perf/x86/intel: Fix SLM MSR_OFFCORE_RSP1 valid_mask
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/watchdog.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20
21 #include "perf_event.h"
22
23 /*
24 * Intel PerfMon, used on Core and later.
25 */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
29 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
30 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
31 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
32 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
33 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
34 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
35 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
36 };
37
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 EVENT_CONSTRAINT_END
47 };
48
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 EVENT_CONSTRAINT_END
65 };
66
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 EVENT_CONSTRAINT_END
81 };
82
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88 EVENT_EXTRA_END
89 };
90
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 EVENT_CONSTRAINT_END
101 };
102
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117
118 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
123 EVENT_CONSTRAINT_END
124 };
125
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141
142 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
147 EVENT_CONSTRAINT_END
148 };
149
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156 EVENT_EXTRA_END
157 };
158
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161 EVENT_CONSTRAINT_END
162 };
163
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169 EVENT_CONSTRAINT_END
170 };
171
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 EVENT_CONSTRAINT_END
178 };
179
180 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
181 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
182 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
183 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
184 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
185 EVENT_EXTRA_END
186 };
187
188 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
189 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
191 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
192 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
193 EVENT_EXTRA_END
194 };
195
196 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
197 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
198 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
199
200 struct attribute *nhm_events_attrs[] = {
201 EVENT_PTR(mem_ld_nhm),
202 NULL,
203 };
204
205 struct attribute *snb_events_attrs[] = {
206 EVENT_PTR(mem_ld_snb),
207 EVENT_PTR(mem_st_snb),
208 NULL,
209 };
210
211 static struct event_constraint intel_hsw_event_constraints[] = {
212 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
213 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
214 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
215 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
216 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
217 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
218 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
219 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
220 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
221 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
222 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
223 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
224
225 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
226 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
227 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
228 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
229
230 EVENT_CONSTRAINT_END
231 };
232
233 struct event_constraint intel_bdw_event_constraints[] = {
234 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
235 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
236 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
237 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
238 INTEL_EVENT_CONSTRAINT(0xa3, 0x4), /* CYCLE_ACTIVITY.* */
239 EVENT_CONSTRAINT_END
240 };
241
242 static u64 intel_pmu_event_map(int hw_event)
243 {
244 return intel_perfmon_event_map[hw_event];
245 }
246
247 #define SNB_DMND_DATA_RD (1ULL << 0)
248 #define SNB_DMND_RFO (1ULL << 1)
249 #define SNB_DMND_IFETCH (1ULL << 2)
250 #define SNB_DMND_WB (1ULL << 3)
251 #define SNB_PF_DATA_RD (1ULL << 4)
252 #define SNB_PF_RFO (1ULL << 5)
253 #define SNB_PF_IFETCH (1ULL << 6)
254 #define SNB_LLC_DATA_RD (1ULL << 7)
255 #define SNB_LLC_RFO (1ULL << 8)
256 #define SNB_LLC_IFETCH (1ULL << 9)
257 #define SNB_BUS_LOCKS (1ULL << 10)
258 #define SNB_STRM_ST (1ULL << 11)
259 #define SNB_OTHER (1ULL << 15)
260 #define SNB_RESP_ANY (1ULL << 16)
261 #define SNB_NO_SUPP (1ULL << 17)
262 #define SNB_LLC_HITM (1ULL << 18)
263 #define SNB_LLC_HITE (1ULL << 19)
264 #define SNB_LLC_HITS (1ULL << 20)
265 #define SNB_LLC_HITF (1ULL << 21)
266 #define SNB_LOCAL (1ULL << 22)
267 #define SNB_REMOTE (0xffULL << 23)
268 #define SNB_SNP_NONE (1ULL << 31)
269 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
270 #define SNB_SNP_MISS (1ULL << 33)
271 #define SNB_NO_FWD (1ULL << 34)
272 #define SNB_SNP_FWD (1ULL << 35)
273 #define SNB_HITM (1ULL << 36)
274 #define SNB_NON_DRAM (1ULL << 37)
275
276 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
277 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
278 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
279
280 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
281 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
282 SNB_HITM)
283
284 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
285 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
286
287 #define SNB_L3_ACCESS SNB_RESP_ANY
288 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
289
290 static __initconst const u64 snb_hw_cache_extra_regs
291 [PERF_COUNT_HW_CACHE_MAX]
292 [PERF_COUNT_HW_CACHE_OP_MAX]
293 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
294 {
295 [ C(LL ) ] = {
296 [ C(OP_READ) ] = {
297 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
298 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
299 },
300 [ C(OP_WRITE) ] = {
301 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
302 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
303 },
304 [ C(OP_PREFETCH) ] = {
305 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
306 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
307 },
308 },
309 [ C(NODE) ] = {
310 [ C(OP_READ) ] = {
311 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
312 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
313 },
314 [ C(OP_WRITE) ] = {
315 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
316 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
317 },
318 [ C(OP_PREFETCH) ] = {
319 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
320 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
321 },
322 },
323 };
324
325 static __initconst const u64 snb_hw_cache_event_ids
326 [PERF_COUNT_HW_CACHE_MAX]
327 [PERF_COUNT_HW_CACHE_OP_MAX]
328 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
329 {
330 [ C(L1D) ] = {
331 [ C(OP_READ) ] = {
332 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
333 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
334 },
335 [ C(OP_WRITE) ] = {
336 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
337 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
338 },
339 [ C(OP_PREFETCH) ] = {
340 [ C(RESULT_ACCESS) ] = 0x0,
341 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
342 },
343 },
344 [ C(L1I ) ] = {
345 [ C(OP_READ) ] = {
346 [ C(RESULT_ACCESS) ] = 0x0,
347 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
348 },
349 [ C(OP_WRITE) ] = {
350 [ C(RESULT_ACCESS) ] = -1,
351 [ C(RESULT_MISS) ] = -1,
352 },
353 [ C(OP_PREFETCH) ] = {
354 [ C(RESULT_ACCESS) ] = 0x0,
355 [ C(RESULT_MISS) ] = 0x0,
356 },
357 },
358 [ C(LL ) ] = {
359 [ C(OP_READ) ] = {
360 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
361 [ C(RESULT_ACCESS) ] = 0x01b7,
362 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
363 [ C(RESULT_MISS) ] = 0x01b7,
364 },
365 [ C(OP_WRITE) ] = {
366 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
367 [ C(RESULT_ACCESS) ] = 0x01b7,
368 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
369 [ C(RESULT_MISS) ] = 0x01b7,
370 },
371 [ C(OP_PREFETCH) ] = {
372 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
373 [ C(RESULT_ACCESS) ] = 0x01b7,
374 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
375 [ C(RESULT_MISS) ] = 0x01b7,
376 },
377 },
378 [ C(DTLB) ] = {
379 [ C(OP_READ) ] = {
380 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
381 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
382 },
383 [ C(OP_WRITE) ] = {
384 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
385 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
386 },
387 [ C(OP_PREFETCH) ] = {
388 [ C(RESULT_ACCESS) ] = 0x0,
389 [ C(RESULT_MISS) ] = 0x0,
390 },
391 },
392 [ C(ITLB) ] = {
393 [ C(OP_READ) ] = {
394 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
395 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
396 },
397 [ C(OP_WRITE) ] = {
398 [ C(RESULT_ACCESS) ] = -1,
399 [ C(RESULT_MISS) ] = -1,
400 },
401 [ C(OP_PREFETCH) ] = {
402 [ C(RESULT_ACCESS) ] = -1,
403 [ C(RESULT_MISS) ] = -1,
404 },
405 },
406 [ C(BPU ) ] = {
407 [ C(OP_READ) ] = {
408 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
409 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
410 },
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = -1,
413 [ C(RESULT_MISS) ] = -1,
414 },
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = -1,
417 [ C(RESULT_MISS) ] = -1,
418 },
419 },
420 [ C(NODE) ] = {
421 [ C(OP_READ) ] = {
422 [ C(RESULT_ACCESS) ] = 0x01b7,
423 [ C(RESULT_MISS) ] = 0x01b7,
424 },
425 [ C(OP_WRITE) ] = {
426 [ C(RESULT_ACCESS) ] = 0x01b7,
427 [ C(RESULT_MISS) ] = 0x01b7,
428 },
429 [ C(OP_PREFETCH) ] = {
430 [ C(RESULT_ACCESS) ] = 0x01b7,
431 [ C(RESULT_MISS) ] = 0x01b7,
432 },
433 },
434
435 };
436
437 /*
438 * Notes on the events:
439 * - data reads do not include code reads (comparable to earlier tables)
440 * - data counts include speculative execution (except L1 write, dtlb, bpu)
441 * - remote node access includes remote memory, remote cache, remote mmio.
442 * - prefetches are not included in the counts because they are not
443 * reliably counted.
444 */
445
446 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
447 #define HSW_DEMAND_RFO BIT_ULL(1)
448 #define HSW_ANY_RESPONSE BIT_ULL(16)
449 #define HSW_SUPPLIER_NONE BIT_ULL(17)
450 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
451 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
452 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
453 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
454 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
455 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
456 HSW_L3_MISS_REMOTE_HOP2P)
457 #define HSW_SNOOP_NONE BIT_ULL(31)
458 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
459 #define HSW_SNOOP_MISS BIT_ULL(33)
460 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
461 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
462 #define HSW_SNOOP_HITM BIT_ULL(36)
463 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
464 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
465 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
466 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
467 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
468 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
469 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
470 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
471 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
472 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
473 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
474
475 #define BDW_L3_MISS_LOCAL BIT(26)
476 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
477 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
478 HSW_L3_MISS_REMOTE_HOP2P)
479
480
481 static __initconst const u64 hsw_hw_cache_event_ids
482 [PERF_COUNT_HW_CACHE_MAX]
483 [PERF_COUNT_HW_CACHE_OP_MAX]
484 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
485 {
486 [ C(L1D ) ] = {
487 [ C(OP_READ) ] = {
488 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
489 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
490 },
491 [ C(OP_WRITE) ] = {
492 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
493 [ C(RESULT_MISS) ] = 0x0,
494 },
495 [ C(OP_PREFETCH) ] = {
496 [ C(RESULT_ACCESS) ] = 0x0,
497 [ C(RESULT_MISS) ] = 0x0,
498 },
499 },
500 [ C(L1I ) ] = {
501 [ C(OP_READ) ] = {
502 [ C(RESULT_ACCESS) ] = 0x0,
503 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
504 },
505 [ C(OP_WRITE) ] = {
506 [ C(RESULT_ACCESS) ] = -1,
507 [ C(RESULT_MISS) ] = -1,
508 },
509 [ C(OP_PREFETCH) ] = {
510 [ C(RESULT_ACCESS) ] = 0x0,
511 [ C(RESULT_MISS) ] = 0x0,
512 },
513 },
514 [ C(LL ) ] = {
515 [ C(OP_READ) ] = {
516 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
517 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
518 },
519 [ C(OP_WRITE) ] = {
520 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
521 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
522 },
523 [ C(OP_PREFETCH) ] = {
524 [ C(RESULT_ACCESS) ] = 0x0,
525 [ C(RESULT_MISS) ] = 0x0,
526 },
527 },
528 [ C(DTLB) ] = {
529 [ C(OP_READ) ] = {
530 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
531 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
532 },
533 [ C(OP_WRITE) ] = {
534 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
535 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
536 },
537 [ C(OP_PREFETCH) ] = {
538 [ C(RESULT_ACCESS) ] = 0x0,
539 [ C(RESULT_MISS) ] = 0x0,
540 },
541 },
542 [ C(ITLB) ] = {
543 [ C(OP_READ) ] = {
544 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
545 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
546 },
547 [ C(OP_WRITE) ] = {
548 [ C(RESULT_ACCESS) ] = -1,
549 [ C(RESULT_MISS) ] = -1,
550 },
551 [ C(OP_PREFETCH) ] = {
552 [ C(RESULT_ACCESS) ] = -1,
553 [ C(RESULT_MISS) ] = -1,
554 },
555 },
556 [ C(BPU ) ] = {
557 [ C(OP_READ) ] = {
558 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
559 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
560 },
561 [ C(OP_WRITE) ] = {
562 [ C(RESULT_ACCESS) ] = -1,
563 [ C(RESULT_MISS) ] = -1,
564 },
565 [ C(OP_PREFETCH) ] = {
566 [ C(RESULT_ACCESS) ] = -1,
567 [ C(RESULT_MISS) ] = -1,
568 },
569 },
570 [ C(NODE) ] = {
571 [ C(OP_READ) ] = {
572 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
573 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
574 },
575 [ C(OP_WRITE) ] = {
576 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
577 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
578 },
579 [ C(OP_PREFETCH) ] = {
580 [ C(RESULT_ACCESS) ] = 0x0,
581 [ C(RESULT_MISS) ] = 0x0,
582 },
583 },
584 };
585
586 static __initconst const u64 hsw_hw_cache_extra_regs
587 [PERF_COUNT_HW_CACHE_MAX]
588 [PERF_COUNT_HW_CACHE_OP_MAX]
589 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
590 {
591 [ C(LL ) ] = {
592 [ C(OP_READ) ] = {
593 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
594 HSW_LLC_ACCESS,
595 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
596 HSW_L3_MISS|HSW_ANY_SNOOP,
597 },
598 [ C(OP_WRITE) ] = {
599 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
600 HSW_LLC_ACCESS,
601 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
602 HSW_L3_MISS|HSW_ANY_SNOOP,
603 },
604 [ C(OP_PREFETCH) ] = {
605 [ C(RESULT_ACCESS) ] = 0x0,
606 [ C(RESULT_MISS) ] = 0x0,
607 },
608 },
609 [ C(NODE) ] = {
610 [ C(OP_READ) ] = {
611 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
612 HSW_L3_MISS_LOCAL_DRAM|
613 HSW_SNOOP_DRAM,
614 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
615 HSW_L3_MISS_REMOTE|
616 HSW_SNOOP_DRAM,
617 },
618 [ C(OP_WRITE) ] = {
619 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
620 HSW_L3_MISS_LOCAL_DRAM|
621 HSW_SNOOP_DRAM,
622 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
623 HSW_L3_MISS_REMOTE|
624 HSW_SNOOP_DRAM,
625 },
626 [ C(OP_PREFETCH) ] = {
627 [ C(RESULT_ACCESS) ] = 0x0,
628 [ C(RESULT_MISS) ] = 0x0,
629 },
630 },
631 };
632
633 static __initconst const u64 westmere_hw_cache_event_ids
634 [PERF_COUNT_HW_CACHE_MAX]
635 [PERF_COUNT_HW_CACHE_OP_MAX]
636 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
637 {
638 [ C(L1D) ] = {
639 [ C(OP_READ) ] = {
640 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
641 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
642 },
643 [ C(OP_WRITE) ] = {
644 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
645 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
646 },
647 [ C(OP_PREFETCH) ] = {
648 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
649 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
650 },
651 },
652 [ C(L1I ) ] = {
653 [ C(OP_READ) ] = {
654 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
655 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
656 },
657 [ C(OP_WRITE) ] = {
658 [ C(RESULT_ACCESS) ] = -1,
659 [ C(RESULT_MISS) ] = -1,
660 },
661 [ C(OP_PREFETCH) ] = {
662 [ C(RESULT_ACCESS) ] = 0x0,
663 [ C(RESULT_MISS) ] = 0x0,
664 },
665 },
666 [ C(LL ) ] = {
667 [ C(OP_READ) ] = {
668 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
669 [ C(RESULT_ACCESS) ] = 0x01b7,
670 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
671 [ C(RESULT_MISS) ] = 0x01b7,
672 },
673 /*
674 * Use RFO, not WRITEBACK, because a write miss would typically occur
675 * on RFO.
676 */
677 [ C(OP_WRITE) ] = {
678 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
679 [ C(RESULT_ACCESS) ] = 0x01b7,
680 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
681 [ C(RESULT_MISS) ] = 0x01b7,
682 },
683 [ C(OP_PREFETCH) ] = {
684 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
685 [ C(RESULT_ACCESS) ] = 0x01b7,
686 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
687 [ C(RESULT_MISS) ] = 0x01b7,
688 },
689 },
690 [ C(DTLB) ] = {
691 [ C(OP_READ) ] = {
692 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
693 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
694 },
695 [ C(OP_WRITE) ] = {
696 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
697 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
698 },
699 [ C(OP_PREFETCH) ] = {
700 [ C(RESULT_ACCESS) ] = 0x0,
701 [ C(RESULT_MISS) ] = 0x0,
702 },
703 },
704 [ C(ITLB) ] = {
705 [ C(OP_READ) ] = {
706 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
707 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
708 },
709 [ C(OP_WRITE) ] = {
710 [ C(RESULT_ACCESS) ] = -1,
711 [ C(RESULT_MISS) ] = -1,
712 },
713 [ C(OP_PREFETCH) ] = {
714 [ C(RESULT_ACCESS) ] = -1,
715 [ C(RESULT_MISS) ] = -1,
716 },
717 },
718 [ C(BPU ) ] = {
719 [ C(OP_READ) ] = {
720 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
721 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
722 },
723 [ C(OP_WRITE) ] = {
724 [ C(RESULT_ACCESS) ] = -1,
725 [ C(RESULT_MISS) ] = -1,
726 },
727 [ C(OP_PREFETCH) ] = {
728 [ C(RESULT_ACCESS) ] = -1,
729 [ C(RESULT_MISS) ] = -1,
730 },
731 },
732 [ C(NODE) ] = {
733 [ C(OP_READ) ] = {
734 [ C(RESULT_ACCESS) ] = 0x01b7,
735 [ C(RESULT_MISS) ] = 0x01b7,
736 },
737 [ C(OP_WRITE) ] = {
738 [ C(RESULT_ACCESS) ] = 0x01b7,
739 [ C(RESULT_MISS) ] = 0x01b7,
740 },
741 [ C(OP_PREFETCH) ] = {
742 [ C(RESULT_ACCESS) ] = 0x01b7,
743 [ C(RESULT_MISS) ] = 0x01b7,
744 },
745 },
746 };
747
748 /*
749 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
750 * See IA32 SDM Vol 3B 30.6.1.3
751 */
752
753 #define NHM_DMND_DATA_RD (1 << 0)
754 #define NHM_DMND_RFO (1 << 1)
755 #define NHM_DMND_IFETCH (1 << 2)
756 #define NHM_DMND_WB (1 << 3)
757 #define NHM_PF_DATA_RD (1 << 4)
758 #define NHM_PF_DATA_RFO (1 << 5)
759 #define NHM_PF_IFETCH (1 << 6)
760 #define NHM_OFFCORE_OTHER (1 << 7)
761 #define NHM_UNCORE_HIT (1 << 8)
762 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
763 #define NHM_OTHER_CORE_HITM (1 << 10)
764 /* reserved */
765 #define NHM_REMOTE_CACHE_FWD (1 << 12)
766 #define NHM_REMOTE_DRAM (1 << 13)
767 #define NHM_LOCAL_DRAM (1 << 14)
768 #define NHM_NON_DRAM (1 << 15)
769
770 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
771 #define NHM_REMOTE (NHM_REMOTE_DRAM)
772
773 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
774 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
775 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
776
777 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
778 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
779 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
780
781 static __initconst const u64 nehalem_hw_cache_extra_regs
782 [PERF_COUNT_HW_CACHE_MAX]
783 [PERF_COUNT_HW_CACHE_OP_MAX]
784 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
785 {
786 [ C(LL ) ] = {
787 [ C(OP_READ) ] = {
788 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
789 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
790 },
791 [ C(OP_WRITE) ] = {
792 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
793 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
794 },
795 [ C(OP_PREFETCH) ] = {
796 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
797 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
798 },
799 },
800 [ C(NODE) ] = {
801 [ C(OP_READ) ] = {
802 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
803 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
804 },
805 [ C(OP_WRITE) ] = {
806 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
807 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
808 },
809 [ C(OP_PREFETCH) ] = {
810 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
811 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
812 },
813 },
814 };
815
816 static __initconst const u64 nehalem_hw_cache_event_ids
817 [PERF_COUNT_HW_CACHE_MAX]
818 [PERF_COUNT_HW_CACHE_OP_MAX]
819 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
820 {
821 [ C(L1D) ] = {
822 [ C(OP_READ) ] = {
823 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
824 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
825 },
826 [ C(OP_WRITE) ] = {
827 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
828 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
829 },
830 [ C(OP_PREFETCH) ] = {
831 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
832 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
833 },
834 },
835 [ C(L1I ) ] = {
836 [ C(OP_READ) ] = {
837 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
838 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
839 },
840 [ C(OP_WRITE) ] = {
841 [ C(RESULT_ACCESS) ] = -1,
842 [ C(RESULT_MISS) ] = -1,
843 },
844 [ C(OP_PREFETCH) ] = {
845 [ C(RESULT_ACCESS) ] = 0x0,
846 [ C(RESULT_MISS) ] = 0x0,
847 },
848 },
849 [ C(LL ) ] = {
850 [ C(OP_READ) ] = {
851 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852 [ C(RESULT_ACCESS) ] = 0x01b7,
853 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854 [ C(RESULT_MISS) ] = 0x01b7,
855 },
856 /*
857 * Use RFO, not WRITEBACK, because a write miss would typically occur
858 * on RFO.
859 */
860 [ C(OP_WRITE) ] = {
861 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
862 [ C(RESULT_ACCESS) ] = 0x01b7,
863 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
864 [ C(RESULT_MISS) ] = 0x01b7,
865 },
866 [ C(OP_PREFETCH) ] = {
867 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
868 [ C(RESULT_ACCESS) ] = 0x01b7,
869 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
870 [ C(RESULT_MISS) ] = 0x01b7,
871 },
872 },
873 [ C(DTLB) ] = {
874 [ C(OP_READ) ] = {
875 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
876 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
877 },
878 [ C(OP_WRITE) ] = {
879 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
880 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
881 },
882 [ C(OP_PREFETCH) ] = {
883 [ C(RESULT_ACCESS) ] = 0x0,
884 [ C(RESULT_MISS) ] = 0x0,
885 },
886 },
887 [ C(ITLB) ] = {
888 [ C(OP_READ) ] = {
889 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
890 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
891 },
892 [ C(OP_WRITE) ] = {
893 [ C(RESULT_ACCESS) ] = -1,
894 [ C(RESULT_MISS) ] = -1,
895 },
896 [ C(OP_PREFETCH) ] = {
897 [ C(RESULT_ACCESS) ] = -1,
898 [ C(RESULT_MISS) ] = -1,
899 },
900 },
901 [ C(BPU ) ] = {
902 [ C(OP_READ) ] = {
903 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
904 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
905 },
906 [ C(OP_WRITE) ] = {
907 [ C(RESULT_ACCESS) ] = -1,
908 [ C(RESULT_MISS) ] = -1,
909 },
910 [ C(OP_PREFETCH) ] = {
911 [ C(RESULT_ACCESS) ] = -1,
912 [ C(RESULT_MISS) ] = -1,
913 },
914 },
915 [ C(NODE) ] = {
916 [ C(OP_READ) ] = {
917 [ C(RESULT_ACCESS) ] = 0x01b7,
918 [ C(RESULT_MISS) ] = 0x01b7,
919 },
920 [ C(OP_WRITE) ] = {
921 [ C(RESULT_ACCESS) ] = 0x01b7,
922 [ C(RESULT_MISS) ] = 0x01b7,
923 },
924 [ C(OP_PREFETCH) ] = {
925 [ C(RESULT_ACCESS) ] = 0x01b7,
926 [ C(RESULT_MISS) ] = 0x01b7,
927 },
928 },
929 };
930
931 static __initconst const u64 core2_hw_cache_event_ids
932 [PERF_COUNT_HW_CACHE_MAX]
933 [PERF_COUNT_HW_CACHE_OP_MAX]
934 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
935 {
936 [ C(L1D) ] = {
937 [ C(OP_READ) ] = {
938 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
939 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
940 },
941 [ C(OP_WRITE) ] = {
942 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
943 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
944 },
945 [ C(OP_PREFETCH) ] = {
946 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
947 [ C(RESULT_MISS) ] = 0,
948 },
949 },
950 [ C(L1I ) ] = {
951 [ C(OP_READ) ] = {
952 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
953 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
954 },
955 [ C(OP_WRITE) ] = {
956 [ C(RESULT_ACCESS) ] = -1,
957 [ C(RESULT_MISS) ] = -1,
958 },
959 [ C(OP_PREFETCH) ] = {
960 [ C(RESULT_ACCESS) ] = 0,
961 [ C(RESULT_MISS) ] = 0,
962 },
963 },
964 [ C(LL ) ] = {
965 [ C(OP_READ) ] = {
966 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
967 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
968 },
969 [ C(OP_WRITE) ] = {
970 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
971 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
972 },
973 [ C(OP_PREFETCH) ] = {
974 [ C(RESULT_ACCESS) ] = 0,
975 [ C(RESULT_MISS) ] = 0,
976 },
977 },
978 [ C(DTLB) ] = {
979 [ C(OP_READ) ] = {
980 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
981 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
982 },
983 [ C(OP_WRITE) ] = {
984 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
985 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
986 },
987 [ C(OP_PREFETCH) ] = {
988 [ C(RESULT_ACCESS) ] = 0,
989 [ C(RESULT_MISS) ] = 0,
990 },
991 },
992 [ C(ITLB) ] = {
993 [ C(OP_READ) ] = {
994 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
995 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
996 },
997 [ C(OP_WRITE) ] = {
998 [ C(RESULT_ACCESS) ] = -1,
999 [ C(RESULT_MISS) ] = -1,
1000 },
1001 [ C(OP_PREFETCH) ] = {
1002 [ C(RESULT_ACCESS) ] = -1,
1003 [ C(RESULT_MISS) ] = -1,
1004 },
1005 },
1006 [ C(BPU ) ] = {
1007 [ C(OP_READ) ] = {
1008 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1009 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1010 },
1011 [ C(OP_WRITE) ] = {
1012 [ C(RESULT_ACCESS) ] = -1,
1013 [ C(RESULT_MISS) ] = -1,
1014 },
1015 [ C(OP_PREFETCH) ] = {
1016 [ C(RESULT_ACCESS) ] = -1,
1017 [ C(RESULT_MISS) ] = -1,
1018 },
1019 },
1020 };
1021
1022 static __initconst const u64 atom_hw_cache_event_ids
1023 [PERF_COUNT_HW_CACHE_MAX]
1024 [PERF_COUNT_HW_CACHE_OP_MAX]
1025 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1026 {
1027 [ C(L1D) ] = {
1028 [ C(OP_READ) ] = {
1029 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1030 [ C(RESULT_MISS) ] = 0,
1031 },
1032 [ C(OP_WRITE) ] = {
1033 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1034 [ C(RESULT_MISS) ] = 0,
1035 },
1036 [ C(OP_PREFETCH) ] = {
1037 [ C(RESULT_ACCESS) ] = 0x0,
1038 [ C(RESULT_MISS) ] = 0,
1039 },
1040 },
1041 [ C(L1I ) ] = {
1042 [ C(OP_READ) ] = {
1043 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1044 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1045 },
1046 [ C(OP_WRITE) ] = {
1047 [ C(RESULT_ACCESS) ] = -1,
1048 [ C(RESULT_MISS) ] = -1,
1049 },
1050 [ C(OP_PREFETCH) ] = {
1051 [ C(RESULT_ACCESS) ] = 0,
1052 [ C(RESULT_MISS) ] = 0,
1053 },
1054 },
1055 [ C(LL ) ] = {
1056 [ C(OP_READ) ] = {
1057 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1058 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1059 },
1060 [ C(OP_WRITE) ] = {
1061 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1062 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1063 },
1064 [ C(OP_PREFETCH) ] = {
1065 [ C(RESULT_ACCESS) ] = 0,
1066 [ C(RESULT_MISS) ] = 0,
1067 },
1068 },
1069 [ C(DTLB) ] = {
1070 [ C(OP_READ) ] = {
1071 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1072 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1073 },
1074 [ C(OP_WRITE) ] = {
1075 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1076 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1077 },
1078 [ C(OP_PREFETCH) ] = {
1079 [ C(RESULT_ACCESS) ] = 0,
1080 [ C(RESULT_MISS) ] = 0,
1081 },
1082 },
1083 [ C(ITLB) ] = {
1084 [ C(OP_READ) ] = {
1085 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1086 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1087 },
1088 [ C(OP_WRITE) ] = {
1089 [ C(RESULT_ACCESS) ] = -1,
1090 [ C(RESULT_MISS) ] = -1,
1091 },
1092 [ C(OP_PREFETCH) ] = {
1093 [ C(RESULT_ACCESS) ] = -1,
1094 [ C(RESULT_MISS) ] = -1,
1095 },
1096 },
1097 [ C(BPU ) ] = {
1098 [ C(OP_READ) ] = {
1099 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1100 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1101 },
1102 [ C(OP_WRITE) ] = {
1103 [ C(RESULT_ACCESS) ] = -1,
1104 [ C(RESULT_MISS) ] = -1,
1105 },
1106 [ C(OP_PREFETCH) ] = {
1107 [ C(RESULT_ACCESS) ] = -1,
1108 [ C(RESULT_MISS) ] = -1,
1109 },
1110 },
1111 };
1112
1113 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1114 {
1115 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1116 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1117 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1118 EVENT_EXTRA_END
1119 };
1120
1121 #define SLM_DMND_READ SNB_DMND_DATA_RD
1122 #define SLM_DMND_WRITE SNB_DMND_RFO
1123 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1124
1125 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1126 #define SLM_LLC_ACCESS SNB_RESP_ANY
1127 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1128
1129 static __initconst const u64 slm_hw_cache_extra_regs
1130 [PERF_COUNT_HW_CACHE_MAX]
1131 [PERF_COUNT_HW_CACHE_OP_MAX]
1132 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1133 {
1134 [ C(LL ) ] = {
1135 [ C(OP_READ) ] = {
1136 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1137 [ C(RESULT_MISS) ] = 0,
1138 },
1139 [ C(OP_WRITE) ] = {
1140 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1141 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1142 },
1143 [ C(OP_PREFETCH) ] = {
1144 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1145 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1146 },
1147 },
1148 };
1149
1150 static __initconst const u64 slm_hw_cache_event_ids
1151 [PERF_COUNT_HW_CACHE_MAX]
1152 [PERF_COUNT_HW_CACHE_OP_MAX]
1153 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1154 {
1155 [ C(L1D) ] = {
1156 [ C(OP_READ) ] = {
1157 [ C(RESULT_ACCESS) ] = 0,
1158 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1159 },
1160 [ C(OP_WRITE) ] = {
1161 [ C(RESULT_ACCESS) ] = 0,
1162 [ C(RESULT_MISS) ] = 0,
1163 },
1164 [ C(OP_PREFETCH) ] = {
1165 [ C(RESULT_ACCESS) ] = 0,
1166 [ C(RESULT_MISS) ] = 0,
1167 },
1168 },
1169 [ C(L1I ) ] = {
1170 [ C(OP_READ) ] = {
1171 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1172 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1173 },
1174 [ C(OP_WRITE) ] = {
1175 [ C(RESULT_ACCESS) ] = -1,
1176 [ C(RESULT_MISS) ] = -1,
1177 },
1178 [ C(OP_PREFETCH) ] = {
1179 [ C(RESULT_ACCESS) ] = 0,
1180 [ C(RESULT_MISS) ] = 0,
1181 },
1182 },
1183 [ C(LL ) ] = {
1184 [ C(OP_READ) ] = {
1185 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186 [ C(RESULT_ACCESS) ] = 0x01b7,
1187 [ C(RESULT_MISS) ] = 0,
1188 },
1189 [ C(OP_WRITE) ] = {
1190 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1191 [ C(RESULT_ACCESS) ] = 0x01b7,
1192 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1193 [ C(RESULT_MISS) ] = 0x01b7,
1194 },
1195 [ C(OP_PREFETCH) ] = {
1196 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1197 [ C(RESULT_ACCESS) ] = 0x01b7,
1198 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1199 [ C(RESULT_MISS) ] = 0x01b7,
1200 },
1201 },
1202 [ C(DTLB) ] = {
1203 [ C(OP_READ) ] = {
1204 [ C(RESULT_ACCESS) ] = 0,
1205 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1206 },
1207 [ C(OP_WRITE) ] = {
1208 [ C(RESULT_ACCESS) ] = 0,
1209 [ C(RESULT_MISS) ] = 0,
1210 },
1211 [ C(OP_PREFETCH) ] = {
1212 [ C(RESULT_ACCESS) ] = 0,
1213 [ C(RESULT_MISS) ] = 0,
1214 },
1215 },
1216 [ C(ITLB) ] = {
1217 [ C(OP_READ) ] = {
1218 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1219 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1220 },
1221 [ C(OP_WRITE) ] = {
1222 [ C(RESULT_ACCESS) ] = -1,
1223 [ C(RESULT_MISS) ] = -1,
1224 },
1225 [ C(OP_PREFETCH) ] = {
1226 [ C(RESULT_ACCESS) ] = -1,
1227 [ C(RESULT_MISS) ] = -1,
1228 },
1229 },
1230 [ C(BPU ) ] = {
1231 [ C(OP_READ) ] = {
1232 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1233 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1234 },
1235 [ C(OP_WRITE) ] = {
1236 [ C(RESULT_ACCESS) ] = -1,
1237 [ C(RESULT_MISS) ] = -1,
1238 },
1239 [ C(OP_PREFETCH) ] = {
1240 [ C(RESULT_ACCESS) ] = -1,
1241 [ C(RESULT_MISS) ] = -1,
1242 },
1243 },
1244 };
1245
1246 /*
1247 * Use from PMIs where the LBRs are already disabled.
1248 */
1249 static void __intel_pmu_disable_all(void)
1250 {
1251 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1252
1253 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1254
1255 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1256 intel_pmu_disable_bts();
1257 else
1258 intel_bts_disable_local();
1259
1260 intel_pmu_pebs_disable_all();
1261 }
1262
1263 static void intel_pmu_disable_all(void)
1264 {
1265 __intel_pmu_disable_all();
1266 intel_pmu_lbr_disable_all();
1267 }
1268
1269 static void __intel_pmu_enable_all(int added, bool pmi)
1270 {
1271 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1272
1273 intel_pmu_pebs_enable_all();
1274 intel_pmu_lbr_enable_all(pmi);
1275 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1276 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1277
1278 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1279 struct perf_event *event =
1280 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1281
1282 if (WARN_ON_ONCE(!event))
1283 return;
1284
1285 intel_pmu_enable_bts(event->hw.config);
1286 } else
1287 intel_bts_enable_local();
1288 }
1289
1290 static void intel_pmu_enable_all(int added)
1291 {
1292 __intel_pmu_enable_all(added, false);
1293 }
1294
1295 /*
1296 * Workaround for:
1297 * Intel Errata AAK100 (model 26)
1298 * Intel Errata AAP53 (model 30)
1299 * Intel Errata BD53 (model 44)
1300 *
1301 * The official story:
1302 * These chips need to be 'reset' when adding counters by programming the
1303 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1304 * in sequence on the same PMC or on different PMCs.
1305 *
1306 * In practise it appears some of these events do in fact count, and
1307 * we need to programm all 4 events.
1308 */
1309 static void intel_pmu_nhm_workaround(void)
1310 {
1311 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1312 static const unsigned long nhm_magic[4] = {
1313 0x4300B5,
1314 0x4300D2,
1315 0x4300B1,
1316 0x4300B1
1317 };
1318 struct perf_event *event;
1319 int i;
1320
1321 /*
1322 * The Errata requires below steps:
1323 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1324 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1325 * the corresponding PMCx;
1326 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1327 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1328 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1329 */
1330
1331 /*
1332 * The real steps we choose are a little different from above.
1333 * A) To reduce MSR operations, we don't run step 1) as they
1334 * are already cleared before this function is called;
1335 * B) Call x86_perf_event_update to save PMCx before configuring
1336 * PERFEVTSELx with magic number;
1337 * C) With step 5), we do clear only when the PERFEVTSELx is
1338 * not used currently.
1339 * D) Call x86_perf_event_set_period to restore PMCx;
1340 */
1341
1342 /* We always operate 4 pairs of PERF Counters */
1343 for (i = 0; i < 4; i++) {
1344 event = cpuc->events[i];
1345 if (event)
1346 x86_perf_event_update(event);
1347 }
1348
1349 for (i = 0; i < 4; i++) {
1350 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1351 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1352 }
1353
1354 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1355 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1356
1357 for (i = 0; i < 4; i++) {
1358 event = cpuc->events[i];
1359
1360 if (event) {
1361 x86_perf_event_set_period(event);
1362 __x86_pmu_enable_event(&event->hw,
1363 ARCH_PERFMON_EVENTSEL_ENABLE);
1364 } else
1365 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1366 }
1367 }
1368
1369 static void intel_pmu_nhm_enable_all(int added)
1370 {
1371 if (added)
1372 intel_pmu_nhm_workaround();
1373 intel_pmu_enable_all(added);
1374 }
1375
1376 static inline u64 intel_pmu_get_status(void)
1377 {
1378 u64 status;
1379
1380 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1381
1382 return status;
1383 }
1384
1385 static inline void intel_pmu_ack_status(u64 ack)
1386 {
1387 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1388 }
1389
1390 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1391 {
1392 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1393 u64 ctrl_val, mask;
1394
1395 mask = 0xfULL << (idx * 4);
1396
1397 rdmsrl(hwc->config_base, ctrl_val);
1398 ctrl_val &= ~mask;
1399 wrmsrl(hwc->config_base, ctrl_val);
1400 }
1401
1402 static inline bool event_is_checkpointed(struct perf_event *event)
1403 {
1404 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1405 }
1406
1407 static void intel_pmu_disable_event(struct perf_event *event)
1408 {
1409 struct hw_perf_event *hwc = &event->hw;
1410 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1411
1412 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1413 intel_pmu_disable_bts();
1414 intel_pmu_drain_bts_buffer();
1415 return;
1416 }
1417
1418 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1419 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1420 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1421
1422 /*
1423 * must disable before any actual event
1424 * because any event may be combined with LBR
1425 */
1426 if (needs_branch_stack(event))
1427 intel_pmu_lbr_disable(event);
1428
1429 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1430 intel_pmu_disable_fixed(hwc);
1431 return;
1432 }
1433
1434 x86_pmu_disable_event(event);
1435
1436 if (unlikely(event->attr.precise_ip))
1437 intel_pmu_pebs_disable(event);
1438 }
1439
1440 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1441 {
1442 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1443 u64 ctrl_val, bits, mask;
1444
1445 /*
1446 * Enable IRQ generation (0x8),
1447 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1448 * if requested:
1449 */
1450 bits = 0x8ULL;
1451 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1452 bits |= 0x2;
1453 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1454 bits |= 0x1;
1455
1456 /*
1457 * ANY bit is supported in v3 and up
1458 */
1459 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1460 bits |= 0x4;
1461
1462 bits <<= (idx * 4);
1463 mask = 0xfULL << (idx * 4);
1464
1465 rdmsrl(hwc->config_base, ctrl_val);
1466 ctrl_val &= ~mask;
1467 ctrl_val |= bits;
1468 wrmsrl(hwc->config_base, ctrl_val);
1469 }
1470
1471 static void intel_pmu_enable_event(struct perf_event *event)
1472 {
1473 struct hw_perf_event *hwc = &event->hw;
1474 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1475
1476 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1477 if (!__this_cpu_read(cpu_hw_events.enabled))
1478 return;
1479
1480 intel_pmu_enable_bts(hwc->config);
1481 return;
1482 }
1483 /*
1484 * must enabled before any actual event
1485 * because any event may be combined with LBR
1486 */
1487 if (needs_branch_stack(event))
1488 intel_pmu_lbr_enable(event);
1489
1490 if (event->attr.exclude_host)
1491 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1492 if (event->attr.exclude_guest)
1493 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1494
1495 if (unlikely(event_is_checkpointed(event)))
1496 cpuc->intel_cp_status |= (1ull << hwc->idx);
1497
1498 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1499 intel_pmu_enable_fixed(hwc);
1500 return;
1501 }
1502
1503 if (unlikely(event->attr.precise_ip))
1504 intel_pmu_pebs_enable(event);
1505
1506 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1507 }
1508
1509 /*
1510 * Save and restart an expired event. Called by NMI contexts,
1511 * so it has to be careful about preempting normal event ops:
1512 */
1513 int intel_pmu_save_and_restart(struct perf_event *event)
1514 {
1515 x86_perf_event_update(event);
1516 /*
1517 * For a checkpointed counter always reset back to 0. This
1518 * avoids a situation where the counter overflows, aborts the
1519 * transaction and is then set back to shortly before the
1520 * overflow, and overflows and aborts again.
1521 */
1522 if (unlikely(event_is_checkpointed(event))) {
1523 /* No race with NMIs because the counter should not be armed */
1524 wrmsrl(event->hw.event_base, 0);
1525 local64_set(&event->hw.prev_count, 0);
1526 }
1527 return x86_perf_event_set_period(event);
1528 }
1529
1530 static void intel_pmu_reset(void)
1531 {
1532 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1533 unsigned long flags;
1534 int idx;
1535
1536 if (!x86_pmu.num_counters)
1537 return;
1538
1539 local_irq_save(flags);
1540
1541 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1542
1543 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1544 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1545 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1546 }
1547 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1548 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1549
1550 if (ds)
1551 ds->bts_index = ds->bts_buffer_base;
1552
1553 /* Ack all overflows and disable fixed counters */
1554 if (x86_pmu.version >= 2) {
1555 intel_pmu_ack_status(intel_pmu_get_status());
1556 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1557 }
1558
1559 /* Reset LBRs and LBR freezing */
1560 if (x86_pmu.lbr_nr) {
1561 update_debugctlmsr(get_debugctlmsr() &
1562 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1563 }
1564
1565 local_irq_restore(flags);
1566 }
1567
1568 /*
1569 * This handler is triggered by the local APIC, so the APIC IRQ handling
1570 * rules apply:
1571 */
1572 static int intel_pmu_handle_irq(struct pt_regs *regs)
1573 {
1574 struct perf_sample_data data;
1575 struct cpu_hw_events *cpuc;
1576 int bit, loops;
1577 u64 status;
1578 int handled;
1579
1580 cpuc = this_cpu_ptr(&cpu_hw_events);
1581
1582 /*
1583 * No known reason to not always do late ACK,
1584 * but just in case do it opt-in.
1585 */
1586 if (!x86_pmu.late_ack)
1587 apic_write(APIC_LVTPC, APIC_DM_NMI);
1588 __intel_pmu_disable_all();
1589 handled = intel_pmu_drain_bts_buffer();
1590 handled += intel_bts_interrupt();
1591 status = intel_pmu_get_status();
1592 if (!status)
1593 goto done;
1594
1595 loops = 0;
1596 again:
1597 intel_pmu_ack_status(status);
1598 if (++loops > 100) {
1599 static bool warned = false;
1600 if (!warned) {
1601 WARN(1, "perfevents: irq loop stuck!\n");
1602 perf_event_print_debug();
1603 warned = true;
1604 }
1605 intel_pmu_reset();
1606 goto done;
1607 }
1608
1609 inc_irq_stat(apic_perf_irqs);
1610
1611 intel_pmu_lbr_read();
1612
1613 /*
1614 * CondChgd bit 63 doesn't mean any overflow status. Ignore
1615 * and clear the bit.
1616 */
1617 if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1618 if (!status)
1619 goto done;
1620 }
1621
1622 /*
1623 * PEBS overflow sets bit 62 in the global status register
1624 */
1625 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1626 handled++;
1627 x86_pmu.drain_pebs(regs);
1628 }
1629
1630 /*
1631 * Intel PT
1632 */
1633 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1634 handled++;
1635 intel_pt_interrupt();
1636 }
1637
1638 /*
1639 * Checkpointed counters can lead to 'spurious' PMIs because the
1640 * rollback caused by the PMI will have cleared the overflow status
1641 * bit. Therefore always force probe these counters.
1642 */
1643 status |= cpuc->intel_cp_status;
1644
1645 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1646 struct perf_event *event = cpuc->events[bit];
1647
1648 handled++;
1649
1650 if (!test_bit(bit, cpuc->active_mask))
1651 continue;
1652
1653 if (!intel_pmu_save_and_restart(event))
1654 continue;
1655
1656 perf_sample_data_init(&data, 0, event->hw.last_period);
1657
1658 if (has_branch_stack(event))
1659 data.br_stack = &cpuc->lbr_stack;
1660
1661 if (perf_event_overflow(event, &data, regs))
1662 x86_pmu_stop(event, 0);
1663 }
1664
1665 /*
1666 * Repeat if there is more work to be done:
1667 */
1668 status = intel_pmu_get_status();
1669 if (status)
1670 goto again;
1671
1672 done:
1673 __intel_pmu_enable_all(0, true);
1674 /*
1675 * Only unmask the NMI after the overflow counters
1676 * have been reset. This avoids spurious NMIs on
1677 * Haswell CPUs.
1678 */
1679 if (x86_pmu.late_ack)
1680 apic_write(APIC_LVTPC, APIC_DM_NMI);
1681 return handled;
1682 }
1683
1684 static struct event_constraint *
1685 intel_bts_constraints(struct perf_event *event)
1686 {
1687 struct hw_perf_event *hwc = &event->hw;
1688 unsigned int hw_event, bts_event;
1689
1690 if (event->attr.freq)
1691 return NULL;
1692
1693 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1694 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1695
1696 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1697 return &bts_constraint;
1698
1699 return NULL;
1700 }
1701
1702 static int intel_alt_er(int idx, u64 config)
1703 {
1704 int alt_idx;
1705 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1706 return idx;
1707
1708 if (idx == EXTRA_REG_RSP_0)
1709 alt_idx = EXTRA_REG_RSP_1;
1710
1711 if (idx == EXTRA_REG_RSP_1)
1712 alt_idx = EXTRA_REG_RSP_0;
1713
1714 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1715 return idx;
1716
1717 return alt_idx;
1718 }
1719
1720 static void intel_fixup_er(struct perf_event *event, int idx)
1721 {
1722 event->hw.extra_reg.idx = idx;
1723
1724 if (idx == EXTRA_REG_RSP_0) {
1725 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1726 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1727 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1728 } else if (idx == EXTRA_REG_RSP_1) {
1729 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1730 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1731 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1732 }
1733 }
1734
1735 /*
1736 * manage allocation of shared extra msr for certain events
1737 *
1738 * sharing can be:
1739 * per-cpu: to be shared between the various events on a single PMU
1740 * per-core: per-cpu + shared by HT threads
1741 */
1742 static struct event_constraint *
1743 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1744 struct perf_event *event,
1745 struct hw_perf_event_extra *reg)
1746 {
1747 struct event_constraint *c = &emptyconstraint;
1748 struct er_account *era;
1749 unsigned long flags;
1750 int idx = reg->idx;
1751
1752 /*
1753 * reg->alloc can be set due to existing state, so for fake cpuc we
1754 * need to ignore this, otherwise we might fail to allocate proper fake
1755 * state for this extra reg constraint. Also see the comment below.
1756 */
1757 if (reg->alloc && !cpuc->is_fake)
1758 return NULL; /* call x86_get_event_constraint() */
1759
1760 again:
1761 era = &cpuc->shared_regs->regs[idx];
1762 /*
1763 * we use spin_lock_irqsave() to avoid lockdep issues when
1764 * passing a fake cpuc
1765 */
1766 raw_spin_lock_irqsave(&era->lock, flags);
1767
1768 if (!atomic_read(&era->ref) || era->config == reg->config) {
1769
1770 /*
1771 * If its a fake cpuc -- as per validate_{group,event}() we
1772 * shouldn't touch event state and we can avoid doing so
1773 * since both will only call get_event_constraints() once
1774 * on each event, this avoids the need for reg->alloc.
1775 *
1776 * Not doing the ER fixup will only result in era->reg being
1777 * wrong, but since we won't actually try and program hardware
1778 * this isn't a problem either.
1779 */
1780 if (!cpuc->is_fake) {
1781 if (idx != reg->idx)
1782 intel_fixup_er(event, idx);
1783
1784 /*
1785 * x86_schedule_events() can call get_event_constraints()
1786 * multiple times on events in the case of incremental
1787 * scheduling(). reg->alloc ensures we only do the ER
1788 * allocation once.
1789 */
1790 reg->alloc = 1;
1791 }
1792
1793 /* lock in msr value */
1794 era->config = reg->config;
1795 era->reg = reg->reg;
1796
1797 /* one more user */
1798 atomic_inc(&era->ref);
1799
1800 /*
1801 * need to call x86_get_event_constraint()
1802 * to check if associated event has constraints
1803 */
1804 c = NULL;
1805 } else {
1806 idx = intel_alt_er(idx, reg->config);
1807 if (idx != reg->idx) {
1808 raw_spin_unlock_irqrestore(&era->lock, flags);
1809 goto again;
1810 }
1811 }
1812 raw_spin_unlock_irqrestore(&era->lock, flags);
1813
1814 return c;
1815 }
1816
1817 static void
1818 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1819 struct hw_perf_event_extra *reg)
1820 {
1821 struct er_account *era;
1822
1823 /*
1824 * Only put constraint if extra reg was actually allocated. Also takes
1825 * care of event which do not use an extra shared reg.
1826 *
1827 * Also, if this is a fake cpuc we shouldn't touch any event state
1828 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1829 * either since it'll be thrown out.
1830 */
1831 if (!reg->alloc || cpuc->is_fake)
1832 return;
1833
1834 era = &cpuc->shared_regs->regs[reg->idx];
1835
1836 /* one fewer user */
1837 atomic_dec(&era->ref);
1838
1839 /* allocate again next time */
1840 reg->alloc = 0;
1841 }
1842
1843 static struct event_constraint *
1844 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1845 struct perf_event *event)
1846 {
1847 struct event_constraint *c = NULL, *d;
1848 struct hw_perf_event_extra *xreg, *breg;
1849
1850 xreg = &event->hw.extra_reg;
1851 if (xreg->idx != EXTRA_REG_NONE) {
1852 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1853 if (c == &emptyconstraint)
1854 return c;
1855 }
1856 breg = &event->hw.branch_reg;
1857 if (breg->idx != EXTRA_REG_NONE) {
1858 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1859 if (d == &emptyconstraint) {
1860 __intel_shared_reg_put_constraints(cpuc, xreg);
1861 c = d;
1862 }
1863 }
1864 return c;
1865 }
1866
1867 struct event_constraint *
1868 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1869 struct perf_event *event)
1870 {
1871 struct event_constraint *c;
1872
1873 if (x86_pmu.event_constraints) {
1874 for_each_event_constraint(c, x86_pmu.event_constraints) {
1875 if ((event->hw.config & c->cmask) == c->code) {
1876 event->hw.flags |= c->flags;
1877 return c;
1878 }
1879 }
1880 }
1881
1882 return &unconstrained;
1883 }
1884
1885 static struct event_constraint *
1886 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1887 struct perf_event *event)
1888 {
1889 struct event_constraint *c;
1890
1891 c = intel_bts_constraints(event);
1892 if (c)
1893 return c;
1894
1895 c = intel_shared_regs_constraints(cpuc, event);
1896 if (c)
1897 return c;
1898
1899 c = intel_pebs_constraints(event);
1900 if (c)
1901 return c;
1902
1903 return x86_get_event_constraints(cpuc, idx, event);
1904 }
1905
1906 static void
1907 intel_start_scheduling(struct cpu_hw_events *cpuc)
1908 {
1909 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1910 struct intel_excl_states *xl;
1911 int tid = cpuc->excl_thread_id;
1912
1913 /*
1914 * nothing needed if in group validation mode
1915 */
1916 if (cpuc->is_fake || !is_ht_workaround_enabled())
1917 return;
1918
1919 /*
1920 * no exclusion needed
1921 */
1922 if (WARN_ON_ONCE(!excl_cntrs))
1923 return;
1924
1925 xl = &excl_cntrs->states[tid];
1926
1927 xl->sched_started = true;
1928 /*
1929 * lock shared state until we are done scheduling
1930 * in stop_event_scheduling()
1931 * makes scheduling appear as a transaction
1932 */
1933 raw_spin_lock(&excl_cntrs->lock);
1934 }
1935
1936 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
1937 {
1938 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1939 struct event_constraint *c = cpuc->event_constraint[idx];
1940 struct intel_excl_states *xl;
1941 int tid = cpuc->excl_thread_id;
1942
1943 if (cpuc->is_fake || !is_ht_workaround_enabled())
1944 return;
1945
1946 if (WARN_ON_ONCE(!excl_cntrs))
1947 return;
1948
1949 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
1950 return;
1951
1952 xl = &excl_cntrs->states[tid];
1953
1954 lockdep_assert_held(&excl_cntrs->lock);
1955
1956 if (c->flags & PERF_X86_EVENT_EXCL)
1957 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
1958 else
1959 xl->state[cntr] = INTEL_EXCL_SHARED;
1960 }
1961
1962 static void
1963 intel_stop_scheduling(struct cpu_hw_events *cpuc)
1964 {
1965 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1966 struct intel_excl_states *xl;
1967 int tid = cpuc->excl_thread_id;
1968
1969 /*
1970 * nothing needed if in group validation mode
1971 */
1972 if (cpuc->is_fake || !is_ht_workaround_enabled())
1973 return;
1974 /*
1975 * no exclusion needed
1976 */
1977 if (WARN_ON_ONCE(!excl_cntrs))
1978 return;
1979
1980 xl = &excl_cntrs->states[tid];
1981
1982 xl->sched_started = false;
1983 /*
1984 * release shared state lock (acquired in intel_start_scheduling())
1985 */
1986 raw_spin_unlock(&excl_cntrs->lock);
1987 }
1988
1989 static struct event_constraint *
1990 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
1991 int idx, struct event_constraint *c)
1992 {
1993 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1994 struct intel_excl_states *xlo;
1995 int tid = cpuc->excl_thread_id;
1996 int is_excl, i;
1997
1998 /*
1999 * validating a group does not require
2000 * enforcing cross-thread exclusion
2001 */
2002 if (cpuc->is_fake || !is_ht_workaround_enabled())
2003 return c;
2004
2005 /*
2006 * no exclusion needed
2007 */
2008 if (WARN_ON_ONCE(!excl_cntrs))
2009 return c;
2010
2011 /*
2012 * because we modify the constraint, we need
2013 * to make a copy. Static constraints come
2014 * from static const tables.
2015 *
2016 * only needed when constraint has not yet
2017 * been cloned (marked dynamic)
2018 */
2019 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2020 struct event_constraint *cx;
2021
2022 /*
2023 * grab pre-allocated constraint entry
2024 */
2025 cx = &cpuc->constraint_list[idx];
2026
2027 /*
2028 * initialize dynamic constraint
2029 * with static constraint
2030 */
2031 *cx = *c;
2032
2033 /*
2034 * mark constraint as dynamic, so we
2035 * can free it later on
2036 */
2037 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2038 c = cx;
2039 }
2040
2041 /*
2042 * From here on, the constraint is dynamic.
2043 * Either it was just allocated above, or it
2044 * was allocated during a earlier invocation
2045 * of this function
2046 */
2047
2048 /*
2049 * state of sibling HT
2050 */
2051 xlo = &excl_cntrs->states[tid ^ 1];
2052
2053 /*
2054 * event requires exclusive counter access
2055 * across HT threads
2056 */
2057 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2058 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2059 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2060 if (!cpuc->n_excl++)
2061 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2062 }
2063
2064 /*
2065 * Modify static constraint with current dynamic
2066 * state of thread
2067 *
2068 * EXCLUSIVE: sibling counter measuring exclusive event
2069 * SHARED : sibling counter measuring non-exclusive event
2070 * UNUSED : sibling counter unused
2071 */
2072 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2073 /*
2074 * exclusive event in sibling counter
2075 * our corresponding counter cannot be used
2076 * regardless of our event
2077 */
2078 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2079 __clear_bit(i, c->idxmsk);
2080 /*
2081 * if measuring an exclusive event, sibling
2082 * measuring non-exclusive, then counter cannot
2083 * be used
2084 */
2085 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2086 __clear_bit(i, c->idxmsk);
2087 }
2088
2089 /*
2090 * recompute actual bit weight for scheduling algorithm
2091 */
2092 c->weight = hweight64(c->idxmsk64);
2093
2094 /*
2095 * if we return an empty mask, then switch
2096 * back to static empty constraint to avoid
2097 * the cost of freeing later on
2098 */
2099 if (c->weight == 0)
2100 c = &emptyconstraint;
2101
2102 return c;
2103 }
2104
2105 static struct event_constraint *
2106 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2107 struct perf_event *event)
2108 {
2109 struct event_constraint *c1 = cpuc->event_constraint[idx];
2110 struct event_constraint *c2;
2111
2112 /*
2113 * first time only
2114 * - static constraint: no change across incremental scheduling calls
2115 * - dynamic constraint: handled by intel_get_excl_constraints()
2116 */
2117 c2 = __intel_get_event_constraints(cpuc, idx, event);
2118 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2119 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2120 c1->weight = c2->weight;
2121 c2 = c1;
2122 }
2123
2124 if (cpuc->excl_cntrs)
2125 return intel_get_excl_constraints(cpuc, event, idx, c2);
2126
2127 return c2;
2128 }
2129
2130 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2131 struct perf_event *event)
2132 {
2133 struct hw_perf_event *hwc = &event->hw;
2134 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2135 int tid = cpuc->excl_thread_id;
2136 struct intel_excl_states *xl;
2137
2138 /*
2139 * nothing needed if in group validation mode
2140 */
2141 if (cpuc->is_fake)
2142 return;
2143
2144 if (WARN_ON_ONCE(!excl_cntrs))
2145 return;
2146
2147 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2148 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2149 if (!--cpuc->n_excl)
2150 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2151 }
2152
2153 /*
2154 * If event was actually assigned, then mark the counter state as
2155 * unused now.
2156 */
2157 if (hwc->idx >= 0) {
2158 xl = &excl_cntrs->states[tid];
2159
2160 /*
2161 * put_constraint may be called from x86_schedule_events()
2162 * which already has the lock held so here make locking
2163 * conditional.
2164 */
2165 if (!xl->sched_started)
2166 raw_spin_lock(&excl_cntrs->lock);
2167
2168 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2169
2170 if (!xl->sched_started)
2171 raw_spin_unlock(&excl_cntrs->lock);
2172 }
2173 }
2174
2175 static void
2176 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2177 struct perf_event *event)
2178 {
2179 struct hw_perf_event_extra *reg;
2180
2181 reg = &event->hw.extra_reg;
2182 if (reg->idx != EXTRA_REG_NONE)
2183 __intel_shared_reg_put_constraints(cpuc, reg);
2184
2185 reg = &event->hw.branch_reg;
2186 if (reg->idx != EXTRA_REG_NONE)
2187 __intel_shared_reg_put_constraints(cpuc, reg);
2188 }
2189
2190 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2191 struct perf_event *event)
2192 {
2193 intel_put_shared_regs_event_constraints(cpuc, event);
2194
2195 /*
2196 * is PMU has exclusive counter restrictions, then
2197 * all events are subject to and must call the
2198 * put_excl_constraints() routine
2199 */
2200 if (cpuc->excl_cntrs)
2201 intel_put_excl_constraints(cpuc, event);
2202 }
2203
2204 static void intel_pebs_aliases_core2(struct perf_event *event)
2205 {
2206 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2207 /*
2208 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2209 * (0x003c) so that we can use it with PEBS.
2210 *
2211 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2212 * PEBS capable. However we can use INST_RETIRED.ANY_P
2213 * (0x00c0), which is a PEBS capable event, to get the same
2214 * count.
2215 *
2216 * INST_RETIRED.ANY_P counts the number of cycles that retires
2217 * CNTMASK instructions. By setting CNTMASK to a value (16)
2218 * larger than the maximum number of instructions that can be
2219 * retired per cycle (4) and then inverting the condition, we
2220 * count all cycles that retire 16 or less instructions, which
2221 * is every cycle.
2222 *
2223 * Thereby we gain a PEBS capable cycle counter.
2224 */
2225 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2226
2227 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2228 event->hw.config = alt_config;
2229 }
2230 }
2231
2232 static void intel_pebs_aliases_snb(struct perf_event *event)
2233 {
2234 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2235 /*
2236 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2237 * (0x003c) so that we can use it with PEBS.
2238 *
2239 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2240 * PEBS capable. However we can use UOPS_RETIRED.ALL
2241 * (0x01c2), which is a PEBS capable event, to get the same
2242 * count.
2243 *
2244 * UOPS_RETIRED.ALL counts the number of cycles that retires
2245 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2246 * larger than the maximum number of micro-ops that can be
2247 * retired per cycle (4) and then inverting the condition, we
2248 * count all cycles that retire 16 or less micro-ops, which
2249 * is every cycle.
2250 *
2251 * Thereby we gain a PEBS capable cycle counter.
2252 */
2253 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2254
2255 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2256 event->hw.config = alt_config;
2257 }
2258 }
2259
2260 static int intel_pmu_hw_config(struct perf_event *event)
2261 {
2262 int ret = x86_pmu_hw_config(event);
2263
2264 if (ret)
2265 return ret;
2266
2267 if (event->attr.precise_ip) {
2268 if (!event->attr.freq) {
2269 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2270 if (!(event->attr.sample_type & ~PEBS_FREERUNNING_FLAGS))
2271 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2272 }
2273 if (x86_pmu.pebs_aliases)
2274 x86_pmu.pebs_aliases(event);
2275 }
2276
2277 if (needs_branch_stack(event)) {
2278 ret = intel_pmu_setup_lbr_filter(event);
2279 if (ret)
2280 return ret;
2281
2282 /*
2283 * BTS is set up earlier in this path, so don't account twice
2284 */
2285 if (!intel_pmu_has_bts(event)) {
2286 /* disallow lbr if conflicting events are present */
2287 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2288 return -EBUSY;
2289
2290 event->destroy = hw_perf_lbr_event_destroy;
2291 }
2292 }
2293
2294 if (event->attr.type != PERF_TYPE_RAW)
2295 return 0;
2296
2297 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2298 return 0;
2299
2300 if (x86_pmu.version < 3)
2301 return -EINVAL;
2302
2303 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2304 return -EACCES;
2305
2306 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2307
2308 return 0;
2309 }
2310
2311 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2312 {
2313 if (x86_pmu.guest_get_msrs)
2314 return x86_pmu.guest_get_msrs(nr);
2315 *nr = 0;
2316 return NULL;
2317 }
2318 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2319
2320 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2321 {
2322 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2323 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2324
2325 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2326 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2327 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2328 /*
2329 * If PMU counter has PEBS enabled it is not enough to disable counter
2330 * on a guest entry since PEBS memory write can overshoot guest entry
2331 * and corrupt guest memory. Disabling PEBS solves the problem.
2332 */
2333 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2334 arr[1].host = cpuc->pebs_enabled;
2335 arr[1].guest = 0;
2336
2337 *nr = 2;
2338 return arr;
2339 }
2340
2341 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2342 {
2343 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2344 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2345 int idx;
2346
2347 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2348 struct perf_event *event = cpuc->events[idx];
2349
2350 arr[idx].msr = x86_pmu_config_addr(idx);
2351 arr[idx].host = arr[idx].guest = 0;
2352
2353 if (!test_bit(idx, cpuc->active_mask))
2354 continue;
2355
2356 arr[idx].host = arr[idx].guest =
2357 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2358
2359 if (event->attr.exclude_host)
2360 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2361 else if (event->attr.exclude_guest)
2362 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2363 }
2364
2365 *nr = x86_pmu.num_counters;
2366 return arr;
2367 }
2368
2369 static void core_pmu_enable_event(struct perf_event *event)
2370 {
2371 if (!event->attr.exclude_host)
2372 x86_pmu_enable_event(event);
2373 }
2374
2375 static void core_pmu_enable_all(int added)
2376 {
2377 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2378 int idx;
2379
2380 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2381 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2382
2383 if (!test_bit(idx, cpuc->active_mask) ||
2384 cpuc->events[idx]->attr.exclude_host)
2385 continue;
2386
2387 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2388 }
2389 }
2390
2391 static int hsw_hw_config(struct perf_event *event)
2392 {
2393 int ret = intel_pmu_hw_config(event);
2394
2395 if (ret)
2396 return ret;
2397 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2398 return 0;
2399 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2400
2401 /*
2402 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2403 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2404 * this combination.
2405 */
2406 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2407 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2408 event->attr.precise_ip > 0))
2409 return -EOPNOTSUPP;
2410
2411 if (event_is_checkpointed(event)) {
2412 /*
2413 * Sampling of checkpointed events can cause situations where
2414 * the CPU constantly aborts because of a overflow, which is
2415 * then checkpointed back and ignored. Forbid checkpointing
2416 * for sampling.
2417 *
2418 * But still allow a long sampling period, so that perf stat
2419 * from KVM works.
2420 */
2421 if (event->attr.sample_period > 0 &&
2422 event->attr.sample_period < 0x7fffffff)
2423 return -EOPNOTSUPP;
2424 }
2425 return 0;
2426 }
2427
2428 static struct event_constraint counter2_constraint =
2429 EVENT_CONSTRAINT(0, 0x4, 0);
2430
2431 static struct event_constraint *
2432 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2433 struct perf_event *event)
2434 {
2435 struct event_constraint *c;
2436
2437 c = intel_get_event_constraints(cpuc, idx, event);
2438
2439 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2440 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2441 if (c->idxmsk64 & (1U << 2))
2442 return &counter2_constraint;
2443 return &emptyconstraint;
2444 }
2445
2446 return c;
2447 }
2448
2449 /*
2450 * Broadwell:
2451 *
2452 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2453 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2454 * the two to enforce a minimum period of 128 (the smallest value that has bits
2455 * 0-5 cleared and >= 100).
2456 *
2457 * Because of how the code in x86_perf_event_set_period() works, the truncation
2458 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2459 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2460 *
2461 * Therefore the effective (average) period matches the requested period,
2462 * despite coarser hardware granularity.
2463 */
2464 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2465 {
2466 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2467 X86_CONFIG(.event=0xc0, .umask=0x01)) {
2468 if (left < 128)
2469 left = 128;
2470 left &= ~0x3fu;
2471 }
2472 return left;
2473 }
2474
2475 PMU_FORMAT_ATTR(event, "config:0-7" );
2476 PMU_FORMAT_ATTR(umask, "config:8-15" );
2477 PMU_FORMAT_ATTR(edge, "config:18" );
2478 PMU_FORMAT_ATTR(pc, "config:19" );
2479 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2480 PMU_FORMAT_ATTR(inv, "config:23" );
2481 PMU_FORMAT_ATTR(cmask, "config:24-31" );
2482 PMU_FORMAT_ATTR(in_tx, "config:32");
2483 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2484
2485 static struct attribute *intel_arch_formats_attr[] = {
2486 &format_attr_event.attr,
2487 &format_attr_umask.attr,
2488 &format_attr_edge.attr,
2489 &format_attr_pc.attr,
2490 &format_attr_inv.attr,
2491 &format_attr_cmask.attr,
2492 NULL,
2493 };
2494
2495 ssize_t intel_event_sysfs_show(char *page, u64 config)
2496 {
2497 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2498
2499 return x86_event_sysfs_show(page, config, event);
2500 }
2501
2502 struct intel_shared_regs *allocate_shared_regs(int cpu)
2503 {
2504 struct intel_shared_regs *regs;
2505 int i;
2506
2507 regs = kzalloc_node(sizeof(struct intel_shared_regs),
2508 GFP_KERNEL, cpu_to_node(cpu));
2509 if (regs) {
2510 /*
2511 * initialize the locks to keep lockdep happy
2512 */
2513 for (i = 0; i < EXTRA_REG_MAX; i++)
2514 raw_spin_lock_init(&regs->regs[i].lock);
2515
2516 regs->core_id = -1;
2517 }
2518 return regs;
2519 }
2520
2521 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2522 {
2523 struct intel_excl_cntrs *c;
2524
2525 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2526 GFP_KERNEL, cpu_to_node(cpu));
2527 if (c) {
2528 raw_spin_lock_init(&c->lock);
2529 c->core_id = -1;
2530 }
2531 return c;
2532 }
2533
2534 static int intel_pmu_cpu_prepare(int cpu)
2535 {
2536 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2537
2538 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2539 cpuc->shared_regs = allocate_shared_regs(cpu);
2540 if (!cpuc->shared_regs)
2541 return NOTIFY_BAD;
2542 }
2543
2544 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2545 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2546
2547 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2548 if (!cpuc->constraint_list)
2549 return NOTIFY_BAD;
2550
2551 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2552 if (!cpuc->excl_cntrs) {
2553 kfree(cpuc->constraint_list);
2554 kfree(cpuc->shared_regs);
2555 return NOTIFY_BAD;
2556 }
2557 cpuc->excl_thread_id = 0;
2558 }
2559
2560 return NOTIFY_OK;
2561 }
2562
2563 static void intel_pmu_cpu_starting(int cpu)
2564 {
2565 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2566 int core_id = topology_core_id(cpu);
2567 int i;
2568
2569 init_debug_store_on_cpu(cpu);
2570 /*
2571 * Deal with CPUs that don't clear their LBRs on power-up.
2572 */
2573 intel_pmu_lbr_reset();
2574
2575 cpuc->lbr_sel = NULL;
2576
2577 if (!cpuc->shared_regs)
2578 return;
2579
2580 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2581 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2582
2583 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2584 struct intel_shared_regs *pc;
2585
2586 pc = per_cpu(cpu_hw_events, i).shared_regs;
2587 if (pc && pc->core_id == core_id) {
2588 *onln = cpuc->shared_regs;
2589 cpuc->shared_regs = pc;
2590 break;
2591 }
2592 }
2593 cpuc->shared_regs->core_id = core_id;
2594 cpuc->shared_regs->refcnt++;
2595 }
2596
2597 if (x86_pmu.lbr_sel_map)
2598 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2599
2600 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2601 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2602 struct intel_excl_cntrs *c;
2603
2604 c = per_cpu(cpu_hw_events, i).excl_cntrs;
2605 if (c && c->core_id == core_id) {
2606 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2607 cpuc->excl_cntrs = c;
2608 cpuc->excl_thread_id = 1;
2609 break;
2610 }
2611 }
2612 cpuc->excl_cntrs->core_id = core_id;
2613 cpuc->excl_cntrs->refcnt++;
2614 }
2615 }
2616
2617 static void free_excl_cntrs(int cpu)
2618 {
2619 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2620 struct intel_excl_cntrs *c;
2621
2622 c = cpuc->excl_cntrs;
2623 if (c) {
2624 if (c->core_id == -1 || --c->refcnt == 0)
2625 kfree(c);
2626 cpuc->excl_cntrs = NULL;
2627 kfree(cpuc->constraint_list);
2628 cpuc->constraint_list = NULL;
2629 }
2630 }
2631
2632 static void intel_pmu_cpu_dying(int cpu)
2633 {
2634 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2635 struct intel_shared_regs *pc;
2636
2637 pc = cpuc->shared_regs;
2638 if (pc) {
2639 if (pc->core_id == -1 || --pc->refcnt == 0)
2640 kfree(pc);
2641 cpuc->shared_regs = NULL;
2642 }
2643
2644 free_excl_cntrs(cpu);
2645
2646 fini_debug_store_on_cpu(cpu);
2647 }
2648
2649 static void intel_pmu_sched_task(struct perf_event_context *ctx,
2650 bool sched_in)
2651 {
2652 if (x86_pmu.pebs_active)
2653 intel_pmu_pebs_sched_task(ctx, sched_in);
2654 if (x86_pmu.lbr_nr)
2655 intel_pmu_lbr_sched_task(ctx, sched_in);
2656 }
2657
2658 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2659
2660 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2661
2662 static struct attribute *intel_arch3_formats_attr[] = {
2663 &format_attr_event.attr,
2664 &format_attr_umask.attr,
2665 &format_attr_edge.attr,
2666 &format_attr_pc.attr,
2667 &format_attr_any.attr,
2668 &format_attr_inv.attr,
2669 &format_attr_cmask.attr,
2670 &format_attr_in_tx.attr,
2671 &format_attr_in_tx_cp.attr,
2672
2673 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2674 &format_attr_ldlat.attr, /* PEBS load latency */
2675 NULL,
2676 };
2677
2678 static __initconst const struct x86_pmu core_pmu = {
2679 .name = "core",
2680 .handle_irq = x86_pmu_handle_irq,
2681 .disable_all = x86_pmu_disable_all,
2682 .enable_all = core_pmu_enable_all,
2683 .enable = core_pmu_enable_event,
2684 .disable = x86_pmu_disable_event,
2685 .hw_config = x86_pmu_hw_config,
2686 .schedule_events = x86_schedule_events,
2687 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2688 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2689 .event_map = intel_pmu_event_map,
2690 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2691 .apic = 1,
2692 /*
2693 * Intel PMCs cannot be accessed sanely above 32-bit width,
2694 * so we install an artificial 1<<31 period regardless of
2695 * the generic event period:
2696 */
2697 .max_period = (1ULL<<31) - 1,
2698 .get_event_constraints = intel_get_event_constraints,
2699 .put_event_constraints = intel_put_event_constraints,
2700 .event_constraints = intel_core_event_constraints,
2701 .guest_get_msrs = core_guest_get_msrs,
2702 .format_attrs = intel_arch_formats_attr,
2703 .events_sysfs_show = intel_event_sysfs_show,
2704
2705 /*
2706 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2707 * together with PMU version 1 and thus be using core_pmu with
2708 * shared_regs. We need following callbacks here to allocate
2709 * it properly.
2710 */
2711 .cpu_prepare = intel_pmu_cpu_prepare,
2712 .cpu_starting = intel_pmu_cpu_starting,
2713 .cpu_dying = intel_pmu_cpu_dying,
2714 };
2715
2716 static __initconst const struct x86_pmu intel_pmu = {
2717 .name = "Intel",
2718 .handle_irq = intel_pmu_handle_irq,
2719 .disable_all = intel_pmu_disable_all,
2720 .enable_all = intel_pmu_enable_all,
2721 .enable = intel_pmu_enable_event,
2722 .disable = intel_pmu_disable_event,
2723 .hw_config = intel_pmu_hw_config,
2724 .schedule_events = x86_schedule_events,
2725 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2726 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2727 .event_map = intel_pmu_event_map,
2728 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2729 .apic = 1,
2730 /*
2731 * Intel PMCs cannot be accessed sanely above 32 bit width,
2732 * so we install an artificial 1<<31 period regardless of
2733 * the generic event period:
2734 */
2735 .max_period = (1ULL << 31) - 1,
2736 .get_event_constraints = intel_get_event_constraints,
2737 .put_event_constraints = intel_put_event_constraints,
2738 .pebs_aliases = intel_pebs_aliases_core2,
2739
2740 .format_attrs = intel_arch3_formats_attr,
2741 .events_sysfs_show = intel_event_sysfs_show,
2742
2743 .cpu_prepare = intel_pmu_cpu_prepare,
2744 .cpu_starting = intel_pmu_cpu_starting,
2745 .cpu_dying = intel_pmu_cpu_dying,
2746 .guest_get_msrs = intel_guest_get_msrs,
2747 .sched_task = intel_pmu_sched_task,
2748 };
2749
2750 static __init void intel_clovertown_quirk(void)
2751 {
2752 /*
2753 * PEBS is unreliable due to:
2754 *
2755 * AJ67 - PEBS may experience CPL leaks
2756 * AJ68 - PEBS PMI may be delayed by one event
2757 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2758 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2759 *
2760 * AJ67 could be worked around by restricting the OS/USR flags.
2761 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2762 *
2763 * AJ106 could possibly be worked around by not allowing LBR
2764 * usage from PEBS, including the fixup.
2765 * AJ68 could possibly be worked around by always programming
2766 * a pebs_event_reset[0] value and coping with the lost events.
2767 *
2768 * But taken together it might just make sense to not enable PEBS on
2769 * these chips.
2770 */
2771 pr_warn("PEBS disabled due to CPU errata\n");
2772 x86_pmu.pebs = 0;
2773 x86_pmu.pebs_constraints = NULL;
2774 }
2775
2776 static int intel_snb_pebs_broken(int cpu)
2777 {
2778 u32 rev = UINT_MAX; /* default to broken for unknown models */
2779
2780 switch (cpu_data(cpu).x86_model) {
2781 case 42: /* SNB */
2782 rev = 0x28;
2783 break;
2784
2785 case 45: /* SNB-EP */
2786 switch (cpu_data(cpu).x86_mask) {
2787 case 6: rev = 0x618; break;
2788 case 7: rev = 0x70c; break;
2789 }
2790 }
2791
2792 return (cpu_data(cpu).microcode < rev);
2793 }
2794
2795 static void intel_snb_check_microcode(void)
2796 {
2797 int pebs_broken = 0;
2798 int cpu;
2799
2800 get_online_cpus();
2801 for_each_online_cpu(cpu) {
2802 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2803 break;
2804 }
2805 put_online_cpus();
2806
2807 if (pebs_broken == x86_pmu.pebs_broken)
2808 return;
2809
2810 /*
2811 * Serialized by the microcode lock..
2812 */
2813 if (x86_pmu.pebs_broken) {
2814 pr_info("PEBS enabled due to microcode update\n");
2815 x86_pmu.pebs_broken = 0;
2816 } else {
2817 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2818 x86_pmu.pebs_broken = 1;
2819 }
2820 }
2821
2822 /*
2823 * Under certain circumstances, access certain MSR may cause #GP.
2824 * The function tests if the input MSR can be safely accessed.
2825 */
2826 static bool check_msr(unsigned long msr, u64 mask)
2827 {
2828 u64 val_old, val_new, val_tmp;
2829
2830 /*
2831 * Read the current value, change it and read it back to see if it
2832 * matches, this is needed to detect certain hardware emulators
2833 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2834 */
2835 if (rdmsrl_safe(msr, &val_old))
2836 return false;
2837
2838 /*
2839 * Only change the bits which can be updated by wrmsrl.
2840 */
2841 val_tmp = val_old ^ mask;
2842 if (wrmsrl_safe(msr, val_tmp) ||
2843 rdmsrl_safe(msr, &val_new))
2844 return false;
2845
2846 if (val_new != val_tmp)
2847 return false;
2848
2849 /* Here it's sure that the MSR can be safely accessed.
2850 * Restore the old value and return.
2851 */
2852 wrmsrl(msr, val_old);
2853
2854 return true;
2855 }
2856
2857 static __init void intel_sandybridge_quirk(void)
2858 {
2859 x86_pmu.check_microcode = intel_snb_check_microcode;
2860 intel_snb_check_microcode();
2861 }
2862
2863 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2864 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2865 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2866 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2867 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2868 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2869 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2870 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2871 };
2872
2873 static __init void intel_arch_events_quirk(void)
2874 {
2875 int bit;
2876
2877 /* disable event that reported as not presend by cpuid */
2878 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2879 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2880 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2881 intel_arch_events_map[bit].name);
2882 }
2883 }
2884
2885 static __init void intel_nehalem_quirk(void)
2886 {
2887 union cpuid10_ebx ebx;
2888
2889 ebx.full = x86_pmu.events_maskl;
2890 if (ebx.split.no_branch_misses_retired) {
2891 /*
2892 * Erratum AAJ80 detected, we work it around by using
2893 * the BR_MISP_EXEC.ANY event. This will over-count
2894 * branch-misses, but it's still much better than the
2895 * architectural event which is often completely bogus:
2896 */
2897 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2898 ebx.split.no_branch_misses_retired = 0;
2899 x86_pmu.events_maskl = ebx.full;
2900 pr_info("CPU erratum AAJ80 worked around\n");
2901 }
2902 }
2903
2904 /*
2905 * enable software workaround for errata:
2906 * SNB: BJ122
2907 * IVB: BV98
2908 * HSW: HSD29
2909 *
2910 * Only needed when HT is enabled. However detecting
2911 * if HT is enabled is difficult (model specific). So instead,
2912 * we enable the workaround in the early boot, and verify if
2913 * it is needed in a later initcall phase once we have valid
2914 * topology information to check if HT is actually enabled
2915 */
2916 static __init void intel_ht_bug(void)
2917 {
2918 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
2919
2920 x86_pmu.start_scheduling = intel_start_scheduling;
2921 x86_pmu.commit_scheduling = intel_commit_scheduling;
2922 x86_pmu.stop_scheduling = intel_stop_scheduling;
2923 }
2924
2925 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
2926 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
2927
2928 /* Haswell special events */
2929 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
2930 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
2931 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
2932 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
2933 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
2934 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
2935 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
2936 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
2937 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
2938 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
2939 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
2940 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
2941
2942 static struct attribute *hsw_events_attrs[] = {
2943 EVENT_PTR(tx_start),
2944 EVENT_PTR(tx_commit),
2945 EVENT_PTR(tx_abort),
2946 EVENT_PTR(tx_capacity),
2947 EVENT_PTR(tx_conflict),
2948 EVENT_PTR(el_start),
2949 EVENT_PTR(el_commit),
2950 EVENT_PTR(el_abort),
2951 EVENT_PTR(el_capacity),
2952 EVENT_PTR(el_conflict),
2953 EVENT_PTR(cycles_t),
2954 EVENT_PTR(cycles_ct),
2955 EVENT_PTR(mem_ld_hsw),
2956 EVENT_PTR(mem_st_hsw),
2957 NULL
2958 };
2959
2960 __init int intel_pmu_init(void)
2961 {
2962 union cpuid10_edx edx;
2963 union cpuid10_eax eax;
2964 union cpuid10_ebx ebx;
2965 struct event_constraint *c;
2966 unsigned int unused;
2967 struct extra_reg *er;
2968 int version, i;
2969
2970 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2971 switch (boot_cpu_data.x86) {
2972 case 0x6:
2973 return p6_pmu_init();
2974 case 0xb:
2975 return knc_pmu_init();
2976 case 0xf:
2977 return p4_pmu_init();
2978 }
2979 return -ENODEV;
2980 }
2981
2982 /*
2983 * Check whether the Architectural PerfMon supports
2984 * Branch Misses Retired hw_event or not.
2985 */
2986 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2987 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2988 return -ENODEV;
2989
2990 version = eax.split.version_id;
2991 if (version < 2)
2992 x86_pmu = core_pmu;
2993 else
2994 x86_pmu = intel_pmu;
2995
2996 x86_pmu.version = version;
2997 x86_pmu.num_counters = eax.split.num_counters;
2998 x86_pmu.cntval_bits = eax.split.bit_width;
2999 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
3000
3001 x86_pmu.events_maskl = ebx.full;
3002 x86_pmu.events_mask_len = eax.split.mask_length;
3003
3004 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3005
3006 /*
3007 * Quirk: v2 perfmon does not report fixed-purpose events, so
3008 * assume at least 3 events:
3009 */
3010 if (version > 1)
3011 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3012
3013 if (boot_cpu_has(X86_FEATURE_PDCM)) {
3014 u64 capabilities;
3015
3016 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3017 x86_pmu.intel_cap.capabilities = capabilities;
3018 }
3019
3020 intel_ds_init();
3021
3022 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3023
3024 /*
3025 * Install the hw-cache-events table:
3026 */
3027 switch (boot_cpu_data.x86_model) {
3028 case 14: /* 65nm Core "Yonah" */
3029 pr_cont("Core events, ");
3030 break;
3031
3032 case 15: /* 65nm Core2 "Merom" */
3033 x86_add_quirk(intel_clovertown_quirk);
3034 case 22: /* 65nm Core2 "Merom-L" */
3035 case 23: /* 45nm Core2 "Penryn" */
3036 case 29: /* 45nm Core2 "Dunnington (MP) */
3037 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3038 sizeof(hw_cache_event_ids));
3039
3040 intel_pmu_lbr_init_core();
3041
3042 x86_pmu.event_constraints = intel_core2_event_constraints;
3043 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3044 pr_cont("Core2 events, ");
3045 break;
3046
3047 case 30: /* 45nm Nehalem */
3048 case 26: /* 45nm Nehalem-EP */
3049 case 46: /* 45nm Nehalem-EX */
3050 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3051 sizeof(hw_cache_event_ids));
3052 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3053 sizeof(hw_cache_extra_regs));
3054
3055 intel_pmu_lbr_init_nhm();
3056
3057 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3058 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3059 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3060 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3061
3062 x86_pmu.cpu_events = nhm_events_attrs;
3063
3064 /* UOPS_ISSUED.STALLED_CYCLES */
3065 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3066 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3067 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3068 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3069 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3070
3071 x86_add_quirk(intel_nehalem_quirk);
3072
3073 pr_cont("Nehalem events, ");
3074 break;
3075
3076 case 28: /* 45nm Atom "Pineview" */
3077 case 38: /* 45nm Atom "Lincroft" */
3078 case 39: /* 32nm Atom "Penwell" */
3079 case 53: /* 32nm Atom "Cloverview" */
3080 case 54: /* 32nm Atom "Cedarview" */
3081 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3082 sizeof(hw_cache_event_ids));
3083
3084 intel_pmu_lbr_init_atom();
3085
3086 x86_pmu.event_constraints = intel_gen_event_constraints;
3087 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3088 pr_cont("Atom events, ");
3089 break;
3090
3091 case 55: /* 22nm Atom "Silvermont" */
3092 case 76: /* 14nm Atom "Airmont" */
3093 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3094 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3095 sizeof(hw_cache_event_ids));
3096 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3097 sizeof(hw_cache_extra_regs));
3098
3099 intel_pmu_lbr_init_atom();
3100
3101 x86_pmu.event_constraints = intel_slm_event_constraints;
3102 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3103 x86_pmu.extra_regs = intel_slm_extra_regs;
3104 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3105 pr_cont("Silvermont events, ");
3106 break;
3107
3108 case 37: /* 32nm Westmere */
3109 case 44: /* 32nm Westmere-EP */
3110 case 47: /* 32nm Westmere-EX */
3111 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3112 sizeof(hw_cache_event_ids));
3113 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3114 sizeof(hw_cache_extra_regs));
3115
3116 intel_pmu_lbr_init_nhm();
3117
3118 x86_pmu.event_constraints = intel_westmere_event_constraints;
3119 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3120 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3121 x86_pmu.extra_regs = intel_westmere_extra_regs;
3122 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3123
3124 x86_pmu.cpu_events = nhm_events_attrs;
3125
3126 /* UOPS_ISSUED.STALLED_CYCLES */
3127 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3128 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3129 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3130 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3131 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3132
3133 pr_cont("Westmere events, ");
3134 break;
3135
3136 case 42: /* 32nm SandyBridge */
3137 case 45: /* 32nm SandyBridge-E/EN/EP */
3138 x86_add_quirk(intel_sandybridge_quirk);
3139 x86_add_quirk(intel_ht_bug);
3140 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3141 sizeof(hw_cache_event_ids));
3142 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3143 sizeof(hw_cache_extra_regs));
3144
3145 intel_pmu_lbr_init_snb();
3146
3147 x86_pmu.event_constraints = intel_snb_event_constraints;
3148 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3149 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3150 if (boot_cpu_data.x86_model == 45)
3151 x86_pmu.extra_regs = intel_snbep_extra_regs;
3152 else
3153 x86_pmu.extra_regs = intel_snb_extra_regs;
3154
3155
3156 /* all extra regs are per-cpu when HT is on */
3157 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3158 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3159
3160 x86_pmu.cpu_events = snb_events_attrs;
3161
3162 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3163 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3164 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3165 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3166 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3167 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3168
3169 pr_cont("SandyBridge events, ");
3170 break;
3171
3172 case 58: /* 22nm IvyBridge */
3173 case 62: /* 22nm IvyBridge-EP/EX */
3174 x86_add_quirk(intel_ht_bug);
3175 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3176 sizeof(hw_cache_event_ids));
3177 /* dTLB-load-misses on IVB is different than SNB */
3178 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3179
3180 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3181 sizeof(hw_cache_extra_regs));
3182
3183 intel_pmu_lbr_init_snb();
3184
3185 x86_pmu.event_constraints = intel_ivb_event_constraints;
3186 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3187 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3188 if (boot_cpu_data.x86_model == 62)
3189 x86_pmu.extra_regs = intel_snbep_extra_regs;
3190 else
3191 x86_pmu.extra_regs = intel_snb_extra_regs;
3192 /* all extra regs are per-cpu when HT is on */
3193 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3194 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3195
3196 x86_pmu.cpu_events = snb_events_attrs;
3197
3198 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3199 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3200 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3201
3202 pr_cont("IvyBridge events, ");
3203 break;
3204
3205
3206 case 60: /* 22nm Haswell Core */
3207 case 63: /* 22nm Haswell Server */
3208 case 69: /* 22nm Haswell ULT */
3209 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3210 x86_add_quirk(intel_ht_bug);
3211 x86_pmu.late_ack = true;
3212 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3213 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3214
3215 intel_pmu_lbr_init_hsw();
3216
3217 x86_pmu.event_constraints = intel_hsw_event_constraints;
3218 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3219 x86_pmu.extra_regs = intel_snbep_extra_regs;
3220 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3221 /* all extra regs are per-cpu when HT is on */
3222 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3223 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3224
3225 x86_pmu.hw_config = hsw_hw_config;
3226 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3227 x86_pmu.cpu_events = hsw_events_attrs;
3228 x86_pmu.lbr_double_abort = true;
3229 pr_cont("Haswell events, ");
3230 break;
3231
3232 case 61: /* 14nm Broadwell Core-M */
3233 case 86: /* 14nm Broadwell Xeon D */
3234 case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3235 case 79: /* 14nm Broadwell Server */
3236 x86_pmu.late_ack = true;
3237 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3238 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3239
3240 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3241 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3242 BDW_L3_MISS|HSW_SNOOP_DRAM;
3243 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3244 HSW_SNOOP_DRAM;
3245 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3246 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3247 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3248 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3249
3250 intel_pmu_lbr_init_hsw();
3251
3252 x86_pmu.event_constraints = intel_bdw_event_constraints;
3253 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3254 x86_pmu.extra_regs = intel_snbep_extra_regs;
3255 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3256 /* all extra regs are per-cpu when HT is on */
3257 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3258 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3259
3260 x86_pmu.hw_config = hsw_hw_config;
3261 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3262 x86_pmu.cpu_events = hsw_events_attrs;
3263 x86_pmu.limit_period = bdw_limit_period;
3264 pr_cont("Broadwell events, ");
3265 break;
3266
3267 default:
3268 switch (x86_pmu.version) {
3269 case 1:
3270 x86_pmu.event_constraints = intel_v1_event_constraints;
3271 pr_cont("generic architected perfmon v1, ");
3272 break;
3273 default:
3274 /*
3275 * default constraints for v2 and up
3276 */
3277 x86_pmu.event_constraints = intel_gen_event_constraints;
3278 pr_cont("generic architected perfmon, ");
3279 break;
3280 }
3281 }
3282
3283 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3284 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3285 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3286 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3287 }
3288 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3289
3290 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3291 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3292 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3293 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3294 }
3295
3296 x86_pmu.intel_ctrl |=
3297 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3298
3299 if (x86_pmu.event_constraints) {
3300 /*
3301 * event on fixed counter2 (REF_CYCLES) only works on this
3302 * counter, so do not extend mask to generic counters
3303 */
3304 for_each_event_constraint(c, x86_pmu.event_constraints) {
3305 if (c->cmask == FIXED_EVENT_FLAGS
3306 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3307 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3308 }
3309 c->idxmsk64 &=
3310 ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3311 c->weight = hweight64(c->idxmsk64);
3312 }
3313 }
3314
3315 /*
3316 * Access LBR MSR may cause #GP under certain circumstances.
3317 * E.g. KVM doesn't support LBR MSR
3318 * Check all LBT MSR here.
3319 * Disable LBR access if any LBR MSRs can not be accessed.
3320 */
3321 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3322 x86_pmu.lbr_nr = 0;
3323 for (i = 0; i < x86_pmu.lbr_nr; i++) {
3324 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3325 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3326 x86_pmu.lbr_nr = 0;
3327 }
3328
3329 /*
3330 * Access extra MSR may cause #GP under certain circumstances.
3331 * E.g. KVM doesn't support offcore event
3332 * Check all extra_regs here.
3333 */
3334 if (x86_pmu.extra_regs) {
3335 for (er = x86_pmu.extra_regs; er->msr; er++) {
3336 er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
3337 /* Disable LBR select mapping */
3338 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3339 x86_pmu.lbr_sel_map = NULL;
3340 }
3341 }
3342
3343 /* Support full width counters using alternative MSR range */
3344 if (x86_pmu.intel_cap.full_width_write) {
3345 x86_pmu.max_period = x86_pmu.cntval_mask;
3346 x86_pmu.perfctr = MSR_IA32_PMC0;
3347 pr_cont("full-width counters, ");
3348 }
3349
3350 return 0;
3351 }
3352
3353 /*
3354 * HT bug: phase 2 init
3355 * Called once we have valid topology information to check
3356 * whether or not HT is enabled
3357 * If HT is off, then we disable the workaround
3358 */
3359 static __init int fixup_ht_bug(void)
3360 {
3361 int cpu = smp_processor_id();
3362 int w, c;
3363 /*
3364 * problem not present on this CPU model, nothing to do
3365 */
3366 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3367 return 0;
3368
3369 w = cpumask_weight(topology_sibling_cpumask(cpu));
3370 if (w > 1) {
3371 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3372 return 0;
3373 }
3374
3375 watchdog_nmi_disable_all();
3376
3377 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3378
3379 x86_pmu.start_scheduling = NULL;
3380 x86_pmu.commit_scheduling = NULL;
3381 x86_pmu.stop_scheduling = NULL;
3382
3383 watchdog_nmi_enable_all();
3384
3385 get_online_cpus();
3386
3387 for_each_online_cpu(c) {
3388 free_excl_cntrs(c);
3389 }
3390
3391 put_online_cpus();
3392 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3393 return 0;
3394 }
3395 subsys_initcall(fixup_ht_bug)
This page took 0.11121 seconds and 5 git commands to generate.