kprobes/x86: Check Interrupt Flag modifier when registering probe
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/hardirq.h>
17 #include <asm/apic.h>
18
19 #include "perf_event.h"
20
21 /*
22 * Intel PerfMon, used on Core and later.
23 */
24 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
25 {
26 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
27 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
28 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
29 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
30 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
31 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
32 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
33 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
34 };
35
36 static struct event_constraint intel_core_event_constraints[] __read_mostly =
37 {
38 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
39 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
40 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
41 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
42 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
43 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
44 EVENT_CONSTRAINT_END
45 };
46
47 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
48 {
49 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
50 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
53 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
54 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
55 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
56 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
57 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
58 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
59 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
62 EVENT_CONSTRAINT_END
63 };
64
65 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
66 {
67 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
68 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
71 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
72 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
73 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
74 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
75 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
76 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
77 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
78 EVENT_CONSTRAINT_END
79 };
80
81 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
82 {
83 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
84 EVENT_EXTRA_END
85 };
86
87 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
88 {
89 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
90 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
93 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
94 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
96 EVENT_CONSTRAINT_END
97 };
98
99 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
100 {
101 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
102 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
105 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
106 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
107 EVENT_CONSTRAINT_END
108 };
109
110 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
111 {
112 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
113 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
114 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
115 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
116 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
117 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
118 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
119 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
120 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
121 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
123 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
124 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
125 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
126 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
127 INTEL_EVENT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
128 EVENT_CONSTRAINT_END
129 };
130
131 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
132 {
133 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
134 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
135 EVENT_EXTRA_END
136 };
137
138 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
139 {
140 EVENT_CONSTRAINT_END
141 };
142
143 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
144 {
145 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
146 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
147 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
148 EVENT_CONSTRAINT_END
149 };
150
151 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
152 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
153 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
154 EVENT_EXTRA_END
155 };
156
157 static u64 intel_pmu_event_map(int hw_event)
158 {
159 return intel_perfmon_event_map[hw_event];
160 }
161
162 #define SNB_DMND_DATA_RD (1ULL << 0)
163 #define SNB_DMND_RFO (1ULL << 1)
164 #define SNB_DMND_IFETCH (1ULL << 2)
165 #define SNB_DMND_WB (1ULL << 3)
166 #define SNB_PF_DATA_RD (1ULL << 4)
167 #define SNB_PF_RFO (1ULL << 5)
168 #define SNB_PF_IFETCH (1ULL << 6)
169 #define SNB_LLC_DATA_RD (1ULL << 7)
170 #define SNB_LLC_RFO (1ULL << 8)
171 #define SNB_LLC_IFETCH (1ULL << 9)
172 #define SNB_BUS_LOCKS (1ULL << 10)
173 #define SNB_STRM_ST (1ULL << 11)
174 #define SNB_OTHER (1ULL << 15)
175 #define SNB_RESP_ANY (1ULL << 16)
176 #define SNB_NO_SUPP (1ULL << 17)
177 #define SNB_LLC_HITM (1ULL << 18)
178 #define SNB_LLC_HITE (1ULL << 19)
179 #define SNB_LLC_HITS (1ULL << 20)
180 #define SNB_LLC_HITF (1ULL << 21)
181 #define SNB_LOCAL (1ULL << 22)
182 #define SNB_REMOTE (0xffULL << 23)
183 #define SNB_SNP_NONE (1ULL << 31)
184 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
185 #define SNB_SNP_MISS (1ULL << 33)
186 #define SNB_NO_FWD (1ULL << 34)
187 #define SNB_SNP_FWD (1ULL << 35)
188 #define SNB_HITM (1ULL << 36)
189 #define SNB_NON_DRAM (1ULL << 37)
190
191 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
192 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
193 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
194
195 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
196 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
197 SNB_HITM)
198
199 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
200 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
201
202 #define SNB_L3_ACCESS SNB_RESP_ANY
203 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
204
205 static __initconst const u64 snb_hw_cache_extra_regs
206 [PERF_COUNT_HW_CACHE_MAX]
207 [PERF_COUNT_HW_CACHE_OP_MAX]
208 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
209 {
210 [ C(LL ) ] = {
211 [ C(OP_READ) ] = {
212 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
213 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
214 },
215 [ C(OP_WRITE) ] = {
216 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
217 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
218 },
219 [ C(OP_PREFETCH) ] = {
220 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
221 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
222 },
223 },
224 [ C(NODE) ] = {
225 [ C(OP_READ) ] = {
226 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
227 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
228 },
229 [ C(OP_WRITE) ] = {
230 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
231 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
232 },
233 [ C(OP_PREFETCH) ] = {
234 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
235 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
236 },
237 },
238 };
239
240 static __initconst const u64 snb_hw_cache_event_ids
241 [PERF_COUNT_HW_CACHE_MAX]
242 [PERF_COUNT_HW_CACHE_OP_MAX]
243 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
244 {
245 [ C(L1D) ] = {
246 [ C(OP_READ) ] = {
247 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
248 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
249 },
250 [ C(OP_WRITE) ] = {
251 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
252 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
253 },
254 [ C(OP_PREFETCH) ] = {
255 [ C(RESULT_ACCESS) ] = 0x0,
256 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
257 },
258 },
259 [ C(L1I ) ] = {
260 [ C(OP_READ) ] = {
261 [ C(RESULT_ACCESS) ] = 0x0,
262 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
263 },
264 [ C(OP_WRITE) ] = {
265 [ C(RESULT_ACCESS) ] = -1,
266 [ C(RESULT_MISS) ] = -1,
267 },
268 [ C(OP_PREFETCH) ] = {
269 [ C(RESULT_ACCESS) ] = 0x0,
270 [ C(RESULT_MISS) ] = 0x0,
271 },
272 },
273 [ C(LL ) ] = {
274 [ C(OP_READ) ] = {
275 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
276 [ C(RESULT_ACCESS) ] = 0x01b7,
277 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
278 [ C(RESULT_MISS) ] = 0x01b7,
279 },
280 [ C(OP_WRITE) ] = {
281 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
282 [ C(RESULT_ACCESS) ] = 0x01b7,
283 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
284 [ C(RESULT_MISS) ] = 0x01b7,
285 },
286 [ C(OP_PREFETCH) ] = {
287 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
288 [ C(RESULT_ACCESS) ] = 0x01b7,
289 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
290 [ C(RESULT_MISS) ] = 0x01b7,
291 },
292 },
293 [ C(DTLB) ] = {
294 [ C(OP_READ) ] = {
295 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
296 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
297 },
298 [ C(OP_WRITE) ] = {
299 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
300 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
301 },
302 [ C(OP_PREFETCH) ] = {
303 [ C(RESULT_ACCESS) ] = 0x0,
304 [ C(RESULT_MISS) ] = 0x0,
305 },
306 },
307 [ C(ITLB) ] = {
308 [ C(OP_READ) ] = {
309 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
310 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
311 },
312 [ C(OP_WRITE) ] = {
313 [ C(RESULT_ACCESS) ] = -1,
314 [ C(RESULT_MISS) ] = -1,
315 },
316 [ C(OP_PREFETCH) ] = {
317 [ C(RESULT_ACCESS) ] = -1,
318 [ C(RESULT_MISS) ] = -1,
319 },
320 },
321 [ C(BPU ) ] = {
322 [ C(OP_READ) ] = {
323 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
324 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
325 },
326 [ C(OP_WRITE) ] = {
327 [ C(RESULT_ACCESS) ] = -1,
328 [ C(RESULT_MISS) ] = -1,
329 },
330 [ C(OP_PREFETCH) ] = {
331 [ C(RESULT_ACCESS) ] = -1,
332 [ C(RESULT_MISS) ] = -1,
333 },
334 },
335 [ C(NODE) ] = {
336 [ C(OP_READ) ] = {
337 [ C(RESULT_ACCESS) ] = 0x01b7,
338 [ C(RESULT_MISS) ] = 0x01b7,
339 },
340 [ C(OP_WRITE) ] = {
341 [ C(RESULT_ACCESS) ] = 0x01b7,
342 [ C(RESULT_MISS) ] = 0x01b7,
343 },
344 [ C(OP_PREFETCH) ] = {
345 [ C(RESULT_ACCESS) ] = 0x01b7,
346 [ C(RESULT_MISS) ] = 0x01b7,
347 },
348 },
349
350 };
351
352 static __initconst const u64 westmere_hw_cache_event_ids
353 [PERF_COUNT_HW_CACHE_MAX]
354 [PERF_COUNT_HW_CACHE_OP_MAX]
355 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
356 {
357 [ C(L1D) ] = {
358 [ C(OP_READ) ] = {
359 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
360 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
361 },
362 [ C(OP_WRITE) ] = {
363 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
364 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
365 },
366 [ C(OP_PREFETCH) ] = {
367 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
368 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
369 },
370 },
371 [ C(L1I ) ] = {
372 [ C(OP_READ) ] = {
373 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
374 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
375 },
376 [ C(OP_WRITE) ] = {
377 [ C(RESULT_ACCESS) ] = -1,
378 [ C(RESULT_MISS) ] = -1,
379 },
380 [ C(OP_PREFETCH) ] = {
381 [ C(RESULT_ACCESS) ] = 0x0,
382 [ C(RESULT_MISS) ] = 0x0,
383 },
384 },
385 [ C(LL ) ] = {
386 [ C(OP_READ) ] = {
387 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
388 [ C(RESULT_ACCESS) ] = 0x01b7,
389 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
390 [ C(RESULT_MISS) ] = 0x01b7,
391 },
392 /*
393 * Use RFO, not WRITEBACK, because a write miss would typically occur
394 * on RFO.
395 */
396 [ C(OP_WRITE) ] = {
397 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
398 [ C(RESULT_ACCESS) ] = 0x01b7,
399 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
400 [ C(RESULT_MISS) ] = 0x01b7,
401 },
402 [ C(OP_PREFETCH) ] = {
403 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
404 [ C(RESULT_ACCESS) ] = 0x01b7,
405 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
406 [ C(RESULT_MISS) ] = 0x01b7,
407 },
408 },
409 [ C(DTLB) ] = {
410 [ C(OP_READ) ] = {
411 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
412 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
413 },
414 [ C(OP_WRITE) ] = {
415 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
416 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
417 },
418 [ C(OP_PREFETCH) ] = {
419 [ C(RESULT_ACCESS) ] = 0x0,
420 [ C(RESULT_MISS) ] = 0x0,
421 },
422 },
423 [ C(ITLB) ] = {
424 [ C(OP_READ) ] = {
425 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
426 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
427 },
428 [ C(OP_WRITE) ] = {
429 [ C(RESULT_ACCESS) ] = -1,
430 [ C(RESULT_MISS) ] = -1,
431 },
432 [ C(OP_PREFETCH) ] = {
433 [ C(RESULT_ACCESS) ] = -1,
434 [ C(RESULT_MISS) ] = -1,
435 },
436 },
437 [ C(BPU ) ] = {
438 [ C(OP_READ) ] = {
439 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
440 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
441 },
442 [ C(OP_WRITE) ] = {
443 [ C(RESULT_ACCESS) ] = -1,
444 [ C(RESULT_MISS) ] = -1,
445 },
446 [ C(OP_PREFETCH) ] = {
447 [ C(RESULT_ACCESS) ] = -1,
448 [ C(RESULT_MISS) ] = -1,
449 },
450 },
451 [ C(NODE) ] = {
452 [ C(OP_READ) ] = {
453 [ C(RESULT_ACCESS) ] = 0x01b7,
454 [ C(RESULT_MISS) ] = 0x01b7,
455 },
456 [ C(OP_WRITE) ] = {
457 [ C(RESULT_ACCESS) ] = 0x01b7,
458 [ C(RESULT_MISS) ] = 0x01b7,
459 },
460 [ C(OP_PREFETCH) ] = {
461 [ C(RESULT_ACCESS) ] = 0x01b7,
462 [ C(RESULT_MISS) ] = 0x01b7,
463 },
464 },
465 };
466
467 /*
468 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
469 * See IA32 SDM Vol 3B 30.6.1.3
470 */
471
472 #define NHM_DMND_DATA_RD (1 << 0)
473 #define NHM_DMND_RFO (1 << 1)
474 #define NHM_DMND_IFETCH (1 << 2)
475 #define NHM_DMND_WB (1 << 3)
476 #define NHM_PF_DATA_RD (1 << 4)
477 #define NHM_PF_DATA_RFO (1 << 5)
478 #define NHM_PF_IFETCH (1 << 6)
479 #define NHM_OFFCORE_OTHER (1 << 7)
480 #define NHM_UNCORE_HIT (1 << 8)
481 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
482 #define NHM_OTHER_CORE_HITM (1 << 10)
483 /* reserved */
484 #define NHM_REMOTE_CACHE_FWD (1 << 12)
485 #define NHM_REMOTE_DRAM (1 << 13)
486 #define NHM_LOCAL_DRAM (1 << 14)
487 #define NHM_NON_DRAM (1 << 15)
488
489 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
490 #define NHM_REMOTE (NHM_REMOTE_DRAM)
491
492 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
493 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
494 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
495
496 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
497 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
498 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
499
500 static __initconst const u64 nehalem_hw_cache_extra_regs
501 [PERF_COUNT_HW_CACHE_MAX]
502 [PERF_COUNT_HW_CACHE_OP_MAX]
503 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
504 {
505 [ C(LL ) ] = {
506 [ C(OP_READ) ] = {
507 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
508 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
509 },
510 [ C(OP_WRITE) ] = {
511 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
512 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
513 },
514 [ C(OP_PREFETCH) ] = {
515 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
516 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
517 },
518 },
519 [ C(NODE) ] = {
520 [ C(OP_READ) ] = {
521 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
522 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
523 },
524 [ C(OP_WRITE) ] = {
525 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
526 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
527 },
528 [ C(OP_PREFETCH) ] = {
529 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
530 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
531 },
532 },
533 };
534
535 static __initconst const u64 nehalem_hw_cache_event_ids
536 [PERF_COUNT_HW_CACHE_MAX]
537 [PERF_COUNT_HW_CACHE_OP_MAX]
538 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
539 {
540 [ C(L1D) ] = {
541 [ C(OP_READ) ] = {
542 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
543 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
544 },
545 [ C(OP_WRITE) ] = {
546 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
547 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
548 },
549 [ C(OP_PREFETCH) ] = {
550 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
551 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
552 },
553 },
554 [ C(L1I ) ] = {
555 [ C(OP_READ) ] = {
556 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
557 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
558 },
559 [ C(OP_WRITE) ] = {
560 [ C(RESULT_ACCESS) ] = -1,
561 [ C(RESULT_MISS) ] = -1,
562 },
563 [ C(OP_PREFETCH) ] = {
564 [ C(RESULT_ACCESS) ] = 0x0,
565 [ C(RESULT_MISS) ] = 0x0,
566 },
567 },
568 [ C(LL ) ] = {
569 [ C(OP_READ) ] = {
570 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
571 [ C(RESULT_ACCESS) ] = 0x01b7,
572 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
573 [ C(RESULT_MISS) ] = 0x01b7,
574 },
575 /*
576 * Use RFO, not WRITEBACK, because a write miss would typically occur
577 * on RFO.
578 */
579 [ C(OP_WRITE) ] = {
580 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
581 [ C(RESULT_ACCESS) ] = 0x01b7,
582 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
583 [ C(RESULT_MISS) ] = 0x01b7,
584 },
585 [ C(OP_PREFETCH) ] = {
586 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
587 [ C(RESULT_ACCESS) ] = 0x01b7,
588 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
589 [ C(RESULT_MISS) ] = 0x01b7,
590 },
591 },
592 [ C(DTLB) ] = {
593 [ C(OP_READ) ] = {
594 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
595 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
596 },
597 [ C(OP_WRITE) ] = {
598 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
599 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
600 },
601 [ C(OP_PREFETCH) ] = {
602 [ C(RESULT_ACCESS) ] = 0x0,
603 [ C(RESULT_MISS) ] = 0x0,
604 },
605 },
606 [ C(ITLB) ] = {
607 [ C(OP_READ) ] = {
608 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
609 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
610 },
611 [ C(OP_WRITE) ] = {
612 [ C(RESULT_ACCESS) ] = -1,
613 [ C(RESULT_MISS) ] = -1,
614 },
615 [ C(OP_PREFETCH) ] = {
616 [ C(RESULT_ACCESS) ] = -1,
617 [ C(RESULT_MISS) ] = -1,
618 },
619 },
620 [ C(BPU ) ] = {
621 [ C(OP_READ) ] = {
622 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
623 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
624 },
625 [ C(OP_WRITE) ] = {
626 [ C(RESULT_ACCESS) ] = -1,
627 [ C(RESULT_MISS) ] = -1,
628 },
629 [ C(OP_PREFETCH) ] = {
630 [ C(RESULT_ACCESS) ] = -1,
631 [ C(RESULT_MISS) ] = -1,
632 },
633 },
634 [ C(NODE) ] = {
635 [ C(OP_READ) ] = {
636 [ C(RESULT_ACCESS) ] = 0x01b7,
637 [ C(RESULT_MISS) ] = 0x01b7,
638 },
639 [ C(OP_WRITE) ] = {
640 [ C(RESULT_ACCESS) ] = 0x01b7,
641 [ C(RESULT_MISS) ] = 0x01b7,
642 },
643 [ C(OP_PREFETCH) ] = {
644 [ C(RESULT_ACCESS) ] = 0x01b7,
645 [ C(RESULT_MISS) ] = 0x01b7,
646 },
647 },
648 };
649
650 static __initconst const u64 core2_hw_cache_event_ids
651 [PERF_COUNT_HW_CACHE_MAX]
652 [PERF_COUNT_HW_CACHE_OP_MAX]
653 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
654 {
655 [ C(L1D) ] = {
656 [ C(OP_READ) ] = {
657 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
658 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
659 },
660 [ C(OP_WRITE) ] = {
661 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
662 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
663 },
664 [ C(OP_PREFETCH) ] = {
665 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
666 [ C(RESULT_MISS) ] = 0,
667 },
668 },
669 [ C(L1I ) ] = {
670 [ C(OP_READ) ] = {
671 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
672 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
673 },
674 [ C(OP_WRITE) ] = {
675 [ C(RESULT_ACCESS) ] = -1,
676 [ C(RESULT_MISS) ] = -1,
677 },
678 [ C(OP_PREFETCH) ] = {
679 [ C(RESULT_ACCESS) ] = 0,
680 [ C(RESULT_MISS) ] = 0,
681 },
682 },
683 [ C(LL ) ] = {
684 [ C(OP_READ) ] = {
685 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
686 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
687 },
688 [ C(OP_WRITE) ] = {
689 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
690 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
691 },
692 [ C(OP_PREFETCH) ] = {
693 [ C(RESULT_ACCESS) ] = 0,
694 [ C(RESULT_MISS) ] = 0,
695 },
696 },
697 [ C(DTLB) ] = {
698 [ C(OP_READ) ] = {
699 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
700 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
701 },
702 [ C(OP_WRITE) ] = {
703 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
704 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
705 },
706 [ C(OP_PREFETCH) ] = {
707 [ C(RESULT_ACCESS) ] = 0,
708 [ C(RESULT_MISS) ] = 0,
709 },
710 },
711 [ C(ITLB) ] = {
712 [ C(OP_READ) ] = {
713 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
714 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
715 },
716 [ C(OP_WRITE) ] = {
717 [ C(RESULT_ACCESS) ] = -1,
718 [ C(RESULT_MISS) ] = -1,
719 },
720 [ C(OP_PREFETCH) ] = {
721 [ C(RESULT_ACCESS) ] = -1,
722 [ C(RESULT_MISS) ] = -1,
723 },
724 },
725 [ C(BPU ) ] = {
726 [ C(OP_READ) ] = {
727 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
728 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
729 },
730 [ C(OP_WRITE) ] = {
731 [ C(RESULT_ACCESS) ] = -1,
732 [ C(RESULT_MISS) ] = -1,
733 },
734 [ C(OP_PREFETCH) ] = {
735 [ C(RESULT_ACCESS) ] = -1,
736 [ C(RESULT_MISS) ] = -1,
737 },
738 },
739 };
740
741 static __initconst const u64 atom_hw_cache_event_ids
742 [PERF_COUNT_HW_CACHE_MAX]
743 [PERF_COUNT_HW_CACHE_OP_MAX]
744 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
745 {
746 [ C(L1D) ] = {
747 [ C(OP_READ) ] = {
748 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
749 [ C(RESULT_MISS) ] = 0,
750 },
751 [ C(OP_WRITE) ] = {
752 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
753 [ C(RESULT_MISS) ] = 0,
754 },
755 [ C(OP_PREFETCH) ] = {
756 [ C(RESULT_ACCESS) ] = 0x0,
757 [ C(RESULT_MISS) ] = 0,
758 },
759 },
760 [ C(L1I ) ] = {
761 [ C(OP_READ) ] = {
762 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
763 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
764 },
765 [ C(OP_WRITE) ] = {
766 [ C(RESULT_ACCESS) ] = -1,
767 [ C(RESULT_MISS) ] = -1,
768 },
769 [ C(OP_PREFETCH) ] = {
770 [ C(RESULT_ACCESS) ] = 0,
771 [ C(RESULT_MISS) ] = 0,
772 },
773 },
774 [ C(LL ) ] = {
775 [ C(OP_READ) ] = {
776 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
777 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
778 },
779 [ C(OP_WRITE) ] = {
780 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
781 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
782 },
783 [ C(OP_PREFETCH) ] = {
784 [ C(RESULT_ACCESS) ] = 0,
785 [ C(RESULT_MISS) ] = 0,
786 },
787 },
788 [ C(DTLB) ] = {
789 [ C(OP_READ) ] = {
790 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
791 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
792 },
793 [ C(OP_WRITE) ] = {
794 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
795 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
796 },
797 [ C(OP_PREFETCH) ] = {
798 [ C(RESULT_ACCESS) ] = 0,
799 [ C(RESULT_MISS) ] = 0,
800 },
801 },
802 [ C(ITLB) ] = {
803 [ C(OP_READ) ] = {
804 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
805 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
806 },
807 [ C(OP_WRITE) ] = {
808 [ C(RESULT_ACCESS) ] = -1,
809 [ C(RESULT_MISS) ] = -1,
810 },
811 [ C(OP_PREFETCH) ] = {
812 [ C(RESULT_ACCESS) ] = -1,
813 [ C(RESULT_MISS) ] = -1,
814 },
815 },
816 [ C(BPU ) ] = {
817 [ C(OP_READ) ] = {
818 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
819 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
820 },
821 [ C(OP_WRITE) ] = {
822 [ C(RESULT_ACCESS) ] = -1,
823 [ C(RESULT_MISS) ] = -1,
824 },
825 [ C(OP_PREFETCH) ] = {
826 [ C(RESULT_ACCESS) ] = -1,
827 [ C(RESULT_MISS) ] = -1,
828 },
829 },
830 };
831
832 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
833 {
834 /* user explicitly requested branch sampling */
835 if (has_branch_stack(event))
836 return true;
837
838 /* implicit branch sampling to correct PEBS skid */
839 if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
840 return true;
841
842 return false;
843 }
844
845 static void intel_pmu_disable_all(void)
846 {
847 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
848
849 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
850
851 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
852 intel_pmu_disable_bts();
853
854 intel_pmu_pebs_disable_all();
855 intel_pmu_lbr_disable_all();
856 }
857
858 static void intel_pmu_enable_all(int added)
859 {
860 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
861
862 intel_pmu_pebs_enable_all();
863 intel_pmu_lbr_enable_all();
864 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
865 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
866
867 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
868 struct perf_event *event =
869 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
870
871 if (WARN_ON_ONCE(!event))
872 return;
873
874 intel_pmu_enable_bts(event->hw.config);
875 }
876 }
877
878 /*
879 * Workaround for:
880 * Intel Errata AAK100 (model 26)
881 * Intel Errata AAP53 (model 30)
882 * Intel Errata BD53 (model 44)
883 *
884 * The official story:
885 * These chips need to be 'reset' when adding counters by programming the
886 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
887 * in sequence on the same PMC or on different PMCs.
888 *
889 * In practise it appears some of these events do in fact count, and
890 * we need to programm all 4 events.
891 */
892 static void intel_pmu_nhm_workaround(void)
893 {
894 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
895 static const unsigned long nhm_magic[4] = {
896 0x4300B5,
897 0x4300D2,
898 0x4300B1,
899 0x4300B1
900 };
901 struct perf_event *event;
902 int i;
903
904 /*
905 * The Errata requires below steps:
906 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
907 * 2) Configure 4 PERFEVTSELx with the magic events and clear
908 * the corresponding PMCx;
909 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
910 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
911 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
912 */
913
914 /*
915 * The real steps we choose are a little different from above.
916 * A) To reduce MSR operations, we don't run step 1) as they
917 * are already cleared before this function is called;
918 * B) Call x86_perf_event_update to save PMCx before configuring
919 * PERFEVTSELx with magic number;
920 * C) With step 5), we do clear only when the PERFEVTSELx is
921 * not used currently.
922 * D) Call x86_perf_event_set_period to restore PMCx;
923 */
924
925 /* We always operate 4 pairs of PERF Counters */
926 for (i = 0; i < 4; i++) {
927 event = cpuc->events[i];
928 if (event)
929 x86_perf_event_update(event);
930 }
931
932 for (i = 0; i < 4; i++) {
933 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
934 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
935 }
936
937 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
938 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
939
940 for (i = 0; i < 4; i++) {
941 event = cpuc->events[i];
942
943 if (event) {
944 x86_perf_event_set_period(event);
945 __x86_pmu_enable_event(&event->hw,
946 ARCH_PERFMON_EVENTSEL_ENABLE);
947 } else
948 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
949 }
950 }
951
952 static void intel_pmu_nhm_enable_all(int added)
953 {
954 if (added)
955 intel_pmu_nhm_workaround();
956 intel_pmu_enable_all(added);
957 }
958
959 static inline u64 intel_pmu_get_status(void)
960 {
961 u64 status;
962
963 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
964
965 return status;
966 }
967
968 static inline void intel_pmu_ack_status(u64 ack)
969 {
970 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
971 }
972
973 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
974 {
975 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
976 u64 ctrl_val, mask;
977
978 mask = 0xfULL << (idx * 4);
979
980 rdmsrl(hwc->config_base, ctrl_val);
981 ctrl_val &= ~mask;
982 wrmsrl(hwc->config_base, ctrl_val);
983 }
984
985 static void intel_pmu_disable_event(struct perf_event *event)
986 {
987 struct hw_perf_event *hwc = &event->hw;
988 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
989
990 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
991 intel_pmu_disable_bts();
992 intel_pmu_drain_bts_buffer();
993 return;
994 }
995
996 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
997 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
998
999 /*
1000 * must disable before any actual event
1001 * because any event may be combined with LBR
1002 */
1003 if (intel_pmu_needs_lbr_smpl(event))
1004 intel_pmu_lbr_disable(event);
1005
1006 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1007 intel_pmu_disable_fixed(hwc);
1008 return;
1009 }
1010
1011 x86_pmu_disable_event(event);
1012
1013 if (unlikely(event->attr.precise_ip))
1014 intel_pmu_pebs_disable(event);
1015 }
1016
1017 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1018 {
1019 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1020 u64 ctrl_val, bits, mask;
1021
1022 /*
1023 * Enable IRQ generation (0x8),
1024 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1025 * if requested:
1026 */
1027 bits = 0x8ULL;
1028 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1029 bits |= 0x2;
1030 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1031 bits |= 0x1;
1032
1033 /*
1034 * ANY bit is supported in v3 and up
1035 */
1036 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1037 bits |= 0x4;
1038
1039 bits <<= (idx * 4);
1040 mask = 0xfULL << (idx * 4);
1041
1042 rdmsrl(hwc->config_base, ctrl_val);
1043 ctrl_val &= ~mask;
1044 ctrl_val |= bits;
1045 wrmsrl(hwc->config_base, ctrl_val);
1046 }
1047
1048 static void intel_pmu_enable_event(struct perf_event *event)
1049 {
1050 struct hw_perf_event *hwc = &event->hw;
1051 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1052
1053 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1054 if (!__this_cpu_read(cpu_hw_events.enabled))
1055 return;
1056
1057 intel_pmu_enable_bts(hwc->config);
1058 return;
1059 }
1060 /*
1061 * must enabled before any actual event
1062 * because any event may be combined with LBR
1063 */
1064 if (intel_pmu_needs_lbr_smpl(event))
1065 intel_pmu_lbr_enable(event);
1066
1067 if (event->attr.exclude_host)
1068 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1069 if (event->attr.exclude_guest)
1070 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1071
1072 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1073 intel_pmu_enable_fixed(hwc);
1074 return;
1075 }
1076
1077 if (unlikely(event->attr.precise_ip))
1078 intel_pmu_pebs_enable(event);
1079
1080 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1081 }
1082
1083 /*
1084 * Save and restart an expired event. Called by NMI contexts,
1085 * so it has to be careful about preempting normal event ops:
1086 */
1087 int intel_pmu_save_and_restart(struct perf_event *event)
1088 {
1089 x86_perf_event_update(event);
1090 return x86_perf_event_set_period(event);
1091 }
1092
1093 static void intel_pmu_reset(void)
1094 {
1095 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1096 unsigned long flags;
1097 int idx;
1098
1099 if (!x86_pmu.num_counters)
1100 return;
1101
1102 local_irq_save(flags);
1103
1104 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1105
1106 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1107 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1108 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1109 }
1110 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1111 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1112
1113 if (ds)
1114 ds->bts_index = ds->bts_buffer_base;
1115
1116 local_irq_restore(flags);
1117 }
1118
1119 /*
1120 * This handler is triggered by the local APIC, so the APIC IRQ handling
1121 * rules apply:
1122 */
1123 static int intel_pmu_handle_irq(struct pt_regs *regs)
1124 {
1125 struct perf_sample_data data;
1126 struct cpu_hw_events *cpuc;
1127 int bit, loops;
1128 u64 status;
1129 int handled;
1130
1131 cpuc = &__get_cpu_var(cpu_hw_events);
1132
1133 /*
1134 * Some chipsets need to unmask the LVTPC in a particular spot
1135 * inside the nmi handler. As a result, the unmasking was pushed
1136 * into all the nmi handlers.
1137 *
1138 * This handler doesn't seem to have any issues with the unmasking
1139 * so it was left at the top.
1140 */
1141 apic_write(APIC_LVTPC, APIC_DM_NMI);
1142
1143 intel_pmu_disable_all();
1144 handled = intel_pmu_drain_bts_buffer();
1145 status = intel_pmu_get_status();
1146 if (!status) {
1147 intel_pmu_enable_all(0);
1148 return handled;
1149 }
1150
1151 loops = 0;
1152 again:
1153 intel_pmu_ack_status(status);
1154 if (++loops > 100) {
1155 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1156 perf_event_print_debug();
1157 intel_pmu_reset();
1158 goto done;
1159 }
1160
1161 inc_irq_stat(apic_perf_irqs);
1162
1163 intel_pmu_lbr_read();
1164
1165 /*
1166 * PEBS overflow sets bit 62 in the global status register
1167 */
1168 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1169 handled++;
1170 x86_pmu.drain_pebs(regs);
1171 }
1172
1173 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1174 struct perf_event *event = cpuc->events[bit];
1175
1176 handled++;
1177
1178 if (!test_bit(bit, cpuc->active_mask))
1179 continue;
1180
1181 if (!intel_pmu_save_and_restart(event))
1182 continue;
1183
1184 perf_sample_data_init(&data, 0, event->hw.last_period);
1185
1186 if (has_branch_stack(event))
1187 data.br_stack = &cpuc->lbr_stack;
1188
1189 if (perf_event_overflow(event, &data, regs))
1190 x86_pmu_stop(event, 0);
1191 }
1192
1193 /*
1194 * Repeat if there is more work to be done:
1195 */
1196 status = intel_pmu_get_status();
1197 if (status)
1198 goto again;
1199
1200 done:
1201 intel_pmu_enable_all(0);
1202 return handled;
1203 }
1204
1205 static struct event_constraint *
1206 intel_bts_constraints(struct perf_event *event)
1207 {
1208 struct hw_perf_event *hwc = &event->hw;
1209 unsigned int hw_event, bts_event;
1210
1211 if (event->attr.freq)
1212 return NULL;
1213
1214 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1215 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1216
1217 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1218 return &bts_constraint;
1219
1220 return NULL;
1221 }
1222
1223 static int intel_alt_er(int idx)
1224 {
1225 if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1226 return idx;
1227
1228 if (idx == EXTRA_REG_RSP_0)
1229 return EXTRA_REG_RSP_1;
1230
1231 if (idx == EXTRA_REG_RSP_1)
1232 return EXTRA_REG_RSP_0;
1233
1234 return idx;
1235 }
1236
1237 static void intel_fixup_er(struct perf_event *event, int idx)
1238 {
1239 event->hw.extra_reg.idx = idx;
1240
1241 if (idx == EXTRA_REG_RSP_0) {
1242 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1243 event->hw.config |= 0x01b7;
1244 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1245 } else if (idx == EXTRA_REG_RSP_1) {
1246 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1247 event->hw.config |= 0x01bb;
1248 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1249 }
1250 }
1251
1252 /*
1253 * manage allocation of shared extra msr for certain events
1254 *
1255 * sharing can be:
1256 * per-cpu: to be shared between the various events on a single PMU
1257 * per-core: per-cpu + shared by HT threads
1258 */
1259 static struct event_constraint *
1260 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1261 struct perf_event *event,
1262 struct hw_perf_event_extra *reg)
1263 {
1264 struct event_constraint *c = &emptyconstraint;
1265 struct er_account *era;
1266 unsigned long flags;
1267 int idx = reg->idx;
1268
1269 /*
1270 * reg->alloc can be set due to existing state, so for fake cpuc we
1271 * need to ignore this, otherwise we might fail to allocate proper fake
1272 * state for this extra reg constraint. Also see the comment below.
1273 */
1274 if (reg->alloc && !cpuc->is_fake)
1275 return NULL; /* call x86_get_event_constraint() */
1276
1277 again:
1278 era = &cpuc->shared_regs->regs[idx];
1279 /*
1280 * we use spin_lock_irqsave() to avoid lockdep issues when
1281 * passing a fake cpuc
1282 */
1283 raw_spin_lock_irqsave(&era->lock, flags);
1284
1285 if (!atomic_read(&era->ref) || era->config == reg->config) {
1286
1287 /*
1288 * If its a fake cpuc -- as per validate_{group,event}() we
1289 * shouldn't touch event state and we can avoid doing so
1290 * since both will only call get_event_constraints() once
1291 * on each event, this avoids the need for reg->alloc.
1292 *
1293 * Not doing the ER fixup will only result in era->reg being
1294 * wrong, but since we won't actually try and program hardware
1295 * this isn't a problem either.
1296 */
1297 if (!cpuc->is_fake) {
1298 if (idx != reg->idx)
1299 intel_fixup_er(event, idx);
1300
1301 /*
1302 * x86_schedule_events() can call get_event_constraints()
1303 * multiple times on events in the case of incremental
1304 * scheduling(). reg->alloc ensures we only do the ER
1305 * allocation once.
1306 */
1307 reg->alloc = 1;
1308 }
1309
1310 /* lock in msr value */
1311 era->config = reg->config;
1312 era->reg = reg->reg;
1313
1314 /* one more user */
1315 atomic_inc(&era->ref);
1316
1317 /*
1318 * need to call x86_get_event_constraint()
1319 * to check if associated event has constraints
1320 */
1321 c = NULL;
1322 } else {
1323 idx = intel_alt_er(idx);
1324 if (idx != reg->idx) {
1325 raw_spin_unlock_irqrestore(&era->lock, flags);
1326 goto again;
1327 }
1328 }
1329 raw_spin_unlock_irqrestore(&era->lock, flags);
1330
1331 return c;
1332 }
1333
1334 static void
1335 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1336 struct hw_perf_event_extra *reg)
1337 {
1338 struct er_account *era;
1339
1340 /*
1341 * Only put constraint if extra reg was actually allocated. Also takes
1342 * care of event which do not use an extra shared reg.
1343 *
1344 * Also, if this is a fake cpuc we shouldn't touch any event state
1345 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1346 * either since it'll be thrown out.
1347 */
1348 if (!reg->alloc || cpuc->is_fake)
1349 return;
1350
1351 era = &cpuc->shared_regs->regs[reg->idx];
1352
1353 /* one fewer user */
1354 atomic_dec(&era->ref);
1355
1356 /* allocate again next time */
1357 reg->alloc = 0;
1358 }
1359
1360 static struct event_constraint *
1361 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1362 struct perf_event *event)
1363 {
1364 struct event_constraint *c = NULL, *d;
1365 struct hw_perf_event_extra *xreg, *breg;
1366
1367 xreg = &event->hw.extra_reg;
1368 if (xreg->idx != EXTRA_REG_NONE) {
1369 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1370 if (c == &emptyconstraint)
1371 return c;
1372 }
1373 breg = &event->hw.branch_reg;
1374 if (breg->idx != EXTRA_REG_NONE) {
1375 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1376 if (d == &emptyconstraint) {
1377 __intel_shared_reg_put_constraints(cpuc, xreg);
1378 c = d;
1379 }
1380 }
1381 return c;
1382 }
1383
1384 struct event_constraint *
1385 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1386 {
1387 struct event_constraint *c;
1388
1389 if (x86_pmu.event_constraints) {
1390 for_each_event_constraint(c, x86_pmu.event_constraints) {
1391 if ((event->hw.config & c->cmask) == c->code)
1392 return c;
1393 }
1394 }
1395
1396 return &unconstrained;
1397 }
1398
1399 static struct event_constraint *
1400 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1401 {
1402 struct event_constraint *c;
1403
1404 c = intel_bts_constraints(event);
1405 if (c)
1406 return c;
1407
1408 c = intel_pebs_constraints(event);
1409 if (c)
1410 return c;
1411
1412 c = intel_shared_regs_constraints(cpuc, event);
1413 if (c)
1414 return c;
1415
1416 return x86_get_event_constraints(cpuc, event);
1417 }
1418
1419 static void
1420 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1421 struct perf_event *event)
1422 {
1423 struct hw_perf_event_extra *reg;
1424
1425 reg = &event->hw.extra_reg;
1426 if (reg->idx != EXTRA_REG_NONE)
1427 __intel_shared_reg_put_constraints(cpuc, reg);
1428
1429 reg = &event->hw.branch_reg;
1430 if (reg->idx != EXTRA_REG_NONE)
1431 __intel_shared_reg_put_constraints(cpuc, reg);
1432 }
1433
1434 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1435 struct perf_event *event)
1436 {
1437 intel_put_shared_regs_event_constraints(cpuc, event);
1438 }
1439
1440 static void intel_pebs_aliases_core2(struct perf_event *event)
1441 {
1442 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1443 /*
1444 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1445 * (0x003c) so that we can use it with PEBS.
1446 *
1447 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1448 * PEBS capable. However we can use INST_RETIRED.ANY_P
1449 * (0x00c0), which is a PEBS capable event, to get the same
1450 * count.
1451 *
1452 * INST_RETIRED.ANY_P counts the number of cycles that retires
1453 * CNTMASK instructions. By setting CNTMASK to a value (16)
1454 * larger than the maximum number of instructions that can be
1455 * retired per cycle (4) and then inverting the condition, we
1456 * count all cycles that retire 16 or less instructions, which
1457 * is every cycle.
1458 *
1459 * Thereby we gain a PEBS capable cycle counter.
1460 */
1461 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1462
1463 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1464 event->hw.config = alt_config;
1465 }
1466 }
1467
1468 static void intel_pebs_aliases_snb(struct perf_event *event)
1469 {
1470 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1471 /*
1472 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1473 * (0x003c) so that we can use it with PEBS.
1474 *
1475 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1476 * PEBS capable. However we can use UOPS_RETIRED.ALL
1477 * (0x01c2), which is a PEBS capable event, to get the same
1478 * count.
1479 *
1480 * UOPS_RETIRED.ALL counts the number of cycles that retires
1481 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1482 * larger than the maximum number of micro-ops that can be
1483 * retired per cycle (4) and then inverting the condition, we
1484 * count all cycles that retire 16 or less micro-ops, which
1485 * is every cycle.
1486 *
1487 * Thereby we gain a PEBS capable cycle counter.
1488 */
1489 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1490
1491 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1492 event->hw.config = alt_config;
1493 }
1494 }
1495
1496 static int intel_pmu_hw_config(struct perf_event *event)
1497 {
1498 int ret = x86_pmu_hw_config(event);
1499
1500 if (ret)
1501 return ret;
1502
1503 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1504 x86_pmu.pebs_aliases(event);
1505
1506 if (intel_pmu_needs_lbr_smpl(event)) {
1507 ret = intel_pmu_setup_lbr_filter(event);
1508 if (ret)
1509 return ret;
1510 }
1511
1512 if (event->attr.type != PERF_TYPE_RAW)
1513 return 0;
1514
1515 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1516 return 0;
1517
1518 if (x86_pmu.version < 3)
1519 return -EINVAL;
1520
1521 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1522 return -EACCES;
1523
1524 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1525
1526 return 0;
1527 }
1528
1529 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1530 {
1531 if (x86_pmu.guest_get_msrs)
1532 return x86_pmu.guest_get_msrs(nr);
1533 *nr = 0;
1534 return NULL;
1535 }
1536 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1537
1538 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1539 {
1540 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1541 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1542
1543 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1544 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1545 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1546 /*
1547 * If PMU counter has PEBS enabled it is not enough to disable counter
1548 * on a guest entry since PEBS memory write can overshoot guest entry
1549 * and corrupt guest memory. Disabling PEBS solves the problem.
1550 */
1551 arr[1].msr = MSR_IA32_PEBS_ENABLE;
1552 arr[1].host = cpuc->pebs_enabled;
1553 arr[1].guest = 0;
1554
1555 *nr = 2;
1556 return arr;
1557 }
1558
1559 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1560 {
1561 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1562 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1563 int idx;
1564
1565 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1566 struct perf_event *event = cpuc->events[idx];
1567
1568 arr[idx].msr = x86_pmu_config_addr(idx);
1569 arr[idx].host = arr[idx].guest = 0;
1570
1571 if (!test_bit(idx, cpuc->active_mask))
1572 continue;
1573
1574 arr[idx].host = arr[idx].guest =
1575 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1576
1577 if (event->attr.exclude_host)
1578 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1579 else if (event->attr.exclude_guest)
1580 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1581 }
1582
1583 *nr = x86_pmu.num_counters;
1584 return arr;
1585 }
1586
1587 static void core_pmu_enable_event(struct perf_event *event)
1588 {
1589 if (!event->attr.exclude_host)
1590 x86_pmu_enable_event(event);
1591 }
1592
1593 static void core_pmu_enable_all(int added)
1594 {
1595 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1596 int idx;
1597
1598 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1599 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1600
1601 if (!test_bit(idx, cpuc->active_mask) ||
1602 cpuc->events[idx]->attr.exclude_host)
1603 continue;
1604
1605 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1606 }
1607 }
1608
1609 PMU_FORMAT_ATTR(event, "config:0-7" );
1610 PMU_FORMAT_ATTR(umask, "config:8-15" );
1611 PMU_FORMAT_ATTR(edge, "config:18" );
1612 PMU_FORMAT_ATTR(pc, "config:19" );
1613 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
1614 PMU_FORMAT_ATTR(inv, "config:23" );
1615 PMU_FORMAT_ATTR(cmask, "config:24-31" );
1616
1617 static struct attribute *intel_arch_formats_attr[] = {
1618 &format_attr_event.attr,
1619 &format_attr_umask.attr,
1620 &format_attr_edge.attr,
1621 &format_attr_pc.attr,
1622 &format_attr_inv.attr,
1623 &format_attr_cmask.attr,
1624 NULL,
1625 };
1626
1627 ssize_t intel_event_sysfs_show(char *page, u64 config)
1628 {
1629 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1630
1631 return x86_event_sysfs_show(page, config, event);
1632 }
1633
1634 static __initconst const struct x86_pmu core_pmu = {
1635 .name = "core",
1636 .handle_irq = x86_pmu_handle_irq,
1637 .disable_all = x86_pmu_disable_all,
1638 .enable_all = core_pmu_enable_all,
1639 .enable = core_pmu_enable_event,
1640 .disable = x86_pmu_disable_event,
1641 .hw_config = x86_pmu_hw_config,
1642 .schedule_events = x86_schedule_events,
1643 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1644 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1645 .event_map = intel_pmu_event_map,
1646 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1647 .apic = 1,
1648 /*
1649 * Intel PMCs cannot be accessed sanely above 32 bit width,
1650 * so we install an artificial 1<<31 period regardless of
1651 * the generic event period:
1652 */
1653 .max_period = (1ULL << 31) - 1,
1654 .get_event_constraints = intel_get_event_constraints,
1655 .put_event_constraints = intel_put_event_constraints,
1656 .event_constraints = intel_core_event_constraints,
1657 .guest_get_msrs = core_guest_get_msrs,
1658 .format_attrs = intel_arch_formats_attr,
1659 .events_sysfs_show = intel_event_sysfs_show,
1660 };
1661
1662 struct intel_shared_regs *allocate_shared_regs(int cpu)
1663 {
1664 struct intel_shared_regs *regs;
1665 int i;
1666
1667 regs = kzalloc_node(sizeof(struct intel_shared_regs),
1668 GFP_KERNEL, cpu_to_node(cpu));
1669 if (regs) {
1670 /*
1671 * initialize the locks to keep lockdep happy
1672 */
1673 for (i = 0; i < EXTRA_REG_MAX; i++)
1674 raw_spin_lock_init(&regs->regs[i].lock);
1675
1676 regs->core_id = -1;
1677 }
1678 return regs;
1679 }
1680
1681 static int intel_pmu_cpu_prepare(int cpu)
1682 {
1683 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1684
1685 if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1686 return NOTIFY_OK;
1687
1688 cpuc->shared_regs = allocate_shared_regs(cpu);
1689 if (!cpuc->shared_regs)
1690 return NOTIFY_BAD;
1691
1692 return NOTIFY_OK;
1693 }
1694
1695 static void intel_pmu_cpu_starting(int cpu)
1696 {
1697 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1698 int core_id = topology_core_id(cpu);
1699 int i;
1700
1701 init_debug_store_on_cpu(cpu);
1702 /*
1703 * Deal with CPUs that don't clear their LBRs on power-up.
1704 */
1705 intel_pmu_lbr_reset();
1706
1707 cpuc->lbr_sel = NULL;
1708
1709 if (!cpuc->shared_regs)
1710 return;
1711
1712 if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1713 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1714 struct intel_shared_regs *pc;
1715
1716 pc = per_cpu(cpu_hw_events, i).shared_regs;
1717 if (pc && pc->core_id == core_id) {
1718 cpuc->kfree_on_online = cpuc->shared_regs;
1719 cpuc->shared_regs = pc;
1720 break;
1721 }
1722 }
1723 cpuc->shared_regs->core_id = core_id;
1724 cpuc->shared_regs->refcnt++;
1725 }
1726
1727 if (x86_pmu.lbr_sel_map)
1728 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1729 }
1730
1731 static void intel_pmu_cpu_dying(int cpu)
1732 {
1733 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1734 struct intel_shared_regs *pc;
1735
1736 pc = cpuc->shared_regs;
1737 if (pc) {
1738 if (pc->core_id == -1 || --pc->refcnt == 0)
1739 kfree(pc);
1740 cpuc->shared_regs = NULL;
1741 }
1742
1743 fini_debug_store_on_cpu(cpu);
1744 }
1745
1746 static void intel_pmu_flush_branch_stack(void)
1747 {
1748 /*
1749 * Intel LBR does not tag entries with the
1750 * PID of the current task, then we need to
1751 * flush it on ctxsw
1752 * For now, we simply reset it
1753 */
1754 if (x86_pmu.lbr_nr)
1755 intel_pmu_lbr_reset();
1756 }
1757
1758 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1759
1760 static struct attribute *intel_arch3_formats_attr[] = {
1761 &format_attr_event.attr,
1762 &format_attr_umask.attr,
1763 &format_attr_edge.attr,
1764 &format_attr_pc.attr,
1765 &format_attr_any.attr,
1766 &format_attr_inv.attr,
1767 &format_attr_cmask.attr,
1768
1769 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1770 NULL,
1771 };
1772
1773 static __initconst const struct x86_pmu intel_pmu = {
1774 .name = "Intel",
1775 .handle_irq = intel_pmu_handle_irq,
1776 .disable_all = intel_pmu_disable_all,
1777 .enable_all = intel_pmu_enable_all,
1778 .enable = intel_pmu_enable_event,
1779 .disable = intel_pmu_disable_event,
1780 .hw_config = intel_pmu_hw_config,
1781 .schedule_events = x86_schedule_events,
1782 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1783 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1784 .event_map = intel_pmu_event_map,
1785 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1786 .apic = 1,
1787 /*
1788 * Intel PMCs cannot be accessed sanely above 32 bit width,
1789 * so we install an artificial 1<<31 period regardless of
1790 * the generic event period:
1791 */
1792 .max_period = (1ULL << 31) - 1,
1793 .get_event_constraints = intel_get_event_constraints,
1794 .put_event_constraints = intel_put_event_constraints,
1795 .pebs_aliases = intel_pebs_aliases_core2,
1796
1797 .format_attrs = intel_arch3_formats_attr,
1798 .events_sysfs_show = intel_event_sysfs_show,
1799
1800 .cpu_prepare = intel_pmu_cpu_prepare,
1801 .cpu_starting = intel_pmu_cpu_starting,
1802 .cpu_dying = intel_pmu_cpu_dying,
1803 .guest_get_msrs = intel_guest_get_msrs,
1804 .flush_branch_stack = intel_pmu_flush_branch_stack,
1805 };
1806
1807 static __init void intel_clovertown_quirk(void)
1808 {
1809 /*
1810 * PEBS is unreliable due to:
1811 *
1812 * AJ67 - PEBS may experience CPL leaks
1813 * AJ68 - PEBS PMI may be delayed by one event
1814 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1815 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1816 *
1817 * AJ67 could be worked around by restricting the OS/USR flags.
1818 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1819 *
1820 * AJ106 could possibly be worked around by not allowing LBR
1821 * usage from PEBS, including the fixup.
1822 * AJ68 could possibly be worked around by always programming
1823 * a pebs_event_reset[0] value and coping with the lost events.
1824 *
1825 * But taken together it might just make sense to not enable PEBS on
1826 * these chips.
1827 */
1828 pr_warn("PEBS disabled due to CPU errata\n");
1829 x86_pmu.pebs = 0;
1830 x86_pmu.pebs_constraints = NULL;
1831 }
1832
1833 static int intel_snb_pebs_broken(int cpu)
1834 {
1835 u32 rev = UINT_MAX; /* default to broken for unknown models */
1836
1837 switch (cpu_data(cpu).x86_model) {
1838 case 42: /* SNB */
1839 rev = 0x28;
1840 break;
1841
1842 case 45: /* SNB-EP */
1843 switch (cpu_data(cpu).x86_mask) {
1844 case 6: rev = 0x618; break;
1845 case 7: rev = 0x70c; break;
1846 }
1847 }
1848
1849 return (cpu_data(cpu).microcode < rev);
1850 }
1851
1852 static void intel_snb_check_microcode(void)
1853 {
1854 int pebs_broken = 0;
1855 int cpu;
1856
1857 get_online_cpus();
1858 for_each_online_cpu(cpu) {
1859 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1860 break;
1861 }
1862 put_online_cpus();
1863
1864 if (pebs_broken == x86_pmu.pebs_broken)
1865 return;
1866
1867 /*
1868 * Serialized by the microcode lock..
1869 */
1870 if (x86_pmu.pebs_broken) {
1871 pr_info("PEBS enabled due to microcode update\n");
1872 x86_pmu.pebs_broken = 0;
1873 } else {
1874 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1875 x86_pmu.pebs_broken = 1;
1876 }
1877 }
1878
1879 static __init void intel_sandybridge_quirk(void)
1880 {
1881 x86_pmu.check_microcode = intel_snb_check_microcode;
1882 intel_snb_check_microcode();
1883 }
1884
1885 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1886 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1887 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1888 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1889 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1890 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1891 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1892 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1893 };
1894
1895 static __init void intel_arch_events_quirk(void)
1896 {
1897 int bit;
1898
1899 /* disable event that reported as not presend by cpuid */
1900 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1901 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1902 pr_warn("CPUID marked event: \'%s\' unavailable\n",
1903 intel_arch_events_map[bit].name);
1904 }
1905 }
1906
1907 static __init void intel_nehalem_quirk(void)
1908 {
1909 union cpuid10_ebx ebx;
1910
1911 ebx.full = x86_pmu.events_maskl;
1912 if (ebx.split.no_branch_misses_retired) {
1913 /*
1914 * Erratum AAJ80 detected, we work it around by using
1915 * the BR_MISP_EXEC.ANY event. This will over-count
1916 * branch-misses, but it's still much better than the
1917 * architectural event which is often completely bogus:
1918 */
1919 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1920 ebx.split.no_branch_misses_retired = 0;
1921 x86_pmu.events_maskl = ebx.full;
1922 pr_info("CPU erratum AAJ80 worked around\n");
1923 }
1924 }
1925
1926 __init int intel_pmu_init(void)
1927 {
1928 union cpuid10_edx edx;
1929 union cpuid10_eax eax;
1930 union cpuid10_ebx ebx;
1931 struct event_constraint *c;
1932 unsigned int unused;
1933 int version;
1934
1935 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1936 switch (boot_cpu_data.x86) {
1937 case 0x6:
1938 return p6_pmu_init();
1939 case 0xb:
1940 return knc_pmu_init();
1941 case 0xf:
1942 return p4_pmu_init();
1943 }
1944 return -ENODEV;
1945 }
1946
1947 /*
1948 * Check whether the Architectural PerfMon supports
1949 * Branch Misses Retired hw_event or not.
1950 */
1951 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1952 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1953 return -ENODEV;
1954
1955 version = eax.split.version_id;
1956 if (version < 2)
1957 x86_pmu = core_pmu;
1958 else
1959 x86_pmu = intel_pmu;
1960
1961 x86_pmu.version = version;
1962 x86_pmu.num_counters = eax.split.num_counters;
1963 x86_pmu.cntval_bits = eax.split.bit_width;
1964 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
1965
1966 x86_pmu.events_maskl = ebx.full;
1967 x86_pmu.events_mask_len = eax.split.mask_length;
1968
1969 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
1970
1971 /*
1972 * Quirk: v2 perfmon does not report fixed-purpose events, so
1973 * assume at least 3 events:
1974 */
1975 if (version > 1)
1976 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1977
1978 /*
1979 * v2 and above have a perf capabilities MSR
1980 */
1981 if (version > 1) {
1982 u64 capabilities;
1983
1984 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1985 x86_pmu.intel_cap.capabilities = capabilities;
1986 }
1987
1988 intel_ds_init();
1989
1990 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1991
1992 /*
1993 * Install the hw-cache-events table:
1994 */
1995 switch (boot_cpu_data.x86_model) {
1996 case 14: /* 65 nm core solo/duo, "Yonah" */
1997 pr_cont("Core events, ");
1998 break;
1999
2000 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2001 x86_add_quirk(intel_clovertown_quirk);
2002 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2003 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2004 case 29: /* six-core 45 nm xeon "Dunnington" */
2005 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2006 sizeof(hw_cache_event_ids));
2007
2008 intel_pmu_lbr_init_core();
2009
2010 x86_pmu.event_constraints = intel_core2_event_constraints;
2011 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2012 pr_cont("Core2 events, ");
2013 break;
2014
2015 case 26: /* 45 nm nehalem, "Bloomfield" */
2016 case 30: /* 45 nm nehalem, "Lynnfield" */
2017 case 46: /* 45 nm nehalem-ex, "Beckton" */
2018 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2019 sizeof(hw_cache_event_ids));
2020 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2021 sizeof(hw_cache_extra_regs));
2022
2023 intel_pmu_lbr_init_nhm();
2024
2025 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2026 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2027 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2028 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2029
2030 /* UOPS_ISSUED.STALLED_CYCLES */
2031 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2032 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2033 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2034 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2035 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2036
2037 x86_add_quirk(intel_nehalem_quirk);
2038
2039 pr_cont("Nehalem events, ");
2040 break;
2041
2042 case 28: /* Atom */
2043 case 38: /* Lincroft */
2044 case 39: /* Penwell */
2045 case 53: /* Cloverview */
2046 case 54: /* Cedarview */
2047 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2048 sizeof(hw_cache_event_ids));
2049
2050 intel_pmu_lbr_init_atom();
2051
2052 x86_pmu.event_constraints = intel_gen_event_constraints;
2053 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2054 pr_cont("Atom events, ");
2055 break;
2056
2057 case 37: /* 32 nm nehalem, "Clarkdale" */
2058 case 44: /* 32 nm nehalem, "Gulftown" */
2059 case 47: /* 32 nm Xeon E7 */
2060 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2061 sizeof(hw_cache_event_ids));
2062 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2063 sizeof(hw_cache_extra_regs));
2064
2065 intel_pmu_lbr_init_nhm();
2066
2067 x86_pmu.event_constraints = intel_westmere_event_constraints;
2068 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2069 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2070 x86_pmu.extra_regs = intel_westmere_extra_regs;
2071 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2072
2073 /* UOPS_ISSUED.STALLED_CYCLES */
2074 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2075 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2076 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2077 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2078 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2079
2080 pr_cont("Westmere events, ");
2081 break;
2082
2083 case 42: /* SandyBridge */
2084 case 45: /* SandyBridge, "Romely-EP" */
2085 x86_add_quirk(intel_sandybridge_quirk);
2086 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2087 sizeof(hw_cache_event_ids));
2088 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2089 sizeof(hw_cache_extra_regs));
2090
2091 intel_pmu_lbr_init_snb();
2092
2093 x86_pmu.event_constraints = intel_snb_event_constraints;
2094 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2095 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2096 x86_pmu.extra_regs = intel_snb_extra_regs;
2097 /* all extra regs are per-cpu when HT is on */
2098 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2099 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2100
2101 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2102 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2103 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2104 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2105 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2106 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2107
2108 pr_cont("SandyBridge events, ");
2109 break;
2110 case 58: /* IvyBridge */
2111 case 62: /* IvyBridge EP */
2112 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2113 sizeof(hw_cache_event_ids));
2114 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2115 sizeof(hw_cache_extra_regs));
2116
2117 intel_pmu_lbr_init_snb();
2118
2119 x86_pmu.event_constraints = intel_ivb_event_constraints;
2120 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2121 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2122 x86_pmu.extra_regs = intel_snb_extra_regs;
2123 /* all extra regs are per-cpu when HT is on */
2124 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2125 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2126
2127 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2128 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2129 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2130
2131 pr_cont("IvyBridge events, ");
2132 break;
2133
2134
2135 default:
2136 switch (x86_pmu.version) {
2137 case 1:
2138 x86_pmu.event_constraints = intel_v1_event_constraints;
2139 pr_cont("generic architected perfmon v1, ");
2140 break;
2141 default:
2142 /*
2143 * default constraints for v2 and up
2144 */
2145 x86_pmu.event_constraints = intel_gen_event_constraints;
2146 pr_cont("generic architected perfmon, ");
2147 break;
2148 }
2149 }
2150
2151 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2152 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2153 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2154 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2155 }
2156 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2157
2158 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2159 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2160 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2161 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2162 }
2163
2164 x86_pmu.intel_ctrl |=
2165 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2166
2167 if (x86_pmu.event_constraints) {
2168 /*
2169 * event on fixed counter2 (REF_CYCLES) only works on this
2170 * counter, so do not extend mask to generic counters
2171 */
2172 for_each_event_constraint(c, x86_pmu.event_constraints) {
2173 if (c->cmask != X86_RAW_EVENT_MASK
2174 || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2175 continue;
2176 }
2177
2178 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2179 c->weight += x86_pmu.num_counters;
2180 }
2181 }
2182
2183 return 0;
2184 }
This page took 0.121639 seconds and 6 git commands to generate.