RDMA/nes: don't leak skb if carrier down
[deliverable/linux.git] / arch / x86 / events / intel / lbr.c
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7
8 #include "../perf_event.h"
9
10 enum {
11 LBR_FORMAT_32 = 0x00,
12 LBR_FORMAT_LIP = 0x01,
13 LBR_FORMAT_EIP = 0x02,
14 LBR_FORMAT_EIP_FLAGS = 0x03,
15 LBR_FORMAT_EIP_FLAGS2 = 0x04,
16 LBR_FORMAT_INFO = 0x05,
17 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO,
18 };
19
20 static enum {
21 LBR_EIP_FLAGS = 1,
22 LBR_TSX = 2,
23 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
24 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
25 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
26 };
27
28 /*
29 * Intel LBR_SELECT bits
30 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
31 *
32 * Hardware branch filter (not available on all CPUs)
33 */
34 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
35 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
36 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
37 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
38 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
39 #define LBR_RETURN_BIT 5 /* do not capture near returns */
40 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
41 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
42 #define LBR_FAR_BIT 8 /* do not capture far branches */
43 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
44
45 /*
46 * Following bit only exists in Linux; we mask it out before writing it to
47 * the actual MSR. But it helps the constraint perf code to understand
48 * that this is a separate configuration.
49 */
50 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
51
52 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
53 #define LBR_USER (1 << LBR_USER_BIT)
54 #define LBR_JCC (1 << LBR_JCC_BIT)
55 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
56 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
57 #define LBR_RETURN (1 << LBR_RETURN_BIT)
58 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
59 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
60 #define LBR_FAR (1 << LBR_FAR_BIT)
61 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
62 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
63
64 #define LBR_PLM (LBR_KERNEL | LBR_USER)
65
66 #define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */
67 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
68 #define LBR_IGN 0 /* ignored */
69
70 #define LBR_ANY \
71 (LBR_JCC |\
72 LBR_REL_CALL |\
73 LBR_IND_CALL |\
74 LBR_RETURN |\
75 LBR_REL_JMP |\
76 LBR_IND_JMP |\
77 LBR_FAR)
78
79 #define LBR_FROM_FLAG_MISPRED (1ULL << 63)
80 #define LBR_FROM_FLAG_IN_TX (1ULL << 62)
81 #define LBR_FROM_FLAG_ABORT (1ULL << 61)
82
83 /*
84 * x86control flow change classification
85 * x86control flow changes include branches, interrupts, traps, faults
86 */
87 enum {
88 X86_BR_NONE = 0, /* unknown */
89
90 X86_BR_USER = 1 << 0, /* branch target is user */
91 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
92
93 X86_BR_CALL = 1 << 2, /* call */
94 X86_BR_RET = 1 << 3, /* return */
95 X86_BR_SYSCALL = 1 << 4, /* syscall */
96 X86_BR_SYSRET = 1 << 5, /* syscall return */
97 X86_BR_INT = 1 << 6, /* sw interrupt */
98 X86_BR_IRET = 1 << 7, /* return from interrupt */
99 X86_BR_JCC = 1 << 8, /* conditional */
100 X86_BR_JMP = 1 << 9, /* jump */
101 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
102 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
103 X86_BR_ABORT = 1 << 12,/* transaction abort */
104 X86_BR_IN_TX = 1 << 13,/* in transaction */
105 X86_BR_NO_TX = 1 << 14,/* not in transaction */
106 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
107 X86_BR_CALL_STACK = 1 << 16,/* call stack */
108 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
109 };
110
111 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
112 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
113
114 #define X86_BR_ANY \
115 (X86_BR_CALL |\
116 X86_BR_RET |\
117 X86_BR_SYSCALL |\
118 X86_BR_SYSRET |\
119 X86_BR_INT |\
120 X86_BR_IRET |\
121 X86_BR_JCC |\
122 X86_BR_JMP |\
123 X86_BR_IRQ |\
124 X86_BR_ABORT |\
125 X86_BR_IND_CALL |\
126 X86_BR_IND_JMP |\
127 X86_BR_ZERO_CALL)
128
129 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
130
131 #define X86_BR_ANY_CALL \
132 (X86_BR_CALL |\
133 X86_BR_IND_CALL |\
134 X86_BR_ZERO_CALL |\
135 X86_BR_SYSCALL |\
136 X86_BR_IRQ |\
137 X86_BR_INT)
138
139 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
140
141 /*
142 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
143 * otherwise it becomes near impossible to get a reliable stack.
144 */
145
146 static void __intel_pmu_lbr_enable(bool pmi)
147 {
148 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
149 u64 debugctl, lbr_select = 0, orig_debugctl;
150
151 /*
152 * No need to unfreeze manually, as v4 can do that as part
153 * of the GLOBAL_STATUS ack.
154 */
155 if (pmi && x86_pmu.version >= 4)
156 return;
157
158 /*
159 * No need to reprogram LBR_SELECT in a PMI, as it
160 * did not change.
161 */
162 if (cpuc->lbr_sel)
163 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
164 if (!pmi && cpuc->lbr_sel)
165 wrmsrl(MSR_LBR_SELECT, lbr_select);
166
167 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
168 orig_debugctl = debugctl;
169 debugctl |= DEBUGCTLMSR_LBR;
170 /*
171 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
172 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
173 * may cause superfluous increase/decrease of LBR_TOS.
174 */
175 if (!(lbr_select & LBR_CALL_STACK))
176 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
177 if (orig_debugctl != debugctl)
178 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
179 }
180
181 static void __intel_pmu_lbr_disable(void)
182 {
183 u64 debugctl;
184
185 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
186 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
187 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
188 }
189
190 static void intel_pmu_lbr_reset_32(void)
191 {
192 int i;
193
194 for (i = 0; i < x86_pmu.lbr_nr; i++)
195 wrmsrl(x86_pmu.lbr_from + i, 0);
196 }
197
198 static void intel_pmu_lbr_reset_64(void)
199 {
200 int i;
201
202 for (i = 0; i < x86_pmu.lbr_nr; i++) {
203 wrmsrl(x86_pmu.lbr_from + i, 0);
204 wrmsrl(x86_pmu.lbr_to + i, 0);
205 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
206 wrmsrl(MSR_LBR_INFO_0 + i, 0);
207 }
208 }
209
210 void intel_pmu_lbr_reset(void)
211 {
212 if (!x86_pmu.lbr_nr)
213 return;
214
215 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
216 intel_pmu_lbr_reset_32();
217 else
218 intel_pmu_lbr_reset_64();
219 }
220
221 /*
222 * TOS = most recently recorded branch
223 */
224 static inline u64 intel_pmu_lbr_tos(void)
225 {
226 u64 tos;
227
228 rdmsrl(x86_pmu.lbr_tos, tos);
229 return tos;
230 }
231
232 enum {
233 LBR_NONE,
234 LBR_VALID,
235 };
236
237 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
238 {
239 int i;
240 unsigned lbr_idx, mask;
241 u64 tos;
242
243 if (task_ctx->lbr_callstack_users == 0 ||
244 task_ctx->lbr_stack_state == LBR_NONE) {
245 intel_pmu_lbr_reset();
246 return;
247 }
248
249 mask = x86_pmu.lbr_nr - 1;
250 tos = task_ctx->tos;
251 for (i = 0; i < tos; i++) {
252 lbr_idx = (tos - i) & mask;
253 wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
254 wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
255 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
256 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
257 }
258 wrmsrl(x86_pmu.lbr_tos, tos);
259 task_ctx->lbr_stack_state = LBR_NONE;
260 }
261
262 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
263 {
264 int i;
265 unsigned lbr_idx, mask;
266 u64 tos;
267
268 if (task_ctx->lbr_callstack_users == 0) {
269 task_ctx->lbr_stack_state = LBR_NONE;
270 return;
271 }
272
273 mask = x86_pmu.lbr_nr - 1;
274 tos = intel_pmu_lbr_tos();
275 for (i = 0; i < tos; i++) {
276 lbr_idx = (tos - i) & mask;
277 rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
278 rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
279 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
280 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
281 }
282 task_ctx->tos = tos;
283 task_ctx->lbr_stack_state = LBR_VALID;
284 }
285
286 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
287 {
288 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
289 struct x86_perf_task_context *task_ctx;
290
291 /*
292 * If LBR callstack feature is enabled and the stack was saved when
293 * the task was scheduled out, restore the stack. Otherwise flush
294 * the LBR stack.
295 */
296 task_ctx = ctx ? ctx->task_ctx_data : NULL;
297 if (task_ctx) {
298 if (sched_in) {
299 __intel_pmu_lbr_restore(task_ctx);
300 cpuc->lbr_context = ctx;
301 } else {
302 __intel_pmu_lbr_save(task_ctx);
303 }
304 return;
305 }
306
307 /*
308 * When sampling the branck stack in system-wide, it may be
309 * necessary to flush the stack on context switch. This happens
310 * when the branch stack does not tag its entries with the pid
311 * of the current task. Otherwise it becomes impossible to
312 * associate a branch entry with a task. This ambiguity is more
313 * likely to appear when the branch stack supports priv level
314 * filtering and the user sets it to monitor only at the user
315 * level (which could be a useful measurement in system-wide
316 * mode). In that case, the risk is high of having a branch
317 * stack with branch from multiple tasks.
318 */
319 if (sched_in) {
320 intel_pmu_lbr_reset();
321 cpuc->lbr_context = ctx;
322 }
323 }
324
325 static inline bool branch_user_callstack(unsigned br_sel)
326 {
327 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
328 }
329
330 void intel_pmu_lbr_enable(struct perf_event *event)
331 {
332 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
333 struct x86_perf_task_context *task_ctx;
334
335 if (!x86_pmu.lbr_nr)
336 return;
337
338 /*
339 * Reset the LBR stack if we changed task context to
340 * avoid data leaks.
341 */
342 if (event->ctx->task && cpuc->lbr_context != event->ctx) {
343 intel_pmu_lbr_reset();
344 cpuc->lbr_context = event->ctx;
345 }
346 cpuc->br_sel = event->hw.branch_reg.reg;
347
348 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
349 event->ctx->task_ctx_data) {
350 task_ctx = event->ctx->task_ctx_data;
351 task_ctx->lbr_callstack_users++;
352 }
353
354 cpuc->lbr_users++;
355 perf_sched_cb_inc(event->ctx->pmu);
356 }
357
358 void intel_pmu_lbr_disable(struct perf_event *event)
359 {
360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
361 struct x86_perf_task_context *task_ctx;
362
363 if (!x86_pmu.lbr_nr)
364 return;
365
366 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
367 event->ctx->task_ctx_data) {
368 task_ctx = event->ctx->task_ctx_data;
369 task_ctx->lbr_callstack_users--;
370 }
371
372 cpuc->lbr_users--;
373 WARN_ON_ONCE(cpuc->lbr_users < 0);
374 perf_sched_cb_dec(event->ctx->pmu);
375
376 if (cpuc->enabled && !cpuc->lbr_users) {
377 __intel_pmu_lbr_disable();
378 /* avoid stale pointer */
379 cpuc->lbr_context = NULL;
380 }
381 }
382
383 void intel_pmu_lbr_enable_all(bool pmi)
384 {
385 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
386
387 if (cpuc->lbr_users)
388 __intel_pmu_lbr_enable(pmi);
389 }
390
391 void intel_pmu_lbr_disable_all(void)
392 {
393 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
394
395 if (cpuc->lbr_users)
396 __intel_pmu_lbr_disable();
397 }
398
399 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
400 {
401 unsigned long mask = x86_pmu.lbr_nr - 1;
402 u64 tos = intel_pmu_lbr_tos();
403 int i;
404
405 for (i = 0; i < x86_pmu.lbr_nr; i++) {
406 unsigned long lbr_idx = (tos - i) & mask;
407 union {
408 struct {
409 u32 from;
410 u32 to;
411 };
412 u64 lbr;
413 } msr_lastbranch;
414
415 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
416
417 cpuc->lbr_entries[i].from = msr_lastbranch.from;
418 cpuc->lbr_entries[i].to = msr_lastbranch.to;
419 cpuc->lbr_entries[i].mispred = 0;
420 cpuc->lbr_entries[i].predicted = 0;
421 cpuc->lbr_entries[i].reserved = 0;
422 }
423 cpuc->lbr_stack.nr = i;
424 }
425
426 /*
427 * Due to lack of segmentation in Linux the effective address (offset)
428 * is the same as the linear address, allowing us to merge the LIP and EIP
429 * LBR formats.
430 */
431 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
432 {
433 bool need_info = false;
434 unsigned long mask = x86_pmu.lbr_nr - 1;
435 int lbr_format = x86_pmu.intel_cap.lbr_format;
436 u64 tos = intel_pmu_lbr_tos();
437 int i;
438 int out = 0;
439 int num = x86_pmu.lbr_nr;
440
441 if (cpuc->lbr_sel) {
442 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
443 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
444 num = tos;
445 }
446
447 for (i = 0; i < num; i++) {
448 unsigned long lbr_idx = (tos - i) & mask;
449 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
450 int skip = 0;
451 u16 cycles = 0;
452 int lbr_flags = lbr_desc[lbr_format];
453
454 rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
455 rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
456
457 if (lbr_format == LBR_FORMAT_INFO && need_info) {
458 u64 info;
459
460 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
461 mis = !!(info & LBR_INFO_MISPRED);
462 pred = !mis;
463 in_tx = !!(info & LBR_INFO_IN_TX);
464 abort = !!(info & LBR_INFO_ABORT);
465 cycles = (info & LBR_INFO_CYCLES);
466 }
467 if (lbr_flags & LBR_EIP_FLAGS) {
468 mis = !!(from & LBR_FROM_FLAG_MISPRED);
469 pred = !mis;
470 skip = 1;
471 }
472 if (lbr_flags & LBR_TSX) {
473 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
474 abort = !!(from & LBR_FROM_FLAG_ABORT);
475 skip = 3;
476 }
477 from = (u64)((((s64)from) << skip) >> skip);
478
479 /*
480 * Some CPUs report duplicated abort records,
481 * with the second entry not having an abort bit set.
482 * Skip them here. This loop runs backwards,
483 * so we need to undo the previous record.
484 * If the abort just happened outside the window
485 * the extra entry cannot be removed.
486 */
487 if (abort && x86_pmu.lbr_double_abort && out > 0)
488 out--;
489
490 cpuc->lbr_entries[out].from = from;
491 cpuc->lbr_entries[out].to = to;
492 cpuc->lbr_entries[out].mispred = mis;
493 cpuc->lbr_entries[out].predicted = pred;
494 cpuc->lbr_entries[out].in_tx = in_tx;
495 cpuc->lbr_entries[out].abort = abort;
496 cpuc->lbr_entries[out].cycles = cycles;
497 cpuc->lbr_entries[out].reserved = 0;
498 out++;
499 }
500 cpuc->lbr_stack.nr = out;
501 }
502
503 void intel_pmu_lbr_read(void)
504 {
505 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
506
507 if (!cpuc->lbr_users)
508 return;
509
510 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
511 intel_pmu_lbr_read_32(cpuc);
512 else
513 intel_pmu_lbr_read_64(cpuc);
514
515 intel_pmu_lbr_filter(cpuc);
516 }
517
518 /*
519 * SW filter is used:
520 * - in case there is no HW filter
521 * - in case the HW filter has errata or limitations
522 */
523 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
524 {
525 u64 br_type = event->attr.branch_sample_type;
526 int mask = 0;
527
528 if (br_type & PERF_SAMPLE_BRANCH_USER)
529 mask |= X86_BR_USER;
530
531 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
532 mask |= X86_BR_KERNEL;
533
534 /* we ignore BRANCH_HV here */
535
536 if (br_type & PERF_SAMPLE_BRANCH_ANY)
537 mask |= X86_BR_ANY;
538
539 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
540 mask |= X86_BR_ANY_CALL;
541
542 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
543 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
544
545 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
546 mask |= X86_BR_IND_CALL;
547
548 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
549 mask |= X86_BR_ABORT;
550
551 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
552 mask |= X86_BR_IN_TX;
553
554 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
555 mask |= X86_BR_NO_TX;
556
557 if (br_type & PERF_SAMPLE_BRANCH_COND)
558 mask |= X86_BR_JCC;
559
560 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
561 if (!x86_pmu_has_lbr_callstack())
562 return -EOPNOTSUPP;
563 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
564 return -EINVAL;
565 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
566 X86_BR_CALL_STACK;
567 }
568
569 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
570 mask |= X86_BR_IND_JMP;
571
572 if (br_type & PERF_SAMPLE_BRANCH_CALL)
573 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
574 /*
575 * stash actual user request into reg, it may
576 * be used by fixup code for some CPU
577 */
578 event->hw.branch_reg.reg = mask;
579 return 0;
580 }
581
582 /*
583 * setup the HW LBR filter
584 * Used only when available, may not be enough to disambiguate
585 * all branches, may need the help of the SW filter
586 */
587 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
588 {
589 struct hw_perf_event_extra *reg;
590 u64 br_type = event->attr.branch_sample_type;
591 u64 mask = 0, v;
592 int i;
593
594 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
595 if (!(br_type & (1ULL << i)))
596 continue;
597
598 v = x86_pmu.lbr_sel_map[i];
599 if (v == LBR_NOT_SUPP)
600 return -EOPNOTSUPP;
601
602 if (v != LBR_IGN)
603 mask |= v;
604 }
605
606 reg = &event->hw.branch_reg;
607 reg->idx = EXTRA_REG_LBR;
608
609 /*
610 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
611 * in suppress mode. So LBR_SELECT should be set to
612 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
613 */
614 reg->config = mask ^ x86_pmu.lbr_sel_mask;
615
616 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
617 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
618 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
619 reg->config |= LBR_NO_INFO;
620
621 return 0;
622 }
623
624 int intel_pmu_setup_lbr_filter(struct perf_event *event)
625 {
626 int ret = 0;
627
628 /*
629 * no LBR on this PMU
630 */
631 if (!x86_pmu.lbr_nr)
632 return -EOPNOTSUPP;
633
634 /*
635 * setup SW LBR filter
636 */
637 ret = intel_pmu_setup_sw_lbr_filter(event);
638 if (ret)
639 return ret;
640
641 /*
642 * setup HW LBR filter, if any
643 */
644 if (x86_pmu.lbr_sel_map)
645 ret = intel_pmu_setup_hw_lbr_filter(event);
646
647 return ret;
648 }
649
650 /*
651 * return the type of control flow change at address "from"
652 * instruction is not necessarily a branch (in case of interrupt).
653 *
654 * The branch type returned also includes the priv level of the
655 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
656 *
657 * If a branch type is unknown OR the instruction cannot be
658 * decoded (e.g., text page not present), then X86_BR_NONE is
659 * returned.
660 */
661 static int branch_type(unsigned long from, unsigned long to, int abort)
662 {
663 struct insn insn;
664 void *addr;
665 int bytes_read, bytes_left;
666 int ret = X86_BR_NONE;
667 int ext, to_plm, from_plm;
668 u8 buf[MAX_INSN_SIZE];
669 int is64 = 0;
670
671 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
672 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
673
674 /*
675 * maybe zero if lbr did not fill up after a reset by the time
676 * we get a PMU interrupt
677 */
678 if (from == 0 || to == 0)
679 return X86_BR_NONE;
680
681 if (abort)
682 return X86_BR_ABORT | to_plm;
683
684 if (from_plm == X86_BR_USER) {
685 /*
686 * can happen if measuring at the user level only
687 * and we interrupt in a kernel thread, e.g., idle.
688 */
689 if (!current->mm)
690 return X86_BR_NONE;
691
692 /* may fail if text not present */
693 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
694 MAX_INSN_SIZE);
695 bytes_read = MAX_INSN_SIZE - bytes_left;
696 if (!bytes_read)
697 return X86_BR_NONE;
698
699 addr = buf;
700 } else {
701 /*
702 * The LBR logs any address in the IP, even if the IP just
703 * faulted. This means userspace can control the from address.
704 * Ensure we don't blindy read any address by validating it is
705 * a known text address.
706 */
707 if (kernel_text_address(from)) {
708 addr = (void *)from;
709 /*
710 * Assume we can get the maximum possible size
711 * when grabbing kernel data. This is not
712 * _strictly_ true since we could possibly be
713 * executing up next to a memory hole, but
714 * it is very unlikely to be a problem.
715 */
716 bytes_read = MAX_INSN_SIZE;
717 } else {
718 return X86_BR_NONE;
719 }
720 }
721
722 /*
723 * decoder needs to know the ABI especially
724 * on 64-bit systems running 32-bit apps
725 */
726 #ifdef CONFIG_X86_64
727 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
728 #endif
729 insn_init(&insn, addr, bytes_read, is64);
730 insn_get_opcode(&insn);
731 if (!insn.opcode.got)
732 return X86_BR_ABORT;
733
734 switch (insn.opcode.bytes[0]) {
735 case 0xf:
736 switch (insn.opcode.bytes[1]) {
737 case 0x05: /* syscall */
738 case 0x34: /* sysenter */
739 ret = X86_BR_SYSCALL;
740 break;
741 case 0x07: /* sysret */
742 case 0x35: /* sysexit */
743 ret = X86_BR_SYSRET;
744 break;
745 case 0x80 ... 0x8f: /* conditional */
746 ret = X86_BR_JCC;
747 break;
748 default:
749 ret = X86_BR_NONE;
750 }
751 break;
752 case 0x70 ... 0x7f: /* conditional */
753 ret = X86_BR_JCC;
754 break;
755 case 0xc2: /* near ret */
756 case 0xc3: /* near ret */
757 case 0xca: /* far ret */
758 case 0xcb: /* far ret */
759 ret = X86_BR_RET;
760 break;
761 case 0xcf: /* iret */
762 ret = X86_BR_IRET;
763 break;
764 case 0xcc ... 0xce: /* int */
765 ret = X86_BR_INT;
766 break;
767 case 0xe8: /* call near rel */
768 insn_get_immediate(&insn);
769 if (insn.immediate1.value == 0) {
770 /* zero length call */
771 ret = X86_BR_ZERO_CALL;
772 break;
773 }
774 case 0x9a: /* call far absolute */
775 ret = X86_BR_CALL;
776 break;
777 case 0xe0 ... 0xe3: /* loop jmp */
778 ret = X86_BR_JCC;
779 break;
780 case 0xe9 ... 0xeb: /* jmp */
781 ret = X86_BR_JMP;
782 break;
783 case 0xff: /* call near absolute, call far absolute ind */
784 insn_get_modrm(&insn);
785 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
786 switch (ext) {
787 case 2: /* near ind call */
788 case 3: /* far ind call */
789 ret = X86_BR_IND_CALL;
790 break;
791 case 4:
792 case 5:
793 ret = X86_BR_IND_JMP;
794 break;
795 }
796 break;
797 default:
798 ret = X86_BR_NONE;
799 }
800 /*
801 * interrupts, traps, faults (and thus ring transition) may
802 * occur on any instructions. Thus, to classify them correctly,
803 * we need to first look at the from and to priv levels. If they
804 * are different and to is in the kernel, then it indicates
805 * a ring transition. If the from instruction is not a ring
806 * transition instr (syscall, systenter, int), then it means
807 * it was a irq, trap or fault.
808 *
809 * we have no way of detecting kernel to kernel faults.
810 */
811 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
812 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
813 ret = X86_BR_IRQ;
814
815 /*
816 * branch priv level determined by target as
817 * is done by HW when LBR_SELECT is implemented
818 */
819 if (ret != X86_BR_NONE)
820 ret |= to_plm;
821
822 return ret;
823 }
824
825 /*
826 * implement actual branch filter based on user demand.
827 * Hardware may not exactly satisfy that request, thus
828 * we need to inspect opcodes. Mismatched branches are
829 * discarded. Therefore, the number of branches returned
830 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
831 */
832 static void
833 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
834 {
835 u64 from, to;
836 int br_sel = cpuc->br_sel;
837 int i, j, type;
838 bool compress = false;
839
840 /* if sampling all branches, then nothing to filter */
841 if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
842 return;
843
844 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
845
846 from = cpuc->lbr_entries[i].from;
847 to = cpuc->lbr_entries[i].to;
848
849 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
850 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
851 if (cpuc->lbr_entries[i].in_tx)
852 type |= X86_BR_IN_TX;
853 else
854 type |= X86_BR_NO_TX;
855 }
856
857 /* if type does not correspond, then discard */
858 if (type == X86_BR_NONE || (br_sel & type) != type) {
859 cpuc->lbr_entries[i].from = 0;
860 compress = true;
861 }
862 }
863
864 if (!compress)
865 return;
866
867 /* remove all entries with from=0 */
868 for (i = 0; i < cpuc->lbr_stack.nr; ) {
869 if (!cpuc->lbr_entries[i].from) {
870 j = i;
871 while (++j < cpuc->lbr_stack.nr)
872 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
873 cpuc->lbr_stack.nr--;
874 if (!cpuc->lbr_entries[i].from)
875 continue;
876 }
877 i++;
878 }
879 }
880
881 /*
882 * Map interface branch filters onto LBR filters
883 */
884 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
885 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
886 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
887 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
888 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
889 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
890 | LBR_IND_JMP | LBR_FAR,
891 /*
892 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
893 */
894 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
895 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
896 /*
897 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
898 */
899 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
900 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
901 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
902 };
903
904 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
905 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
906 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
907 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
908 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
909 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
910 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
911 | LBR_FAR,
912 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
913 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
914 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
915 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
916 };
917
918 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
919 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
920 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
921 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
922 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
923 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
924 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
925 | LBR_FAR,
926 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
927 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
928 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
929 | LBR_RETURN | LBR_CALL_STACK,
930 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
931 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
932 };
933
934 /* core */
935 void __init intel_pmu_lbr_init_core(void)
936 {
937 x86_pmu.lbr_nr = 4;
938 x86_pmu.lbr_tos = MSR_LBR_TOS;
939 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
940 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
941
942 /*
943 * SW branch filter usage:
944 * - compensate for lack of HW filter
945 */
946 pr_cont("4-deep LBR, ");
947 }
948
949 /* nehalem/westmere */
950 void __init intel_pmu_lbr_init_nhm(void)
951 {
952 x86_pmu.lbr_nr = 16;
953 x86_pmu.lbr_tos = MSR_LBR_TOS;
954 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
955 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
956
957 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
958 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
959
960 /*
961 * SW branch filter usage:
962 * - workaround LBR_SEL errata (see above)
963 * - support syscall, sysret capture.
964 * That requires LBR_FAR but that means far
965 * jmp need to be filtered out
966 */
967 pr_cont("16-deep LBR, ");
968 }
969
970 /* sandy bridge */
971 void __init intel_pmu_lbr_init_snb(void)
972 {
973 x86_pmu.lbr_nr = 16;
974 x86_pmu.lbr_tos = MSR_LBR_TOS;
975 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
976 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
977
978 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
979 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
980
981 /*
982 * SW branch filter usage:
983 * - support syscall, sysret capture.
984 * That requires LBR_FAR but that means far
985 * jmp need to be filtered out
986 */
987 pr_cont("16-deep LBR, ");
988 }
989
990 /* haswell */
991 void intel_pmu_lbr_init_hsw(void)
992 {
993 x86_pmu.lbr_nr = 16;
994 x86_pmu.lbr_tos = MSR_LBR_TOS;
995 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
996 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
997
998 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
999 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1000
1001 pr_cont("16-deep LBR, ");
1002 }
1003
1004 /* skylake */
1005 __init void intel_pmu_lbr_init_skl(void)
1006 {
1007 x86_pmu.lbr_nr = 32;
1008 x86_pmu.lbr_tos = MSR_LBR_TOS;
1009 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1010 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1011
1012 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1013 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1014
1015 /*
1016 * SW branch filter usage:
1017 * - support syscall, sysret capture.
1018 * That requires LBR_FAR but that means far
1019 * jmp need to be filtered out
1020 */
1021 pr_cont("32-deep LBR, ");
1022 }
1023
1024 /* atom */
1025 void __init intel_pmu_lbr_init_atom(void)
1026 {
1027 /*
1028 * only models starting at stepping 10 seems
1029 * to have an operational LBR which can freeze
1030 * on PMU interrupt
1031 */
1032 if (boot_cpu_data.x86_model == 28
1033 && boot_cpu_data.x86_mask < 10) {
1034 pr_cont("LBR disabled due to erratum");
1035 return;
1036 }
1037
1038 x86_pmu.lbr_nr = 8;
1039 x86_pmu.lbr_tos = MSR_LBR_TOS;
1040 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1041 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1042
1043 /*
1044 * SW branch filter usage:
1045 * - compensate for lack of HW filter
1046 */
1047 pr_cont("8-deep LBR, ");
1048 }
1049
1050 /* Knights Landing */
1051 void intel_pmu_lbr_init_knl(void)
1052 {
1053 x86_pmu.lbr_nr = 8;
1054 x86_pmu.lbr_tos = MSR_LBR_TOS;
1055 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1056 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1057
1058 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1059 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1060
1061 pr_cont("8-deep LBR, ");
1062 }
This page took 0.053845 seconds and 5 git commands to generate.