /* Target address to relocate to for decompression */
104 addl $z_extract_offset, %ebx
105
106 /*
107 * Prepare for entering 64 bit mode
108 */
109
110 /* Load new GDT with the 64bit segments using 32bit descriptor */
111 leal gdt(%ebp), %eax
112 movl %eax, gdt+2(%ebp)
113 lgdt gdt(%ebp)
114
115 /* Enable PAE mode */
116 movl $(X86_CR4_PAE), %eax
117 movl %eax, %cr4
118
119 /*
120 * Build early 4G boot pagetable
121 */
122 /* Initialize Page tables to 0 */
123 leal pgtable(%ebx), %edi
124 xorl %eax, %eax
125 movl $((4096*6)/4), %ecx
126 rep stosl
127
128 /* Build Level 4 */
129 leal pgtable + 0(%ebx), %edi
130 leal 0x1007 (%edi), %eax
131 movl %eax, 0(%edi)
132
133 /* Build Level 3 */
134 leal pgtable + 0x1000(%ebx), %edi
135 leal 0x1007(%edi), %eax
136 movl $4, %ecx
137 1: movl %eax, 0x00(%edi)
138 addl $0x00001000, %eax
139 addl $8, %edi
140 decl %ecx
141 jnz 1b
142
143 /* Build Level 2 */
144 leal pgtable + 0x2000(%ebx), %edi
145 movl $0x00000183, %eax
146 movl $2048, %ecx
147 1: movl %eax, 0(%edi)
148 addl $0x00200000, %eax
149 addl $8, %edi
150 decl %ecx
151 jnz 1b
152
153 /* Enable the boot page tables */
154 leal pgtable(%ebx), %eax
155 movl %eax, %cr3
156
157 /* Enable Long mode in EFER (Extended Feature Enable Register) */
158 movl $MSR_EFER, %ecx
159 rdmsr
160 btsl $_EFER_LME, %eax
161 wrmsr
162
163 /* After gdt is loaded */
164 xorl %eax, %eax
165 lldt %ax
166 movl $0x20, %eax
167 ltr %ax
168
169 /*
170 * Setup for the jump to 64bit mode
171 *
172 * When the jump is performend we will be in long mode but
173 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
174 * (and in turn EFER.LMA = 1). To jump into 64bit mode we use
175 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
176 * We place all of the values on our mini stack so lret can
177 * used to perform that far jump.
178 */
179 pushl $__KERNEL_CS
180 leal startup_64(%ebp), %eax
181 pushl %eax
182
183 /* Enter paged protected Mode, activating Long Mode */
184 movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
185 movl %eax, %cr0
186
187 /* Jump from 32bit compatibility mode into 64bit mode. */
188 lret
189 ENDPROC(startup_32)
190
191 .code64
192 .org 0x200
193 ENTRY(startup_64)
194 /*
195 * 64bit entry is 0x200 and it is ABI so immutable!
196 * We come here either from startup_32 or directly from a
197 * 64bit bootloader.
198 * If we come here from a bootloader, kernel(text+data+bss+brk),
199 * ramdisk, zero_page, command line could be above 4G.
200 * We depend on an identity mapped page table being provided
201 * that maps our entire kernel(text+data+bss+brk), zero page
202 * and command line.
203 */
204 #ifdef CONFIG_EFI_STUB
205 /*
206 * The entry point for the PE/COFF executable is efi_pe_entry, so
207 * only legacy boot loaders will execute this jmp.
208 */
209 jmp preferred_addr
210
211 ENTRY(efi_pe_entry)
212 mov %rcx, %rdi
213 mov %rdx, %rsi
214 pushq %rdi
215 pushq %rsi
216 call make_boot_params
217 cmpq $0,%rax
218 je 1f
219 mov %rax, %rdx
220 popq %rsi
221 popq %rdi
222
223 ENTRY(efi_stub_entry)
224 call efi_main
225 movq %rax,%rsi
226 cmpq $0,%rax
227 jne 2f
228 1:
229 /* EFI init failed, so hang. */
230 hlt
231 jmp 1b
232 2:
233 call 3f
234 3:
235 popq %rax
236 subq $3b, %rax
237 subq BP_pref_address(%rsi), %rax
238 add BP_code32_start(%esi), %eax
239 leaq preferred_addr(%rax), %rax
240 jmp *%rax
241
242 preferred_addr:
243 #endif
244
245 /* Setup data segments. */
246 xorl %eax, %eax
247 movl %eax, %ds
248 movl %eax, %es
249 movl %eax, %ss
250 movl %eax, %fs
251 movl %eax, %gs
252
253 /*
254 * Compute the decompressed kernel start address. It is where
255 * we were loaded at aligned to a 2M boundary. %rbp contains the
256 * decompressed kernel start address.
257 *
258 * If it is a relocatable kernel then decompress and run the kernel
259 * from load address aligned to 2MB addr, otherwise decompress and
260 * run the kernel from LOAD_PHYSICAL_ADDR
261 *
262 * We cannot rely on the calculation done in 32-bit mode, since we
263 * may have been invoked via the 64-bit entry point.
264 */
265
266 /* Start with the delta to where the kernel will run at. */
267 #ifdef CONFIG_RELOCATABLE
268 leaq startup_32(%rip) /* - $startup_32 */, %rbp
269 movl BP_kernel_alignment(%rsi), %eax
270 decl %eax
271 addq %rax, %rbp
272 notq %rax
273 andq %rax, %rbp
274 cmpq $LOAD_PHYSICAL_ADDR, %rbp
275 jge 1f
276 #endif
277 movq $LOAD_PHYSICAL_ADDR, %rbp
278 1:
279
280 /* Target address to relocate to for decompression */
281 leaq z_extract_offset(%rbp), %rbx
282
283 /* Set up the stack */
284 leaq boot_stack_end(%rbx), %rsp
285
286 /* Zero EFLAGS */
287 pushq $0
288 popfq
289
290 /*
291 * Copy the compressed kernel to the end of our buffer
292 * where decompression in place becomes safe.
293 */
294 pushq %rsi
295 leaq (_bss-8)(%rip), %rsi
296 leaq (_bss-8)(%rbx), %rdi
297 movq $_bss /* - $startup_32 */, %rcx
298 shrq $3, %rcx
299 std
300 rep movsq
301 cld
302 popq %rsi
303
304 /*
305 * Jump to the relocated address.
306 */
307 leaq relocated(%rbx), %rax
308 jmp *%rax
309
310 .text
311 relocated:
312
313 /*
314 * Clear BSS (stack is currently empty)
315 */
316 xorl %eax, %eax
317 leaq _bss(%rip), %rdi
318 leaq _ebss(%rip), %rcx
319 subq %rdi, %rcx
320 shrq $3, %rcx
321 rep stosq
322
323 /*
324 * Adjust our own GOT
325 */
326 leaq _got(%rip), %rdx
327 leaq _egot(%rip), %rcx
328 1:
329 cmpq %rcx, %rdx
330 jae 2f
331 addq %rbx, (%rdx)
332 addq $8, %rdx
333 jmp 1b
334 2:
335
336 /*
337 * Do the decompression, and jump to the new kernel..
338 */
339 pushq %rsi /* Save the real mode argument */
340 movq %rsi, %rdi /* real mode address */
341 leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
342 leaq input_data(%rip), %rdx /* input_data */
343 movl $z_input_len, %ecx /* input_len */
344 movq %rbp, %r8 /* output target address */
345 movq $z_output_len, %r9 /* decompressed length */
346 call decompress_kernel /* returns kernel location in %rax */
347 popq %rsi
348
349 /*
350 * Jump to the decompressed kernel.
351 */
352 jmp *%rax
353
354 .code32
355 no_longmode:
356 /* This isn't an x86-64 CPU so hang */
357 1:
358 hlt
359 jmp 1b
360
361 #include "../../kernel/verify_cpu.S"
362
363 .data
364 gdt:
365 .word gdt_end - gdt
366 .long gdt
367 .word 0
368 .quad 0x0000000000000000 /* NULL descriptor */
369 .quad 0x00af9a000000ffff /* __KERNEL_CS */
370 .quad 0x00cf92000000ffff /* __KERNEL_DS */
371 .quad 0x0080890000000000 /* TS descriptor */
372 .quad 0x0000000000000000 /* TS continued */
373 gdt_end:
374
375 /*
376 * Stack and heap for uncompression
377 */
378 .bss
379 .balign 4
380 boot_heap:
381 .fill BOOT_HEAP_SIZE, 1, 0
382 boot_stack:
383 .fill BOOT_STACK_SIZE, 1, 0
384 boot_stack_end:
385
386 /*
387 * Space for page tables (not in .bss so not zeroed)
388 */
389 .section ".pgtable","a",@nobits
390 .balign 4096
391 pgtable:
392 .fill 6*4096, 1, 0
This page took 0.042903 seconds and 4 git commands to generate.