Merge tag 'for-linus-4.6-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
53 bool tdp_enabled = false;
54
55 enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM 8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK 1
127 #define ACC_WRITE_MASK PT_WRITABLE_MASK
128 #define ACC_USER_MASK PT_USER_MASK
129 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
152 u64 *sptep;
153 int level;
154 unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184 shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
196 */
197 #define MMIO_SPTE_GEN_LOW_SHIFT 2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
200 #define MMIO_GEN_SHIFT 20
201 #define MMIO_GEN_LOW_SHIFT 10
202 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207 u64 mask;
208
209 WARN_ON(gen & ~MMIO_GEN_MASK);
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233 unsigned access)
234 {
235 unsigned int gen = kvm_current_mmio_generation(vcpu);
236 u64 mask = generation_mmio_spte_mask(gen);
237
238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241 trace_mark_mmio_spte(sptep, gfn, access, gen);
242 mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253 return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259 return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263 kvm_pfn_t pfn, unsigned access)
264 {
265 if (unlikely(is_noslot_pfn(pfn))) {
266 mark_mmio_spte(vcpu, sptep, gfn, access);
267 return true;
268 }
269
270 return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275 unsigned int kvm_gen, spte_gen;
276
277 kvm_gen = kvm_current_mmio_generation(vcpu);
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297 return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302 return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312 return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
319 if (is_large_pte(pte))
320 return 1;
321 return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339 *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344 *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349 return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354 return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379 union split_spte *ssptep, sspte;
380
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
412 count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
426 count_spte_clear(sptep, spte);
427
428 return orig.spte;
429 }
430
431 /*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
448 */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455 retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481 /*
482 * Always atomicly update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498 return false;
499
500 return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
533 */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536 u64 old_spte = *sptep;
537 bool ret = false;
538
539 WARN_ON(!is_shadow_present_pte(new_spte));
540
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
545
546 if (!spte_has_volatile_bits(old_spte))
547 __update_clear_spte_fast(sptep, new_spte);
548 else
549 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551 /*
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomicly update it, see the comments in
554 * spte_has_volatile_bits().
555 */
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
558 ret = true;
559
560 if (!shadow_accessed_mask)
561 return ret;
562
563 /*
564 * Flush TLB when accessed/dirty bits are changed in the page tables,
565 * to guarantee consistency between TLB and page tables.
566 */
567 if (spte_is_bit_changed(old_spte, new_spte,
568 shadow_accessed_mask | shadow_dirty_mask))
569 ret = true;
570
571 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575
576 return ret;
577 }
578
579 /*
580 * Rules for using mmu_spte_clear_track_bits:
581 * It sets the sptep from present to nonpresent, and track the
582 * state bits, it is used to clear the last level sptep.
583 */
584 static int mmu_spte_clear_track_bits(u64 *sptep)
585 {
586 kvm_pfn_t pfn;
587 u64 old_spte = *sptep;
588
589 if (!spte_has_volatile_bits(old_spte))
590 __update_clear_spte_fast(sptep, 0ull);
591 else
592 old_spte = __update_clear_spte_slow(sptep, 0ull);
593
594 if (!is_shadow_present_pte(old_spte))
595 return 0;
596
597 pfn = spte_to_pfn(old_spte);
598
599 /*
600 * KVM does not hold the refcount of the page used by
601 * kvm mmu, before reclaiming the page, we should
602 * unmap it from mmu first.
603 */
604 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605
606 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607 kvm_set_pfn_accessed(pfn);
608 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609 kvm_set_pfn_dirty(pfn);
610 return 1;
611 }
612
613 /*
614 * Rules for using mmu_spte_clear_no_track:
615 * Directly clear spte without caring the state bits of sptep,
616 * it is used to set the upper level spte.
617 */
618 static void mmu_spte_clear_no_track(u64 *sptep)
619 {
620 __update_clear_spte_fast(sptep, 0ull);
621 }
622
623 static u64 mmu_spte_get_lockless(u64 *sptep)
624 {
625 return __get_spte_lockless(sptep);
626 }
627
628 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629 {
630 /*
631 * Prevent page table teardown by making any free-er wait during
632 * kvm_flush_remote_tlbs() IPI to all active vcpus.
633 */
634 local_irq_disable();
635 vcpu->mode = READING_SHADOW_PAGE_TABLES;
636 /*
637 * Make sure a following spte read is not reordered ahead of the write
638 * to vcpu->mode.
639 */
640 smp_mb();
641 }
642
643 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644 {
645 /*
646 * Make sure the write to vcpu->mode is not reordered in front of
647 * reads to sptes. If it does, kvm_commit_zap_page() can see us
648 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649 */
650 smp_mb();
651 vcpu->mode = OUTSIDE_GUEST_MODE;
652 local_irq_enable();
653 }
654
655 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656 struct kmem_cache *base_cache, int min)
657 {
658 void *obj;
659
660 if (cache->nobjs >= min)
661 return 0;
662 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664 if (!obj)
665 return -ENOMEM;
666 cache->objects[cache->nobjs++] = obj;
667 }
668 return 0;
669 }
670
671 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672 {
673 return cache->nobjs;
674 }
675
676 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677 struct kmem_cache *cache)
678 {
679 while (mc->nobjs)
680 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 }
682
683 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684 int min)
685 {
686 void *page;
687
688 if (cache->nobjs >= min)
689 return 0;
690 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691 page = (void *)__get_free_page(GFP_KERNEL);
692 if (!page)
693 return -ENOMEM;
694 cache->objects[cache->nobjs++] = page;
695 }
696 return 0;
697 }
698
699 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700 {
701 while (mc->nobjs)
702 free_page((unsigned long)mc->objects[--mc->nobjs]);
703 }
704
705 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706 {
707 int r;
708
709 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711 if (r)
712 goto out;
713 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714 if (r)
715 goto out;
716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717 mmu_page_header_cache, 4);
718 out:
719 return r;
720 }
721
722 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723 {
724 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725 pte_list_desc_cache);
726 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728 mmu_page_header_cache);
729 }
730
731 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 {
733 void *p;
734
735 BUG_ON(!mc->nobjs);
736 p = mc->objects[--mc->nobjs];
737 return p;
738 }
739
740 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741 {
742 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 }
744
745 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746 {
747 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 }
749
750 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751 {
752 if (!sp->role.direct)
753 return sp->gfns[index];
754
755 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756 }
757
758 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759 {
760 if (sp->role.direct)
761 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762 else
763 sp->gfns[index] = gfn;
764 }
765
766 /*
767 * Return the pointer to the large page information for a given gfn,
768 * handling slots that are not large page aligned.
769 */
770 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771 struct kvm_memory_slot *slot,
772 int level)
773 {
774 unsigned long idx;
775
776 idx = gfn_to_index(gfn, slot->base_gfn, level);
777 return &slot->arch.lpage_info[level - 2][idx];
778 }
779
780 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781 gfn_t gfn, int count)
782 {
783 struct kvm_lpage_info *linfo;
784 int i;
785
786 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787 linfo = lpage_info_slot(gfn, slot, i);
788 linfo->disallow_lpage += count;
789 WARN_ON(linfo->disallow_lpage < 0);
790 }
791 }
792
793 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794 {
795 update_gfn_disallow_lpage_count(slot, gfn, 1);
796 }
797
798 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799 {
800 update_gfn_disallow_lpage_count(slot, gfn, -1);
801 }
802
803 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805 struct kvm_memslots *slots;
806 struct kvm_memory_slot *slot;
807 gfn_t gfn;
808
809 kvm->arch.indirect_shadow_pages++;
810 gfn = sp->gfn;
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
813
814 /* the non-leaf shadow pages are keeping readonly. */
815 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817 KVM_PAGE_TRACK_WRITE);
818
819 kvm_mmu_gfn_disallow_lpage(slot, gfn);
820 }
821
822 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
823 {
824 struct kvm_memslots *slots;
825 struct kvm_memory_slot *slot;
826 gfn_t gfn;
827
828 kvm->arch.indirect_shadow_pages--;
829 gfn = sp->gfn;
830 slots = kvm_memslots_for_spte_role(kvm, sp->role);
831 slot = __gfn_to_memslot(slots, gfn);
832 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834 KVM_PAGE_TRACK_WRITE);
835
836 kvm_mmu_gfn_allow_lpage(slot, gfn);
837 }
838
839 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840 struct kvm_memory_slot *slot)
841 {
842 struct kvm_lpage_info *linfo;
843
844 if (slot) {
845 linfo = lpage_info_slot(gfn, slot, level);
846 return !!linfo->disallow_lpage;
847 }
848
849 return true;
850 }
851
852 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853 int level)
854 {
855 struct kvm_memory_slot *slot;
856
857 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
858 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
859 }
860
861 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
862 {
863 unsigned long page_size;
864 int i, ret = 0;
865
866 page_size = kvm_host_page_size(kvm, gfn);
867
868 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
869 if (page_size >= KVM_HPAGE_SIZE(i))
870 ret = i;
871 else
872 break;
873 }
874
875 return ret;
876 }
877
878 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879 bool no_dirty_log)
880 {
881 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882 return false;
883 if (no_dirty_log && slot->dirty_bitmap)
884 return false;
885
886 return true;
887 }
888
889 static struct kvm_memory_slot *
890 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891 bool no_dirty_log)
892 {
893 struct kvm_memory_slot *slot;
894
895 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
896 if (!memslot_valid_for_gpte(slot, no_dirty_log))
897 slot = NULL;
898
899 return slot;
900 }
901
902 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903 bool *force_pt_level)
904 {
905 int host_level, level, max_level;
906 struct kvm_memory_slot *slot;
907
908 if (unlikely(*force_pt_level))
909 return PT_PAGE_TABLE_LEVEL;
910
911 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912 *force_pt_level = !memslot_valid_for_gpte(slot, true);
913 if (unlikely(*force_pt_level))
914 return PT_PAGE_TABLE_LEVEL;
915
916 host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918 if (host_level == PT_PAGE_TABLE_LEVEL)
919 return host_level;
920
921 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
922
923 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
924 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
925 break;
926
927 return level - 1;
928 }
929
930 /*
931 * About rmap_head encoding:
932 *
933 * If the bit zero of rmap_head->val is clear, then it points to the only spte
934 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
935 * pte_list_desc containing more mappings.
936 */
937
938 /*
939 * Returns the number of pointers in the rmap chain, not counting the new one.
940 */
941 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
942 struct kvm_rmap_head *rmap_head)
943 {
944 struct pte_list_desc *desc;
945 int i, count = 0;
946
947 if (!rmap_head->val) {
948 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
949 rmap_head->val = (unsigned long)spte;
950 } else if (!(rmap_head->val & 1)) {
951 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952 desc = mmu_alloc_pte_list_desc(vcpu);
953 desc->sptes[0] = (u64 *)rmap_head->val;
954 desc->sptes[1] = spte;
955 rmap_head->val = (unsigned long)desc | 1;
956 ++count;
957 } else {
958 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
959 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
961 desc = desc->more;
962 count += PTE_LIST_EXT;
963 }
964 if (desc->sptes[PTE_LIST_EXT-1]) {
965 desc->more = mmu_alloc_pte_list_desc(vcpu);
966 desc = desc->more;
967 }
968 for (i = 0; desc->sptes[i]; ++i)
969 ++count;
970 desc->sptes[i] = spte;
971 }
972 return count;
973 }
974
975 static void
976 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977 struct pte_list_desc *desc, int i,
978 struct pte_list_desc *prev_desc)
979 {
980 int j;
981
982 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
983 ;
984 desc->sptes[i] = desc->sptes[j];
985 desc->sptes[j] = NULL;
986 if (j != 0)
987 return;
988 if (!prev_desc && !desc->more)
989 rmap_head->val = (unsigned long)desc->sptes[0];
990 else
991 if (prev_desc)
992 prev_desc->more = desc->more;
993 else
994 rmap_head->val = (unsigned long)desc->more | 1;
995 mmu_free_pte_list_desc(desc);
996 }
997
998 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
999 {
1000 struct pte_list_desc *desc;
1001 struct pte_list_desc *prev_desc;
1002 int i;
1003
1004 if (!rmap_head->val) {
1005 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1006 BUG();
1007 } else if (!(rmap_head->val & 1)) {
1008 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1009 if ((u64 *)rmap_head->val != spte) {
1010 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1011 BUG();
1012 }
1013 rmap_head->val = 0;
1014 } else {
1015 rmap_printk("pte_list_remove: %p many->many\n", spte);
1016 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1017 prev_desc = NULL;
1018 while (desc) {
1019 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1020 if (desc->sptes[i] == spte) {
1021 pte_list_desc_remove_entry(rmap_head,
1022 desc, i, prev_desc);
1023 return;
1024 }
1025 }
1026 prev_desc = desc;
1027 desc = desc->more;
1028 }
1029 pr_err("pte_list_remove: %p many->many\n", spte);
1030 BUG();
1031 }
1032 }
1033
1034 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035 struct kvm_memory_slot *slot)
1036 {
1037 unsigned long idx;
1038
1039 idx = gfn_to_index(gfn, slot->base_gfn, level);
1040 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 }
1042
1043 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044 struct kvm_mmu_page *sp)
1045 {
1046 struct kvm_memslots *slots;
1047 struct kvm_memory_slot *slot;
1048
1049 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050 slot = __gfn_to_memslot(slots, gfn);
1051 return __gfn_to_rmap(gfn, sp->role.level, slot);
1052 }
1053
1054 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055 {
1056 struct kvm_mmu_memory_cache *cache;
1057
1058 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059 return mmu_memory_cache_free_objects(cache);
1060 }
1061
1062 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063 {
1064 struct kvm_mmu_page *sp;
1065 struct kvm_rmap_head *rmap_head;
1066
1067 sp = page_header(__pa(spte));
1068 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070 return pte_list_add(vcpu, spte, rmap_head);
1071 }
1072
1073 static void rmap_remove(struct kvm *kvm, u64 *spte)
1074 {
1075 struct kvm_mmu_page *sp;
1076 gfn_t gfn;
1077 struct kvm_rmap_head *rmap_head;
1078
1079 sp = page_header(__pa(spte));
1080 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082 pte_list_remove(spte, rmap_head);
1083 }
1084
1085 /*
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1088 */
1089 struct rmap_iterator {
1090 /* private fields */
1091 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1092 int pos; /* index of the sptep */
1093 };
1094
1095 /*
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1099 *
1100 * Returns sptep if found, NULL otherwise.
1101 */
1102 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103 struct rmap_iterator *iter)
1104 {
1105 u64 *sptep;
1106
1107 if (!rmap_head->val)
1108 return NULL;
1109
1110 if (!(rmap_head->val & 1)) {
1111 iter->desc = NULL;
1112 sptep = (u64 *)rmap_head->val;
1113 goto out;
1114 }
1115
1116 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1117 iter->pos = 0;
1118 sptep = iter->desc->sptes[iter->pos];
1119 out:
1120 BUG_ON(!is_shadow_present_pte(*sptep));
1121 return sptep;
1122 }
1123
1124 /*
1125 * Must be used with a valid iterator: e.g. after rmap_get_first().
1126 *
1127 * Returns sptep if found, NULL otherwise.
1128 */
1129 static u64 *rmap_get_next(struct rmap_iterator *iter)
1130 {
1131 u64 *sptep;
1132
1133 if (iter->desc) {
1134 if (iter->pos < PTE_LIST_EXT - 1) {
1135 ++iter->pos;
1136 sptep = iter->desc->sptes[iter->pos];
1137 if (sptep)
1138 goto out;
1139 }
1140
1141 iter->desc = iter->desc->more;
1142
1143 if (iter->desc) {
1144 iter->pos = 0;
1145 /* desc->sptes[0] cannot be NULL */
1146 sptep = iter->desc->sptes[iter->pos];
1147 goto out;
1148 }
1149 }
1150
1151 return NULL;
1152 out:
1153 BUG_ON(!is_shadow_present_pte(*sptep));
1154 return sptep;
1155 }
1156
1157 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1158 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1159 _spte_; _spte_ = rmap_get_next(_iter_))
1160
1161 static void drop_spte(struct kvm *kvm, u64 *sptep)
1162 {
1163 if (mmu_spte_clear_track_bits(sptep))
1164 rmap_remove(kvm, sptep);
1165 }
1166
1167
1168 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169 {
1170 if (is_large_pte(*sptep)) {
1171 WARN_ON(page_header(__pa(sptep))->role.level ==
1172 PT_PAGE_TABLE_LEVEL);
1173 drop_spte(kvm, sptep);
1174 --kvm->stat.lpages;
1175 return true;
1176 }
1177
1178 return false;
1179 }
1180
1181 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182 {
1183 if (__drop_large_spte(vcpu->kvm, sptep))
1184 kvm_flush_remote_tlbs(vcpu->kvm);
1185 }
1186
1187 /*
1188 * Write-protect on the specified @sptep, @pt_protect indicates whether
1189 * spte write-protection is caused by protecting shadow page table.
1190 *
1191 * Note: write protection is difference between dirty logging and spte
1192 * protection:
1193 * - for dirty logging, the spte can be set to writable at anytime if
1194 * its dirty bitmap is properly set.
1195 * - for spte protection, the spte can be writable only after unsync-ing
1196 * shadow page.
1197 *
1198 * Return true if tlb need be flushed.
1199 */
1200 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1201 {
1202 u64 spte = *sptep;
1203
1204 if (!is_writable_pte(spte) &&
1205 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1206 return false;
1207
1208 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
1210 if (pt_protect)
1211 spte &= ~SPTE_MMU_WRITEABLE;
1212 spte = spte & ~PT_WRITABLE_MASK;
1213
1214 return mmu_spte_update(sptep, spte);
1215 }
1216
1217 static bool __rmap_write_protect(struct kvm *kvm,
1218 struct kvm_rmap_head *rmap_head,
1219 bool pt_protect)
1220 {
1221 u64 *sptep;
1222 struct rmap_iterator iter;
1223 bool flush = false;
1224
1225 for_each_rmap_spte(rmap_head, &iter, sptep)
1226 flush |= spte_write_protect(kvm, sptep, pt_protect);
1227
1228 return flush;
1229 }
1230
1231 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232 {
1233 u64 spte = *sptep;
1234
1235 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237 spte &= ~shadow_dirty_mask;
1238
1239 return mmu_spte_update(sptep, spte);
1240 }
1241
1242 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1243 {
1244 u64 *sptep;
1245 struct rmap_iterator iter;
1246 bool flush = false;
1247
1248 for_each_rmap_spte(rmap_head, &iter, sptep)
1249 flush |= spte_clear_dirty(kvm, sptep);
1250
1251 return flush;
1252 }
1253
1254 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255 {
1256 u64 spte = *sptep;
1257
1258 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260 spte |= shadow_dirty_mask;
1261
1262 return mmu_spte_update(sptep, spte);
1263 }
1264
1265 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1266 {
1267 u64 *sptep;
1268 struct rmap_iterator iter;
1269 bool flush = false;
1270
1271 for_each_rmap_spte(rmap_head, &iter, sptep)
1272 flush |= spte_set_dirty(kvm, sptep);
1273
1274 return flush;
1275 }
1276
1277 /**
1278 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1279 * @kvm: kvm instance
1280 * @slot: slot to protect
1281 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282 * @mask: indicates which pages we should protect
1283 *
1284 * Used when we do not need to care about huge page mappings: e.g. during dirty
1285 * logging we do not have any such mappings.
1286 */
1287 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1288 struct kvm_memory_slot *slot,
1289 gfn_t gfn_offset, unsigned long mask)
1290 {
1291 struct kvm_rmap_head *rmap_head;
1292
1293 while (mask) {
1294 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295 PT_PAGE_TABLE_LEVEL, slot);
1296 __rmap_write_protect(kvm, rmap_head, false);
1297
1298 /* clear the first set bit */
1299 mask &= mask - 1;
1300 }
1301 }
1302
1303 /**
1304 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305 * @kvm: kvm instance
1306 * @slot: slot to clear D-bit
1307 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308 * @mask: indicates which pages we should clear D-bit
1309 *
1310 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311 */
1312 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313 struct kvm_memory_slot *slot,
1314 gfn_t gfn_offset, unsigned long mask)
1315 {
1316 struct kvm_rmap_head *rmap_head;
1317
1318 while (mask) {
1319 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320 PT_PAGE_TABLE_LEVEL, slot);
1321 __rmap_clear_dirty(kvm, rmap_head);
1322
1323 /* clear the first set bit */
1324 mask &= mask - 1;
1325 }
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
1329 /**
1330 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331 * PT level pages.
1332 *
1333 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334 * enable dirty logging for them.
1335 *
1336 * Used when we do not need to care about huge page mappings: e.g. during dirty
1337 * logging we do not have any such mappings.
1338 */
1339 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340 struct kvm_memory_slot *slot,
1341 gfn_t gfn_offset, unsigned long mask)
1342 {
1343 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345 mask);
1346 else
1347 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1348 }
1349
1350 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351 struct kvm_memory_slot *slot, u64 gfn)
1352 {
1353 struct kvm_rmap_head *rmap_head;
1354 int i;
1355 bool write_protected = false;
1356
1357 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1358 rmap_head = __gfn_to_rmap(gfn, i, slot);
1359 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1360 }
1361
1362 return write_protected;
1363 }
1364
1365 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366 {
1367 struct kvm_memory_slot *slot;
1368
1369 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371 }
1372
1373 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1374 {
1375 u64 *sptep;
1376 struct rmap_iterator iter;
1377 bool flush = false;
1378
1379 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1380 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1381
1382 drop_spte(kvm, sptep);
1383 flush = true;
1384 }
1385
1386 return flush;
1387 }
1388
1389 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1390 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391 unsigned long data)
1392 {
1393 return kvm_zap_rmapp(kvm, rmap_head);
1394 }
1395
1396 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 unsigned long data)
1399 {
1400 u64 *sptep;
1401 struct rmap_iterator iter;
1402 int need_flush = 0;
1403 u64 new_spte;
1404 pte_t *ptep = (pte_t *)data;
1405 kvm_pfn_t new_pfn;
1406
1407 WARN_ON(pte_huge(*ptep));
1408 new_pfn = pte_pfn(*ptep);
1409
1410 restart:
1411 for_each_rmap_spte(rmap_head, &iter, sptep) {
1412 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413 sptep, *sptep, gfn, level);
1414
1415 need_flush = 1;
1416
1417 if (pte_write(*ptep)) {
1418 drop_spte(kvm, sptep);
1419 goto restart;
1420 } else {
1421 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1422 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424 new_spte &= ~PT_WRITABLE_MASK;
1425 new_spte &= ~SPTE_HOST_WRITEABLE;
1426 new_spte &= ~shadow_accessed_mask;
1427
1428 mmu_spte_clear_track_bits(sptep);
1429 mmu_spte_set(sptep, new_spte);
1430 }
1431 }
1432
1433 if (need_flush)
1434 kvm_flush_remote_tlbs(kvm);
1435
1436 return 0;
1437 }
1438
1439 struct slot_rmap_walk_iterator {
1440 /* input fields. */
1441 struct kvm_memory_slot *slot;
1442 gfn_t start_gfn;
1443 gfn_t end_gfn;
1444 int start_level;
1445 int end_level;
1446
1447 /* output fields. */
1448 gfn_t gfn;
1449 struct kvm_rmap_head *rmap;
1450 int level;
1451
1452 /* private field. */
1453 struct kvm_rmap_head *end_rmap;
1454 };
1455
1456 static void
1457 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458 {
1459 iterator->level = level;
1460 iterator->gfn = iterator->start_gfn;
1461 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463 iterator->slot);
1464 }
1465
1466 static void
1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468 struct kvm_memory_slot *slot, int start_level,
1469 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470 {
1471 iterator->slot = slot;
1472 iterator->start_level = start_level;
1473 iterator->end_level = end_level;
1474 iterator->start_gfn = start_gfn;
1475 iterator->end_gfn = end_gfn;
1476
1477 rmap_walk_init_level(iterator, iterator->start_level);
1478 }
1479
1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481 {
1482 return !!iterator->rmap;
1483 }
1484
1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486 {
1487 if (++iterator->rmap <= iterator->end_rmap) {
1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489 return;
1490 }
1491
1492 if (++iterator->level > iterator->end_level) {
1493 iterator->rmap = NULL;
1494 return;
1495 }
1496
1497 rmap_walk_init_level(iterator, iterator->level);
1498 }
1499
1500 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1501 _start_gfn, _end_gfn, _iter_) \
1502 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1503 _end_level_, _start_gfn, _end_gfn); \
1504 slot_rmap_walk_okay(_iter_); \
1505 slot_rmap_walk_next(_iter_))
1506
1507 static int kvm_handle_hva_range(struct kvm *kvm,
1508 unsigned long start,
1509 unsigned long end,
1510 unsigned long data,
1511 int (*handler)(struct kvm *kvm,
1512 struct kvm_rmap_head *rmap_head,
1513 struct kvm_memory_slot *slot,
1514 gfn_t gfn,
1515 int level,
1516 unsigned long data))
1517 {
1518 struct kvm_memslots *slots;
1519 struct kvm_memory_slot *memslot;
1520 struct slot_rmap_walk_iterator iterator;
1521 int ret = 0;
1522 int i;
1523
1524 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525 slots = __kvm_memslots(kvm, i);
1526 kvm_for_each_memslot(memslot, slots) {
1527 unsigned long hva_start, hva_end;
1528 gfn_t gfn_start, gfn_end;
1529
1530 hva_start = max(start, memslot->userspace_addr);
1531 hva_end = min(end, memslot->userspace_addr +
1532 (memslot->npages << PAGE_SHIFT));
1533 if (hva_start >= hva_end)
1534 continue;
1535 /*
1536 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538 */
1539 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543 PT_MAX_HUGEPAGE_LEVEL,
1544 gfn_start, gfn_end - 1,
1545 &iterator)
1546 ret |= handler(kvm, iterator.rmap, memslot,
1547 iterator.gfn, iterator.level, data);
1548 }
1549 }
1550
1551 return ret;
1552 }
1553
1554 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555 unsigned long data,
1556 int (*handler)(struct kvm *kvm,
1557 struct kvm_rmap_head *rmap_head,
1558 struct kvm_memory_slot *slot,
1559 gfn_t gfn, int level,
1560 unsigned long data))
1561 {
1562 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1563 }
1564
1565 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566 {
1567 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568 }
1569
1570 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571 {
1572 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573 }
1574
1575 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576 {
1577 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1578 }
1579
1580 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1581 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582 unsigned long data)
1583 {
1584 u64 *sptep;
1585 struct rmap_iterator uninitialized_var(iter);
1586 int young = 0;
1587
1588 BUG_ON(!shadow_accessed_mask);
1589
1590 for_each_rmap_spte(rmap_head, &iter, sptep) {
1591 if (*sptep & shadow_accessed_mask) {
1592 young = 1;
1593 clear_bit((ffs(shadow_accessed_mask) - 1),
1594 (unsigned long *)sptep);
1595 }
1596 }
1597
1598 trace_kvm_age_page(gfn, level, slot, young);
1599 return young;
1600 }
1601
1602 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1603 struct kvm_memory_slot *slot, gfn_t gfn,
1604 int level, unsigned long data)
1605 {
1606 u64 *sptep;
1607 struct rmap_iterator iter;
1608 int young = 0;
1609
1610 /*
1611 * If there's no access bit in the secondary pte set by the
1612 * hardware it's up to gup-fast/gup to set the access bit in
1613 * the primary pte or in the page structure.
1614 */
1615 if (!shadow_accessed_mask)
1616 goto out;
1617
1618 for_each_rmap_spte(rmap_head, &iter, sptep) {
1619 if (*sptep & shadow_accessed_mask) {
1620 young = 1;
1621 break;
1622 }
1623 }
1624 out:
1625 return young;
1626 }
1627
1628 #define RMAP_RECYCLE_THRESHOLD 1000
1629
1630 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1631 {
1632 struct kvm_rmap_head *rmap_head;
1633 struct kvm_mmu_page *sp;
1634
1635 sp = page_header(__pa(spte));
1636
1637 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1638
1639 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1640 kvm_flush_remote_tlbs(vcpu->kvm);
1641 }
1642
1643 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644 {
1645 /*
1646 * In case of absence of EPT Access and Dirty Bits supports,
1647 * emulate the accessed bit for EPT, by checking if this page has
1648 * an EPT mapping, and clearing it if it does. On the next access,
1649 * a new EPT mapping will be established.
1650 * This has some overhead, but not as much as the cost of swapping
1651 * out actively used pages or breaking up actively used hugepages.
1652 */
1653 if (!shadow_accessed_mask) {
1654 /*
1655 * We are holding the kvm->mmu_lock, and we are blowing up
1656 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657 * This is correct as long as we don't decouple the mmu_lock
1658 * protected regions (like invalidate_range_start|end does).
1659 */
1660 kvm->mmu_notifier_seq++;
1661 return kvm_handle_hva_range(kvm, start, end, 0,
1662 kvm_unmap_rmapp);
1663 }
1664
1665 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1666 }
1667
1668 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669 {
1670 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671 }
1672
1673 #ifdef MMU_DEBUG
1674 static int is_empty_shadow_page(u64 *spt)
1675 {
1676 u64 *pos;
1677 u64 *end;
1678
1679 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1680 if (is_shadow_present_pte(*pos)) {
1681 printk(KERN_ERR "%s: %p %llx\n", __func__,
1682 pos, *pos);
1683 return 0;
1684 }
1685 return 1;
1686 }
1687 #endif
1688
1689 /*
1690 * This value is the sum of all of the kvm instances's
1691 * kvm->arch.n_used_mmu_pages values. We need a global,
1692 * aggregate version in order to make the slab shrinker
1693 * faster
1694 */
1695 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696 {
1697 kvm->arch.n_used_mmu_pages += nr;
1698 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699 }
1700
1701 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1702 {
1703 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1704 hlist_del(&sp->hash_link);
1705 list_del(&sp->link);
1706 free_page((unsigned long)sp->spt);
1707 if (!sp->role.direct)
1708 free_page((unsigned long)sp->gfns);
1709 kmem_cache_free(mmu_page_header_cache, sp);
1710 }
1711
1712 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713 {
1714 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1715 }
1716
1717 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1718 struct kvm_mmu_page *sp, u64 *parent_pte)
1719 {
1720 if (!parent_pte)
1721 return;
1722
1723 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1724 }
1725
1726 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1727 u64 *parent_pte)
1728 {
1729 pte_list_remove(parent_pte, &sp->parent_ptes);
1730 }
1731
1732 static void drop_parent_pte(struct kvm_mmu_page *sp,
1733 u64 *parent_pte)
1734 {
1735 mmu_page_remove_parent_pte(sp, parent_pte);
1736 mmu_spte_clear_no_track(parent_pte);
1737 }
1738
1739 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1740 {
1741 struct kvm_mmu_page *sp;
1742
1743 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1745 if (!direct)
1746 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1747 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1748
1749 /*
1750 * The active_mmu_pages list is the FIFO list, do not move the
1751 * page until it is zapped. kvm_zap_obsolete_pages depends on
1752 * this feature. See the comments in kvm_zap_obsolete_pages().
1753 */
1754 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1755 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756 return sp;
1757 }
1758
1759 static void mark_unsync(u64 *spte);
1760 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1761 {
1762 u64 *sptep;
1763 struct rmap_iterator iter;
1764
1765 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766 mark_unsync(sptep);
1767 }
1768 }
1769
1770 static void mark_unsync(u64 *spte)
1771 {
1772 struct kvm_mmu_page *sp;
1773 unsigned int index;
1774
1775 sp = page_header(__pa(spte));
1776 index = spte - sp->spt;
1777 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1778 return;
1779 if (sp->unsync_children++)
1780 return;
1781 kvm_mmu_mark_parents_unsync(sp);
1782 }
1783
1784 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1785 struct kvm_mmu_page *sp)
1786 {
1787 return 0;
1788 }
1789
1790 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791 {
1792 }
1793
1794 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795 struct kvm_mmu_page *sp, u64 *spte,
1796 const void *pte)
1797 {
1798 WARN_ON(1);
1799 }
1800
1801 #define KVM_PAGE_ARRAY_NR 16
1802
1803 struct kvm_mmu_pages {
1804 struct mmu_page_and_offset {
1805 struct kvm_mmu_page *sp;
1806 unsigned int idx;
1807 } page[KVM_PAGE_ARRAY_NR];
1808 unsigned int nr;
1809 };
1810
1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812 int idx)
1813 {
1814 int i;
1815
1816 if (sp->unsync)
1817 for (i=0; i < pvec->nr; i++)
1818 if (pvec->page[i].sp == sp)
1819 return 0;
1820
1821 pvec->page[pvec->nr].sp = sp;
1822 pvec->page[pvec->nr].idx = idx;
1823 pvec->nr++;
1824 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825 }
1826
1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828 {
1829 --sp->unsync_children;
1830 WARN_ON((int)sp->unsync_children < 0);
1831 __clear_bit(idx, sp->unsync_child_bitmap);
1832 }
1833
1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835 struct kvm_mmu_pages *pvec)
1836 {
1837 int i, ret, nr_unsync_leaf = 0;
1838
1839 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840 struct kvm_mmu_page *child;
1841 u64 ent = sp->spt[i];
1842
1843 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844 clear_unsync_child_bit(sp, i);
1845 continue;
1846 }
1847
1848 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850 if (child->unsync_children) {
1851 if (mmu_pages_add(pvec, child, i))
1852 return -ENOSPC;
1853
1854 ret = __mmu_unsync_walk(child, pvec);
1855 if (!ret) {
1856 clear_unsync_child_bit(sp, i);
1857 continue;
1858 } else if (ret > 0) {
1859 nr_unsync_leaf += ret;
1860 } else
1861 return ret;
1862 } else if (child->unsync) {
1863 nr_unsync_leaf++;
1864 if (mmu_pages_add(pvec, child, i))
1865 return -ENOSPC;
1866 } else
1867 clear_unsync_child_bit(sp, i);
1868 }
1869
1870 return nr_unsync_leaf;
1871 }
1872
1873 #define INVALID_INDEX (-1)
1874
1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876 struct kvm_mmu_pages *pvec)
1877 {
1878 pvec->nr = 0;
1879 if (!sp->unsync_children)
1880 return 0;
1881
1882 mmu_pages_add(pvec, sp, INVALID_INDEX);
1883 return __mmu_unsync_walk(sp, pvec);
1884 }
1885
1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888 WARN_ON(!sp->unsync);
1889 trace_kvm_mmu_sync_page(sp);
1890 sp->unsync = 0;
1891 --kvm->stat.mmu_unsync;
1892 }
1893
1894 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895 struct list_head *invalid_list);
1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897 struct list_head *invalid_list);
1898
1899 /*
1900 * NOTE: we should pay more attention on the zapped-obsolete page
1901 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1902 * since it has been deleted from active_mmu_pages but still can be found
1903 * at hast list.
1904 *
1905 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1906 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1907 * all the obsolete pages.
1908 */
1909 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1910 hlist_for_each_entry(_sp, \
1911 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912 if ((_sp)->gfn != (_gfn)) {} else
1913
1914 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1915 for_each_gfn_sp(_kvm, _sp, _gfn) \
1916 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1917
1918 /* @sp->gfn should be write-protected at the call site */
1919 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1920 struct list_head *invalid_list)
1921 {
1922 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1923 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1924 return false;
1925 }
1926
1927 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1928 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1929 return false;
1930 }
1931
1932 return true;
1933 }
1934
1935 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1936 struct list_head *invalid_list,
1937 bool remote_flush, bool local_flush)
1938 {
1939 if (!list_empty(invalid_list)) {
1940 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1941 return;
1942 }
1943
1944 if (remote_flush)
1945 kvm_flush_remote_tlbs(vcpu->kvm);
1946 else if (local_flush)
1947 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1948 }
1949
1950 #ifdef CONFIG_KVM_MMU_AUDIT
1951 #include "mmu_audit.c"
1952 #else
1953 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1954 static void mmu_audit_disable(void) { }
1955 #endif
1956
1957 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1958 struct list_head *invalid_list)
1959 {
1960 kvm_unlink_unsync_page(vcpu->kvm, sp);
1961 return __kvm_sync_page(vcpu, sp, invalid_list);
1962 }
1963
1964 /* @gfn should be write-protected at the call site */
1965 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1966 struct list_head *invalid_list)
1967 {
1968 struct kvm_mmu_page *s;
1969 bool ret = false;
1970
1971 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1972 if (!s->unsync)
1973 continue;
1974
1975 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1976 ret |= kvm_sync_page(vcpu, s, invalid_list);
1977 }
1978
1979 return ret;
1980 }
1981
1982 struct mmu_page_path {
1983 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1984 unsigned int idx[PT64_ROOT_LEVEL];
1985 };
1986
1987 #define for_each_sp(pvec, sp, parents, i) \
1988 for (i = mmu_pages_first(&pvec, &parents); \
1989 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1990 i = mmu_pages_next(&pvec, &parents, i))
1991
1992 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1993 struct mmu_page_path *parents,
1994 int i)
1995 {
1996 int n;
1997
1998 for (n = i+1; n < pvec->nr; n++) {
1999 struct kvm_mmu_page *sp = pvec->page[n].sp;
2000 unsigned idx = pvec->page[n].idx;
2001 int level = sp->role.level;
2002
2003 parents->idx[level-1] = idx;
2004 if (level == PT_PAGE_TABLE_LEVEL)
2005 break;
2006
2007 parents->parent[level-2] = sp;
2008 }
2009
2010 return n;
2011 }
2012
2013 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2014 struct mmu_page_path *parents)
2015 {
2016 struct kvm_mmu_page *sp;
2017 int level;
2018
2019 if (pvec->nr == 0)
2020 return 0;
2021
2022 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2023
2024 sp = pvec->page[0].sp;
2025 level = sp->role.level;
2026 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2027
2028 parents->parent[level-2] = sp;
2029
2030 /* Also set up a sentinel. Further entries in pvec are all
2031 * children of sp, so this element is never overwritten.
2032 */
2033 parents->parent[level-1] = NULL;
2034 return mmu_pages_next(pvec, parents, 0);
2035 }
2036
2037 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2038 {
2039 struct kvm_mmu_page *sp;
2040 unsigned int level = 0;
2041
2042 do {
2043 unsigned int idx = parents->idx[level];
2044 sp = parents->parent[level];
2045 if (!sp)
2046 return;
2047
2048 WARN_ON(idx == INVALID_INDEX);
2049 clear_unsync_child_bit(sp, idx);
2050 level++;
2051 } while (!sp->unsync_children);
2052 }
2053
2054 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2055 struct kvm_mmu_page *parent)
2056 {
2057 int i;
2058 struct kvm_mmu_page *sp;
2059 struct mmu_page_path parents;
2060 struct kvm_mmu_pages pages;
2061 LIST_HEAD(invalid_list);
2062 bool flush = false;
2063
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 bool protected = false;
2066
2067 for_each_sp(pages, sp, parents, i)
2068 protected |= rmap_write_protect(vcpu, sp->gfn);
2069
2070 if (protected) {
2071 kvm_flush_remote_tlbs(vcpu->kvm);
2072 flush = false;
2073 }
2074
2075 for_each_sp(pages, sp, parents, i) {
2076 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2077 mmu_pages_clear_parents(&parents);
2078 }
2079 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2080 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2081 cond_resched_lock(&vcpu->kvm->mmu_lock);
2082 flush = false;
2083 }
2084 }
2085
2086 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2087 }
2088
2089 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2090 {
2091 atomic_set(&sp->write_flooding_count, 0);
2092 }
2093
2094 static void clear_sp_write_flooding_count(u64 *spte)
2095 {
2096 struct kvm_mmu_page *sp = page_header(__pa(spte));
2097
2098 __clear_sp_write_flooding_count(sp);
2099 }
2100
2101 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2102 {
2103 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2104 }
2105
2106 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2107 gfn_t gfn,
2108 gva_t gaddr,
2109 unsigned level,
2110 int direct,
2111 unsigned access)
2112 {
2113 union kvm_mmu_page_role role;
2114 unsigned quadrant;
2115 struct kvm_mmu_page *sp;
2116 bool need_sync = false;
2117 bool flush = false;
2118 LIST_HEAD(invalid_list);
2119
2120 role = vcpu->arch.mmu.base_role;
2121 role.level = level;
2122 role.direct = direct;
2123 if (role.direct)
2124 role.cr4_pae = 0;
2125 role.access = access;
2126 if (!vcpu->arch.mmu.direct_map
2127 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2128 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2129 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2130 role.quadrant = quadrant;
2131 }
2132 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2133 if (is_obsolete_sp(vcpu->kvm, sp))
2134 continue;
2135
2136 if (!need_sync && sp->unsync)
2137 need_sync = true;
2138
2139 if (sp->role.word != role.word)
2140 continue;
2141
2142 if (sp->unsync) {
2143 /* The page is good, but __kvm_sync_page might still end
2144 * up zapping it. If so, break in order to rebuild it.
2145 */
2146 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2147 break;
2148
2149 WARN_ON(!list_empty(&invalid_list));
2150 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2151 }
2152
2153 if (sp->unsync_children)
2154 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2155
2156 __clear_sp_write_flooding_count(sp);
2157 trace_kvm_mmu_get_page(sp, false);
2158 return sp;
2159 }
2160
2161 ++vcpu->kvm->stat.mmu_cache_miss;
2162
2163 sp = kvm_mmu_alloc_page(vcpu, direct);
2164
2165 sp->gfn = gfn;
2166 sp->role = role;
2167 hlist_add_head(&sp->hash_link,
2168 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2169 if (!direct) {
2170 /*
2171 * we should do write protection before syncing pages
2172 * otherwise the content of the synced shadow page may
2173 * be inconsistent with guest page table.
2174 */
2175 account_shadowed(vcpu->kvm, sp);
2176 if (level == PT_PAGE_TABLE_LEVEL &&
2177 rmap_write_protect(vcpu, gfn))
2178 kvm_flush_remote_tlbs(vcpu->kvm);
2179
2180 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2181 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2182 }
2183 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2184 clear_page(sp->spt);
2185 trace_kvm_mmu_get_page(sp, true);
2186
2187 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2188 return sp;
2189 }
2190
2191 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2192 struct kvm_vcpu *vcpu, u64 addr)
2193 {
2194 iterator->addr = addr;
2195 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2196 iterator->level = vcpu->arch.mmu.shadow_root_level;
2197
2198 if (iterator->level == PT64_ROOT_LEVEL &&
2199 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2200 !vcpu->arch.mmu.direct_map)
2201 --iterator->level;
2202
2203 if (iterator->level == PT32E_ROOT_LEVEL) {
2204 iterator->shadow_addr
2205 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2206 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2207 --iterator->level;
2208 if (!iterator->shadow_addr)
2209 iterator->level = 0;
2210 }
2211 }
2212
2213 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2214 {
2215 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2216 return false;
2217
2218 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2219 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2220 return true;
2221 }
2222
2223 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2224 u64 spte)
2225 {
2226 if (is_last_spte(spte, iterator->level)) {
2227 iterator->level = 0;
2228 return;
2229 }
2230
2231 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2232 --iterator->level;
2233 }
2234
2235 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2236 {
2237 return __shadow_walk_next(iterator, *iterator->sptep);
2238 }
2239
2240 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2241 struct kvm_mmu_page *sp)
2242 {
2243 u64 spte;
2244
2245 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2246 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2247
2248 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2249 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2250
2251 mmu_spte_set(sptep, spte);
2252
2253 mmu_page_add_parent_pte(vcpu, sp, sptep);
2254
2255 if (sp->unsync_children || sp->unsync)
2256 mark_unsync(sptep);
2257 }
2258
2259 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2260 unsigned direct_access)
2261 {
2262 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2263 struct kvm_mmu_page *child;
2264
2265 /*
2266 * For the direct sp, if the guest pte's dirty bit
2267 * changed form clean to dirty, it will corrupt the
2268 * sp's access: allow writable in the read-only sp,
2269 * so we should update the spte at this point to get
2270 * a new sp with the correct access.
2271 */
2272 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2273 if (child->role.access == direct_access)
2274 return;
2275
2276 drop_parent_pte(child, sptep);
2277 kvm_flush_remote_tlbs(vcpu->kvm);
2278 }
2279 }
2280
2281 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2282 u64 *spte)
2283 {
2284 u64 pte;
2285 struct kvm_mmu_page *child;
2286
2287 pte = *spte;
2288 if (is_shadow_present_pte(pte)) {
2289 if (is_last_spte(pte, sp->role.level)) {
2290 drop_spte(kvm, spte);
2291 if (is_large_pte(pte))
2292 --kvm->stat.lpages;
2293 } else {
2294 child = page_header(pte & PT64_BASE_ADDR_MASK);
2295 drop_parent_pte(child, spte);
2296 }
2297 return true;
2298 }
2299
2300 if (is_mmio_spte(pte))
2301 mmu_spte_clear_no_track(spte);
2302
2303 return false;
2304 }
2305
2306 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2307 struct kvm_mmu_page *sp)
2308 {
2309 unsigned i;
2310
2311 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2312 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2313 }
2314
2315 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2316 {
2317 u64 *sptep;
2318 struct rmap_iterator iter;
2319
2320 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2321 drop_parent_pte(sp, sptep);
2322 }
2323
2324 static int mmu_zap_unsync_children(struct kvm *kvm,
2325 struct kvm_mmu_page *parent,
2326 struct list_head *invalid_list)
2327 {
2328 int i, zapped = 0;
2329 struct mmu_page_path parents;
2330 struct kvm_mmu_pages pages;
2331
2332 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2333 return 0;
2334
2335 while (mmu_unsync_walk(parent, &pages)) {
2336 struct kvm_mmu_page *sp;
2337
2338 for_each_sp(pages, sp, parents, i) {
2339 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2340 mmu_pages_clear_parents(&parents);
2341 zapped++;
2342 }
2343 }
2344
2345 return zapped;
2346 }
2347
2348 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2349 struct list_head *invalid_list)
2350 {
2351 int ret;
2352
2353 trace_kvm_mmu_prepare_zap_page(sp);
2354 ++kvm->stat.mmu_shadow_zapped;
2355 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2356 kvm_mmu_page_unlink_children(kvm, sp);
2357 kvm_mmu_unlink_parents(kvm, sp);
2358
2359 if (!sp->role.invalid && !sp->role.direct)
2360 unaccount_shadowed(kvm, sp);
2361
2362 if (sp->unsync)
2363 kvm_unlink_unsync_page(kvm, sp);
2364 if (!sp->root_count) {
2365 /* Count self */
2366 ret++;
2367 list_move(&sp->link, invalid_list);
2368 kvm_mod_used_mmu_pages(kvm, -1);
2369 } else {
2370 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2371
2372 /*
2373 * The obsolete pages can not be used on any vcpus.
2374 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2375 */
2376 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2377 kvm_reload_remote_mmus(kvm);
2378 }
2379
2380 sp->role.invalid = 1;
2381 return ret;
2382 }
2383
2384 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2385 struct list_head *invalid_list)
2386 {
2387 struct kvm_mmu_page *sp, *nsp;
2388
2389 if (list_empty(invalid_list))
2390 return;
2391
2392 /*
2393 * wmb: make sure everyone sees our modifications to the page tables
2394 * rmb: make sure we see changes to vcpu->mode
2395 */
2396 smp_mb();
2397
2398 /*
2399 * Wait for all vcpus to exit guest mode and/or lockless shadow
2400 * page table walks.
2401 */
2402 kvm_flush_remote_tlbs(kvm);
2403
2404 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2405 WARN_ON(!sp->role.invalid || sp->root_count);
2406 kvm_mmu_free_page(sp);
2407 }
2408 }
2409
2410 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2411 struct list_head *invalid_list)
2412 {
2413 struct kvm_mmu_page *sp;
2414
2415 if (list_empty(&kvm->arch.active_mmu_pages))
2416 return false;
2417
2418 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2419 struct kvm_mmu_page, link);
2420 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2421
2422 return true;
2423 }
2424
2425 /*
2426 * Changing the number of mmu pages allocated to the vm
2427 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2428 */
2429 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2430 {
2431 LIST_HEAD(invalid_list);
2432
2433 spin_lock(&kvm->mmu_lock);
2434
2435 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2436 /* Need to free some mmu pages to achieve the goal. */
2437 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2438 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2439 break;
2440
2441 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2442 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2443 }
2444
2445 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2446
2447 spin_unlock(&kvm->mmu_lock);
2448 }
2449
2450 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2451 {
2452 struct kvm_mmu_page *sp;
2453 LIST_HEAD(invalid_list);
2454 int r;
2455
2456 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2457 r = 0;
2458 spin_lock(&kvm->mmu_lock);
2459 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2460 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2461 sp->role.word);
2462 r = 1;
2463 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2464 }
2465 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2466 spin_unlock(&kvm->mmu_lock);
2467
2468 return r;
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2471
2472 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2473 {
2474 trace_kvm_mmu_unsync_page(sp);
2475 ++vcpu->kvm->stat.mmu_unsync;
2476 sp->unsync = 1;
2477
2478 kvm_mmu_mark_parents_unsync(sp);
2479 }
2480
2481 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2482 bool can_unsync)
2483 {
2484 struct kvm_mmu_page *sp;
2485
2486 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2487 return true;
2488
2489 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2490 if (!can_unsync)
2491 return true;
2492
2493 if (sp->unsync)
2494 continue;
2495
2496 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2497 kvm_unsync_page(vcpu, sp);
2498 }
2499
2500 return false;
2501 }
2502
2503 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2504 {
2505 if (pfn_valid(pfn))
2506 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2507
2508 return true;
2509 }
2510
2511 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2512 unsigned pte_access, int level,
2513 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2514 bool can_unsync, bool host_writable)
2515 {
2516 u64 spte;
2517 int ret = 0;
2518
2519 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2520 return 0;
2521
2522 spte = PT_PRESENT_MASK;
2523 if (!speculative)
2524 spte |= shadow_accessed_mask;
2525
2526 if (pte_access & ACC_EXEC_MASK)
2527 spte |= shadow_x_mask;
2528 else
2529 spte |= shadow_nx_mask;
2530
2531 if (pte_access & ACC_USER_MASK)
2532 spte |= shadow_user_mask;
2533
2534 if (level > PT_PAGE_TABLE_LEVEL)
2535 spte |= PT_PAGE_SIZE_MASK;
2536 if (tdp_enabled)
2537 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2538 kvm_is_mmio_pfn(pfn));
2539
2540 if (host_writable)
2541 spte |= SPTE_HOST_WRITEABLE;
2542 else
2543 pte_access &= ~ACC_WRITE_MASK;
2544
2545 spte |= (u64)pfn << PAGE_SHIFT;
2546
2547 if (pte_access & ACC_WRITE_MASK) {
2548
2549 /*
2550 * Other vcpu creates new sp in the window between
2551 * mapping_level() and acquiring mmu-lock. We can
2552 * allow guest to retry the access, the mapping can
2553 * be fixed if guest refault.
2554 */
2555 if (level > PT_PAGE_TABLE_LEVEL &&
2556 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2557 goto done;
2558
2559 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2560
2561 /*
2562 * Optimization: for pte sync, if spte was writable the hash
2563 * lookup is unnecessary (and expensive). Write protection
2564 * is responsibility of mmu_get_page / kvm_sync_page.
2565 * Same reasoning can be applied to dirty page accounting.
2566 */
2567 if (!can_unsync && is_writable_pte(*sptep))
2568 goto set_pte;
2569
2570 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2571 pgprintk("%s: found shadow page for %llx, marking ro\n",
2572 __func__, gfn);
2573 ret = 1;
2574 pte_access &= ~ACC_WRITE_MASK;
2575 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2576 }
2577 }
2578
2579 if (pte_access & ACC_WRITE_MASK) {
2580 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2581 spte |= shadow_dirty_mask;
2582 }
2583
2584 set_pte:
2585 if (mmu_spte_update(sptep, spte))
2586 kvm_flush_remote_tlbs(vcpu->kvm);
2587 done:
2588 return ret;
2589 }
2590
2591 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2592 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2593 bool speculative, bool host_writable)
2594 {
2595 int was_rmapped = 0;
2596 int rmap_count;
2597 bool emulate = false;
2598
2599 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2600 *sptep, write_fault, gfn);
2601
2602 if (is_shadow_present_pte(*sptep)) {
2603 /*
2604 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2605 * the parent of the now unreachable PTE.
2606 */
2607 if (level > PT_PAGE_TABLE_LEVEL &&
2608 !is_large_pte(*sptep)) {
2609 struct kvm_mmu_page *child;
2610 u64 pte = *sptep;
2611
2612 child = page_header(pte & PT64_BASE_ADDR_MASK);
2613 drop_parent_pte(child, sptep);
2614 kvm_flush_remote_tlbs(vcpu->kvm);
2615 } else if (pfn != spte_to_pfn(*sptep)) {
2616 pgprintk("hfn old %llx new %llx\n",
2617 spte_to_pfn(*sptep), pfn);
2618 drop_spte(vcpu->kvm, sptep);
2619 kvm_flush_remote_tlbs(vcpu->kvm);
2620 } else
2621 was_rmapped = 1;
2622 }
2623
2624 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2625 true, host_writable)) {
2626 if (write_fault)
2627 emulate = true;
2628 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2629 }
2630
2631 if (unlikely(is_mmio_spte(*sptep)))
2632 emulate = true;
2633
2634 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2635 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2636 is_large_pte(*sptep)? "2MB" : "4kB",
2637 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2638 *sptep, sptep);
2639 if (!was_rmapped && is_large_pte(*sptep))
2640 ++vcpu->kvm->stat.lpages;
2641
2642 if (is_shadow_present_pte(*sptep)) {
2643 if (!was_rmapped) {
2644 rmap_count = rmap_add(vcpu, sptep, gfn);
2645 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2646 rmap_recycle(vcpu, sptep, gfn);
2647 }
2648 }
2649
2650 kvm_release_pfn_clean(pfn);
2651
2652 return emulate;
2653 }
2654
2655 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2656 bool no_dirty_log)
2657 {
2658 struct kvm_memory_slot *slot;
2659
2660 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2661 if (!slot)
2662 return KVM_PFN_ERR_FAULT;
2663
2664 return gfn_to_pfn_memslot_atomic(slot, gfn);
2665 }
2666
2667 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2668 struct kvm_mmu_page *sp,
2669 u64 *start, u64 *end)
2670 {
2671 struct page *pages[PTE_PREFETCH_NUM];
2672 struct kvm_memory_slot *slot;
2673 unsigned access = sp->role.access;
2674 int i, ret;
2675 gfn_t gfn;
2676
2677 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2678 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2679 if (!slot)
2680 return -1;
2681
2682 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2683 if (ret <= 0)
2684 return -1;
2685
2686 for (i = 0; i < ret; i++, gfn++, start++)
2687 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2688 page_to_pfn(pages[i]), true, true);
2689
2690 return 0;
2691 }
2692
2693 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2694 struct kvm_mmu_page *sp, u64 *sptep)
2695 {
2696 u64 *spte, *start = NULL;
2697 int i;
2698
2699 WARN_ON(!sp->role.direct);
2700
2701 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2702 spte = sp->spt + i;
2703
2704 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2705 if (is_shadow_present_pte(*spte) || spte == sptep) {
2706 if (!start)
2707 continue;
2708 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2709 break;
2710 start = NULL;
2711 } else if (!start)
2712 start = spte;
2713 }
2714 }
2715
2716 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2717 {
2718 struct kvm_mmu_page *sp;
2719
2720 /*
2721 * Since it's no accessed bit on EPT, it's no way to
2722 * distinguish between actually accessed translations
2723 * and prefetched, so disable pte prefetch if EPT is
2724 * enabled.
2725 */
2726 if (!shadow_accessed_mask)
2727 return;
2728
2729 sp = page_header(__pa(sptep));
2730 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2731 return;
2732
2733 __direct_pte_prefetch(vcpu, sp, sptep);
2734 }
2735
2736 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2737 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2738 {
2739 struct kvm_shadow_walk_iterator iterator;
2740 struct kvm_mmu_page *sp;
2741 int emulate = 0;
2742 gfn_t pseudo_gfn;
2743
2744 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2745 return 0;
2746
2747 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2748 if (iterator.level == level) {
2749 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2750 write, level, gfn, pfn, prefault,
2751 map_writable);
2752 direct_pte_prefetch(vcpu, iterator.sptep);
2753 ++vcpu->stat.pf_fixed;
2754 break;
2755 }
2756
2757 drop_large_spte(vcpu, iterator.sptep);
2758 if (!is_shadow_present_pte(*iterator.sptep)) {
2759 u64 base_addr = iterator.addr;
2760
2761 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2762 pseudo_gfn = base_addr >> PAGE_SHIFT;
2763 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2764 iterator.level - 1, 1, ACC_ALL);
2765
2766 link_shadow_page(vcpu, iterator.sptep, sp);
2767 }
2768 }
2769 return emulate;
2770 }
2771
2772 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2773 {
2774 siginfo_t info;
2775
2776 info.si_signo = SIGBUS;
2777 info.si_errno = 0;
2778 info.si_code = BUS_MCEERR_AR;
2779 info.si_addr = (void __user *)address;
2780 info.si_addr_lsb = PAGE_SHIFT;
2781
2782 send_sig_info(SIGBUS, &info, tsk);
2783 }
2784
2785 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2786 {
2787 /*
2788 * Do not cache the mmio info caused by writing the readonly gfn
2789 * into the spte otherwise read access on readonly gfn also can
2790 * caused mmio page fault and treat it as mmio access.
2791 * Return 1 to tell kvm to emulate it.
2792 */
2793 if (pfn == KVM_PFN_ERR_RO_FAULT)
2794 return 1;
2795
2796 if (pfn == KVM_PFN_ERR_HWPOISON) {
2797 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2798 return 0;
2799 }
2800
2801 return -EFAULT;
2802 }
2803
2804 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2805 gfn_t *gfnp, kvm_pfn_t *pfnp,
2806 int *levelp)
2807 {
2808 kvm_pfn_t pfn = *pfnp;
2809 gfn_t gfn = *gfnp;
2810 int level = *levelp;
2811
2812 /*
2813 * Check if it's a transparent hugepage. If this would be an
2814 * hugetlbfs page, level wouldn't be set to
2815 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2816 * here.
2817 */
2818 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2819 level == PT_PAGE_TABLE_LEVEL &&
2820 PageTransCompound(pfn_to_page(pfn)) &&
2821 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2822 unsigned long mask;
2823 /*
2824 * mmu_notifier_retry was successful and we hold the
2825 * mmu_lock here, so the pmd can't become splitting
2826 * from under us, and in turn
2827 * __split_huge_page_refcount() can't run from under
2828 * us and we can safely transfer the refcount from
2829 * PG_tail to PG_head as we switch the pfn to tail to
2830 * head.
2831 */
2832 *levelp = level = PT_DIRECTORY_LEVEL;
2833 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2834 VM_BUG_ON((gfn & mask) != (pfn & mask));
2835 if (pfn & mask) {
2836 gfn &= ~mask;
2837 *gfnp = gfn;
2838 kvm_release_pfn_clean(pfn);
2839 pfn &= ~mask;
2840 kvm_get_pfn(pfn);
2841 *pfnp = pfn;
2842 }
2843 }
2844 }
2845
2846 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2847 kvm_pfn_t pfn, unsigned access, int *ret_val)
2848 {
2849 /* The pfn is invalid, report the error! */
2850 if (unlikely(is_error_pfn(pfn))) {
2851 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2852 return true;
2853 }
2854
2855 if (unlikely(is_noslot_pfn(pfn)))
2856 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2857
2858 return false;
2859 }
2860
2861 static bool page_fault_can_be_fast(u32 error_code)
2862 {
2863 /*
2864 * Do not fix the mmio spte with invalid generation number which
2865 * need to be updated by slow page fault path.
2866 */
2867 if (unlikely(error_code & PFERR_RSVD_MASK))
2868 return false;
2869
2870 /*
2871 * #PF can be fast only if the shadow page table is present and it
2872 * is caused by write-protect, that means we just need change the
2873 * W bit of the spte which can be done out of mmu-lock.
2874 */
2875 if (!(error_code & PFERR_PRESENT_MASK) ||
2876 !(error_code & PFERR_WRITE_MASK))
2877 return false;
2878
2879 return true;
2880 }
2881
2882 static bool
2883 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2884 u64 *sptep, u64 spte)
2885 {
2886 gfn_t gfn;
2887
2888 WARN_ON(!sp->role.direct);
2889
2890 /*
2891 * The gfn of direct spte is stable since it is calculated
2892 * by sp->gfn.
2893 */
2894 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2895
2896 /*
2897 * Theoretically we could also set dirty bit (and flush TLB) here in
2898 * order to eliminate unnecessary PML logging. See comments in
2899 * set_spte. But fast_page_fault is very unlikely to happen with PML
2900 * enabled, so we do not do this. This might result in the same GPA
2901 * to be logged in PML buffer again when the write really happens, and
2902 * eventually to be called by mark_page_dirty twice. But it's also no
2903 * harm. This also avoids the TLB flush needed after setting dirty bit
2904 * so non-PML cases won't be impacted.
2905 *
2906 * Compare with set_spte where instead shadow_dirty_mask is set.
2907 */
2908 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2909 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2910
2911 return true;
2912 }
2913
2914 /*
2915 * Return value:
2916 * - true: let the vcpu to access on the same address again.
2917 * - false: let the real page fault path to fix it.
2918 */
2919 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2920 u32 error_code)
2921 {
2922 struct kvm_shadow_walk_iterator iterator;
2923 struct kvm_mmu_page *sp;
2924 bool ret = false;
2925 u64 spte = 0ull;
2926
2927 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2928 return false;
2929
2930 if (!page_fault_can_be_fast(error_code))
2931 return false;
2932
2933 walk_shadow_page_lockless_begin(vcpu);
2934 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2935 if (!is_shadow_present_pte(spte) || iterator.level < level)
2936 break;
2937
2938 /*
2939 * If the mapping has been changed, let the vcpu fault on the
2940 * same address again.
2941 */
2942 if (!is_shadow_present_pte(spte)) {
2943 ret = true;
2944 goto exit;
2945 }
2946
2947 sp = page_header(__pa(iterator.sptep));
2948 if (!is_last_spte(spte, sp->role.level))
2949 goto exit;
2950
2951 /*
2952 * Check if it is a spurious fault caused by TLB lazily flushed.
2953 *
2954 * Need not check the access of upper level table entries since
2955 * they are always ACC_ALL.
2956 */
2957 if (is_writable_pte(spte)) {
2958 ret = true;
2959 goto exit;
2960 }
2961
2962 /*
2963 * Currently, to simplify the code, only the spte write-protected
2964 * by dirty-log can be fast fixed.
2965 */
2966 if (!spte_is_locklessly_modifiable(spte))
2967 goto exit;
2968
2969 /*
2970 * Do not fix write-permission on the large spte since we only dirty
2971 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2972 * that means other pages are missed if its slot is dirty-logged.
2973 *
2974 * Instead, we let the slow page fault path create a normal spte to
2975 * fix the access.
2976 *
2977 * See the comments in kvm_arch_commit_memory_region().
2978 */
2979 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2980 goto exit;
2981
2982 /*
2983 * Currently, fast page fault only works for direct mapping since
2984 * the gfn is not stable for indirect shadow page.
2985 * See Documentation/virtual/kvm/locking.txt to get more detail.
2986 */
2987 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2988 exit:
2989 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2990 spte, ret);
2991 walk_shadow_page_lockless_end(vcpu);
2992
2993 return ret;
2994 }
2995
2996 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2997 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2998 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2999
3000 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3001 gfn_t gfn, bool prefault)
3002 {
3003 int r;
3004 int level;
3005 bool force_pt_level = false;
3006 kvm_pfn_t pfn;
3007 unsigned long mmu_seq;
3008 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3009
3010 level = mapping_level(vcpu, gfn, &force_pt_level);
3011 if (likely(!force_pt_level)) {
3012 /*
3013 * This path builds a PAE pagetable - so we can map
3014 * 2mb pages at maximum. Therefore check if the level
3015 * is larger than that.
3016 */
3017 if (level > PT_DIRECTORY_LEVEL)
3018 level = PT_DIRECTORY_LEVEL;
3019
3020 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3021 }
3022
3023 if (fast_page_fault(vcpu, v, level, error_code))
3024 return 0;
3025
3026 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3027 smp_rmb();
3028
3029 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3030 return 0;
3031
3032 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3033 return r;
3034
3035 spin_lock(&vcpu->kvm->mmu_lock);
3036 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3037 goto out_unlock;
3038 make_mmu_pages_available(vcpu);
3039 if (likely(!force_pt_level))
3040 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3041 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3042 spin_unlock(&vcpu->kvm->mmu_lock);
3043
3044 return r;
3045
3046 out_unlock:
3047 spin_unlock(&vcpu->kvm->mmu_lock);
3048 kvm_release_pfn_clean(pfn);
3049 return 0;
3050 }
3051
3052
3053 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3054 {
3055 int i;
3056 struct kvm_mmu_page *sp;
3057 LIST_HEAD(invalid_list);
3058
3059 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3060 return;
3061
3062 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3063 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3064 vcpu->arch.mmu.direct_map)) {
3065 hpa_t root = vcpu->arch.mmu.root_hpa;
3066
3067 spin_lock(&vcpu->kvm->mmu_lock);
3068 sp = page_header(root);
3069 --sp->root_count;
3070 if (!sp->root_count && sp->role.invalid) {
3071 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3072 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3073 }
3074 spin_unlock(&vcpu->kvm->mmu_lock);
3075 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3076 return;
3077 }
3078
3079 spin_lock(&vcpu->kvm->mmu_lock);
3080 for (i = 0; i < 4; ++i) {
3081 hpa_t root = vcpu->arch.mmu.pae_root[i];
3082
3083 if (root) {
3084 root &= PT64_BASE_ADDR_MASK;
3085 sp = page_header(root);
3086 --sp->root_count;
3087 if (!sp->root_count && sp->role.invalid)
3088 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3089 &invalid_list);
3090 }
3091 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3092 }
3093 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3094 spin_unlock(&vcpu->kvm->mmu_lock);
3095 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3096 }
3097
3098 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3099 {
3100 int ret = 0;
3101
3102 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3103 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3104 ret = 1;
3105 }
3106
3107 return ret;
3108 }
3109
3110 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3111 {
3112 struct kvm_mmu_page *sp;
3113 unsigned i;
3114
3115 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3116 spin_lock(&vcpu->kvm->mmu_lock);
3117 make_mmu_pages_available(vcpu);
3118 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3119 ++sp->root_count;
3120 spin_unlock(&vcpu->kvm->mmu_lock);
3121 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3122 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3123 for (i = 0; i < 4; ++i) {
3124 hpa_t root = vcpu->arch.mmu.pae_root[i];
3125
3126 MMU_WARN_ON(VALID_PAGE(root));
3127 spin_lock(&vcpu->kvm->mmu_lock);
3128 make_mmu_pages_available(vcpu);
3129 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3130 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3131 root = __pa(sp->spt);
3132 ++sp->root_count;
3133 spin_unlock(&vcpu->kvm->mmu_lock);
3134 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3135 }
3136 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3137 } else
3138 BUG();
3139
3140 return 0;
3141 }
3142
3143 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3144 {
3145 struct kvm_mmu_page *sp;
3146 u64 pdptr, pm_mask;
3147 gfn_t root_gfn;
3148 int i;
3149
3150 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3151
3152 if (mmu_check_root(vcpu, root_gfn))
3153 return 1;
3154
3155 /*
3156 * Do we shadow a long mode page table? If so we need to
3157 * write-protect the guests page table root.
3158 */
3159 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3160 hpa_t root = vcpu->arch.mmu.root_hpa;
3161
3162 MMU_WARN_ON(VALID_PAGE(root));
3163
3164 spin_lock(&vcpu->kvm->mmu_lock);
3165 make_mmu_pages_available(vcpu);
3166 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3167 0, ACC_ALL);
3168 root = __pa(sp->spt);
3169 ++sp->root_count;
3170 spin_unlock(&vcpu->kvm->mmu_lock);
3171 vcpu->arch.mmu.root_hpa = root;
3172 return 0;
3173 }
3174
3175 /*
3176 * We shadow a 32 bit page table. This may be a legacy 2-level
3177 * or a PAE 3-level page table. In either case we need to be aware that
3178 * the shadow page table may be a PAE or a long mode page table.
3179 */
3180 pm_mask = PT_PRESENT_MASK;
3181 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3182 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3183
3184 for (i = 0; i < 4; ++i) {
3185 hpa_t root = vcpu->arch.mmu.pae_root[i];
3186
3187 MMU_WARN_ON(VALID_PAGE(root));
3188 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3189 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3190 if (!is_present_gpte(pdptr)) {
3191 vcpu->arch.mmu.pae_root[i] = 0;
3192 continue;
3193 }
3194 root_gfn = pdptr >> PAGE_SHIFT;
3195 if (mmu_check_root(vcpu, root_gfn))
3196 return 1;
3197 }
3198 spin_lock(&vcpu->kvm->mmu_lock);
3199 make_mmu_pages_available(vcpu);
3200 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3201 0, ACC_ALL);
3202 root = __pa(sp->spt);
3203 ++sp->root_count;
3204 spin_unlock(&vcpu->kvm->mmu_lock);
3205
3206 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3207 }
3208 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3209
3210 /*
3211 * If we shadow a 32 bit page table with a long mode page
3212 * table we enter this path.
3213 */
3214 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3215 if (vcpu->arch.mmu.lm_root == NULL) {
3216 /*
3217 * The additional page necessary for this is only
3218 * allocated on demand.
3219 */
3220
3221 u64 *lm_root;
3222
3223 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3224 if (lm_root == NULL)
3225 return 1;
3226
3227 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3228
3229 vcpu->arch.mmu.lm_root = lm_root;
3230 }
3231
3232 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3233 }
3234
3235 return 0;
3236 }
3237
3238 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3239 {
3240 if (vcpu->arch.mmu.direct_map)
3241 return mmu_alloc_direct_roots(vcpu);
3242 else
3243 return mmu_alloc_shadow_roots(vcpu);
3244 }
3245
3246 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3247 {
3248 int i;
3249 struct kvm_mmu_page *sp;
3250
3251 if (vcpu->arch.mmu.direct_map)
3252 return;
3253
3254 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3255 return;
3256
3257 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3258 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3259 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3260 hpa_t root = vcpu->arch.mmu.root_hpa;
3261 sp = page_header(root);
3262 mmu_sync_children(vcpu, sp);
3263 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3264 return;
3265 }
3266 for (i = 0; i < 4; ++i) {
3267 hpa_t root = vcpu->arch.mmu.pae_root[i];
3268
3269 if (root && VALID_PAGE(root)) {
3270 root &= PT64_BASE_ADDR_MASK;
3271 sp = page_header(root);
3272 mmu_sync_children(vcpu, sp);
3273 }
3274 }
3275 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3276 }
3277
3278 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3279 {
3280 spin_lock(&vcpu->kvm->mmu_lock);
3281 mmu_sync_roots(vcpu);
3282 spin_unlock(&vcpu->kvm->mmu_lock);
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3285
3286 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3287 u32 access, struct x86_exception *exception)
3288 {
3289 if (exception)
3290 exception->error_code = 0;
3291 return vaddr;
3292 }
3293
3294 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3295 u32 access,
3296 struct x86_exception *exception)
3297 {
3298 if (exception)
3299 exception->error_code = 0;
3300 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3301 }
3302
3303 static bool
3304 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3305 {
3306 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3307
3308 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3309 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3310 }
3311
3312 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3313 {
3314 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3315 }
3316
3317 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3318 {
3319 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3320 }
3321
3322 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3323 {
3324 if (direct)
3325 return vcpu_match_mmio_gpa(vcpu, addr);
3326
3327 return vcpu_match_mmio_gva(vcpu, addr);
3328 }
3329
3330 /* return true if reserved bit is detected on spte. */
3331 static bool
3332 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3333 {
3334 struct kvm_shadow_walk_iterator iterator;
3335 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3336 int root, leaf;
3337 bool reserved = false;
3338
3339 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3340 goto exit;
3341
3342 walk_shadow_page_lockless_begin(vcpu);
3343
3344 for (shadow_walk_init(&iterator, vcpu, addr),
3345 leaf = root = iterator.level;
3346 shadow_walk_okay(&iterator);
3347 __shadow_walk_next(&iterator, spte)) {
3348 spte = mmu_spte_get_lockless(iterator.sptep);
3349
3350 sptes[leaf - 1] = spte;
3351 leaf--;
3352
3353 if (!is_shadow_present_pte(spte))
3354 break;
3355
3356 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3357 iterator.level);
3358 }
3359
3360 walk_shadow_page_lockless_end(vcpu);
3361
3362 if (reserved) {
3363 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3364 __func__, addr);
3365 while (root > leaf) {
3366 pr_err("------ spte 0x%llx level %d.\n",
3367 sptes[root - 1], root);
3368 root--;
3369 }
3370 }
3371 exit:
3372 *sptep = spte;
3373 return reserved;
3374 }
3375
3376 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3377 {
3378 u64 spte;
3379 bool reserved;
3380
3381 if (mmio_info_in_cache(vcpu, addr, direct))
3382 return RET_MMIO_PF_EMULATE;
3383
3384 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3385 if (WARN_ON(reserved))
3386 return RET_MMIO_PF_BUG;
3387
3388 if (is_mmio_spte(spte)) {
3389 gfn_t gfn = get_mmio_spte_gfn(spte);
3390 unsigned access = get_mmio_spte_access(spte);
3391
3392 if (!check_mmio_spte(vcpu, spte))
3393 return RET_MMIO_PF_INVALID;
3394
3395 if (direct)
3396 addr = 0;
3397
3398 trace_handle_mmio_page_fault(addr, gfn, access);
3399 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3400 return RET_MMIO_PF_EMULATE;
3401 }
3402
3403 /*
3404 * If the page table is zapped by other cpus, let CPU fault again on
3405 * the address.
3406 */
3407 return RET_MMIO_PF_RETRY;
3408 }
3409 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3410
3411 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3412 u32 error_code, gfn_t gfn)
3413 {
3414 if (unlikely(error_code & PFERR_RSVD_MASK))
3415 return false;
3416
3417 if (!(error_code & PFERR_PRESENT_MASK) ||
3418 !(error_code & PFERR_WRITE_MASK))
3419 return false;
3420
3421 /*
3422 * guest is writing the page which is write tracked which can
3423 * not be fixed by page fault handler.
3424 */
3425 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3426 return true;
3427
3428 return false;
3429 }
3430
3431 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3432 {
3433 struct kvm_shadow_walk_iterator iterator;
3434 u64 spte;
3435
3436 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3437 return;
3438
3439 walk_shadow_page_lockless_begin(vcpu);
3440 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3441 clear_sp_write_flooding_count(iterator.sptep);
3442 if (!is_shadow_present_pte(spte))
3443 break;
3444 }
3445 walk_shadow_page_lockless_end(vcpu);
3446 }
3447
3448 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3449 u32 error_code, bool prefault)
3450 {
3451 gfn_t gfn = gva >> PAGE_SHIFT;
3452 int r;
3453
3454 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3455
3456 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3457 return 1;
3458
3459 r = mmu_topup_memory_caches(vcpu);
3460 if (r)
3461 return r;
3462
3463 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3464
3465
3466 return nonpaging_map(vcpu, gva & PAGE_MASK,
3467 error_code, gfn, prefault);
3468 }
3469
3470 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3471 {
3472 struct kvm_arch_async_pf arch;
3473
3474 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3475 arch.gfn = gfn;
3476 arch.direct_map = vcpu->arch.mmu.direct_map;
3477 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3478
3479 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3480 }
3481
3482 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3483 {
3484 if (unlikely(!lapic_in_kernel(vcpu) ||
3485 kvm_event_needs_reinjection(vcpu)))
3486 return false;
3487
3488 return kvm_x86_ops->interrupt_allowed(vcpu);
3489 }
3490
3491 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3492 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3493 {
3494 struct kvm_memory_slot *slot;
3495 bool async;
3496
3497 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3498 async = false;
3499 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3500 if (!async)
3501 return false; /* *pfn has correct page already */
3502
3503 if (!prefault && can_do_async_pf(vcpu)) {
3504 trace_kvm_try_async_get_page(gva, gfn);
3505 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3506 trace_kvm_async_pf_doublefault(gva, gfn);
3507 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3508 return true;
3509 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3510 return true;
3511 }
3512
3513 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3514 return false;
3515 }
3516
3517 static bool
3518 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3519 {
3520 int page_num = KVM_PAGES_PER_HPAGE(level);
3521
3522 gfn &= ~(page_num - 1);
3523
3524 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3525 }
3526
3527 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3528 bool prefault)
3529 {
3530 kvm_pfn_t pfn;
3531 int r;
3532 int level;
3533 bool force_pt_level;
3534 gfn_t gfn = gpa >> PAGE_SHIFT;
3535 unsigned long mmu_seq;
3536 int write = error_code & PFERR_WRITE_MASK;
3537 bool map_writable;
3538
3539 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3540
3541 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3542 return 1;
3543
3544 r = mmu_topup_memory_caches(vcpu);
3545 if (r)
3546 return r;
3547
3548 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3549 PT_DIRECTORY_LEVEL);
3550 level = mapping_level(vcpu, gfn, &force_pt_level);
3551 if (likely(!force_pt_level)) {
3552 if (level > PT_DIRECTORY_LEVEL &&
3553 !check_hugepage_cache_consistency(vcpu, gfn, level))
3554 level = PT_DIRECTORY_LEVEL;
3555 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3556 }
3557
3558 if (fast_page_fault(vcpu, gpa, level, error_code))
3559 return 0;
3560
3561 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3562 smp_rmb();
3563
3564 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3565 return 0;
3566
3567 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3568 return r;
3569
3570 spin_lock(&vcpu->kvm->mmu_lock);
3571 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3572 goto out_unlock;
3573 make_mmu_pages_available(vcpu);
3574 if (likely(!force_pt_level))
3575 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3576 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3577 spin_unlock(&vcpu->kvm->mmu_lock);
3578
3579 return r;
3580
3581 out_unlock:
3582 spin_unlock(&vcpu->kvm->mmu_lock);
3583 kvm_release_pfn_clean(pfn);
3584 return 0;
3585 }
3586
3587 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3588 struct kvm_mmu *context)
3589 {
3590 context->page_fault = nonpaging_page_fault;
3591 context->gva_to_gpa = nonpaging_gva_to_gpa;
3592 context->sync_page = nonpaging_sync_page;
3593 context->invlpg = nonpaging_invlpg;
3594 context->update_pte = nonpaging_update_pte;
3595 context->root_level = 0;
3596 context->shadow_root_level = PT32E_ROOT_LEVEL;
3597 context->root_hpa = INVALID_PAGE;
3598 context->direct_map = true;
3599 context->nx = false;
3600 }
3601
3602 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3603 {
3604 mmu_free_roots(vcpu);
3605 }
3606
3607 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3608 {
3609 return kvm_read_cr3(vcpu);
3610 }
3611
3612 static void inject_page_fault(struct kvm_vcpu *vcpu,
3613 struct x86_exception *fault)
3614 {
3615 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3616 }
3617
3618 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3619 unsigned access, int *nr_present)
3620 {
3621 if (unlikely(is_mmio_spte(*sptep))) {
3622 if (gfn != get_mmio_spte_gfn(*sptep)) {
3623 mmu_spte_clear_no_track(sptep);
3624 return true;
3625 }
3626
3627 (*nr_present)++;
3628 mark_mmio_spte(vcpu, sptep, gfn, access);
3629 return true;
3630 }
3631
3632 return false;
3633 }
3634
3635 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3636 unsigned level, unsigned gpte)
3637 {
3638 /*
3639 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3640 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3641 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3642 */
3643 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3644
3645 /*
3646 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3647 * If it is clear, there are no large pages at this level, so clear
3648 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3649 */
3650 gpte &= level - mmu->last_nonleaf_level;
3651
3652 return gpte & PT_PAGE_SIZE_MASK;
3653 }
3654
3655 #define PTTYPE_EPT 18 /* arbitrary */
3656 #define PTTYPE PTTYPE_EPT
3657 #include "paging_tmpl.h"
3658 #undef PTTYPE
3659
3660 #define PTTYPE 64
3661 #include "paging_tmpl.h"
3662 #undef PTTYPE
3663
3664 #define PTTYPE 32
3665 #include "paging_tmpl.h"
3666 #undef PTTYPE
3667
3668 static void
3669 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3670 struct rsvd_bits_validate *rsvd_check,
3671 int maxphyaddr, int level, bool nx, bool gbpages,
3672 bool pse, bool amd)
3673 {
3674 u64 exb_bit_rsvd = 0;
3675 u64 gbpages_bit_rsvd = 0;
3676 u64 nonleaf_bit8_rsvd = 0;
3677
3678 rsvd_check->bad_mt_xwr = 0;
3679
3680 if (!nx)
3681 exb_bit_rsvd = rsvd_bits(63, 63);
3682 if (!gbpages)
3683 gbpages_bit_rsvd = rsvd_bits(7, 7);
3684
3685 /*
3686 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3687 * leaf entries) on AMD CPUs only.
3688 */
3689 if (amd)
3690 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3691
3692 switch (level) {
3693 case PT32_ROOT_LEVEL:
3694 /* no rsvd bits for 2 level 4K page table entries */
3695 rsvd_check->rsvd_bits_mask[0][1] = 0;
3696 rsvd_check->rsvd_bits_mask[0][0] = 0;
3697 rsvd_check->rsvd_bits_mask[1][0] =
3698 rsvd_check->rsvd_bits_mask[0][0];
3699
3700 if (!pse) {
3701 rsvd_check->rsvd_bits_mask[1][1] = 0;
3702 break;
3703 }
3704
3705 if (is_cpuid_PSE36())
3706 /* 36bits PSE 4MB page */
3707 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3708 else
3709 /* 32 bits PSE 4MB page */
3710 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3711 break;
3712 case PT32E_ROOT_LEVEL:
3713 rsvd_check->rsvd_bits_mask[0][2] =
3714 rsvd_bits(maxphyaddr, 63) |
3715 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3716 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3717 rsvd_bits(maxphyaddr, 62); /* PDE */
3718 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3719 rsvd_bits(maxphyaddr, 62); /* PTE */
3720 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3721 rsvd_bits(maxphyaddr, 62) |
3722 rsvd_bits(13, 20); /* large page */
3723 rsvd_check->rsvd_bits_mask[1][0] =
3724 rsvd_check->rsvd_bits_mask[0][0];
3725 break;
3726 case PT64_ROOT_LEVEL:
3727 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3728 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3729 rsvd_bits(maxphyaddr, 51);
3730 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3731 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3732 rsvd_bits(maxphyaddr, 51);
3733 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3734 rsvd_bits(maxphyaddr, 51);
3735 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3736 rsvd_bits(maxphyaddr, 51);
3737 rsvd_check->rsvd_bits_mask[1][3] =
3738 rsvd_check->rsvd_bits_mask[0][3];
3739 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3740 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3741 rsvd_bits(13, 29);
3742 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3743 rsvd_bits(maxphyaddr, 51) |
3744 rsvd_bits(13, 20); /* large page */
3745 rsvd_check->rsvd_bits_mask[1][0] =
3746 rsvd_check->rsvd_bits_mask[0][0];
3747 break;
3748 }
3749 }
3750
3751 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3752 struct kvm_mmu *context)
3753 {
3754 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3755 cpuid_maxphyaddr(vcpu), context->root_level,
3756 context->nx, guest_cpuid_has_gbpages(vcpu),
3757 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3758 }
3759
3760 static void
3761 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3762 int maxphyaddr, bool execonly)
3763 {
3764 u64 bad_mt_xwr;
3765
3766 rsvd_check->rsvd_bits_mask[0][3] =
3767 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3768 rsvd_check->rsvd_bits_mask[0][2] =
3769 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3770 rsvd_check->rsvd_bits_mask[0][1] =
3771 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3772 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3773
3774 /* large page */
3775 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3776 rsvd_check->rsvd_bits_mask[1][2] =
3777 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3778 rsvd_check->rsvd_bits_mask[1][1] =
3779 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3780 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3781
3782 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3783 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3784 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3785 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3786 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3787 if (!execonly) {
3788 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3789 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3790 }
3791 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3792 }
3793
3794 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3795 struct kvm_mmu *context, bool execonly)
3796 {
3797 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3798 cpuid_maxphyaddr(vcpu), execonly);
3799 }
3800
3801 /*
3802 * the page table on host is the shadow page table for the page
3803 * table in guest or amd nested guest, its mmu features completely
3804 * follow the features in guest.
3805 */
3806 void
3807 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3808 {
3809 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3810
3811 /*
3812 * Passing "true" to the last argument is okay; it adds a check
3813 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3814 */
3815 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3816 boot_cpu_data.x86_phys_bits,
3817 context->shadow_root_level, uses_nx,
3818 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3819 true);
3820 }
3821 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3822
3823 static inline bool boot_cpu_is_amd(void)
3824 {
3825 WARN_ON_ONCE(!tdp_enabled);
3826 return shadow_x_mask == 0;
3827 }
3828
3829 /*
3830 * the direct page table on host, use as much mmu features as
3831 * possible, however, kvm currently does not do execution-protection.
3832 */
3833 static void
3834 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3835 struct kvm_mmu *context)
3836 {
3837 if (boot_cpu_is_amd())
3838 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3839 boot_cpu_data.x86_phys_bits,
3840 context->shadow_root_level, false,
3841 cpu_has_gbpages, true, true);
3842 else
3843 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3844 boot_cpu_data.x86_phys_bits,
3845 false);
3846
3847 }
3848
3849 /*
3850 * as the comments in reset_shadow_zero_bits_mask() except it
3851 * is the shadow page table for intel nested guest.
3852 */
3853 static void
3854 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3855 struct kvm_mmu *context, bool execonly)
3856 {
3857 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3858 boot_cpu_data.x86_phys_bits, execonly);
3859 }
3860
3861 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3862 struct kvm_mmu *mmu, bool ept)
3863 {
3864 unsigned bit, byte, pfec;
3865 u8 map;
3866 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3867
3868 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3869 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3870 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3871 pfec = byte << 1;
3872 map = 0;
3873 wf = pfec & PFERR_WRITE_MASK;
3874 uf = pfec & PFERR_USER_MASK;
3875 ff = pfec & PFERR_FETCH_MASK;
3876 /*
3877 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3878 * subject to SMAP restrictions, and cleared otherwise. The
3879 * bit is only meaningful if the SMAP bit is set in CR4.
3880 */
3881 smapf = !(pfec & PFERR_RSVD_MASK);
3882 for (bit = 0; bit < 8; ++bit) {
3883 x = bit & ACC_EXEC_MASK;
3884 w = bit & ACC_WRITE_MASK;
3885 u = bit & ACC_USER_MASK;
3886
3887 if (!ept) {
3888 /* Not really needed: !nx will cause pte.nx to fault */
3889 x |= !mmu->nx;
3890 /* Allow supervisor writes if !cr0.wp */
3891 w |= !is_write_protection(vcpu) && !uf;
3892 /* Disallow supervisor fetches of user code if cr4.smep */
3893 x &= !(cr4_smep && u && !uf);
3894
3895 /*
3896 * SMAP:kernel-mode data accesses from user-mode
3897 * mappings should fault. A fault is considered
3898 * as a SMAP violation if all of the following
3899 * conditions are ture:
3900 * - X86_CR4_SMAP is set in CR4
3901 * - An user page is accessed
3902 * - Page fault in kernel mode
3903 * - if CPL = 3 or X86_EFLAGS_AC is clear
3904 *
3905 * Here, we cover the first three conditions.
3906 * The fourth is computed dynamically in
3907 * permission_fault() and is in smapf.
3908 *
3909 * Also, SMAP does not affect instruction
3910 * fetches, add the !ff check here to make it
3911 * clearer.
3912 */
3913 smap = cr4_smap && u && !uf && !ff;
3914 } else
3915 /* Not really needed: no U/S accesses on ept */
3916 u = 1;
3917
3918 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3919 (smapf && smap);
3920 map |= fault << bit;
3921 }
3922 mmu->permissions[byte] = map;
3923 }
3924 }
3925
3926 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3927 {
3928 unsigned root_level = mmu->root_level;
3929
3930 mmu->last_nonleaf_level = root_level;
3931 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
3932 mmu->last_nonleaf_level++;
3933 }
3934
3935 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3936 struct kvm_mmu *context,
3937 int level)
3938 {
3939 context->nx = is_nx(vcpu);
3940 context->root_level = level;
3941
3942 reset_rsvds_bits_mask(vcpu, context);
3943 update_permission_bitmask(vcpu, context, false);
3944 update_last_nonleaf_level(vcpu, context);
3945
3946 MMU_WARN_ON(!is_pae(vcpu));
3947 context->page_fault = paging64_page_fault;
3948 context->gva_to_gpa = paging64_gva_to_gpa;
3949 context->sync_page = paging64_sync_page;
3950 context->invlpg = paging64_invlpg;
3951 context->update_pte = paging64_update_pte;
3952 context->shadow_root_level = level;
3953 context->root_hpa = INVALID_PAGE;
3954 context->direct_map = false;
3955 }
3956
3957 static void paging64_init_context(struct kvm_vcpu *vcpu,
3958 struct kvm_mmu *context)
3959 {
3960 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3961 }
3962
3963 static void paging32_init_context(struct kvm_vcpu *vcpu,
3964 struct kvm_mmu *context)
3965 {
3966 context->nx = false;
3967 context->root_level = PT32_ROOT_LEVEL;
3968
3969 reset_rsvds_bits_mask(vcpu, context);
3970 update_permission_bitmask(vcpu, context, false);
3971 update_last_nonleaf_level(vcpu, context);
3972
3973 context->page_fault = paging32_page_fault;
3974 context->gva_to_gpa = paging32_gva_to_gpa;
3975 context->sync_page = paging32_sync_page;
3976 context->invlpg = paging32_invlpg;
3977 context->update_pte = paging32_update_pte;
3978 context->shadow_root_level = PT32E_ROOT_LEVEL;
3979 context->root_hpa = INVALID_PAGE;
3980 context->direct_map = false;
3981 }
3982
3983 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3984 struct kvm_mmu *context)
3985 {
3986 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3987 }
3988
3989 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3990 {
3991 struct kvm_mmu *context = &vcpu->arch.mmu;
3992
3993 context->base_role.word = 0;
3994 context->base_role.smm = is_smm(vcpu);
3995 context->page_fault = tdp_page_fault;
3996 context->sync_page = nonpaging_sync_page;
3997 context->invlpg = nonpaging_invlpg;
3998 context->update_pte = nonpaging_update_pte;
3999 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4000 context->root_hpa = INVALID_PAGE;
4001 context->direct_map = true;
4002 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4003 context->get_cr3 = get_cr3;
4004 context->get_pdptr = kvm_pdptr_read;
4005 context->inject_page_fault = kvm_inject_page_fault;
4006
4007 if (!is_paging(vcpu)) {
4008 context->nx = false;
4009 context->gva_to_gpa = nonpaging_gva_to_gpa;
4010 context->root_level = 0;
4011 } else if (is_long_mode(vcpu)) {
4012 context->nx = is_nx(vcpu);
4013 context->root_level = PT64_ROOT_LEVEL;
4014 reset_rsvds_bits_mask(vcpu, context);
4015 context->gva_to_gpa = paging64_gva_to_gpa;
4016 } else if (is_pae(vcpu)) {
4017 context->nx = is_nx(vcpu);
4018 context->root_level = PT32E_ROOT_LEVEL;
4019 reset_rsvds_bits_mask(vcpu, context);
4020 context->gva_to_gpa = paging64_gva_to_gpa;
4021 } else {
4022 context->nx = false;
4023 context->root_level = PT32_ROOT_LEVEL;
4024 reset_rsvds_bits_mask(vcpu, context);
4025 context->gva_to_gpa = paging32_gva_to_gpa;
4026 }
4027
4028 update_permission_bitmask(vcpu, context, false);
4029 update_last_nonleaf_level(vcpu, context);
4030 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4031 }
4032
4033 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4034 {
4035 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4036 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4037 struct kvm_mmu *context = &vcpu->arch.mmu;
4038
4039 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4040
4041 if (!is_paging(vcpu))
4042 nonpaging_init_context(vcpu, context);
4043 else if (is_long_mode(vcpu))
4044 paging64_init_context(vcpu, context);
4045 else if (is_pae(vcpu))
4046 paging32E_init_context(vcpu, context);
4047 else
4048 paging32_init_context(vcpu, context);
4049
4050 context->base_role.nxe = is_nx(vcpu);
4051 context->base_role.cr4_pae = !!is_pae(vcpu);
4052 context->base_role.cr0_wp = is_write_protection(vcpu);
4053 context->base_role.smep_andnot_wp
4054 = smep && !is_write_protection(vcpu);
4055 context->base_role.smap_andnot_wp
4056 = smap && !is_write_protection(vcpu);
4057 context->base_role.smm = is_smm(vcpu);
4058 reset_shadow_zero_bits_mask(vcpu, context);
4059 }
4060 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4061
4062 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4063 {
4064 struct kvm_mmu *context = &vcpu->arch.mmu;
4065
4066 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4067
4068 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4069
4070 context->nx = true;
4071 context->page_fault = ept_page_fault;
4072 context->gva_to_gpa = ept_gva_to_gpa;
4073 context->sync_page = ept_sync_page;
4074 context->invlpg = ept_invlpg;
4075 context->update_pte = ept_update_pte;
4076 context->root_level = context->shadow_root_level;
4077 context->root_hpa = INVALID_PAGE;
4078 context->direct_map = false;
4079
4080 update_permission_bitmask(vcpu, context, true);
4081 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4082 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4083 }
4084 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4085
4086 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4087 {
4088 struct kvm_mmu *context = &vcpu->arch.mmu;
4089
4090 kvm_init_shadow_mmu(vcpu);
4091 context->set_cr3 = kvm_x86_ops->set_cr3;
4092 context->get_cr3 = get_cr3;
4093 context->get_pdptr = kvm_pdptr_read;
4094 context->inject_page_fault = kvm_inject_page_fault;
4095 }
4096
4097 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4098 {
4099 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4100
4101 g_context->get_cr3 = get_cr3;
4102 g_context->get_pdptr = kvm_pdptr_read;
4103 g_context->inject_page_fault = kvm_inject_page_fault;
4104
4105 /*
4106 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4107 * L1's nested page tables (e.g. EPT12). The nested translation
4108 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4109 * L2's page tables as the first level of translation and L1's
4110 * nested page tables as the second level of translation. Basically
4111 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4112 */
4113 if (!is_paging(vcpu)) {
4114 g_context->nx = false;
4115 g_context->root_level = 0;
4116 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4117 } else if (is_long_mode(vcpu)) {
4118 g_context->nx = is_nx(vcpu);
4119 g_context->root_level = PT64_ROOT_LEVEL;
4120 reset_rsvds_bits_mask(vcpu, g_context);
4121 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4122 } else if (is_pae(vcpu)) {
4123 g_context->nx = is_nx(vcpu);
4124 g_context->root_level = PT32E_ROOT_LEVEL;
4125 reset_rsvds_bits_mask(vcpu, g_context);
4126 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4127 } else {
4128 g_context->nx = false;
4129 g_context->root_level = PT32_ROOT_LEVEL;
4130 reset_rsvds_bits_mask(vcpu, g_context);
4131 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4132 }
4133
4134 update_permission_bitmask(vcpu, g_context, false);
4135 update_last_nonleaf_level(vcpu, g_context);
4136 }
4137
4138 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4139 {
4140 if (mmu_is_nested(vcpu))
4141 init_kvm_nested_mmu(vcpu);
4142 else if (tdp_enabled)
4143 init_kvm_tdp_mmu(vcpu);
4144 else
4145 init_kvm_softmmu(vcpu);
4146 }
4147
4148 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4149 {
4150 kvm_mmu_unload(vcpu);
4151 init_kvm_mmu(vcpu);
4152 }
4153 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4154
4155 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4156 {
4157 int r;
4158
4159 r = mmu_topup_memory_caches(vcpu);
4160 if (r)
4161 goto out;
4162 r = mmu_alloc_roots(vcpu);
4163 kvm_mmu_sync_roots(vcpu);
4164 if (r)
4165 goto out;
4166 /* set_cr3() should ensure TLB has been flushed */
4167 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4168 out:
4169 return r;
4170 }
4171 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4172
4173 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4174 {
4175 mmu_free_roots(vcpu);
4176 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4177 }
4178 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4179
4180 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4181 struct kvm_mmu_page *sp, u64 *spte,
4182 const void *new)
4183 {
4184 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4185 ++vcpu->kvm->stat.mmu_pde_zapped;
4186 return;
4187 }
4188
4189 ++vcpu->kvm->stat.mmu_pte_updated;
4190 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4191 }
4192
4193 static bool need_remote_flush(u64 old, u64 new)
4194 {
4195 if (!is_shadow_present_pte(old))
4196 return false;
4197 if (!is_shadow_present_pte(new))
4198 return true;
4199 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4200 return true;
4201 old ^= shadow_nx_mask;
4202 new ^= shadow_nx_mask;
4203 return (old & ~new & PT64_PERM_MASK) != 0;
4204 }
4205
4206 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4207 const u8 *new, int *bytes)
4208 {
4209 u64 gentry;
4210 int r;
4211
4212 /*
4213 * Assume that the pte write on a page table of the same type
4214 * as the current vcpu paging mode since we update the sptes only
4215 * when they have the same mode.
4216 */
4217 if (is_pae(vcpu) && *bytes == 4) {
4218 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4219 *gpa &= ~(gpa_t)7;
4220 *bytes = 8;
4221 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4222 if (r)
4223 gentry = 0;
4224 new = (const u8 *)&gentry;
4225 }
4226
4227 switch (*bytes) {
4228 case 4:
4229 gentry = *(const u32 *)new;
4230 break;
4231 case 8:
4232 gentry = *(const u64 *)new;
4233 break;
4234 default:
4235 gentry = 0;
4236 break;
4237 }
4238
4239 return gentry;
4240 }
4241
4242 /*
4243 * If we're seeing too many writes to a page, it may no longer be a page table,
4244 * or we may be forking, in which case it is better to unmap the page.
4245 */
4246 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4247 {
4248 /*
4249 * Skip write-flooding detected for the sp whose level is 1, because
4250 * it can become unsync, then the guest page is not write-protected.
4251 */
4252 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4253 return false;
4254
4255 atomic_inc(&sp->write_flooding_count);
4256 return atomic_read(&sp->write_flooding_count) >= 3;
4257 }
4258
4259 /*
4260 * Misaligned accesses are too much trouble to fix up; also, they usually
4261 * indicate a page is not used as a page table.
4262 */
4263 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4264 int bytes)
4265 {
4266 unsigned offset, pte_size, misaligned;
4267
4268 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4269 gpa, bytes, sp->role.word);
4270
4271 offset = offset_in_page(gpa);
4272 pte_size = sp->role.cr4_pae ? 8 : 4;
4273
4274 /*
4275 * Sometimes, the OS only writes the last one bytes to update status
4276 * bits, for example, in linux, andb instruction is used in clear_bit().
4277 */
4278 if (!(offset & (pte_size - 1)) && bytes == 1)
4279 return false;
4280
4281 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4282 misaligned |= bytes < 4;
4283
4284 return misaligned;
4285 }
4286
4287 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4288 {
4289 unsigned page_offset, quadrant;
4290 u64 *spte;
4291 int level;
4292
4293 page_offset = offset_in_page(gpa);
4294 level = sp->role.level;
4295 *nspte = 1;
4296 if (!sp->role.cr4_pae) {
4297 page_offset <<= 1; /* 32->64 */
4298 /*
4299 * A 32-bit pde maps 4MB while the shadow pdes map
4300 * only 2MB. So we need to double the offset again
4301 * and zap two pdes instead of one.
4302 */
4303 if (level == PT32_ROOT_LEVEL) {
4304 page_offset &= ~7; /* kill rounding error */
4305 page_offset <<= 1;
4306 *nspte = 2;
4307 }
4308 quadrant = page_offset >> PAGE_SHIFT;
4309 page_offset &= ~PAGE_MASK;
4310 if (quadrant != sp->role.quadrant)
4311 return NULL;
4312 }
4313
4314 spte = &sp->spt[page_offset / sizeof(*spte)];
4315 return spte;
4316 }
4317
4318 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4319 const u8 *new, int bytes)
4320 {
4321 gfn_t gfn = gpa >> PAGE_SHIFT;
4322 struct kvm_mmu_page *sp;
4323 LIST_HEAD(invalid_list);
4324 u64 entry, gentry, *spte;
4325 int npte;
4326 bool remote_flush, local_flush;
4327 union kvm_mmu_page_role mask = { };
4328
4329 mask.cr0_wp = 1;
4330 mask.cr4_pae = 1;
4331 mask.nxe = 1;
4332 mask.smep_andnot_wp = 1;
4333 mask.smap_andnot_wp = 1;
4334 mask.smm = 1;
4335
4336 /*
4337 * If we don't have indirect shadow pages, it means no page is
4338 * write-protected, so we can exit simply.
4339 */
4340 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4341 return;
4342
4343 remote_flush = local_flush = false;
4344
4345 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4346
4347 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4348
4349 /*
4350 * No need to care whether allocation memory is successful
4351 * or not since pte prefetch is skiped if it does not have
4352 * enough objects in the cache.
4353 */
4354 mmu_topup_memory_caches(vcpu);
4355
4356 spin_lock(&vcpu->kvm->mmu_lock);
4357 ++vcpu->kvm->stat.mmu_pte_write;
4358 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4359
4360 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4361 if (detect_write_misaligned(sp, gpa, bytes) ||
4362 detect_write_flooding(sp)) {
4363 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4364 ++vcpu->kvm->stat.mmu_flooded;
4365 continue;
4366 }
4367
4368 spte = get_written_sptes(sp, gpa, &npte);
4369 if (!spte)
4370 continue;
4371
4372 local_flush = true;
4373 while (npte--) {
4374 entry = *spte;
4375 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4376 if (gentry &&
4377 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4378 & mask.word) && rmap_can_add(vcpu))
4379 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4380 if (need_remote_flush(entry, *spte))
4381 remote_flush = true;
4382 ++spte;
4383 }
4384 }
4385 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4386 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4387 spin_unlock(&vcpu->kvm->mmu_lock);
4388 }
4389
4390 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4391 {
4392 gpa_t gpa;
4393 int r;
4394
4395 if (vcpu->arch.mmu.direct_map)
4396 return 0;
4397
4398 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4399
4400 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4401
4402 return r;
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4405
4406 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4407 {
4408 LIST_HEAD(invalid_list);
4409
4410 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4411 return;
4412
4413 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4414 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4415 break;
4416
4417 ++vcpu->kvm->stat.mmu_recycled;
4418 }
4419 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4420 }
4421
4422 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4423 void *insn, int insn_len)
4424 {
4425 int r, emulation_type = EMULTYPE_RETRY;
4426 enum emulation_result er;
4427 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4428
4429 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4430 r = handle_mmio_page_fault(vcpu, cr2, direct);
4431 if (r == RET_MMIO_PF_EMULATE) {
4432 emulation_type = 0;
4433 goto emulate;
4434 }
4435 if (r == RET_MMIO_PF_RETRY)
4436 return 1;
4437 if (r < 0)
4438 return r;
4439 }
4440
4441 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4442 if (r < 0)
4443 return r;
4444 if (!r)
4445 return 1;
4446
4447 if (mmio_info_in_cache(vcpu, cr2, direct))
4448 emulation_type = 0;
4449 emulate:
4450 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4451
4452 switch (er) {
4453 case EMULATE_DONE:
4454 return 1;
4455 case EMULATE_USER_EXIT:
4456 ++vcpu->stat.mmio_exits;
4457 /* fall through */
4458 case EMULATE_FAIL:
4459 return 0;
4460 default:
4461 BUG();
4462 }
4463 }
4464 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4465
4466 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4467 {
4468 vcpu->arch.mmu.invlpg(vcpu, gva);
4469 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4470 ++vcpu->stat.invlpg;
4471 }
4472 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4473
4474 void kvm_enable_tdp(void)
4475 {
4476 tdp_enabled = true;
4477 }
4478 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4479
4480 void kvm_disable_tdp(void)
4481 {
4482 tdp_enabled = false;
4483 }
4484 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4485
4486 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4487 {
4488 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4489 if (vcpu->arch.mmu.lm_root != NULL)
4490 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4491 }
4492
4493 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4494 {
4495 struct page *page;
4496 int i;
4497
4498 /*
4499 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4500 * Therefore we need to allocate shadow page tables in the first
4501 * 4GB of memory, which happens to fit the DMA32 zone.
4502 */
4503 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4504 if (!page)
4505 return -ENOMEM;
4506
4507 vcpu->arch.mmu.pae_root = page_address(page);
4508 for (i = 0; i < 4; ++i)
4509 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4510
4511 return 0;
4512 }
4513
4514 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4515 {
4516 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4517 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4518 vcpu->arch.mmu.translate_gpa = translate_gpa;
4519 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4520
4521 return alloc_mmu_pages(vcpu);
4522 }
4523
4524 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4525 {
4526 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4527
4528 init_kvm_mmu(vcpu);
4529 }
4530
4531 void kvm_mmu_init_vm(struct kvm *kvm)
4532 {
4533 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4534
4535 node->track_write = kvm_mmu_pte_write;
4536 kvm_page_track_register_notifier(kvm, node);
4537 }
4538
4539 void kvm_mmu_uninit_vm(struct kvm *kvm)
4540 {
4541 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4542
4543 kvm_page_track_unregister_notifier(kvm, node);
4544 }
4545
4546 /* The return value indicates if tlb flush on all vcpus is needed. */
4547 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4548
4549 /* The caller should hold mmu-lock before calling this function. */
4550 static bool
4551 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4552 slot_level_handler fn, int start_level, int end_level,
4553 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4554 {
4555 struct slot_rmap_walk_iterator iterator;
4556 bool flush = false;
4557
4558 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4559 end_gfn, &iterator) {
4560 if (iterator.rmap)
4561 flush |= fn(kvm, iterator.rmap);
4562
4563 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4564 if (flush && lock_flush_tlb) {
4565 kvm_flush_remote_tlbs(kvm);
4566 flush = false;
4567 }
4568 cond_resched_lock(&kvm->mmu_lock);
4569 }
4570 }
4571
4572 if (flush && lock_flush_tlb) {
4573 kvm_flush_remote_tlbs(kvm);
4574 flush = false;
4575 }
4576
4577 return flush;
4578 }
4579
4580 static bool
4581 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4582 slot_level_handler fn, int start_level, int end_level,
4583 bool lock_flush_tlb)
4584 {
4585 return slot_handle_level_range(kvm, memslot, fn, start_level,
4586 end_level, memslot->base_gfn,
4587 memslot->base_gfn + memslot->npages - 1,
4588 lock_flush_tlb);
4589 }
4590
4591 static bool
4592 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4593 slot_level_handler fn, bool lock_flush_tlb)
4594 {
4595 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4596 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4597 }
4598
4599 static bool
4600 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4601 slot_level_handler fn, bool lock_flush_tlb)
4602 {
4603 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4604 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4605 }
4606
4607 static bool
4608 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4609 slot_level_handler fn, bool lock_flush_tlb)
4610 {
4611 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4612 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4613 }
4614
4615 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4616 {
4617 struct kvm_memslots *slots;
4618 struct kvm_memory_slot *memslot;
4619 int i;
4620
4621 spin_lock(&kvm->mmu_lock);
4622 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4623 slots = __kvm_memslots(kvm, i);
4624 kvm_for_each_memslot(memslot, slots) {
4625 gfn_t start, end;
4626
4627 start = max(gfn_start, memslot->base_gfn);
4628 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4629 if (start >= end)
4630 continue;
4631
4632 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4633 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4634 start, end - 1, true);
4635 }
4636 }
4637
4638 spin_unlock(&kvm->mmu_lock);
4639 }
4640
4641 static bool slot_rmap_write_protect(struct kvm *kvm,
4642 struct kvm_rmap_head *rmap_head)
4643 {
4644 return __rmap_write_protect(kvm, rmap_head, false);
4645 }
4646
4647 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4648 struct kvm_memory_slot *memslot)
4649 {
4650 bool flush;
4651
4652 spin_lock(&kvm->mmu_lock);
4653 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4654 false);
4655 spin_unlock(&kvm->mmu_lock);
4656
4657 /*
4658 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4659 * which do tlb flush out of mmu-lock should be serialized by
4660 * kvm->slots_lock otherwise tlb flush would be missed.
4661 */
4662 lockdep_assert_held(&kvm->slots_lock);
4663
4664 /*
4665 * We can flush all the TLBs out of the mmu lock without TLB
4666 * corruption since we just change the spte from writable to
4667 * readonly so that we only need to care the case of changing
4668 * spte from present to present (changing the spte from present
4669 * to nonpresent will flush all the TLBs immediately), in other
4670 * words, the only case we care is mmu_spte_update() where we
4671 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4672 * instead of PT_WRITABLE_MASK, that means it does not depend
4673 * on PT_WRITABLE_MASK anymore.
4674 */
4675 if (flush)
4676 kvm_flush_remote_tlbs(kvm);
4677 }
4678
4679 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4680 struct kvm_rmap_head *rmap_head)
4681 {
4682 u64 *sptep;
4683 struct rmap_iterator iter;
4684 int need_tlb_flush = 0;
4685 kvm_pfn_t pfn;
4686 struct kvm_mmu_page *sp;
4687
4688 restart:
4689 for_each_rmap_spte(rmap_head, &iter, sptep) {
4690 sp = page_header(__pa(sptep));
4691 pfn = spte_to_pfn(*sptep);
4692
4693 /*
4694 * We cannot do huge page mapping for indirect shadow pages,
4695 * which are found on the last rmap (level = 1) when not using
4696 * tdp; such shadow pages are synced with the page table in
4697 * the guest, and the guest page table is using 4K page size
4698 * mapping if the indirect sp has level = 1.
4699 */
4700 if (sp->role.direct &&
4701 !kvm_is_reserved_pfn(pfn) &&
4702 PageTransCompound(pfn_to_page(pfn))) {
4703 drop_spte(kvm, sptep);
4704 need_tlb_flush = 1;
4705 goto restart;
4706 }
4707 }
4708
4709 return need_tlb_flush;
4710 }
4711
4712 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4713 const struct kvm_memory_slot *memslot)
4714 {
4715 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4716 spin_lock(&kvm->mmu_lock);
4717 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4718 kvm_mmu_zap_collapsible_spte, true);
4719 spin_unlock(&kvm->mmu_lock);
4720 }
4721
4722 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4723 struct kvm_memory_slot *memslot)
4724 {
4725 bool flush;
4726
4727 spin_lock(&kvm->mmu_lock);
4728 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4729 spin_unlock(&kvm->mmu_lock);
4730
4731 lockdep_assert_held(&kvm->slots_lock);
4732
4733 /*
4734 * It's also safe to flush TLBs out of mmu lock here as currently this
4735 * function is only used for dirty logging, in which case flushing TLB
4736 * out of mmu lock also guarantees no dirty pages will be lost in
4737 * dirty_bitmap.
4738 */
4739 if (flush)
4740 kvm_flush_remote_tlbs(kvm);
4741 }
4742 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4743
4744 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4745 struct kvm_memory_slot *memslot)
4746 {
4747 bool flush;
4748
4749 spin_lock(&kvm->mmu_lock);
4750 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4751 false);
4752 spin_unlock(&kvm->mmu_lock);
4753
4754 /* see kvm_mmu_slot_remove_write_access */
4755 lockdep_assert_held(&kvm->slots_lock);
4756
4757 if (flush)
4758 kvm_flush_remote_tlbs(kvm);
4759 }
4760 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4761
4762 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4763 struct kvm_memory_slot *memslot)
4764 {
4765 bool flush;
4766
4767 spin_lock(&kvm->mmu_lock);
4768 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4769 spin_unlock(&kvm->mmu_lock);
4770
4771 lockdep_assert_held(&kvm->slots_lock);
4772
4773 /* see kvm_mmu_slot_leaf_clear_dirty */
4774 if (flush)
4775 kvm_flush_remote_tlbs(kvm);
4776 }
4777 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4778
4779 #define BATCH_ZAP_PAGES 10
4780 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4781 {
4782 struct kvm_mmu_page *sp, *node;
4783 int batch = 0;
4784
4785 restart:
4786 list_for_each_entry_safe_reverse(sp, node,
4787 &kvm->arch.active_mmu_pages, link) {
4788 int ret;
4789
4790 /*
4791 * No obsolete page exists before new created page since
4792 * active_mmu_pages is the FIFO list.
4793 */
4794 if (!is_obsolete_sp(kvm, sp))
4795 break;
4796
4797 /*
4798 * Since we are reversely walking the list and the invalid
4799 * list will be moved to the head, skip the invalid page
4800 * can help us to avoid the infinity list walking.
4801 */
4802 if (sp->role.invalid)
4803 continue;
4804
4805 /*
4806 * Need not flush tlb since we only zap the sp with invalid
4807 * generation number.
4808 */
4809 if (batch >= BATCH_ZAP_PAGES &&
4810 cond_resched_lock(&kvm->mmu_lock)) {
4811 batch = 0;
4812 goto restart;
4813 }
4814
4815 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4816 &kvm->arch.zapped_obsolete_pages);
4817 batch += ret;
4818
4819 if (ret)
4820 goto restart;
4821 }
4822
4823 /*
4824 * Should flush tlb before free page tables since lockless-walking
4825 * may use the pages.
4826 */
4827 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4828 }
4829
4830 /*
4831 * Fast invalidate all shadow pages and use lock-break technique
4832 * to zap obsolete pages.
4833 *
4834 * It's required when memslot is being deleted or VM is being
4835 * destroyed, in these cases, we should ensure that KVM MMU does
4836 * not use any resource of the being-deleted slot or all slots
4837 * after calling the function.
4838 */
4839 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4840 {
4841 spin_lock(&kvm->mmu_lock);
4842 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4843 kvm->arch.mmu_valid_gen++;
4844
4845 /*
4846 * Notify all vcpus to reload its shadow page table
4847 * and flush TLB. Then all vcpus will switch to new
4848 * shadow page table with the new mmu_valid_gen.
4849 *
4850 * Note: we should do this under the protection of
4851 * mmu-lock, otherwise, vcpu would purge shadow page
4852 * but miss tlb flush.
4853 */
4854 kvm_reload_remote_mmus(kvm);
4855
4856 kvm_zap_obsolete_pages(kvm);
4857 spin_unlock(&kvm->mmu_lock);
4858 }
4859
4860 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4861 {
4862 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4863 }
4864
4865 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4866 {
4867 /*
4868 * The very rare case: if the generation-number is round,
4869 * zap all shadow pages.
4870 */
4871 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4872 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4873 kvm_mmu_invalidate_zap_all_pages(kvm);
4874 }
4875 }
4876
4877 static unsigned long
4878 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4879 {
4880 struct kvm *kvm;
4881 int nr_to_scan = sc->nr_to_scan;
4882 unsigned long freed = 0;
4883
4884 spin_lock(&kvm_lock);
4885
4886 list_for_each_entry(kvm, &vm_list, vm_list) {
4887 int idx;
4888 LIST_HEAD(invalid_list);
4889
4890 /*
4891 * Never scan more than sc->nr_to_scan VM instances.
4892 * Will not hit this condition practically since we do not try
4893 * to shrink more than one VM and it is very unlikely to see
4894 * !n_used_mmu_pages so many times.
4895 */
4896 if (!nr_to_scan--)
4897 break;
4898 /*
4899 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4900 * here. We may skip a VM instance errorneosly, but we do not
4901 * want to shrink a VM that only started to populate its MMU
4902 * anyway.
4903 */
4904 if (!kvm->arch.n_used_mmu_pages &&
4905 !kvm_has_zapped_obsolete_pages(kvm))
4906 continue;
4907
4908 idx = srcu_read_lock(&kvm->srcu);
4909 spin_lock(&kvm->mmu_lock);
4910
4911 if (kvm_has_zapped_obsolete_pages(kvm)) {
4912 kvm_mmu_commit_zap_page(kvm,
4913 &kvm->arch.zapped_obsolete_pages);
4914 goto unlock;
4915 }
4916
4917 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4918 freed++;
4919 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4920
4921 unlock:
4922 spin_unlock(&kvm->mmu_lock);
4923 srcu_read_unlock(&kvm->srcu, idx);
4924
4925 /*
4926 * unfair on small ones
4927 * per-vm shrinkers cry out
4928 * sadness comes quickly
4929 */
4930 list_move_tail(&kvm->vm_list, &vm_list);
4931 break;
4932 }
4933
4934 spin_unlock(&kvm_lock);
4935 return freed;
4936 }
4937
4938 static unsigned long
4939 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4940 {
4941 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4942 }
4943
4944 static struct shrinker mmu_shrinker = {
4945 .count_objects = mmu_shrink_count,
4946 .scan_objects = mmu_shrink_scan,
4947 .seeks = DEFAULT_SEEKS * 10,
4948 };
4949
4950 static void mmu_destroy_caches(void)
4951 {
4952 if (pte_list_desc_cache)
4953 kmem_cache_destroy(pte_list_desc_cache);
4954 if (mmu_page_header_cache)
4955 kmem_cache_destroy(mmu_page_header_cache);
4956 }
4957
4958 int kvm_mmu_module_init(void)
4959 {
4960 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4961 sizeof(struct pte_list_desc),
4962 0, 0, NULL);
4963 if (!pte_list_desc_cache)
4964 goto nomem;
4965
4966 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4967 sizeof(struct kvm_mmu_page),
4968 0, 0, NULL);
4969 if (!mmu_page_header_cache)
4970 goto nomem;
4971
4972 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4973 goto nomem;
4974
4975 register_shrinker(&mmu_shrinker);
4976
4977 return 0;
4978
4979 nomem:
4980 mmu_destroy_caches();
4981 return -ENOMEM;
4982 }
4983
4984 /*
4985 * Caculate mmu pages needed for kvm.
4986 */
4987 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4988 {
4989 unsigned int nr_mmu_pages;
4990 unsigned int nr_pages = 0;
4991 struct kvm_memslots *slots;
4992 struct kvm_memory_slot *memslot;
4993 int i;
4994
4995 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4996 slots = __kvm_memslots(kvm, i);
4997
4998 kvm_for_each_memslot(memslot, slots)
4999 nr_pages += memslot->npages;
5000 }
5001
5002 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5003 nr_mmu_pages = max(nr_mmu_pages,
5004 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5005
5006 return nr_mmu_pages;
5007 }
5008
5009 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5010 {
5011 kvm_mmu_unload(vcpu);
5012 free_mmu_pages(vcpu);
5013 mmu_free_memory_caches(vcpu);
5014 }
5015
5016 void kvm_mmu_module_exit(void)
5017 {
5018 mmu_destroy_caches();
5019 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5020 unregister_shrinker(&mmu_shrinker);
5021 mmu_audit_disable();
5022 }
This page took 0.125747 seconds and 6 git commands to generate.