Merge tag 'docs-4.5' of git://git.lwn.net/linux
[deliverable/linux.git] / arch / x86 / kernel / process_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13 /*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/elfcore.h>
24 #include <linux/smp.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
30 #include <linux/ptrace.h>
31 #include <linux/notifier.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/prctl.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/ftrace.h>
38
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/fpu/internal.h>
42 #include <asm/mmu_context.h>
43 #include <asm/prctl.h>
44 #include <asm/desc.h>
45 #include <asm/proto.h>
46 #include <asm/ia32.h>
47 #include <asm/idle.h>
48 #include <asm/syscalls.h>
49 #include <asm/debugreg.h>
50 #include <asm/switch_to.h>
51
52 asmlinkage extern void ret_from_fork(void);
53
54 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
55
56 /* Prints also some state that isn't saved in the pt_regs */
57 void __show_regs(struct pt_regs *regs, int all)
58 {
59 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
60 unsigned long d0, d1, d2, d3, d6, d7;
61 unsigned int fsindex, gsindex;
62 unsigned int ds, cs, es;
63
64 printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
65 printk_address(regs->ip);
66 printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss,
67 regs->sp, regs->flags);
68 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
69 regs->ax, regs->bx, regs->cx);
70 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
71 regs->dx, regs->si, regs->di);
72 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
73 regs->bp, regs->r8, regs->r9);
74 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
75 regs->r10, regs->r11, regs->r12);
76 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
77 regs->r13, regs->r14, regs->r15);
78
79 asm("movl %%ds,%0" : "=r" (ds));
80 asm("movl %%cs,%0" : "=r" (cs));
81 asm("movl %%es,%0" : "=r" (es));
82 asm("movl %%fs,%0" : "=r" (fsindex));
83 asm("movl %%gs,%0" : "=r" (gsindex));
84
85 rdmsrl(MSR_FS_BASE, fs);
86 rdmsrl(MSR_GS_BASE, gs);
87 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
88
89 if (!all)
90 return;
91
92 cr0 = read_cr0();
93 cr2 = read_cr2();
94 cr3 = read_cr3();
95 cr4 = __read_cr4();
96
97 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
98 fs, fsindex, gs, gsindex, shadowgs);
99 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
100 es, cr0);
101 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
102 cr4);
103
104 get_debugreg(d0, 0);
105 get_debugreg(d1, 1);
106 get_debugreg(d2, 2);
107 get_debugreg(d3, 3);
108 get_debugreg(d6, 6);
109 get_debugreg(d7, 7);
110
111 /* Only print out debug registers if they are in their non-default state. */
112 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
113 (d6 == DR6_RESERVED) && (d7 == 0x400))
114 return;
115
116 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
117 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
118
119 }
120
121 void release_thread(struct task_struct *dead_task)
122 {
123 if (dead_task->mm) {
124 #ifdef CONFIG_MODIFY_LDT_SYSCALL
125 if (dead_task->mm->context.ldt) {
126 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
127 dead_task->comm,
128 dead_task->mm->context.ldt->entries,
129 dead_task->mm->context.ldt->size);
130 BUG();
131 }
132 #endif
133 }
134 }
135
136 static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
137 {
138 struct user_desc ud = {
139 .base_addr = addr,
140 .limit = 0xfffff,
141 .seg_32bit = 1,
142 .limit_in_pages = 1,
143 .useable = 1,
144 };
145 struct desc_struct *desc = t->thread.tls_array;
146 desc += tls;
147 fill_ldt(desc, &ud);
148 }
149
150 static inline u32 read_32bit_tls(struct task_struct *t, int tls)
151 {
152 return get_desc_base(&t->thread.tls_array[tls]);
153 }
154
155 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
156 unsigned long arg, struct task_struct *p, unsigned long tls)
157 {
158 int err;
159 struct pt_regs *childregs;
160 struct task_struct *me = current;
161
162 p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
163 childregs = task_pt_regs(p);
164 p->thread.sp = (unsigned long) childregs;
165 set_tsk_thread_flag(p, TIF_FORK);
166 p->thread.io_bitmap_ptr = NULL;
167
168 savesegment(gs, p->thread.gsindex);
169 p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
170 savesegment(fs, p->thread.fsindex);
171 p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
172 savesegment(es, p->thread.es);
173 savesegment(ds, p->thread.ds);
174 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
175
176 if (unlikely(p->flags & PF_KTHREAD)) {
177 /* kernel thread */
178 memset(childregs, 0, sizeof(struct pt_regs));
179 childregs->sp = (unsigned long)childregs;
180 childregs->ss = __KERNEL_DS;
181 childregs->bx = sp; /* function */
182 childregs->bp = arg;
183 childregs->orig_ax = -1;
184 childregs->cs = __KERNEL_CS | get_kernel_rpl();
185 childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
186 return 0;
187 }
188 *childregs = *current_pt_regs();
189
190 childregs->ax = 0;
191 if (sp)
192 childregs->sp = sp;
193
194 err = -ENOMEM;
195 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
196 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
197 IO_BITMAP_BYTES, GFP_KERNEL);
198 if (!p->thread.io_bitmap_ptr) {
199 p->thread.io_bitmap_max = 0;
200 return -ENOMEM;
201 }
202 set_tsk_thread_flag(p, TIF_IO_BITMAP);
203 }
204
205 /*
206 * Set a new TLS for the child thread?
207 */
208 if (clone_flags & CLONE_SETTLS) {
209 #ifdef CONFIG_IA32_EMULATION
210 if (is_ia32_task())
211 err = do_set_thread_area(p, -1,
212 (struct user_desc __user *)tls, 0);
213 else
214 #endif
215 err = do_arch_prctl(p, ARCH_SET_FS, tls);
216 if (err)
217 goto out;
218 }
219 err = 0;
220 out:
221 if (err && p->thread.io_bitmap_ptr) {
222 kfree(p->thread.io_bitmap_ptr);
223 p->thread.io_bitmap_max = 0;
224 }
225
226 return err;
227 }
228
229 static void
230 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
231 unsigned long new_sp,
232 unsigned int _cs, unsigned int _ss, unsigned int _ds)
233 {
234 loadsegment(fs, 0);
235 loadsegment(es, _ds);
236 loadsegment(ds, _ds);
237 load_gs_index(0);
238 regs->ip = new_ip;
239 regs->sp = new_sp;
240 regs->cs = _cs;
241 regs->ss = _ss;
242 regs->flags = X86_EFLAGS_IF;
243 force_iret();
244 }
245
246 void
247 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
248 {
249 start_thread_common(regs, new_ip, new_sp,
250 __USER_CS, __USER_DS, 0);
251 }
252
253 #ifdef CONFIG_COMPAT
254 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
255 {
256 start_thread_common(regs, new_ip, new_sp,
257 test_thread_flag(TIF_X32)
258 ? __USER_CS : __USER32_CS,
259 __USER_DS, __USER_DS);
260 }
261 #endif
262
263 /*
264 * switch_to(x,y) should switch tasks from x to y.
265 *
266 * This could still be optimized:
267 * - fold all the options into a flag word and test it with a single test.
268 * - could test fs/gs bitsliced
269 *
270 * Kprobes not supported here. Set the probe on schedule instead.
271 * Function graph tracer not supported too.
272 */
273 __visible __notrace_funcgraph struct task_struct *
274 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
275 {
276 struct thread_struct *prev = &prev_p->thread;
277 struct thread_struct *next = &next_p->thread;
278 struct fpu *prev_fpu = &prev->fpu;
279 struct fpu *next_fpu = &next->fpu;
280 int cpu = smp_processor_id();
281 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
282 unsigned fsindex, gsindex;
283 fpu_switch_t fpu_switch;
284
285 fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
286
287 /* We must save %fs and %gs before load_TLS() because
288 * %fs and %gs may be cleared by load_TLS().
289 *
290 * (e.g. xen_load_tls())
291 */
292 savesegment(fs, fsindex);
293 savesegment(gs, gsindex);
294
295 /*
296 * Load TLS before restoring any segments so that segment loads
297 * reference the correct GDT entries.
298 */
299 load_TLS(next, cpu);
300
301 /*
302 * Leave lazy mode, flushing any hypercalls made here. This
303 * must be done after loading TLS entries in the GDT but before
304 * loading segments that might reference them, and and it must
305 * be done before fpu__restore(), so the TS bit is up to
306 * date.
307 */
308 arch_end_context_switch(next_p);
309
310 /* Switch DS and ES.
311 *
312 * Reading them only returns the selectors, but writing them (if
313 * nonzero) loads the full descriptor from the GDT or LDT. The
314 * LDT for next is loaded in switch_mm, and the GDT is loaded
315 * above.
316 *
317 * We therefore need to write new values to the segment
318 * registers on every context switch unless both the new and old
319 * values are zero.
320 *
321 * Note that we don't need to do anything for CS and SS, as
322 * those are saved and restored as part of pt_regs.
323 */
324 savesegment(es, prev->es);
325 if (unlikely(next->es | prev->es))
326 loadsegment(es, next->es);
327
328 savesegment(ds, prev->ds);
329 if (unlikely(next->ds | prev->ds))
330 loadsegment(ds, next->ds);
331
332 /*
333 * Switch FS and GS.
334 *
335 * These are even more complicated than DS and ES: they have
336 * 64-bit bases are that controlled by arch_prctl. Those bases
337 * only differ from the values in the GDT or LDT if the selector
338 * is 0.
339 *
340 * Loading the segment register resets the hidden base part of
341 * the register to 0 or the value from the GDT / LDT. If the
342 * next base address zero, writing 0 to the segment register is
343 * much faster than using wrmsr to explicitly zero the base.
344 *
345 * The thread_struct.fs and thread_struct.gs values are 0
346 * if the fs and gs bases respectively are not overridden
347 * from the values implied by fsindex and gsindex. They
348 * are nonzero, and store the nonzero base addresses, if
349 * the bases are overridden.
350 *
351 * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should
352 * be impossible.
353 *
354 * Therefore we need to reload the segment registers if either
355 * the old or new selector is nonzero, and we need to override
356 * the base address if next thread expects it to be overridden.
357 *
358 * This code is unnecessarily slow in the case where the old and
359 * new indexes are zero and the new base is nonzero -- it will
360 * unnecessarily write 0 to the selector before writing the new
361 * base address.
362 *
363 * Note: This all depends on arch_prctl being the only way that
364 * user code can override the segment base. Once wrfsbase and
365 * wrgsbase are enabled, most of this code will need to change.
366 */
367 if (unlikely(fsindex | next->fsindex | prev->fs)) {
368 loadsegment(fs, next->fsindex);
369
370 /*
371 * If user code wrote a nonzero value to FS, then it also
372 * cleared the overridden base address.
373 *
374 * XXX: if user code wrote 0 to FS and cleared the base
375 * address itself, we won't notice and we'll incorrectly
376 * restore the prior base address next time we reschdule
377 * the process.
378 */
379 if (fsindex)
380 prev->fs = 0;
381 }
382 if (next->fs)
383 wrmsrl(MSR_FS_BASE, next->fs);
384 prev->fsindex = fsindex;
385
386 if (unlikely(gsindex | next->gsindex | prev->gs)) {
387 load_gs_index(next->gsindex);
388
389 /* This works (and fails) the same way as fsindex above. */
390 if (gsindex)
391 prev->gs = 0;
392 }
393 if (next->gs)
394 wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
395 prev->gsindex = gsindex;
396
397 switch_fpu_finish(next_fpu, fpu_switch);
398
399 /*
400 * Switch the PDA and FPU contexts.
401 */
402 this_cpu_write(current_task, next_p);
403
404 /* Reload esp0 and ss1. This changes current_thread_info(). */
405 load_sp0(tss, next);
406
407 /*
408 * Now maybe reload the debug registers and handle I/O bitmaps
409 */
410 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
411 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
412 __switch_to_xtra(prev_p, next_p, tss);
413
414 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
415 /*
416 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
417 * does not update the cached descriptor. As a result, if we
418 * do SYSRET while SS is NULL, we'll end up in user mode with
419 * SS apparently equal to __USER_DS but actually unusable.
420 *
421 * The straightforward workaround would be to fix it up just
422 * before SYSRET, but that would slow down the system call
423 * fast paths. Instead, we ensure that SS is never NULL in
424 * system call context. We do this by replacing NULL SS
425 * selectors at every context switch. SYSCALL sets up a valid
426 * SS, so the only way to get NULL is to re-enter the kernel
427 * from CPL 3 through an interrupt. Since that can't happen
428 * in the same task as a running syscall, we are guaranteed to
429 * context switch between every interrupt vector entry and a
430 * subsequent SYSRET.
431 *
432 * We read SS first because SS reads are much faster than
433 * writes. Out of caution, we force SS to __KERNEL_DS even if
434 * it previously had a different non-NULL value.
435 */
436 unsigned short ss_sel;
437 savesegment(ss, ss_sel);
438 if (ss_sel != __KERNEL_DS)
439 loadsegment(ss, __KERNEL_DS);
440 }
441
442 return prev_p;
443 }
444
445 void set_personality_64bit(void)
446 {
447 /* inherit personality from parent */
448
449 /* Make sure to be in 64bit mode */
450 clear_thread_flag(TIF_IA32);
451 clear_thread_flag(TIF_ADDR32);
452 clear_thread_flag(TIF_X32);
453
454 /* Ensure the corresponding mm is not marked. */
455 if (current->mm)
456 current->mm->context.ia32_compat = 0;
457
458 /* TBD: overwrites user setup. Should have two bits.
459 But 64bit processes have always behaved this way,
460 so it's not too bad. The main problem is just that
461 32bit childs are affected again. */
462 current->personality &= ~READ_IMPLIES_EXEC;
463 }
464
465 void set_personality_ia32(bool x32)
466 {
467 /* inherit personality from parent */
468
469 /* Make sure to be in 32bit mode */
470 set_thread_flag(TIF_ADDR32);
471
472 /* Mark the associated mm as containing 32-bit tasks. */
473 if (x32) {
474 clear_thread_flag(TIF_IA32);
475 set_thread_flag(TIF_X32);
476 if (current->mm)
477 current->mm->context.ia32_compat = TIF_X32;
478 current->personality &= ~READ_IMPLIES_EXEC;
479 /* is_compat_task() uses the presence of the x32
480 syscall bit flag to determine compat status */
481 current_thread_info()->status &= ~TS_COMPAT;
482 } else {
483 set_thread_flag(TIF_IA32);
484 clear_thread_flag(TIF_X32);
485 if (current->mm)
486 current->mm->context.ia32_compat = TIF_IA32;
487 current->personality |= force_personality32;
488 /* Prepare the first "return" to user space */
489 current_thread_info()->status |= TS_COMPAT;
490 }
491 }
492 EXPORT_SYMBOL_GPL(set_personality_ia32);
493
494 long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
495 {
496 int ret = 0;
497 int doit = task == current;
498 int cpu;
499
500 switch (code) {
501 case ARCH_SET_GS:
502 if (addr >= TASK_SIZE_OF(task))
503 return -EPERM;
504 cpu = get_cpu();
505 /* handle small bases via the GDT because that's faster to
506 switch. */
507 if (addr <= 0xffffffff) {
508 set_32bit_tls(task, GS_TLS, addr);
509 if (doit) {
510 load_TLS(&task->thread, cpu);
511 load_gs_index(GS_TLS_SEL);
512 }
513 task->thread.gsindex = GS_TLS_SEL;
514 task->thread.gs = 0;
515 } else {
516 task->thread.gsindex = 0;
517 task->thread.gs = addr;
518 if (doit) {
519 load_gs_index(0);
520 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
521 }
522 }
523 put_cpu();
524 break;
525 case ARCH_SET_FS:
526 /* Not strictly needed for fs, but do it for symmetry
527 with gs */
528 if (addr >= TASK_SIZE_OF(task))
529 return -EPERM;
530 cpu = get_cpu();
531 /* handle small bases via the GDT because that's faster to
532 switch. */
533 if (addr <= 0xffffffff) {
534 set_32bit_tls(task, FS_TLS, addr);
535 if (doit) {
536 load_TLS(&task->thread, cpu);
537 loadsegment(fs, FS_TLS_SEL);
538 }
539 task->thread.fsindex = FS_TLS_SEL;
540 task->thread.fs = 0;
541 } else {
542 task->thread.fsindex = 0;
543 task->thread.fs = addr;
544 if (doit) {
545 /* set the selector to 0 to not confuse
546 __switch_to */
547 loadsegment(fs, 0);
548 ret = wrmsrl_safe(MSR_FS_BASE, addr);
549 }
550 }
551 put_cpu();
552 break;
553 case ARCH_GET_FS: {
554 unsigned long base;
555 if (task->thread.fsindex == FS_TLS_SEL)
556 base = read_32bit_tls(task, FS_TLS);
557 else if (doit)
558 rdmsrl(MSR_FS_BASE, base);
559 else
560 base = task->thread.fs;
561 ret = put_user(base, (unsigned long __user *)addr);
562 break;
563 }
564 case ARCH_GET_GS: {
565 unsigned long base;
566 unsigned gsindex;
567 if (task->thread.gsindex == GS_TLS_SEL)
568 base = read_32bit_tls(task, GS_TLS);
569 else if (doit) {
570 savesegment(gs, gsindex);
571 if (gsindex)
572 rdmsrl(MSR_KERNEL_GS_BASE, base);
573 else
574 base = task->thread.gs;
575 } else
576 base = task->thread.gs;
577 ret = put_user(base, (unsigned long __user *)addr);
578 break;
579 }
580
581 default:
582 ret = -EINVAL;
583 break;
584 }
585
586 return ret;
587 }
588
589 long sys_arch_prctl(int code, unsigned long addr)
590 {
591 return do_arch_prctl(current, code, addr);
592 }
593
594 unsigned long KSTK_ESP(struct task_struct *task)
595 {
596 return task_pt_regs(task)->sp;
597 }
This page took 0.043986 seconds and 6 git commands to generate.