19036cdbed8ffbda1141c53d31ef18a47014af8b
[deliverable/linux.git] / arch / x86 / include / asm / mmu_context.h
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7
8 #include <trace/events/tlb.h>
9
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 struct mm_struct *next)
17 {
18 }
19 #endif /* !CONFIG_PARAVIRT */
20
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
23
24 static inline void load_mm_cr4(struct mm_struct *mm)
25 {
26 if (static_key_false(&rdpmc_always_available) ||
27 atomic_read(&mm->context.perf_rdpmc_allowed))
28 cr4_set_bits(X86_CR4_PCE);
29 else
30 cr4_clear_bits(X86_CR4_PCE);
31 }
32 #else
33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
35
36 #ifdef CONFIG_MODIFY_LDT_SYSCALL
37 /*
38 * ldt_structs can be allocated, used, and freed, but they are never
39 * modified while live.
40 */
41 struct ldt_struct {
42 /*
43 * Xen requires page-aligned LDTs with special permissions. This is
44 * needed to prevent us from installing evil descriptors such as
45 * call gates. On native, we could merge the ldt_struct and LDT
46 * allocations, but it's not worth trying to optimize.
47 */
48 struct desc_struct *entries;
49 int size;
50 };
51
52 /*
53 * Used for LDT copy/destruction.
54 */
55 int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
56 void destroy_context(struct mm_struct *mm);
57 #else /* CONFIG_MODIFY_LDT_SYSCALL */
58 static inline int init_new_context(struct task_struct *tsk,
59 struct mm_struct *mm)
60 {
61 return 0;
62 }
63 static inline void destroy_context(struct mm_struct *mm) {}
64 #endif
65
66 static inline void load_mm_ldt(struct mm_struct *mm)
67 {
68 #ifdef CONFIG_MODIFY_LDT_SYSCALL
69 struct ldt_struct *ldt;
70
71 /* lockless_dereference synchronizes with smp_store_release */
72 ldt = lockless_dereference(mm->context.ldt);
73
74 /*
75 * Any change to mm->context.ldt is followed by an IPI to all
76 * CPUs with the mm active. The LDT will not be freed until
77 * after the IPI is handled by all such CPUs. This means that,
78 * if the ldt_struct changes before we return, the values we see
79 * will be safe, and the new values will be loaded before we run
80 * any user code.
81 *
82 * NB: don't try to convert this to use RCU without extreme care.
83 * We would still need IRQs off, because we don't want to change
84 * the local LDT after an IPI loaded a newer value than the one
85 * that we can see.
86 */
87
88 if (unlikely(ldt))
89 set_ldt(ldt->entries, ldt->size);
90 else
91 clear_LDT();
92 #else
93 clear_LDT();
94 #endif
95
96 DEBUG_LOCKS_WARN_ON(preemptible());
97 }
98
99 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
100 {
101 #ifdef CONFIG_SMP
102 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
103 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
104 #endif
105 }
106
107 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
108 struct task_struct *tsk)
109 {
110 unsigned cpu = smp_processor_id();
111
112 if (likely(prev != next)) {
113 #ifdef CONFIG_SMP
114 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
115 this_cpu_write(cpu_tlbstate.active_mm, next);
116 #endif
117 cpumask_set_cpu(cpu, mm_cpumask(next));
118
119 /*
120 * Re-load page tables.
121 *
122 * This logic has an ordering constraint:
123 *
124 * CPU 0: Write to a PTE for 'next'
125 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
126 * CPU 1: set bit 1 in next's mm_cpumask
127 * CPU 1: load from the PTE that CPU 0 writes (implicit)
128 *
129 * We need to prevent an outcome in which CPU 1 observes
130 * the new PTE value and CPU 0 observes bit 1 clear in
131 * mm_cpumask. (If that occurs, then the IPI will never
132 * be sent, and CPU 0's TLB will contain a stale entry.)
133 *
134 * The bad outcome can occur if either CPU's load is
135 * reordered before that CPU's store, so both CPUs must
136 * execute full barriers to prevent this from happening.
137 *
138 * Thus, switch_mm needs a full barrier between the
139 * store to mm_cpumask and any operation that could load
140 * from next->pgd. TLB fills are special and can happen
141 * due to instruction fetches or for no reason at all,
142 * and neither LOCK nor MFENCE orders them.
143 * Fortunately, load_cr3() is serializing and gives the
144 * ordering guarantee we need.
145 *
146 */
147 load_cr3(next->pgd);
148
149 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
150
151 /* Stop flush ipis for the previous mm */
152 cpumask_clear_cpu(cpu, mm_cpumask(prev));
153
154 /* Load per-mm CR4 state */
155 load_mm_cr4(next);
156
157 #ifdef CONFIG_MODIFY_LDT_SYSCALL
158 /*
159 * Load the LDT, if the LDT is different.
160 *
161 * It's possible that prev->context.ldt doesn't match
162 * the LDT register. This can happen if leave_mm(prev)
163 * was called and then modify_ldt changed
164 * prev->context.ldt but suppressed an IPI to this CPU.
165 * In this case, prev->context.ldt != NULL, because we
166 * never set context.ldt to NULL while the mm still
167 * exists. That means that next->context.ldt !=
168 * prev->context.ldt, because mms never share an LDT.
169 */
170 if (unlikely(prev->context.ldt != next->context.ldt))
171 load_mm_ldt(next);
172 #endif
173 }
174 #ifdef CONFIG_SMP
175 else {
176 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
177 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
178
179 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
180 /*
181 * On established mms, the mm_cpumask is only changed
182 * from irq context, from ptep_clear_flush() while in
183 * lazy tlb mode, and here. Irqs are blocked during
184 * schedule, protecting us from simultaneous changes.
185 */
186 cpumask_set_cpu(cpu, mm_cpumask(next));
187
188 /*
189 * We were in lazy tlb mode and leave_mm disabled
190 * tlb flush IPI delivery. We must reload CR3
191 * to make sure to use no freed page tables.
192 *
193 * As above, load_cr3() is serializing and orders TLB
194 * fills with respect to the mm_cpumask write.
195 */
196 load_cr3(next->pgd);
197 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
198 load_mm_cr4(next);
199 load_mm_ldt(next);
200 }
201 }
202 #endif
203 }
204
205 #define activate_mm(prev, next) \
206 do { \
207 paravirt_activate_mm((prev), (next)); \
208 switch_mm((prev), (next), NULL); \
209 } while (0);
210
211 #ifdef CONFIG_X86_32
212 #define deactivate_mm(tsk, mm) \
213 do { \
214 lazy_load_gs(0); \
215 } while (0)
216 #else
217 #define deactivate_mm(tsk, mm) \
218 do { \
219 load_gs_index(0); \
220 loadsegment(fs, 0); \
221 } while (0)
222 #endif
223
224 static inline void arch_dup_mmap(struct mm_struct *oldmm,
225 struct mm_struct *mm)
226 {
227 paravirt_arch_dup_mmap(oldmm, mm);
228 }
229
230 static inline void arch_exit_mmap(struct mm_struct *mm)
231 {
232 paravirt_arch_exit_mmap(mm);
233 }
234
235 #ifdef CONFIG_X86_64
236 static inline bool is_64bit_mm(struct mm_struct *mm)
237 {
238 return !config_enabled(CONFIG_IA32_EMULATION) ||
239 !(mm->context.ia32_compat == TIF_IA32);
240 }
241 #else
242 static inline bool is_64bit_mm(struct mm_struct *mm)
243 {
244 return false;
245 }
246 #endif
247
248 static inline void arch_bprm_mm_init(struct mm_struct *mm,
249 struct vm_area_struct *vma)
250 {
251 mpx_mm_init(mm);
252 }
253
254 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
255 unsigned long start, unsigned long end)
256 {
257 /*
258 * mpx_notify_unmap() goes and reads a rarely-hot
259 * cacheline in the mm_struct. That can be expensive
260 * enough to be seen in profiles.
261 *
262 * The mpx_notify_unmap() call and its contents have been
263 * observed to affect munmap() performance on hardware
264 * where MPX is not present.
265 *
266 * The unlikely() optimizes for the fast case: no MPX
267 * in the CPU, or no MPX use in the process. Even if
268 * we get this wrong (in the unlikely event that MPX
269 * is widely enabled on some system) the overhead of
270 * MPX itself (reading bounds tables) is expected to
271 * overwhelm the overhead of getting this unlikely()
272 * consistently wrong.
273 */
274 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
275 mpx_notify_unmap(mm, vma, start, end);
276 }
277
278 static inline int vma_pkey(struct vm_area_struct *vma)
279 {
280 u16 pkey = 0;
281 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
282 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
283 VM_PKEY_BIT2 | VM_PKEY_BIT3;
284 pkey = (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
285 #endif
286 return pkey;
287 }
288
289 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
290 {
291 u32 pkru = read_pkru();
292
293 if (!__pkru_allows_read(pkru, pkey))
294 return false;
295 if (write && !__pkru_allows_write(pkru, pkey))
296 return false;
297
298 return true;
299 }
300
301 /*
302 * We only want to enforce protection keys on the current process
303 * because we effectively have no access to PKRU for other
304 * processes or any way to tell *which * PKRU in a threaded
305 * process we could use.
306 *
307 * So do not enforce things if the VMA is not from the current
308 * mm, or if we are in a kernel thread.
309 */
310 static inline bool vma_is_foreign(struct vm_area_struct *vma)
311 {
312 if (!current->mm)
313 return true;
314 /*
315 * Should PKRU be enforced on the access to this VMA? If
316 * the VMA is from another process, then PKRU has no
317 * relevance and should not be enforced.
318 */
319 if (current->mm != vma->vm_mm)
320 return true;
321
322 return false;
323 }
324
325 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write)
326 {
327 /* allow access if the VMA is not one from this process */
328 if (vma_is_foreign(vma))
329 return true;
330 return __pkru_allows_pkey(vma_pkey(vma), write);
331 }
332
333 static inline bool arch_pte_access_permitted(pte_t pte, bool write)
334 {
335 return __pkru_allows_pkey(pte_flags_pkey(pte_flags(pte)), write);
336 }
337
338 #endif /* _ASM_X86_MMU_CONTEXT_H */
This page took 0.048841 seconds and 4 git commands to generate.