Merge branch 'keys-asym-keyctl' into keys-next
[deliverable/linux.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20
21 #define HPET_MASK CLOCKSOURCE_MASK(32)
22
23 /* FSEC = 10^-15
24 NSEC = 10^-9 */
25 #define FSEC_PER_NSEC 1000000L
26
27 #define HPET_DEV_USED_BIT 2
28 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID 0x8
30 #define HPET_DEV_FSB_CAP 0x1000
31 #define HPET_DEV_PERI_CAP 0x2000
32
33 #define HPET_MIN_CYCLES 128
34 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
36 /*
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 */
39 unsigned long hpet_address;
40 u8 hpet_blockid; /* OS timer block num */
41 bool hpet_msi_disable;
42
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int hpet_num_timers;
45 #endif
46 static void __iomem *hpet_virt_address;
47
48 struct hpet_dev {
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
55 };
56
57 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
58 {
59 return container_of(evtdev, struct hpet_dev, evt);
60 }
61
62 inline unsigned int hpet_readl(unsigned int a)
63 {
64 return readl(hpet_virt_address + a);
65 }
66
67 static inline void hpet_writel(unsigned int d, unsigned int a)
68 {
69 writel(d, hpet_virt_address + a);
70 }
71
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
75
76 static inline void hpet_set_mapping(void)
77 {
78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79 }
80
81 static inline void hpet_clear_mapping(void)
82 {
83 iounmap(hpet_virt_address);
84 hpet_virt_address = NULL;
85 }
86
87 /*
88 * HPET command line enable / disable
89 */
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
93
94 static int __init hpet_setup(char *str)
95 {
96 while (str) {
97 char *next = strchr(str, ',');
98
99 if (next)
100 *next++ = 0;
101 if (!strncmp("disable", str, 7))
102 boot_hpet_disable = true;
103 if (!strncmp("force", str, 5))
104 hpet_force_user = true;
105 if (!strncmp("verbose", str, 7))
106 hpet_verbose = true;
107 str = next;
108 }
109 return 1;
110 }
111 __setup("hpet=", hpet_setup);
112
113 static int __init disable_hpet(char *str)
114 {
115 boot_hpet_disable = true;
116 return 1;
117 }
118 __setup("nohpet", disable_hpet);
119
120 static inline int is_hpet_capable(void)
121 {
122 return !boot_hpet_disable && hpet_address;
123 }
124
125 /*
126 * HPET timer interrupt enable / disable
127 */
128 static bool hpet_legacy_int_enabled;
129
130 /**
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 */
133 int is_hpet_enabled(void)
134 {
135 return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138
139 static void _hpet_print_config(const char *function, int line)
140 {
141 u32 i, timers, l, h;
142 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 l = hpet_readl(HPET_ID);
144 h = hpet_readl(HPET_PERIOD);
145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 l = hpet_readl(HPET_CFG);
148 h = hpet_readl(HPET_STATUS);
149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 l = hpet_readl(HPET_COUNTER);
151 h = hpet_readl(HPET_COUNTER+4);
152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153
154 for (i = 0; i < timers; i++) {
155 l = hpet_readl(HPET_Tn_CFG(i));
156 h = hpet_readl(HPET_Tn_CFG(i)+4);
157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_CMP(i));
160 h = hpet_readl(HPET_Tn_CMP(i)+4);
161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 i, l, h);
163 l = hpet_readl(HPET_Tn_ROUTE(i));
164 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 i, l, h);
167 }
168 }
169
170 #define hpet_print_config() \
171 do { \
172 if (hpet_verbose) \
173 _hpet_print_config(__func__, __LINE__); \
174 } while (0)
175
176 /*
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
179 */
180 #ifdef CONFIG_HPET
181
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
183
184 static void hpet_reserve_platform_timers(unsigned int id)
185 {
186 struct hpet __iomem *hpet = hpet_virt_address;
187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 unsigned int nrtimers, i;
189 struct hpet_data hd;
190
191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet;
196 hd.hd_nirqs = nrtimers;
197 hpet_reserve_timer(&hd, 0);
198
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd, 1);
201 #endif
202
203 /*
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
207 */
208 hd.hd_irq[0] = HPET_LEGACY_8254;
209 hd.hd_irq[1] = HPET_LEGACY_RTC;
210
211 for (i = 2; i < nrtimers; timer++, i++) {
212 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
214 }
215
216 hpet_reserve_msi_timers(&hd);
217
218 hpet_alloc(&hd);
219
220 }
221 #else
222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
224
225 /*
226 * Common hpet info
227 */
228 static unsigned long hpet_freq;
229
230 static struct clock_event_device hpet_clockevent;
231
232 static void hpet_stop_counter(void)
233 {
234 u32 cfg = hpet_readl(HPET_CFG);
235 cfg &= ~HPET_CFG_ENABLE;
236 hpet_writel(cfg, HPET_CFG);
237 }
238
239 static void hpet_reset_counter(void)
240 {
241 hpet_writel(0, HPET_COUNTER);
242 hpet_writel(0, HPET_COUNTER + 4);
243 }
244
245 static void hpet_start_counter(void)
246 {
247 unsigned int cfg = hpet_readl(HPET_CFG);
248 cfg |= HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
250 }
251
252 static void hpet_restart_counter(void)
253 {
254 hpet_stop_counter();
255 hpet_reset_counter();
256 hpet_start_counter();
257 }
258
259 static void hpet_resume_device(void)
260 {
261 force_hpet_resume();
262 }
263
264 static void hpet_resume_counter(struct clocksource *cs)
265 {
266 hpet_resume_device();
267 hpet_restart_counter();
268 }
269
270 static void hpet_enable_legacy_int(void)
271 {
272 unsigned int cfg = hpet_readl(HPET_CFG);
273
274 cfg |= HPET_CFG_LEGACY;
275 hpet_writel(cfg, HPET_CFG);
276 hpet_legacy_int_enabled = true;
277 }
278
279 static void hpet_legacy_clockevent_register(void)
280 {
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
283
284 /*
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
287 */
288 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
289 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 global_clock_event = &hpet_clockevent;
292 printk(KERN_DEBUG "hpet clockevent registered\n");
293 }
294
295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296 {
297 unsigned int cfg, cmp, now;
298 uint64_t delta;
299
300 hpet_stop_counter();
301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 delta >>= evt->shift;
303 now = hpet_readl(HPET_COUNTER);
304 cmp = now + (unsigned int)delta;
305 cfg = hpet_readl(HPET_Tn_CFG(timer));
306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 HPET_TN_32BIT;
308 hpet_writel(cfg, HPET_Tn_CFG(timer));
309 hpet_writel(cmp, HPET_Tn_CMP(timer));
310 udelay(1);
311 /*
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
317 */
318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 hpet_start_counter();
320 hpet_print_config();
321
322 return 0;
323 }
324
325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326 {
327 unsigned int cfg;
328
329 cfg = hpet_readl(HPET_Tn_CFG(timer));
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
333
334 return 0;
335 }
336
337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
338 {
339 unsigned int cfg;
340
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_ENABLE;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
344
345 return 0;
346 }
347
348 static int hpet_resume(struct clock_event_device *evt, int timer)
349 {
350 if (!timer) {
351 hpet_enable_legacy_int();
352 } else {
353 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354
355 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
356 disable_irq(hdev->irq);
357 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
358 enable_irq(hdev->irq);
359 }
360 hpet_print_config();
361
362 return 0;
363 }
364
365 static int hpet_next_event(unsigned long delta,
366 struct clock_event_device *evt, int timer)
367 {
368 u32 cnt;
369 s32 res;
370
371 cnt = hpet_readl(HPET_COUNTER);
372 cnt += (u32) delta;
373 hpet_writel(cnt, HPET_Tn_CMP(timer));
374
375 /*
376 * HPETs are a complete disaster. The compare register is
377 * based on a equal comparison and neither provides a less
378 * than or equal functionality (which would require to take
379 * the wraparound into account) nor a simple count down event
380 * mode. Further the write to the comparator register is
381 * delayed internally up to two HPET clock cycles in certain
382 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
383 * longer delays. We worked around that by reading back the
384 * compare register, but that required another workaround for
385 * ICH9,10 chips where the first readout after write can
386 * return the old stale value. We already had a minimum
387 * programming delta of 5us enforced, but a NMI or SMI hitting
388 * between the counter readout and the comparator write can
389 * move us behind that point easily. Now instead of reading
390 * the compare register back several times, we make the ETIME
391 * decision based on the following: Return ETIME if the
392 * counter value after the write is less than HPET_MIN_CYCLES
393 * away from the event or if the counter is already ahead of
394 * the event. The minimum programming delta for the generic
395 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
396 */
397 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
398
399 return res < HPET_MIN_CYCLES ? -ETIME : 0;
400 }
401
402 static int hpet_legacy_shutdown(struct clock_event_device *evt)
403 {
404 return hpet_shutdown(evt, 0);
405 }
406
407 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
408 {
409 return hpet_set_oneshot(evt, 0);
410 }
411
412 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
413 {
414 return hpet_set_periodic(evt, 0);
415 }
416
417 static int hpet_legacy_resume(struct clock_event_device *evt)
418 {
419 return hpet_resume(evt, 0);
420 }
421
422 static int hpet_legacy_next_event(unsigned long delta,
423 struct clock_event_device *evt)
424 {
425 return hpet_next_event(delta, evt, 0);
426 }
427
428 /*
429 * The hpet clock event device
430 */
431 static struct clock_event_device hpet_clockevent = {
432 .name = "hpet",
433 .features = CLOCK_EVT_FEAT_PERIODIC |
434 CLOCK_EVT_FEAT_ONESHOT,
435 .set_state_periodic = hpet_legacy_set_periodic,
436 .set_state_oneshot = hpet_legacy_set_oneshot,
437 .set_state_shutdown = hpet_legacy_shutdown,
438 .tick_resume = hpet_legacy_resume,
439 .set_next_event = hpet_legacy_next_event,
440 .irq = 0,
441 .rating = 50,
442 };
443
444 /*
445 * HPET MSI Support
446 */
447 #ifdef CONFIG_PCI_MSI
448
449 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
450 static struct hpet_dev *hpet_devs;
451 static struct irq_domain *hpet_domain;
452
453 void hpet_msi_unmask(struct irq_data *data)
454 {
455 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
456 unsigned int cfg;
457
458 /* unmask it */
459 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
460 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
461 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
462 }
463
464 void hpet_msi_mask(struct irq_data *data)
465 {
466 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
467 unsigned int cfg;
468
469 /* mask it */
470 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
471 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
472 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
473 }
474
475 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
476 {
477 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
478 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
479 }
480
481 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
482 {
483 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
484 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
485 msg->address_hi = 0;
486 }
487
488 static int hpet_msi_shutdown(struct clock_event_device *evt)
489 {
490 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
491
492 return hpet_shutdown(evt, hdev->num);
493 }
494
495 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
496 {
497 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
498
499 return hpet_set_oneshot(evt, hdev->num);
500 }
501
502 static int hpet_msi_set_periodic(struct clock_event_device *evt)
503 {
504 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
505
506 return hpet_set_periodic(evt, hdev->num);
507 }
508
509 static int hpet_msi_resume(struct clock_event_device *evt)
510 {
511 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
512
513 return hpet_resume(evt, hdev->num);
514 }
515
516 static int hpet_msi_next_event(unsigned long delta,
517 struct clock_event_device *evt)
518 {
519 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
520 return hpet_next_event(delta, evt, hdev->num);
521 }
522
523 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
524 {
525 struct hpet_dev *dev = (struct hpet_dev *)data;
526 struct clock_event_device *hevt = &dev->evt;
527
528 if (!hevt->event_handler) {
529 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
530 dev->num);
531 return IRQ_HANDLED;
532 }
533
534 hevt->event_handler(hevt);
535 return IRQ_HANDLED;
536 }
537
538 static int hpet_setup_irq(struct hpet_dev *dev)
539 {
540
541 if (request_irq(dev->irq, hpet_interrupt_handler,
542 IRQF_TIMER | IRQF_NOBALANCING,
543 dev->name, dev))
544 return -1;
545
546 disable_irq(dev->irq);
547 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
548 enable_irq(dev->irq);
549
550 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
551 dev->name, dev->irq);
552
553 return 0;
554 }
555
556 /* This should be called in specific @cpu */
557 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
558 {
559 struct clock_event_device *evt = &hdev->evt;
560
561 WARN_ON(cpu != smp_processor_id());
562 if (!(hdev->flags & HPET_DEV_VALID))
563 return;
564
565 hdev->cpu = cpu;
566 per_cpu(cpu_hpet_dev, cpu) = hdev;
567 evt->name = hdev->name;
568 hpet_setup_irq(hdev);
569 evt->irq = hdev->irq;
570
571 evt->rating = 110;
572 evt->features = CLOCK_EVT_FEAT_ONESHOT;
573 if (hdev->flags & HPET_DEV_PERI_CAP) {
574 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
575 evt->set_state_periodic = hpet_msi_set_periodic;
576 }
577
578 evt->set_state_shutdown = hpet_msi_shutdown;
579 evt->set_state_oneshot = hpet_msi_set_oneshot;
580 evt->tick_resume = hpet_msi_resume;
581 evt->set_next_event = hpet_msi_next_event;
582 evt->cpumask = cpumask_of(hdev->cpu);
583
584 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
585 0x7FFFFFFF);
586 }
587
588 #ifdef CONFIG_HPET
589 /* Reserve at least one timer for userspace (/dev/hpet) */
590 #define RESERVE_TIMERS 1
591 #else
592 #define RESERVE_TIMERS 0
593 #endif
594
595 static void hpet_msi_capability_lookup(unsigned int start_timer)
596 {
597 unsigned int id;
598 unsigned int num_timers;
599 unsigned int num_timers_used = 0;
600 int i, irq;
601
602 if (hpet_msi_disable)
603 return;
604
605 if (boot_cpu_has(X86_FEATURE_ARAT))
606 return;
607 id = hpet_readl(HPET_ID);
608
609 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
610 num_timers++; /* Value read out starts from 0 */
611 hpet_print_config();
612
613 hpet_domain = hpet_create_irq_domain(hpet_blockid);
614 if (!hpet_domain)
615 return;
616
617 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
618 if (!hpet_devs)
619 return;
620
621 hpet_num_timers = num_timers;
622
623 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
624 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
625 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
626
627 /* Only consider HPET timer with MSI support */
628 if (!(cfg & HPET_TN_FSB_CAP))
629 continue;
630
631 hdev->flags = 0;
632 if (cfg & HPET_TN_PERIODIC_CAP)
633 hdev->flags |= HPET_DEV_PERI_CAP;
634 sprintf(hdev->name, "hpet%d", i);
635 hdev->num = i;
636
637 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
638 if (irq <= 0)
639 continue;
640
641 hdev->irq = irq;
642 hdev->flags |= HPET_DEV_FSB_CAP;
643 hdev->flags |= HPET_DEV_VALID;
644 num_timers_used++;
645 if (num_timers_used == num_possible_cpus())
646 break;
647 }
648
649 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650 num_timers, num_timers_used);
651 }
652
653 #ifdef CONFIG_HPET
654 static void hpet_reserve_msi_timers(struct hpet_data *hd)
655 {
656 int i;
657
658 if (!hpet_devs)
659 return;
660
661 for (i = 0; i < hpet_num_timers; i++) {
662 struct hpet_dev *hdev = &hpet_devs[i];
663
664 if (!(hdev->flags & HPET_DEV_VALID))
665 continue;
666
667 hd->hd_irq[hdev->num] = hdev->irq;
668 hpet_reserve_timer(hd, hdev->num);
669 }
670 }
671 #endif
672
673 static struct hpet_dev *hpet_get_unused_timer(void)
674 {
675 int i;
676
677 if (!hpet_devs)
678 return NULL;
679
680 for (i = 0; i < hpet_num_timers; i++) {
681 struct hpet_dev *hdev = &hpet_devs[i];
682
683 if (!(hdev->flags & HPET_DEV_VALID))
684 continue;
685 if (test_and_set_bit(HPET_DEV_USED_BIT,
686 (unsigned long *)&hdev->flags))
687 continue;
688 return hdev;
689 }
690 return NULL;
691 }
692
693 struct hpet_work_struct {
694 struct delayed_work work;
695 struct completion complete;
696 };
697
698 static void hpet_work(struct work_struct *w)
699 {
700 struct hpet_dev *hdev;
701 int cpu = smp_processor_id();
702 struct hpet_work_struct *hpet_work;
703
704 hpet_work = container_of(w, struct hpet_work_struct, work.work);
705
706 hdev = hpet_get_unused_timer();
707 if (hdev)
708 init_one_hpet_msi_clockevent(hdev, cpu);
709
710 complete(&hpet_work->complete);
711 }
712
713 static int hpet_cpuhp_online(unsigned int cpu)
714 {
715 struct hpet_work_struct work;
716
717 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
718 init_completion(&work.complete);
719 /* FIXME: add schedule_work_on() */
720 schedule_delayed_work_on(cpu, &work.work, 0);
721 wait_for_completion(&work.complete);
722 destroy_delayed_work_on_stack(&work.work);
723 return 0;
724 }
725
726 static int hpet_cpuhp_dead(unsigned int cpu)
727 {
728 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
729
730 if (!hdev)
731 return 0;
732 free_irq(hdev->irq, hdev);
733 hdev->flags &= ~HPET_DEV_USED;
734 per_cpu(cpu_hpet_dev, cpu) = NULL;
735 return 0;
736 }
737 #else
738
739 static void hpet_msi_capability_lookup(unsigned int start_timer)
740 {
741 return;
742 }
743
744 #ifdef CONFIG_HPET
745 static void hpet_reserve_msi_timers(struct hpet_data *hd)
746 {
747 return;
748 }
749 #endif
750
751 #define hpet_cpuhp_online NULL
752 #define hpet_cpuhp_dead NULL
753
754 #endif
755
756 /*
757 * Clock source related code
758 */
759 static cycle_t read_hpet(struct clocksource *cs)
760 {
761 return (cycle_t)hpet_readl(HPET_COUNTER);
762 }
763
764 static struct clocksource clocksource_hpet = {
765 .name = "hpet",
766 .rating = 250,
767 .read = read_hpet,
768 .mask = HPET_MASK,
769 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
770 .resume = hpet_resume_counter,
771 };
772
773 static int hpet_clocksource_register(void)
774 {
775 u64 start, now;
776 cycle_t t1;
777
778 /* Start the counter */
779 hpet_restart_counter();
780
781 /* Verify whether hpet counter works */
782 t1 = hpet_readl(HPET_COUNTER);
783 start = rdtsc();
784
785 /*
786 * We don't know the TSC frequency yet, but waiting for
787 * 200000 TSC cycles is safe:
788 * 4 GHz == 50us
789 * 1 GHz == 200us
790 */
791 do {
792 rep_nop();
793 now = rdtsc();
794 } while ((now - start) < 200000UL);
795
796 if (t1 == hpet_readl(HPET_COUNTER)) {
797 printk(KERN_WARNING
798 "HPET counter not counting. HPET disabled\n");
799 return -ENODEV;
800 }
801
802 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
803 return 0;
804 }
805
806 static u32 *hpet_boot_cfg;
807
808 /**
809 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
810 */
811 int __init hpet_enable(void)
812 {
813 u32 hpet_period, cfg, id;
814 u64 freq;
815 unsigned int i, last;
816
817 if (!is_hpet_capable())
818 return 0;
819
820 hpet_set_mapping();
821
822 /*
823 * Read the period and check for a sane value:
824 */
825 hpet_period = hpet_readl(HPET_PERIOD);
826
827 /*
828 * AMD SB700 based systems with spread spectrum enabled use a
829 * SMM based HPET emulation to provide proper frequency
830 * setting. The SMM code is initialized with the first HPET
831 * register access and takes some time to complete. During
832 * this time the config register reads 0xffffffff. We check
833 * for max. 1000 loops whether the config register reads a non
834 * 0xffffffff value to make sure that HPET is up and running
835 * before we go further. A counting loop is safe, as the HPET
836 * access takes thousands of CPU cycles. On non SB700 based
837 * machines this check is only done once and has no side
838 * effects.
839 */
840 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
841 if (i == 1000) {
842 printk(KERN_WARNING
843 "HPET config register value = 0xFFFFFFFF. "
844 "Disabling HPET\n");
845 goto out_nohpet;
846 }
847 }
848
849 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
850 goto out_nohpet;
851
852 /*
853 * The period is a femto seconds value. Convert it to a
854 * frequency.
855 */
856 freq = FSEC_PER_SEC;
857 do_div(freq, hpet_period);
858 hpet_freq = freq;
859
860 /*
861 * Read the HPET ID register to retrieve the IRQ routing
862 * information and the number of channels
863 */
864 id = hpet_readl(HPET_ID);
865 hpet_print_config();
866
867 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
868
869 #ifdef CONFIG_HPET_EMULATE_RTC
870 /*
871 * The legacy routing mode needs at least two channels, tick timer
872 * and the rtc emulation channel.
873 */
874 if (!last)
875 goto out_nohpet;
876 #endif
877
878 cfg = hpet_readl(HPET_CFG);
879 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
880 GFP_KERNEL);
881 if (hpet_boot_cfg)
882 *hpet_boot_cfg = cfg;
883 else
884 pr_warn("HPET initial state will not be saved\n");
885 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
886 hpet_writel(cfg, HPET_CFG);
887 if (cfg)
888 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
889 cfg);
890
891 for (i = 0; i <= last; ++i) {
892 cfg = hpet_readl(HPET_Tn_CFG(i));
893 if (hpet_boot_cfg)
894 hpet_boot_cfg[i + 1] = cfg;
895 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
896 hpet_writel(cfg, HPET_Tn_CFG(i));
897 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
898 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
899 | HPET_TN_FSB | HPET_TN_FSB_CAP);
900 if (cfg)
901 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
902 cfg, i);
903 }
904 hpet_print_config();
905
906 if (hpet_clocksource_register())
907 goto out_nohpet;
908
909 if (id & HPET_ID_LEGSUP) {
910 hpet_legacy_clockevent_register();
911 return 1;
912 }
913 return 0;
914
915 out_nohpet:
916 hpet_clear_mapping();
917 hpet_address = 0;
918 return 0;
919 }
920
921 /*
922 * Needs to be late, as the reserve_timer code calls kalloc !
923 *
924 * Not a problem on i386 as hpet_enable is called from late_time_init,
925 * but on x86_64 it is necessary !
926 */
927 static __init int hpet_late_init(void)
928 {
929 int ret;
930
931 if (boot_hpet_disable)
932 return -ENODEV;
933
934 if (!hpet_address) {
935 if (!force_hpet_address)
936 return -ENODEV;
937
938 hpet_address = force_hpet_address;
939 hpet_enable();
940 }
941
942 if (!hpet_virt_address)
943 return -ENODEV;
944
945 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
946 hpet_msi_capability_lookup(2);
947 else
948 hpet_msi_capability_lookup(0);
949
950 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
951 hpet_print_config();
952
953 if (hpet_msi_disable)
954 return 0;
955
956 if (boot_cpu_has(X86_FEATURE_ARAT))
957 return 0;
958
959 /* This notifier should be called after workqueue is ready */
960 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "AP_X86_HPET_ONLINE",
961 hpet_cpuhp_online, NULL);
962 if (ret)
963 return ret;
964 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "X86_HPET_DEAD", NULL,
965 hpet_cpuhp_dead);
966 if (ret)
967 goto err_cpuhp;
968 return 0;
969
970 err_cpuhp:
971 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
972 return ret;
973 }
974 fs_initcall(hpet_late_init);
975
976 void hpet_disable(void)
977 {
978 if (is_hpet_capable() && hpet_virt_address) {
979 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
980
981 if (hpet_boot_cfg)
982 cfg = *hpet_boot_cfg;
983 else if (hpet_legacy_int_enabled) {
984 cfg &= ~HPET_CFG_LEGACY;
985 hpet_legacy_int_enabled = false;
986 }
987 cfg &= ~HPET_CFG_ENABLE;
988 hpet_writel(cfg, HPET_CFG);
989
990 if (!hpet_boot_cfg)
991 return;
992
993 id = hpet_readl(HPET_ID);
994 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
995
996 for (id = 0; id <= last; ++id)
997 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
998
999 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1000 hpet_writel(*hpet_boot_cfg, HPET_CFG);
1001 }
1002 }
1003
1004 #ifdef CONFIG_HPET_EMULATE_RTC
1005
1006 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1007 * is enabled, we support RTC interrupt functionality in software.
1008 * RTC has 3 kinds of interrupts:
1009 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1010 * is updated
1011 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1012 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1013 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1014 * (1) and (2) above are implemented using polling at a frequency of
1015 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1016 * overhead. (DEFAULT_RTC_INT_FREQ)
1017 * For (3), we use interrupts at 64Hz or user specified periodic
1018 * frequency, whichever is higher.
1019 */
1020 #include <linux/mc146818rtc.h>
1021 #include <linux/rtc.h>
1022
1023 #define DEFAULT_RTC_INT_FREQ 64
1024 #define DEFAULT_RTC_SHIFT 6
1025 #define RTC_NUM_INTS 1
1026
1027 static unsigned long hpet_rtc_flags;
1028 static int hpet_prev_update_sec;
1029 static struct rtc_time hpet_alarm_time;
1030 static unsigned long hpet_pie_count;
1031 static u32 hpet_t1_cmp;
1032 static u32 hpet_default_delta;
1033 static u32 hpet_pie_delta;
1034 static unsigned long hpet_pie_limit;
1035
1036 static rtc_irq_handler irq_handler;
1037
1038 /*
1039 * Check that the hpet counter c1 is ahead of the c2
1040 */
1041 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1042 {
1043 return (s32)(c2 - c1) < 0;
1044 }
1045
1046 /*
1047 * Registers a IRQ handler.
1048 */
1049 int hpet_register_irq_handler(rtc_irq_handler handler)
1050 {
1051 if (!is_hpet_enabled())
1052 return -ENODEV;
1053 if (irq_handler)
1054 return -EBUSY;
1055
1056 irq_handler = handler;
1057
1058 return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1061
1062 /*
1063 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1064 * and does cleanup.
1065 */
1066 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1067 {
1068 if (!is_hpet_enabled())
1069 return;
1070
1071 irq_handler = NULL;
1072 hpet_rtc_flags = 0;
1073 }
1074 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1075
1076 /*
1077 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1078 * is not supported by all HPET implementations for timer 1.
1079 *
1080 * hpet_rtc_timer_init() is called when the rtc is initialized.
1081 */
1082 int hpet_rtc_timer_init(void)
1083 {
1084 unsigned int cfg, cnt, delta;
1085 unsigned long flags;
1086
1087 if (!is_hpet_enabled())
1088 return 0;
1089
1090 if (!hpet_default_delta) {
1091 uint64_t clc;
1092
1093 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1094 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1095 hpet_default_delta = clc;
1096 }
1097
1098 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1099 delta = hpet_default_delta;
1100 else
1101 delta = hpet_pie_delta;
1102
1103 local_irq_save(flags);
1104
1105 cnt = delta + hpet_readl(HPET_COUNTER);
1106 hpet_writel(cnt, HPET_T1_CMP);
1107 hpet_t1_cmp = cnt;
1108
1109 cfg = hpet_readl(HPET_T1_CFG);
1110 cfg &= ~HPET_TN_PERIODIC;
1111 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1112 hpet_writel(cfg, HPET_T1_CFG);
1113
1114 local_irq_restore(flags);
1115
1116 return 1;
1117 }
1118 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1119
1120 static void hpet_disable_rtc_channel(void)
1121 {
1122 u32 cfg = hpet_readl(HPET_T1_CFG);
1123 cfg &= ~HPET_TN_ENABLE;
1124 hpet_writel(cfg, HPET_T1_CFG);
1125 }
1126
1127 /*
1128 * The functions below are called from rtc driver.
1129 * Return 0 if HPET is not being used.
1130 * Otherwise do the necessary changes and return 1.
1131 */
1132 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1133 {
1134 if (!is_hpet_enabled())
1135 return 0;
1136
1137 hpet_rtc_flags &= ~bit_mask;
1138 if (unlikely(!hpet_rtc_flags))
1139 hpet_disable_rtc_channel();
1140
1141 return 1;
1142 }
1143 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1144
1145 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1146 {
1147 unsigned long oldbits = hpet_rtc_flags;
1148
1149 if (!is_hpet_enabled())
1150 return 0;
1151
1152 hpet_rtc_flags |= bit_mask;
1153
1154 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1155 hpet_prev_update_sec = -1;
1156
1157 if (!oldbits)
1158 hpet_rtc_timer_init();
1159
1160 return 1;
1161 }
1162 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1163
1164 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1165 unsigned char sec)
1166 {
1167 if (!is_hpet_enabled())
1168 return 0;
1169
1170 hpet_alarm_time.tm_hour = hrs;
1171 hpet_alarm_time.tm_min = min;
1172 hpet_alarm_time.tm_sec = sec;
1173
1174 return 1;
1175 }
1176 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1177
1178 int hpet_set_periodic_freq(unsigned long freq)
1179 {
1180 uint64_t clc;
1181
1182 if (!is_hpet_enabled())
1183 return 0;
1184
1185 if (freq <= DEFAULT_RTC_INT_FREQ)
1186 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1187 else {
1188 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1189 do_div(clc, freq);
1190 clc >>= hpet_clockevent.shift;
1191 hpet_pie_delta = clc;
1192 hpet_pie_limit = 0;
1193 }
1194 return 1;
1195 }
1196 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1197
1198 int hpet_rtc_dropped_irq(void)
1199 {
1200 return is_hpet_enabled();
1201 }
1202 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1203
1204 static void hpet_rtc_timer_reinit(void)
1205 {
1206 unsigned int delta;
1207 int lost_ints = -1;
1208
1209 if (unlikely(!hpet_rtc_flags))
1210 hpet_disable_rtc_channel();
1211
1212 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1213 delta = hpet_default_delta;
1214 else
1215 delta = hpet_pie_delta;
1216
1217 /*
1218 * Increment the comparator value until we are ahead of the
1219 * current count.
1220 */
1221 do {
1222 hpet_t1_cmp += delta;
1223 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1224 lost_ints++;
1225 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1226
1227 if (lost_ints) {
1228 if (hpet_rtc_flags & RTC_PIE)
1229 hpet_pie_count += lost_ints;
1230 if (printk_ratelimit())
1231 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1232 lost_ints);
1233 }
1234 }
1235
1236 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1237 {
1238 struct rtc_time curr_time;
1239 unsigned long rtc_int_flag = 0;
1240
1241 hpet_rtc_timer_reinit();
1242 memset(&curr_time, 0, sizeof(struct rtc_time));
1243
1244 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1245 mc146818_set_time(&curr_time);
1246
1247 if (hpet_rtc_flags & RTC_UIE &&
1248 curr_time.tm_sec != hpet_prev_update_sec) {
1249 if (hpet_prev_update_sec >= 0)
1250 rtc_int_flag = RTC_UF;
1251 hpet_prev_update_sec = curr_time.tm_sec;
1252 }
1253
1254 if (hpet_rtc_flags & RTC_PIE &&
1255 ++hpet_pie_count >= hpet_pie_limit) {
1256 rtc_int_flag |= RTC_PF;
1257 hpet_pie_count = 0;
1258 }
1259
1260 if (hpet_rtc_flags & RTC_AIE &&
1261 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1262 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1263 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1264 rtc_int_flag |= RTC_AF;
1265
1266 if (rtc_int_flag) {
1267 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1268 if (irq_handler)
1269 irq_handler(rtc_int_flag, dev_id);
1270 }
1271 return IRQ_HANDLED;
1272 }
1273 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1274 #endif
This page took 0.062444 seconds and 5 git commands to generate.