ACPI / util: cast data to u64 before shifting to fix sign extension
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
62 * Returns the delta events processed.
63 */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 struct hw_perf_event *hwc = &event->hw;
67 int shift = 64 - x86_pmu.cntval_bits;
68 u64 prev_raw_count, new_raw_count;
69 int idx = hwc->idx;
70 s64 delta;
71
72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 return 0;
74
75 /*
76 * Careful: an NMI might modify the previous event value.
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
80 * count to the generic event atomically:
81 */
82 again:
83 prev_raw_count = local64_read(&hwc->prev_count);
84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
93 * (event-)time and add that to the generic event.
94 *
95 * Careful, not all hw sign-extends above the physical width
96 * of the count.
97 */
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
100
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
103
104 return new_raw_count;
105 }
106
107 /*
108 * Find and validate any extra registers to set up.
109 */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 struct hw_perf_event_extra *reg;
113 struct extra_reg *er;
114
115 reg = &event->hw.extra_reg;
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
132 break;
133 }
134 return 0;
135 }
136
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140
141 #ifdef CONFIG_X86_LOCAL_APIC
142
143 static bool reserve_pmc_hardware(void)
144 {
145 int i;
146
147 for (i = 0; i < x86_pmu.num_counters; i++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 goto perfctr_fail;
150 }
151
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 goto eventsel_fail;
155 }
156
157 return true;
158
159 eventsel_fail:
160 for (i--; i >= 0; i--)
161 release_evntsel_nmi(x86_pmu_config_addr(i));
162
163 i = x86_pmu.num_counters;
164
165 perfctr_fail:
166 for (i--; i >= 0; i--)
167 release_perfctr_nmi(x86_pmu_event_addr(i));
168
169 return false;
170 }
171
172 static void release_pmc_hardware(void)
173 {
174 int i;
175
176 for (i = 0; i < x86_pmu.num_counters; i++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
179 }
180 }
181
182 #else
183
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186
187 #endif
188
189 static bool check_hw_exists(void)
190 {
191 u64 val, val_fail, val_new= ~0;
192 int i, reg, reg_fail, ret = 0;
193 int bios_fail = 0;
194 int reg_safe = -1;
195
196 /*
197 * Check to see if the BIOS enabled any of the counters, if so
198 * complain and bail.
199 */
200 for (i = 0; i < x86_pmu.num_counters; i++) {
201 reg = x86_pmu_config_addr(i);
202 ret = rdmsrl_safe(reg, &val);
203 if (ret)
204 goto msr_fail;
205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 bios_fail = 1;
207 val_fail = val;
208 reg_fail = reg;
209 } else {
210 reg_safe = i;
211 }
212 }
213
214 if (x86_pmu.num_counters_fixed) {
215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 ret = rdmsrl_safe(reg, &val);
217 if (ret)
218 goto msr_fail;
219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 if (val & (0x03 << i*4)) {
221 bios_fail = 1;
222 val_fail = val;
223 reg_fail = reg;
224 }
225 }
226 }
227
228 /*
229 * If all the counters are enabled, the below test will always
230 * fail. The tools will also become useless in this scenario.
231 * Just fail and disable the hardware counters.
232 */
233
234 if (reg_safe == -1) {
235 reg = reg_safe;
236 goto msr_fail;
237 }
238
239 /*
240 * Read the current value, change it and read it back to see if it
241 * matches, this is needed to detect certain hardware emulators
242 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 */
244 reg = x86_pmu_event_addr(reg_safe);
245 if (rdmsrl_safe(reg, &val))
246 goto msr_fail;
247 val ^= 0xffffUL;
248 ret = wrmsrl_safe(reg, val);
249 ret |= rdmsrl_safe(reg, &val_new);
250 if (ret || val != val_new)
251 goto msr_fail;
252
253 /*
254 * We still allow the PMU driver to operate:
255 */
256 if (bios_fail) {
257 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
258 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
259 }
260
261 return true;
262
263 msr_fail:
264 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
265 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
266 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
267 reg, val_new);
268
269 return false;
270 }
271
272 static void hw_perf_event_destroy(struct perf_event *event)
273 {
274 x86_release_hardware();
275 atomic_dec(&active_events);
276 }
277
278 void hw_perf_lbr_event_destroy(struct perf_event *event)
279 {
280 hw_perf_event_destroy(event);
281
282 /* undo the lbr/bts event accounting */
283 x86_del_exclusive(x86_lbr_exclusive_lbr);
284 }
285
286 static inline int x86_pmu_initialized(void)
287 {
288 return x86_pmu.handle_irq != NULL;
289 }
290
291 static inline int
292 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
293 {
294 struct perf_event_attr *attr = &event->attr;
295 unsigned int cache_type, cache_op, cache_result;
296 u64 config, val;
297
298 config = attr->config;
299
300 cache_type = (config >> 0) & 0xff;
301 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
302 return -EINVAL;
303
304 cache_op = (config >> 8) & 0xff;
305 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
306 return -EINVAL;
307
308 cache_result = (config >> 16) & 0xff;
309 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
310 return -EINVAL;
311
312 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
313
314 if (val == 0)
315 return -ENOENT;
316
317 if (val == -1)
318 return -EINVAL;
319
320 hwc->config |= val;
321 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
322 return x86_pmu_extra_regs(val, event);
323 }
324
325 int x86_reserve_hardware(void)
326 {
327 int err = 0;
328
329 if (!atomic_inc_not_zero(&pmc_refcount)) {
330 mutex_lock(&pmc_reserve_mutex);
331 if (atomic_read(&pmc_refcount) == 0) {
332 if (!reserve_pmc_hardware())
333 err = -EBUSY;
334 else
335 reserve_ds_buffers();
336 }
337 if (!err)
338 atomic_inc(&pmc_refcount);
339 mutex_unlock(&pmc_reserve_mutex);
340 }
341
342 return err;
343 }
344
345 void x86_release_hardware(void)
346 {
347 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
348 release_pmc_hardware();
349 release_ds_buffers();
350 mutex_unlock(&pmc_reserve_mutex);
351 }
352 }
353
354 /*
355 * Check if we can create event of a certain type (that no conflicting events
356 * are present).
357 */
358 int x86_add_exclusive(unsigned int what)
359 {
360 int i;
361
362 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
363 mutex_lock(&pmc_reserve_mutex);
364 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
365 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
366 goto fail_unlock;
367 }
368 atomic_inc(&x86_pmu.lbr_exclusive[what]);
369 mutex_unlock(&pmc_reserve_mutex);
370 }
371
372 atomic_inc(&active_events);
373 return 0;
374
375 fail_unlock:
376 mutex_unlock(&pmc_reserve_mutex);
377 return -EBUSY;
378 }
379
380 void x86_del_exclusive(unsigned int what)
381 {
382 atomic_dec(&x86_pmu.lbr_exclusive[what]);
383 atomic_dec(&active_events);
384 }
385
386 int x86_setup_perfctr(struct perf_event *event)
387 {
388 struct perf_event_attr *attr = &event->attr;
389 struct hw_perf_event *hwc = &event->hw;
390 u64 config;
391
392 if (!is_sampling_event(event)) {
393 hwc->sample_period = x86_pmu.max_period;
394 hwc->last_period = hwc->sample_period;
395 local64_set(&hwc->period_left, hwc->sample_period);
396 }
397
398 if (attr->type == PERF_TYPE_RAW)
399 return x86_pmu_extra_regs(event->attr.config, event);
400
401 if (attr->type == PERF_TYPE_HW_CACHE)
402 return set_ext_hw_attr(hwc, event);
403
404 if (attr->config >= x86_pmu.max_events)
405 return -EINVAL;
406
407 /*
408 * The generic map:
409 */
410 config = x86_pmu.event_map(attr->config);
411
412 if (config == 0)
413 return -ENOENT;
414
415 if (config == -1LL)
416 return -EINVAL;
417
418 /*
419 * Branch tracing:
420 */
421 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
422 !attr->freq && hwc->sample_period == 1) {
423 /* BTS is not supported by this architecture. */
424 if (!x86_pmu.bts_active)
425 return -EOPNOTSUPP;
426
427 /* BTS is currently only allowed for user-mode. */
428 if (!attr->exclude_kernel)
429 return -EOPNOTSUPP;
430
431 /* disallow bts if conflicting events are present */
432 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
433 return -EBUSY;
434
435 event->destroy = hw_perf_lbr_event_destroy;
436 }
437
438 hwc->config |= config;
439
440 return 0;
441 }
442
443 /*
444 * check that branch_sample_type is compatible with
445 * settings needed for precise_ip > 1 which implies
446 * using the LBR to capture ALL taken branches at the
447 * priv levels of the measurement
448 */
449 static inline int precise_br_compat(struct perf_event *event)
450 {
451 u64 m = event->attr.branch_sample_type;
452 u64 b = 0;
453
454 /* must capture all branches */
455 if (!(m & PERF_SAMPLE_BRANCH_ANY))
456 return 0;
457
458 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
459
460 if (!event->attr.exclude_user)
461 b |= PERF_SAMPLE_BRANCH_USER;
462
463 if (!event->attr.exclude_kernel)
464 b |= PERF_SAMPLE_BRANCH_KERNEL;
465
466 /*
467 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
468 */
469
470 return m == b;
471 }
472
473 int x86_pmu_hw_config(struct perf_event *event)
474 {
475 if (event->attr.precise_ip) {
476 int precise = 0;
477
478 /* Support for constant skid */
479 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
480 precise++;
481
482 /* Support for IP fixup */
483 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
484 precise++;
485
486 if (x86_pmu.pebs_prec_dist)
487 precise++;
488 }
489
490 if (event->attr.precise_ip > precise)
491 return -EOPNOTSUPP;
492 }
493 /*
494 * check that PEBS LBR correction does not conflict with
495 * whatever the user is asking with attr->branch_sample_type
496 */
497 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
498 u64 *br_type = &event->attr.branch_sample_type;
499
500 if (has_branch_stack(event)) {
501 if (!precise_br_compat(event))
502 return -EOPNOTSUPP;
503
504 /* branch_sample_type is compatible */
505
506 } else {
507 /*
508 * user did not specify branch_sample_type
509 *
510 * For PEBS fixups, we capture all
511 * the branches at the priv level of the
512 * event.
513 */
514 *br_type = PERF_SAMPLE_BRANCH_ANY;
515
516 if (!event->attr.exclude_user)
517 *br_type |= PERF_SAMPLE_BRANCH_USER;
518
519 if (!event->attr.exclude_kernel)
520 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
521 }
522 }
523
524 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
525 event->attach_state |= PERF_ATTACH_TASK_DATA;
526
527 /*
528 * Generate PMC IRQs:
529 * (keep 'enabled' bit clear for now)
530 */
531 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
532
533 /*
534 * Count user and OS events unless requested not to
535 */
536 if (!event->attr.exclude_user)
537 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
538 if (!event->attr.exclude_kernel)
539 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
540
541 if (event->attr.type == PERF_TYPE_RAW)
542 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
543
544 if (event->attr.sample_period && x86_pmu.limit_period) {
545 if (x86_pmu.limit_period(event, event->attr.sample_period) >
546 event->attr.sample_period)
547 return -EINVAL;
548 }
549
550 return x86_setup_perfctr(event);
551 }
552
553 /*
554 * Setup the hardware configuration for a given attr_type
555 */
556 static int __x86_pmu_event_init(struct perf_event *event)
557 {
558 int err;
559
560 if (!x86_pmu_initialized())
561 return -ENODEV;
562
563 err = x86_reserve_hardware();
564 if (err)
565 return err;
566
567 atomic_inc(&active_events);
568 event->destroy = hw_perf_event_destroy;
569
570 event->hw.idx = -1;
571 event->hw.last_cpu = -1;
572 event->hw.last_tag = ~0ULL;
573
574 /* mark unused */
575 event->hw.extra_reg.idx = EXTRA_REG_NONE;
576 event->hw.branch_reg.idx = EXTRA_REG_NONE;
577
578 return x86_pmu.hw_config(event);
579 }
580
581 void x86_pmu_disable_all(void)
582 {
583 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
584 int idx;
585
586 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
587 u64 val;
588
589 if (!test_bit(idx, cpuc->active_mask))
590 continue;
591 rdmsrl(x86_pmu_config_addr(idx), val);
592 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
593 continue;
594 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
595 wrmsrl(x86_pmu_config_addr(idx), val);
596 }
597 }
598
599 static void x86_pmu_disable(struct pmu *pmu)
600 {
601 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
602
603 if (!x86_pmu_initialized())
604 return;
605
606 if (!cpuc->enabled)
607 return;
608
609 cpuc->n_added = 0;
610 cpuc->enabled = 0;
611 barrier();
612
613 x86_pmu.disable_all();
614 }
615
616 void x86_pmu_enable_all(int added)
617 {
618 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
619 int idx;
620
621 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
622 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
623
624 if (!test_bit(idx, cpuc->active_mask))
625 continue;
626
627 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
628 }
629 }
630
631 static struct pmu pmu;
632
633 static inline int is_x86_event(struct perf_event *event)
634 {
635 return event->pmu == &pmu;
636 }
637
638 /*
639 * Event scheduler state:
640 *
641 * Assign events iterating over all events and counters, beginning
642 * with events with least weights first. Keep the current iterator
643 * state in struct sched_state.
644 */
645 struct sched_state {
646 int weight;
647 int event; /* event index */
648 int counter; /* counter index */
649 int unassigned; /* number of events to be assigned left */
650 int nr_gp; /* number of GP counters used */
651 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
652 };
653
654 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
655 #define SCHED_STATES_MAX 2
656
657 struct perf_sched {
658 int max_weight;
659 int max_events;
660 int max_gp;
661 int saved_states;
662 struct event_constraint **constraints;
663 struct sched_state state;
664 struct sched_state saved[SCHED_STATES_MAX];
665 };
666
667 /*
668 * Initialize interator that runs through all events and counters.
669 */
670 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
671 int num, int wmin, int wmax, int gpmax)
672 {
673 int idx;
674
675 memset(sched, 0, sizeof(*sched));
676 sched->max_events = num;
677 sched->max_weight = wmax;
678 sched->max_gp = gpmax;
679 sched->constraints = constraints;
680
681 for (idx = 0; idx < num; idx++) {
682 if (constraints[idx]->weight == wmin)
683 break;
684 }
685
686 sched->state.event = idx; /* start with min weight */
687 sched->state.weight = wmin;
688 sched->state.unassigned = num;
689 }
690
691 static void perf_sched_save_state(struct perf_sched *sched)
692 {
693 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
694 return;
695
696 sched->saved[sched->saved_states] = sched->state;
697 sched->saved_states++;
698 }
699
700 static bool perf_sched_restore_state(struct perf_sched *sched)
701 {
702 if (!sched->saved_states)
703 return false;
704
705 sched->saved_states--;
706 sched->state = sched->saved[sched->saved_states];
707
708 /* continue with next counter: */
709 clear_bit(sched->state.counter++, sched->state.used);
710
711 return true;
712 }
713
714 /*
715 * Select a counter for the current event to schedule. Return true on
716 * success.
717 */
718 static bool __perf_sched_find_counter(struct perf_sched *sched)
719 {
720 struct event_constraint *c;
721 int idx;
722
723 if (!sched->state.unassigned)
724 return false;
725
726 if (sched->state.event >= sched->max_events)
727 return false;
728
729 c = sched->constraints[sched->state.event];
730 /* Prefer fixed purpose counters */
731 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
732 idx = INTEL_PMC_IDX_FIXED;
733 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
734 if (!__test_and_set_bit(idx, sched->state.used))
735 goto done;
736 }
737 }
738
739 /* Grab the first unused counter starting with idx */
740 idx = sched->state.counter;
741 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
742 if (!__test_and_set_bit(idx, sched->state.used)) {
743 if (sched->state.nr_gp++ >= sched->max_gp)
744 return false;
745
746 goto done;
747 }
748 }
749
750 return false;
751
752 done:
753 sched->state.counter = idx;
754
755 if (c->overlap)
756 perf_sched_save_state(sched);
757
758 return true;
759 }
760
761 static bool perf_sched_find_counter(struct perf_sched *sched)
762 {
763 while (!__perf_sched_find_counter(sched)) {
764 if (!perf_sched_restore_state(sched))
765 return false;
766 }
767
768 return true;
769 }
770
771 /*
772 * Go through all unassigned events and find the next one to schedule.
773 * Take events with the least weight first. Return true on success.
774 */
775 static bool perf_sched_next_event(struct perf_sched *sched)
776 {
777 struct event_constraint *c;
778
779 if (!sched->state.unassigned || !--sched->state.unassigned)
780 return false;
781
782 do {
783 /* next event */
784 sched->state.event++;
785 if (sched->state.event >= sched->max_events) {
786 /* next weight */
787 sched->state.event = 0;
788 sched->state.weight++;
789 if (sched->state.weight > sched->max_weight)
790 return false;
791 }
792 c = sched->constraints[sched->state.event];
793 } while (c->weight != sched->state.weight);
794
795 sched->state.counter = 0; /* start with first counter */
796
797 return true;
798 }
799
800 /*
801 * Assign a counter for each event.
802 */
803 int perf_assign_events(struct event_constraint **constraints, int n,
804 int wmin, int wmax, int gpmax, int *assign)
805 {
806 struct perf_sched sched;
807
808 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
809
810 do {
811 if (!perf_sched_find_counter(&sched))
812 break; /* failed */
813 if (assign)
814 assign[sched.state.event] = sched.state.counter;
815 } while (perf_sched_next_event(&sched));
816
817 return sched.state.unassigned;
818 }
819 EXPORT_SYMBOL_GPL(perf_assign_events);
820
821 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
822 {
823 struct event_constraint *c;
824 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
825 struct perf_event *e;
826 int i, wmin, wmax, unsched = 0;
827 struct hw_perf_event *hwc;
828
829 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
830
831 if (x86_pmu.start_scheduling)
832 x86_pmu.start_scheduling(cpuc);
833
834 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
835 cpuc->event_constraint[i] = NULL;
836 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
837 cpuc->event_constraint[i] = c;
838
839 wmin = min(wmin, c->weight);
840 wmax = max(wmax, c->weight);
841 }
842
843 /*
844 * fastpath, try to reuse previous register
845 */
846 for (i = 0; i < n; i++) {
847 hwc = &cpuc->event_list[i]->hw;
848 c = cpuc->event_constraint[i];
849
850 /* never assigned */
851 if (hwc->idx == -1)
852 break;
853
854 /* constraint still honored */
855 if (!test_bit(hwc->idx, c->idxmsk))
856 break;
857
858 /* not already used */
859 if (test_bit(hwc->idx, used_mask))
860 break;
861
862 __set_bit(hwc->idx, used_mask);
863 if (assign)
864 assign[i] = hwc->idx;
865 }
866
867 /* slow path */
868 if (i != n) {
869 int gpmax = x86_pmu.num_counters;
870
871 /*
872 * Do not allow scheduling of more than half the available
873 * generic counters.
874 *
875 * This helps avoid counter starvation of sibling thread by
876 * ensuring at most half the counters cannot be in exclusive
877 * mode. There is no designated counters for the limits. Any
878 * N/2 counters can be used. This helps with events with
879 * specific counter constraints.
880 */
881 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
882 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
883 gpmax /= 2;
884
885 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
886 wmax, gpmax, assign);
887 }
888
889 /*
890 * In case of success (unsched = 0), mark events as committed,
891 * so we do not put_constraint() in case new events are added
892 * and fail to be scheduled
893 *
894 * We invoke the lower level commit callback to lock the resource
895 *
896 * We do not need to do all of this in case we are called to
897 * validate an event group (assign == NULL)
898 */
899 if (!unsched && assign) {
900 for (i = 0; i < n; i++) {
901 e = cpuc->event_list[i];
902 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
903 if (x86_pmu.commit_scheduling)
904 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
905 }
906 } else {
907 for (i = 0; i < n; i++) {
908 e = cpuc->event_list[i];
909 /*
910 * do not put_constraint() on comitted events,
911 * because they are good to go
912 */
913 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
914 continue;
915
916 /*
917 * release events that failed scheduling
918 */
919 if (x86_pmu.put_event_constraints)
920 x86_pmu.put_event_constraints(cpuc, e);
921 }
922 }
923
924 if (x86_pmu.stop_scheduling)
925 x86_pmu.stop_scheduling(cpuc);
926
927 return unsched ? -EINVAL : 0;
928 }
929
930 /*
931 * dogrp: true if must collect siblings events (group)
932 * returns total number of events and error code
933 */
934 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
935 {
936 struct perf_event *event;
937 int n, max_count;
938
939 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
940
941 /* current number of events already accepted */
942 n = cpuc->n_events;
943
944 if (is_x86_event(leader)) {
945 if (n >= max_count)
946 return -EINVAL;
947 cpuc->event_list[n] = leader;
948 n++;
949 }
950 if (!dogrp)
951 return n;
952
953 list_for_each_entry(event, &leader->sibling_list, group_entry) {
954 if (!is_x86_event(event) ||
955 event->state <= PERF_EVENT_STATE_OFF)
956 continue;
957
958 if (n >= max_count)
959 return -EINVAL;
960
961 cpuc->event_list[n] = event;
962 n++;
963 }
964 return n;
965 }
966
967 static inline void x86_assign_hw_event(struct perf_event *event,
968 struct cpu_hw_events *cpuc, int i)
969 {
970 struct hw_perf_event *hwc = &event->hw;
971
972 hwc->idx = cpuc->assign[i];
973 hwc->last_cpu = smp_processor_id();
974 hwc->last_tag = ++cpuc->tags[i];
975
976 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
977 hwc->config_base = 0;
978 hwc->event_base = 0;
979 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
980 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
981 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
982 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
983 } else {
984 hwc->config_base = x86_pmu_config_addr(hwc->idx);
985 hwc->event_base = x86_pmu_event_addr(hwc->idx);
986 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
987 }
988 }
989
990 static inline int match_prev_assignment(struct hw_perf_event *hwc,
991 struct cpu_hw_events *cpuc,
992 int i)
993 {
994 return hwc->idx == cpuc->assign[i] &&
995 hwc->last_cpu == smp_processor_id() &&
996 hwc->last_tag == cpuc->tags[i];
997 }
998
999 static void x86_pmu_start(struct perf_event *event, int flags);
1000
1001 static void x86_pmu_enable(struct pmu *pmu)
1002 {
1003 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1004 struct perf_event *event;
1005 struct hw_perf_event *hwc;
1006 int i, added = cpuc->n_added;
1007
1008 if (!x86_pmu_initialized())
1009 return;
1010
1011 if (cpuc->enabled)
1012 return;
1013
1014 if (cpuc->n_added) {
1015 int n_running = cpuc->n_events - cpuc->n_added;
1016 /*
1017 * apply assignment obtained either from
1018 * hw_perf_group_sched_in() or x86_pmu_enable()
1019 *
1020 * step1: save events moving to new counters
1021 */
1022 for (i = 0; i < n_running; i++) {
1023 event = cpuc->event_list[i];
1024 hwc = &event->hw;
1025
1026 /*
1027 * we can avoid reprogramming counter if:
1028 * - assigned same counter as last time
1029 * - running on same CPU as last time
1030 * - no other event has used the counter since
1031 */
1032 if (hwc->idx == -1 ||
1033 match_prev_assignment(hwc, cpuc, i))
1034 continue;
1035
1036 /*
1037 * Ensure we don't accidentally enable a stopped
1038 * counter simply because we rescheduled.
1039 */
1040 if (hwc->state & PERF_HES_STOPPED)
1041 hwc->state |= PERF_HES_ARCH;
1042
1043 x86_pmu_stop(event, PERF_EF_UPDATE);
1044 }
1045
1046 /*
1047 * step2: reprogram moved events into new counters
1048 */
1049 for (i = 0; i < cpuc->n_events; i++) {
1050 event = cpuc->event_list[i];
1051 hwc = &event->hw;
1052
1053 if (!match_prev_assignment(hwc, cpuc, i))
1054 x86_assign_hw_event(event, cpuc, i);
1055 else if (i < n_running)
1056 continue;
1057
1058 if (hwc->state & PERF_HES_ARCH)
1059 continue;
1060
1061 x86_pmu_start(event, PERF_EF_RELOAD);
1062 }
1063 cpuc->n_added = 0;
1064 perf_events_lapic_init();
1065 }
1066
1067 cpuc->enabled = 1;
1068 barrier();
1069
1070 x86_pmu.enable_all(added);
1071 }
1072
1073 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1074
1075 /*
1076 * Set the next IRQ period, based on the hwc->period_left value.
1077 * To be called with the event disabled in hw:
1078 */
1079 int x86_perf_event_set_period(struct perf_event *event)
1080 {
1081 struct hw_perf_event *hwc = &event->hw;
1082 s64 left = local64_read(&hwc->period_left);
1083 s64 period = hwc->sample_period;
1084 int ret = 0, idx = hwc->idx;
1085
1086 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1087 return 0;
1088
1089 /*
1090 * If we are way outside a reasonable range then just skip forward:
1091 */
1092 if (unlikely(left <= -period)) {
1093 left = period;
1094 local64_set(&hwc->period_left, left);
1095 hwc->last_period = period;
1096 ret = 1;
1097 }
1098
1099 if (unlikely(left <= 0)) {
1100 left += period;
1101 local64_set(&hwc->period_left, left);
1102 hwc->last_period = period;
1103 ret = 1;
1104 }
1105 /*
1106 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1107 */
1108 if (unlikely(left < 2))
1109 left = 2;
1110
1111 if (left > x86_pmu.max_period)
1112 left = x86_pmu.max_period;
1113
1114 if (x86_pmu.limit_period)
1115 left = x86_pmu.limit_period(event, left);
1116
1117 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1118
1119 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1120 local64_read(&hwc->prev_count) != (u64)-left) {
1121 /*
1122 * The hw event starts counting from this event offset,
1123 * mark it to be able to extra future deltas:
1124 */
1125 local64_set(&hwc->prev_count, (u64)-left);
1126
1127 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1128 }
1129
1130 /*
1131 * Due to erratum on certan cpu we need
1132 * a second write to be sure the register
1133 * is updated properly
1134 */
1135 if (x86_pmu.perfctr_second_write) {
1136 wrmsrl(hwc->event_base,
1137 (u64)(-left) & x86_pmu.cntval_mask);
1138 }
1139
1140 perf_event_update_userpage(event);
1141
1142 return ret;
1143 }
1144
1145 void x86_pmu_enable_event(struct perf_event *event)
1146 {
1147 if (__this_cpu_read(cpu_hw_events.enabled))
1148 __x86_pmu_enable_event(&event->hw,
1149 ARCH_PERFMON_EVENTSEL_ENABLE);
1150 }
1151
1152 /*
1153 * Add a single event to the PMU.
1154 *
1155 * The event is added to the group of enabled events
1156 * but only if it can be scehduled with existing events.
1157 */
1158 static int x86_pmu_add(struct perf_event *event, int flags)
1159 {
1160 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1161 struct hw_perf_event *hwc;
1162 int assign[X86_PMC_IDX_MAX];
1163 int n, n0, ret;
1164
1165 hwc = &event->hw;
1166
1167 n0 = cpuc->n_events;
1168 ret = n = collect_events(cpuc, event, false);
1169 if (ret < 0)
1170 goto out;
1171
1172 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1173 if (!(flags & PERF_EF_START))
1174 hwc->state |= PERF_HES_ARCH;
1175
1176 /*
1177 * If group events scheduling transaction was started,
1178 * skip the schedulability test here, it will be performed
1179 * at commit time (->commit_txn) as a whole.
1180 */
1181 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1182 goto done_collect;
1183
1184 ret = x86_pmu.schedule_events(cpuc, n, assign);
1185 if (ret)
1186 goto out;
1187 /*
1188 * copy new assignment, now we know it is possible
1189 * will be used by hw_perf_enable()
1190 */
1191 memcpy(cpuc->assign, assign, n*sizeof(int));
1192
1193 done_collect:
1194 /*
1195 * Commit the collect_events() state. See x86_pmu_del() and
1196 * x86_pmu_*_txn().
1197 */
1198 cpuc->n_events = n;
1199 cpuc->n_added += n - n0;
1200 cpuc->n_txn += n - n0;
1201
1202 ret = 0;
1203 out:
1204 return ret;
1205 }
1206
1207 static void x86_pmu_start(struct perf_event *event, int flags)
1208 {
1209 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1210 int idx = event->hw.idx;
1211
1212 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1213 return;
1214
1215 if (WARN_ON_ONCE(idx == -1))
1216 return;
1217
1218 if (flags & PERF_EF_RELOAD) {
1219 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1220 x86_perf_event_set_period(event);
1221 }
1222
1223 event->hw.state = 0;
1224
1225 cpuc->events[idx] = event;
1226 __set_bit(idx, cpuc->active_mask);
1227 __set_bit(idx, cpuc->running);
1228 x86_pmu.enable(event);
1229 perf_event_update_userpage(event);
1230 }
1231
1232 void perf_event_print_debug(void)
1233 {
1234 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1235 u64 pebs, debugctl;
1236 struct cpu_hw_events *cpuc;
1237 unsigned long flags;
1238 int cpu, idx;
1239
1240 if (!x86_pmu.num_counters)
1241 return;
1242
1243 local_irq_save(flags);
1244
1245 cpu = smp_processor_id();
1246 cpuc = &per_cpu(cpu_hw_events, cpu);
1247
1248 if (x86_pmu.version >= 2) {
1249 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1250 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1251 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1252 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1253
1254 pr_info("\n");
1255 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1256 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1257 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1258 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1259 if (x86_pmu.pebs_constraints) {
1260 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1261 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1262 }
1263 if (x86_pmu.lbr_nr) {
1264 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1265 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1266 }
1267 }
1268 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1269
1270 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1271 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1272 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1273
1274 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1275
1276 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1277 cpu, idx, pmc_ctrl);
1278 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1279 cpu, idx, pmc_count);
1280 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1281 cpu, idx, prev_left);
1282 }
1283 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1284 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1285
1286 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1287 cpu, idx, pmc_count);
1288 }
1289 local_irq_restore(flags);
1290 }
1291
1292 void x86_pmu_stop(struct perf_event *event, int flags)
1293 {
1294 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1295 struct hw_perf_event *hwc = &event->hw;
1296
1297 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1298 x86_pmu.disable(event);
1299 cpuc->events[hwc->idx] = NULL;
1300 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1301 hwc->state |= PERF_HES_STOPPED;
1302 }
1303
1304 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1305 /*
1306 * Drain the remaining delta count out of a event
1307 * that we are disabling:
1308 */
1309 x86_perf_event_update(event);
1310 hwc->state |= PERF_HES_UPTODATE;
1311 }
1312 }
1313
1314 static void x86_pmu_del(struct perf_event *event, int flags)
1315 {
1316 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1317 int i;
1318
1319 /*
1320 * event is descheduled
1321 */
1322 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1323
1324 /*
1325 * If we're called during a txn, we don't need to do anything.
1326 * The events never got scheduled and ->cancel_txn will truncate
1327 * the event_list.
1328 *
1329 * XXX assumes any ->del() called during a TXN will only be on
1330 * an event added during that same TXN.
1331 */
1332 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1333 return;
1334
1335 /*
1336 * Not a TXN, therefore cleanup properly.
1337 */
1338 x86_pmu_stop(event, PERF_EF_UPDATE);
1339
1340 for (i = 0; i < cpuc->n_events; i++) {
1341 if (event == cpuc->event_list[i])
1342 break;
1343 }
1344
1345 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1346 return;
1347
1348 /* If we have a newly added event; make sure to decrease n_added. */
1349 if (i >= cpuc->n_events - cpuc->n_added)
1350 --cpuc->n_added;
1351
1352 if (x86_pmu.put_event_constraints)
1353 x86_pmu.put_event_constraints(cpuc, event);
1354
1355 /* Delete the array entry. */
1356 while (++i < cpuc->n_events) {
1357 cpuc->event_list[i-1] = cpuc->event_list[i];
1358 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1359 }
1360 --cpuc->n_events;
1361
1362 perf_event_update_userpage(event);
1363 }
1364
1365 int x86_pmu_handle_irq(struct pt_regs *regs)
1366 {
1367 struct perf_sample_data data;
1368 struct cpu_hw_events *cpuc;
1369 struct perf_event *event;
1370 int idx, handled = 0;
1371 u64 val;
1372
1373 cpuc = this_cpu_ptr(&cpu_hw_events);
1374
1375 /*
1376 * Some chipsets need to unmask the LVTPC in a particular spot
1377 * inside the nmi handler. As a result, the unmasking was pushed
1378 * into all the nmi handlers.
1379 *
1380 * This generic handler doesn't seem to have any issues where the
1381 * unmasking occurs so it was left at the top.
1382 */
1383 apic_write(APIC_LVTPC, APIC_DM_NMI);
1384
1385 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1386 if (!test_bit(idx, cpuc->active_mask)) {
1387 /*
1388 * Though we deactivated the counter some cpus
1389 * might still deliver spurious interrupts still
1390 * in flight. Catch them:
1391 */
1392 if (__test_and_clear_bit(idx, cpuc->running))
1393 handled++;
1394 continue;
1395 }
1396
1397 event = cpuc->events[idx];
1398
1399 val = x86_perf_event_update(event);
1400 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1401 continue;
1402
1403 /*
1404 * event overflow
1405 */
1406 handled++;
1407 perf_sample_data_init(&data, 0, event->hw.last_period);
1408
1409 if (!x86_perf_event_set_period(event))
1410 continue;
1411
1412 if (perf_event_overflow(event, &data, regs))
1413 x86_pmu_stop(event, 0);
1414 }
1415
1416 if (handled)
1417 inc_irq_stat(apic_perf_irqs);
1418
1419 return handled;
1420 }
1421
1422 void perf_events_lapic_init(void)
1423 {
1424 if (!x86_pmu.apic || !x86_pmu_initialized())
1425 return;
1426
1427 /*
1428 * Always use NMI for PMU
1429 */
1430 apic_write(APIC_LVTPC, APIC_DM_NMI);
1431 }
1432
1433 static int
1434 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1435 {
1436 u64 start_clock;
1437 u64 finish_clock;
1438 int ret;
1439
1440 /*
1441 * All PMUs/events that share this PMI handler should make sure to
1442 * increment active_events for their events.
1443 */
1444 if (!atomic_read(&active_events))
1445 return NMI_DONE;
1446
1447 start_clock = sched_clock();
1448 ret = x86_pmu.handle_irq(regs);
1449 finish_clock = sched_clock();
1450
1451 perf_sample_event_took(finish_clock - start_clock);
1452
1453 return ret;
1454 }
1455 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1456
1457 struct event_constraint emptyconstraint;
1458 struct event_constraint unconstrained;
1459
1460 static int
1461 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1462 {
1463 unsigned int cpu = (long)hcpu;
1464 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1465 int i, ret = NOTIFY_OK;
1466
1467 switch (action & ~CPU_TASKS_FROZEN) {
1468 case CPU_UP_PREPARE:
1469 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1470 cpuc->kfree_on_online[i] = NULL;
1471 if (x86_pmu.cpu_prepare)
1472 ret = x86_pmu.cpu_prepare(cpu);
1473 break;
1474
1475 case CPU_STARTING:
1476 if (x86_pmu.cpu_starting)
1477 x86_pmu.cpu_starting(cpu);
1478 break;
1479
1480 case CPU_ONLINE:
1481 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1482 kfree(cpuc->kfree_on_online[i]);
1483 cpuc->kfree_on_online[i] = NULL;
1484 }
1485 break;
1486
1487 case CPU_DYING:
1488 if (x86_pmu.cpu_dying)
1489 x86_pmu.cpu_dying(cpu);
1490 break;
1491
1492 case CPU_UP_CANCELED:
1493 case CPU_DEAD:
1494 if (x86_pmu.cpu_dead)
1495 x86_pmu.cpu_dead(cpu);
1496 break;
1497
1498 default:
1499 break;
1500 }
1501
1502 return ret;
1503 }
1504
1505 static void __init pmu_check_apic(void)
1506 {
1507 if (cpu_has_apic)
1508 return;
1509
1510 x86_pmu.apic = 0;
1511 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1512 pr_info("no hardware sampling interrupt available.\n");
1513
1514 /*
1515 * If we have a PMU initialized but no APIC
1516 * interrupts, we cannot sample hardware
1517 * events (user-space has to fall back and
1518 * sample via a hrtimer based software event):
1519 */
1520 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1521
1522 }
1523
1524 static struct attribute_group x86_pmu_format_group = {
1525 .name = "format",
1526 .attrs = NULL,
1527 };
1528
1529 /*
1530 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1531 * out of events_attr attributes.
1532 */
1533 static void __init filter_events(struct attribute **attrs)
1534 {
1535 struct device_attribute *d;
1536 struct perf_pmu_events_attr *pmu_attr;
1537 int offset = 0;
1538 int i, j;
1539
1540 for (i = 0; attrs[i]; i++) {
1541 d = (struct device_attribute *)attrs[i];
1542 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1543 /* str trumps id */
1544 if (pmu_attr->event_str)
1545 continue;
1546 if (x86_pmu.event_map(i + offset))
1547 continue;
1548
1549 for (j = i; attrs[j]; j++)
1550 attrs[j] = attrs[j + 1];
1551
1552 /* Check the shifted attr. */
1553 i--;
1554
1555 /*
1556 * event_map() is index based, the attrs array is organized
1557 * by increasing event index. If we shift the events, then
1558 * we need to compensate for the event_map(), otherwise
1559 * we are looking up the wrong event in the map
1560 */
1561 offset++;
1562 }
1563 }
1564
1565 /* Merge two pointer arrays */
1566 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1567 {
1568 struct attribute **new;
1569 int j, i;
1570
1571 for (j = 0; a[j]; j++)
1572 ;
1573 for (i = 0; b[i]; i++)
1574 j++;
1575 j++;
1576
1577 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1578 if (!new)
1579 return NULL;
1580
1581 j = 0;
1582 for (i = 0; a[i]; i++)
1583 new[j++] = a[i];
1584 for (i = 0; b[i]; i++)
1585 new[j++] = b[i];
1586 new[j] = NULL;
1587
1588 return new;
1589 }
1590
1591 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1592 char *page)
1593 {
1594 struct perf_pmu_events_attr *pmu_attr = \
1595 container_of(attr, struct perf_pmu_events_attr, attr);
1596 u64 config = x86_pmu.event_map(pmu_attr->id);
1597
1598 /* string trumps id */
1599 if (pmu_attr->event_str)
1600 return sprintf(page, "%s", pmu_attr->event_str);
1601
1602 return x86_pmu.events_sysfs_show(page, config);
1603 }
1604
1605 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1606 EVENT_ATTR(instructions, INSTRUCTIONS );
1607 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1608 EVENT_ATTR(cache-misses, CACHE_MISSES );
1609 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1610 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1611 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1612 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1613 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1614 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1615
1616 static struct attribute *empty_attrs;
1617
1618 static struct attribute *events_attr[] = {
1619 EVENT_PTR(CPU_CYCLES),
1620 EVENT_PTR(INSTRUCTIONS),
1621 EVENT_PTR(CACHE_REFERENCES),
1622 EVENT_PTR(CACHE_MISSES),
1623 EVENT_PTR(BRANCH_INSTRUCTIONS),
1624 EVENT_PTR(BRANCH_MISSES),
1625 EVENT_PTR(BUS_CYCLES),
1626 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1627 EVENT_PTR(STALLED_CYCLES_BACKEND),
1628 EVENT_PTR(REF_CPU_CYCLES),
1629 NULL,
1630 };
1631
1632 static struct attribute_group x86_pmu_events_group = {
1633 .name = "events",
1634 .attrs = events_attr,
1635 };
1636
1637 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1638 {
1639 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1640 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1641 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1642 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1643 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1644 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1645 ssize_t ret;
1646
1647 /*
1648 * We have whole page size to spend and just little data
1649 * to write, so we can safely use sprintf.
1650 */
1651 ret = sprintf(page, "event=0x%02llx", event);
1652
1653 if (umask)
1654 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1655
1656 if (edge)
1657 ret += sprintf(page + ret, ",edge");
1658
1659 if (pc)
1660 ret += sprintf(page + ret, ",pc");
1661
1662 if (any)
1663 ret += sprintf(page + ret, ",any");
1664
1665 if (inv)
1666 ret += sprintf(page + ret, ",inv");
1667
1668 if (cmask)
1669 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1670
1671 ret += sprintf(page + ret, "\n");
1672
1673 return ret;
1674 }
1675
1676 static int __init init_hw_perf_events(void)
1677 {
1678 struct x86_pmu_quirk *quirk;
1679 int err;
1680
1681 pr_info("Performance Events: ");
1682
1683 switch (boot_cpu_data.x86_vendor) {
1684 case X86_VENDOR_INTEL:
1685 err = intel_pmu_init();
1686 break;
1687 case X86_VENDOR_AMD:
1688 err = amd_pmu_init();
1689 break;
1690 default:
1691 err = -ENOTSUPP;
1692 }
1693 if (err != 0) {
1694 pr_cont("no PMU driver, software events only.\n");
1695 return 0;
1696 }
1697
1698 pmu_check_apic();
1699
1700 /* sanity check that the hardware exists or is emulated */
1701 if (!check_hw_exists())
1702 return 0;
1703
1704 pr_cont("%s PMU driver.\n", x86_pmu.name);
1705
1706 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1707
1708 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1709 quirk->func();
1710
1711 if (!x86_pmu.intel_ctrl)
1712 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1713
1714 perf_events_lapic_init();
1715 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1716
1717 unconstrained = (struct event_constraint)
1718 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1719 0, x86_pmu.num_counters, 0, 0);
1720
1721 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1722
1723 if (x86_pmu.event_attrs)
1724 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1725
1726 if (!x86_pmu.events_sysfs_show)
1727 x86_pmu_events_group.attrs = &empty_attrs;
1728 else
1729 filter_events(x86_pmu_events_group.attrs);
1730
1731 if (x86_pmu.cpu_events) {
1732 struct attribute **tmp;
1733
1734 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1735 if (!WARN_ON(!tmp))
1736 x86_pmu_events_group.attrs = tmp;
1737 }
1738
1739 pr_info("... version: %d\n", x86_pmu.version);
1740 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1741 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1742 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1743 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1744 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1745 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1746
1747 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1748 perf_cpu_notifier(x86_pmu_notifier);
1749
1750 return 0;
1751 }
1752 early_initcall(init_hw_perf_events);
1753
1754 static inline void x86_pmu_read(struct perf_event *event)
1755 {
1756 x86_perf_event_update(event);
1757 }
1758
1759 /*
1760 * Start group events scheduling transaction
1761 * Set the flag to make pmu::enable() not perform the
1762 * schedulability test, it will be performed at commit time
1763 *
1764 * We only support PERF_PMU_TXN_ADD transactions. Save the
1765 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1766 * transactions.
1767 */
1768 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1769 {
1770 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1771
1772 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1773
1774 cpuc->txn_flags = txn_flags;
1775 if (txn_flags & ~PERF_PMU_TXN_ADD)
1776 return;
1777
1778 perf_pmu_disable(pmu);
1779 __this_cpu_write(cpu_hw_events.n_txn, 0);
1780 }
1781
1782 /*
1783 * Stop group events scheduling transaction
1784 * Clear the flag and pmu::enable() will perform the
1785 * schedulability test.
1786 */
1787 static void x86_pmu_cancel_txn(struct pmu *pmu)
1788 {
1789 unsigned int txn_flags;
1790 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1791
1792 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1793
1794 txn_flags = cpuc->txn_flags;
1795 cpuc->txn_flags = 0;
1796 if (txn_flags & ~PERF_PMU_TXN_ADD)
1797 return;
1798
1799 /*
1800 * Truncate collected array by the number of events added in this
1801 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1802 */
1803 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1804 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1805 perf_pmu_enable(pmu);
1806 }
1807
1808 /*
1809 * Commit group events scheduling transaction
1810 * Perform the group schedulability test as a whole
1811 * Return 0 if success
1812 *
1813 * Does not cancel the transaction on failure; expects the caller to do this.
1814 */
1815 static int x86_pmu_commit_txn(struct pmu *pmu)
1816 {
1817 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1818 int assign[X86_PMC_IDX_MAX];
1819 int n, ret;
1820
1821 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1822
1823 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1824 cpuc->txn_flags = 0;
1825 return 0;
1826 }
1827
1828 n = cpuc->n_events;
1829
1830 if (!x86_pmu_initialized())
1831 return -EAGAIN;
1832
1833 ret = x86_pmu.schedule_events(cpuc, n, assign);
1834 if (ret)
1835 return ret;
1836
1837 /*
1838 * copy new assignment, now we know it is possible
1839 * will be used by hw_perf_enable()
1840 */
1841 memcpy(cpuc->assign, assign, n*sizeof(int));
1842
1843 cpuc->txn_flags = 0;
1844 perf_pmu_enable(pmu);
1845 return 0;
1846 }
1847 /*
1848 * a fake_cpuc is used to validate event groups. Due to
1849 * the extra reg logic, we need to also allocate a fake
1850 * per_core and per_cpu structure. Otherwise, group events
1851 * using extra reg may conflict without the kernel being
1852 * able to catch this when the last event gets added to
1853 * the group.
1854 */
1855 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1856 {
1857 kfree(cpuc->shared_regs);
1858 kfree(cpuc);
1859 }
1860
1861 static struct cpu_hw_events *allocate_fake_cpuc(void)
1862 {
1863 struct cpu_hw_events *cpuc;
1864 int cpu = raw_smp_processor_id();
1865
1866 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1867 if (!cpuc)
1868 return ERR_PTR(-ENOMEM);
1869
1870 /* only needed, if we have extra_regs */
1871 if (x86_pmu.extra_regs) {
1872 cpuc->shared_regs = allocate_shared_regs(cpu);
1873 if (!cpuc->shared_regs)
1874 goto error;
1875 }
1876 cpuc->is_fake = 1;
1877 return cpuc;
1878 error:
1879 free_fake_cpuc(cpuc);
1880 return ERR_PTR(-ENOMEM);
1881 }
1882
1883 /*
1884 * validate that we can schedule this event
1885 */
1886 static int validate_event(struct perf_event *event)
1887 {
1888 struct cpu_hw_events *fake_cpuc;
1889 struct event_constraint *c;
1890 int ret = 0;
1891
1892 fake_cpuc = allocate_fake_cpuc();
1893 if (IS_ERR(fake_cpuc))
1894 return PTR_ERR(fake_cpuc);
1895
1896 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1897
1898 if (!c || !c->weight)
1899 ret = -EINVAL;
1900
1901 if (x86_pmu.put_event_constraints)
1902 x86_pmu.put_event_constraints(fake_cpuc, event);
1903
1904 free_fake_cpuc(fake_cpuc);
1905
1906 return ret;
1907 }
1908
1909 /*
1910 * validate a single event group
1911 *
1912 * validation include:
1913 * - check events are compatible which each other
1914 * - events do not compete for the same counter
1915 * - number of events <= number of counters
1916 *
1917 * validation ensures the group can be loaded onto the
1918 * PMU if it was the only group available.
1919 */
1920 static int validate_group(struct perf_event *event)
1921 {
1922 struct perf_event *leader = event->group_leader;
1923 struct cpu_hw_events *fake_cpuc;
1924 int ret = -EINVAL, n;
1925
1926 fake_cpuc = allocate_fake_cpuc();
1927 if (IS_ERR(fake_cpuc))
1928 return PTR_ERR(fake_cpuc);
1929 /*
1930 * the event is not yet connected with its
1931 * siblings therefore we must first collect
1932 * existing siblings, then add the new event
1933 * before we can simulate the scheduling
1934 */
1935 n = collect_events(fake_cpuc, leader, true);
1936 if (n < 0)
1937 goto out;
1938
1939 fake_cpuc->n_events = n;
1940 n = collect_events(fake_cpuc, event, false);
1941 if (n < 0)
1942 goto out;
1943
1944 fake_cpuc->n_events = n;
1945
1946 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1947
1948 out:
1949 free_fake_cpuc(fake_cpuc);
1950 return ret;
1951 }
1952
1953 static int x86_pmu_event_init(struct perf_event *event)
1954 {
1955 struct pmu *tmp;
1956 int err;
1957
1958 switch (event->attr.type) {
1959 case PERF_TYPE_RAW:
1960 case PERF_TYPE_HARDWARE:
1961 case PERF_TYPE_HW_CACHE:
1962 break;
1963
1964 default:
1965 return -ENOENT;
1966 }
1967
1968 err = __x86_pmu_event_init(event);
1969 if (!err) {
1970 /*
1971 * we temporarily connect event to its pmu
1972 * such that validate_group() can classify
1973 * it as an x86 event using is_x86_event()
1974 */
1975 tmp = event->pmu;
1976 event->pmu = &pmu;
1977
1978 if (event->group_leader != event)
1979 err = validate_group(event);
1980 else
1981 err = validate_event(event);
1982
1983 event->pmu = tmp;
1984 }
1985 if (err) {
1986 if (event->destroy)
1987 event->destroy(event);
1988 }
1989
1990 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1991 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1992
1993 return err;
1994 }
1995
1996 static void refresh_pce(void *ignored)
1997 {
1998 if (current->mm)
1999 load_mm_cr4(current->mm);
2000 }
2001
2002 static void x86_pmu_event_mapped(struct perf_event *event)
2003 {
2004 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2005 return;
2006
2007 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2008 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2009 }
2010
2011 static void x86_pmu_event_unmapped(struct perf_event *event)
2012 {
2013 if (!current->mm)
2014 return;
2015
2016 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2017 return;
2018
2019 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2020 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2021 }
2022
2023 static int x86_pmu_event_idx(struct perf_event *event)
2024 {
2025 int idx = event->hw.idx;
2026
2027 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2028 return 0;
2029
2030 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2031 idx -= INTEL_PMC_IDX_FIXED;
2032 idx |= 1 << 30;
2033 }
2034
2035 return idx + 1;
2036 }
2037
2038 static ssize_t get_attr_rdpmc(struct device *cdev,
2039 struct device_attribute *attr,
2040 char *buf)
2041 {
2042 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2043 }
2044
2045 static ssize_t set_attr_rdpmc(struct device *cdev,
2046 struct device_attribute *attr,
2047 const char *buf, size_t count)
2048 {
2049 unsigned long val;
2050 ssize_t ret;
2051
2052 ret = kstrtoul(buf, 0, &val);
2053 if (ret)
2054 return ret;
2055
2056 if (val > 2)
2057 return -EINVAL;
2058
2059 if (x86_pmu.attr_rdpmc_broken)
2060 return -ENOTSUPP;
2061
2062 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2063 /*
2064 * Changing into or out of always available, aka
2065 * perf-event-bypassing mode. This path is extremely slow,
2066 * but only root can trigger it, so it's okay.
2067 */
2068 if (val == 2)
2069 static_key_slow_inc(&rdpmc_always_available);
2070 else
2071 static_key_slow_dec(&rdpmc_always_available);
2072 on_each_cpu(refresh_pce, NULL, 1);
2073 }
2074
2075 x86_pmu.attr_rdpmc = val;
2076
2077 return count;
2078 }
2079
2080 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2081
2082 static struct attribute *x86_pmu_attrs[] = {
2083 &dev_attr_rdpmc.attr,
2084 NULL,
2085 };
2086
2087 static struct attribute_group x86_pmu_attr_group = {
2088 .attrs = x86_pmu_attrs,
2089 };
2090
2091 static const struct attribute_group *x86_pmu_attr_groups[] = {
2092 &x86_pmu_attr_group,
2093 &x86_pmu_format_group,
2094 &x86_pmu_events_group,
2095 NULL,
2096 };
2097
2098 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2099 {
2100 if (x86_pmu.sched_task)
2101 x86_pmu.sched_task(ctx, sched_in);
2102 }
2103
2104 void perf_check_microcode(void)
2105 {
2106 if (x86_pmu.check_microcode)
2107 x86_pmu.check_microcode();
2108 }
2109 EXPORT_SYMBOL_GPL(perf_check_microcode);
2110
2111 static struct pmu pmu = {
2112 .pmu_enable = x86_pmu_enable,
2113 .pmu_disable = x86_pmu_disable,
2114
2115 .attr_groups = x86_pmu_attr_groups,
2116
2117 .event_init = x86_pmu_event_init,
2118
2119 .event_mapped = x86_pmu_event_mapped,
2120 .event_unmapped = x86_pmu_event_unmapped,
2121
2122 .add = x86_pmu_add,
2123 .del = x86_pmu_del,
2124 .start = x86_pmu_start,
2125 .stop = x86_pmu_stop,
2126 .read = x86_pmu_read,
2127
2128 .start_txn = x86_pmu_start_txn,
2129 .cancel_txn = x86_pmu_cancel_txn,
2130 .commit_txn = x86_pmu_commit_txn,
2131
2132 .event_idx = x86_pmu_event_idx,
2133 .sched_task = x86_pmu_sched_task,
2134 .task_ctx_size = sizeof(struct x86_perf_task_context),
2135 };
2136
2137 void arch_perf_update_userpage(struct perf_event *event,
2138 struct perf_event_mmap_page *userpg, u64 now)
2139 {
2140 struct cyc2ns_data *data;
2141
2142 userpg->cap_user_time = 0;
2143 userpg->cap_user_time_zero = 0;
2144 userpg->cap_user_rdpmc =
2145 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2146 userpg->pmc_width = x86_pmu.cntval_bits;
2147
2148 if (!sched_clock_stable())
2149 return;
2150
2151 data = cyc2ns_read_begin();
2152
2153 /*
2154 * Internal timekeeping for enabled/running/stopped times
2155 * is always in the local_clock domain.
2156 */
2157 userpg->cap_user_time = 1;
2158 userpg->time_mult = data->cyc2ns_mul;
2159 userpg->time_shift = data->cyc2ns_shift;
2160 userpg->time_offset = data->cyc2ns_offset - now;
2161
2162 /*
2163 * cap_user_time_zero doesn't make sense when we're using a different
2164 * time base for the records.
2165 */
2166 if (event->clock == &local_clock) {
2167 userpg->cap_user_time_zero = 1;
2168 userpg->time_zero = data->cyc2ns_offset;
2169 }
2170
2171 cyc2ns_read_end(data);
2172 }
2173
2174 /*
2175 * callchain support
2176 */
2177
2178 static int backtrace_stack(void *data, char *name)
2179 {
2180 return 0;
2181 }
2182
2183 static void backtrace_address(void *data, unsigned long addr, int reliable)
2184 {
2185 struct perf_callchain_entry *entry = data;
2186
2187 perf_callchain_store(entry, addr);
2188 }
2189
2190 static const struct stacktrace_ops backtrace_ops = {
2191 .stack = backtrace_stack,
2192 .address = backtrace_address,
2193 .walk_stack = print_context_stack_bp,
2194 };
2195
2196 void
2197 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2198 {
2199 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2200 /* TODO: We don't support guest os callchain now */
2201 return;
2202 }
2203
2204 perf_callchain_store(entry, regs->ip);
2205
2206 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2207 }
2208
2209 static inline int
2210 valid_user_frame(const void __user *fp, unsigned long size)
2211 {
2212 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2213 }
2214
2215 static unsigned long get_segment_base(unsigned int segment)
2216 {
2217 struct desc_struct *desc;
2218 int idx = segment >> 3;
2219
2220 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2221 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2222 struct ldt_struct *ldt;
2223
2224 if (idx > LDT_ENTRIES)
2225 return 0;
2226
2227 /* IRQs are off, so this synchronizes with smp_store_release */
2228 ldt = lockless_dereference(current->active_mm->context.ldt);
2229 if (!ldt || idx > ldt->size)
2230 return 0;
2231
2232 desc = &ldt->entries[idx];
2233 #else
2234 return 0;
2235 #endif
2236 } else {
2237 if (idx > GDT_ENTRIES)
2238 return 0;
2239
2240 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2241 }
2242
2243 return get_desc_base(desc);
2244 }
2245
2246 #ifdef CONFIG_IA32_EMULATION
2247
2248 #include <asm/compat.h>
2249
2250 static inline int
2251 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2252 {
2253 /* 32-bit process in 64-bit kernel. */
2254 unsigned long ss_base, cs_base;
2255 struct stack_frame_ia32 frame;
2256 const void __user *fp;
2257
2258 if (!test_thread_flag(TIF_IA32))
2259 return 0;
2260
2261 cs_base = get_segment_base(regs->cs);
2262 ss_base = get_segment_base(regs->ss);
2263
2264 fp = compat_ptr(ss_base + regs->bp);
2265 pagefault_disable();
2266 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2267 unsigned long bytes;
2268 frame.next_frame = 0;
2269 frame.return_address = 0;
2270
2271 if (!access_ok(VERIFY_READ, fp, 8))
2272 break;
2273
2274 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2275 if (bytes != 0)
2276 break;
2277 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2278 if (bytes != 0)
2279 break;
2280
2281 if (!valid_user_frame(fp, sizeof(frame)))
2282 break;
2283
2284 perf_callchain_store(entry, cs_base + frame.return_address);
2285 fp = compat_ptr(ss_base + frame.next_frame);
2286 }
2287 pagefault_enable();
2288 return 1;
2289 }
2290 #else
2291 static inline int
2292 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2293 {
2294 return 0;
2295 }
2296 #endif
2297
2298 void
2299 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2300 {
2301 struct stack_frame frame;
2302 const void __user *fp;
2303
2304 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2305 /* TODO: We don't support guest os callchain now */
2306 return;
2307 }
2308
2309 /*
2310 * We don't know what to do with VM86 stacks.. ignore them for now.
2311 */
2312 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2313 return;
2314
2315 fp = (void __user *)regs->bp;
2316
2317 perf_callchain_store(entry, regs->ip);
2318
2319 if (!current->mm)
2320 return;
2321
2322 if (perf_callchain_user32(regs, entry))
2323 return;
2324
2325 pagefault_disable();
2326 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2327 unsigned long bytes;
2328 frame.next_frame = NULL;
2329 frame.return_address = 0;
2330
2331 if (!access_ok(VERIFY_READ, fp, 16))
2332 break;
2333
2334 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2335 if (bytes != 0)
2336 break;
2337 bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
2338 if (bytes != 0)
2339 break;
2340
2341 if (!valid_user_frame(fp, sizeof(frame)))
2342 break;
2343
2344 perf_callchain_store(entry, frame.return_address);
2345 fp = (void __user *)frame.next_frame;
2346 }
2347 pagefault_enable();
2348 }
2349
2350 /*
2351 * Deal with code segment offsets for the various execution modes:
2352 *
2353 * VM86 - the good olde 16 bit days, where the linear address is
2354 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2355 *
2356 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2357 * to figure out what the 32bit base address is.
2358 *
2359 * X32 - has TIF_X32 set, but is running in x86_64
2360 *
2361 * X86_64 - CS,DS,SS,ES are all zero based.
2362 */
2363 static unsigned long code_segment_base(struct pt_regs *regs)
2364 {
2365 /*
2366 * For IA32 we look at the GDT/LDT segment base to convert the
2367 * effective IP to a linear address.
2368 */
2369
2370 #ifdef CONFIG_X86_32
2371 /*
2372 * If we are in VM86 mode, add the segment offset to convert to a
2373 * linear address.
2374 */
2375 if (regs->flags & X86_VM_MASK)
2376 return 0x10 * regs->cs;
2377
2378 if (user_mode(regs) && regs->cs != __USER_CS)
2379 return get_segment_base(regs->cs);
2380 #else
2381 if (user_mode(regs) && !user_64bit_mode(regs) &&
2382 regs->cs != __USER32_CS)
2383 return get_segment_base(regs->cs);
2384 #endif
2385 return 0;
2386 }
2387
2388 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2389 {
2390 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2391 return perf_guest_cbs->get_guest_ip();
2392
2393 return regs->ip + code_segment_base(regs);
2394 }
2395
2396 unsigned long perf_misc_flags(struct pt_regs *regs)
2397 {
2398 int misc = 0;
2399
2400 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2401 if (perf_guest_cbs->is_user_mode())
2402 misc |= PERF_RECORD_MISC_GUEST_USER;
2403 else
2404 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2405 } else {
2406 if (user_mode(regs))
2407 misc |= PERF_RECORD_MISC_USER;
2408 else
2409 misc |= PERF_RECORD_MISC_KERNEL;
2410 }
2411
2412 if (regs->flags & PERF_EFLAGS_EXACT)
2413 misc |= PERF_RECORD_MISC_EXACT_IP;
2414
2415 return misc;
2416 }
2417
2418 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2419 {
2420 cap->version = x86_pmu.version;
2421 cap->num_counters_gp = x86_pmu.num_counters;
2422 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2423 cap->bit_width_gp = x86_pmu.cntval_bits;
2424 cap->bit_width_fixed = x86_pmu.cntval_bits;
2425 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2426 cap->events_mask_len = x86_pmu.events_mask_len;
2427 }
2428 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.120923 seconds and 5 git commands to generate.