Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[deliverable/linux.git] / arch / x86 / events / intel / lbr.c
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7
8 #include "../perf_event.h"
9
10 enum {
11 LBR_FORMAT_32 = 0x00,
12 LBR_FORMAT_LIP = 0x01,
13 LBR_FORMAT_EIP = 0x02,
14 LBR_FORMAT_EIP_FLAGS = 0x03,
15 LBR_FORMAT_EIP_FLAGS2 = 0x04,
16 LBR_FORMAT_INFO = 0x05,
17 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO,
18 };
19
20 static enum {
21 LBR_EIP_FLAGS = 1,
22 LBR_TSX = 2,
23 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
24 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
25 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
26 };
27
28 /*
29 * Intel LBR_SELECT bits
30 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
31 *
32 * Hardware branch filter (not available on all CPUs)
33 */
34 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
35 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
36 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
37 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
38 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
39 #define LBR_RETURN_BIT 5 /* do not capture near returns */
40 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
41 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
42 #define LBR_FAR_BIT 8 /* do not capture far branches */
43 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
44
45 /*
46 * Following bit only exists in Linux; we mask it out before writing it to
47 * the actual MSR. But it helps the constraint perf code to understand
48 * that this is a separate configuration.
49 */
50 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
51
52 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
53 #define LBR_USER (1 << LBR_USER_BIT)
54 #define LBR_JCC (1 << LBR_JCC_BIT)
55 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
56 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
57 #define LBR_RETURN (1 << LBR_RETURN_BIT)
58 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
59 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
60 #define LBR_FAR (1 << LBR_FAR_BIT)
61 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
62 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
63
64 #define LBR_PLM (LBR_KERNEL | LBR_USER)
65
66 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
67 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
68 #define LBR_IGN 0 /* ignored */
69
70 #define LBR_ANY \
71 (LBR_JCC |\
72 LBR_REL_CALL |\
73 LBR_IND_CALL |\
74 LBR_RETURN |\
75 LBR_REL_JMP |\
76 LBR_IND_JMP |\
77 LBR_FAR)
78
79 #define LBR_FROM_FLAG_MISPRED (1ULL << 63)
80 #define LBR_FROM_FLAG_IN_TX (1ULL << 62)
81 #define LBR_FROM_FLAG_ABORT (1ULL << 61)
82
83 /*
84 * x86control flow change classification
85 * x86control flow changes include branches, interrupts, traps, faults
86 */
87 enum {
88 X86_BR_NONE = 0, /* unknown */
89
90 X86_BR_USER = 1 << 0, /* branch target is user */
91 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
92
93 X86_BR_CALL = 1 << 2, /* call */
94 X86_BR_RET = 1 << 3, /* return */
95 X86_BR_SYSCALL = 1 << 4, /* syscall */
96 X86_BR_SYSRET = 1 << 5, /* syscall return */
97 X86_BR_INT = 1 << 6, /* sw interrupt */
98 X86_BR_IRET = 1 << 7, /* return from interrupt */
99 X86_BR_JCC = 1 << 8, /* conditional */
100 X86_BR_JMP = 1 << 9, /* jump */
101 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
102 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
103 X86_BR_ABORT = 1 << 12,/* transaction abort */
104 X86_BR_IN_TX = 1 << 13,/* in transaction */
105 X86_BR_NO_TX = 1 << 14,/* not in transaction */
106 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
107 X86_BR_CALL_STACK = 1 << 16,/* call stack */
108 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
109 };
110
111 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
112 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
113
114 #define X86_BR_ANY \
115 (X86_BR_CALL |\
116 X86_BR_RET |\
117 X86_BR_SYSCALL |\
118 X86_BR_SYSRET |\
119 X86_BR_INT |\
120 X86_BR_IRET |\
121 X86_BR_JCC |\
122 X86_BR_JMP |\
123 X86_BR_IRQ |\
124 X86_BR_ABORT |\
125 X86_BR_IND_CALL |\
126 X86_BR_IND_JMP |\
127 X86_BR_ZERO_CALL)
128
129 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
130
131 #define X86_BR_ANY_CALL \
132 (X86_BR_CALL |\
133 X86_BR_IND_CALL |\
134 X86_BR_ZERO_CALL |\
135 X86_BR_SYSCALL |\
136 X86_BR_IRQ |\
137 X86_BR_INT)
138
139 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
140
141 /*
142 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
143 * otherwise it becomes near impossible to get a reliable stack.
144 */
145
146 static void __intel_pmu_lbr_enable(bool pmi)
147 {
148 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
149 u64 debugctl, lbr_select = 0, orig_debugctl;
150
151 /*
152 * No need to unfreeze manually, as v4 can do that as part
153 * of the GLOBAL_STATUS ack.
154 */
155 if (pmi && x86_pmu.version >= 4)
156 return;
157
158 /*
159 * No need to reprogram LBR_SELECT in a PMI, as it
160 * did not change.
161 */
162 if (cpuc->lbr_sel)
163 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
164 if (!pmi && cpuc->lbr_sel)
165 wrmsrl(MSR_LBR_SELECT, lbr_select);
166
167 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
168 orig_debugctl = debugctl;
169 debugctl |= DEBUGCTLMSR_LBR;
170 /*
171 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
172 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
173 * may cause superfluous increase/decrease of LBR_TOS.
174 */
175 if (!(lbr_select & LBR_CALL_STACK))
176 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
177 if (orig_debugctl != debugctl)
178 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
179 }
180
181 static void __intel_pmu_lbr_disable(void)
182 {
183 u64 debugctl;
184
185 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
186 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
187 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
188 }
189
190 static void intel_pmu_lbr_reset_32(void)
191 {
192 int i;
193
194 for (i = 0; i < x86_pmu.lbr_nr; i++)
195 wrmsrl(x86_pmu.lbr_from + i, 0);
196 }
197
198 static void intel_pmu_lbr_reset_64(void)
199 {
200 int i;
201
202 for (i = 0; i < x86_pmu.lbr_nr; i++) {
203 wrmsrl(x86_pmu.lbr_from + i, 0);
204 wrmsrl(x86_pmu.lbr_to + i, 0);
205 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
206 wrmsrl(MSR_LBR_INFO_0 + i, 0);
207 }
208 }
209
210 void intel_pmu_lbr_reset(void)
211 {
212 if (!x86_pmu.lbr_nr)
213 return;
214
215 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
216 intel_pmu_lbr_reset_32();
217 else
218 intel_pmu_lbr_reset_64();
219 }
220
221 /*
222 * TOS = most recently recorded branch
223 */
224 static inline u64 intel_pmu_lbr_tos(void)
225 {
226 u64 tos;
227
228 rdmsrl(x86_pmu.lbr_tos, tos);
229 return tos;
230 }
231
232 enum {
233 LBR_NONE,
234 LBR_VALID,
235 };
236
237 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
238 {
239 int i;
240 unsigned lbr_idx, mask;
241 u64 tos;
242
243 if (task_ctx->lbr_callstack_users == 0 ||
244 task_ctx->lbr_stack_state == LBR_NONE) {
245 intel_pmu_lbr_reset();
246 return;
247 }
248
249 mask = x86_pmu.lbr_nr - 1;
250 tos = task_ctx->tos;
251 for (i = 0; i < tos; i++) {
252 lbr_idx = (tos - i) & mask;
253 wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
254 wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
255 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
256 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
257 }
258 wrmsrl(x86_pmu.lbr_tos, tos);
259 task_ctx->lbr_stack_state = LBR_NONE;
260 }
261
262 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
263 {
264 int i;
265 unsigned lbr_idx, mask;
266 u64 tos;
267
268 if (task_ctx->lbr_callstack_users == 0) {
269 task_ctx->lbr_stack_state = LBR_NONE;
270 return;
271 }
272
273 mask = x86_pmu.lbr_nr - 1;
274 tos = intel_pmu_lbr_tos();
275 for (i = 0; i < tos; i++) {
276 lbr_idx = (tos - i) & mask;
277 rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
278 rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
279 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
280 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
281 }
282 task_ctx->tos = tos;
283 task_ctx->lbr_stack_state = LBR_VALID;
284 }
285
286 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
287 {
288 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
289 struct x86_perf_task_context *task_ctx;
290
291 /*
292 * If LBR callstack feature is enabled and the stack was saved when
293 * the task was scheduled out, restore the stack. Otherwise flush
294 * the LBR stack.
295 */
296 task_ctx = ctx ? ctx->task_ctx_data : NULL;
297 if (task_ctx) {
298 if (sched_in) {
299 __intel_pmu_lbr_restore(task_ctx);
300 cpuc->lbr_context = ctx;
301 } else {
302 __intel_pmu_lbr_save(task_ctx);
303 }
304 return;
305 }
306
307 /*
308 * When sampling the branck stack in system-wide, it may be
309 * necessary to flush the stack on context switch. This happens
310 * when the branch stack does not tag its entries with the pid
311 * of the current task. Otherwise it becomes impossible to
312 * associate a branch entry with a task. This ambiguity is more
313 * likely to appear when the branch stack supports priv level
314 * filtering and the user sets it to monitor only at the user
315 * level (which could be a useful measurement in system-wide
316 * mode). In that case, the risk is high of having a branch
317 * stack with branch from multiple tasks.
318 */
319 if (sched_in) {
320 intel_pmu_lbr_reset();
321 cpuc->lbr_context = ctx;
322 }
323 }
324
325 static inline bool branch_user_callstack(unsigned br_sel)
326 {
327 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
328 }
329
330 void intel_pmu_lbr_enable(struct perf_event *event)
331 {
332 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
333 struct x86_perf_task_context *task_ctx;
334
335 if (!x86_pmu.lbr_nr)
336 return;
337
338 /*
339 * Reset the LBR stack if we changed task context to
340 * avoid data leaks.
341 */
342 if (event->ctx->task && cpuc->lbr_context != event->ctx) {
343 intel_pmu_lbr_reset();
344 cpuc->lbr_context = event->ctx;
345 }
346 cpuc->br_sel = event->hw.branch_reg.reg;
347
348 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
349 event->ctx->task_ctx_data) {
350 task_ctx = event->ctx->task_ctx_data;
351 task_ctx->lbr_callstack_users++;
352 }
353
354 cpuc->lbr_users++;
355 perf_sched_cb_inc(event->ctx->pmu);
356 }
357
358 void intel_pmu_lbr_disable(struct perf_event *event)
359 {
360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
361 struct x86_perf_task_context *task_ctx;
362
363 if (!x86_pmu.lbr_nr)
364 return;
365
366 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
367 event->ctx->task_ctx_data) {
368 task_ctx = event->ctx->task_ctx_data;
369 task_ctx->lbr_callstack_users--;
370 }
371
372 cpuc->lbr_users--;
373 WARN_ON_ONCE(cpuc->lbr_users < 0);
374 perf_sched_cb_dec(event->ctx->pmu);
375
376 if (cpuc->enabled && !cpuc->lbr_users) {
377 __intel_pmu_lbr_disable();
378 /* avoid stale pointer */
379 cpuc->lbr_context = NULL;
380 }
381 }
382
383 void intel_pmu_lbr_enable_all(bool pmi)
384 {
385 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
386
387 if (cpuc->lbr_users)
388 __intel_pmu_lbr_enable(pmi);
389 }
390
391 void intel_pmu_lbr_disable_all(void)
392 {
393 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
394
395 if (cpuc->lbr_users)
396 __intel_pmu_lbr_disable();
397 }
398
399 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
400 {
401 unsigned long mask = x86_pmu.lbr_nr - 1;
402 u64 tos = intel_pmu_lbr_tos();
403 int i;
404
405 for (i = 0; i < x86_pmu.lbr_nr; i++) {
406 unsigned long lbr_idx = (tos - i) & mask;
407 union {
408 struct {
409 u32 from;
410 u32 to;
411 };
412 u64 lbr;
413 } msr_lastbranch;
414
415 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
416
417 cpuc->lbr_entries[i].from = msr_lastbranch.from;
418 cpuc->lbr_entries[i].to = msr_lastbranch.to;
419 cpuc->lbr_entries[i].mispred = 0;
420 cpuc->lbr_entries[i].predicted = 0;
421 cpuc->lbr_entries[i].reserved = 0;
422 }
423 cpuc->lbr_stack.nr = i;
424 }
425
426 /*
427 * Due to lack of segmentation in Linux the effective address (offset)
428 * is the same as the linear address, allowing us to merge the LIP and EIP
429 * LBR formats.
430 */
431 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
432 {
433 bool need_info = false;
434 unsigned long mask = x86_pmu.lbr_nr - 1;
435 int lbr_format = x86_pmu.intel_cap.lbr_format;
436 u64 tos = intel_pmu_lbr_tos();
437 int i;
438 int out = 0;
439 int num = x86_pmu.lbr_nr;
440
441 if (cpuc->lbr_sel) {
442 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
443 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
444 num = tos;
445 }
446
447 for (i = 0; i < num; i++) {
448 unsigned long lbr_idx = (tos - i) & mask;
449 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
450 int skip = 0;
451 u16 cycles = 0;
452 int lbr_flags = lbr_desc[lbr_format];
453
454 rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
455 rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
456
457 if (lbr_format == LBR_FORMAT_INFO && need_info) {
458 u64 info;
459
460 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
461 mis = !!(info & LBR_INFO_MISPRED);
462 pred = !mis;
463 in_tx = !!(info & LBR_INFO_IN_TX);
464 abort = !!(info & LBR_INFO_ABORT);
465 cycles = (info & LBR_INFO_CYCLES);
466 }
467 if (lbr_flags & LBR_EIP_FLAGS) {
468 mis = !!(from & LBR_FROM_FLAG_MISPRED);
469 pred = !mis;
470 skip = 1;
471 }
472 if (lbr_flags & LBR_TSX) {
473 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
474 abort = !!(from & LBR_FROM_FLAG_ABORT);
475 skip = 3;
476 }
477 from = (u64)((((s64)from) << skip) >> skip);
478
479 /*
480 * Some CPUs report duplicated abort records,
481 * with the second entry not having an abort bit set.
482 * Skip them here. This loop runs backwards,
483 * so we need to undo the previous record.
484 * If the abort just happened outside the window
485 * the extra entry cannot be removed.
486 */
487 if (abort && x86_pmu.lbr_double_abort && out > 0)
488 out--;
489
490 cpuc->lbr_entries[out].from = from;
491 cpuc->lbr_entries[out].to = to;
492 cpuc->lbr_entries[out].mispred = mis;
493 cpuc->lbr_entries[out].predicted = pred;
494 cpuc->lbr_entries[out].in_tx = in_tx;
495 cpuc->lbr_entries[out].abort = abort;
496 cpuc->lbr_entries[out].cycles = cycles;
497 cpuc->lbr_entries[out].reserved = 0;
498 out++;
499 }
500 cpuc->lbr_stack.nr = out;
501 }
502
503 void intel_pmu_lbr_read(void)
504 {
505 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
506
507 if (!cpuc->lbr_users)
508 return;
509
510 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
511 intel_pmu_lbr_read_32(cpuc);
512 else
513 intel_pmu_lbr_read_64(cpuc);
514
515 intel_pmu_lbr_filter(cpuc);
516 }
517
518 /*
519 * SW filter is used:
520 * - in case there is no HW filter
521 * - in case the HW filter has errata or limitations
522 */
523 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
524 {
525 u64 br_type = event->attr.branch_sample_type;
526 int mask = 0;
527
528 if (br_type & PERF_SAMPLE_BRANCH_USER)
529 mask |= X86_BR_USER;
530
531 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
532 mask |= X86_BR_KERNEL;
533
534 /* we ignore BRANCH_HV here */
535
536 if (br_type & PERF_SAMPLE_BRANCH_ANY)
537 mask |= X86_BR_ANY;
538
539 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
540 mask |= X86_BR_ANY_CALL;
541
542 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
543 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
544
545 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
546 mask |= X86_BR_IND_CALL;
547
548 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
549 mask |= X86_BR_ABORT;
550
551 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
552 mask |= X86_BR_IN_TX;
553
554 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
555 mask |= X86_BR_NO_TX;
556
557 if (br_type & PERF_SAMPLE_BRANCH_COND)
558 mask |= X86_BR_JCC;
559
560 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
561 if (!x86_pmu_has_lbr_callstack())
562 return -EOPNOTSUPP;
563 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
564 return -EINVAL;
565 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
566 X86_BR_CALL_STACK;
567 }
568
569 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
570 mask |= X86_BR_IND_JMP;
571
572 if (br_type & PERF_SAMPLE_BRANCH_CALL)
573 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
574 /*
575 * stash actual user request into reg, it may
576 * be used by fixup code for some CPU
577 */
578 event->hw.branch_reg.reg = mask;
579 return 0;
580 }
581
582 /*
583 * setup the HW LBR filter
584 * Used only when available, may not be enough to disambiguate
585 * all branches, may need the help of the SW filter
586 */
587 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
588 {
589 struct hw_perf_event_extra *reg;
590 u64 br_type = event->attr.branch_sample_type;
591 u64 mask = 0, v;
592 int i;
593
594 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
595 if (!(br_type & (1ULL << i)))
596 continue;
597
598 v = x86_pmu.lbr_sel_map[i];
599 if (v == LBR_NOT_SUPP)
600 return -EOPNOTSUPP;
601
602 if (v != LBR_IGN)
603 mask |= v;
604 }
605
606 reg = &event->hw.branch_reg;
607 reg->idx = EXTRA_REG_LBR;
608
609 /*
610 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
611 * in suppress mode. So LBR_SELECT should be set to
612 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
613 * But the 10th bit LBR_CALL_STACK does not operate
614 * in suppress mode.
615 */
616 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
617
618 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
619 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
620 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
621 reg->config |= LBR_NO_INFO;
622
623 return 0;
624 }
625
626 int intel_pmu_setup_lbr_filter(struct perf_event *event)
627 {
628 int ret = 0;
629
630 /*
631 * no LBR on this PMU
632 */
633 if (!x86_pmu.lbr_nr)
634 return -EOPNOTSUPP;
635
636 /*
637 * setup SW LBR filter
638 */
639 ret = intel_pmu_setup_sw_lbr_filter(event);
640 if (ret)
641 return ret;
642
643 /*
644 * setup HW LBR filter, if any
645 */
646 if (x86_pmu.lbr_sel_map)
647 ret = intel_pmu_setup_hw_lbr_filter(event);
648
649 return ret;
650 }
651
652 /*
653 * return the type of control flow change at address "from"
654 * instruction is not necessarily a branch (in case of interrupt).
655 *
656 * The branch type returned also includes the priv level of the
657 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
658 *
659 * If a branch type is unknown OR the instruction cannot be
660 * decoded (e.g., text page not present), then X86_BR_NONE is
661 * returned.
662 */
663 static int branch_type(unsigned long from, unsigned long to, int abort)
664 {
665 struct insn insn;
666 void *addr;
667 int bytes_read, bytes_left;
668 int ret = X86_BR_NONE;
669 int ext, to_plm, from_plm;
670 u8 buf[MAX_INSN_SIZE];
671 int is64 = 0;
672
673 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
674 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
675
676 /*
677 * maybe zero if lbr did not fill up after a reset by the time
678 * we get a PMU interrupt
679 */
680 if (from == 0 || to == 0)
681 return X86_BR_NONE;
682
683 if (abort)
684 return X86_BR_ABORT | to_plm;
685
686 if (from_plm == X86_BR_USER) {
687 /*
688 * can happen if measuring at the user level only
689 * and we interrupt in a kernel thread, e.g., idle.
690 */
691 if (!current->mm)
692 return X86_BR_NONE;
693
694 /* may fail if text not present */
695 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
696 MAX_INSN_SIZE);
697 bytes_read = MAX_INSN_SIZE - bytes_left;
698 if (!bytes_read)
699 return X86_BR_NONE;
700
701 addr = buf;
702 } else {
703 /*
704 * The LBR logs any address in the IP, even if the IP just
705 * faulted. This means userspace can control the from address.
706 * Ensure we don't blindy read any address by validating it is
707 * a known text address.
708 */
709 if (kernel_text_address(from)) {
710 addr = (void *)from;
711 /*
712 * Assume we can get the maximum possible size
713 * when grabbing kernel data. This is not
714 * _strictly_ true since we could possibly be
715 * executing up next to a memory hole, but
716 * it is very unlikely to be a problem.
717 */
718 bytes_read = MAX_INSN_SIZE;
719 } else {
720 return X86_BR_NONE;
721 }
722 }
723
724 /*
725 * decoder needs to know the ABI especially
726 * on 64-bit systems running 32-bit apps
727 */
728 #ifdef CONFIG_X86_64
729 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
730 #endif
731 insn_init(&insn, addr, bytes_read, is64);
732 insn_get_opcode(&insn);
733 if (!insn.opcode.got)
734 return X86_BR_ABORT;
735
736 switch (insn.opcode.bytes[0]) {
737 case 0xf:
738 switch (insn.opcode.bytes[1]) {
739 case 0x05: /* syscall */
740 case 0x34: /* sysenter */
741 ret = X86_BR_SYSCALL;
742 break;
743 case 0x07: /* sysret */
744 case 0x35: /* sysexit */
745 ret = X86_BR_SYSRET;
746 break;
747 case 0x80 ... 0x8f: /* conditional */
748 ret = X86_BR_JCC;
749 break;
750 default:
751 ret = X86_BR_NONE;
752 }
753 break;
754 case 0x70 ... 0x7f: /* conditional */
755 ret = X86_BR_JCC;
756 break;
757 case 0xc2: /* near ret */
758 case 0xc3: /* near ret */
759 case 0xca: /* far ret */
760 case 0xcb: /* far ret */
761 ret = X86_BR_RET;
762 break;
763 case 0xcf: /* iret */
764 ret = X86_BR_IRET;
765 break;
766 case 0xcc ... 0xce: /* int */
767 ret = X86_BR_INT;
768 break;
769 case 0xe8: /* call near rel */
770 insn_get_immediate(&insn);
771 if (insn.immediate1.value == 0) {
772 /* zero length call */
773 ret = X86_BR_ZERO_CALL;
774 break;
775 }
776 case 0x9a: /* call far absolute */
777 ret = X86_BR_CALL;
778 break;
779 case 0xe0 ... 0xe3: /* loop jmp */
780 ret = X86_BR_JCC;
781 break;
782 case 0xe9 ... 0xeb: /* jmp */
783 ret = X86_BR_JMP;
784 break;
785 case 0xff: /* call near absolute, call far absolute ind */
786 insn_get_modrm(&insn);
787 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
788 switch (ext) {
789 case 2: /* near ind call */
790 case 3: /* far ind call */
791 ret = X86_BR_IND_CALL;
792 break;
793 case 4:
794 case 5:
795 ret = X86_BR_IND_JMP;
796 break;
797 }
798 break;
799 default:
800 ret = X86_BR_NONE;
801 }
802 /*
803 * interrupts, traps, faults (and thus ring transition) may
804 * occur on any instructions. Thus, to classify them correctly,
805 * we need to first look at the from and to priv levels. If they
806 * are different and to is in the kernel, then it indicates
807 * a ring transition. If the from instruction is not a ring
808 * transition instr (syscall, systenter, int), then it means
809 * it was a irq, trap or fault.
810 *
811 * we have no way of detecting kernel to kernel faults.
812 */
813 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
814 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
815 ret = X86_BR_IRQ;
816
817 /*
818 * branch priv level determined by target as
819 * is done by HW when LBR_SELECT is implemented
820 */
821 if (ret != X86_BR_NONE)
822 ret |= to_plm;
823
824 return ret;
825 }
826
827 /*
828 * implement actual branch filter based on user demand.
829 * Hardware may not exactly satisfy that request, thus
830 * we need to inspect opcodes. Mismatched branches are
831 * discarded. Therefore, the number of branches returned
832 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
833 */
834 static void
835 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
836 {
837 u64 from, to;
838 int br_sel = cpuc->br_sel;
839 int i, j, type;
840 bool compress = false;
841
842 /* if sampling all branches, then nothing to filter */
843 if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
844 return;
845
846 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
847
848 from = cpuc->lbr_entries[i].from;
849 to = cpuc->lbr_entries[i].to;
850
851 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
852 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
853 if (cpuc->lbr_entries[i].in_tx)
854 type |= X86_BR_IN_TX;
855 else
856 type |= X86_BR_NO_TX;
857 }
858
859 /* if type does not correspond, then discard */
860 if (type == X86_BR_NONE || (br_sel & type) != type) {
861 cpuc->lbr_entries[i].from = 0;
862 compress = true;
863 }
864 }
865
866 if (!compress)
867 return;
868
869 /* remove all entries with from=0 */
870 for (i = 0; i < cpuc->lbr_stack.nr; ) {
871 if (!cpuc->lbr_entries[i].from) {
872 j = i;
873 while (++j < cpuc->lbr_stack.nr)
874 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
875 cpuc->lbr_stack.nr--;
876 if (!cpuc->lbr_entries[i].from)
877 continue;
878 }
879 i++;
880 }
881 }
882
883 /*
884 * Map interface branch filters onto LBR filters
885 */
886 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
887 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
888 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
889 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
890 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
891 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
892 | LBR_IND_JMP | LBR_FAR,
893 /*
894 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
895 */
896 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
897 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
898 /*
899 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
900 */
901 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
902 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
903 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
904 };
905
906 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
907 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
908 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
909 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
910 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
911 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
912 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
913 | LBR_FAR,
914 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
915 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
916 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
917 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
918 };
919
920 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
921 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
922 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
923 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
924 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
925 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
926 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
927 | LBR_FAR,
928 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
929 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
930 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
931 | LBR_RETURN | LBR_CALL_STACK,
932 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
933 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
934 };
935
936 /* core */
937 void __init intel_pmu_lbr_init_core(void)
938 {
939 x86_pmu.lbr_nr = 4;
940 x86_pmu.lbr_tos = MSR_LBR_TOS;
941 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
942 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
943
944 /*
945 * SW branch filter usage:
946 * - compensate for lack of HW filter
947 */
948 pr_cont("4-deep LBR, ");
949 }
950
951 /* nehalem/westmere */
952 void __init intel_pmu_lbr_init_nhm(void)
953 {
954 x86_pmu.lbr_nr = 16;
955 x86_pmu.lbr_tos = MSR_LBR_TOS;
956 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
957 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
958
959 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
960 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
961
962 /*
963 * SW branch filter usage:
964 * - workaround LBR_SEL errata (see above)
965 * - support syscall, sysret capture.
966 * That requires LBR_FAR but that means far
967 * jmp need to be filtered out
968 */
969 pr_cont("16-deep LBR, ");
970 }
971
972 /* sandy bridge */
973 void __init intel_pmu_lbr_init_snb(void)
974 {
975 x86_pmu.lbr_nr = 16;
976 x86_pmu.lbr_tos = MSR_LBR_TOS;
977 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
978 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
979
980 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
981 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
982
983 /*
984 * SW branch filter usage:
985 * - support syscall, sysret capture.
986 * That requires LBR_FAR but that means far
987 * jmp need to be filtered out
988 */
989 pr_cont("16-deep LBR, ");
990 }
991
992 /* haswell */
993 void intel_pmu_lbr_init_hsw(void)
994 {
995 x86_pmu.lbr_nr = 16;
996 x86_pmu.lbr_tos = MSR_LBR_TOS;
997 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
998 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
999
1000 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1001 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1002
1003 pr_cont("16-deep LBR, ");
1004 }
1005
1006 /* skylake */
1007 __init void intel_pmu_lbr_init_skl(void)
1008 {
1009 x86_pmu.lbr_nr = 32;
1010 x86_pmu.lbr_tos = MSR_LBR_TOS;
1011 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1012 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1013
1014 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1015 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1016
1017 /*
1018 * SW branch filter usage:
1019 * - support syscall, sysret capture.
1020 * That requires LBR_FAR but that means far
1021 * jmp need to be filtered out
1022 */
1023 pr_cont("32-deep LBR, ");
1024 }
1025
1026 /* atom */
1027 void __init intel_pmu_lbr_init_atom(void)
1028 {
1029 /*
1030 * only models starting at stepping 10 seems
1031 * to have an operational LBR which can freeze
1032 * on PMU interrupt
1033 */
1034 if (boot_cpu_data.x86_model == 28
1035 && boot_cpu_data.x86_mask < 10) {
1036 pr_cont("LBR disabled due to erratum");
1037 return;
1038 }
1039
1040 x86_pmu.lbr_nr = 8;
1041 x86_pmu.lbr_tos = MSR_LBR_TOS;
1042 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1043 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1044
1045 /*
1046 * SW branch filter usage:
1047 * - compensate for lack of HW filter
1048 */
1049 pr_cont("8-deep LBR, ");
1050 }
1051
1052 /* Knights Landing */
1053 void intel_pmu_lbr_init_knl(void)
1054 {
1055 x86_pmu.lbr_nr = 8;
1056 x86_pmu.lbr_tos = MSR_LBR_TOS;
1057 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1058 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1059
1060 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1061 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1062
1063 pr_cont("8-deep LBR, ");
1064 }
This page took 0.051196 seconds and 6 git commands to generate.