9ee0da1807edff462536e3628e1db217bb835cd8
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <linux/err.h>
39
40 /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41 #include <linux/elf-em.h>
42 #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43 #define __AUDIT_ARCH_64BIT 0x80000000
44 #define __AUDIT_ARCH_LE 0x40000000
45
46 .code64
47 .section .entry.text, "ax"
48
49 #ifdef CONFIG_PARAVIRT
50 ENTRY(native_usergs_sysret64)
51 swapgs
52 sysretq
53 ENDPROC(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_IRETQ
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 /*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78 .macro TRACE_IRQS_OFF_DEBUG
79 call debug_stack_set_zero
80 TRACE_IRQS_OFF
81 call debug_stack_reset
82 .endm
83
84 .macro TRACE_IRQS_ON_DEBUG
85 call debug_stack_set_zero
86 TRACE_IRQS_ON
87 call debug_stack_reset
88 .endm
89
90 .macro TRACE_IRQS_IRETQ_DEBUG
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
93 TRACE_IRQS_ON_DEBUG
94 1:
95 .endm
96
97 #else
98 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
101 #endif
102
103 /*
104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
105 *
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
123 * rax system call number
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
126 * rdi arg0
127 * rsi arg1
128 * rdx arg2
129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
130 * r8 arg4
131 * r9 arg5
132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
133 *
134 * Only called from user space.
135 *
136 * When user can change pt_regs->foo always force IRET. That is because
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
139 */
140
141 ENTRY(entry_SYSCALL_64)
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
153 GLOBAL(entry_SYSCALL_64_after_swapgs)
154
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
157
158 TRACE_IRQS_OFF
159
160 /* Construct struct pt_regs on stack */
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
185 entry_SYSCALL_64_fastpath:
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
193 #if __SYSCALL_MASK == ~0
194 cmpq $__NR_syscall_max, %rax
195 #else
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
198 #endif
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
206 */
207 call *sys_call_table(, %rax, 8)
208 .Lentry_SYSCALL_64_after_fastpath_call:
209
210 movq %rax, RAX(%rsp)
211 1:
212
213 /*
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
217 */
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
221 jnz 1f
222
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
228 movq RSP(%rsp), %rsp
229 USERGS_SYSRET64
230
231 1:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
239 SAVE_EXTRA_REGS
240 movq %rsp, %rdi
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
243
244 entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
246 SAVE_EXTRA_REGS
247 movq %rsp, %rdi
248 call do_syscall_64 /* returns with IRQs disabled */
249
250 return_from_SYSCALL_64:
251 RESTORE_EXTRA_REGS
252 TRACE_IRQS_IRETQ /* we're about to change IF */
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
266 * the kernel, since userspace controls RSP.
267 *
268 * If width of "canonical tail" ever becomes variable, this will need
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
274
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
282
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
285
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
289
290 /*
291 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
292 * restoring TF results in a trap from userspace immediately after
293 * SYSRET. This would cause an infinite loop whenever #DB happens
294 * with register state that satisfies the opportunistic SYSRET
295 * conditions. For example, single-stepping this user code:
296 *
297 * movq $stuck_here, %rcx
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305 jnz opportunistic_sysret_failed
306
307 /* nothing to check for RSP */
308
309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
310 jne opportunistic_sysret_failed
311
312 /*
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
315 */
316 syscall_return_via_sysret:
317 /* rcx and r11 are already restored (see code above) */
318 RESTORE_C_REGS_EXCEPT_RCX_R11
319 movq RSP(%rsp), %rsp
320 USERGS_SYSRET64
321
322 opportunistic_sysret_failed:
323 SWAPGS
324 jmp restore_c_regs_and_iret
325 END(entry_SYSCALL_64)
326
327 ENTRY(stub_ptregs_64)
328 /*
329 * Syscalls marked as needing ptregs land here.
330 * If we are on the fast path, we need to save the extra regs,
331 * which we achieve by trying again on the slow path. If we are on
332 * the slow path, the extra regs are already saved.
333 *
334 * RAX stores a pointer to the C function implementing the syscall.
335 * IRQs are on.
336 */
337 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338 jne 1f
339
340 /*
341 * Called from fast path -- disable IRQs again, pop return address
342 * and jump to slow path
343 */
344 DISABLE_INTERRUPTS(CLBR_NONE)
345 TRACE_IRQS_OFF
346 popq %rax
347 jmp entry_SYSCALL64_slow_path
348
349 1:
350 /* Called from C */
351 jmp *%rax /* called from C */
352 END(stub_ptregs_64)
353
354 .macro ptregs_stub func
355 ENTRY(ptregs_\func)
356 leaq \func(%rip), %rax
357 jmp stub_ptregs_64
358 END(ptregs_\func)
359 .endm
360
361 /* Instantiate ptregs_stub for each ptregs-using syscall */
362 #define __SYSCALL_64_QUAL_(sym)
363 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
364 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
365 #include <asm/syscalls_64.h>
366
367 /*
368 * A newly forked process directly context switches into this address.
369 *
370 * rdi: prev task we switched from
371 */
372 ENTRY(ret_from_fork)
373 LOCK ; btr $TIF_FORK, TI_flags(%r8)
374
375 call schedule_tail /* rdi: 'prev' task parameter */
376
377 testb $3, CS(%rsp) /* from kernel_thread? */
378 jnz 1f
379
380 /*
381 * We came from kernel_thread. This code path is quite twisted, and
382 * someone should clean it up.
383 *
384 * copy_thread_tls stashes the function pointer in RBX and the
385 * parameter to be passed in RBP. The called function is permitted
386 * to call do_execve and thereby jump to user mode.
387 */
388 movq RBP(%rsp), %rdi
389 call *RBX(%rsp)
390 movl $0, RAX(%rsp)
391
392 /*
393 * Fall through as though we're exiting a syscall. This makes a
394 * twisted sort of sense if we just called do_execve.
395 */
396
397 1:
398 movq %rsp, %rdi
399 call syscall_return_slowpath /* returns with IRQs disabled */
400 TRACE_IRQS_ON /* user mode is traced as IRQS on */
401 SWAPGS
402 jmp restore_regs_and_iret
403 END(ret_from_fork)
404
405 /*
406 * Build the entry stubs with some assembler magic.
407 * We pack 1 stub into every 8-byte block.
408 */
409 .align 8
410 ENTRY(irq_entries_start)
411 vector=FIRST_EXTERNAL_VECTOR
412 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
413 pushq $(~vector+0x80) /* Note: always in signed byte range */
414 vector=vector+1
415 jmp common_interrupt
416 .align 8
417 .endr
418 END(irq_entries_start)
419
420 /*
421 * Interrupt entry/exit.
422 *
423 * Interrupt entry points save only callee clobbered registers in fast path.
424 *
425 * Entry runs with interrupts off.
426 */
427
428 /* 0(%rsp): ~(interrupt number) */
429 .macro interrupt func
430 cld
431 ALLOC_PT_GPREGS_ON_STACK
432 SAVE_C_REGS
433 SAVE_EXTRA_REGS
434
435 testb $3, CS(%rsp)
436 jz 1f
437
438 /*
439 * IRQ from user mode. Switch to kernel gsbase and inform context
440 * tracking that we're in kernel mode.
441 */
442 SWAPGS
443
444 /*
445 * We need to tell lockdep that IRQs are off. We can't do this until
446 * we fix gsbase, and we should do it before enter_from_user_mode
447 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
448 * the simplest way to handle it is to just call it twice if
449 * we enter from user mode. There's no reason to optimize this since
450 * TRACE_IRQS_OFF is a no-op if lockdep is off.
451 */
452 TRACE_IRQS_OFF
453
454 CALL_enter_from_user_mode
455
456 1:
457 /*
458 * Save previous stack pointer, optionally switch to interrupt stack.
459 * irq_count is used to check if a CPU is already on an interrupt stack
460 * or not. While this is essentially redundant with preempt_count it is
461 * a little cheaper to use a separate counter in the PDA (short of
462 * moving irq_enter into assembly, which would be too much work)
463 */
464 movq %rsp, %rdi
465 incl PER_CPU_VAR(irq_count)
466 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
467 pushq %rdi
468 /* We entered an interrupt context - irqs are off: */
469 TRACE_IRQS_OFF
470
471 call \func /* rdi points to pt_regs */
472 .endm
473
474 /*
475 * The interrupt stubs push (~vector+0x80) onto the stack and
476 * then jump to common_interrupt.
477 */
478 .p2align CONFIG_X86_L1_CACHE_SHIFT
479 common_interrupt:
480 ASM_CLAC
481 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
482 interrupt do_IRQ
483 /* 0(%rsp): old RSP */
484 ret_from_intr:
485 DISABLE_INTERRUPTS(CLBR_NONE)
486 TRACE_IRQS_OFF
487 decl PER_CPU_VAR(irq_count)
488
489 /* Restore saved previous stack */
490 popq %rsp
491
492 testb $3, CS(%rsp)
493 jz retint_kernel
494
495 /* Interrupt came from user space */
496 GLOBAL(retint_user)
497 mov %rsp,%rdi
498 call prepare_exit_to_usermode
499 TRACE_IRQS_IRETQ
500 SWAPGS
501 jmp restore_regs_and_iret
502
503 /* Returning to kernel space */
504 retint_kernel:
505 #ifdef CONFIG_PREEMPT
506 /* Interrupts are off */
507 /* Check if we need preemption */
508 bt $9, EFLAGS(%rsp) /* were interrupts off? */
509 jnc 1f
510 0: cmpl $0, PER_CPU_VAR(__preempt_count)
511 jnz 1f
512 call preempt_schedule_irq
513 jmp 0b
514 1:
515 #endif
516 /*
517 * The iretq could re-enable interrupts:
518 */
519 TRACE_IRQS_IRETQ
520
521 /*
522 * At this label, code paths which return to kernel and to user,
523 * which come from interrupts/exception and from syscalls, merge.
524 */
525 GLOBAL(restore_regs_and_iret)
526 RESTORE_EXTRA_REGS
527 restore_c_regs_and_iret:
528 RESTORE_C_REGS
529 REMOVE_PT_GPREGS_FROM_STACK 8
530 INTERRUPT_RETURN
531
532 ENTRY(native_iret)
533 /*
534 * Are we returning to a stack segment from the LDT? Note: in
535 * 64-bit mode SS:RSP on the exception stack is always valid.
536 */
537 #ifdef CONFIG_X86_ESPFIX64
538 testb $4, (SS-RIP)(%rsp)
539 jnz native_irq_return_ldt
540 #endif
541
542 .global native_irq_return_iret
543 native_irq_return_iret:
544 /*
545 * This may fault. Non-paranoid faults on return to userspace are
546 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
547 * Double-faults due to espfix64 are handled in do_double_fault.
548 * Other faults here are fatal.
549 */
550 iretq
551
552 #ifdef CONFIG_X86_ESPFIX64
553 native_irq_return_ldt:
554 pushq %rax
555 pushq %rdi
556 SWAPGS
557 movq PER_CPU_VAR(espfix_waddr), %rdi
558 movq %rax, (0*8)(%rdi) /* RAX */
559 movq (2*8)(%rsp), %rax /* RIP */
560 movq %rax, (1*8)(%rdi)
561 movq (3*8)(%rsp), %rax /* CS */
562 movq %rax, (2*8)(%rdi)
563 movq (4*8)(%rsp), %rax /* RFLAGS */
564 movq %rax, (3*8)(%rdi)
565 movq (6*8)(%rsp), %rax /* SS */
566 movq %rax, (5*8)(%rdi)
567 movq (5*8)(%rsp), %rax /* RSP */
568 movq %rax, (4*8)(%rdi)
569 andl $0xffff0000, %eax
570 popq %rdi
571 orq PER_CPU_VAR(espfix_stack), %rax
572 SWAPGS
573 movq %rax, %rsp
574 popq %rax
575 jmp native_irq_return_iret
576 #endif
577 END(common_interrupt)
578
579 /*
580 * APIC interrupts.
581 */
582 .macro apicinterrupt3 num sym do_sym
583 ENTRY(\sym)
584 ASM_CLAC
585 pushq $~(\num)
586 .Lcommon_\sym:
587 interrupt \do_sym
588 jmp ret_from_intr
589 END(\sym)
590 .endm
591
592 #ifdef CONFIG_TRACING
593 #define trace(sym) trace_##sym
594 #define smp_trace(sym) smp_trace_##sym
595
596 .macro trace_apicinterrupt num sym
597 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
598 .endm
599 #else
600 .macro trace_apicinterrupt num sym do_sym
601 .endm
602 #endif
603
604 .macro apicinterrupt num sym do_sym
605 apicinterrupt3 \num \sym \do_sym
606 trace_apicinterrupt \num \sym
607 .endm
608
609 #ifdef CONFIG_SMP
610 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
611 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
612 #endif
613
614 #ifdef CONFIG_X86_UV
615 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
616 #endif
617
618 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
619 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
620
621 #ifdef CONFIG_HAVE_KVM
622 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
623 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
624 #endif
625
626 #ifdef CONFIG_X86_MCE_THRESHOLD
627 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
628 #endif
629
630 #ifdef CONFIG_X86_MCE_AMD
631 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
632 #endif
633
634 #ifdef CONFIG_X86_THERMAL_VECTOR
635 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
636 #endif
637
638 #ifdef CONFIG_SMP
639 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
640 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
641 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
642 #endif
643
644 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
645 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
646
647 #ifdef CONFIG_IRQ_WORK
648 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
649 #endif
650
651 /*
652 * Exception entry points.
653 */
654 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
655
656 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
657 ENTRY(\sym)
658 /* Sanity check */
659 .if \shift_ist != -1 && \paranoid == 0
660 .error "using shift_ist requires paranoid=1"
661 .endif
662
663 ASM_CLAC
664 PARAVIRT_ADJUST_EXCEPTION_FRAME
665
666 .ifeq \has_error_code
667 pushq $-1 /* ORIG_RAX: no syscall to restart */
668 .endif
669
670 ALLOC_PT_GPREGS_ON_STACK
671
672 .if \paranoid
673 .if \paranoid == 1
674 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
675 jnz 1f
676 .endif
677 call paranoid_entry
678 .else
679 call error_entry
680 .endif
681 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
682
683 .if \paranoid
684 .if \shift_ist != -1
685 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
686 .else
687 TRACE_IRQS_OFF
688 .endif
689 .endif
690
691 movq %rsp, %rdi /* pt_regs pointer */
692
693 .if \has_error_code
694 movq ORIG_RAX(%rsp), %rsi /* get error code */
695 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
696 .else
697 xorl %esi, %esi /* no error code */
698 .endif
699
700 .if \shift_ist != -1
701 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
702 .endif
703
704 call \do_sym
705
706 .if \shift_ist != -1
707 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
708 .endif
709
710 /* these procedures expect "no swapgs" flag in ebx */
711 .if \paranoid
712 jmp paranoid_exit
713 .else
714 jmp error_exit
715 .endif
716
717 .if \paranoid == 1
718 /*
719 * Paranoid entry from userspace. Switch stacks and treat it
720 * as a normal entry. This means that paranoid handlers
721 * run in real process context if user_mode(regs).
722 */
723 1:
724 call error_entry
725
726
727 movq %rsp, %rdi /* pt_regs pointer */
728 call sync_regs
729 movq %rax, %rsp /* switch stack */
730
731 movq %rsp, %rdi /* pt_regs pointer */
732
733 .if \has_error_code
734 movq ORIG_RAX(%rsp), %rsi /* get error code */
735 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
736 .else
737 xorl %esi, %esi /* no error code */
738 .endif
739
740 call \do_sym
741
742 jmp error_exit /* %ebx: no swapgs flag */
743 .endif
744 END(\sym)
745 .endm
746
747 #ifdef CONFIG_TRACING
748 .macro trace_idtentry sym do_sym has_error_code:req
749 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
750 idtentry \sym \do_sym has_error_code=\has_error_code
751 .endm
752 #else
753 .macro trace_idtentry sym do_sym has_error_code:req
754 idtentry \sym \do_sym has_error_code=\has_error_code
755 .endm
756 #endif
757
758 idtentry divide_error do_divide_error has_error_code=0
759 idtentry overflow do_overflow has_error_code=0
760 idtentry bounds do_bounds has_error_code=0
761 idtentry invalid_op do_invalid_op has_error_code=0
762 idtentry device_not_available do_device_not_available has_error_code=0
763 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
764 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
765 idtentry invalid_TSS do_invalid_TSS has_error_code=1
766 idtentry segment_not_present do_segment_not_present has_error_code=1
767 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
768 idtentry coprocessor_error do_coprocessor_error has_error_code=0
769 idtentry alignment_check do_alignment_check has_error_code=1
770 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
771
772
773 /*
774 * Reload gs selector with exception handling
775 * edi: new selector
776 */
777 ENTRY(native_load_gs_index)
778 pushfq
779 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
780 SWAPGS
781 .Lgs_change:
782 movl %edi, %gs
783 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
784 SWAPGS
785 popfq
786 ret
787 END(native_load_gs_index)
788
789 _ASM_EXTABLE(.Lgs_change, bad_gs)
790 .section .fixup, "ax"
791 /* running with kernelgs */
792 bad_gs:
793 SWAPGS /* switch back to user gs */
794 .macro ZAP_GS
795 /* This can't be a string because the preprocessor needs to see it. */
796 movl $__USER_DS, %eax
797 movl %eax, %gs
798 .endm
799 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
800 xorl %eax, %eax
801 movl %eax, %gs
802 jmp 2b
803 .previous
804
805 /* Call softirq on interrupt stack. Interrupts are off. */
806 ENTRY(do_softirq_own_stack)
807 pushq %rbp
808 mov %rsp, %rbp
809 incl PER_CPU_VAR(irq_count)
810 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
811 push %rbp /* frame pointer backlink */
812 call __do_softirq
813 leaveq
814 decl PER_CPU_VAR(irq_count)
815 ret
816 END(do_softirq_own_stack)
817
818 #ifdef CONFIG_XEN
819 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
820
821 /*
822 * A note on the "critical region" in our callback handler.
823 * We want to avoid stacking callback handlers due to events occurring
824 * during handling of the last event. To do this, we keep events disabled
825 * until we've done all processing. HOWEVER, we must enable events before
826 * popping the stack frame (can't be done atomically) and so it would still
827 * be possible to get enough handler activations to overflow the stack.
828 * Although unlikely, bugs of that kind are hard to track down, so we'd
829 * like to avoid the possibility.
830 * So, on entry to the handler we detect whether we interrupted an
831 * existing activation in its critical region -- if so, we pop the current
832 * activation and restart the handler using the previous one.
833 */
834 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
835
836 /*
837 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
838 * see the correct pointer to the pt_regs
839 */
840 movq %rdi, %rsp /* we don't return, adjust the stack frame */
841 11: incl PER_CPU_VAR(irq_count)
842 movq %rsp, %rbp
843 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
844 pushq %rbp /* frame pointer backlink */
845 call xen_evtchn_do_upcall
846 popq %rsp
847 decl PER_CPU_VAR(irq_count)
848 #ifndef CONFIG_PREEMPT
849 call xen_maybe_preempt_hcall
850 #endif
851 jmp error_exit
852 END(xen_do_hypervisor_callback)
853
854 /*
855 * Hypervisor uses this for application faults while it executes.
856 * We get here for two reasons:
857 * 1. Fault while reloading DS, ES, FS or GS
858 * 2. Fault while executing IRET
859 * Category 1 we do not need to fix up as Xen has already reloaded all segment
860 * registers that could be reloaded and zeroed the others.
861 * Category 2 we fix up by killing the current process. We cannot use the
862 * normal Linux return path in this case because if we use the IRET hypercall
863 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
864 * We distinguish between categories by comparing each saved segment register
865 * with its current contents: any discrepancy means we in category 1.
866 */
867 ENTRY(xen_failsafe_callback)
868 movl %ds, %ecx
869 cmpw %cx, 0x10(%rsp)
870 jne 1f
871 movl %es, %ecx
872 cmpw %cx, 0x18(%rsp)
873 jne 1f
874 movl %fs, %ecx
875 cmpw %cx, 0x20(%rsp)
876 jne 1f
877 movl %gs, %ecx
878 cmpw %cx, 0x28(%rsp)
879 jne 1f
880 /* All segments match their saved values => Category 2 (Bad IRET). */
881 movq (%rsp), %rcx
882 movq 8(%rsp), %r11
883 addq $0x30, %rsp
884 pushq $0 /* RIP */
885 pushq %r11
886 pushq %rcx
887 jmp general_protection
888 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
889 movq (%rsp), %rcx
890 movq 8(%rsp), %r11
891 addq $0x30, %rsp
892 pushq $-1 /* orig_ax = -1 => not a system call */
893 ALLOC_PT_GPREGS_ON_STACK
894 SAVE_C_REGS
895 SAVE_EXTRA_REGS
896 jmp error_exit
897 END(xen_failsafe_callback)
898
899 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
900 xen_hvm_callback_vector xen_evtchn_do_upcall
901
902 #endif /* CONFIG_XEN */
903
904 #if IS_ENABLED(CONFIG_HYPERV)
905 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
906 hyperv_callback_vector hyperv_vector_handler
907 #endif /* CONFIG_HYPERV */
908
909 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
910 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
911 idtentry stack_segment do_stack_segment has_error_code=1
912
913 #ifdef CONFIG_XEN
914 idtentry xen_debug do_debug has_error_code=0
915 idtentry xen_int3 do_int3 has_error_code=0
916 idtentry xen_stack_segment do_stack_segment has_error_code=1
917 #endif
918
919 idtentry general_protection do_general_protection has_error_code=1
920 trace_idtentry page_fault do_page_fault has_error_code=1
921
922 #ifdef CONFIG_KVM_GUEST
923 idtentry async_page_fault do_async_page_fault has_error_code=1
924 #endif
925
926 #ifdef CONFIG_X86_MCE
927 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
928 #endif
929
930 /*
931 * Save all registers in pt_regs, and switch gs if needed.
932 * Use slow, but surefire "are we in kernel?" check.
933 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
934 */
935 ENTRY(paranoid_entry)
936 cld
937 SAVE_C_REGS 8
938 SAVE_EXTRA_REGS 8
939 movl $1, %ebx
940 movl $MSR_GS_BASE, %ecx
941 rdmsr
942 testl %edx, %edx
943 js 1f /* negative -> in kernel */
944 SWAPGS
945 xorl %ebx, %ebx
946 1: ret
947 END(paranoid_entry)
948
949 /*
950 * "Paranoid" exit path from exception stack. This is invoked
951 * only on return from non-NMI IST interrupts that came
952 * from kernel space.
953 *
954 * We may be returning to very strange contexts (e.g. very early
955 * in syscall entry), so checking for preemption here would
956 * be complicated. Fortunately, we there's no good reason
957 * to try to handle preemption here.
958 *
959 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
960 */
961 ENTRY(paranoid_exit)
962 DISABLE_INTERRUPTS(CLBR_NONE)
963 TRACE_IRQS_OFF_DEBUG
964 testl %ebx, %ebx /* swapgs needed? */
965 jnz paranoid_exit_no_swapgs
966 TRACE_IRQS_IRETQ
967 SWAPGS_UNSAFE_STACK
968 jmp paranoid_exit_restore
969 paranoid_exit_no_swapgs:
970 TRACE_IRQS_IRETQ_DEBUG
971 paranoid_exit_restore:
972 RESTORE_EXTRA_REGS
973 RESTORE_C_REGS
974 REMOVE_PT_GPREGS_FROM_STACK 8
975 INTERRUPT_RETURN
976 END(paranoid_exit)
977
978 /*
979 * Save all registers in pt_regs, and switch gs if needed.
980 * Return: EBX=0: came from user mode; EBX=1: otherwise
981 */
982 ENTRY(error_entry)
983 cld
984 SAVE_C_REGS 8
985 SAVE_EXTRA_REGS 8
986 xorl %ebx, %ebx
987 testb $3, CS+8(%rsp)
988 jz .Lerror_kernelspace
989
990 .Lerror_entry_from_usermode_swapgs:
991 /*
992 * We entered from user mode or we're pretending to have entered
993 * from user mode due to an IRET fault.
994 */
995 SWAPGS
996
997 .Lerror_entry_from_usermode_after_swapgs:
998 /*
999 * We need to tell lockdep that IRQs are off. We can't do this until
1000 * we fix gsbase, and we should do it before enter_from_user_mode
1001 * (which can take locks).
1002 */
1003 TRACE_IRQS_OFF
1004 CALL_enter_from_user_mode
1005 ret
1006
1007 .Lerror_entry_done:
1008 TRACE_IRQS_OFF
1009 ret
1010
1011 /*
1012 * There are two places in the kernel that can potentially fault with
1013 * usergs. Handle them here. B stepping K8s sometimes report a
1014 * truncated RIP for IRET exceptions returning to compat mode. Check
1015 * for these here too.
1016 */
1017 .Lerror_kernelspace:
1018 incl %ebx
1019 leaq native_irq_return_iret(%rip), %rcx
1020 cmpq %rcx, RIP+8(%rsp)
1021 je .Lerror_bad_iret
1022 movl %ecx, %eax /* zero extend */
1023 cmpq %rax, RIP+8(%rsp)
1024 je .Lbstep_iret
1025 cmpq $.Lgs_change, RIP+8(%rsp)
1026 jne .Lerror_entry_done
1027
1028 /*
1029 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1030 * gsbase and proceed. We'll fix up the exception and land in
1031 * .Lgs_change's error handler with kernel gsbase.
1032 */
1033 jmp .Lerror_entry_from_usermode_swapgs
1034
1035 .Lbstep_iret:
1036 /* Fix truncated RIP */
1037 movq %rcx, RIP+8(%rsp)
1038 /* fall through */
1039
1040 .Lerror_bad_iret:
1041 /*
1042 * We came from an IRET to user mode, so we have user gsbase.
1043 * Switch to kernel gsbase:
1044 */
1045 SWAPGS
1046
1047 /*
1048 * Pretend that the exception came from user mode: set up pt_regs
1049 * as if we faulted immediately after IRET and clear EBX so that
1050 * error_exit knows that we will be returning to user mode.
1051 */
1052 mov %rsp, %rdi
1053 call fixup_bad_iret
1054 mov %rax, %rsp
1055 decl %ebx
1056 jmp .Lerror_entry_from_usermode_after_swapgs
1057 END(error_entry)
1058
1059
1060 /*
1061 * On entry, EBS is a "return to kernel mode" flag:
1062 * 1: already in kernel mode, don't need SWAPGS
1063 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1064 */
1065 ENTRY(error_exit)
1066 movl %ebx, %eax
1067 DISABLE_INTERRUPTS(CLBR_NONE)
1068 TRACE_IRQS_OFF
1069 testl %eax, %eax
1070 jnz retint_kernel
1071 jmp retint_user
1072 END(error_exit)
1073
1074 /* Runs on exception stack */
1075 ENTRY(nmi)
1076 /*
1077 * Fix up the exception frame if we're on Xen.
1078 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1079 * one value to the stack on native, so it may clobber the rdx
1080 * scratch slot, but it won't clobber any of the important
1081 * slots past it.
1082 *
1083 * Xen is a different story, because the Xen frame itself overlaps
1084 * the "NMI executing" variable.
1085 */
1086 PARAVIRT_ADJUST_EXCEPTION_FRAME
1087
1088 /*
1089 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1090 * the iretq it performs will take us out of NMI context.
1091 * This means that we can have nested NMIs where the next
1092 * NMI is using the top of the stack of the previous NMI. We
1093 * can't let it execute because the nested NMI will corrupt the
1094 * stack of the previous NMI. NMI handlers are not re-entrant
1095 * anyway.
1096 *
1097 * To handle this case we do the following:
1098 * Check the a special location on the stack that contains
1099 * a variable that is set when NMIs are executing.
1100 * The interrupted task's stack is also checked to see if it
1101 * is an NMI stack.
1102 * If the variable is not set and the stack is not the NMI
1103 * stack then:
1104 * o Set the special variable on the stack
1105 * o Copy the interrupt frame into an "outermost" location on the
1106 * stack
1107 * o Copy the interrupt frame into an "iret" location on the stack
1108 * o Continue processing the NMI
1109 * If the variable is set or the previous stack is the NMI stack:
1110 * o Modify the "iret" location to jump to the repeat_nmi
1111 * o return back to the first NMI
1112 *
1113 * Now on exit of the first NMI, we first clear the stack variable
1114 * The NMI stack will tell any nested NMIs at that point that it is
1115 * nested. Then we pop the stack normally with iret, and if there was
1116 * a nested NMI that updated the copy interrupt stack frame, a
1117 * jump will be made to the repeat_nmi code that will handle the second
1118 * NMI.
1119 *
1120 * However, espfix prevents us from directly returning to userspace
1121 * with a single IRET instruction. Similarly, IRET to user mode
1122 * can fault. We therefore handle NMIs from user space like
1123 * other IST entries.
1124 */
1125
1126 /* Use %rdx as our temp variable throughout */
1127 pushq %rdx
1128
1129 testb $3, CS-RIP+8(%rsp)
1130 jz .Lnmi_from_kernel
1131
1132 /*
1133 * NMI from user mode. We need to run on the thread stack, but we
1134 * can't go through the normal entry paths: NMIs are masked, and
1135 * we don't want to enable interrupts, because then we'll end
1136 * up in an awkward situation in which IRQs are on but NMIs
1137 * are off.
1138 *
1139 * We also must not push anything to the stack before switching
1140 * stacks lest we corrupt the "NMI executing" variable.
1141 */
1142
1143 SWAPGS_UNSAFE_STACK
1144 cld
1145 movq %rsp, %rdx
1146 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1147 pushq 5*8(%rdx) /* pt_regs->ss */
1148 pushq 4*8(%rdx) /* pt_regs->rsp */
1149 pushq 3*8(%rdx) /* pt_regs->flags */
1150 pushq 2*8(%rdx) /* pt_regs->cs */
1151 pushq 1*8(%rdx) /* pt_regs->rip */
1152 pushq $-1 /* pt_regs->orig_ax */
1153 pushq %rdi /* pt_regs->di */
1154 pushq %rsi /* pt_regs->si */
1155 pushq (%rdx) /* pt_regs->dx */
1156 pushq %rcx /* pt_regs->cx */
1157 pushq %rax /* pt_regs->ax */
1158 pushq %r8 /* pt_regs->r8 */
1159 pushq %r9 /* pt_regs->r9 */
1160 pushq %r10 /* pt_regs->r10 */
1161 pushq %r11 /* pt_regs->r11 */
1162 pushq %rbx /* pt_regs->rbx */
1163 pushq %rbp /* pt_regs->rbp */
1164 pushq %r12 /* pt_regs->r12 */
1165 pushq %r13 /* pt_regs->r13 */
1166 pushq %r14 /* pt_regs->r14 */
1167 pushq %r15 /* pt_regs->r15 */
1168
1169 /*
1170 * At this point we no longer need to worry about stack damage
1171 * due to nesting -- we're on the normal thread stack and we're
1172 * done with the NMI stack.
1173 */
1174
1175 movq %rsp, %rdi
1176 movq $-1, %rsi
1177 call do_nmi
1178
1179 /*
1180 * Return back to user mode. We must *not* do the normal exit
1181 * work, because we don't want to enable interrupts. Fortunately,
1182 * do_nmi doesn't modify pt_regs.
1183 */
1184 SWAPGS
1185 jmp restore_c_regs_and_iret
1186
1187 .Lnmi_from_kernel:
1188 /*
1189 * Here's what our stack frame will look like:
1190 * +---------------------------------------------------------+
1191 * | original SS |
1192 * | original Return RSP |
1193 * | original RFLAGS |
1194 * | original CS |
1195 * | original RIP |
1196 * +---------------------------------------------------------+
1197 * | temp storage for rdx |
1198 * +---------------------------------------------------------+
1199 * | "NMI executing" variable |
1200 * +---------------------------------------------------------+
1201 * | iret SS } Copied from "outermost" frame |
1202 * | iret Return RSP } on each loop iteration; overwritten |
1203 * | iret RFLAGS } by a nested NMI to force another |
1204 * | iret CS } iteration if needed. |
1205 * | iret RIP } |
1206 * +---------------------------------------------------------+
1207 * | outermost SS } initialized in first_nmi; |
1208 * | outermost Return RSP } will not be changed before |
1209 * | outermost RFLAGS } NMI processing is done. |
1210 * | outermost CS } Copied to "iret" frame on each |
1211 * | outermost RIP } iteration. |
1212 * +---------------------------------------------------------+
1213 * | pt_regs |
1214 * +---------------------------------------------------------+
1215 *
1216 * The "original" frame is used by hardware. Before re-enabling
1217 * NMIs, we need to be done with it, and we need to leave enough
1218 * space for the asm code here.
1219 *
1220 * We return by executing IRET while RSP points to the "iret" frame.
1221 * That will either return for real or it will loop back into NMI
1222 * processing.
1223 *
1224 * The "outermost" frame is copied to the "iret" frame on each
1225 * iteration of the loop, so each iteration starts with the "iret"
1226 * frame pointing to the final return target.
1227 */
1228
1229 /*
1230 * Determine whether we're a nested NMI.
1231 *
1232 * If we interrupted kernel code between repeat_nmi and
1233 * end_repeat_nmi, then we are a nested NMI. We must not
1234 * modify the "iret" frame because it's being written by
1235 * the outer NMI. That's okay; the outer NMI handler is
1236 * about to about to call do_nmi anyway, so we can just
1237 * resume the outer NMI.
1238 */
1239
1240 movq $repeat_nmi, %rdx
1241 cmpq 8(%rsp), %rdx
1242 ja 1f
1243 movq $end_repeat_nmi, %rdx
1244 cmpq 8(%rsp), %rdx
1245 ja nested_nmi_out
1246 1:
1247
1248 /*
1249 * Now check "NMI executing". If it's set, then we're nested.
1250 * This will not detect if we interrupted an outer NMI just
1251 * before IRET.
1252 */
1253 cmpl $1, -8(%rsp)
1254 je nested_nmi
1255
1256 /*
1257 * Now test if the previous stack was an NMI stack. This covers
1258 * the case where we interrupt an outer NMI after it clears
1259 * "NMI executing" but before IRET. We need to be careful, though:
1260 * there is one case in which RSP could point to the NMI stack
1261 * despite there being no NMI active: naughty userspace controls
1262 * RSP at the very beginning of the SYSCALL targets. We can
1263 * pull a fast one on naughty userspace, though: we program
1264 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1265 * if it controls the kernel's RSP. We set DF before we clear
1266 * "NMI executing".
1267 */
1268 lea 6*8(%rsp), %rdx
1269 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1270 cmpq %rdx, 4*8(%rsp)
1271 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1272 ja first_nmi
1273
1274 subq $EXCEPTION_STKSZ, %rdx
1275 cmpq %rdx, 4*8(%rsp)
1276 /* If it is below the NMI stack, it is a normal NMI */
1277 jb first_nmi
1278
1279 /* Ah, it is within the NMI stack. */
1280
1281 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1282 jz first_nmi /* RSP was user controlled. */
1283
1284 /* This is a nested NMI. */
1285
1286 nested_nmi:
1287 /*
1288 * Modify the "iret" frame to point to repeat_nmi, forcing another
1289 * iteration of NMI handling.
1290 */
1291 subq $8, %rsp
1292 leaq -10*8(%rsp), %rdx
1293 pushq $__KERNEL_DS
1294 pushq %rdx
1295 pushfq
1296 pushq $__KERNEL_CS
1297 pushq $repeat_nmi
1298
1299 /* Put stack back */
1300 addq $(6*8), %rsp
1301
1302 nested_nmi_out:
1303 popq %rdx
1304
1305 /* We are returning to kernel mode, so this cannot result in a fault. */
1306 INTERRUPT_RETURN
1307
1308 first_nmi:
1309 /* Restore rdx. */
1310 movq (%rsp), %rdx
1311
1312 /* Make room for "NMI executing". */
1313 pushq $0
1314
1315 /* Leave room for the "iret" frame */
1316 subq $(5*8), %rsp
1317
1318 /* Copy the "original" frame to the "outermost" frame */
1319 .rept 5
1320 pushq 11*8(%rsp)
1321 .endr
1322
1323 /* Everything up to here is safe from nested NMIs */
1324
1325 #ifdef CONFIG_DEBUG_ENTRY
1326 /*
1327 * For ease of testing, unmask NMIs right away. Disabled by
1328 * default because IRET is very expensive.
1329 */
1330 pushq $0 /* SS */
1331 pushq %rsp /* RSP (minus 8 because of the previous push) */
1332 addq $8, (%rsp) /* Fix up RSP */
1333 pushfq /* RFLAGS */
1334 pushq $__KERNEL_CS /* CS */
1335 pushq $1f /* RIP */
1336 INTERRUPT_RETURN /* continues at repeat_nmi below */
1337 1:
1338 #endif
1339
1340 repeat_nmi:
1341 /*
1342 * If there was a nested NMI, the first NMI's iret will return
1343 * here. But NMIs are still enabled and we can take another
1344 * nested NMI. The nested NMI checks the interrupted RIP to see
1345 * if it is between repeat_nmi and end_repeat_nmi, and if so
1346 * it will just return, as we are about to repeat an NMI anyway.
1347 * This makes it safe to copy to the stack frame that a nested
1348 * NMI will update.
1349 *
1350 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1351 * we're repeating an NMI, gsbase has the same value that it had on
1352 * the first iteration. paranoid_entry will load the kernel
1353 * gsbase if needed before we call do_nmi. "NMI executing"
1354 * is zero.
1355 */
1356 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1357
1358 /*
1359 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1360 * here must not modify the "iret" frame while we're writing to
1361 * it or it will end up containing garbage.
1362 */
1363 addq $(10*8), %rsp
1364 .rept 5
1365 pushq -6*8(%rsp)
1366 .endr
1367 subq $(5*8), %rsp
1368 end_repeat_nmi:
1369
1370 /*
1371 * Everything below this point can be preempted by a nested NMI.
1372 * If this happens, then the inner NMI will change the "iret"
1373 * frame to point back to repeat_nmi.
1374 */
1375 pushq $-1 /* ORIG_RAX: no syscall to restart */
1376 ALLOC_PT_GPREGS_ON_STACK
1377
1378 /*
1379 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1380 * as we should not be calling schedule in NMI context.
1381 * Even with normal interrupts enabled. An NMI should not be
1382 * setting NEED_RESCHED or anything that normal interrupts and
1383 * exceptions might do.
1384 */
1385 call paranoid_entry
1386
1387 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1388 movq %rsp, %rdi
1389 movq $-1, %rsi
1390 call do_nmi
1391
1392 testl %ebx, %ebx /* swapgs needed? */
1393 jnz nmi_restore
1394 nmi_swapgs:
1395 SWAPGS_UNSAFE_STACK
1396 nmi_restore:
1397 RESTORE_EXTRA_REGS
1398 RESTORE_C_REGS
1399
1400 /* Point RSP at the "iret" frame. */
1401 REMOVE_PT_GPREGS_FROM_STACK 6*8
1402
1403 /*
1404 * Clear "NMI executing". Set DF first so that we can easily
1405 * distinguish the remaining code between here and IRET from
1406 * the SYSCALL entry and exit paths. On a native kernel, we
1407 * could just inspect RIP, but, on paravirt kernels,
1408 * INTERRUPT_RETURN can translate into a jump into a
1409 * hypercall page.
1410 */
1411 std
1412 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1413
1414 /*
1415 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1416 * stack in a single instruction. We are returning to kernel
1417 * mode, so this cannot result in a fault.
1418 */
1419 INTERRUPT_RETURN
1420 END(nmi)
1421
1422 ENTRY(ignore_sysret)
1423 mov $-ENOSYS, %eax
1424 sysret
1425 END(ignore_sysret)
This page took 0.059375 seconds and 4 git commands to generate.