Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/export.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 #include <asm/apic.h>
26
27 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
28 EXPORT_SYMBOL(cpu_khz);
29
30 unsigned int __read_mostly tsc_khz;
31 EXPORT_SYMBOL(tsc_khz);
32
33 /*
34 * TSC can be unstable due to cpufreq or due to unsynced TSCs
35 */
36 static int __read_mostly tsc_unstable;
37
38 /* native_sched_clock() is called before tsc_init(), so
39 we must start with the TSC soft disabled to prevent
40 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
41 static int __read_mostly tsc_disabled = -1;
42
43 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
44
45 int tsc_clocksource_reliable;
46
47 static u32 art_to_tsc_numerator;
48 static u32 art_to_tsc_denominator;
49 static u64 art_to_tsc_offset;
50 struct clocksource *art_related_clocksource;
51
52 /*
53 * Use a ring-buffer like data structure, where a writer advances the head by
54 * writing a new data entry and a reader advances the tail when it observes a
55 * new entry.
56 *
57 * Writers are made to wait on readers until there's space to write a new
58 * entry.
59 *
60 * This means that we can always use an {offset, mul} pair to compute a ns
61 * value that is 'roughly' in the right direction, even if we're writing a new
62 * {offset, mul} pair during the clock read.
63 *
64 * The down-side is that we can no longer guarantee strict monotonicity anymore
65 * (assuming the TSC was that to begin with), because while we compute the
66 * intersection point of the two clock slopes and make sure the time is
67 * continuous at the point of switching; we can no longer guarantee a reader is
68 * strictly before or after the switch point.
69 *
70 * It does mean a reader no longer needs to disable IRQs in order to avoid
71 * CPU-Freq updates messing with his times, and similarly an NMI reader will
72 * no longer run the risk of hitting half-written state.
73 */
74
75 struct cyc2ns {
76 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
77 struct cyc2ns_data *head; /* 48 + 8 = 56 */
78 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
79 }; /* exactly fits one cacheline */
80
81 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
82
83 struct cyc2ns_data *cyc2ns_read_begin(void)
84 {
85 struct cyc2ns_data *head;
86
87 preempt_disable();
88
89 head = this_cpu_read(cyc2ns.head);
90 /*
91 * Ensure we observe the entry when we observe the pointer to it.
92 * matches the wmb from cyc2ns_write_end().
93 */
94 smp_read_barrier_depends();
95 head->__count++;
96 barrier();
97
98 return head;
99 }
100
101 void cyc2ns_read_end(struct cyc2ns_data *head)
102 {
103 barrier();
104 /*
105 * If we're the outer most nested read; update the tail pointer
106 * when we're done. This notifies possible pending writers
107 * that we've observed the head pointer and that the other
108 * entry is now free.
109 */
110 if (!--head->__count) {
111 /*
112 * x86-TSO does not reorder writes with older reads;
113 * therefore once this write becomes visible to another
114 * cpu, we must be finished reading the cyc2ns_data.
115 *
116 * matches with cyc2ns_write_begin().
117 */
118 this_cpu_write(cyc2ns.tail, head);
119 }
120 preempt_enable();
121 }
122
123 /*
124 * Begin writing a new @data entry for @cpu.
125 *
126 * Assumes some sort of write side lock; currently 'provided' by the assumption
127 * that cpufreq will call its notifiers sequentially.
128 */
129 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
130 {
131 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
132 struct cyc2ns_data *data = c2n->data;
133
134 if (data == c2n->head)
135 data++;
136
137 /* XXX send an IPI to @cpu in order to guarantee a read? */
138
139 /*
140 * When we observe the tail write from cyc2ns_read_end(),
141 * the cpu must be done with that entry and its safe
142 * to start writing to it.
143 */
144 while (c2n->tail == data)
145 cpu_relax();
146
147 return data;
148 }
149
150 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
151 {
152 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
153
154 /*
155 * Ensure the @data writes are visible before we publish the
156 * entry. Matches the data-depencency in cyc2ns_read_begin().
157 */
158 smp_wmb();
159
160 ACCESS_ONCE(c2n->head) = data;
161 }
162
163 /*
164 * Accelerators for sched_clock()
165 * convert from cycles(64bits) => nanoseconds (64bits)
166 * basic equation:
167 * ns = cycles / (freq / ns_per_sec)
168 * ns = cycles * (ns_per_sec / freq)
169 * ns = cycles * (10^9 / (cpu_khz * 10^3))
170 * ns = cycles * (10^6 / cpu_khz)
171 *
172 * Then we use scaling math (suggested by george@mvista.com) to get:
173 * ns = cycles * (10^6 * SC / cpu_khz) / SC
174 * ns = cycles * cyc2ns_scale / SC
175 *
176 * And since SC is a constant power of two, we can convert the div
177 * into a shift. The larger SC is, the more accurate the conversion, but
178 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
179 * (64-bit result) can be used.
180 *
181 * We can use khz divisor instead of mhz to keep a better precision.
182 * (mathieu.desnoyers@polymtl.ca)
183 *
184 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
185 */
186
187 static void cyc2ns_data_init(struct cyc2ns_data *data)
188 {
189 data->cyc2ns_mul = 0;
190 data->cyc2ns_shift = 0;
191 data->cyc2ns_offset = 0;
192 data->__count = 0;
193 }
194
195 static void cyc2ns_init(int cpu)
196 {
197 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
198
199 cyc2ns_data_init(&c2n->data[0]);
200 cyc2ns_data_init(&c2n->data[1]);
201
202 c2n->head = c2n->data;
203 c2n->tail = c2n->data;
204 }
205
206 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
207 {
208 struct cyc2ns_data *data, *tail;
209 unsigned long long ns;
210
211 /*
212 * See cyc2ns_read_*() for details; replicated in order to avoid
213 * an extra few instructions that came with the abstraction.
214 * Notable, it allows us to only do the __count and tail update
215 * dance when its actually needed.
216 */
217
218 preempt_disable_notrace();
219 data = this_cpu_read(cyc2ns.head);
220 tail = this_cpu_read(cyc2ns.tail);
221
222 if (likely(data == tail)) {
223 ns = data->cyc2ns_offset;
224 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
225 } else {
226 data->__count++;
227
228 barrier();
229
230 ns = data->cyc2ns_offset;
231 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
232
233 barrier();
234
235 if (!--data->__count)
236 this_cpu_write(cyc2ns.tail, data);
237 }
238 preempt_enable_notrace();
239
240 return ns;
241 }
242
243 static void set_cyc2ns_scale(unsigned long khz, int cpu)
244 {
245 unsigned long long tsc_now, ns_now;
246 struct cyc2ns_data *data;
247 unsigned long flags;
248
249 local_irq_save(flags);
250 sched_clock_idle_sleep_event();
251
252 if (!khz)
253 goto done;
254
255 data = cyc2ns_write_begin(cpu);
256
257 tsc_now = rdtsc();
258 ns_now = cycles_2_ns(tsc_now);
259
260 /*
261 * Compute a new multiplier as per the above comment and ensure our
262 * time function is continuous; see the comment near struct
263 * cyc2ns_data.
264 */
265 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
266 NSEC_PER_MSEC, 0);
267
268 /*
269 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
270 * not expected to be greater than 31 due to the original published
271 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
272 * value) - refer perf_event_mmap_page documentation in perf_event.h.
273 */
274 if (data->cyc2ns_shift == 32) {
275 data->cyc2ns_shift = 31;
276 data->cyc2ns_mul >>= 1;
277 }
278
279 data->cyc2ns_offset = ns_now -
280 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
281
282 cyc2ns_write_end(cpu, data);
283
284 done:
285 sched_clock_idle_wakeup_event(0);
286 local_irq_restore(flags);
287 }
288 /*
289 * Scheduler clock - returns current time in nanosec units.
290 */
291 u64 native_sched_clock(void)
292 {
293 if (static_branch_likely(&__use_tsc)) {
294 u64 tsc_now = rdtsc();
295
296 /* return the value in ns */
297 return cycles_2_ns(tsc_now);
298 }
299
300 /*
301 * Fall back to jiffies if there's no TSC available:
302 * ( But note that we still use it if the TSC is marked
303 * unstable. We do this because unlike Time Of Day,
304 * the scheduler clock tolerates small errors and it's
305 * very important for it to be as fast as the platform
306 * can achieve it. )
307 */
308
309 /* No locking but a rare wrong value is not a big deal: */
310 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
311 }
312
313 /*
314 * Generate a sched_clock if you already have a TSC value.
315 */
316 u64 native_sched_clock_from_tsc(u64 tsc)
317 {
318 return cycles_2_ns(tsc);
319 }
320
321 /* We need to define a real function for sched_clock, to override the
322 weak default version */
323 #ifdef CONFIG_PARAVIRT
324 unsigned long long sched_clock(void)
325 {
326 return paravirt_sched_clock();
327 }
328 #else
329 unsigned long long
330 sched_clock(void) __attribute__((alias("native_sched_clock")));
331 #endif
332
333 int check_tsc_unstable(void)
334 {
335 return tsc_unstable;
336 }
337 EXPORT_SYMBOL_GPL(check_tsc_unstable);
338
339 #ifdef CONFIG_X86_TSC
340 int __init notsc_setup(char *str)
341 {
342 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
343 tsc_disabled = 1;
344 return 1;
345 }
346 #else
347 /*
348 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
349 * in cpu/common.c
350 */
351 int __init notsc_setup(char *str)
352 {
353 setup_clear_cpu_cap(X86_FEATURE_TSC);
354 return 1;
355 }
356 #endif
357
358 __setup("notsc", notsc_setup);
359
360 static int no_sched_irq_time;
361
362 static int __init tsc_setup(char *str)
363 {
364 if (!strcmp(str, "reliable"))
365 tsc_clocksource_reliable = 1;
366 if (!strncmp(str, "noirqtime", 9))
367 no_sched_irq_time = 1;
368 return 1;
369 }
370
371 __setup("tsc=", tsc_setup);
372
373 #define MAX_RETRIES 5
374 #define SMI_TRESHOLD 50000
375
376 /*
377 * Read TSC and the reference counters. Take care of SMI disturbance
378 */
379 static u64 tsc_read_refs(u64 *p, int hpet)
380 {
381 u64 t1, t2;
382 int i;
383
384 for (i = 0; i < MAX_RETRIES; i++) {
385 t1 = get_cycles();
386 if (hpet)
387 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
388 else
389 *p = acpi_pm_read_early();
390 t2 = get_cycles();
391 if ((t2 - t1) < SMI_TRESHOLD)
392 return t2;
393 }
394 return ULLONG_MAX;
395 }
396
397 /*
398 * Calculate the TSC frequency from HPET reference
399 */
400 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
401 {
402 u64 tmp;
403
404 if (hpet2 < hpet1)
405 hpet2 += 0x100000000ULL;
406 hpet2 -= hpet1;
407 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
408 do_div(tmp, 1000000);
409 do_div(deltatsc, tmp);
410
411 return (unsigned long) deltatsc;
412 }
413
414 /*
415 * Calculate the TSC frequency from PMTimer reference
416 */
417 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
418 {
419 u64 tmp;
420
421 if (!pm1 && !pm2)
422 return ULONG_MAX;
423
424 if (pm2 < pm1)
425 pm2 += (u64)ACPI_PM_OVRRUN;
426 pm2 -= pm1;
427 tmp = pm2 * 1000000000LL;
428 do_div(tmp, PMTMR_TICKS_PER_SEC);
429 do_div(deltatsc, tmp);
430
431 return (unsigned long) deltatsc;
432 }
433
434 #define CAL_MS 10
435 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
436 #define CAL_PIT_LOOPS 1000
437
438 #define CAL2_MS 50
439 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
440 #define CAL2_PIT_LOOPS 5000
441
442
443 /*
444 * Try to calibrate the TSC against the Programmable
445 * Interrupt Timer and return the frequency of the TSC
446 * in kHz.
447 *
448 * Return ULONG_MAX on failure to calibrate.
449 */
450 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
451 {
452 u64 tsc, t1, t2, delta;
453 unsigned long tscmin, tscmax;
454 int pitcnt;
455
456 /* Set the Gate high, disable speaker */
457 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
458
459 /*
460 * Setup CTC channel 2* for mode 0, (interrupt on terminal
461 * count mode), binary count. Set the latch register to 50ms
462 * (LSB then MSB) to begin countdown.
463 */
464 outb(0xb0, 0x43);
465 outb(latch & 0xff, 0x42);
466 outb(latch >> 8, 0x42);
467
468 tsc = t1 = t2 = get_cycles();
469
470 pitcnt = 0;
471 tscmax = 0;
472 tscmin = ULONG_MAX;
473 while ((inb(0x61) & 0x20) == 0) {
474 t2 = get_cycles();
475 delta = t2 - tsc;
476 tsc = t2;
477 if ((unsigned long) delta < tscmin)
478 tscmin = (unsigned int) delta;
479 if ((unsigned long) delta > tscmax)
480 tscmax = (unsigned int) delta;
481 pitcnt++;
482 }
483
484 /*
485 * Sanity checks:
486 *
487 * If we were not able to read the PIT more than loopmin
488 * times, then we have been hit by a massive SMI
489 *
490 * If the maximum is 10 times larger than the minimum,
491 * then we got hit by an SMI as well.
492 */
493 if (pitcnt < loopmin || tscmax > 10 * tscmin)
494 return ULONG_MAX;
495
496 /* Calculate the PIT value */
497 delta = t2 - t1;
498 do_div(delta, ms);
499 return delta;
500 }
501
502 /*
503 * This reads the current MSB of the PIT counter, and
504 * checks if we are running on sufficiently fast and
505 * non-virtualized hardware.
506 *
507 * Our expectations are:
508 *
509 * - the PIT is running at roughly 1.19MHz
510 *
511 * - each IO is going to take about 1us on real hardware,
512 * but we allow it to be much faster (by a factor of 10) or
513 * _slightly_ slower (ie we allow up to a 2us read+counter
514 * update - anything else implies a unacceptably slow CPU
515 * or PIT for the fast calibration to work.
516 *
517 * - with 256 PIT ticks to read the value, we have 214us to
518 * see the same MSB (and overhead like doing a single TSC
519 * read per MSB value etc).
520 *
521 * - We're doing 2 reads per loop (LSB, MSB), and we expect
522 * them each to take about a microsecond on real hardware.
523 * So we expect a count value of around 100. But we'll be
524 * generous, and accept anything over 50.
525 *
526 * - if the PIT is stuck, and we see *many* more reads, we
527 * return early (and the next caller of pit_expect_msb()
528 * then consider it a failure when they don't see the
529 * next expected value).
530 *
531 * These expectations mean that we know that we have seen the
532 * transition from one expected value to another with a fairly
533 * high accuracy, and we didn't miss any events. We can thus
534 * use the TSC value at the transitions to calculate a pretty
535 * good value for the TSC frequencty.
536 */
537 static inline int pit_verify_msb(unsigned char val)
538 {
539 /* Ignore LSB */
540 inb(0x42);
541 return inb(0x42) == val;
542 }
543
544 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
545 {
546 int count;
547 u64 tsc = 0, prev_tsc = 0;
548
549 for (count = 0; count < 50000; count++) {
550 if (!pit_verify_msb(val))
551 break;
552 prev_tsc = tsc;
553 tsc = get_cycles();
554 }
555 *deltap = get_cycles() - prev_tsc;
556 *tscp = tsc;
557
558 /*
559 * We require _some_ success, but the quality control
560 * will be based on the error terms on the TSC values.
561 */
562 return count > 5;
563 }
564
565 /*
566 * How many MSB values do we want to see? We aim for
567 * a maximum error rate of 500ppm (in practice the
568 * real error is much smaller), but refuse to spend
569 * more than 50ms on it.
570 */
571 #define MAX_QUICK_PIT_MS 50
572 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
573
574 static unsigned long quick_pit_calibrate(void)
575 {
576 int i;
577 u64 tsc, delta;
578 unsigned long d1, d2;
579
580 /* Set the Gate high, disable speaker */
581 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
582
583 /*
584 * Counter 2, mode 0 (one-shot), binary count
585 *
586 * NOTE! Mode 2 decrements by two (and then the
587 * output is flipped each time, giving the same
588 * final output frequency as a decrement-by-one),
589 * so mode 0 is much better when looking at the
590 * individual counts.
591 */
592 outb(0xb0, 0x43);
593
594 /* Start at 0xffff */
595 outb(0xff, 0x42);
596 outb(0xff, 0x42);
597
598 /*
599 * The PIT starts counting at the next edge, so we
600 * need to delay for a microsecond. The easiest way
601 * to do that is to just read back the 16-bit counter
602 * once from the PIT.
603 */
604 pit_verify_msb(0);
605
606 if (pit_expect_msb(0xff, &tsc, &d1)) {
607 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
608 if (!pit_expect_msb(0xff-i, &delta, &d2))
609 break;
610
611 delta -= tsc;
612
613 /*
614 * Extrapolate the error and fail fast if the error will
615 * never be below 500 ppm.
616 */
617 if (i == 1 &&
618 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
619 return 0;
620
621 /*
622 * Iterate until the error is less than 500 ppm
623 */
624 if (d1+d2 >= delta >> 11)
625 continue;
626
627 /*
628 * Check the PIT one more time to verify that
629 * all TSC reads were stable wrt the PIT.
630 *
631 * This also guarantees serialization of the
632 * last cycle read ('d2') in pit_expect_msb.
633 */
634 if (!pit_verify_msb(0xfe - i))
635 break;
636 goto success;
637 }
638 }
639 pr_info("Fast TSC calibration failed\n");
640 return 0;
641
642 success:
643 /*
644 * Ok, if we get here, then we've seen the
645 * MSB of the PIT decrement 'i' times, and the
646 * error has shrunk to less than 500 ppm.
647 *
648 * As a result, we can depend on there not being
649 * any odd delays anywhere, and the TSC reads are
650 * reliable (within the error).
651 *
652 * kHz = ticks / time-in-seconds / 1000;
653 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
654 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
655 */
656 delta *= PIT_TICK_RATE;
657 do_div(delta, i*256*1000);
658 pr_info("Fast TSC calibration using PIT\n");
659 return delta;
660 }
661
662 /**
663 * native_calibrate_tsc
664 * Determine TSC frequency via CPUID, else return 0.
665 */
666 unsigned long native_calibrate_tsc(void)
667 {
668 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
669 unsigned int crystal_khz;
670
671 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
672 return 0;
673
674 if (boot_cpu_data.cpuid_level < 0x15)
675 return 0;
676
677 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
678
679 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
680 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
681
682 if (ebx_numerator == 0 || eax_denominator == 0)
683 return 0;
684
685 crystal_khz = ecx_hz / 1000;
686
687 if (crystal_khz == 0) {
688 switch (boot_cpu_data.x86_model) {
689 case 0x4E: /* SKL */
690 case 0x5E: /* SKL */
691 crystal_khz = 24000; /* 24.0 MHz */
692 break;
693 case 0x5C: /* BXT */
694 crystal_khz = 19200; /* 19.2 MHz */
695 break;
696 }
697 }
698
699 return crystal_khz * ebx_numerator / eax_denominator;
700 }
701
702 static unsigned long cpu_khz_from_cpuid(void)
703 {
704 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
705
706 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
707 return 0;
708
709 if (boot_cpu_data.cpuid_level < 0x16)
710 return 0;
711
712 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
713
714 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
715
716 return eax_base_mhz * 1000;
717 }
718
719 /**
720 * native_calibrate_cpu - calibrate the cpu on boot
721 */
722 unsigned long native_calibrate_cpu(void)
723 {
724 u64 tsc1, tsc2, delta, ref1, ref2;
725 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
726 unsigned long flags, latch, ms, fast_calibrate;
727 int hpet = is_hpet_enabled(), i, loopmin;
728
729 fast_calibrate = cpu_khz_from_cpuid();
730 if (fast_calibrate)
731 return fast_calibrate;
732
733 fast_calibrate = cpu_khz_from_msr();
734 if (fast_calibrate)
735 return fast_calibrate;
736
737 local_irq_save(flags);
738 fast_calibrate = quick_pit_calibrate();
739 local_irq_restore(flags);
740 if (fast_calibrate)
741 return fast_calibrate;
742
743 /*
744 * Run 5 calibration loops to get the lowest frequency value
745 * (the best estimate). We use two different calibration modes
746 * here:
747 *
748 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
749 * load a timeout of 50ms. We read the time right after we
750 * started the timer and wait until the PIT count down reaches
751 * zero. In each wait loop iteration we read the TSC and check
752 * the delta to the previous read. We keep track of the min
753 * and max values of that delta. The delta is mostly defined
754 * by the IO time of the PIT access, so we can detect when a
755 * SMI/SMM disturbance happened between the two reads. If the
756 * maximum time is significantly larger than the minimum time,
757 * then we discard the result and have another try.
758 *
759 * 2) Reference counter. If available we use the HPET or the
760 * PMTIMER as a reference to check the sanity of that value.
761 * We use separate TSC readouts and check inside of the
762 * reference read for a SMI/SMM disturbance. We dicard
763 * disturbed values here as well. We do that around the PIT
764 * calibration delay loop as we have to wait for a certain
765 * amount of time anyway.
766 */
767
768 /* Preset PIT loop values */
769 latch = CAL_LATCH;
770 ms = CAL_MS;
771 loopmin = CAL_PIT_LOOPS;
772
773 for (i = 0; i < 3; i++) {
774 unsigned long tsc_pit_khz;
775
776 /*
777 * Read the start value and the reference count of
778 * hpet/pmtimer when available. Then do the PIT
779 * calibration, which will take at least 50ms, and
780 * read the end value.
781 */
782 local_irq_save(flags);
783 tsc1 = tsc_read_refs(&ref1, hpet);
784 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
785 tsc2 = tsc_read_refs(&ref2, hpet);
786 local_irq_restore(flags);
787
788 /* Pick the lowest PIT TSC calibration so far */
789 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
790
791 /* hpet or pmtimer available ? */
792 if (ref1 == ref2)
793 continue;
794
795 /* Check, whether the sampling was disturbed by an SMI */
796 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
797 continue;
798
799 tsc2 = (tsc2 - tsc1) * 1000000LL;
800 if (hpet)
801 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
802 else
803 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
804
805 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
806
807 /* Check the reference deviation */
808 delta = ((u64) tsc_pit_min) * 100;
809 do_div(delta, tsc_ref_min);
810
811 /*
812 * If both calibration results are inside a 10% window
813 * then we can be sure, that the calibration
814 * succeeded. We break out of the loop right away. We
815 * use the reference value, as it is more precise.
816 */
817 if (delta >= 90 && delta <= 110) {
818 pr_info("PIT calibration matches %s. %d loops\n",
819 hpet ? "HPET" : "PMTIMER", i + 1);
820 return tsc_ref_min;
821 }
822
823 /*
824 * Check whether PIT failed more than once. This
825 * happens in virtualized environments. We need to
826 * give the virtual PC a slightly longer timeframe for
827 * the HPET/PMTIMER to make the result precise.
828 */
829 if (i == 1 && tsc_pit_min == ULONG_MAX) {
830 latch = CAL2_LATCH;
831 ms = CAL2_MS;
832 loopmin = CAL2_PIT_LOOPS;
833 }
834 }
835
836 /*
837 * Now check the results.
838 */
839 if (tsc_pit_min == ULONG_MAX) {
840 /* PIT gave no useful value */
841 pr_warn("Unable to calibrate against PIT\n");
842
843 /* We don't have an alternative source, disable TSC */
844 if (!hpet && !ref1 && !ref2) {
845 pr_notice("No reference (HPET/PMTIMER) available\n");
846 return 0;
847 }
848
849 /* The alternative source failed as well, disable TSC */
850 if (tsc_ref_min == ULONG_MAX) {
851 pr_warn("HPET/PMTIMER calibration failed\n");
852 return 0;
853 }
854
855 /* Use the alternative source */
856 pr_info("using %s reference calibration\n",
857 hpet ? "HPET" : "PMTIMER");
858
859 return tsc_ref_min;
860 }
861
862 /* We don't have an alternative source, use the PIT calibration value */
863 if (!hpet && !ref1 && !ref2) {
864 pr_info("Using PIT calibration value\n");
865 return tsc_pit_min;
866 }
867
868 /* The alternative source failed, use the PIT calibration value */
869 if (tsc_ref_min == ULONG_MAX) {
870 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
871 return tsc_pit_min;
872 }
873
874 /*
875 * The calibration values differ too much. In doubt, we use
876 * the PIT value as we know that there are PMTIMERs around
877 * running at double speed. At least we let the user know:
878 */
879 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
880 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
881 pr_info("Using PIT calibration value\n");
882 return tsc_pit_min;
883 }
884
885 int recalibrate_cpu_khz(void)
886 {
887 #ifndef CONFIG_SMP
888 unsigned long cpu_khz_old = cpu_khz;
889
890 if (!boot_cpu_has(X86_FEATURE_TSC))
891 return -ENODEV;
892
893 cpu_khz = x86_platform.calibrate_cpu();
894 tsc_khz = x86_platform.calibrate_tsc();
895 if (tsc_khz == 0)
896 tsc_khz = cpu_khz;
897 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
898 cpu_khz = tsc_khz;
899 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
900 cpu_khz_old, cpu_khz);
901
902 return 0;
903 #else
904 return -ENODEV;
905 #endif
906 }
907
908 EXPORT_SYMBOL(recalibrate_cpu_khz);
909
910
911 static unsigned long long cyc2ns_suspend;
912
913 void tsc_save_sched_clock_state(void)
914 {
915 if (!sched_clock_stable())
916 return;
917
918 cyc2ns_suspend = sched_clock();
919 }
920
921 /*
922 * Even on processors with invariant TSC, TSC gets reset in some the
923 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
924 * arbitrary value (still sync'd across cpu's) during resume from such sleep
925 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
926 * that sched_clock() continues from the point where it was left off during
927 * suspend.
928 */
929 void tsc_restore_sched_clock_state(void)
930 {
931 unsigned long long offset;
932 unsigned long flags;
933 int cpu;
934
935 if (!sched_clock_stable())
936 return;
937
938 local_irq_save(flags);
939
940 /*
941 * We're coming out of suspend, there's no concurrency yet; don't
942 * bother being nice about the RCU stuff, just write to both
943 * data fields.
944 */
945
946 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
947 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
948
949 offset = cyc2ns_suspend - sched_clock();
950
951 for_each_possible_cpu(cpu) {
952 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
953 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
954 }
955
956 local_irq_restore(flags);
957 }
958
959 #ifdef CONFIG_CPU_FREQ
960
961 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
962 * changes.
963 *
964 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
965 * not that important because current Opteron setups do not support
966 * scaling on SMP anyroads.
967 *
968 * Should fix up last_tsc too. Currently gettimeofday in the
969 * first tick after the change will be slightly wrong.
970 */
971
972 static unsigned int ref_freq;
973 static unsigned long loops_per_jiffy_ref;
974 static unsigned long tsc_khz_ref;
975
976 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
977 void *data)
978 {
979 struct cpufreq_freqs *freq = data;
980 unsigned long *lpj;
981
982 lpj = &boot_cpu_data.loops_per_jiffy;
983 #ifdef CONFIG_SMP
984 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
985 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
986 #endif
987
988 if (!ref_freq) {
989 ref_freq = freq->old;
990 loops_per_jiffy_ref = *lpj;
991 tsc_khz_ref = tsc_khz;
992 }
993 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
994 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
995 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
996
997 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
998 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
999 mark_tsc_unstable("cpufreq changes");
1000
1001 set_cyc2ns_scale(tsc_khz, freq->cpu);
1002 }
1003
1004 return 0;
1005 }
1006
1007 static struct notifier_block time_cpufreq_notifier_block = {
1008 .notifier_call = time_cpufreq_notifier
1009 };
1010
1011 static int __init cpufreq_register_tsc_scaling(void)
1012 {
1013 if (!boot_cpu_has(X86_FEATURE_TSC))
1014 return 0;
1015 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1016 return 0;
1017 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1018 CPUFREQ_TRANSITION_NOTIFIER);
1019 return 0;
1020 }
1021
1022 core_initcall(cpufreq_register_tsc_scaling);
1023
1024 #endif /* CONFIG_CPU_FREQ */
1025
1026 #define ART_CPUID_LEAF (0x15)
1027 #define ART_MIN_DENOMINATOR (1)
1028
1029
1030 /*
1031 * If ART is present detect the numerator:denominator to convert to TSC
1032 */
1033 static void detect_art(void)
1034 {
1035 unsigned int unused[2];
1036
1037 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1038 return;
1039
1040 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1041 &art_to_tsc_numerator, unused, unused+1);
1042
1043 /* Don't enable ART in a VM, non-stop TSC required */
1044 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1045 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1046 art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1047 return;
1048
1049 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1050 return;
1051
1052 /* Make this sticky over multiple CPU init calls */
1053 setup_force_cpu_cap(X86_FEATURE_ART);
1054 }
1055
1056
1057 /* clocksource code */
1058
1059 static struct clocksource clocksource_tsc;
1060
1061 /*
1062 * We used to compare the TSC to the cycle_last value in the clocksource
1063 * structure to avoid a nasty time-warp. This can be observed in a
1064 * very small window right after one CPU updated cycle_last under
1065 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1066 * is smaller than the cycle_last reference value due to a TSC which
1067 * is slighty behind. This delta is nowhere else observable, but in
1068 * that case it results in a forward time jump in the range of hours
1069 * due to the unsigned delta calculation of the time keeping core
1070 * code, which is necessary to support wrapping clocksources like pm
1071 * timer.
1072 *
1073 * This sanity check is now done in the core timekeeping code.
1074 * checking the result of read_tsc() - cycle_last for being negative.
1075 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1076 */
1077 static cycle_t read_tsc(struct clocksource *cs)
1078 {
1079 return (cycle_t)rdtsc_ordered();
1080 }
1081
1082 /*
1083 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1084 */
1085 static struct clocksource clocksource_tsc = {
1086 .name = "tsc",
1087 .rating = 300,
1088 .read = read_tsc,
1089 .mask = CLOCKSOURCE_MASK(64),
1090 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1091 CLOCK_SOURCE_MUST_VERIFY,
1092 .archdata = { .vclock_mode = VCLOCK_TSC },
1093 };
1094
1095 void mark_tsc_unstable(char *reason)
1096 {
1097 if (!tsc_unstable) {
1098 tsc_unstable = 1;
1099 clear_sched_clock_stable();
1100 disable_sched_clock_irqtime();
1101 pr_info("Marking TSC unstable due to %s\n", reason);
1102 /* Change only the rating, when not registered */
1103 if (clocksource_tsc.mult)
1104 clocksource_mark_unstable(&clocksource_tsc);
1105 else {
1106 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1107 clocksource_tsc.rating = 0;
1108 }
1109 }
1110 }
1111
1112 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1113
1114 static void __init check_system_tsc_reliable(void)
1115 {
1116 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1117 if (is_geode_lx()) {
1118 /* RTSC counts during suspend */
1119 #define RTSC_SUSP 0x100
1120 unsigned long res_low, res_high;
1121
1122 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1123 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1124 if (res_low & RTSC_SUSP)
1125 tsc_clocksource_reliable = 1;
1126 }
1127 #endif
1128 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1129 tsc_clocksource_reliable = 1;
1130 }
1131
1132 /*
1133 * Make an educated guess if the TSC is trustworthy and synchronized
1134 * over all CPUs.
1135 */
1136 int unsynchronized_tsc(void)
1137 {
1138 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1139 return 1;
1140
1141 #ifdef CONFIG_SMP
1142 if (apic_is_clustered_box())
1143 return 1;
1144 #endif
1145
1146 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1147 return 0;
1148
1149 if (tsc_clocksource_reliable)
1150 return 0;
1151 /*
1152 * Intel systems are normally all synchronized.
1153 * Exceptions must mark TSC as unstable:
1154 */
1155 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1156 /* assume multi socket systems are not synchronized: */
1157 if (num_possible_cpus() > 1)
1158 return 1;
1159 }
1160
1161 return 0;
1162 }
1163
1164 /*
1165 * Convert ART to TSC given numerator/denominator found in detect_art()
1166 */
1167 struct system_counterval_t convert_art_to_tsc(cycle_t art)
1168 {
1169 u64 tmp, res, rem;
1170
1171 rem = do_div(art, art_to_tsc_denominator);
1172
1173 res = art * art_to_tsc_numerator;
1174 tmp = rem * art_to_tsc_numerator;
1175
1176 do_div(tmp, art_to_tsc_denominator);
1177 res += tmp + art_to_tsc_offset;
1178
1179 return (struct system_counterval_t) {.cs = art_related_clocksource,
1180 .cycles = res};
1181 }
1182 EXPORT_SYMBOL(convert_art_to_tsc);
1183
1184 static void tsc_refine_calibration_work(struct work_struct *work);
1185 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1186 /**
1187 * tsc_refine_calibration_work - Further refine tsc freq calibration
1188 * @work - ignored.
1189 *
1190 * This functions uses delayed work over a period of a
1191 * second to further refine the TSC freq value. Since this is
1192 * timer based, instead of loop based, we don't block the boot
1193 * process while this longer calibration is done.
1194 *
1195 * If there are any calibration anomalies (too many SMIs, etc),
1196 * or the refined calibration is off by 1% of the fast early
1197 * calibration, we throw out the new calibration and use the
1198 * early calibration.
1199 */
1200 static void tsc_refine_calibration_work(struct work_struct *work)
1201 {
1202 static u64 tsc_start = -1, ref_start;
1203 static int hpet;
1204 u64 tsc_stop, ref_stop, delta;
1205 unsigned long freq;
1206
1207 /* Don't bother refining TSC on unstable systems */
1208 if (check_tsc_unstable())
1209 goto out;
1210
1211 /*
1212 * Since the work is started early in boot, we may be
1213 * delayed the first time we expire. So set the workqueue
1214 * again once we know timers are working.
1215 */
1216 if (tsc_start == -1) {
1217 /*
1218 * Only set hpet once, to avoid mixing hardware
1219 * if the hpet becomes enabled later.
1220 */
1221 hpet = is_hpet_enabled();
1222 schedule_delayed_work(&tsc_irqwork, HZ);
1223 tsc_start = tsc_read_refs(&ref_start, hpet);
1224 return;
1225 }
1226
1227 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1228
1229 /* hpet or pmtimer available ? */
1230 if (ref_start == ref_stop)
1231 goto out;
1232
1233 /* Check, whether the sampling was disturbed by an SMI */
1234 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1235 goto out;
1236
1237 delta = tsc_stop - tsc_start;
1238 delta *= 1000000LL;
1239 if (hpet)
1240 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1241 else
1242 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1243
1244 /* Make sure we're within 1% */
1245 if (abs(tsc_khz - freq) > tsc_khz/100)
1246 goto out;
1247
1248 tsc_khz = freq;
1249 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1250 (unsigned long)tsc_khz / 1000,
1251 (unsigned long)tsc_khz % 1000);
1252
1253 /* Inform the TSC deadline clockevent devices about the recalibration */
1254 lapic_update_tsc_freq();
1255
1256 out:
1257 if (boot_cpu_has(X86_FEATURE_ART))
1258 art_related_clocksource = &clocksource_tsc;
1259 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1260 }
1261
1262
1263 static int __init init_tsc_clocksource(void)
1264 {
1265 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1266 return 0;
1267
1268 if (tsc_clocksource_reliable)
1269 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1270 /* lower the rating if we already know its unstable: */
1271 if (check_tsc_unstable()) {
1272 clocksource_tsc.rating = 0;
1273 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1274 }
1275
1276 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1277 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1278
1279 /*
1280 * Trust the results of the earlier calibration on systems
1281 * exporting a reliable TSC.
1282 */
1283 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1284 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1285 return 0;
1286 }
1287
1288 schedule_delayed_work(&tsc_irqwork, 0);
1289 return 0;
1290 }
1291 /*
1292 * We use device_initcall here, to ensure we run after the hpet
1293 * is fully initialized, which may occur at fs_initcall time.
1294 */
1295 device_initcall(init_tsc_clocksource);
1296
1297 void __init tsc_init(void)
1298 {
1299 u64 lpj;
1300 int cpu;
1301
1302 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1303 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1304 return;
1305 }
1306
1307 cpu_khz = x86_platform.calibrate_cpu();
1308 tsc_khz = x86_platform.calibrate_tsc();
1309
1310 /*
1311 * Trust non-zero tsc_khz as authorative,
1312 * and use it to sanity check cpu_khz,
1313 * which will be off if system timer is off.
1314 */
1315 if (tsc_khz == 0)
1316 tsc_khz = cpu_khz;
1317 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1318 cpu_khz = tsc_khz;
1319
1320 if (!tsc_khz) {
1321 mark_tsc_unstable("could not calculate TSC khz");
1322 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1323 return;
1324 }
1325
1326 pr_info("Detected %lu.%03lu MHz processor\n",
1327 (unsigned long)cpu_khz / 1000,
1328 (unsigned long)cpu_khz % 1000);
1329
1330 /*
1331 * Secondary CPUs do not run through tsc_init(), so set up
1332 * all the scale factors for all CPUs, assuming the same
1333 * speed as the bootup CPU. (cpufreq notifiers will fix this
1334 * up if their speed diverges)
1335 */
1336 for_each_possible_cpu(cpu) {
1337 cyc2ns_init(cpu);
1338 set_cyc2ns_scale(tsc_khz, cpu);
1339 }
1340
1341 if (tsc_disabled > 0)
1342 return;
1343
1344 /* now allow native_sched_clock() to use rdtsc */
1345
1346 tsc_disabled = 0;
1347 static_branch_enable(&__use_tsc);
1348
1349 if (!no_sched_irq_time)
1350 enable_sched_clock_irqtime();
1351
1352 lpj = ((u64)tsc_khz * 1000);
1353 do_div(lpj, HZ);
1354 lpj_fine = lpj;
1355
1356 use_tsc_delay();
1357
1358 if (unsynchronized_tsc())
1359 mark_tsc_unstable("TSCs unsynchronized");
1360
1361 check_system_tsc_reliable();
1362
1363 detect_art();
1364 }
1365
1366 #ifdef CONFIG_SMP
1367 /*
1368 * If we have a constant TSC and are using the TSC for the delay loop,
1369 * we can skip clock calibration if another cpu in the same socket has already
1370 * been calibrated. This assumes that CONSTANT_TSC applies to all
1371 * cpus in the socket - this should be a safe assumption.
1372 */
1373 unsigned long calibrate_delay_is_known(void)
1374 {
1375 int sibling, cpu = smp_processor_id();
1376 struct cpumask *mask = topology_core_cpumask(cpu);
1377
1378 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1379 return 0;
1380
1381 if (!mask)
1382 return 0;
1383
1384 sibling = cpumask_any_but(mask, cpu);
1385 if (sibling < nr_cpu_ids)
1386 return cpu_data(sibling).loops_per_jiffy;
1387 return 0;
1388 }
1389 #endif
This page took 0.063027 seconds and 5 git commands to generate.