Merge branches 'acpi-soc', 'acpi-misc', 'acpi-pci' and 'device-properties'
[deliverable/linux.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/cpu.h>
41 #include <asm/mce.h>
42 #include <asm/msr.h>
43 #include <asm/pat.h>
44 #include <asm/microcode.h>
45 #include <asm/microcode_intel.h>
46
47 #ifdef CONFIG_X86_LOCAL_APIC
48 #include <asm/uv/uv.h>
49 #endif
50
51 #include "cpu.h"
52
53 /* all of these masks are initialized in setup_cpu_local_masks() */
54 cpumask_var_t cpu_initialized_mask;
55 cpumask_var_t cpu_callout_mask;
56 cpumask_var_t cpu_callin_mask;
57
58 /* representing cpus for which sibling maps can be computed */
59 cpumask_var_t cpu_sibling_setup_mask;
60
61 /* correctly size the local cpu masks */
62 void __init setup_cpu_local_masks(void)
63 {
64 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65 alloc_bootmem_cpumask_var(&cpu_callin_mask);
66 alloc_bootmem_cpumask_var(&cpu_callout_mask);
67 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68 }
69
70 static void default_init(struct cpuinfo_x86 *c)
71 {
72 #ifdef CONFIG_X86_64
73 cpu_detect_cache_sizes(c);
74 #else
75 /* Not much we can do here... */
76 /* Check if at least it has cpuid */
77 if (c->cpuid_level == -1) {
78 /* No cpuid. It must be an ancient CPU */
79 if (c->x86 == 4)
80 strcpy(c->x86_model_id, "486");
81 else if (c->x86 == 3)
82 strcpy(c->x86_model_id, "386");
83 }
84 #endif
85 }
86
87 static const struct cpu_dev default_cpu = {
88 .c_init = default_init,
89 .c_vendor = "Unknown",
90 .c_x86_vendor = X86_VENDOR_UNKNOWN,
91 };
92
93 static const struct cpu_dev *this_cpu = &default_cpu;
94
95 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96 #ifdef CONFIG_X86_64
97 /*
98 * We need valid kernel segments for data and code in long mode too
99 * IRET will check the segment types kkeil 2000/10/28
100 * Also sysret mandates a special GDT layout
101 *
102 * TLS descriptors are currently at a different place compared to i386.
103 * Hopefully nobody expects them at a fixed place (Wine?)
104 */
105 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111 #else
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116 /*
117 * Segments used for calling PnP BIOS have byte granularity.
118 * They code segments and data segments have fixed 64k limits,
119 * the transfer segment sizes are set at run time.
120 */
121 /* 32-bit code */
122 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123 /* 16-bit code */
124 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125 /* 16-bit data */
126 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127 /* 16-bit data */
128 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
129 /* 16-bit data */
130 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
131 /*
132 * The APM segments have byte granularity and their bases
133 * are set at run time. All have 64k limits.
134 */
135 /* 32-bit code */
136 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137 /* 16-bit code */
138 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139 /* data */
140 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141
142 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 GDT_STACK_CANARY_INIT
145 #endif
146 } };
147 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148
149 static int __init x86_mpx_setup(char *s)
150 {
151 /* require an exact match without trailing characters */
152 if (strlen(s))
153 return 0;
154
155 /* do not emit a message if the feature is not present */
156 if (!boot_cpu_has(X86_FEATURE_MPX))
157 return 1;
158
159 setup_clear_cpu_cap(X86_FEATURE_MPX);
160 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161 return 1;
162 }
163 __setup("nompx", x86_mpx_setup);
164
165 static int __init x86_noinvpcid_setup(char *s)
166 {
167 /* noinvpcid doesn't accept parameters */
168 if (s)
169 return -EINVAL;
170
171 /* do not emit a message if the feature is not present */
172 if (!boot_cpu_has(X86_FEATURE_INVPCID))
173 return 0;
174
175 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
176 pr_info("noinvpcid: INVPCID feature disabled\n");
177 return 0;
178 }
179 early_param("noinvpcid", x86_noinvpcid_setup);
180
181 #ifdef CONFIG_X86_32
182 static int cachesize_override = -1;
183 static int disable_x86_serial_nr = 1;
184
185 static int __init cachesize_setup(char *str)
186 {
187 get_option(&str, &cachesize_override);
188 return 1;
189 }
190 __setup("cachesize=", cachesize_setup);
191
192 static int __init x86_sep_setup(char *s)
193 {
194 setup_clear_cpu_cap(X86_FEATURE_SEP);
195 return 1;
196 }
197 __setup("nosep", x86_sep_setup);
198
199 /* Standard macro to see if a specific flag is changeable */
200 static inline int flag_is_changeable_p(u32 flag)
201 {
202 u32 f1, f2;
203
204 /*
205 * Cyrix and IDT cpus allow disabling of CPUID
206 * so the code below may return different results
207 * when it is executed before and after enabling
208 * the CPUID. Add "volatile" to not allow gcc to
209 * optimize the subsequent calls to this function.
210 */
211 asm volatile ("pushfl \n\t"
212 "pushfl \n\t"
213 "popl %0 \n\t"
214 "movl %0, %1 \n\t"
215 "xorl %2, %0 \n\t"
216 "pushl %0 \n\t"
217 "popfl \n\t"
218 "pushfl \n\t"
219 "popl %0 \n\t"
220 "popfl \n\t"
221
222 : "=&r" (f1), "=&r" (f2)
223 : "ir" (flag));
224
225 return ((f1^f2) & flag) != 0;
226 }
227
228 /* Probe for the CPUID instruction */
229 int have_cpuid_p(void)
230 {
231 return flag_is_changeable_p(X86_EFLAGS_ID);
232 }
233
234 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
235 {
236 unsigned long lo, hi;
237
238 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
239 return;
240
241 /* Disable processor serial number: */
242
243 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
244 lo |= 0x200000;
245 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246
247 pr_notice("CPU serial number disabled.\n");
248 clear_cpu_cap(c, X86_FEATURE_PN);
249
250 /* Disabling the serial number may affect the cpuid level */
251 c->cpuid_level = cpuid_eax(0);
252 }
253
254 static int __init x86_serial_nr_setup(char *s)
255 {
256 disable_x86_serial_nr = 0;
257 return 1;
258 }
259 __setup("serialnumber", x86_serial_nr_setup);
260 #else
261 static inline int flag_is_changeable_p(u32 flag)
262 {
263 return 1;
264 }
265 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
266 {
267 }
268 #endif
269
270 static __init int setup_disable_smep(char *arg)
271 {
272 setup_clear_cpu_cap(X86_FEATURE_SMEP);
273 return 1;
274 }
275 __setup("nosmep", setup_disable_smep);
276
277 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
278 {
279 if (cpu_has(c, X86_FEATURE_SMEP))
280 cr4_set_bits(X86_CR4_SMEP);
281 }
282
283 static __init int setup_disable_smap(char *arg)
284 {
285 setup_clear_cpu_cap(X86_FEATURE_SMAP);
286 return 1;
287 }
288 __setup("nosmap", setup_disable_smap);
289
290 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
291 {
292 unsigned long eflags = native_save_fl();
293
294 /* This should have been cleared long ago */
295 BUG_ON(eflags & X86_EFLAGS_AC);
296
297 if (cpu_has(c, X86_FEATURE_SMAP)) {
298 #ifdef CONFIG_X86_SMAP
299 cr4_set_bits(X86_CR4_SMAP);
300 #else
301 cr4_clear_bits(X86_CR4_SMAP);
302 #endif
303 }
304 }
305
306 /*
307 * Some CPU features depend on higher CPUID levels, which may not always
308 * be available due to CPUID level capping or broken virtualization
309 * software. Add those features to this table to auto-disable them.
310 */
311 struct cpuid_dependent_feature {
312 u32 feature;
313 u32 level;
314 };
315
316 static const struct cpuid_dependent_feature
317 cpuid_dependent_features[] = {
318 { X86_FEATURE_MWAIT, 0x00000005 },
319 { X86_FEATURE_DCA, 0x00000009 },
320 { X86_FEATURE_XSAVE, 0x0000000d },
321 { 0, 0 }
322 };
323
324 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
325 {
326 const struct cpuid_dependent_feature *df;
327
328 for (df = cpuid_dependent_features; df->feature; df++) {
329
330 if (!cpu_has(c, df->feature))
331 continue;
332 /*
333 * Note: cpuid_level is set to -1 if unavailable, but
334 * extended_extended_level is set to 0 if unavailable
335 * and the legitimate extended levels are all negative
336 * when signed; hence the weird messing around with
337 * signs here...
338 */
339 if (!((s32)df->level < 0 ?
340 (u32)df->level > (u32)c->extended_cpuid_level :
341 (s32)df->level > (s32)c->cpuid_level))
342 continue;
343
344 clear_cpu_cap(c, df->feature);
345 if (!warn)
346 continue;
347
348 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
349 x86_cap_flag(df->feature), df->level);
350 }
351 }
352
353 /*
354 * Naming convention should be: <Name> [(<Codename>)]
355 * This table only is used unless init_<vendor>() below doesn't set it;
356 * in particular, if CPUID levels 0x80000002..4 are supported, this
357 * isn't used
358 */
359
360 /* Look up CPU names by table lookup. */
361 static const char *table_lookup_model(struct cpuinfo_x86 *c)
362 {
363 #ifdef CONFIG_X86_32
364 const struct legacy_cpu_model_info *info;
365
366 if (c->x86_model >= 16)
367 return NULL; /* Range check */
368
369 if (!this_cpu)
370 return NULL;
371
372 info = this_cpu->legacy_models;
373
374 while (info->family) {
375 if (info->family == c->x86)
376 return info->model_names[c->x86_model];
377 info++;
378 }
379 #endif
380 return NULL; /* Not found */
381 }
382
383 __u32 cpu_caps_cleared[NCAPINTS];
384 __u32 cpu_caps_set[NCAPINTS];
385
386 void load_percpu_segment(int cpu)
387 {
388 #ifdef CONFIG_X86_32
389 loadsegment(fs, __KERNEL_PERCPU);
390 #else
391 loadsegment(gs, 0);
392 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
393 #endif
394 load_stack_canary_segment();
395 }
396
397 /*
398 * Current gdt points %fs at the "master" per-cpu area: after this,
399 * it's on the real one.
400 */
401 void switch_to_new_gdt(int cpu)
402 {
403 struct desc_ptr gdt_descr;
404
405 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
406 gdt_descr.size = GDT_SIZE - 1;
407 load_gdt(&gdt_descr);
408 /* Reload the per-cpu base */
409
410 load_percpu_segment(cpu);
411 }
412
413 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
414
415 static void get_model_name(struct cpuinfo_x86 *c)
416 {
417 unsigned int *v;
418 char *p, *q, *s;
419
420 if (c->extended_cpuid_level < 0x80000004)
421 return;
422
423 v = (unsigned int *)c->x86_model_id;
424 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
425 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
426 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
427 c->x86_model_id[48] = 0;
428
429 /* Trim whitespace */
430 p = q = s = &c->x86_model_id[0];
431
432 while (*p == ' ')
433 p++;
434
435 while (*p) {
436 /* Note the last non-whitespace index */
437 if (!isspace(*p))
438 s = q;
439
440 *q++ = *p++;
441 }
442
443 *(s + 1) = '\0';
444 }
445
446 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
447 {
448 unsigned int n, dummy, ebx, ecx, edx, l2size;
449
450 n = c->extended_cpuid_level;
451
452 if (n >= 0x80000005) {
453 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
454 c->x86_cache_size = (ecx>>24) + (edx>>24);
455 #ifdef CONFIG_X86_64
456 /* On K8 L1 TLB is inclusive, so don't count it */
457 c->x86_tlbsize = 0;
458 #endif
459 }
460
461 if (n < 0x80000006) /* Some chips just has a large L1. */
462 return;
463
464 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
465 l2size = ecx >> 16;
466
467 #ifdef CONFIG_X86_64
468 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
469 #else
470 /* do processor-specific cache resizing */
471 if (this_cpu->legacy_cache_size)
472 l2size = this_cpu->legacy_cache_size(c, l2size);
473
474 /* Allow user to override all this if necessary. */
475 if (cachesize_override != -1)
476 l2size = cachesize_override;
477
478 if (l2size == 0)
479 return; /* Again, no L2 cache is possible */
480 #endif
481
482 c->x86_cache_size = l2size;
483 }
484
485 u16 __read_mostly tlb_lli_4k[NR_INFO];
486 u16 __read_mostly tlb_lli_2m[NR_INFO];
487 u16 __read_mostly tlb_lli_4m[NR_INFO];
488 u16 __read_mostly tlb_lld_4k[NR_INFO];
489 u16 __read_mostly tlb_lld_2m[NR_INFO];
490 u16 __read_mostly tlb_lld_4m[NR_INFO];
491 u16 __read_mostly tlb_lld_1g[NR_INFO];
492
493 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
494 {
495 if (this_cpu->c_detect_tlb)
496 this_cpu->c_detect_tlb(c);
497
498 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
499 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
500 tlb_lli_4m[ENTRIES]);
501
502 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
503 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
504 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
505 }
506
507 void detect_ht(struct cpuinfo_x86 *c)
508 {
509 #ifdef CONFIG_SMP
510 u32 eax, ebx, ecx, edx;
511 int index_msb, core_bits;
512 static bool printed;
513
514 if (!cpu_has(c, X86_FEATURE_HT))
515 return;
516
517 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
518 goto out;
519
520 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
521 return;
522
523 cpuid(1, &eax, &ebx, &ecx, &edx);
524
525 smp_num_siblings = (ebx & 0xff0000) >> 16;
526
527 if (smp_num_siblings == 1) {
528 pr_info_once("CPU0: Hyper-Threading is disabled\n");
529 goto out;
530 }
531
532 if (smp_num_siblings <= 1)
533 goto out;
534
535 index_msb = get_count_order(smp_num_siblings);
536 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
537
538 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
539
540 index_msb = get_count_order(smp_num_siblings);
541
542 core_bits = get_count_order(c->x86_max_cores);
543
544 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
545 ((1 << core_bits) - 1);
546
547 out:
548 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
549 pr_info("CPU: Physical Processor ID: %d\n",
550 c->phys_proc_id);
551 pr_info("CPU: Processor Core ID: %d\n",
552 c->cpu_core_id);
553 printed = 1;
554 }
555 #endif
556 }
557
558 static void get_cpu_vendor(struct cpuinfo_x86 *c)
559 {
560 char *v = c->x86_vendor_id;
561 int i;
562
563 for (i = 0; i < X86_VENDOR_NUM; i++) {
564 if (!cpu_devs[i])
565 break;
566
567 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
568 (cpu_devs[i]->c_ident[1] &&
569 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
570
571 this_cpu = cpu_devs[i];
572 c->x86_vendor = this_cpu->c_x86_vendor;
573 return;
574 }
575 }
576
577 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
578 "CPU: Your system may be unstable.\n", v);
579
580 c->x86_vendor = X86_VENDOR_UNKNOWN;
581 this_cpu = &default_cpu;
582 }
583
584 void cpu_detect(struct cpuinfo_x86 *c)
585 {
586 /* Get vendor name */
587 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
588 (unsigned int *)&c->x86_vendor_id[0],
589 (unsigned int *)&c->x86_vendor_id[8],
590 (unsigned int *)&c->x86_vendor_id[4]);
591
592 c->x86 = 4;
593 /* Intel-defined flags: level 0x00000001 */
594 if (c->cpuid_level >= 0x00000001) {
595 u32 junk, tfms, cap0, misc;
596
597 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
598 c->x86 = x86_family(tfms);
599 c->x86_model = x86_model(tfms);
600 c->x86_mask = x86_stepping(tfms);
601
602 if (cap0 & (1<<19)) {
603 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
604 c->x86_cache_alignment = c->x86_clflush_size;
605 }
606 }
607 }
608
609 void get_cpu_cap(struct cpuinfo_x86 *c)
610 {
611 u32 eax, ebx, ecx, edx;
612
613 /* Intel-defined flags: level 0x00000001 */
614 if (c->cpuid_level >= 0x00000001) {
615 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
616
617 c->x86_capability[CPUID_1_ECX] = ecx;
618 c->x86_capability[CPUID_1_EDX] = edx;
619 }
620
621 /* Additional Intel-defined flags: level 0x00000007 */
622 if (c->cpuid_level >= 0x00000007) {
623 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
624
625 c->x86_capability[CPUID_7_0_EBX] = ebx;
626
627 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
628 }
629
630 /* Extended state features: level 0x0000000d */
631 if (c->cpuid_level >= 0x0000000d) {
632 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
633
634 c->x86_capability[CPUID_D_1_EAX] = eax;
635 }
636
637 /* Additional Intel-defined flags: level 0x0000000F */
638 if (c->cpuid_level >= 0x0000000F) {
639
640 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
641 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
642 c->x86_capability[CPUID_F_0_EDX] = edx;
643
644 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
645 /* will be overridden if occupancy monitoring exists */
646 c->x86_cache_max_rmid = ebx;
647
648 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
649 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
650 c->x86_capability[CPUID_F_1_EDX] = edx;
651
652 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
653 c->x86_cache_max_rmid = ecx;
654 c->x86_cache_occ_scale = ebx;
655 }
656 } else {
657 c->x86_cache_max_rmid = -1;
658 c->x86_cache_occ_scale = -1;
659 }
660 }
661
662 /* AMD-defined flags: level 0x80000001 */
663 eax = cpuid_eax(0x80000000);
664 c->extended_cpuid_level = eax;
665
666 if ((eax & 0xffff0000) == 0x80000000) {
667 if (eax >= 0x80000001) {
668 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
669
670 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
671 c->x86_capability[CPUID_8000_0001_EDX] = edx;
672 }
673 }
674
675 if (c->extended_cpuid_level >= 0x80000008) {
676 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
677
678 c->x86_virt_bits = (eax >> 8) & 0xff;
679 c->x86_phys_bits = eax & 0xff;
680 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
681 }
682 #ifdef CONFIG_X86_32
683 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
684 c->x86_phys_bits = 36;
685 #endif
686
687 if (c->extended_cpuid_level >= 0x80000007)
688 c->x86_power = cpuid_edx(0x80000007);
689
690 if (c->extended_cpuid_level >= 0x8000000a)
691 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
692
693 init_scattered_cpuid_features(c);
694 }
695
696 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
697 {
698 #ifdef CONFIG_X86_32
699 int i;
700
701 /*
702 * First of all, decide if this is a 486 or higher
703 * It's a 486 if we can modify the AC flag
704 */
705 if (flag_is_changeable_p(X86_EFLAGS_AC))
706 c->x86 = 4;
707 else
708 c->x86 = 3;
709
710 for (i = 0; i < X86_VENDOR_NUM; i++)
711 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
712 c->x86_vendor_id[0] = 0;
713 cpu_devs[i]->c_identify(c);
714 if (c->x86_vendor_id[0]) {
715 get_cpu_vendor(c);
716 break;
717 }
718 }
719 #endif
720 }
721
722 /*
723 * Do minimum CPU detection early.
724 * Fields really needed: vendor, cpuid_level, family, model, mask,
725 * cache alignment.
726 * The others are not touched to avoid unwanted side effects.
727 *
728 * WARNING: this function is only called on the BP. Don't add code here
729 * that is supposed to run on all CPUs.
730 */
731 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
732 {
733 #ifdef CONFIG_X86_64
734 c->x86_clflush_size = 64;
735 c->x86_phys_bits = 36;
736 c->x86_virt_bits = 48;
737 #else
738 c->x86_clflush_size = 32;
739 c->x86_phys_bits = 32;
740 c->x86_virt_bits = 32;
741 #endif
742 c->x86_cache_alignment = c->x86_clflush_size;
743
744 memset(&c->x86_capability, 0, sizeof c->x86_capability);
745 c->extended_cpuid_level = 0;
746
747 if (!have_cpuid_p())
748 identify_cpu_without_cpuid(c);
749
750 /* cyrix could have cpuid enabled via c_identify()*/
751 if (!have_cpuid_p())
752 return;
753
754 cpu_detect(c);
755 get_cpu_vendor(c);
756 get_cpu_cap(c);
757
758 if (this_cpu->c_early_init)
759 this_cpu->c_early_init(c);
760
761 c->cpu_index = 0;
762 filter_cpuid_features(c, false);
763
764 if (this_cpu->c_bsp_init)
765 this_cpu->c_bsp_init(c);
766
767 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
768 fpu__init_system(c);
769 }
770
771 void __init early_cpu_init(void)
772 {
773 const struct cpu_dev *const *cdev;
774 int count = 0;
775
776 #ifdef CONFIG_PROCESSOR_SELECT
777 pr_info("KERNEL supported cpus:\n");
778 #endif
779
780 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
781 const struct cpu_dev *cpudev = *cdev;
782
783 if (count >= X86_VENDOR_NUM)
784 break;
785 cpu_devs[count] = cpudev;
786 count++;
787
788 #ifdef CONFIG_PROCESSOR_SELECT
789 {
790 unsigned int j;
791
792 for (j = 0; j < 2; j++) {
793 if (!cpudev->c_ident[j])
794 continue;
795 pr_info(" %s %s\n", cpudev->c_vendor,
796 cpudev->c_ident[j]);
797 }
798 }
799 #endif
800 }
801 early_identify_cpu(&boot_cpu_data);
802 }
803
804 /*
805 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
806 * unfortunately, that's not true in practice because of early VIA
807 * chips and (more importantly) broken virtualizers that are not easy
808 * to detect. In the latter case it doesn't even *fail* reliably, so
809 * probing for it doesn't even work. Disable it completely on 32-bit
810 * unless we can find a reliable way to detect all the broken cases.
811 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
812 */
813 static void detect_nopl(struct cpuinfo_x86 *c)
814 {
815 #ifdef CONFIG_X86_32
816 clear_cpu_cap(c, X86_FEATURE_NOPL);
817 #else
818 set_cpu_cap(c, X86_FEATURE_NOPL);
819 #endif
820
821 /*
822 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
823 * systems that run Linux at CPL > 0 may or may not have the
824 * issue, but, even if they have the issue, there's absolutely
825 * nothing we can do about it because we can't use the real IRET
826 * instruction.
827 *
828 * NB: For the time being, only 32-bit kernels support
829 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
830 * whether to apply espfix using paravirt hooks. If any
831 * non-paravirt system ever shows up that does *not* have the
832 * ESPFIX issue, we can change this.
833 */
834 #ifdef CONFIG_X86_32
835 #ifdef CONFIG_PARAVIRT
836 do {
837 extern void native_iret(void);
838 if (pv_cpu_ops.iret == native_iret)
839 set_cpu_bug(c, X86_BUG_ESPFIX);
840 } while (0);
841 #else
842 set_cpu_bug(c, X86_BUG_ESPFIX);
843 #endif
844 #endif
845 }
846
847 static void generic_identify(struct cpuinfo_x86 *c)
848 {
849 c->extended_cpuid_level = 0;
850
851 if (!have_cpuid_p())
852 identify_cpu_without_cpuid(c);
853
854 /* cyrix could have cpuid enabled via c_identify()*/
855 if (!have_cpuid_p())
856 return;
857
858 cpu_detect(c);
859
860 get_cpu_vendor(c);
861
862 get_cpu_cap(c);
863
864 if (c->cpuid_level >= 0x00000001) {
865 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
866 #ifdef CONFIG_X86_32
867 # ifdef CONFIG_SMP
868 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
869 # else
870 c->apicid = c->initial_apicid;
871 # endif
872 #endif
873 c->phys_proc_id = c->initial_apicid;
874 }
875
876 get_model_name(c); /* Default name */
877
878 detect_nopl(c);
879 }
880
881 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
882 {
883 /*
884 * The heavy lifting of max_rmid and cache_occ_scale are handled
885 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
886 * in case CQM bits really aren't there in this CPU.
887 */
888 if (c != &boot_cpu_data) {
889 boot_cpu_data.x86_cache_max_rmid =
890 min(boot_cpu_data.x86_cache_max_rmid,
891 c->x86_cache_max_rmid);
892 }
893 }
894
895 /*
896 * This does the hard work of actually picking apart the CPU stuff...
897 */
898 static void identify_cpu(struct cpuinfo_x86 *c)
899 {
900 int i;
901
902 c->loops_per_jiffy = loops_per_jiffy;
903 c->x86_cache_size = -1;
904 c->x86_vendor = X86_VENDOR_UNKNOWN;
905 c->x86_model = c->x86_mask = 0; /* So far unknown... */
906 c->x86_vendor_id[0] = '\0'; /* Unset */
907 c->x86_model_id[0] = '\0'; /* Unset */
908 c->x86_max_cores = 1;
909 c->x86_coreid_bits = 0;
910 #ifdef CONFIG_X86_64
911 c->x86_clflush_size = 64;
912 c->x86_phys_bits = 36;
913 c->x86_virt_bits = 48;
914 #else
915 c->cpuid_level = -1; /* CPUID not detected */
916 c->x86_clflush_size = 32;
917 c->x86_phys_bits = 32;
918 c->x86_virt_bits = 32;
919 #endif
920 c->x86_cache_alignment = c->x86_clflush_size;
921 memset(&c->x86_capability, 0, sizeof c->x86_capability);
922
923 generic_identify(c);
924
925 if (this_cpu->c_identify)
926 this_cpu->c_identify(c);
927
928 /* Clear/Set all flags overriden by options, after probe */
929 for (i = 0; i < NCAPINTS; i++) {
930 c->x86_capability[i] &= ~cpu_caps_cleared[i];
931 c->x86_capability[i] |= cpu_caps_set[i];
932 }
933
934 #ifdef CONFIG_X86_64
935 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
936 #endif
937
938 /*
939 * Vendor-specific initialization. In this section we
940 * canonicalize the feature flags, meaning if there are
941 * features a certain CPU supports which CPUID doesn't
942 * tell us, CPUID claiming incorrect flags, or other bugs,
943 * we handle them here.
944 *
945 * At the end of this section, c->x86_capability better
946 * indicate the features this CPU genuinely supports!
947 */
948 if (this_cpu->c_init)
949 this_cpu->c_init(c);
950
951 /* Disable the PN if appropriate */
952 squash_the_stupid_serial_number(c);
953
954 /* Set up SMEP/SMAP */
955 setup_smep(c);
956 setup_smap(c);
957
958 /*
959 * The vendor-specific functions might have changed features.
960 * Now we do "generic changes."
961 */
962
963 /* Filter out anything that depends on CPUID levels we don't have */
964 filter_cpuid_features(c, true);
965
966 /* If the model name is still unset, do table lookup. */
967 if (!c->x86_model_id[0]) {
968 const char *p;
969 p = table_lookup_model(c);
970 if (p)
971 strcpy(c->x86_model_id, p);
972 else
973 /* Last resort... */
974 sprintf(c->x86_model_id, "%02x/%02x",
975 c->x86, c->x86_model);
976 }
977
978 #ifdef CONFIG_X86_64
979 detect_ht(c);
980 #endif
981
982 init_hypervisor(c);
983 x86_init_rdrand(c);
984 x86_init_cache_qos(c);
985
986 /*
987 * Clear/Set all flags overriden by options, need do it
988 * before following smp all cpus cap AND.
989 */
990 for (i = 0; i < NCAPINTS; i++) {
991 c->x86_capability[i] &= ~cpu_caps_cleared[i];
992 c->x86_capability[i] |= cpu_caps_set[i];
993 }
994
995 /*
996 * On SMP, boot_cpu_data holds the common feature set between
997 * all CPUs; so make sure that we indicate which features are
998 * common between the CPUs. The first time this routine gets
999 * executed, c == &boot_cpu_data.
1000 */
1001 if (c != &boot_cpu_data) {
1002 /* AND the already accumulated flags with these */
1003 for (i = 0; i < NCAPINTS; i++)
1004 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1005
1006 /* OR, i.e. replicate the bug flags */
1007 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1008 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1009 }
1010
1011 /* Init Machine Check Exception if available. */
1012 mcheck_cpu_init(c);
1013
1014 select_idle_routine(c);
1015
1016 #ifdef CONFIG_NUMA
1017 numa_add_cpu(smp_processor_id());
1018 #endif
1019 /* The boot/hotplug time assigment got cleared, restore it */
1020 c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
1021 }
1022
1023 /*
1024 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1025 * on 32-bit kernels:
1026 */
1027 #ifdef CONFIG_X86_32
1028 void enable_sep_cpu(void)
1029 {
1030 struct tss_struct *tss;
1031 int cpu;
1032
1033 cpu = get_cpu();
1034 tss = &per_cpu(cpu_tss, cpu);
1035
1036 if (!boot_cpu_has(X86_FEATURE_SEP))
1037 goto out;
1038
1039 /*
1040 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1041 * see the big comment in struct x86_hw_tss's definition.
1042 */
1043
1044 tss->x86_tss.ss1 = __KERNEL_CS;
1045 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1046
1047 wrmsr(MSR_IA32_SYSENTER_ESP,
1048 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1049 0);
1050
1051 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1052
1053 out:
1054 put_cpu();
1055 }
1056 #endif
1057
1058 void __init identify_boot_cpu(void)
1059 {
1060 identify_cpu(&boot_cpu_data);
1061 init_amd_e400_c1e_mask();
1062 #ifdef CONFIG_X86_32
1063 sysenter_setup();
1064 enable_sep_cpu();
1065 #endif
1066 cpu_detect_tlb(&boot_cpu_data);
1067 }
1068
1069 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1070 {
1071 BUG_ON(c == &boot_cpu_data);
1072 identify_cpu(c);
1073 #ifdef CONFIG_X86_32
1074 enable_sep_cpu();
1075 #endif
1076 mtrr_ap_init();
1077 }
1078
1079 struct msr_range {
1080 unsigned min;
1081 unsigned max;
1082 };
1083
1084 static const struct msr_range msr_range_array[] = {
1085 { 0x00000000, 0x00000418},
1086 { 0xc0000000, 0xc000040b},
1087 { 0xc0010000, 0xc0010142},
1088 { 0xc0011000, 0xc001103b},
1089 };
1090
1091 static void __print_cpu_msr(void)
1092 {
1093 unsigned index_min, index_max;
1094 unsigned index;
1095 u64 val;
1096 int i;
1097
1098 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1099 index_min = msr_range_array[i].min;
1100 index_max = msr_range_array[i].max;
1101
1102 for (index = index_min; index < index_max; index++) {
1103 if (rdmsrl_safe(index, &val))
1104 continue;
1105 pr_info(" MSR%08x: %016llx\n", index, val);
1106 }
1107 }
1108 }
1109
1110 static int show_msr;
1111
1112 static __init int setup_show_msr(char *arg)
1113 {
1114 int num;
1115
1116 get_option(&arg, &num);
1117
1118 if (num > 0)
1119 show_msr = num;
1120 return 1;
1121 }
1122 __setup("show_msr=", setup_show_msr);
1123
1124 static __init int setup_noclflush(char *arg)
1125 {
1126 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1127 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1128 return 1;
1129 }
1130 __setup("noclflush", setup_noclflush);
1131
1132 void print_cpu_info(struct cpuinfo_x86 *c)
1133 {
1134 const char *vendor = NULL;
1135
1136 if (c->x86_vendor < X86_VENDOR_NUM) {
1137 vendor = this_cpu->c_vendor;
1138 } else {
1139 if (c->cpuid_level >= 0)
1140 vendor = c->x86_vendor_id;
1141 }
1142
1143 if (vendor && !strstr(c->x86_model_id, vendor))
1144 pr_cont("%s ", vendor);
1145
1146 if (c->x86_model_id[0])
1147 pr_cont("%s", c->x86_model_id);
1148 else
1149 pr_cont("%d86", c->x86);
1150
1151 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1152
1153 if (c->x86_mask || c->cpuid_level >= 0)
1154 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1155 else
1156 pr_cont(")\n");
1157
1158 print_cpu_msr(c);
1159 }
1160
1161 void print_cpu_msr(struct cpuinfo_x86 *c)
1162 {
1163 if (c->cpu_index < show_msr)
1164 __print_cpu_msr();
1165 }
1166
1167 static __init int setup_disablecpuid(char *arg)
1168 {
1169 int bit;
1170
1171 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1172 setup_clear_cpu_cap(bit);
1173 else
1174 return 0;
1175
1176 return 1;
1177 }
1178 __setup("clearcpuid=", setup_disablecpuid);
1179
1180 #ifdef CONFIG_X86_64
1181 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1182 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1183 (unsigned long) debug_idt_table };
1184
1185 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1186 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1187
1188 /*
1189 * The following percpu variables are hot. Align current_task to
1190 * cacheline size such that they fall in the same cacheline.
1191 */
1192 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1193 &init_task;
1194 EXPORT_PER_CPU_SYMBOL(current_task);
1195
1196 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1197 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1198
1199 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1200
1201 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1202 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1203
1204 /*
1205 * Special IST stacks which the CPU switches to when it calls
1206 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1207 * limit), all of them are 4K, except the debug stack which
1208 * is 8K.
1209 */
1210 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1211 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1212 [DEBUG_STACK - 1] = DEBUG_STKSZ
1213 };
1214
1215 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1216 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1217
1218 /* May not be marked __init: used by software suspend */
1219 void syscall_init(void)
1220 {
1221 /*
1222 * LSTAR and STAR live in a bit strange symbiosis.
1223 * They both write to the same internal register. STAR allows to
1224 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1225 */
1226 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1227 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1228
1229 #ifdef CONFIG_IA32_EMULATION
1230 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1231 /*
1232 * This only works on Intel CPUs.
1233 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1234 * This does not cause SYSENTER to jump to the wrong location, because
1235 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1236 */
1237 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1238 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1239 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1240 #else
1241 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1242 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1243 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1244 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1245 #endif
1246
1247 /* Flags to clear on syscall */
1248 wrmsrl(MSR_SYSCALL_MASK,
1249 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1250 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1251 }
1252
1253 /*
1254 * Copies of the original ist values from the tss are only accessed during
1255 * debugging, no special alignment required.
1256 */
1257 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1258
1259 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1260 DEFINE_PER_CPU(int, debug_stack_usage);
1261
1262 int is_debug_stack(unsigned long addr)
1263 {
1264 return __this_cpu_read(debug_stack_usage) ||
1265 (addr <= __this_cpu_read(debug_stack_addr) &&
1266 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1267 }
1268 NOKPROBE_SYMBOL(is_debug_stack);
1269
1270 DEFINE_PER_CPU(u32, debug_idt_ctr);
1271
1272 void debug_stack_set_zero(void)
1273 {
1274 this_cpu_inc(debug_idt_ctr);
1275 load_current_idt();
1276 }
1277 NOKPROBE_SYMBOL(debug_stack_set_zero);
1278
1279 void debug_stack_reset(void)
1280 {
1281 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1282 return;
1283 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1284 load_current_idt();
1285 }
1286 NOKPROBE_SYMBOL(debug_stack_reset);
1287
1288 #else /* CONFIG_X86_64 */
1289
1290 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1291 EXPORT_PER_CPU_SYMBOL(current_task);
1292 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1293 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1294
1295 /*
1296 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1297 * the top of the kernel stack. Use an extra percpu variable to track the
1298 * top of the kernel stack directly.
1299 */
1300 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1301 (unsigned long)&init_thread_union + THREAD_SIZE;
1302 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1303
1304 #ifdef CONFIG_CC_STACKPROTECTOR
1305 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1306 #endif
1307
1308 #endif /* CONFIG_X86_64 */
1309
1310 /*
1311 * Clear all 6 debug registers:
1312 */
1313 static void clear_all_debug_regs(void)
1314 {
1315 int i;
1316
1317 for (i = 0; i < 8; i++) {
1318 /* Ignore db4, db5 */
1319 if ((i == 4) || (i == 5))
1320 continue;
1321
1322 set_debugreg(0, i);
1323 }
1324 }
1325
1326 #ifdef CONFIG_KGDB
1327 /*
1328 * Restore debug regs if using kgdbwait and you have a kernel debugger
1329 * connection established.
1330 */
1331 static void dbg_restore_debug_regs(void)
1332 {
1333 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1334 arch_kgdb_ops.correct_hw_break();
1335 }
1336 #else /* ! CONFIG_KGDB */
1337 #define dbg_restore_debug_regs()
1338 #endif /* ! CONFIG_KGDB */
1339
1340 static void wait_for_master_cpu(int cpu)
1341 {
1342 #ifdef CONFIG_SMP
1343 /*
1344 * wait for ACK from master CPU before continuing
1345 * with AP initialization
1346 */
1347 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1348 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1349 cpu_relax();
1350 #endif
1351 }
1352
1353 /*
1354 * cpu_init() initializes state that is per-CPU. Some data is already
1355 * initialized (naturally) in the bootstrap process, such as the GDT
1356 * and IDT. We reload them nevertheless, this function acts as a
1357 * 'CPU state barrier', nothing should get across.
1358 * A lot of state is already set up in PDA init for 64 bit
1359 */
1360 #ifdef CONFIG_X86_64
1361
1362 void cpu_init(void)
1363 {
1364 struct orig_ist *oist;
1365 struct task_struct *me;
1366 struct tss_struct *t;
1367 unsigned long v;
1368 int cpu = stack_smp_processor_id();
1369 int i;
1370
1371 wait_for_master_cpu(cpu);
1372
1373 /*
1374 * Initialize the CR4 shadow before doing anything that could
1375 * try to read it.
1376 */
1377 cr4_init_shadow();
1378
1379 /*
1380 * Load microcode on this cpu if a valid microcode is available.
1381 * This is early microcode loading procedure.
1382 */
1383 load_ucode_ap();
1384
1385 t = &per_cpu(cpu_tss, cpu);
1386 oist = &per_cpu(orig_ist, cpu);
1387
1388 #ifdef CONFIG_NUMA
1389 if (this_cpu_read(numa_node) == 0 &&
1390 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1391 set_numa_node(early_cpu_to_node(cpu));
1392 #endif
1393
1394 me = current;
1395
1396 pr_debug("Initializing CPU#%d\n", cpu);
1397
1398 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1399
1400 /*
1401 * Initialize the per-CPU GDT with the boot GDT,
1402 * and set up the GDT descriptor:
1403 */
1404
1405 switch_to_new_gdt(cpu);
1406 loadsegment(fs, 0);
1407
1408 load_current_idt();
1409
1410 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1411 syscall_init();
1412
1413 wrmsrl(MSR_FS_BASE, 0);
1414 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1415 barrier();
1416
1417 x86_configure_nx();
1418 x2apic_setup();
1419
1420 /*
1421 * set up and load the per-CPU TSS
1422 */
1423 if (!oist->ist[0]) {
1424 char *estacks = per_cpu(exception_stacks, cpu);
1425
1426 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1427 estacks += exception_stack_sizes[v];
1428 oist->ist[v] = t->x86_tss.ist[v] =
1429 (unsigned long)estacks;
1430 if (v == DEBUG_STACK-1)
1431 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1432 }
1433 }
1434
1435 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1436
1437 /*
1438 * <= is required because the CPU will access up to
1439 * 8 bits beyond the end of the IO permission bitmap.
1440 */
1441 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1442 t->io_bitmap[i] = ~0UL;
1443
1444 atomic_inc(&init_mm.mm_count);
1445 me->active_mm = &init_mm;
1446 BUG_ON(me->mm);
1447 enter_lazy_tlb(&init_mm, me);
1448
1449 load_sp0(t, &current->thread);
1450 set_tss_desc(cpu, t);
1451 load_TR_desc();
1452 load_mm_ldt(&init_mm);
1453
1454 clear_all_debug_regs();
1455 dbg_restore_debug_regs();
1456
1457 fpu__init_cpu();
1458
1459 if (is_uv_system())
1460 uv_cpu_init();
1461 }
1462
1463 #else
1464
1465 void cpu_init(void)
1466 {
1467 int cpu = smp_processor_id();
1468 struct task_struct *curr = current;
1469 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1470 struct thread_struct *thread = &curr->thread;
1471
1472 wait_for_master_cpu(cpu);
1473
1474 /*
1475 * Initialize the CR4 shadow before doing anything that could
1476 * try to read it.
1477 */
1478 cr4_init_shadow();
1479
1480 show_ucode_info_early();
1481
1482 pr_info("Initializing CPU#%d\n", cpu);
1483
1484 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1485 cpu_has_tsc ||
1486 boot_cpu_has(X86_FEATURE_DE))
1487 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1488
1489 load_current_idt();
1490 switch_to_new_gdt(cpu);
1491
1492 /*
1493 * Set up and load the per-CPU TSS and LDT
1494 */
1495 atomic_inc(&init_mm.mm_count);
1496 curr->active_mm = &init_mm;
1497 BUG_ON(curr->mm);
1498 enter_lazy_tlb(&init_mm, curr);
1499
1500 load_sp0(t, thread);
1501 set_tss_desc(cpu, t);
1502 load_TR_desc();
1503 load_mm_ldt(&init_mm);
1504
1505 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1506
1507 #ifdef CONFIG_DOUBLEFAULT
1508 /* Set up doublefault TSS pointer in the GDT */
1509 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1510 #endif
1511
1512 clear_all_debug_regs();
1513 dbg_restore_debug_regs();
1514
1515 fpu__init_cpu();
1516 }
1517 #endif
1518
1519 static void bsp_resume(void)
1520 {
1521 if (this_cpu->c_bsp_resume)
1522 this_cpu->c_bsp_resume(&boot_cpu_data);
1523 }
1524
1525 static struct syscore_ops cpu_syscore_ops = {
1526 .resume = bsp_resume,
1527 };
1528
1529 static int __init init_cpu_syscore(void)
1530 {
1531 register_syscore_ops(&cpu_syscore_ops);
1532 return 0;
1533 }
1534 core_initcall(init_cpu_syscore);
This page took 0.062502 seconds and 5 git commands to generate.