kvm: vmx: add nested virtualization support for xsaves
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75 enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 static u64 __read_mostly host_xss;
103
104 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
105 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
106 #define KVM_VM_CR0_ALWAYS_ON \
107 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
108 #define KVM_CR4_GUEST_OWNED_BITS \
109 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
110 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
111
112 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
113 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
114
115 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
116
117 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
118
119 /*
120 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
121 * ple_gap: upper bound on the amount of time between two successive
122 * executions of PAUSE in a loop. Also indicate if ple enabled.
123 * According to test, this time is usually smaller than 128 cycles.
124 * ple_window: upper bound on the amount of time a guest is allowed to execute
125 * in a PAUSE loop. Tests indicate that most spinlocks are held for
126 * less than 2^12 cycles
127 * Time is measured based on a counter that runs at the same rate as the TSC,
128 * refer SDM volume 3b section 21.6.13 & 22.1.3.
129 */
130 #define KVM_VMX_DEFAULT_PLE_GAP 128
131 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
133 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
134 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
135 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
136
137 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
138 module_param(ple_gap, int, S_IRUGO);
139
140 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
141 module_param(ple_window, int, S_IRUGO);
142
143 /* Default doubles per-vcpu window every exit. */
144 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
145 module_param(ple_window_grow, int, S_IRUGO);
146
147 /* Default resets per-vcpu window every exit to ple_window. */
148 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
149 module_param(ple_window_shrink, int, S_IRUGO);
150
151 /* Default is to compute the maximum so we can never overflow. */
152 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
153 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
154 module_param(ple_window_max, int, S_IRUGO);
155
156 extern const ulong vmx_return;
157
158 #define NR_AUTOLOAD_MSRS 8
159 #define VMCS02_POOL_SIZE 1
160
161 struct vmcs {
162 u32 revision_id;
163 u32 abort;
164 char data[0];
165 };
166
167 /*
168 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
169 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
170 * loaded on this CPU (so we can clear them if the CPU goes down).
171 */
172 struct loaded_vmcs {
173 struct vmcs *vmcs;
174 int cpu;
175 int launched;
176 struct list_head loaded_vmcss_on_cpu_link;
177 };
178
179 struct shared_msr_entry {
180 unsigned index;
181 u64 data;
182 u64 mask;
183 };
184
185 /*
186 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
187 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
188 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
189 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
190 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
191 * More than one of these structures may exist, if L1 runs multiple L2 guests.
192 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
193 * underlying hardware which will be used to run L2.
194 * This structure is packed to ensure that its layout is identical across
195 * machines (necessary for live migration).
196 * If there are changes in this struct, VMCS12_REVISION must be changed.
197 */
198 typedef u64 natural_width;
199 struct __packed vmcs12 {
200 /* According to the Intel spec, a VMCS region must start with the
201 * following two fields. Then follow implementation-specific data.
202 */
203 u32 revision_id;
204 u32 abort;
205
206 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
207 u32 padding[7]; /* room for future expansion */
208
209 u64 io_bitmap_a;
210 u64 io_bitmap_b;
211 u64 msr_bitmap;
212 u64 vm_exit_msr_store_addr;
213 u64 vm_exit_msr_load_addr;
214 u64 vm_entry_msr_load_addr;
215 u64 tsc_offset;
216 u64 virtual_apic_page_addr;
217 u64 apic_access_addr;
218 u64 ept_pointer;
219 u64 xss_exit_bitmap;
220 u64 guest_physical_address;
221 u64 vmcs_link_pointer;
222 u64 guest_ia32_debugctl;
223 u64 guest_ia32_pat;
224 u64 guest_ia32_efer;
225 u64 guest_ia32_perf_global_ctrl;
226 u64 guest_pdptr0;
227 u64 guest_pdptr1;
228 u64 guest_pdptr2;
229 u64 guest_pdptr3;
230 u64 guest_bndcfgs;
231 u64 host_ia32_pat;
232 u64 host_ia32_efer;
233 u64 host_ia32_perf_global_ctrl;
234 u64 padding64[8]; /* room for future expansion */
235 /*
236 * To allow migration of L1 (complete with its L2 guests) between
237 * machines of different natural widths (32 or 64 bit), we cannot have
238 * unsigned long fields with no explict size. We use u64 (aliased
239 * natural_width) instead. Luckily, x86 is little-endian.
240 */
241 natural_width cr0_guest_host_mask;
242 natural_width cr4_guest_host_mask;
243 natural_width cr0_read_shadow;
244 natural_width cr4_read_shadow;
245 natural_width cr3_target_value0;
246 natural_width cr3_target_value1;
247 natural_width cr3_target_value2;
248 natural_width cr3_target_value3;
249 natural_width exit_qualification;
250 natural_width guest_linear_address;
251 natural_width guest_cr0;
252 natural_width guest_cr3;
253 natural_width guest_cr4;
254 natural_width guest_es_base;
255 natural_width guest_cs_base;
256 natural_width guest_ss_base;
257 natural_width guest_ds_base;
258 natural_width guest_fs_base;
259 natural_width guest_gs_base;
260 natural_width guest_ldtr_base;
261 natural_width guest_tr_base;
262 natural_width guest_gdtr_base;
263 natural_width guest_idtr_base;
264 natural_width guest_dr7;
265 natural_width guest_rsp;
266 natural_width guest_rip;
267 natural_width guest_rflags;
268 natural_width guest_pending_dbg_exceptions;
269 natural_width guest_sysenter_esp;
270 natural_width guest_sysenter_eip;
271 natural_width host_cr0;
272 natural_width host_cr3;
273 natural_width host_cr4;
274 natural_width host_fs_base;
275 natural_width host_gs_base;
276 natural_width host_tr_base;
277 natural_width host_gdtr_base;
278 natural_width host_idtr_base;
279 natural_width host_ia32_sysenter_esp;
280 natural_width host_ia32_sysenter_eip;
281 natural_width host_rsp;
282 natural_width host_rip;
283 natural_width paddingl[8]; /* room for future expansion */
284 u32 pin_based_vm_exec_control;
285 u32 cpu_based_vm_exec_control;
286 u32 exception_bitmap;
287 u32 page_fault_error_code_mask;
288 u32 page_fault_error_code_match;
289 u32 cr3_target_count;
290 u32 vm_exit_controls;
291 u32 vm_exit_msr_store_count;
292 u32 vm_exit_msr_load_count;
293 u32 vm_entry_controls;
294 u32 vm_entry_msr_load_count;
295 u32 vm_entry_intr_info_field;
296 u32 vm_entry_exception_error_code;
297 u32 vm_entry_instruction_len;
298 u32 tpr_threshold;
299 u32 secondary_vm_exec_control;
300 u32 vm_instruction_error;
301 u32 vm_exit_reason;
302 u32 vm_exit_intr_info;
303 u32 vm_exit_intr_error_code;
304 u32 idt_vectoring_info_field;
305 u32 idt_vectoring_error_code;
306 u32 vm_exit_instruction_len;
307 u32 vmx_instruction_info;
308 u32 guest_es_limit;
309 u32 guest_cs_limit;
310 u32 guest_ss_limit;
311 u32 guest_ds_limit;
312 u32 guest_fs_limit;
313 u32 guest_gs_limit;
314 u32 guest_ldtr_limit;
315 u32 guest_tr_limit;
316 u32 guest_gdtr_limit;
317 u32 guest_idtr_limit;
318 u32 guest_es_ar_bytes;
319 u32 guest_cs_ar_bytes;
320 u32 guest_ss_ar_bytes;
321 u32 guest_ds_ar_bytes;
322 u32 guest_fs_ar_bytes;
323 u32 guest_gs_ar_bytes;
324 u32 guest_ldtr_ar_bytes;
325 u32 guest_tr_ar_bytes;
326 u32 guest_interruptibility_info;
327 u32 guest_activity_state;
328 u32 guest_sysenter_cs;
329 u32 host_ia32_sysenter_cs;
330 u32 vmx_preemption_timer_value;
331 u32 padding32[7]; /* room for future expansion */
332 u16 virtual_processor_id;
333 u16 guest_es_selector;
334 u16 guest_cs_selector;
335 u16 guest_ss_selector;
336 u16 guest_ds_selector;
337 u16 guest_fs_selector;
338 u16 guest_gs_selector;
339 u16 guest_ldtr_selector;
340 u16 guest_tr_selector;
341 u16 host_es_selector;
342 u16 host_cs_selector;
343 u16 host_ss_selector;
344 u16 host_ds_selector;
345 u16 host_fs_selector;
346 u16 host_gs_selector;
347 u16 host_tr_selector;
348 };
349
350 /*
351 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
352 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
353 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
354 */
355 #define VMCS12_REVISION 0x11e57ed0
356
357 /*
358 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
359 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
360 * current implementation, 4K are reserved to avoid future complications.
361 */
362 #define VMCS12_SIZE 0x1000
363
364 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
365 struct vmcs02_list {
366 struct list_head list;
367 gpa_t vmptr;
368 struct loaded_vmcs vmcs02;
369 };
370
371 /*
372 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
373 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
374 */
375 struct nested_vmx {
376 /* Has the level1 guest done vmxon? */
377 bool vmxon;
378 gpa_t vmxon_ptr;
379
380 /* The guest-physical address of the current VMCS L1 keeps for L2 */
381 gpa_t current_vmptr;
382 /* The host-usable pointer to the above */
383 struct page *current_vmcs12_page;
384 struct vmcs12 *current_vmcs12;
385 struct vmcs *current_shadow_vmcs;
386 /*
387 * Indicates if the shadow vmcs must be updated with the
388 * data hold by vmcs12
389 */
390 bool sync_shadow_vmcs;
391
392 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
393 struct list_head vmcs02_pool;
394 int vmcs02_num;
395 u64 vmcs01_tsc_offset;
396 /* L2 must run next, and mustn't decide to exit to L1. */
397 bool nested_run_pending;
398 /*
399 * Guest pages referred to in vmcs02 with host-physical pointers, so
400 * we must keep them pinned while L2 runs.
401 */
402 struct page *apic_access_page;
403 struct page *virtual_apic_page;
404 u64 msr_ia32_feature_control;
405
406 struct hrtimer preemption_timer;
407 bool preemption_timer_expired;
408
409 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
410 u64 vmcs01_debugctl;
411 };
412
413 #define POSTED_INTR_ON 0
414 /* Posted-Interrupt Descriptor */
415 struct pi_desc {
416 u32 pir[8]; /* Posted interrupt requested */
417 u32 control; /* bit 0 of control is outstanding notification bit */
418 u32 rsvd[7];
419 } __aligned(64);
420
421 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
422 {
423 return test_and_set_bit(POSTED_INTR_ON,
424 (unsigned long *)&pi_desc->control);
425 }
426
427 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
428 {
429 return test_and_clear_bit(POSTED_INTR_ON,
430 (unsigned long *)&pi_desc->control);
431 }
432
433 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
434 {
435 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
436 }
437
438 struct vcpu_vmx {
439 struct kvm_vcpu vcpu;
440 unsigned long host_rsp;
441 u8 fail;
442 bool nmi_known_unmasked;
443 u32 exit_intr_info;
444 u32 idt_vectoring_info;
445 ulong rflags;
446 struct shared_msr_entry *guest_msrs;
447 int nmsrs;
448 int save_nmsrs;
449 unsigned long host_idt_base;
450 #ifdef CONFIG_X86_64
451 u64 msr_host_kernel_gs_base;
452 u64 msr_guest_kernel_gs_base;
453 #endif
454 u32 vm_entry_controls_shadow;
455 u32 vm_exit_controls_shadow;
456 /*
457 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
458 * non-nested (L1) guest, it always points to vmcs01. For a nested
459 * guest (L2), it points to a different VMCS.
460 */
461 struct loaded_vmcs vmcs01;
462 struct loaded_vmcs *loaded_vmcs;
463 bool __launched; /* temporary, used in vmx_vcpu_run */
464 struct msr_autoload {
465 unsigned nr;
466 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
467 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
468 } msr_autoload;
469 struct {
470 int loaded;
471 u16 fs_sel, gs_sel, ldt_sel;
472 #ifdef CONFIG_X86_64
473 u16 ds_sel, es_sel;
474 #endif
475 int gs_ldt_reload_needed;
476 int fs_reload_needed;
477 u64 msr_host_bndcfgs;
478 unsigned long vmcs_host_cr4; /* May not match real cr4 */
479 } host_state;
480 struct {
481 int vm86_active;
482 ulong save_rflags;
483 struct kvm_segment segs[8];
484 } rmode;
485 struct {
486 u32 bitmask; /* 4 bits per segment (1 bit per field) */
487 struct kvm_save_segment {
488 u16 selector;
489 unsigned long base;
490 u32 limit;
491 u32 ar;
492 } seg[8];
493 } segment_cache;
494 int vpid;
495 bool emulation_required;
496
497 /* Support for vnmi-less CPUs */
498 int soft_vnmi_blocked;
499 ktime_t entry_time;
500 s64 vnmi_blocked_time;
501 u32 exit_reason;
502
503 bool rdtscp_enabled;
504
505 /* Posted interrupt descriptor */
506 struct pi_desc pi_desc;
507
508 /* Support for a guest hypervisor (nested VMX) */
509 struct nested_vmx nested;
510
511 /* Dynamic PLE window. */
512 int ple_window;
513 bool ple_window_dirty;
514 };
515
516 enum segment_cache_field {
517 SEG_FIELD_SEL = 0,
518 SEG_FIELD_BASE = 1,
519 SEG_FIELD_LIMIT = 2,
520 SEG_FIELD_AR = 3,
521
522 SEG_FIELD_NR = 4
523 };
524
525 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
526 {
527 return container_of(vcpu, struct vcpu_vmx, vcpu);
528 }
529
530 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
531 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
532 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
533 [number##_HIGH] = VMCS12_OFFSET(name)+4
534
535
536 static unsigned long shadow_read_only_fields[] = {
537 /*
538 * We do NOT shadow fields that are modified when L0
539 * traps and emulates any vmx instruction (e.g. VMPTRLD,
540 * VMXON...) executed by L1.
541 * For example, VM_INSTRUCTION_ERROR is read
542 * by L1 if a vmx instruction fails (part of the error path).
543 * Note the code assumes this logic. If for some reason
544 * we start shadowing these fields then we need to
545 * force a shadow sync when L0 emulates vmx instructions
546 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
547 * by nested_vmx_failValid)
548 */
549 VM_EXIT_REASON,
550 VM_EXIT_INTR_INFO,
551 VM_EXIT_INSTRUCTION_LEN,
552 IDT_VECTORING_INFO_FIELD,
553 IDT_VECTORING_ERROR_CODE,
554 VM_EXIT_INTR_ERROR_CODE,
555 EXIT_QUALIFICATION,
556 GUEST_LINEAR_ADDRESS,
557 GUEST_PHYSICAL_ADDRESS
558 };
559 static int max_shadow_read_only_fields =
560 ARRAY_SIZE(shadow_read_only_fields);
561
562 static unsigned long shadow_read_write_fields[] = {
563 TPR_THRESHOLD,
564 GUEST_RIP,
565 GUEST_RSP,
566 GUEST_CR0,
567 GUEST_CR3,
568 GUEST_CR4,
569 GUEST_INTERRUPTIBILITY_INFO,
570 GUEST_RFLAGS,
571 GUEST_CS_SELECTOR,
572 GUEST_CS_AR_BYTES,
573 GUEST_CS_LIMIT,
574 GUEST_CS_BASE,
575 GUEST_ES_BASE,
576 GUEST_BNDCFGS,
577 CR0_GUEST_HOST_MASK,
578 CR0_READ_SHADOW,
579 CR4_READ_SHADOW,
580 TSC_OFFSET,
581 EXCEPTION_BITMAP,
582 CPU_BASED_VM_EXEC_CONTROL,
583 VM_ENTRY_EXCEPTION_ERROR_CODE,
584 VM_ENTRY_INTR_INFO_FIELD,
585 VM_ENTRY_INSTRUCTION_LEN,
586 VM_ENTRY_EXCEPTION_ERROR_CODE,
587 HOST_FS_BASE,
588 HOST_GS_BASE,
589 HOST_FS_SELECTOR,
590 HOST_GS_SELECTOR
591 };
592 static int max_shadow_read_write_fields =
593 ARRAY_SIZE(shadow_read_write_fields);
594
595 static const unsigned short vmcs_field_to_offset_table[] = {
596 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
597 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
598 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
599 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
600 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
601 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
602 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
603 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
604 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
605 FIELD(HOST_ES_SELECTOR, host_es_selector),
606 FIELD(HOST_CS_SELECTOR, host_cs_selector),
607 FIELD(HOST_SS_SELECTOR, host_ss_selector),
608 FIELD(HOST_DS_SELECTOR, host_ds_selector),
609 FIELD(HOST_FS_SELECTOR, host_fs_selector),
610 FIELD(HOST_GS_SELECTOR, host_gs_selector),
611 FIELD(HOST_TR_SELECTOR, host_tr_selector),
612 FIELD64(IO_BITMAP_A, io_bitmap_a),
613 FIELD64(IO_BITMAP_B, io_bitmap_b),
614 FIELD64(MSR_BITMAP, msr_bitmap),
615 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
616 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
617 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
618 FIELD64(TSC_OFFSET, tsc_offset),
619 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
620 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
621 FIELD64(EPT_POINTER, ept_pointer),
622 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
623 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
624 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
625 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
626 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
627 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
628 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
629 FIELD64(GUEST_PDPTR0, guest_pdptr0),
630 FIELD64(GUEST_PDPTR1, guest_pdptr1),
631 FIELD64(GUEST_PDPTR2, guest_pdptr2),
632 FIELD64(GUEST_PDPTR3, guest_pdptr3),
633 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
634 FIELD64(HOST_IA32_PAT, host_ia32_pat),
635 FIELD64(HOST_IA32_EFER, host_ia32_efer),
636 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
637 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
638 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
639 FIELD(EXCEPTION_BITMAP, exception_bitmap),
640 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
641 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
642 FIELD(CR3_TARGET_COUNT, cr3_target_count),
643 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
644 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
645 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
646 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
647 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
648 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
649 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
650 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
651 FIELD(TPR_THRESHOLD, tpr_threshold),
652 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
653 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
654 FIELD(VM_EXIT_REASON, vm_exit_reason),
655 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
656 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
657 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
658 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
659 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
660 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
661 FIELD(GUEST_ES_LIMIT, guest_es_limit),
662 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
663 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
664 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
665 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
666 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
667 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
668 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
669 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
670 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
671 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
672 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
673 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
674 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
675 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
676 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
677 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
678 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
679 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
680 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
681 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
682 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
683 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
684 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
685 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
686 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
687 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
688 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
689 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
690 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
691 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
692 FIELD(EXIT_QUALIFICATION, exit_qualification),
693 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
694 FIELD(GUEST_CR0, guest_cr0),
695 FIELD(GUEST_CR3, guest_cr3),
696 FIELD(GUEST_CR4, guest_cr4),
697 FIELD(GUEST_ES_BASE, guest_es_base),
698 FIELD(GUEST_CS_BASE, guest_cs_base),
699 FIELD(GUEST_SS_BASE, guest_ss_base),
700 FIELD(GUEST_DS_BASE, guest_ds_base),
701 FIELD(GUEST_FS_BASE, guest_fs_base),
702 FIELD(GUEST_GS_BASE, guest_gs_base),
703 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
704 FIELD(GUEST_TR_BASE, guest_tr_base),
705 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
706 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
707 FIELD(GUEST_DR7, guest_dr7),
708 FIELD(GUEST_RSP, guest_rsp),
709 FIELD(GUEST_RIP, guest_rip),
710 FIELD(GUEST_RFLAGS, guest_rflags),
711 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
712 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
713 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
714 FIELD(HOST_CR0, host_cr0),
715 FIELD(HOST_CR3, host_cr3),
716 FIELD(HOST_CR4, host_cr4),
717 FIELD(HOST_FS_BASE, host_fs_base),
718 FIELD(HOST_GS_BASE, host_gs_base),
719 FIELD(HOST_TR_BASE, host_tr_base),
720 FIELD(HOST_GDTR_BASE, host_gdtr_base),
721 FIELD(HOST_IDTR_BASE, host_idtr_base),
722 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
723 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
724 FIELD(HOST_RSP, host_rsp),
725 FIELD(HOST_RIP, host_rip),
726 };
727
728 static inline short vmcs_field_to_offset(unsigned long field)
729 {
730 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
731
732 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
733 vmcs_field_to_offset_table[field] == 0)
734 return -ENOENT;
735
736 return vmcs_field_to_offset_table[field];
737 }
738
739 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
740 {
741 return to_vmx(vcpu)->nested.current_vmcs12;
742 }
743
744 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
745 {
746 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
747 if (is_error_page(page))
748 return NULL;
749
750 return page;
751 }
752
753 static void nested_release_page(struct page *page)
754 {
755 kvm_release_page_dirty(page);
756 }
757
758 static void nested_release_page_clean(struct page *page)
759 {
760 kvm_release_page_clean(page);
761 }
762
763 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
764 static u64 construct_eptp(unsigned long root_hpa);
765 static void kvm_cpu_vmxon(u64 addr);
766 static void kvm_cpu_vmxoff(void);
767 static bool vmx_mpx_supported(void);
768 static bool vmx_xsaves_supported(void);
769 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
770 static void vmx_set_segment(struct kvm_vcpu *vcpu,
771 struct kvm_segment *var, int seg);
772 static void vmx_get_segment(struct kvm_vcpu *vcpu,
773 struct kvm_segment *var, int seg);
774 static bool guest_state_valid(struct kvm_vcpu *vcpu);
775 static u32 vmx_segment_access_rights(struct kvm_segment *var);
776 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
777 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
778 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
779 static int alloc_identity_pagetable(struct kvm *kvm);
780
781 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
782 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
783 /*
784 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
785 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
786 */
787 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
788 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
789
790 static unsigned long *vmx_io_bitmap_a;
791 static unsigned long *vmx_io_bitmap_b;
792 static unsigned long *vmx_msr_bitmap_legacy;
793 static unsigned long *vmx_msr_bitmap_longmode;
794 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
795 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
796 static unsigned long *vmx_vmread_bitmap;
797 static unsigned long *vmx_vmwrite_bitmap;
798
799 static bool cpu_has_load_ia32_efer;
800 static bool cpu_has_load_perf_global_ctrl;
801
802 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
803 static DEFINE_SPINLOCK(vmx_vpid_lock);
804
805 static struct vmcs_config {
806 int size;
807 int order;
808 u32 revision_id;
809 u32 pin_based_exec_ctrl;
810 u32 cpu_based_exec_ctrl;
811 u32 cpu_based_2nd_exec_ctrl;
812 u32 vmexit_ctrl;
813 u32 vmentry_ctrl;
814 } vmcs_config;
815
816 static struct vmx_capability {
817 u32 ept;
818 u32 vpid;
819 } vmx_capability;
820
821 #define VMX_SEGMENT_FIELD(seg) \
822 [VCPU_SREG_##seg] = { \
823 .selector = GUEST_##seg##_SELECTOR, \
824 .base = GUEST_##seg##_BASE, \
825 .limit = GUEST_##seg##_LIMIT, \
826 .ar_bytes = GUEST_##seg##_AR_BYTES, \
827 }
828
829 static const struct kvm_vmx_segment_field {
830 unsigned selector;
831 unsigned base;
832 unsigned limit;
833 unsigned ar_bytes;
834 } kvm_vmx_segment_fields[] = {
835 VMX_SEGMENT_FIELD(CS),
836 VMX_SEGMENT_FIELD(DS),
837 VMX_SEGMENT_FIELD(ES),
838 VMX_SEGMENT_FIELD(FS),
839 VMX_SEGMENT_FIELD(GS),
840 VMX_SEGMENT_FIELD(SS),
841 VMX_SEGMENT_FIELD(TR),
842 VMX_SEGMENT_FIELD(LDTR),
843 };
844
845 static u64 host_efer;
846
847 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
848
849 /*
850 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
851 * away by decrementing the array size.
852 */
853 static const u32 vmx_msr_index[] = {
854 #ifdef CONFIG_X86_64
855 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
856 #endif
857 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
858 };
859
860 static inline bool is_page_fault(u32 intr_info)
861 {
862 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
863 INTR_INFO_VALID_MASK)) ==
864 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
865 }
866
867 static inline bool is_no_device(u32 intr_info)
868 {
869 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
870 INTR_INFO_VALID_MASK)) ==
871 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
872 }
873
874 static inline bool is_invalid_opcode(u32 intr_info)
875 {
876 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
877 INTR_INFO_VALID_MASK)) ==
878 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
879 }
880
881 static inline bool is_external_interrupt(u32 intr_info)
882 {
883 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
884 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
885 }
886
887 static inline bool is_machine_check(u32 intr_info)
888 {
889 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
890 INTR_INFO_VALID_MASK)) ==
891 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
892 }
893
894 static inline bool cpu_has_vmx_msr_bitmap(void)
895 {
896 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
897 }
898
899 static inline bool cpu_has_vmx_tpr_shadow(void)
900 {
901 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
902 }
903
904 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
905 {
906 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
907 }
908
909 static inline bool cpu_has_secondary_exec_ctrls(void)
910 {
911 return vmcs_config.cpu_based_exec_ctrl &
912 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
913 }
914
915 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
916 {
917 return vmcs_config.cpu_based_2nd_exec_ctrl &
918 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
919 }
920
921 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
922 {
923 return vmcs_config.cpu_based_2nd_exec_ctrl &
924 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
925 }
926
927 static inline bool cpu_has_vmx_apic_register_virt(void)
928 {
929 return vmcs_config.cpu_based_2nd_exec_ctrl &
930 SECONDARY_EXEC_APIC_REGISTER_VIRT;
931 }
932
933 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
934 {
935 return vmcs_config.cpu_based_2nd_exec_ctrl &
936 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
937 }
938
939 static inline bool cpu_has_vmx_posted_intr(void)
940 {
941 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
942 }
943
944 static inline bool cpu_has_vmx_apicv(void)
945 {
946 return cpu_has_vmx_apic_register_virt() &&
947 cpu_has_vmx_virtual_intr_delivery() &&
948 cpu_has_vmx_posted_intr();
949 }
950
951 static inline bool cpu_has_vmx_flexpriority(void)
952 {
953 return cpu_has_vmx_tpr_shadow() &&
954 cpu_has_vmx_virtualize_apic_accesses();
955 }
956
957 static inline bool cpu_has_vmx_ept_execute_only(void)
958 {
959 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
960 }
961
962 static inline bool cpu_has_vmx_eptp_uncacheable(void)
963 {
964 return vmx_capability.ept & VMX_EPTP_UC_BIT;
965 }
966
967 static inline bool cpu_has_vmx_eptp_writeback(void)
968 {
969 return vmx_capability.ept & VMX_EPTP_WB_BIT;
970 }
971
972 static inline bool cpu_has_vmx_ept_2m_page(void)
973 {
974 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
975 }
976
977 static inline bool cpu_has_vmx_ept_1g_page(void)
978 {
979 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
980 }
981
982 static inline bool cpu_has_vmx_ept_4levels(void)
983 {
984 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
985 }
986
987 static inline bool cpu_has_vmx_ept_ad_bits(void)
988 {
989 return vmx_capability.ept & VMX_EPT_AD_BIT;
990 }
991
992 static inline bool cpu_has_vmx_invept_context(void)
993 {
994 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
995 }
996
997 static inline bool cpu_has_vmx_invept_global(void)
998 {
999 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1000 }
1001
1002 static inline bool cpu_has_vmx_invvpid_single(void)
1003 {
1004 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1005 }
1006
1007 static inline bool cpu_has_vmx_invvpid_global(void)
1008 {
1009 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1010 }
1011
1012 static inline bool cpu_has_vmx_ept(void)
1013 {
1014 return vmcs_config.cpu_based_2nd_exec_ctrl &
1015 SECONDARY_EXEC_ENABLE_EPT;
1016 }
1017
1018 static inline bool cpu_has_vmx_unrestricted_guest(void)
1019 {
1020 return vmcs_config.cpu_based_2nd_exec_ctrl &
1021 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1022 }
1023
1024 static inline bool cpu_has_vmx_ple(void)
1025 {
1026 return vmcs_config.cpu_based_2nd_exec_ctrl &
1027 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1028 }
1029
1030 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1031 {
1032 return flexpriority_enabled && irqchip_in_kernel(kvm);
1033 }
1034
1035 static inline bool cpu_has_vmx_vpid(void)
1036 {
1037 return vmcs_config.cpu_based_2nd_exec_ctrl &
1038 SECONDARY_EXEC_ENABLE_VPID;
1039 }
1040
1041 static inline bool cpu_has_vmx_rdtscp(void)
1042 {
1043 return vmcs_config.cpu_based_2nd_exec_ctrl &
1044 SECONDARY_EXEC_RDTSCP;
1045 }
1046
1047 static inline bool cpu_has_vmx_invpcid(void)
1048 {
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_ENABLE_INVPCID;
1051 }
1052
1053 static inline bool cpu_has_virtual_nmis(void)
1054 {
1055 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1056 }
1057
1058 static inline bool cpu_has_vmx_wbinvd_exit(void)
1059 {
1060 return vmcs_config.cpu_based_2nd_exec_ctrl &
1061 SECONDARY_EXEC_WBINVD_EXITING;
1062 }
1063
1064 static inline bool cpu_has_vmx_shadow_vmcs(void)
1065 {
1066 u64 vmx_msr;
1067 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1068 /* check if the cpu supports writing r/o exit information fields */
1069 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1070 return false;
1071
1072 return vmcs_config.cpu_based_2nd_exec_ctrl &
1073 SECONDARY_EXEC_SHADOW_VMCS;
1074 }
1075
1076 static inline bool report_flexpriority(void)
1077 {
1078 return flexpriority_enabled;
1079 }
1080
1081 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1082 {
1083 return vmcs12->cpu_based_vm_exec_control & bit;
1084 }
1085
1086 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1087 {
1088 return (vmcs12->cpu_based_vm_exec_control &
1089 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1090 (vmcs12->secondary_vm_exec_control & bit);
1091 }
1092
1093 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1094 {
1095 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1096 }
1097
1098 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1099 {
1100 return vmcs12->pin_based_vm_exec_control &
1101 PIN_BASED_VMX_PREEMPTION_TIMER;
1102 }
1103
1104 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1105 {
1106 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1107 }
1108
1109 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1110 {
1111 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1112 vmx_xsaves_supported();
1113 }
1114
1115 static inline bool is_exception(u32 intr_info)
1116 {
1117 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1118 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1119 }
1120
1121 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1122 u32 exit_intr_info,
1123 unsigned long exit_qualification);
1124 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1125 struct vmcs12 *vmcs12,
1126 u32 reason, unsigned long qualification);
1127
1128 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1129 {
1130 int i;
1131
1132 for (i = 0; i < vmx->nmsrs; ++i)
1133 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1134 return i;
1135 return -1;
1136 }
1137
1138 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1139 {
1140 struct {
1141 u64 vpid : 16;
1142 u64 rsvd : 48;
1143 u64 gva;
1144 } operand = { vpid, 0, gva };
1145
1146 asm volatile (__ex(ASM_VMX_INVVPID)
1147 /* CF==1 or ZF==1 --> rc = -1 */
1148 "; ja 1f ; ud2 ; 1:"
1149 : : "a"(&operand), "c"(ext) : "cc", "memory");
1150 }
1151
1152 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1153 {
1154 struct {
1155 u64 eptp, gpa;
1156 } operand = {eptp, gpa};
1157
1158 asm volatile (__ex(ASM_VMX_INVEPT)
1159 /* CF==1 or ZF==1 --> rc = -1 */
1160 "; ja 1f ; ud2 ; 1:\n"
1161 : : "a" (&operand), "c" (ext) : "cc", "memory");
1162 }
1163
1164 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1165 {
1166 int i;
1167
1168 i = __find_msr_index(vmx, msr);
1169 if (i >= 0)
1170 return &vmx->guest_msrs[i];
1171 return NULL;
1172 }
1173
1174 static void vmcs_clear(struct vmcs *vmcs)
1175 {
1176 u64 phys_addr = __pa(vmcs);
1177 u8 error;
1178
1179 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1180 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1181 : "cc", "memory");
1182 if (error)
1183 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1184 vmcs, phys_addr);
1185 }
1186
1187 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1188 {
1189 vmcs_clear(loaded_vmcs->vmcs);
1190 loaded_vmcs->cpu = -1;
1191 loaded_vmcs->launched = 0;
1192 }
1193
1194 static void vmcs_load(struct vmcs *vmcs)
1195 {
1196 u64 phys_addr = __pa(vmcs);
1197 u8 error;
1198
1199 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1200 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1201 : "cc", "memory");
1202 if (error)
1203 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1204 vmcs, phys_addr);
1205 }
1206
1207 #ifdef CONFIG_KEXEC
1208 /*
1209 * This bitmap is used to indicate whether the vmclear
1210 * operation is enabled on all cpus. All disabled by
1211 * default.
1212 */
1213 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1214
1215 static inline void crash_enable_local_vmclear(int cpu)
1216 {
1217 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1218 }
1219
1220 static inline void crash_disable_local_vmclear(int cpu)
1221 {
1222 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1223 }
1224
1225 static inline int crash_local_vmclear_enabled(int cpu)
1226 {
1227 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1228 }
1229
1230 static void crash_vmclear_local_loaded_vmcss(void)
1231 {
1232 int cpu = raw_smp_processor_id();
1233 struct loaded_vmcs *v;
1234
1235 if (!crash_local_vmclear_enabled(cpu))
1236 return;
1237
1238 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1239 loaded_vmcss_on_cpu_link)
1240 vmcs_clear(v->vmcs);
1241 }
1242 #else
1243 static inline void crash_enable_local_vmclear(int cpu) { }
1244 static inline void crash_disable_local_vmclear(int cpu) { }
1245 #endif /* CONFIG_KEXEC */
1246
1247 static void __loaded_vmcs_clear(void *arg)
1248 {
1249 struct loaded_vmcs *loaded_vmcs = arg;
1250 int cpu = raw_smp_processor_id();
1251
1252 if (loaded_vmcs->cpu != cpu)
1253 return; /* vcpu migration can race with cpu offline */
1254 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1255 per_cpu(current_vmcs, cpu) = NULL;
1256 crash_disable_local_vmclear(cpu);
1257 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1258
1259 /*
1260 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1261 * is before setting loaded_vmcs->vcpu to -1 which is done in
1262 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1263 * then adds the vmcs into percpu list before it is deleted.
1264 */
1265 smp_wmb();
1266
1267 loaded_vmcs_init(loaded_vmcs);
1268 crash_enable_local_vmclear(cpu);
1269 }
1270
1271 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1272 {
1273 int cpu = loaded_vmcs->cpu;
1274
1275 if (cpu != -1)
1276 smp_call_function_single(cpu,
1277 __loaded_vmcs_clear, loaded_vmcs, 1);
1278 }
1279
1280 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1281 {
1282 if (vmx->vpid == 0)
1283 return;
1284
1285 if (cpu_has_vmx_invvpid_single())
1286 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1287 }
1288
1289 static inline void vpid_sync_vcpu_global(void)
1290 {
1291 if (cpu_has_vmx_invvpid_global())
1292 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1293 }
1294
1295 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1296 {
1297 if (cpu_has_vmx_invvpid_single())
1298 vpid_sync_vcpu_single(vmx);
1299 else
1300 vpid_sync_vcpu_global();
1301 }
1302
1303 static inline void ept_sync_global(void)
1304 {
1305 if (cpu_has_vmx_invept_global())
1306 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1307 }
1308
1309 static inline void ept_sync_context(u64 eptp)
1310 {
1311 if (enable_ept) {
1312 if (cpu_has_vmx_invept_context())
1313 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1314 else
1315 ept_sync_global();
1316 }
1317 }
1318
1319 static __always_inline unsigned long vmcs_readl(unsigned long field)
1320 {
1321 unsigned long value;
1322
1323 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1324 : "=a"(value) : "d"(field) : "cc");
1325 return value;
1326 }
1327
1328 static __always_inline u16 vmcs_read16(unsigned long field)
1329 {
1330 return vmcs_readl(field);
1331 }
1332
1333 static __always_inline u32 vmcs_read32(unsigned long field)
1334 {
1335 return vmcs_readl(field);
1336 }
1337
1338 static __always_inline u64 vmcs_read64(unsigned long field)
1339 {
1340 #ifdef CONFIG_X86_64
1341 return vmcs_readl(field);
1342 #else
1343 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1344 #endif
1345 }
1346
1347 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1348 {
1349 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1350 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1351 dump_stack();
1352 }
1353
1354 static void vmcs_writel(unsigned long field, unsigned long value)
1355 {
1356 u8 error;
1357
1358 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1359 : "=q"(error) : "a"(value), "d"(field) : "cc");
1360 if (unlikely(error))
1361 vmwrite_error(field, value);
1362 }
1363
1364 static void vmcs_write16(unsigned long field, u16 value)
1365 {
1366 vmcs_writel(field, value);
1367 }
1368
1369 static void vmcs_write32(unsigned long field, u32 value)
1370 {
1371 vmcs_writel(field, value);
1372 }
1373
1374 static void vmcs_write64(unsigned long field, u64 value)
1375 {
1376 vmcs_writel(field, value);
1377 #ifndef CONFIG_X86_64
1378 asm volatile ("");
1379 vmcs_writel(field+1, value >> 32);
1380 #endif
1381 }
1382
1383 static void vmcs_clear_bits(unsigned long field, u32 mask)
1384 {
1385 vmcs_writel(field, vmcs_readl(field) & ~mask);
1386 }
1387
1388 static void vmcs_set_bits(unsigned long field, u32 mask)
1389 {
1390 vmcs_writel(field, vmcs_readl(field) | mask);
1391 }
1392
1393 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1394 {
1395 vmcs_write32(VM_ENTRY_CONTROLS, val);
1396 vmx->vm_entry_controls_shadow = val;
1397 }
1398
1399 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1400 {
1401 if (vmx->vm_entry_controls_shadow != val)
1402 vm_entry_controls_init(vmx, val);
1403 }
1404
1405 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1406 {
1407 return vmx->vm_entry_controls_shadow;
1408 }
1409
1410
1411 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1412 {
1413 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1414 }
1415
1416 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1417 {
1418 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1419 }
1420
1421 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1422 {
1423 vmcs_write32(VM_EXIT_CONTROLS, val);
1424 vmx->vm_exit_controls_shadow = val;
1425 }
1426
1427 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1428 {
1429 if (vmx->vm_exit_controls_shadow != val)
1430 vm_exit_controls_init(vmx, val);
1431 }
1432
1433 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1434 {
1435 return vmx->vm_exit_controls_shadow;
1436 }
1437
1438
1439 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1440 {
1441 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1442 }
1443
1444 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1445 {
1446 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1447 }
1448
1449 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1450 {
1451 vmx->segment_cache.bitmask = 0;
1452 }
1453
1454 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1455 unsigned field)
1456 {
1457 bool ret;
1458 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1459
1460 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1461 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1462 vmx->segment_cache.bitmask = 0;
1463 }
1464 ret = vmx->segment_cache.bitmask & mask;
1465 vmx->segment_cache.bitmask |= mask;
1466 return ret;
1467 }
1468
1469 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1470 {
1471 u16 *p = &vmx->segment_cache.seg[seg].selector;
1472
1473 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1474 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1475 return *p;
1476 }
1477
1478 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1479 {
1480 ulong *p = &vmx->segment_cache.seg[seg].base;
1481
1482 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1483 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1484 return *p;
1485 }
1486
1487 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1488 {
1489 u32 *p = &vmx->segment_cache.seg[seg].limit;
1490
1491 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1492 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1493 return *p;
1494 }
1495
1496 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1497 {
1498 u32 *p = &vmx->segment_cache.seg[seg].ar;
1499
1500 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1501 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1502 return *p;
1503 }
1504
1505 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1506 {
1507 u32 eb;
1508
1509 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1510 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1511 if ((vcpu->guest_debug &
1512 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1513 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1514 eb |= 1u << BP_VECTOR;
1515 if (to_vmx(vcpu)->rmode.vm86_active)
1516 eb = ~0;
1517 if (enable_ept)
1518 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1519 if (vcpu->fpu_active)
1520 eb &= ~(1u << NM_VECTOR);
1521
1522 /* When we are running a nested L2 guest and L1 specified for it a
1523 * certain exception bitmap, we must trap the same exceptions and pass
1524 * them to L1. When running L2, we will only handle the exceptions
1525 * specified above if L1 did not want them.
1526 */
1527 if (is_guest_mode(vcpu))
1528 eb |= get_vmcs12(vcpu)->exception_bitmap;
1529
1530 vmcs_write32(EXCEPTION_BITMAP, eb);
1531 }
1532
1533 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1534 unsigned long entry, unsigned long exit)
1535 {
1536 vm_entry_controls_clearbit(vmx, entry);
1537 vm_exit_controls_clearbit(vmx, exit);
1538 }
1539
1540 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1541 {
1542 unsigned i;
1543 struct msr_autoload *m = &vmx->msr_autoload;
1544
1545 switch (msr) {
1546 case MSR_EFER:
1547 if (cpu_has_load_ia32_efer) {
1548 clear_atomic_switch_msr_special(vmx,
1549 VM_ENTRY_LOAD_IA32_EFER,
1550 VM_EXIT_LOAD_IA32_EFER);
1551 return;
1552 }
1553 break;
1554 case MSR_CORE_PERF_GLOBAL_CTRL:
1555 if (cpu_has_load_perf_global_ctrl) {
1556 clear_atomic_switch_msr_special(vmx,
1557 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1558 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1559 return;
1560 }
1561 break;
1562 }
1563
1564 for (i = 0; i < m->nr; ++i)
1565 if (m->guest[i].index == msr)
1566 break;
1567
1568 if (i == m->nr)
1569 return;
1570 --m->nr;
1571 m->guest[i] = m->guest[m->nr];
1572 m->host[i] = m->host[m->nr];
1573 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1574 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1575 }
1576
1577 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1578 unsigned long entry, unsigned long exit,
1579 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1580 u64 guest_val, u64 host_val)
1581 {
1582 vmcs_write64(guest_val_vmcs, guest_val);
1583 vmcs_write64(host_val_vmcs, host_val);
1584 vm_entry_controls_setbit(vmx, entry);
1585 vm_exit_controls_setbit(vmx, exit);
1586 }
1587
1588 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1589 u64 guest_val, u64 host_val)
1590 {
1591 unsigned i;
1592 struct msr_autoload *m = &vmx->msr_autoload;
1593
1594 switch (msr) {
1595 case MSR_EFER:
1596 if (cpu_has_load_ia32_efer) {
1597 add_atomic_switch_msr_special(vmx,
1598 VM_ENTRY_LOAD_IA32_EFER,
1599 VM_EXIT_LOAD_IA32_EFER,
1600 GUEST_IA32_EFER,
1601 HOST_IA32_EFER,
1602 guest_val, host_val);
1603 return;
1604 }
1605 break;
1606 case MSR_CORE_PERF_GLOBAL_CTRL:
1607 if (cpu_has_load_perf_global_ctrl) {
1608 add_atomic_switch_msr_special(vmx,
1609 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1610 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1611 GUEST_IA32_PERF_GLOBAL_CTRL,
1612 HOST_IA32_PERF_GLOBAL_CTRL,
1613 guest_val, host_val);
1614 return;
1615 }
1616 break;
1617 }
1618
1619 for (i = 0; i < m->nr; ++i)
1620 if (m->guest[i].index == msr)
1621 break;
1622
1623 if (i == NR_AUTOLOAD_MSRS) {
1624 printk_once(KERN_WARNING "Not enough msr switch entries. "
1625 "Can't add msr %x\n", msr);
1626 return;
1627 } else if (i == m->nr) {
1628 ++m->nr;
1629 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1630 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1631 }
1632
1633 m->guest[i].index = msr;
1634 m->guest[i].value = guest_val;
1635 m->host[i].index = msr;
1636 m->host[i].value = host_val;
1637 }
1638
1639 static void reload_tss(void)
1640 {
1641 /*
1642 * VT restores TR but not its size. Useless.
1643 */
1644 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1645 struct desc_struct *descs;
1646
1647 descs = (void *)gdt->address;
1648 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1649 load_TR_desc();
1650 }
1651
1652 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1653 {
1654 u64 guest_efer;
1655 u64 ignore_bits;
1656
1657 guest_efer = vmx->vcpu.arch.efer;
1658
1659 /*
1660 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1661 * outside long mode
1662 */
1663 ignore_bits = EFER_NX | EFER_SCE;
1664 #ifdef CONFIG_X86_64
1665 ignore_bits |= EFER_LMA | EFER_LME;
1666 /* SCE is meaningful only in long mode on Intel */
1667 if (guest_efer & EFER_LMA)
1668 ignore_bits &= ~(u64)EFER_SCE;
1669 #endif
1670 guest_efer &= ~ignore_bits;
1671 guest_efer |= host_efer & ignore_bits;
1672 vmx->guest_msrs[efer_offset].data = guest_efer;
1673 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1674
1675 clear_atomic_switch_msr(vmx, MSR_EFER);
1676
1677 /*
1678 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1679 * On CPUs that support "load IA32_EFER", always switch EFER
1680 * atomically, since it's faster than switching it manually.
1681 */
1682 if (cpu_has_load_ia32_efer ||
1683 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1684 guest_efer = vmx->vcpu.arch.efer;
1685 if (!(guest_efer & EFER_LMA))
1686 guest_efer &= ~EFER_LME;
1687 if (guest_efer != host_efer)
1688 add_atomic_switch_msr(vmx, MSR_EFER,
1689 guest_efer, host_efer);
1690 return false;
1691 }
1692
1693 return true;
1694 }
1695
1696 static unsigned long segment_base(u16 selector)
1697 {
1698 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1699 struct desc_struct *d;
1700 unsigned long table_base;
1701 unsigned long v;
1702
1703 if (!(selector & ~3))
1704 return 0;
1705
1706 table_base = gdt->address;
1707
1708 if (selector & 4) { /* from ldt */
1709 u16 ldt_selector = kvm_read_ldt();
1710
1711 if (!(ldt_selector & ~3))
1712 return 0;
1713
1714 table_base = segment_base(ldt_selector);
1715 }
1716 d = (struct desc_struct *)(table_base + (selector & ~7));
1717 v = get_desc_base(d);
1718 #ifdef CONFIG_X86_64
1719 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1720 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1721 #endif
1722 return v;
1723 }
1724
1725 static inline unsigned long kvm_read_tr_base(void)
1726 {
1727 u16 tr;
1728 asm("str %0" : "=g"(tr));
1729 return segment_base(tr);
1730 }
1731
1732 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1733 {
1734 struct vcpu_vmx *vmx = to_vmx(vcpu);
1735 int i;
1736
1737 if (vmx->host_state.loaded)
1738 return;
1739
1740 vmx->host_state.loaded = 1;
1741 /*
1742 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1743 * allow segment selectors with cpl > 0 or ti == 1.
1744 */
1745 vmx->host_state.ldt_sel = kvm_read_ldt();
1746 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1747 savesegment(fs, vmx->host_state.fs_sel);
1748 if (!(vmx->host_state.fs_sel & 7)) {
1749 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1750 vmx->host_state.fs_reload_needed = 0;
1751 } else {
1752 vmcs_write16(HOST_FS_SELECTOR, 0);
1753 vmx->host_state.fs_reload_needed = 1;
1754 }
1755 savesegment(gs, vmx->host_state.gs_sel);
1756 if (!(vmx->host_state.gs_sel & 7))
1757 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1758 else {
1759 vmcs_write16(HOST_GS_SELECTOR, 0);
1760 vmx->host_state.gs_ldt_reload_needed = 1;
1761 }
1762
1763 #ifdef CONFIG_X86_64
1764 savesegment(ds, vmx->host_state.ds_sel);
1765 savesegment(es, vmx->host_state.es_sel);
1766 #endif
1767
1768 #ifdef CONFIG_X86_64
1769 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1770 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1771 #else
1772 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1773 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1774 #endif
1775
1776 #ifdef CONFIG_X86_64
1777 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1778 if (is_long_mode(&vmx->vcpu))
1779 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1780 #endif
1781 if (boot_cpu_has(X86_FEATURE_MPX))
1782 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1783 for (i = 0; i < vmx->save_nmsrs; ++i)
1784 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1785 vmx->guest_msrs[i].data,
1786 vmx->guest_msrs[i].mask);
1787 }
1788
1789 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1790 {
1791 if (!vmx->host_state.loaded)
1792 return;
1793
1794 ++vmx->vcpu.stat.host_state_reload;
1795 vmx->host_state.loaded = 0;
1796 #ifdef CONFIG_X86_64
1797 if (is_long_mode(&vmx->vcpu))
1798 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1799 #endif
1800 if (vmx->host_state.gs_ldt_reload_needed) {
1801 kvm_load_ldt(vmx->host_state.ldt_sel);
1802 #ifdef CONFIG_X86_64
1803 load_gs_index(vmx->host_state.gs_sel);
1804 #else
1805 loadsegment(gs, vmx->host_state.gs_sel);
1806 #endif
1807 }
1808 if (vmx->host_state.fs_reload_needed)
1809 loadsegment(fs, vmx->host_state.fs_sel);
1810 #ifdef CONFIG_X86_64
1811 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1812 loadsegment(ds, vmx->host_state.ds_sel);
1813 loadsegment(es, vmx->host_state.es_sel);
1814 }
1815 #endif
1816 reload_tss();
1817 #ifdef CONFIG_X86_64
1818 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1819 #endif
1820 if (vmx->host_state.msr_host_bndcfgs)
1821 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1822 /*
1823 * If the FPU is not active (through the host task or
1824 * the guest vcpu), then restore the cr0.TS bit.
1825 */
1826 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1827 stts();
1828 load_gdt(this_cpu_ptr(&host_gdt));
1829 }
1830
1831 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1832 {
1833 preempt_disable();
1834 __vmx_load_host_state(vmx);
1835 preempt_enable();
1836 }
1837
1838 /*
1839 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1840 * vcpu mutex is already taken.
1841 */
1842 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1843 {
1844 struct vcpu_vmx *vmx = to_vmx(vcpu);
1845 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1846
1847 if (!vmm_exclusive)
1848 kvm_cpu_vmxon(phys_addr);
1849 else if (vmx->loaded_vmcs->cpu != cpu)
1850 loaded_vmcs_clear(vmx->loaded_vmcs);
1851
1852 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1853 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1854 vmcs_load(vmx->loaded_vmcs->vmcs);
1855 }
1856
1857 if (vmx->loaded_vmcs->cpu != cpu) {
1858 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1859 unsigned long sysenter_esp;
1860
1861 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1862 local_irq_disable();
1863 crash_disable_local_vmclear(cpu);
1864
1865 /*
1866 * Read loaded_vmcs->cpu should be before fetching
1867 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1868 * See the comments in __loaded_vmcs_clear().
1869 */
1870 smp_rmb();
1871
1872 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1873 &per_cpu(loaded_vmcss_on_cpu, cpu));
1874 crash_enable_local_vmclear(cpu);
1875 local_irq_enable();
1876
1877 /*
1878 * Linux uses per-cpu TSS and GDT, so set these when switching
1879 * processors.
1880 */
1881 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1882 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1883
1884 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1885 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1886 vmx->loaded_vmcs->cpu = cpu;
1887 }
1888 }
1889
1890 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1891 {
1892 __vmx_load_host_state(to_vmx(vcpu));
1893 if (!vmm_exclusive) {
1894 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1895 vcpu->cpu = -1;
1896 kvm_cpu_vmxoff();
1897 }
1898 }
1899
1900 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1901 {
1902 ulong cr0;
1903
1904 if (vcpu->fpu_active)
1905 return;
1906 vcpu->fpu_active = 1;
1907 cr0 = vmcs_readl(GUEST_CR0);
1908 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1909 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1910 vmcs_writel(GUEST_CR0, cr0);
1911 update_exception_bitmap(vcpu);
1912 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1913 if (is_guest_mode(vcpu))
1914 vcpu->arch.cr0_guest_owned_bits &=
1915 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1916 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1917 }
1918
1919 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1920
1921 /*
1922 * Return the cr0 value that a nested guest would read. This is a combination
1923 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1924 * its hypervisor (cr0_read_shadow).
1925 */
1926 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1927 {
1928 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1929 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1930 }
1931 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1932 {
1933 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1934 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1935 }
1936
1937 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1938 {
1939 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1940 * set this *before* calling this function.
1941 */
1942 vmx_decache_cr0_guest_bits(vcpu);
1943 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1944 update_exception_bitmap(vcpu);
1945 vcpu->arch.cr0_guest_owned_bits = 0;
1946 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1947 if (is_guest_mode(vcpu)) {
1948 /*
1949 * L1's specified read shadow might not contain the TS bit,
1950 * so now that we turned on shadowing of this bit, we need to
1951 * set this bit of the shadow. Like in nested_vmx_run we need
1952 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1953 * up-to-date here because we just decached cr0.TS (and we'll
1954 * only update vmcs12->guest_cr0 on nested exit).
1955 */
1956 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1957 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1958 (vcpu->arch.cr0 & X86_CR0_TS);
1959 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1960 } else
1961 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1962 }
1963
1964 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1965 {
1966 unsigned long rflags, save_rflags;
1967
1968 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1969 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1970 rflags = vmcs_readl(GUEST_RFLAGS);
1971 if (to_vmx(vcpu)->rmode.vm86_active) {
1972 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1973 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1974 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1975 }
1976 to_vmx(vcpu)->rflags = rflags;
1977 }
1978 return to_vmx(vcpu)->rflags;
1979 }
1980
1981 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1982 {
1983 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1984 to_vmx(vcpu)->rflags = rflags;
1985 if (to_vmx(vcpu)->rmode.vm86_active) {
1986 to_vmx(vcpu)->rmode.save_rflags = rflags;
1987 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1988 }
1989 vmcs_writel(GUEST_RFLAGS, rflags);
1990 }
1991
1992 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1993 {
1994 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1995 int ret = 0;
1996
1997 if (interruptibility & GUEST_INTR_STATE_STI)
1998 ret |= KVM_X86_SHADOW_INT_STI;
1999 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2000 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2001
2002 return ret;
2003 }
2004
2005 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2006 {
2007 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2008 u32 interruptibility = interruptibility_old;
2009
2010 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2011
2012 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2013 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2014 else if (mask & KVM_X86_SHADOW_INT_STI)
2015 interruptibility |= GUEST_INTR_STATE_STI;
2016
2017 if ((interruptibility != interruptibility_old))
2018 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2019 }
2020
2021 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2022 {
2023 unsigned long rip;
2024
2025 rip = kvm_rip_read(vcpu);
2026 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2027 kvm_rip_write(vcpu, rip);
2028
2029 /* skipping an emulated instruction also counts */
2030 vmx_set_interrupt_shadow(vcpu, 0);
2031 }
2032
2033 /*
2034 * KVM wants to inject page-faults which it got to the guest. This function
2035 * checks whether in a nested guest, we need to inject them to L1 or L2.
2036 */
2037 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2038 {
2039 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2040
2041 if (!(vmcs12->exception_bitmap & (1u << nr)))
2042 return 0;
2043
2044 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2045 vmcs_read32(VM_EXIT_INTR_INFO),
2046 vmcs_readl(EXIT_QUALIFICATION));
2047 return 1;
2048 }
2049
2050 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2051 bool has_error_code, u32 error_code,
2052 bool reinject)
2053 {
2054 struct vcpu_vmx *vmx = to_vmx(vcpu);
2055 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2056
2057 if (!reinject && is_guest_mode(vcpu) &&
2058 nested_vmx_check_exception(vcpu, nr))
2059 return;
2060
2061 if (has_error_code) {
2062 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2063 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2064 }
2065
2066 if (vmx->rmode.vm86_active) {
2067 int inc_eip = 0;
2068 if (kvm_exception_is_soft(nr))
2069 inc_eip = vcpu->arch.event_exit_inst_len;
2070 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2071 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2072 return;
2073 }
2074
2075 if (kvm_exception_is_soft(nr)) {
2076 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2077 vmx->vcpu.arch.event_exit_inst_len);
2078 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2079 } else
2080 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2081
2082 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2083 }
2084
2085 static bool vmx_rdtscp_supported(void)
2086 {
2087 return cpu_has_vmx_rdtscp();
2088 }
2089
2090 static bool vmx_invpcid_supported(void)
2091 {
2092 return cpu_has_vmx_invpcid() && enable_ept;
2093 }
2094
2095 /*
2096 * Swap MSR entry in host/guest MSR entry array.
2097 */
2098 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2099 {
2100 struct shared_msr_entry tmp;
2101
2102 tmp = vmx->guest_msrs[to];
2103 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2104 vmx->guest_msrs[from] = tmp;
2105 }
2106
2107 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2108 {
2109 unsigned long *msr_bitmap;
2110
2111 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2112 if (is_long_mode(vcpu))
2113 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2114 else
2115 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2116 } else {
2117 if (is_long_mode(vcpu))
2118 msr_bitmap = vmx_msr_bitmap_longmode;
2119 else
2120 msr_bitmap = vmx_msr_bitmap_legacy;
2121 }
2122
2123 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2124 }
2125
2126 /*
2127 * Set up the vmcs to automatically save and restore system
2128 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2129 * mode, as fiddling with msrs is very expensive.
2130 */
2131 static void setup_msrs(struct vcpu_vmx *vmx)
2132 {
2133 int save_nmsrs, index;
2134
2135 save_nmsrs = 0;
2136 #ifdef CONFIG_X86_64
2137 if (is_long_mode(&vmx->vcpu)) {
2138 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2139 if (index >= 0)
2140 move_msr_up(vmx, index, save_nmsrs++);
2141 index = __find_msr_index(vmx, MSR_LSTAR);
2142 if (index >= 0)
2143 move_msr_up(vmx, index, save_nmsrs++);
2144 index = __find_msr_index(vmx, MSR_CSTAR);
2145 if (index >= 0)
2146 move_msr_up(vmx, index, save_nmsrs++);
2147 index = __find_msr_index(vmx, MSR_TSC_AUX);
2148 if (index >= 0 && vmx->rdtscp_enabled)
2149 move_msr_up(vmx, index, save_nmsrs++);
2150 /*
2151 * MSR_STAR is only needed on long mode guests, and only
2152 * if efer.sce is enabled.
2153 */
2154 index = __find_msr_index(vmx, MSR_STAR);
2155 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2156 move_msr_up(vmx, index, save_nmsrs++);
2157 }
2158 #endif
2159 index = __find_msr_index(vmx, MSR_EFER);
2160 if (index >= 0 && update_transition_efer(vmx, index))
2161 move_msr_up(vmx, index, save_nmsrs++);
2162
2163 vmx->save_nmsrs = save_nmsrs;
2164
2165 if (cpu_has_vmx_msr_bitmap())
2166 vmx_set_msr_bitmap(&vmx->vcpu);
2167 }
2168
2169 /*
2170 * reads and returns guest's timestamp counter "register"
2171 * guest_tsc = host_tsc + tsc_offset -- 21.3
2172 */
2173 static u64 guest_read_tsc(void)
2174 {
2175 u64 host_tsc, tsc_offset;
2176
2177 rdtscll(host_tsc);
2178 tsc_offset = vmcs_read64(TSC_OFFSET);
2179 return host_tsc + tsc_offset;
2180 }
2181
2182 /*
2183 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2184 * counter, even if a nested guest (L2) is currently running.
2185 */
2186 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2187 {
2188 u64 tsc_offset;
2189
2190 tsc_offset = is_guest_mode(vcpu) ?
2191 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2192 vmcs_read64(TSC_OFFSET);
2193 return host_tsc + tsc_offset;
2194 }
2195
2196 /*
2197 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2198 * software catchup for faster rates on slower CPUs.
2199 */
2200 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2201 {
2202 if (!scale)
2203 return;
2204
2205 if (user_tsc_khz > tsc_khz) {
2206 vcpu->arch.tsc_catchup = 1;
2207 vcpu->arch.tsc_always_catchup = 1;
2208 } else
2209 WARN(1, "user requested TSC rate below hardware speed\n");
2210 }
2211
2212 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2213 {
2214 return vmcs_read64(TSC_OFFSET);
2215 }
2216
2217 /*
2218 * writes 'offset' into guest's timestamp counter offset register
2219 */
2220 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2221 {
2222 if (is_guest_mode(vcpu)) {
2223 /*
2224 * We're here if L1 chose not to trap WRMSR to TSC. According
2225 * to the spec, this should set L1's TSC; The offset that L1
2226 * set for L2 remains unchanged, and still needs to be added
2227 * to the newly set TSC to get L2's TSC.
2228 */
2229 struct vmcs12 *vmcs12;
2230 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2231 /* recalculate vmcs02.TSC_OFFSET: */
2232 vmcs12 = get_vmcs12(vcpu);
2233 vmcs_write64(TSC_OFFSET, offset +
2234 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2235 vmcs12->tsc_offset : 0));
2236 } else {
2237 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2238 vmcs_read64(TSC_OFFSET), offset);
2239 vmcs_write64(TSC_OFFSET, offset);
2240 }
2241 }
2242
2243 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2244 {
2245 u64 offset = vmcs_read64(TSC_OFFSET);
2246
2247 vmcs_write64(TSC_OFFSET, offset + adjustment);
2248 if (is_guest_mode(vcpu)) {
2249 /* Even when running L2, the adjustment needs to apply to L1 */
2250 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2251 } else
2252 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2253 offset + adjustment);
2254 }
2255
2256 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2257 {
2258 return target_tsc - native_read_tsc();
2259 }
2260
2261 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2262 {
2263 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2264 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2265 }
2266
2267 /*
2268 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2269 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2270 * all guests if the "nested" module option is off, and can also be disabled
2271 * for a single guest by disabling its VMX cpuid bit.
2272 */
2273 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2274 {
2275 return nested && guest_cpuid_has_vmx(vcpu);
2276 }
2277
2278 /*
2279 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2280 * returned for the various VMX controls MSRs when nested VMX is enabled.
2281 * The same values should also be used to verify that vmcs12 control fields are
2282 * valid during nested entry from L1 to L2.
2283 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2284 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2285 * bit in the high half is on if the corresponding bit in the control field
2286 * may be on. See also vmx_control_verify().
2287 * TODO: allow these variables to be modified (downgraded) by module options
2288 * or other means.
2289 */
2290 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2291 static u32 nested_vmx_true_procbased_ctls_low;
2292 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2293 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2294 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2295 static u32 nested_vmx_true_exit_ctls_low;
2296 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2297 static u32 nested_vmx_true_entry_ctls_low;
2298 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2299 static u32 nested_vmx_ept_caps;
2300 static __init void nested_vmx_setup_ctls_msrs(void)
2301 {
2302 /*
2303 * Note that as a general rule, the high half of the MSRs (bits in
2304 * the control fields which may be 1) should be initialized by the
2305 * intersection of the underlying hardware's MSR (i.e., features which
2306 * can be supported) and the list of features we want to expose -
2307 * because they are known to be properly supported in our code.
2308 * Also, usually, the low half of the MSRs (bits which must be 1) can
2309 * be set to 0, meaning that L1 may turn off any of these bits. The
2310 * reason is that if one of these bits is necessary, it will appear
2311 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2312 * fields of vmcs01 and vmcs02, will turn these bits off - and
2313 * nested_vmx_exit_handled() will not pass related exits to L1.
2314 * These rules have exceptions below.
2315 */
2316
2317 /* pin-based controls */
2318 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2319 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2320 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2321 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2322 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2323 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2324 PIN_BASED_VMX_PREEMPTION_TIMER;
2325
2326 /* exit controls */
2327 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2328 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2329 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2330
2331 nested_vmx_exit_ctls_high &=
2332 #ifdef CONFIG_X86_64
2333 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2334 #endif
2335 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2336 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2337 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2338 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2339
2340 if (vmx_mpx_supported())
2341 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2342
2343 /* We support free control of debug control saving. */
2344 nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2345 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2346
2347 /* entry controls */
2348 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2349 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2350 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2351 nested_vmx_entry_ctls_high &=
2352 #ifdef CONFIG_X86_64
2353 VM_ENTRY_IA32E_MODE |
2354 #endif
2355 VM_ENTRY_LOAD_IA32_PAT;
2356 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2357 VM_ENTRY_LOAD_IA32_EFER);
2358 if (vmx_mpx_supported())
2359 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2360
2361 /* We support free control of debug control loading. */
2362 nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2363 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2364
2365 /* cpu-based controls */
2366 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2367 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2368 nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2369 nested_vmx_procbased_ctls_high &=
2370 CPU_BASED_VIRTUAL_INTR_PENDING |
2371 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2372 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2373 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2374 CPU_BASED_CR3_STORE_EXITING |
2375 #ifdef CONFIG_X86_64
2376 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2377 #endif
2378 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2379 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2380 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2381 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2382 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2383 /*
2384 * We can allow some features even when not supported by the
2385 * hardware. For example, L1 can specify an MSR bitmap - and we
2386 * can use it to avoid exits to L1 - even when L0 runs L2
2387 * without MSR bitmaps.
2388 */
2389 nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2390 CPU_BASED_USE_MSR_BITMAPS;
2391
2392 /* We support free control of CR3 access interception. */
2393 nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2394 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2395
2396 /* secondary cpu-based controls */
2397 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2398 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2399 nested_vmx_secondary_ctls_low = 0;
2400 nested_vmx_secondary_ctls_high &=
2401 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2402 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2403 SECONDARY_EXEC_WBINVD_EXITING |
2404 SECONDARY_EXEC_XSAVES;
2405
2406 if (enable_ept) {
2407 /* nested EPT: emulate EPT also to L1 */
2408 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2409 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2410 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2411 VMX_EPT_INVEPT_BIT;
2412 nested_vmx_ept_caps &= vmx_capability.ept;
2413 /*
2414 * For nested guests, we don't do anything specific
2415 * for single context invalidation. Hence, only advertise
2416 * support for global context invalidation.
2417 */
2418 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2419 } else
2420 nested_vmx_ept_caps = 0;
2421
2422 /* miscellaneous data */
2423 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2424 nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2425 nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2426 VMX_MISC_ACTIVITY_HLT;
2427 nested_vmx_misc_high = 0;
2428 }
2429
2430 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2431 {
2432 /*
2433 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2434 */
2435 return ((control & high) | low) == control;
2436 }
2437
2438 static inline u64 vmx_control_msr(u32 low, u32 high)
2439 {
2440 return low | ((u64)high << 32);
2441 }
2442
2443 /* Returns 0 on success, non-0 otherwise. */
2444 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2445 {
2446 switch (msr_index) {
2447 case MSR_IA32_VMX_BASIC:
2448 /*
2449 * This MSR reports some information about VMX support. We
2450 * should return information about the VMX we emulate for the
2451 * guest, and the VMCS structure we give it - not about the
2452 * VMX support of the underlying hardware.
2453 */
2454 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2455 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2456 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2457 break;
2458 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2459 case MSR_IA32_VMX_PINBASED_CTLS:
2460 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2461 nested_vmx_pinbased_ctls_high);
2462 break;
2463 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2464 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2465 nested_vmx_procbased_ctls_high);
2466 break;
2467 case MSR_IA32_VMX_PROCBASED_CTLS:
2468 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2469 nested_vmx_procbased_ctls_high);
2470 break;
2471 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2472 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2473 nested_vmx_exit_ctls_high);
2474 break;
2475 case MSR_IA32_VMX_EXIT_CTLS:
2476 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2477 nested_vmx_exit_ctls_high);
2478 break;
2479 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2480 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2481 nested_vmx_entry_ctls_high);
2482 break;
2483 case MSR_IA32_VMX_ENTRY_CTLS:
2484 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2485 nested_vmx_entry_ctls_high);
2486 break;
2487 case MSR_IA32_VMX_MISC:
2488 *pdata = vmx_control_msr(nested_vmx_misc_low,
2489 nested_vmx_misc_high);
2490 break;
2491 /*
2492 * These MSRs specify bits which the guest must keep fixed (on or off)
2493 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2494 * We picked the standard core2 setting.
2495 */
2496 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2497 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2498 case MSR_IA32_VMX_CR0_FIXED0:
2499 *pdata = VMXON_CR0_ALWAYSON;
2500 break;
2501 case MSR_IA32_VMX_CR0_FIXED1:
2502 *pdata = -1ULL;
2503 break;
2504 case MSR_IA32_VMX_CR4_FIXED0:
2505 *pdata = VMXON_CR4_ALWAYSON;
2506 break;
2507 case MSR_IA32_VMX_CR4_FIXED1:
2508 *pdata = -1ULL;
2509 break;
2510 case MSR_IA32_VMX_VMCS_ENUM:
2511 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2512 break;
2513 case MSR_IA32_VMX_PROCBASED_CTLS2:
2514 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2515 nested_vmx_secondary_ctls_high);
2516 break;
2517 case MSR_IA32_VMX_EPT_VPID_CAP:
2518 /* Currently, no nested vpid support */
2519 *pdata = nested_vmx_ept_caps;
2520 break;
2521 default:
2522 return 1;
2523 }
2524
2525 return 0;
2526 }
2527
2528 /*
2529 * Reads an msr value (of 'msr_index') into 'pdata'.
2530 * Returns 0 on success, non-0 otherwise.
2531 * Assumes vcpu_load() was already called.
2532 */
2533 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2534 {
2535 u64 data;
2536 struct shared_msr_entry *msr;
2537
2538 if (!pdata) {
2539 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2540 return -EINVAL;
2541 }
2542
2543 switch (msr_index) {
2544 #ifdef CONFIG_X86_64
2545 case MSR_FS_BASE:
2546 data = vmcs_readl(GUEST_FS_BASE);
2547 break;
2548 case MSR_GS_BASE:
2549 data = vmcs_readl(GUEST_GS_BASE);
2550 break;
2551 case MSR_KERNEL_GS_BASE:
2552 vmx_load_host_state(to_vmx(vcpu));
2553 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2554 break;
2555 #endif
2556 case MSR_EFER:
2557 return kvm_get_msr_common(vcpu, msr_index, pdata);
2558 case MSR_IA32_TSC:
2559 data = guest_read_tsc();
2560 break;
2561 case MSR_IA32_SYSENTER_CS:
2562 data = vmcs_read32(GUEST_SYSENTER_CS);
2563 break;
2564 case MSR_IA32_SYSENTER_EIP:
2565 data = vmcs_readl(GUEST_SYSENTER_EIP);
2566 break;
2567 case MSR_IA32_SYSENTER_ESP:
2568 data = vmcs_readl(GUEST_SYSENTER_ESP);
2569 break;
2570 case MSR_IA32_BNDCFGS:
2571 if (!vmx_mpx_supported())
2572 return 1;
2573 data = vmcs_read64(GUEST_BNDCFGS);
2574 break;
2575 case MSR_IA32_FEATURE_CONTROL:
2576 if (!nested_vmx_allowed(vcpu))
2577 return 1;
2578 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2579 break;
2580 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2581 if (!nested_vmx_allowed(vcpu))
2582 return 1;
2583 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2584 case MSR_IA32_XSS:
2585 if (!vmx_xsaves_supported())
2586 return 1;
2587 data = vcpu->arch.ia32_xss;
2588 break;
2589 case MSR_TSC_AUX:
2590 if (!to_vmx(vcpu)->rdtscp_enabled)
2591 return 1;
2592 /* Otherwise falls through */
2593 default:
2594 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2595 if (msr) {
2596 data = msr->data;
2597 break;
2598 }
2599 return kvm_get_msr_common(vcpu, msr_index, pdata);
2600 }
2601
2602 *pdata = data;
2603 return 0;
2604 }
2605
2606 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2607
2608 /*
2609 * Writes msr value into into the appropriate "register".
2610 * Returns 0 on success, non-0 otherwise.
2611 * Assumes vcpu_load() was already called.
2612 */
2613 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2614 {
2615 struct vcpu_vmx *vmx = to_vmx(vcpu);
2616 struct shared_msr_entry *msr;
2617 int ret = 0;
2618 u32 msr_index = msr_info->index;
2619 u64 data = msr_info->data;
2620
2621 switch (msr_index) {
2622 case MSR_EFER:
2623 ret = kvm_set_msr_common(vcpu, msr_info);
2624 break;
2625 #ifdef CONFIG_X86_64
2626 case MSR_FS_BASE:
2627 vmx_segment_cache_clear(vmx);
2628 vmcs_writel(GUEST_FS_BASE, data);
2629 break;
2630 case MSR_GS_BASE:
2631 vmx_segment_cache_clear(vmx);
2632 vmcs_writel(GUEST_GS_BASE, data);
2633 break;
2634 case MSR_KERNEL_GS_BASE:
2635 vmx_load_host_state(vmx);
2636 vmx->msr_guest_kernel_gs_base = data;
2637 break;
2638 #endif
2639 case MSR_IA32_SYSENTER_CS:
2640 vmcs_write32(GUEST_SYSENTER_CS, data);
2641 break;
2642 case MSR_IA32_SYSENTER_EIP:
2643 vmcs_writel(GUEST_SYSENTER_EIP, data);
2644 break;
2645 case MSR_IA32_SYSENTER_ESP:
2646 vmcs_writel(GUEST_SYSENTER_ESP, data);
2647 break;
2648 case MSR_IA32_BNDCFGS:
2649 if (!vmx_mpx_supported())
2650 return 1;
2651 vmcs_write64(GUEST_BNDCFGS, data);
2652 break;
2653 case MSR_IA32_TSC:
2654 kvm_write_tsc(vcpu, msr_info);
2655 break;
2656 case MSR_IA32_CR_PAT:
2657 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2658 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2659 return 1;
2660 vmcs_write64(GUEST_IA32_PAT, data);
2661 vcpu->arch.pat = data;
2662 break;
2663 }
2664 ret = kvm_set_msr_common(vcpu, msr_info);
2665 break;
2666 case MSR_IA32_TSC_ADJUST:
2667 ret = kvm_set_msr_common(vcpu, msr_info);
2668 break;
2669 case MSR_IA32_FEATURE_CONTROL:
2670 if (!nested_vmx_allowed(vcpu) ||
2671 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2672 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2673 return 1;
2674 vmx->nested.msr_ia32_feature_control = data;
2675 if (msr_info->host_initiated && data == 0)
2676 vmx_leave_nested(vcpu);
2677 break;
2678 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2679 return 1; /* they are read-only */
2680 case MSR_IA32_XSS:
2681 if (!vmx_xsaves_supported())
2682 return 1;
2683 /*
2684 * The only supported bit as of Skylake is bit 8, but
2685 * it is not supported on KVM.
2686 */
2687 if (data != 0)
2688 return 1;
2689 vcpu->arch.ia32_xss = data;
2690 if (vcpu->arch.ia32_xss != host_xss)
2691 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2692 vcpu->arch.ia32_xss, host_xss);
2693 else
2694 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2695 break;
2696 case MSR_TSC_AUX:
2697 if (!vmx->rdtscp_enabled)
2698 return 1;
2699 /* Check reserved bit, higher 32 bits should be zero */
2700 if ((data >> 32) != 0)
2701 return 1;
2702 /* Otherwise falls through */
2703 default:
2704 msr = find_msr_entry(vmx, msr_index);
2705 if (msr) {
2706 u64 old_msr_data = msr->data;
2707 msr->data = data;
2708 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2709 preempt_disable();
2710 ret = kvm_set_shared_msr(msr->index, msr->data,
2711 msr->mask);
2712 preempt_enable();
2713 if (ret)
2714 msr->data = old_msr_data;
2715 }
2716 break;
2717 }
2718 ret = kvm_set_msr_common(vcpu, msr_info);
2719 }
2720
2721 return ret;
2722 }
2723
2724 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2725 {
2726 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2727 switch (reg) {
2728 case VCPU_REGS_RSP:
2729 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2730 break;
2731 case VCPU_REGS_RIP:
2732 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2733 break;
2734 case VCPU_EXREG_PDPTR:
2735 if (enable_ept)
2736 ept_save_pdptrs(vcpu);
2737 break;
2738 default:
2739 break;
2740 }
2741 }
2742
2743 static __init int cpu_has_kvm_support(void)
2744 {
2745 return cpu_has_vmx();
2746 }
2747
2748 static __init int vmx_disabled_by_bios(void)
2749 {
2750 u64 msr;
2751
2752 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2753 if (msr & FEATURE_CONTROL_LOCKED) {
2754 /* launched w/ TXT and VMX disabled */
2755 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2756 && tboot_enabled())
2757 return 1;
2758 /* launched w/o TXT and VMX only enabled w/ TXT */
2759 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2760 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2761 && !tboot_enabled()) {
2762 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2763 "activate TXT before enabling KVM\n");
2764 return 1;
2765 }
2766 /* launched w/o TXT and VMX disabled */
2767 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2768 && !tboot_enabled())
2769 return 1;
2770 }
2771
2772 return 0;
2773 }
2774
2775 static void kvm_cpu_vmxon(u64 addr)
2776 {
2777 asm volatile (ASM_VMX_VMXON_RAX
2778 : : "a"(&addr), "m"(addr)
2779 : "memory", "cc");
2780 }
2781
2782 static int hardware_enable(void)
2783 {
2784 int cpu = raw_smp_processor_id();
2785 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2786 u64 old, test_bits;
2787
2788 if (read_cr4() & X86_CR4_VMXE)
2789 return -EBUSY;
2790
2791 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2792
2793 /*
2794 * Now we can enable the vmclear operation in kdump
2795 * since the loaded_vmcss_on_cpu list on this cpu
2796 * has been initialized.
2797 *
2798 * Though the cpu is not in VMX operation now, there
2799 * is no problem to enable the vmclear operation
2800 * for the loaded_vmcss_on_cpu list is empty!
2801 */
2802 crash_enable_local_vmclear(cpu);
2803
2804 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2805
2806 test_bits = FEATURE_CONTROL_LOCKED;
2807 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2808 if (tboot_enabled())
2809 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2810
2811 if ((old & test_bits) != test_bits) {
2812 /* enable and lock */
2813 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2814 }
2815 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2816
2817 if (vmm_exclusive) {
2818 kvm_cpu_vmxon(phys_addr);
2819 ept_sync_global();
2820 }
2821
2822 native_store_gdt(this_cpu_ptr(&host_gdt));
2823
2824 return 0;
2825 }
2826
2827 static void vmclear_local_loaded_vmcss(void)
2828 {
2829 int cpu = raw_smp_processor_id();
2830 struct loaded_vmcs *v, *n;
2831
2832 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2833 loaded_vmcss_on_cpu_link)
2834 __loaded_vmcs_clear(v);
2835 }
2836
2837
2838 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2839 * tricks.
2840 */
2841 static void kvm_cpu_vmxoff(void)
2842 {
2843 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2844 }
2845
2846 static void hardware_disable(void)
2847 {
2848 if (vmm_exclusive) {
2849 vmclear_local_loaded_vmcss();
2850 kvm_cpu_vmxoff();
2851 }
2852 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2853 }
2854
2855 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2856 u32 msr, u32 *result)
2857 {
2858 u32 vmx_msr_low, vmx_msr_high;
2859 u32 ctl = ctl_min | ctl_opt;
2860
2861 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2862
2863 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2864 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2865
2866 /* Ensure minimum (required) set of control bits are supported. */
2867 if (ctl_min & ~ctl)
2868 return -EIO;
2869
2870 *result = ctl;
2871 return 0;
2872 }
2873
2874 static __init bool allow_1_setting(u32 msr, u32 ctl)
2875 {
2876 u32 vmx_msr_low, vmx_msr_high;
2877
2878 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2879 return vmx_msr_high & ctl;
2880 }
2881
2882 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2883 {
2884 u32 vmx_msr_low, vmx_msr_high;
2885 u32 min, opt, min2, opt2;
2886 u32 _pin_based_exec_control = 0;
2887 u32 _cpu_based_exec_control = 0;
2888 u32 _cpu_based_2nd_exec_control = 0;
2889 u32 _vmexit_control = 0;
2890 u32 _vmentry_control = 0;
2891
2892 min = CPU_BASED_HLT_EXITING |
2893 #ifdef CONFIG_X86_64
2894 CPU_BASED_CR8_LOAD_EXITING |
2895 CPU_BASED_CR8_STORE_EXITING |
2896 #endif
2897 CPU_BASED_CR3_LOAD_EXITING |
2898 CPU_BASED_CR3_STORE_EXITING |
2899 CPU_BASED_USE_IO_BITMAPS |
2900 CPU_BASED_MOV_DR_EXITING |
2901 CPU_BASED_USE_TSC_OFFSETING |
2902 CPU_BASED_MWAIT_EXITING |
2903 CPU_BASED_MONITOR_EXITING |
2904 CPU_BASED_INVLPG_EXITING |
2905 CPU_BASED_RDPMC_EXITING;
2906
2907 opt = CPU_BASED_TPR_SHADOW |
2908 CPU_BASED_USE_MSR_BITMAPS |
2909 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2910 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2911 &_cpu_based_exec_control) < 0)
2912 return -EIO;
2913 #ifdef CONFIG_X86_64
2914 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2915 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2916 ~CPU_BASED_CR8_STORE_EXITING;
2917 #endif
2918 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2919 min2 = 0;
2920 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2921 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2922 SECONDARY_EXEC_WBINVD_EXITING |
2923 SECONDARY_EXEC_ENABLE_VPID |
2924 SECONDARY_EXEC_ENABLE_EPT |
2925 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2926 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2927 SECONDARY_EXEC_RDTSCP |
2928 SECONDARY_EXEC_ENABLE_INVPCID |
2929 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2930 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2931 SECONDARY_EXEC_SHADOW_VMCS |
2932 SECONDARY_EXEC_XSAVES;
2933 if (adjust_vmx_controls(min2, opt2,
2934 MSR_IA32_VMX_PROCBASED_CTLS2,
2935 &_cpu_based_2nd_exec_control) < 0)
2936 return -EIO;
2937 }
2938 #ifndef CONFIG_X86_64
2939 if (!(_cpu_based_2nd_exec_control &
2940 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2941 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2942 #endif
2943
2944 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2945 _cpu_based_2nd_exec_control &= ~(
2946 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2947 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2948 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2949
2950 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2951 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2952 enabled */
2953 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2954 CPU_BASED_CR3_STORE_EXITING |
2955 CPU_BASED_INVLPG_EXITING);
2956 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2957 vmx_capability.ept, vmx_capability.vpid);
2958 }
2959
2960 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2961 #ifdef CONFIG_X86_64
2962 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2963 #endif
2964 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2965 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2966 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2967 &_vmexit_control) < 0)
2968 return -EIO;
2969
2970 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2971 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2972 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2973 &_pin_based_exec_control) < 0)
2974 return -EIO;
2975
2976 if (!(_cpu_based_2nd_exec_control &
2977 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2978 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2979 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2980
2981 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2982 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2983 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2984 &_vmentry_control) < 0)
2985 return -EIO;
2986
2987 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2988
2989 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2990 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2991 return -EIO;
2992
2993 #ifdef CONFIG_X86_64
2994 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2995 if (vmx_msr_high & (1u<<16))
2996 return -EIO;
2997 #endif
2998
2999 /* Require Write-Back (WB) memory type for VMCS accesses. */
3000 if (((vmx_msr_high >> 18) & 15) != 6)
3001 return -EIO;
3002
3003 vmcs_conf->size = vmx_msr_high & 0x1fff;
3004 vmcs_conf->order = get_order(vmcs_config.size);
3005 vmcs_conf->revision_id = vmx_msr_low;
3006
3007 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3008 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3009 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3010 vmcs_conf->vmexit_ctrl = _vmexit_control;
3011 vmcs_conf->vmentry_ctrl = _vmentry_control;
3012
3013 cpu_has_load_ia32_efer =
3014 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3015 VM_ENTRY_LOAD_IA32_EFER)
3016 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3017 VM_EXIT_LOAD_IA32_EFER);
3018
3019 cpu_has_load_perf_global_ctrl =
3020 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3021 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3022 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3023 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3024
3025 /*
3026 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3027 * but due to arrata below it can't be used. Workaround is to use
3028 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3029 *
3030 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3031 *
3032 * AAK155 (model 26)
3033 * AAP115 (model 30)
3034 * AAT100 (model 37)
3035 * BC86,AAY89,BD102 (model 44)
3036 * BA97 (model 46)
3037 *
3038 */
3039 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3040 switch (boot_cpu_data.x86_model) {
3041 case 26:
3042 case 30:
3043 case 37:
3044 case 44:
3045 case 46:
3046 cpu_has_load_perf_global_ctrl = false;
3047 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3048 "does not work properly. Using workaround\n");
3049 break;
3050 default:
3051 break;
3052 }
3053 }
3054
3055 if (cpu_has_xsaves)
3056 rdmsrl(MSR_IA32_XSS, host_xss);
3057
3058 return 0;
3059 }
3060
3061 static struct vmcs *alloc_vmcs_cpu(int cpu)
3062 {
3063 int node = cpu_to_node(cpu);
3064 struct page *pages;
3065 struct vmcs *vmcs;
3066
3067 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3068 if (!pages)
3069 return NULL;
3070 vmcs = page_address(pages);
3071 memset(vmcs, 0, vmcs_config.size);
3072 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3073 return vmcs;
3074 }
3075
3076 static struct vmcs *alloc_vmcs(void)
3077 {
3078 return alloc_vmcs_cpu(raw_smp_processor_id());
3079 }
3080
3081 static void free_vmcs(struct vmcs *vmcs)
3082 {
3083 free_pages((unsigned long)vmcs, vmcs_config.order);
3084 }
3085
3086 /*
3087 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3088 */
3089 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3090 {
3091 if (!loaded_vmcs->vmcs)
3092 return;
3093 loaded_vmcs_clear(loaded_vmcs);
3094 free_vmcs(loaded_vmcs->vmcs);
3095 loaded_vmcs->vmcs = NULL;
3096 }
3097
3098 static void free_kvm_area(void)
3099 {
3100 int cpu;
3101
3102 for_each_possible_cpu(cpu) {
3103 free_vmcs(per_cpu(vmxarea, cpu));
3104 per_cpu(vmxarea, cpu) = NULL;
3105 }
3106 }
3107
3108 static void init_vmcs_shadow_fields(void)
3109 {
3110 int i, j;
3111
3112 /* No checks for read only fields yet */
3113
3114 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3115 switch (shadow_read_write_fields[i]) {
3116 case GUEST_BNDCFGS:
3117 if (!vmx_mpx_supported())
3118 continue;
3119 break;
3120 default:
3121 break;
3122 }
3123
3124 if (j < i)
3125 shadow_read_write_fields[j] =
3126 shadow_read_write_fields[i];
3127 j++;
3128 }
3129 max_shadow_read_write_fields = j;
3130
3131 /* shadowed fields guest access without vmexit */
3132 for (i = 0; i < max_shadow_read_write_fields; i++) {
3133 clear_bit(shadow_read_write_fields[i],
3134 vmx_vmwrite_bitmap);
3135 clear_bit(shadow_read_write_fields[i],
3136 vmx_vmread_bitmap);
3137 }
3138 for (i = 0; i < max_shadow_read_only_fields; i++)
3139 clear_bit(shadow_read_only_fields[i],
3140 vmx_vmread_bitmap);
3141 }
3142
3143 static __init int alloc_kvm_area(void)
3144 {
3145 int cpu;
3146
3147 for_each_possible_cpu(cpu) {
3148 struct vmcs *vmcs;
3149
3150 vmcs = alloc_vmcs_cpu(cpu);
3151 if (!vmcs) {
3152 free_kvm_area();
3153 return -ENOMEM;
3154 }
3155
3156 per_cpu(vmxarea, cpu) = vmcs;
3157 }
3158 return 0;
3159 }
3160
3161 static bool emulation_required(struct kvm_vcpu *vcpu)
3162 {
3163 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3164 }
3165
3166 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3167 struct kvm_segment *save)
3168 {
3169 if (!emulate_invalid_guest_state) {
3170 /*
3171 * CS and SS RPL should be equal during guest entry according
3172 * to VMX spec, but in reality it is not always so. Since vcpu
3173 * is in the middle of the transition from real mode to
3174 * protected mode it is safe to assume that RPL 0 is a good
3175 * default value.
3176 */
3177 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3178 save->selector &= ~SELECTOR_RPL_MASK;
3179 save->dpl = save->selector & SELECTOR_RPL_MASK;
3180 save->s = 1;
3181 }
3182 vmx_set_segment(vcpu, save, seg);
3183 }
3184
3185 static void enter_pmode(struct kvm_vcpu *vcpu)
3186 {
3187 unsigned long flags;
3188 struct vcpu_vmx *vmx = to_vmx(vcpu);
3189
3190 /*
3191 * Update real mode segment cache. It may be not up-to-date if sement
3192 * register was written while vcpu was in a guest mode.
3193 */
3194 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3195 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3196 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3197 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3198 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3199 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3200
3201 vmx->rmode.vm86_active = 0;
3202
3203 vmx_segment_cache_clear(vmx);
3204
3205 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3206
3207 flags = vmcs_readl(GUEST_RFLAGS);
3208 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3209 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3210 vmcs_writel(GUEST_RFLAGS, flags);
3211
3212 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3213 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3214
3215 update_exception_bitmap(vcpu);
3216
3217 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3218 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3219 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3220 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3221 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3222 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3223 }
3224
3225 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3226 {
3227 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3228 struct kvm_segment var = *save;
3229
3230 var.dpl = 0x3;
3231 if (seg == VCPU_SREG_CS)
3232 var.type = 0x3;
3233
3234 if (!emulate_invalid_guest_state) {
3235 var.selector = var.base >> 4;
3236 var.base = var.base & 0xffff0;
3237 var.limit = 0xffff;
3238 var.g = 0;
3239 var.db = 0;
3240 var.present = 1;
3241 var.s = 1;
3242 var.l = 0;
3243 var.unusable = 0;
3244 var.type = 0x3;
3245 var.avl = 0;
3246 if (save->base & 0xf)
3247 printk_once(KERN_WARNING "kvm: segment base is not "
3248 "paragraph aligned when entering "
3249 "protected mode (seg=%d)", seg);
3250 }
3251
3252 vmcs_write16(sf->selector, var.selector);
3253 vmcs_write32(sf->base, var.base);
3254 vmcs_write32(sf->limit, var.limit);
3255 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3256 }
3257
3258 static void enter_rmode(struct kvm_vcpu *vcpu)
3259 {
3260 unsigned long flags;
3261 struct vcpu_vmx *vmx = to_vmx(vcpu);
3262
3263 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3264 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3265 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3266 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3267 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3268 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3269 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3270
3271 vmx->rmode.vm86_active = 1;
3272
3273 /*
3274 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3275 * vcpu. Warn the user that an update is overdue.
3276 */
3277 if (!vcpu->kvm->arch.tss_addr)
3278 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3279 "called before entering vcpu\n");
3280
3281 vmx_segment_cache_clear(vmx);
3282
3283 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3284 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3285 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3286
3287 flags = vmcs_readl(GUEST_RFLAGS);
3288 vmx->rmode.save_rflags = flags;
3289
3290 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3291
3292 vmcs_writel(GUEST_RFLAGS, flags);
3293 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3294 update_exception_bitmap(vcpu);
3295
3296 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3297 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3298 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3299 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3300 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3301 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3302
3303 kvm_mmu_reset_context(vcpu);
3304 }
3305
3306 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3307 {
3308 struct vcpu_vmx *vmx = to_vmx(vcpu);
3309 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3310
3311 if (!msr)
3312 return;
3313
3314 /*
3315 * Force kernel_gs_base reloading before EFER changes, as control
3316 * of this msr depends on is_long_mode().
3317 */
3318 vmx_load_host_state(to_vmx(vcpu));
3319 vcpu->arch.efer = efer;
3320 if (efer & EFER_LMA) {
3321 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3322 msr->data = efer;
3323 } else {
3324 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3325
3326 msr->data = efer & ~EFER_LME;
3327 }
3328 setup_msrs(vmx);
3329 }
3330
3331 #ifdef CONFIG_X86_64
3332
3333 static void enter_lmode(struct kvm_vcpu *vcpu)
3334 {
3335 u32 guest_tr_ar;
3336
3337 vmx_segment_cache_clear(to_vmx(vcpu));
3338
3339 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3340 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3341 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3342 __func__);
3343 vmcs_write32(GUEST_TR_AR_BYTES,
3344 (guest_tr_ar & ~AR_TYPE_MASK)
3345 | AR_TYPE_BUSY_64_TSS);
3346 }
3347 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3348 }
3349
3350 static void exit_lmode(struct kvm_vcpu *vcpu)
3351 {
3352 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3353 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3354 }
3355
3356 #endif
3357
3358 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3359 {
3360 vpid_sync_context(to_vmx(vcpu));
3361 if (enable_ept) {
3362 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3363 return;
3364 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3365 }
3366 }
3367
3368 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3369 {
3370 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3371
3372 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3373 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3374 }
3375
3376 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3377 {
3378 if (enable_ept && is_paging(vcpu))
3379 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3380 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3381 }
3382
3383 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3384 {
3385 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3386
3387 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3388 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3389 }
3390
3391 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3392 {
3393 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3394
3395 if (!test_bit(VCPU_EXREG_PDPTR,
3396 (unsigned long *)&vcpu->arch.regs_dirty))
3397 return;
3398
3399 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3400 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3401 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3402 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3403 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3404 }
3405 }
3406
3407 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3408 {
3409 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3410
3411 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3412 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3413 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3414 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3415 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3416 }
3417
3418 __set_bit(VCPU_EXREG_PDPTR,
3419 (unsigned long *)&vcpu->arch.regs_avail);
3420 __set_bit(VCPU_EXREG_PDPTR,
3421 (unsigned long *)&vcpu->arch.regs_dirty);
3422 }
3423
3424 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3425
3426 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3427 unsigned long cr0,
3428 struct kvm_vcpu *vcpu)
3429 {
3430 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3431 vmx_decache_cr3(vcpu);
3432 if (!(cr0 & X86_CR0_PG)) {
3433 /* From paging/starting to nonpaging */
3434 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3435 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3436 (CPU_BASED_CR3_LOAD_EXITING |
3437 CPU_BASED_CR3_STORE_EXITING));
3438 vcpu->arch.cr0 = cr0;
3439 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3440 } else if (!is_paging(vcpu)) {
3441 /* From nonpaging to paging */
3442 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3443 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3444 ~(CPU_BASED_CR3_LOAD_EXITING |
3445 CPU_BASED_CR3_STORE_EXITING));
3446 vcpu->arch.cr0 = cr0;
3447 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3448 }
3449
3450 if (!(cr0 & X86_CR0_WP))
3451 *hw_cr0 &= ~X86_CR0_WP;
3452 }
3453
3454 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3455 {
3456 struct vcpu_vmx *vmx = to_vmx(vcpu);
3457 unsigned long hw_cr0;
3458
3459 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3460 if (enable_unrestricted_guest)
3461 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3462 else {
3463 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3464
3465 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3466 enter_pmode(vcpu);
3467
3468 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3469 enter_rmode(vcpu);
3470 }
3471
3472 #ifdef CONFIG_X86_64
3473 if (vcpu->arch.efer & EFER_LME) {
3474 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3475 enter_lmode(vcpu);
3476 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3477 exit_lmode(vcpu);
3478 }
3479 #endif
3480
3481 if (enable_ept)
3482 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3483
3484 if (!vcpu->fpu_active)
3485 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3486
3487 vmcs_writel(CR0_READ_SHADOW, cr0);
3488 vmcs_writel(GUEST_CR0, hw_cr0);
3489 vcpu->arch.cr0 = cr0;
3490
3491 /* depends on vcpu->arch.cr0 to be set to a new value */
3492 vmx->emulation_required = emulation_required(vcpu);
3493 }
3494
3495 static u64 construct_eptp(unsigned long root_hpa)
3496 {
3497 u64 eptp;
3498
3499 /* TODO write the value reading from MSR */
3500 eptp = VMX_EPT_DEFAULT_MT |
3501 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3502 if (enable_ept_ad_bits)
3503 eptp |= VMX_EPT_AD_ENABLE_BIT;
3504 eptp |= (root_hpa & PAGE_MASK);
3505
3506 return eptp;
3507 }
3508
3509 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3510 {
3511 unsigned long guest_cr3;
3512 u64 eptp;
3513
3514 guest_cr3 = cr3;
3515 if (enable_ept) {
3516 eptp = construct_eptp(cr3);
3517 vmcs_write64(EPT_POINTER, eptp);
3518 if (is_paging(vcpu) || is_guest_mode(vcpu))
3519 guest_cr3 = kvm_read_cr3(vcpu);
3520 else
3521 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3522 ept_load_pdptrs(vcpu);
3523 }
3524
3525 vmx_flush_tlb(vcpu);
3526 vmcs_writel(GUEST_CR3, guest_cr3);
3527 }
3528
3529 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3530 {
3531 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3532 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3533
3534 if (cr4 & X86_CR4_VMXE) {
3535 /*
3536 * To use VMXON (and later other VMX instructions), a guest
3537 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3538 * So basically the check on whether to allow nested VMX
3539 * is here.
3540 */
3541 if (!nested_vmx_allowed(vcpu))
3542 return 1;
3543 }
3544 if (to_vmx(vcpu)->nested.vmxon &&
3545 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3546 return 1;
3547
3548 vcpu->arch.cr4 = cr4;
3549 if (enable_ept) {
3550 if (!is_paging(vcpu)) {
3551 hw_cr4 &= ~X86_CR4_PAE;
3552 hw_cr4 |= X86_CR4_PSE;
3553 /*
3554 * SMEP/SMAP is disabled if CPU is in non-paging mode
3555 * in hardware. However KVM always uses paging mode to
3556 * emulate guest non-paging mode with TDP.
3557 * To emulate this behavior, SMEP/SMAP needs to be
3558 * manually disabled when guest switches to non-paging
3559 * mode.
3560 */
3561 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3562 } else if (!(cr4 & X86_CR4_PAE)) {
3563 hw_cr4 &= ~X86_CR4_PAE;
3564 }
3565 }
3566
3567 vmcs_writel(CR4_READ_SHADOW, cr4);
3568 vmcs_writel(GUEST_CR4, hw_cr4);
3569 return 0;
3570 }
3571
3572 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3573 struct kvm_segment *var, int seg)
3574 {
3575 struct vcpu_vmx *vmx = to_vmx(vcpu);
3576 u32 ar;
3577
3578 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3579 *var = vmx->rmode.segs[seg];
3580 if (seg == VCPU_SREG_TR
3581 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3582 return;
3583 var->base = vmx_read_guest_seg_base(vmx, seg);
3584 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3585 return;
3586 }
3587 var->base = vmx_read_guest_seg_base(vmx, seg);
3588 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3589 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3590 ar = vmx_read_guest_seg_ar(vmx, seg);
3591 var->unusable = (ar >> 16) & 1;
3592 var->type = ar & 15;
3593 var->s = (ar >> 4) & 1;
3594 var->dpl = (ar >> 5) & 3;
3595 /*
3596 * Some userspaces do not preserve unusable property. Since usable
3597 * segment has to be present according to VMX spec we can use present
3598 * property to amend userspace bug by making unusable segment always
3599 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3600 * segment as unusable.
3601 */
3602 var->present = !var->unusable;
3603 var->avl = (ar >> 12) & 1;
3604 var->l = (ar >> 13) & 1;
3605 var->db = (ar >> 14) & 1;
3606 var->g = (ar >> 15) & 1;
3607 }
3608
3609 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3610 {
3611 struct kvm_segment s;
3612
3613 if (to_vmx(vcpu)->rmode.vm86_active) {
3614 vmx_get_segment(vcpu, &s, seg);
3615 return s.base;
3616 }
3617 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3618 }
3619
3620 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3621 {
3622 struct vcpu_vmx *vmx = to_vmx(vcpu);
3623
3624 if (unlikely(vmx->rmode.vm86_active))
3625 return 0;
3626 else {
3627 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3628 return AR_DPL(ar);
3629 }
3630 }
3631
3632 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3633 {
3634 u32 ar;
3635
3636 if (var->unusable || !var->present)
3637 ar = 1 << 16;
3638 else {
3639 ar = var->type & 15;
3640 ar |= (var->s & 1) << 4;
3641 ar |= (var->dpl & 3) << 5;
3642 ar |= (var->present & 1) << 7;
3643 ar |= (var->avl & 1) << 12;
3644 ar |= (var->l & 1) << 13;
3645 ar |= (var->db & 1) << 14;
3646 ar |= (var->g & 1) << 15;
3647 }
3648
3649 return ar;
3650 }
3651
3652 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3653 struct kvm_segment *var, int seg)
3654 {
3655 struct vcpu_vmx *vmx = to_vmx(vcpu);
3656 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3657
3658 vmx_segment_cache_clear(vmx);
3659
3660 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3661 vmx->rmode.segs[seg] = *var;
3662 if (seg == VCPU_SREG_TR)
3663 vmcs_write16(sf->selector, var->selector);
3664 else if (var->s)
3665 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3666 goto out;
3667 }
3668
3669 vmcs_writel(sf->base, var->base);
3670 vmcs_write32(sf->limit, var->limit);
3671 vmcs_write16(sf->selector, var->selector);
3672
3673 /*
3674 * Fix the "Accessed" bit in AR field of segment registers for older
3675 * qemu binaries.
3676 * IA32 arch specifies that at the time of processor reset the
3677 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3678 * is setting it to 0 in the userland code. This causes invalid guest
3679 * state vmexit when "unrestricted guest" mode is turned on.
3680 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3681 * tree. Newer qemu binaries with that qemu fix would not need this
3682 * kvm hack.
3683 */
3684 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3685 var->type |= 0x1; /* Accessed */
3686
3687 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3688
3689 out:
3690 vmx->emulation_required = emulation_required(vcpu);
3691 }
3692
3693 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3694 {
3695 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3696
3697 *db = (ar >> 14) & 1;
3698 *l = (ar >> 13) & 1;
3699 }
3700
3701 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3702 {
3703 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3704 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3705 }
3706
3707 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3708 {
3709 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3710 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3711 }
3712
3713 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3714 {
3715 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3716 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3717 }
3718
3719 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3720 {
3721 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3722 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3723 }
3724
3725 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3726 {
3727 struct kvm_segment var;
3728 u32 ar;
3729
3730 vmx_get_segment(vcpu, &var, seg);
3731 var.dpl = 0x3;
3732 if (seg == VCPU_SREG_CS)
3733 var.type = 0x3;
3734 ar = vmx_segment_access_rights(&var);
3735
3736 if (var.base != (var.selector << 4))
3737 return false;
3738 if (var.limit != 0xffff)
3739 return false;
3740 if (ar != 0xf3)
3741 return false;
3742
3743 return true;
3744 }
3745
3746 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3747 {
3748 struct kvm_segment cs;
3749 unsigned int cs_rpl;
3750
3751 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3752 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3753
3754 if (cs.unusable)
3755 return false;
3756 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3757 return false;
3758 if (!cs.s)
3759 return false;
3760 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3761 if (cs.dpl > cs_rpl)
3762 return false;
3763 } else {
3764 if (cs.dpl != cs_rpl)
3765 return false;
3766 }
3767 if (!cs.present)
3768 return false;
3769
3770 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3771 return true;
3772 }
3773
3774 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3775 {
3776 struct kvm_segment ss;
3777 unsigned int ss_rpl;
3778
3779 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3780 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3781
3782 if (ss.unusable)
3783 return true;
3784 if (ss.type != 3 && ss.type != 7)
3785 return false;
3786 if (!ss.s)
3787 return false;
3788 if (ss.dpl != ss_rpl) /* DPL != RPL */
3789 return false;
3790 if (!ss.present)
3791 return false;
3792
3793 return true;
3794 }
3795
3796 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3797 {
3798 struct kvm_segment var;
3799 unsigned int rpl;
3800
3801 vmx_get_segment(vcpu, &var, seg);
3802 rpl = var.selector & SELECTOR_RPL_MASK;
3803
3804 if (var.unusable)
3805 return true;
3806 if (!var.s)
3807 return false;
3808 if (!var.present)
3809 return false;
3810 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3811 if (var.dpl < rpl) /* DPL < RPL */
3812 return false;
3813 }
3814
3815 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3816 * rights flags
3817 */
3818 return true;
3819 }
3820
3821 static bool tr_valid(struct kvm_vcpu *vcpu)
3822 {
3823 struct kvm_segment tr;
3824
3825 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3826
3827 if (tr.unusable)
3828 return false;
3829 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3830 return false;
3831 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3832 return false;
3833 if (!tr.present)
3834 return false;
3835
3836 return true;
3837 }
3838
3839 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3840 {
3841 struct kvm_segment ldtr;
3842
3843 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3844
3845 if (ldtr.unusable)
3846 return true;
3847 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3848 return false;
3849 if (ldtr.type != 2)
3850 return false;
3851 if (!ldtr.present)
3852 return false;
3853
3854 return true;
3855 }
3856
3857 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3858 {
3859 struct kvm_segment cs, ss;
3860
3861 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3862 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3863
3864 return ((cs.selector & SELECTOR_RPL_MASK) ==
3865 (ss.selector & SELECTOR_RPL_MASK));
3866 }
3867
3868 /*
3869 * Check if guest state is valid. Returns true if valid, false if
3870 * not.
3871 * We assume that registers are always usable
3872 */
3873 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3874 {
3875 if (enable_unrestricted_guest)
3876 return true;
3877
3878 /* real mode guest state checks */
3879 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3880 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3881 return false;
3882 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3883 return false;
3884 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3885 return false;
3886 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3887 return false;
3888 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3889 return false;
3890 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3891 return false;
3892 } else {
3893 /* protected mode guest state checks */
3894 if (!cs_ss_rpl_check(vcpu))
3895 return false;
3896 if (!code_segment_valid(vcpu))
3897 return false;
3898 if (!stack_segment_valid(vcpu))
3899 return false;
3900 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3901 return false;
3902 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3903 return false;
3904 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3905 return false;
3906 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3907 return false;
3908 if (!tr_valid(vcpu))
3909 return false;
3910 if (!ldtr_valid(vcpu))
3911 return false;
3912 }
3913 /* TODO:
3914 * - Add checks on RIP
3915 * - Add checks on RFLAGS
3916 */
3917
3918 return true;
3919 }
3920
3921 static int init_rmode_tss(struct kvm *kvm)
3922 {
3923 gfn_t fn;
3924 u16 data = 0;
3925 int idx, r;
3926
3927 idx = srcu_read_lock(&kvm->srcu);
3928 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3929 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3930 if (r < 0)
3931 goto out;
3932 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3933 r = kvm_write_guest_page(kvm, fn++, &data,
3934 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3935 if (r < 0)
3936 goto out;
3937 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3938 if (r < 0)
3939 goto out;
3940 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3941 if (r < 0)
3942 goto out;
3943 data = ~0;
3944 r = kvm_write_guest_page(kvm, fn, &data,
3945 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3946 sizeof(u8));
3947 out:
3948 srcu_read_unlock(&kvm->srcu, idx);
3949 return r;
3950 }
3951
3952 static int init_rmode_identity_map(struct kvm *kvm)
3953 {
3954 int i, idx, r = 0;
3955 pfn_t identity_map_pfn;
3956 u32 tmp;
3957
3958 if (!enable_ept)
3959 return 0;
3960
3961 /* Protect kvm->arch.ept_identity_pagetable_done. */
3962 mutex_lock(&kvm->slots_lock);
3963
3964 if (likely(kvm->arch.ept_identity_pagetable_done))
3965 goto out2;
3966
3967 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3968
3969 r = alloc_identity_pagetable(kvm);
3970 if (r < 0)
3971 goto out2;
3972
3973 idx = srcu_read_lock(&kvm->srcu);
3974 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3975 if (r < 0)
3976 goto out;
3977 /* Set up identity-mapping pagetable for EPT in real mode */
3978 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3979 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3980 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3981 r = kvm_write_guest_page(kvm, identity_map_pfn,
3982 &tmp, i * sizeof(tmp), sizeof(tmp));
3983 if (r < 0)
3984 goto out;
3985 }
3986 kvm->arch.ept_identity_pagetable_done = true;
3987
3988 out:
3989 srcu_read_unlock(&kvm->srcu, idx);
3990
3991 out2:
3992 mutex_unlock(&kvm->slots_lock);
3993 return r;
3994 }
3995
3996 static void seg_setup(int seg)
3997 {
3998 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3999 unsigned int ar;
4000
4001 vmcs_write16(sf->selector, 0);
4002 vmcs_writel(sf->base, 0);
4003 vmcs_write32(sf->limit, 0xffff);
4004 ar = 0x93;
4005 if (seg == VCPU_SREG_CS)
4006 ar |= 0x08; /* code segment */
4007
4008 vmcs_write32(sf->ar_bytes, ar);
4009 }
4010
4011 static int alloc_apic_access_page(struct kvm *kvm)
4012 {
4013 struct page *page;
4014 struct kvm_userspace_memory_region kvm_userspace_mem;
4015 int r = 0;
4016
4017 mutex_lock(&kvm->slots_lock);
4018 if (kvm->arch.apic_access_page_done)
4019 goto out;
4020 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4021 kvm_userspace_mem.flags = 0;
4022 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4023 kvm_userspace_mem.memory_size = PAGE_SIZE;
4024 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4025 if (r)
4026 goto out;
4027
4028 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4029 if (is_error_page(page)) {
4030 r = -EFAULT;
4031 goto out;
4032 }
4033
4034 /*
4035 * Do not pin the page in memory, so that memory hot-unplug
4036 * is able to migrate it.
4037 */
4038 put_page(page);
4039 kvm->arch.apic_access_page_done = true;
4040 out:
4041 mutex_unlock(&kvm->slots_lock);
4042 return r;
4043 }
4044
4045 static int alloc_identity_pagetable(struct kvm *kvm)
4046 {
4047 /* Called with kvm->slots_lock held. */
4048
4049 struct kvm_userspace_memory_region kvm_userspace_mem;
4050 int r = 0;
4051
4052 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4053
4054 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4055 kvm_userspace_mem.flags = 0;
4056 kvm_userspace_mem.guest_phys_addr =
4057 kvm->arch.ept_identity_map_addr;
4058 kvm_userspace_mem.memory_size = PAGE_SIZE;
4059 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4060
4061 return r;
4062 }
4063
4064 static void allocate_vpid(struct vcpu_vmx *vmx)
4065 {
4066 int vpid;
4067
4068 vmx->vpid = 0;
4069 if (!enable_vpid)
4070 return;
4071 spin_lock(&vmx_vpid_lock);
4072 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4073 if (vpid < VMX_NR_VPIDS) {
4074 vmx->vpid = vpid;
4075 __set_bit(vpid, vmx_vpid_bitmap);
4076 }
4077 spin_unlock(&vmx_vpid_lock);
4078 }
4079
4080 static void free_vpid(struct vcpu_vmx *vmx)
4081 {
4082 if (!enable_vpid)
4083 return;
4084 spin_lock(&vmx_vpid_lock);
4085 if (vmx->vpid != 0)
4086 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4087 spin_unlock(&vmx_vpid_lock);
4088 }
4089
4090 #define MSR_TYPE_R 1
4091 #define MSR_TYPE_W 2
4092 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4093 u32 msr, int type)
4094 {
4095 int f = sizeof(unsigned long);
4096
4097 if (!cpu_has_vmx_msr_bitmap())
4098 return;
4099
4100 /*
4101 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4102 * have the write-low and read-high bitmap offsets the wrong way round.
4103 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4104 */
4105 if (msr <= 0x1fff) {
4106 if (type & MSR_TYPE_R)
4107 /* read-low */
4108 __clear_bit(msr, msr_bitmap + 0x000 / f);
4109
4110 if (type & MSR_TYPE_W)
4111 /* write-low */
4112 __clear_bit(msr, msr_bitmap + 0x800 / f);
4113
4114 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4115 msr &= 0x1fff;
4116 if (type & MSR_TYPE_R)
4117 /* read-high */
4118 __clear_bit(msr, msr_bitmap + 0x400 / f);
4119
4120 if (type & MSR_TYPE_W)
4121 /* write-high */
4122 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4123
4124 }
4125 }
4126
4127 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4128 u32 msr, int type)
4129 {
4130 int f = sizeof(unsigned long);
4131
4132 if (!cpu_has_vmx_msr_bitmap())
4133 return;
4134
4135 /*
4136 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4137 * have the write-low and read-high bitmap offsets the wrong way round.
4138 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4139 */
4140 if (msr <= 0x1fff) {
4141 if (type & MSR_TYPE_R)
4142 /* read-low */
4143 __set_bit(msr, msr_bitmap + 0x000 / f);
4144
4145 if (type & MSR_TYPE_W)
4146 /* write-low */
4147 __set_bit(msr, msr_bitmap + 0x800 / f);
4148
4149 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4150 msr &= 0x1fff;
4151 if (type & MSR_TYPE_R)
4152 /* read-high */
4153 __set_bit(msr, msr_bitmap + 0x400 / f);
4154
4155 if (type & MSR_TYPE_W)
4156 /* write-high */
4157 __set_bit(msr, msr_bitmap + 0xc00 / f);
4158
4159 }
4160 }
4161
4162 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4163 {
4164 if (!longmode_only)
4165 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4166 msr, MSR_TYPE_R | MSR_TYPE_W);
4167 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4168 msr, MSR_TYPE_R | MSR_TYPE_W);
4169 }
4170
4171 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4172 {
4173 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4174 msr, MSR_TYPE_R);
4175 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4176 msr, MSR_TYPE_R);
4177 }
4178
4179 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4180 {
4181 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4182 msr, MSR_TYPE_R);
4183 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4184 msr, MSR_TYPE_R);
4185 }
4186
4187 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4188 {
4189 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4190 msr, MSR_TYPE_W);
4191 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4192 msr, MSR_TYPE_W);
4193 }
4194
4195 static int vmx_vm_has_apicv(struct kvm *kvm)
4196 {
4197 return enable_apicv && irqchip_in_kernel(kvm);
4198 }
4199
4200 /*
4201 * Send interrupt to vcpu via posted interrupt way.
4202 * 1. If target vcpu is running(non-root mode), send posted interrupt
4203 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4204 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4205 * interrupt from PIR in next vmentry.
4206 */
4207 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4208 {
4209 struct vcpu_vmx *vmx = to_vmx(vcpu);
4210 int r;
4211
4212 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4213 return;
4214
4215 r = pi_test_and_set_on(&vmx->pi_desc);
4216 kvm_make_request(KVM_REQ_EVENT, vcpu);
4217 #ifdef CONFIG_SMP
4218 if (!r && (vcpu->mode == IN_GUEST_MODE))
4219 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4220 POSTED_INTR_VECTOR);
4221 else
4222 #endif
4223 kvm_vcpu_kick(vcpu);
4224 }
4225
4226 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4227 {
4228 struct vcpu_vmx *vmx = to_vmx(vcpu);
4229
4230 if (!pi_test_and_clear_on(&vmx->pi_desc))
4231 return;
4232
4233 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4234 }
4235
4236 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4237 {
4238 return;
4239 }
4240
4241 /*
4242 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4243 * will not change in the lifetime of the guest.
4244 * Note that host-state that does change is set elsewhere. E.g., host-state
4245 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4246 */
4247 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4248 {
4249 u32 low32, high32;
4250 unsigned long tmpl;
4251 struct desc_ptr dt;
4252 unsigned long cr4;
4253
4254 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4255 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4256
4257 /* Save the most likely value for this task's CR4 in the VMCS. */
4258 cr4 = read_cr4();
4259 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4260 vmx->host_state.vmcs_host_cr4 = cr4;
4261
4262 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4263 #ifdef CONFIG_X86_64
4264 /*
4265 * Load null selectors, so we can avoid reloading them in
4266 * __vmx_load_host_state(), in case userspace uses the null selectors
4267 * too (the expected case).
4268 */
4269 vmcs_write16(HOST_DS_SELECTOR, 0);
4270 vmcs_write16(HOST_ES_SELECTOR, 0);
4271 #else
4272 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4273 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4274 #endif
4275 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4276 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4277
4278 native_store_idt(&dt);
4279 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4280 vmx->host_idt_base = dt.address;
4281
4282 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4283
4284 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4285 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4286 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4287 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4288
4289 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4290 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4291 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4292 }
4293 }
4294
4295 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4296 {
4297 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4298 if (enable_ept)
4299 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4300 if (is_guest_mode(&vmx->vcpu))
4301 vmx->vcpu.arch.cr4_guest_owned_bits &=
4302 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4303 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4304 }
4305
4306 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4307 {
4308 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4309
4310 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4311 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4312 return pin_based_exec_ctrl;
4313 }
4314
4315 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4316 {
4317 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4318
4319 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4320 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4321
4322 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4323 exec_control &= ~CPU_BASED_TPR_SHADOW;
4324 #ifdef CONFIG_X86_64
4325 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4326 CPU_BASED_CR8_LOAD_EXITING;
4327 #endif
4328 }
4329 if (!enable_ept)
4330 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4331 CPU_BASED_CR3_LOAD_EXITING |
4332 CPU_BASED_INVLPG_EXITING;
4333 return exec_control;
4334 }
4335
4336 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4337 {
4338 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4339 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4340 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4341 if (vmx->vpid == 0)
4342 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4343 if (!enable_ept) {
4344 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4345 enable_unrestricted_guest = 0;
4346 /* Enable INVPCID for non-ept guests may cause performance regression. */
4347 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4348 }
4349 if (!enable_unrestricted_guest)
4350 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4351 if (!ple_gap)
4352 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4353 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4354 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4355 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4356 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4357 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4358 (handle_vmptrld).
4359 We can NOT enable shadow_vmcs here because we don't have yet
4360 a current VMCS12
4361 */
4362 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4363 return exec_control;
4364 }
4365
4366 static void ept_set_mmio_spte_mask(void)
4367 {
4368 /*
4369 * EPT Misconfigurations can be generated if the value of bits 2:0
4370 * of an EPT paging-structure entry is 110b (write/execute).
4371 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4372 * spte.
4373 */
4374 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4375 }
4376
4377 #define VMX_XSS_EXIT_BITMAP 0
4378 /*
4379 * Sets up the vmcs for emulated real mode.
4380 */
4381 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4382 {
4383 #ifdef CONFIG_X86_64
4384 unsigned long a;
4385 #endif
4386 int i;
4387
4388 /* I/O */
4389 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4390 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4391
4392 if (enable_shadow_vmcs) {
4393 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4394 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4395 }
4396 if (cpu_has_vmx_msr_bitmap())
4397 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4398
4399 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4400
4401 /* Control */
4402 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4403
4404 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4405
4406 if (cpu_has_secondary_exec_ctrls()) {
4407 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4408 vmx_secondary_exec_control(vmx));
4409 }
4410
4411 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4412 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4413 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4414 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4415 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4416
4417 vmcs_write16(GUEST_INTR_STATUS, 0);
4418
4419 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4420 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4421 }
4422
4423 if (ple_gap) {
4424 vmcs_write32(PLE_GAP, ple_gap);
4425 vmx->ple_window = ple_window;
4426 vmx->ple_window_dirty = true;
4427 }
4428
4429 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4430 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4431 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4432
4433 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4434 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4435 vmx_set_constant_host_state(vmx);
4436 #ifdef CONFIG_X86_64
4437 rdmsrl(MSR_FS_BASE, a);
4438 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4439 rdmsrl(MSR_GS_BASE, a);
4440 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4441 #else
4442 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4443 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4444 #endif
4445
4446 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4447 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4448 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4449 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4450 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4451
4452 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4453 u32 msr_low, msr_high;
4454 u64 host_pat;
4455 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4456 host_pat = msr_low | ((u64) msr_high << 32);
4457 /* Write the default value follow host pat */
4458 vmcs_write64(GUEST_IA32_PAT, host_pat);
4459 /* Keep arch.pat sync with GUEST_IA32_PAT */
4460 vmx->vcpu.arch.pat = host_pat;
4461 }
4462
4463 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4464 u32 index = vmx_msr_index[i];
4465 u32 data_low, data_high;
4466 int j = vmx->nmsrs;
4467
4468 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4469 continue;
4470 if (wrmsr_safe(index, data_low, data_high) < 0)
4471 continue;
4472 vmx->guest_msrs[j].index = i;
4473 vmx->guest_msrs[j].data = 0;
4474 vmx->guest_msrs[j].mask = -1ull;
4475 ++vmx->nmsrs;
4476 }
4477
4478
4479 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4480
4481 /* 22.2.1, 20.8.1 */
4482 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4483
4484 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4485 set_cr4_guest_host_mask(vmx);
4486
4487 if (vmx_xsaves_supported())
4488 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4489
4490 return 0;
4491 }
4492
4493 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4494 {
4495 struct vcpu_vmx *vmx = to_vmx(vcpu);
4496 struct msr_data apic_base_msr;
4497
4498 vmx->rmode.vm86_active = 0;
4499
4500 vmx->soft_vnmi_blocked = 0;
4501
4502 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4503 kvm_set_cr8(&vmx->vcpu, 0);
4504 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4505 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4506 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4507 apic_base_msr.host_initiated = true;
4508 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4509
4510 vmx_segment_cache_clear(vmx);
4511
4512 seg_setup(VCPU_SREG_CS);
4513 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4514 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4515
4516 seg_setup(VCPU_SREG_DS);
4517 seg_setup(VCPU_SREG_ES);
4518 seg_setup(VCPU_SREG_FS);
4519 seg_setup(VCPU_SREG_GS);
4520 seg_setup(VCPU_SREG_SS);
4521
4522 vmcs_write16(GUEST_TR_SELECTOR, 0);
4523 vmcs_writel(GUEST_TR_BASE, 0);
4524 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4525 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4526
4527 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4528 vmcs_writel(GUEST_LDTR_BASE, 0);
4529 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4530 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4531
4532 vmcs_write32(GUEST_SYSENTER_CS, 0);
4533 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4534 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4535
4536 vmcs_writel(GUEST_RFLAGS, 0x02);
4537 kvm_rip_write(vcpu, 0xfff0);
4538
4539 vmcs_writel(GUEST_GDTR_BASE, 0);
4540 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4541
4542 vmcs_writel(GUEST_IDTR_BASE, 0);
4543 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4544
4545 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4546 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4547 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4548
4549 /* Special registers */
4550 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4551
4552 setup_msrs(vmx);
4553
4554 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4555
4556 if (cpu_has_vmx_tpr_shadow()) {
4557 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4558 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4559 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4560 __pa(vmx->vcpu.arch.apic->regs));
4561 vmcs_write32(TPR_THRESHOLD, 0);
4562 }
4563
4564 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4565
4566 if (vmx_vm_has_apicv(vcpu->kvm))
4567 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4568
4569 if (vmx->vpid != 0)
4570 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4571
4572 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4573 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4574 vmx_set_cr4(&vmx->vcpu, 0);
4575 vmx_set_efer(&vmx->vcpu, 0);
4576 vmx_fpu_activate(&vmx->vcpu);
4577 update_exception_bitmap(&vmx->vcpu);
4578
4579 vpid_sync_context(vmx);
4580 }
4581
4582 /*
4583 * In nested virtualization, check if L1 asked to exit on external interrupts.
4584 * For most existing hypervisors, this will always return true.
4585 */
4586 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4587 {
4588 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4589 PIN_BASED_EXT_INTR_MASK;
4590 }
4591
4592 /*
4593 * In nested virtualization, check if L1 has set
4594 * VM_EXIT_ACK_INTR_ON_EXIT
4595 */
4596 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4597 {
4598 return get_vmcs12(vcpu)->vm_exit_controls &
4599 VM_EXIT_ACK_INTR_ON_EXIT;
4600 }
4601
4602 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4603 {
4604 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4605 PIN_BASED_NMI_EXITING;
4606 }
4607
4608 static void enable_irq_window(struct kvm_vcpu *vcpu)
4609 {
4610 u32 cpu_based_vm_exec_control;
4611
4612 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4613 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4614 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4615 }
4616
4617 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4618 {
4619 u32 cpu_based_vm_exec_control;
4620
4621 if (!cpu_has_virtual_nmis() ||
4622 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4623 enable_irq_window(vcpu);
4624 return;
4625 }
4626
4627 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4628 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4629 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4630 }
4631
4632 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4633 {
4634 struct vcpu_vmx *vmx = to_vmx(vcpu);
4635 uint32_t intr;
4636 int irq = vcpu->arch.interrupt.nr;
4637
4638 trace_kvm_inj_virq(irq);
4639
4640 ++vcpu->stat.irq_injections;
4641 if (vmx->rmode.vm86_active) {
4642 int inc_eip = 0;
4643 if (vcpu->arch.interrupt.soft)
4644 inc_eip = vcpu->arch.event_exit_inst_len;
4645 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4646 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4647 return;
4648 }
4649 intr = irq | INTR_INFO_VALID_MASK;
4650 if (vcpu->arch.interrupt.soft) {
4651 intr |= INTR_TYPE_SOFT_INTR;
4652 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4653 vmx->vcpu.arch.event_exit_inst_len);
4654 } else
4655 intr |= INTR_TYPE_EXT_INTR;
4656 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4657 }
4658
4659 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4660 {
4661 struct vcpu_vmx *vmx = to_vmx(vcpu);
4662
4663 if (is_guest_mode(vcpu))
4664 return;
4665
4666 if (!cpu_has_virtual_nmis()) {
4667 /*
4668 * Tracking the NMI-blocked state in software is built upon
4669 * finding the next open IRQ window. This, in turn, depends on
4670 * well-behaving guests: They have to keep IRQs disabled at
4671 * least as long as the NMI handler runs. Otherwise we may
4672 * cause NMI nesting, maybe breaking the guest. But as this is
4673 * highly unlikely, we can live with the residual risk.
4674 */
4675 vmx->soft_vnmi_blocked = 1;
4676 vmx->vnmi_blocked_time = 0;
4677 }
4678
4679 ++vcpu->stat.nmi_injections;
4680 vmx->nmi_known_unmasked = false;
4681 if (vmx->rmode.vm86_active) {
4682 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4683 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4684 return;
4685 }
4686 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4687 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4688 }
4689
4690 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4691 {
4692 if (!cpu_has_virtual_nmis())
4693 return to_vmx(vcpu)->soft_vnmi_blocked;
4694 if (to_vmx(vcpu)->nmi_known_unmasked)
4695 return false;
4696 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4697 }
4698
4699 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4700 {
4701 struct vcpu_vmx *vmx = to_vmx(vcpu);
4702
4703 if (!cpu_has_virtual_nmis()) {
4704 if (vmx->soft_vnmi_blocked != masked) {
4705 vmx->soft_vnmi_blocked = masked;
4706 vmx->vnmi_blocked_time = 0;
4707 }
4708 } else {
4709 vmx->nmi_known_unmasked = !masked;
4710 if (masked)
4711 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4712 GUEST_INTR_STATE_NMI);
4713 else
4714 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4715 GUEST_INTR_STATE_NMI);
4716 }
4717 }
4718
4719 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4720 {
4721 if (to_vmx(vcpu)->nested.nested_run_pending)
4722 return 0;
4723
4724 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4725 return 0;
4726
4727 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4728 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4729 | GUEST_INTR_STATE_NMI));
4730 }
4731
4732 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4733 {
4734 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4735 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4736 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4737 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4738 }
4739
4740 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4741 {
4742 int ret;
4743 struct kvm_userspace_memory_region tss_mem = {
4744 .slot = TSS_PRIVATE_MEMSLOT,
4745 .guest_phys_addr = addr,
4746 .memory_size = PAGE_SIZE * 3,
4747 .flags = 0,
4748 };
4749
4750 ret = kvm_set_memory_region(kvm, &tss_mem);
4751 if (ret)
4752 return ret;
4753 kvm->arch.tss_addr = addr;
4754 return init_rmode_tss(kvm);
4755 }
4756
4757 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4758 {
4759 switch (vec) {
4760 case BP_VECTOR:
4761 /*
4762 * Update instruction length as we may reinject the exception
4763 * from user space while in guest debugging mode.
4764 */
4765 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4766 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4767 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4768 return false;
4769 /* fall through */
4770 case DB_VECTOR:
4771 if (vcpu->guest_debug &
4772 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4773 return false;
4774 /* fall through */
4775 case DE_VECTOR:
4776 case OF_VECTOR:
4777 case BR_VECTOR:
4778 case UD_VECTOR:
4779 case DF_VECTOR:
4780 case SS_VECTOR:
4781 case GP_VECTOR:
4782 case MF_VECTOR:
4783 return true;
4784 break;
4785 }
4786 return false;
4787 }
4788
4789 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4790 int vec, u32 err_code)
4791 {
4792 /*
4793 * Instruction with address size override prefix opcode 0x67
4794 * Cause the #SS fault with 0 error code in VM86 mode.
4795 */
4796 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4797 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4798 if (vcpu->arch.halt_request) {
4799 vcpu->arch.halt_request = 0;
4800 return kvm_emulate_halt(vcpu);
4801 }
4802 return 1;
4803 }
4804 return 0;
4805 }
4806
4807 /*
4808 * Forward all other exceptions that are valid in real mode.
4809 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4810 * the required debugging infrastructure rework.
4811 */
4812 kvm_queue_exception(vcpu, vec);
4813 return 1;
4814 }
4815
4816 /*
4817 * Trigger machine check on the host. We assume all the MSRs are already set up
4818 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4819 * We pass a fake environment to the machine check handler because we want
4820 * the guest to be always treated like user space, no matter what context
4821 * it used internally.
4822 */
4823 static void kvm_machine_check(void)
4824 {
4825 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4826 struct pt_regs regs = {
4827 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4828 .flags = X86_EFLAGS_IF,
4829 };
4830
4831 do_machine_check(&regs, 0);
4832 #endif
4833 }
4834
4835 static int handle_machine_check(struct kvm_vcpu *vcpu)
4836 {
4837 /* already handled by vcpu_run */
4838 return 1;
4839 }
4840
4841 static int handle_exception(struct kvm_vcpu *vcpu)
4842 {
4843 struct vcpu_vmx *vmx = to_vmx(vcpu);
4844 struct kvm_run *kvm_run = vcpu->run;
4845 u32 intr_info, ex_no, error_code;
4846 unsigned long cr2, rip, dr6;
4847 u32 vect_info;
4848 enum emulation_result er;
4849
4850 vect_info = vmx->idt_vectoring_info;
4851 intr_info = vmx->exit_intr_info;
4852
4853 if (is_machine_check(intr_info))
4854 return handle_machine_check(vcpu);
4855
4856 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4857 return 1; /* already handled by vmx_vcpu_run() */
4858
4859 if (is_no_device(intr_info)) {
4860 vmx_fpu_activate(vcpu);
4861 return 1;
4862 }
4863
4864 if (is_invalid_opcode(intr_info)) {
4865 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4866 if (er != EMULATE_DONE)
4867 kvm_queue_exception(vcpu, UD_VECTOR);
4868 return 1;
4869 }
4870
4871 error_code = 0;
4872 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4873 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4874
4875 /*
4876 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4877 * MMIO, it is better to report an internal error.
4878 * See the comments in vmx_handle_exit.
4879 */
4880 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4881 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4882 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4883 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4884 vcpu->run->internal.ndata = 2;
4885 vcpu->run->internal.data[0] = vect_info;
4886 vcpu->run->internal.data[1] = intr_info;
4887 return 0;
4888 }
4889
4890 if (is_page_fault(intr_info)) {
4891 /* EPT won't cause page fault directly */
4892 BUG_ON(enable_ept);
4893 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4894 trace_kvm_page_fault(cr2, error_code);
4895
4896 if (kvm_event_needs_reinjection(vcpu))
4897 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4898 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4899 }
4900
4901 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4902
4903 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4904 return handle_rmode_exception(vcpu, ex_no, error_code);
4905
4906 switch (ex_no) {
4907 case DB_VECTOR:
4908 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4909 if (!(vcpu->guest_debug &
4910 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4911 vcpu->arch.dr6 &= ~15;
4912 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4913 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4914 skip_emulated_instruction(vcpu);
4915
4916 kvm_queue_exception(vcpu, DB_VECTOR);
4917 return 1;
4918 }
4919 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4920 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4921 /* fall through */
4922 case BP_VECTOR:
4923 /*
4924 * Update instruction length as we may reinject #BP from
4925 * user space while in guest debugging mode. Reading it for
4926 * #DB as well causes no harm, it is not used in that case.
4927 */
4928 vmx->vcpu.arch.event_exit_inst_len =
4929 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4930 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4931 rip = kvm_rip_read(vcpu);
4932 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4933 kvm_run->debug.arch.exception = ex_no;
4934 break;
4935 default:
4936 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4937 kvm_run->ex.exception = ex_no;
4938 kvm_run->ex.error_code = error_code;
4939 break;
4940 }
4941 return 0;
4942 }
4943
4944 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4945 {
4946 ++vcpu->stat.irq_exits;
4947 return 1;
4948 }
4949
4950 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4951 {
4952 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4953 return 0;
4954 }
4955
4956 static int handle_io(struct kvm_vcpu *vcpu)
4957 {
4958 unsigned long exit_qualification;
4959 int size, in, string;
4960 unsigned port;
4961
4962 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4963 string = (exit_qualification & 16) != 0;
4964 in = (exit_qualification & 8) != 0;
4965
4966 ++vcpu->stat.io_exits;
4967
4968 if (string || in)
4969 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4970
4971 port = exit_qualification >> 16;
4972 size = (exit_qualification & 7) + 1;
4973 skip_emulated_instruction(vcpu);
4974
4975 return kvm_fast_pio_out(vcpu, size, port);
4976 }
4977
4978 static void
4979 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4980 {
4981 /*
4982 * Patch in the VMCALL instruction:
4983 */
4984 hypercall[0] = 0x0f;
4985 hypercall[1] = 0x01;
4986 hypercall[2] = 0xc1;
4987 }
4988
4989 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4990 {
4991 unsigned long always_on = VMXON_CR0_ALWAYSON;
4992
4993 if (nested_vmx_secondary_ctls_high &
4994 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4995 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4996 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4997 return (val & always_on) == always_on;
4998 }
4999
5000 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5001 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5002 {
5003 if (is_guest_mode(vcpu)) {
5004 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5005 unsigned long orig_val = val;
5006
5007 /*
5008 * We get here when L2 changed cr0 in a way that did not change
5009 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5010 * but did change L0 shadowed bits. So we first calculate the
5011 * effective cr0 value that L1 would like to write into the
5012 * hardware. It consists of the L2-owned bits from the new
5013 * value combined with the L1-owned bits from L1's guest_cr0.
5014 */
5015 val = (val & ~vmcs12->cr0_guest_host_mask) |
5016 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5017
5018 if (!nested_cr0_valid(vmcs12, val))
5019 return 1;
5020
5021 if (kvm_set_cr0(vcpu, val))
5022 return 1;
5023 vmcs_writel(CR0_READ_SHADOW, orig_val);
5024 return 0;
5025 } else {
5026 if (to_vmx(vcpu)->nested.vmxon &&
5027 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5028 return 1;
5029 return kvm_set_cr0(vcpu, val);
5030 }
5031 }
5032
5033 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5034 {
5035 if (is_guest_mode(vcpu)) {
5036 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5037 unsigned long orig_val = val;
5038
5039 /* analogously to handle_set_cr0 */
5040 val = (val & ~vmcs12->cr4_guest_host_mask) |
5041 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5042 if (kvm_set_cr4(vcpu, val))
5043 return 1;
5044 vmcs_writel(CR4_READ_SHADOW, orig_val);
5045 return 0;
5046 } else
5047 return kvm_set_cr4(vcpu, val);
5048 }
5049
5050 /* called to set cr0 as approriate for clts instruction exit. */
5051 static void handle_clts(struct kvm_vcpu *vcpu)
5052 {
5053 if (is_guest_mode(vcpu)) {
5054 /*
5055 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5056 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5057 * just pretend it's off (also in arch.cr0 for fpu_activate).
5058 */
5059 vmcs_writel(CR0_READ_SHADOW,
5060 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5061 vcpu->arch.cr0 &= ~X86_CR0_TS;
5062 } else
5063 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5064 }
5065
5066 static int handle_cr(struct kvm_vcpu *vcpu)
5067 {
5068 unsigned long exit_qualification, val;
5069 int cr;
5070 int reg;
5071 int err;
5072
5073 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5074 cr = exit_qualification & 15;
5075 reg = (exit_qualification >> 8) & 15;
5076 switch ((exit_qualification >> 4) & 3) {
5077 case 0: /* mov to cr */
5078 val = kvm_register_readl(vcpu, reg);
5079 trace_kvm_cr_write(cr, val);
5080 switch (cr) {
5081 case 0:
5082 err = handle_set_cr0(vcpu, val);
5083 kvm_complete_insn_gp(vcpu, err);
5084 return 1;
5085 case 3:
5086 err = kvm_set_cr3(vcpu, val);
5087 kvm_complete_insn_gp(vcpu, err);
5088 return 1;
5089 case 4:
5090 err = handle_set_cr4(vcpu, val);
5091 kvm_complete_insn_gp(vcpu, err);
5092 return 1;
5093 case 8: {
5094 u8 cr8_prev = kvm_get_cr8(vcpu);
5095 u8 cr8 = (u8)val;
5096 err = kvm_set_cr8(vcpu, cr8);
5097 kvm_complete_insn_gp(vcpu, err);
5098 if (irqchip_in_kernel(vcpu->kvm))
5099 return 1;
5100 if (cr8_prev <= cr8)
5101 return 1;
5102 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5103 return 0;
5104 }
5105 }
5106 break;
5107 case 2: /* clts */
5108 handle_clts(vcpu);
5109 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5110 skip_emulated_instruction(vcpu);
5111 vmx_fpu_activate(vcpu);
5112 return 1;
5113 case 1: /*mov from cr*/
5114 switch (cr) {
5115 case 3:
5116 val = kvm_read_cr3(vcpu);
5117 kvm_register_write(vcpu, reg, val);
5118 trace_kvm_cr_read(cr, val);
5119 skip_emulated_instruction(vcpu);
5120 return 1;
5121 case 8:
5122 val = kvm_get_cr8(vcpu);
5123 kvm_register_write(vcpu, reg, val);
5124 trace_kvm_cr_read(cr, val);
5125 skip_emulated_instruction(vcpu);
5126 return 1;
5127 }
5128 break;
5129 case 3: /* lmsw */
5130 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5131 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5132 kvm_lmsw(vcpu, val);
5133
5134 skip_emulated_instruction(vcpu);
5135 return 1;
5136 default:
5137 break;
5138 }
5139 vcpu->run->exit_reason = 0;
5140 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5141 (int)(exit_qualification >> 4) & 3, cr);
5142 return 0;
5143 }
5144
5145 static int handle_dr(struct kvm_vcpu *vcpu)
5146 {
5147 unsigned long exit_qualification;
5148 int dr, dr7, reg;
5149
5150 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5151 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5152
5153 /* First, if DR does not exist, trigger UD */
5154 if (!kvm_require_dr(vcpu, dr))
5155 return 1;
5156
5157 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5158 if (!kvm_require_cpl(vcpu, 0))
5159 return 1;
5160 dr7 = vmcs_readl(GUEST_DR7);
5161 if (dr7 & DR7_GD) {
5162 /*
5163 * As the vm-exit takes precedence over the debug trap, we
5164 * need to emulate the latter, either for the host or the
5165 * guest debugging itself.
5166 */
5167 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5168 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5169 vcpu->run->debug.arch.dr7 = dr7;
5170 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5171 vcpu->run->debug.arch.exception = DB_VECTOR;
5172 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5173 return 0;
5174 } else {
5175 vcpu->arch.dr6 &= ~15;
5176 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5177 kvm_queue_exception(vcpu, DB_VECTOR);
5178 return 1;
5179 }
5180 }
5181
5182 if (vcpu->guest_debug == 0) {
5183 u32 cpu_based_vm_exec_control;
5184
5185 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5186 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5187 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5188
5189 /*
5190 * No more DR vmexits; force a reload of the debug registers
5191 * and reenter on this instruction. The next vmexit will
5192 * retrieve the full state of the debug registers.
5193 */
5194 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5195 return 1;
5196 }
5197
5198 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5199 if (exit_qualification & TYPE_MOV_FROM_DR) {
5200 unsigned long val;
5201
5202 if (kvm_get_dr(vcpu, dr, &val))
5203 return 1;
5204 kvm_register_write(vcpu, reg, val);
5205 } else
5206 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5207 return 1;
5208
5209 skip_emulated_instruction(vcpu);
5210 return 1;
5211 }
5212
5213 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5214 {
5215 return vcpu->arch.dr6;
5216 }
5217
5218 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5219 {
5220 }
5221
5222 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5223 {
5224 u32 cpu_based_vm_exec_control;
5225
5226 get_debugreg(vcpu->arch.db[0], 0);
5227 get_debugreg(vcpu->arch.db[1], 1);
5228 get_debugreg(vcpu->arch.db[2], 2);
5229 get_debugreg(vcpu->arch.db[3], 3);
5230 get_debugreg(vcpu->arch.dr6, 6);
5231 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5232
5233 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5234
5235 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5236 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5237 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5238 }
5239
5240 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5241 {
5242 vmcs_writel(GUEST_DR7, val);
5243 }
5244
5245 static int handle_cpuid(struct kvm_vcpu *vcpu)
5246 {
5247 kvm_emulate_cpuid(vcpu);
5248 return 1;
5249 }
5250
5251 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5252 {
5253 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5254 u64 data;
5255
5256 if (vmx_get_msr(vcpu, ecx, &data)) {
5257 trace_kvm_msr_read_ex(ecx);
5258 kvm_inject_gp(vcpu, 0);
5259 return 1;
5260 }
5261
5262 trace_kvm_msr_read(ecx, data);
5263
5264 /* FIXME: handling of bits 32:63 of rax, rdx */
5265 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5266 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5267 skip_emulated_instruction(vcpu);
5268 return 1;
5269 }
5270
5271 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5272 {
5273 struct msr_data msr;
5274 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5275 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5276 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5277
5278 msr.data = data;
5279 msr.index = ecx;
5280 msr.host_initiated = false;
5281 if (kvm_set_msr(vcpu, &msr) != 0) {
5282 trace_kvm_msr_write_ex(ecx, data);
5283 kvm_inject_gp(vcpu, 0);
5284 return 1;
5285 }
5286
5287 trace_kvm_msr_write(ecx, data);
5288 skip_emulated_instruction(vcpu);
5289 return 1;
5290 }
5291
5292 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5293 {
5294 kvm_make_request(KVM_REQ_EVENT, vcpu);
5295 return 1;
5296 }
5297
5298 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5299 {
5300 u32 cpu_based_vm_exec_control;
5301
5302 /* clear pending irq */
5303 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5304 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5305 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5306
5307 kvm_make_request(KVM_REQ_EVENT, vcpu);
5308
5309 ++vcpu->stat.irq_window_exits;
5310
5311 /*
5312 * If the user space waits to inject interrupts, exit as soon as
5313 * possible
5314 */
5315 if (!irqchip_in_kernel(vcpu->kvm) &&
5316 vcpu->run->request_interrupt_window &&
5317 !kvm_cpu_has_interrupt(vcpu)) {
5318 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5319 return 0;
5320 }
5321 return 1;
5322 }
5323
5324 static int handle_halt(struct kvm_vcpu *vcpu)
5325 {
5326 skip_emulated_instruction(vcpu);
5327 return kvm_emulate_halt(vcpu);
5328 }
5329
5330 static int handle_vmcall(struct kvm_vcpu *vcpu)
5331 {
5332 skip_emulated_instruction(vcpu);
5333 kvm_emulate_hypercall(vcpu);
5334 return 1;
5335 }
5336
5337 static int handle_invd(struct kvm_vcpu *vcpu)
5338 {
5339 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5340 }
5341
5342 static int handle_invlpg(struct kvm_vcpu *vcpu)
5343 {
5344 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5345
5346 kvm_mmu_invlpg(vcpu, exit_qualification);
5347 skip_emulated_instruction(vcpu);
5348 return 1;
5349 }
5350
5351 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5352 {
5353 int err;
5354
5355 err = kvm_rdpmc(vcpu);
5356 kvm_complete_insn_gp(vcpu, err);
5357
5358 return 1;
5359 }
5360
5361 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5362 {
5363 skip_emulated_instruction(vcpu);
5364 kvm_emulate_wbinvd(vcpu);
5365 return 1;
5366 }
5367
5368 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5369 {
5370 u64 new_bv = kvm_read_edx_eax(vcpu);
5371 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5372
5373 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5374 skip_emulated_instruction(vcpu);
5375 return 1;
5376 }
5377
5378 static int handle_xsaves(struct kvm_vcpu *vcpu)
5379 {
5380 skip_emulated_instruction(vcpu);
5381 WARN(1, "this should never happen\n");
5382 return 1;
5383 }
5384
5385 static int handle_xrstors(struct kvm_vcpu *vcpu)
5386 {
5387 skip_emulated_instruction(vcpu);
5388 WARN(1, "this should never happen\n");
5389 return 1;
5390 }
5391
5392 static int handle_apic_access(struct kvm_vcpu *vcpu)
5393 {
5394 if (likely(fasteoi)) {
5395 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5396 int access_type, offset;
5397
5398 access_type = exit_qualification & APIC_ACCESS_TYPE;
5399 offset = exit_qualification & APIC_ACCESS_OFFSET;
5400 /*
5401 * Sane guest uses MOV to write EOI, with written value
5402 * not cared. So make a short-circuit here by avoiding
5403 * heavy instruction emulation.
5404 */
5405 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5406 (offset == APIC_EOI)) {
5407 kvm_lapic_set_eoi(vcpu);
5408 skip_emulated_instruction(vcpu);
5409 return 1;
5410 }
5411 }
5412 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5413 }
5414
5415 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5416 {
5417 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418 int vector = exit_qualification & 0xff;
5419
5420 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5421 kvm_apic_set_eoi_accelerated(vcpu, vector);
5422 return 1;
5423 }
5424
5425 static int handle_apic_write(struct kvm_vcpu *vcpu)
5426 {
5427 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5428 u32 offset = exit_qualification & 0xfff;
5429
5430 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5431 kvm_apic_write_nodecode(vcpu, offset);
5432 return 1;
5433 }
5434
5435 static int handle_task_switch(struct kvm_vcpu *vcpu)
5436 {
5437 struct vcpu_vmx *vmx = to_vmx(vcpu);
5438 unsigned long exit_qualification;
5439 bool has_error_code = false;
5440 u32 error_code = 0;
5441 u16 tss_selector;
5442 int reason, type, idt_v, idt_index;
5443
5444 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5445 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5446 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5447
5448 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5449
5450 reason = (u32)exit_qualification >> 30;
5451 if (reason == TASK_SWITCH_GATE && idt_v) {
5452 switch (type) {
5453 case INTR_TYPE_NMI_INTR:
5454 vcpu->arch.nmi_injected = false;
5455 vmx_set_nmi_mask(vcpu, true);
5456 break;
5457 case INTR_TYPE_EXT_INTR:
5458 case INTR_TYPE_SOFT_INTR:
5459 kvm_clear_interrupt_queue(vcpu);
5460 break;
5461 case INTR_TYPE_HARD_EXCEPTION:
5462 if (vmx->idt_vectoring_info &
5463 VECTORING_INFO_DELIVER_CODE_MASK) {
5464 has_error_code = true;
5465 error_code =
5466 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5467 }
5468 /* fall through */
5469 case INTR_TYPE_SOFT_EXCEPTION:
5470 kvm_clear_exception_queue(vcpu);
5471 break;
5472 default:
5473 break;
5474 }
5475 }
5476 tss_selector = exit_qualification;
5477
5478 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5479 type != INTR_TYPE_EXT_INTR &&
5480 type != INTR_TYPE_NMI_INTR))
5481 skip_emulated_instruction(vcpu);
5482
5483 if (kvm_task_switch(vcpu, tss_selector,
5484 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5485 has_error_code, error_code) == EMULATE_FAIL) {
5486 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5487 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5488 vcpu->run->internal.ndata = 0;
5489 return 0;
5490 }
5491
5492 /* clear all local breakpoint enable flags */
5493 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
5494
5495 /*
5496 * TODO: What about debug traps on tss switch?
5497 * Are we supposed to inject them and update dr6?
5498 */
5499
5500 return 1;
5501 }
5502
5503 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5504 {
5505 unsigned long exit_qualification;
5506 gpa_t gpa;
5507 u32 error_code;
5508 int gla_validity;
5509
5510 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5511
5512 gla_validity = (exit_qualification >> 7) & 0x3;
5513 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5514 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5515 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5516 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5517 vmcs_readl(GUEST_LINEAR_ADDRESS));
5518 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5519 (long unsigned int)exit_qualification);
5520 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5521 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5522 return 0;
5523 }
5524
5525 /*
5526 * EPT violation happened while executing iret from NMI,
5527 * "blocked by NMI" bit has to be set before next VM entry.
5528 * There are errata that may cause this bit to not be set:
5529 * AAK134, BY25.
5530 */
5531 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5532 cpu_has_virtual_nmis() &&
5533 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5534 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5535
5536 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5537 trace_kvm_page_fault(gpa, exit_qualification);
5538
5539 /* It is a write fault? */
5540 error_code = exit_qualification & PFERR_WRITE_MASK;
5541 /* It is a fetch fault? */
5542 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5543 /* ept page table is present? */
5544 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5545
5546 vcpu->arch.exit_qualification = exit_qualification;
5547
5548 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5549 }
5550
5551 static u64 ept_rsvd_mask(u64 spte, int level)
5552 {
5553 int i;
5554 u64 mask = 0;
5555
5556 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5557 mask |= (1ULL << i);
5558
5559 if (level == 4)
5560 /* bits 7:3 reserved */
5561 mask |= 0xf8;
5562 else if (spte & (1ULL << 7))
5563 /*
5564 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5565 * level == 1 if the hypervisor is using the ignored bit 7.
5566 */
5567 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5568 else if (level > 1)
5569 /* bits 6:3 reserved */
5570 mask |= 0x78;
5571
5572 return mask;
5573 }
5574
5575 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5576 int level)
5577 {
5578 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5579
5580 /* 010b (write-only) */
5581 WARN_ON((spte & 0x7) == 0x2);
5582
5583 /* 110b (write/execute) */
5584 WARN_ON((spte & 0x7) == 0x6);
5585
5586 /* 100b (execute-only) and value not supported by logical processor */
5587 if (!cpu_has_vmx_ept_execute_only())
5588 WARN_ON((spte & 0x7) == 0x4);
5589
5590 /* not 000b */
5591 if ((spte & 0x7)) {
5592 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5593
5594 if (rsvd_bits != 0) {
5595 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5596 __func__, rsvd_bits);
5597 WARN_ON(1);
5598 }
5599
5600 /* bits 5:3 are _not_ reserved for large page or leaf page */
5601 if ((rsvd_bits & 0x38) == 0) {
5602 u64 ept_mem_type = (spte & 0x38) >> 3;
5603
5604 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5605 ept_mem_type == 7) {
5606 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5607 __func__, ept_mem_type);
5608 WARN_ON(1);
5609 }
5610 }
5611 }
5612 }
5613
5614 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5615 {
5616 u64 sptes[4];
5617 int nr_sptes, i, ret;
5618 gpa_t gpa;
5619
5620 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5621 if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5622 skip_emulated_instruction(vcpu);
5623 return 1;
5624 }
5625
5626 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5627 if (likely(ret == RET_MMIO_PF_EMULATE))
5628 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5629 EMULATE_DONE;
5630
5631 if (unlikely(ret == RET_MMIO_PF_INVALID))
5632 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5633
5634 if (unlikely(ret == RET_MMIO_PF_RETRY))
5635 return 1;
5636
5637 /* It is the real ept misconfig */
5638 printk(KERN_ERR "EPT: Misconfiguration.\n");
5639 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5640
5641 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5642
5643 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5644 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5645
5646 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5647 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5648
5649 return 0;
5650 }
5651
5652 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5653 {
5654 u32 cpu_based_vm_exec_control;
5655
5656 /* clear pending NMI */
5657 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5658 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5659 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5660 ++vcpu->stat.nmi_window_exits;
5661 kvm_make_request(KVM_REQ_EVENT, vcpu);
5662
5663 return 1;
5664 }
5665
5666 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5667 {
5668 struct vcpu_vmx *vmx = to_vmx(vcpu);
5669 enum emulation_result err = EMULATE_DONE;
5670 int ret = 1;
5671 u32 cpu_exec_ctrl;
5672 bool intr_window_requested;
5673 unsigned count = 130;
5674
5675 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5676 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5677
5678 while (vmx->emulation_required && count-- != 0) {
5679 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5680 return handle_interrupt_window(&vmx->vcpu);
5681
5682 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5683 return 1;
5684
5685 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5686
5687 if (err == EMULATE_USER_EXIT) {
5688 ++vcpu->stat.mmio_exits;
5689 ret = 0;
5690 goto out;
5691 }
5692
5693 if (err != EMULATE_DONE) {
5694 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5695 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5696 vcpu->run->internal.ndata = 0;
5697 return 0;
5698 }
5699
5700 if (vcpu->arch.halt_request) {
5701 vcpu->arch.halt_request = 0;
5702 ret = kvm_emulate_halt(vcpu);
5703 goto out;
5704 }
5705
5706 if (signal_pending(current))
5707 goto out;
5708 if (need_resched())
5709 schedule();
5710 }
5711
5712 out:
5713 return ret;
5714 }
5715
5716 static int __grow_ple_window(int val)
5717 {
5718 if (ple_window_grow < 1)
5719 return ple_window;
5720
5721 val = min(val, ple_window_actual_max);
5722
5723 if (ple_window_grow < ple_window)
5724 val *= ple_window_grow;
5725 else
5726 val += ple_window_grow;
5727
5728 return val;
5729 }
5730
5731 static int __shrink_ple_window(int val, int modifier, int minimum)
5732 {
5733 if (modifier < 1)
5734 return ple_window;
5735
5736 if (modifier < ple_window)
5737 val /= modifier;
5738 else
5739 val -= modifier;
5740
5741 return max(val, minimum);
5742 }
5743
5744 static void grow_ple_window(struct kvm_vcpu *vcpu)
5745 {
5746 struct vcpu_vmx *vmx = to_vmx(vcpu);
5747 int old = vmx->ple_window;
5748
5749 vmx->ple_window = __grow_ple_window(old);
5750
5751 if (vmx->ple_window != old)
5752 vmx->ple_window_dirty = true;
5753
5754 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5755 }
5756
5757 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5758 {
5759 struct vcpu_vmx *vmx = to_vmx(vcpu);
5760 int old = vmx->ple_window;
5761
5762 vmx->ple_window = __shrink_ple_window(old,
5763 ple_window_shrink, ple_window);
5764
5765 if (vmx->ple_window != old)
5766 vmx->ple_window_dirty = true;
5767
5768 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5769 }
5770
5771 /*
5772 * ple_window_actual_max is computed to be one grow_ple_window() below
5773 * ple_window_max. (See __grow_ple_window for the reason.)
5774 * This prevents overflows, because ple_window_max is int.
5775 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5776 * this process.
5777 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5778 */
5779 static void update_ple_window_actual_max(void)
5780 {
5781 ple_window_actual_max =
5782 __shrink_ple_window(max(ple_window_max, ple_window),
5783 ple_window_grow, INT_MIN);
5784 }
5785
5786 static __init int hardware_setup(void)
5787 {
5788 int r = -ENOMEM, i, msr;
5789
5790 rdmsrl_safe(MSR_EFER, &host_efer);
5791
5792 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5793 kvm_define_shared_msr(i, vmx_msr_index[i]);
5794
5795 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5796 if (!vmx_io_bitmap_a)
5797 return r;
5798
5799 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5800 if (!vmx_io_bitmap_b)
5801 goto out;
5802
5803 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5804 if (!vmx_msr_bitmap_legacy)
5805 goto out1;
5806
5807 vmx_msr_bitmap_legacy_x2apic =
5808 (unsigned long *)__get_free_page(GFP_KERNEL);
5809 if (!vmx_msr_bitmap_legacy_x2apic)
5810 goto out2;
5811
5812 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5813 if (!vmx_msr_bitmap_longmode)
5814 goto out3;
5815
5816 vmx_msr_bitmap_longmode_x2apic =
5817 (unsigned long *)__get_free_page(GFP_KERNEL);
5818 if (!vmx_msr_bitmap_longmode_x2apic)
5819 goto out4;
5820 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5821 if (!vmx_vmread_bitmap)
5822 goto out5;
5823
5824 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5825 if (!vmx_vmwrite_bitmap)
5826 goto out6;
5827
5828 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5829 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5830
5831 /*
5832 * Allow direct access to the PC debug port (it is often used for I/O
5833 * delays, but the vmexits simply slow things down).
5834 */
5835 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5836 clear_bit(0x80, vmx_io_bitmap_a);
5837
5838 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5839
5840 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5841 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5842
5843 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
5844 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
5845 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
5846 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
5847 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
5848 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
5849 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
5850
5851 memcpy(vmx_msr_bitmap_legacy_x2apic,
5852 vmx_msr_bitmap_legacy, PAGE_SIZE);
5853 memcpy(vmx_msr_bitmap_longmode_x2apic,
5854 vmx_msr_bitmap_longmode, PAGE_SIZE);
5855
5856 if (enable_apicv) {
5857 for (msr = 0x800; msr <= 0x8ff; msr++)
5858 vmx_disable_intercept_msr_read_x2apic(msr);
5859
5860 /* According SDM, in x2apic mode, the whole id reg is used.
5861 * But in KVM, it only use the highest eight bits. Need to
5862 * intercept it */
5863 vmx_enable_intercept_msr_read_x2apic(0x802);
5864 /* TMCCT */
5865 vmx_enable_intercept_msr_read_x2apic(0x839);
5866 /* TPR */
5867 vmx_disable_intercept_msr_write_x2apic(0x808);
5868 /* EOI */
5869 vmx_disable_intercept_msr_write_x2apic(0x80b);
5870 /* SELF-IPI */
5871 vmx_disable_intercept_msr_write_x2apic(0x83f);
5872 }
5873
5874 if (enable_ept) {
5875 kvm_mmu_set_mask_ptes(0ull,
5876 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
5877 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
5878 0ull, VMX_EPT_EXECUTABLE_MASK);
5879 ept_set_mmio_spte_mask();
5880 kvm_enable_tdp();
5881 } else
5882 kvm_disable_tdp();
5883
5884 update_ple_window_actual_max();
5885
5886 if (setup_vmcs_config(&vmcs_config) < 0) {
5887 r = -EIO;
5888 goto out7;
5889 }
5890
5891 if (boot_cpu_has(X86_FEATURE_NX))
5892 kvm_enable_efer_bits(EFER_NX);
5893
5894 if (!cpu_has_vmx_vpid())
5895 enable_vpid = 0;
5896 if (!cpu_has_vmx_shadow_vmcs())
5897 enable_shadow_vmcs = 0;
5898 if (enable_shadow_vmcs)
5899 init_vmcs_shadow_fields();
5900
5901 if (!cpu_has_vmx_ept() ||
5902 !cpu_has_vmx_ept_4levels()) {
5903 enable_ept = 0;
5904 enable_unrestricted_guest = 0;
5905 enable_ept_ad_bits = 0;
5906 }
5907
5908 if (!cpu_has_vmx_ept_ad_bits())
5909 enable_ept_ad_bits = 0;
5910
5911 if (!cpu_has_vmx_unrestricted_guest())
5912 enable_unrestricted_guest = 0;
5913
5914 if (!cpu_has_vmx_flexpriority()) {
5915 flexpriority_enabled = 0;
5916
5917 /*
5918 * set_apic_access_page_addr() is used to reload apic access
5919 * page upon invalidation. No need to do anything if the
5920 * processor does not have the APIC_ACCESS_ADDR VMCS field.
5921 */
5922 kvm_x86_ops->set_apic_access_page_addr = NULL;
5923 }
5924
5925 if (!cpu_has_vmx_tpr_shadow())
5926 kvm_x86_ops->update_cr8_intercept = NULL;
5927
5928 if (enable_ept && !cpu_has_vmx_ept_2m_page())
5929 kvm_disable_largepages();
5930
5931 if (!cpu_has_vmx_ple())
5932 ple_gap = 0;
5933
5934 if (!cpu_has_vmx_apicv())
5935 enable_apicv = 0;
5936
5937 if (enable_apicv)
5938 kvm_x86_ops->update_cr8_intercept = NULL;
5939 else {
5940 kvm_x86_ops->hwapic_irr_update = NULL;
5941 kvm_x86_ops->deliver_posted_interrupt = NULL;
5942 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
5943 }
5944
5945 if (nested)
5946 nested_vmx_setup_ctls_msrs();
5947
5948 return alloc_kvm_area();
5949
5950 out7:
5951 free_page((unsigned long)vmx_vmwrite_bitmap);
5952 out6:
5953 free_page((unsigned long)vmx_vmread_bitmap);
5954 out5:
5955 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5956 out4:
5957 free_page((unsigned long)vmx_msr_bitmap_longmode);
5958 out3:
5959 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5960 out2:
5961 free_page((unsigned long)vmx_msr_bitmap_legacy);
5962 out1:
5963 free_page((unsigned long)vmx_io_bitmap_b);
5964 out:
5965 free_page((unsigned long)vmx_io_bitmap_a);
5966
5967 return r;
5968 }
5969
5970 static __exit void hardware_unsetup(void)
5971 {
5972 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5973 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5974 free_page((unsigned long)vmx_msr_bitmap_legacy);
5975 free_page((unsigned long)vmx_msr_bitmap_longmode);
5976 free_page((unsigned long)vmx_io_bitmap_b);
5977 free_page((unsigned long)vmx_io_bitmap_a);
5978 free_page((unsigned long)vmx_vmwrite_bitmap);
5979 free_page((unsigned long)vmx_vmread_bitmap);
5980
5981 free_kvm_area();
5982 }
5983
5984 /*
5985 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5986 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5987 */
5988 static int handle_pause(struct kvm_vcpu *vcpu)
5989 {
5990 if (ple_gap)
5991 grow_ple_window(vcpu);
5992
5993 skip_emulated_instruction(vcpu);
5994 kvm_vcpu_on_spin(vcpu);
5995
5996 return 1;
5997 }
5998
5999 static int handle_nop(struct kvm_vcpu *vcpu)
6000 {
6001 skip_emulated_instruction(vcpu);
6002 return 1;
6003 }
6004
6005 static int handle_mwait(struct kvm_vcpu *vcpu)
6006 {
6007 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6008 return handle_nop(vcpu);
6009 }
6010
6011 static int handle_monitor(struct kvm_vcpu *vcpu)
6012 {
6013 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6014 return handle_nop(vcpu);
6015 }
6016
6017 /*
6018 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6019 * We could reuse a single VMCS for all the L2 guests, but we also want the
6020 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6021 * allows keeping them loaded on the processor, and in the future will allow
6022 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6023 * every entry if they never change.
6024 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6025 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6026 *
6027 * The following functions allocate and free a vmcs02 in this pool.
6028 */
6029
6030 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6031 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6032 {
6033 struct vmcs02_list *item;
6034 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6035 if (item->vmptr == vmx->nested.current_vmptr) {
6036 list_move(&item->list, &vmx->nested.vmcs02_pool);
6037 return &item->vmcs02;
6038 }
6039
6040 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6041 /* Recycle the least recently used VMCS. */
6042 item = list_entry(vmx->nested.vmcs02_pool.prev,
6043 struct vmcs02_list, list);
6044 item->vmptr = vmx->nested.current_vmptr;
6045 list_move(&item->list, &vmx->nested.vmcs02_pool);
6046 return &item->vmcs02;
6047 }
6048
6049 /* Create a new VMCS */
6050 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6051 if (!item)
6052 return NULL;
6053 item->vmcs02.vmcs = alloc_vmcs();
6054 if (!item->vmcs02.vmcs) {
6055 kfree(item);
6056 return NULL;
6057 }
6058 loaded_vmcs_init(&item->vmcs02);
6059 item->vmptr = vmx->nested.current_vmptr;
6060 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6061 vmx->nested.vmcs02_num++;
6062 return &item->vmcs02;
6063 }
6064
6065 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6066 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6067 {
6068 struct vmcs02_list *item;
6069 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6070 if (item->vmptr == vmptr) {
6071 free_loaded_vmcs(&item->vmcs02);
6072 list_del(&item->list);
6073 kfree(item);
6074 vmx->nested.vmcs02_num--;
6075 return;
6076 }
6077 }
6078
6079 /*
6080 * Free all VMCSs saved for this vcpu, except the one pointed by
6081 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6082 * must be &vmx->vmcs01.
6083 */
6084 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6085 {
6086 struct vmcs02_list *item, *n;
6087
6088 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6089 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6090 /*
6091 * Something will leak if the above WARN triggers. Better than
6092 * a use-after-free.
6093 */
6094 if (vmx->loaded_vmcs == &item->vmcs02)
6095 continue;
6096
6097 free_loaded_vmcs(&item->vmcs02);
6098 list_del(&item->list);
6099 kfree(item);
6100 vmx->nested.vmcs02_num--;
6101 }
6102 }
6103
6104 /*
6105 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6106 * set the success or error code of an emulated VMX instruction, as specified
6107 * by Vol 2B, VMX Instruction Reference, "Conventions".
6108 */
6109 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6110 {
6111 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6112 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6113 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6114 }
6115
6116 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6117 {
6118 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6119 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6120 X86_EFLAGS_SF | X86_EFLAGS_OF))
6121 | X86_EFLAGS_CF);
6122 }
6123
6124 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6125 u32 vm_instruction_error)
6126 {
6127 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6128 /*
6129 * failValid writes the error number to the current VMCS, which
6130 * can't be done there isn't a current VMCS.
6131 */
6132 nested_vmx_failInvalid(vcpu);
6133 return;
6134 }
6135 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6136 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6137 X86_EFLAGS_SF | X86_EFLAGS_OF))
6138 | X86_EFLAGS_ZF);
6139 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6140 /*
6141 * We don't need to force a shadow sync because
6142 * VM_INSTRUCTION_ERROR is not shadowed
6143 */
6144 }
6145
6146 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6147 {
6148 struct vcpu_vmx *vmx =
6149 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6150
6151 vmx->nested.preemption_timer_expired = true;
6152 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6153 kvm_vcpu_kick(&vmx->vcpu);
6154
6155 return HRTIMER_NORESTART;
6156 }
6157
6158 /*
6159 * Decode the memory-address operand of a vmx instruction, as recorded on an
6160 * exit caused by such an instruction (run by a guest hypervisor).
6161 * On success, returns 0. When the operand is invalid, returns 1 and throws
6162 * #UD or #GP.
6163 */
6164 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6165 unsigned long exit_qualification,
6166 u32 vmx_instruction_info, gva_t *ret)
6167 {
6168 /*
6169 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6170 * Execution", on an exit, vmx_instruction_info holds most of the
6171 * addressing components of the operand. Only the displacement part
6172 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6173 * For how an actual address is calculated from all these components,
6174 * refer to Vol. 1, "Operand Addressing".
6175 */
6176 int scaling = vmx_instruction_info & 3;
6177 int addr_size = (vmx_instruction_info >> 7) & 7;
6178 bool is_reg = vmx_instruction_info & (1u << 10);
6179 int seg_reg = (vmx_instruction_info >> 15) & 7;
6180 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6181 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6182 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6183 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6184
6185 if (is_reg) {
6186 kvm_queue_exception(vcpu, UD_VECTOR);
6187 return 1;
6188 }
6189
6190 /* Addr = segment_base + offset */
6191 /* offset = base + [index * scale] + displacement */
6192 *ret = vmx_get_segment_base(vcpu, seg_reg);
6193 if (base_is_valid)
6194 *ret += kvm_register_read(vcpu, base_reg);
6195 if (index_is_valid)
6196 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6197 *ret += exit_qualification; /* holds the displacement */
6198
6199 if (addr_size == 1) /* 32 bit */
6200 *ret &= 0xffffffff;
6201
6202 /*
6203 * TODO: throw #GP (and return 1) in various cases that the VM*
6204 * instructions require it - e.g., offset beyond segment limit,
6205 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6206 * address, and so on. Currently these are not checked.
6207 */
6208 return 0;
6209 }
6210
6211 /*
6212 * This function performs the various checks including
6213 * - if it's 4KB aligned
6214 * - No bits beyond the physical address width are set
6215 * - Returns 0 on success or else 1
6216 * (Intel SDM Section 30.3)
6217 */
6218 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6219 gpa_t *vmpointer)
6220 {
6221 gva_t gva;
6222 gpa_t vmptr;
6223 struct x86_exception e;
6224 struct page *page;
6225 struct vcpu_vmx *vmx = to_vmx(vcpu);
6226 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6227
6228 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6229 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6230 return 1;
6231
6232 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6233 sizeof(vmptr), &e)) {
6234 kvm_inject_page_fault(vcpu, &e);
6235 return 1;
6236 }
6237
6238 switch (exit_reason) {
6239 case EXIT_REASON_VMON:
6240 /*
6241 * SDM 3: 24.11.5
6242 * The first 4 bytes of VMXON region contain the supported
6243 * VMCS revision identifier
6244 *
6245 * Note - IA32_VMX_BASIC[48] will never be 1
6246 * for the nested case;
6247 * which replaces physical address width with 32
6248 *
6249 */
6250 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6251 nested_vmx_failInvalid(vcpu);
6252 skip_emulated_instruction(vcpu);
6253 return 1;
6254 }
6255
6256 page = nested_get_page(vcpu, vmptr);
6257 if (page == NULL ||
6258 *(u32 *)kmap(page) != VMCS12_REVISION) {
6259 nested_vmx_failInvalid(vcpu);
6260 kunmap(page);
6261 skip_emulated_instruction(vcpu);
6262 return 1;
6263 }
6264 kunmap(page);
6265 vmx->nested.vmxon_ptr = vmptr;
6266 break;
6267 case EXIT_REASON_VMCLEAR:
6268 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6269 nested_vmx_failValid(vcpu,
6270 VMXERR_VMCLEAR_INVALID_ADDRESS);
6271 skip_emulated_instruction(vcpu);
6272 return 1;
6273 }
6274
6275 if (vmptr == vmx->nested.vmxon_ptr) {
6276 nested_vmx_failValid(vcpu,
6277 VMXERR_VMCLEAR_VMXON_POINTER);
6278 skip_emulated_instruction(vcpu);
6279 return 1;
6280 }
6281 break;
6282 case EXIT_REASON_VMPTRLD:
6283 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6284 nested_vmx_failValid(vcpu,
6285 VMXERR_VMPTRLD_INVALID_ADDRESS);
6286 skip_emulated_instruction(vcpu);
6287 return 1;
6288 }
6289
6290 if (vmptr == vmx->nested.vmxon_ptr) {
6291 nested_vmx_failValid(vcpu,
6292 VMXERR_VMCLEAR_VMXON_POINTER);
6293 skip_emulated_instruction(vcpu);
6294 return 1;
6295 }
6296 break;
6297 default:
6298 return 1; /* shouldn't happen */
6299 }
6300
6301 if (vmpointer)
6302 *vmpointer = vmptr;
6303 return 0;
6304 }
6305
6306 /*
6307 * Emulate the VMXON instruction.
6308 * Currently, we just remember that VMX is active, and do not save or even
6309 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6310 * do not currently need to store anything in that guest-allocated memory
6311 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6312 * argument is different from the VMXON pointer (which the spec says they do).
6313 */
6314 static int handle_vmon(struct kvm_vcpu *vcpu)
6315 {
6316 struct kvm_segment cs;
6317 struct vcpu_vmx *vmx = to_vmx(vcpu);
6318 struct vmcs *shadow_vmcs;
6319 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6320 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6321
6322 /* The Intel VMX Instruction Reference lists a bunch of bits that
6323 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6324 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6325 * Otherwise, we should fail with #UD. We test these now:
6326 */
6327 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6328 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6329 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6330 kvm_queue_exception(vcpu, UD_VECTOR);
6331 return 1;
6332 }
6333
6334 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6335 if (is_long_mode(vcpu) && !cs.l) {
6336 kvm_queue_exception(vcpu, UD_VECTOR);
6337 return 1;
6338 }
6339
6340 if (vmx_get_cpl(vcpu)) {
6341 kvm_inject_gp(vcpu, 0);
6342 return 1;
6343 }
6344
6345 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6346 return 1;
6347
6348 if (vmx->nested.vmxon) {
6349 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6350 skip_emulated_instruction(vcpu);
6351 return 1;
6352 }
6353
6354 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6355 != VMXON_NEEDED_FEATURES) {
6356 kvm_inject_gp(vcpu, 0);
6357 return 1;
6358 }
6359
6360 if (enable_shadow_vmcs) {
6361 shadow_vmcs = alloc_vmcs();
6362 if (!shadow_vmcs)
6363 return -ENOMEM;
6364 /* mark vmcs as shadow */
6365 shadow_vmcs->revision_id |= (1u << 31);
6366 /* init shadow vmcs */
6367 vmcs_clear(shadow_vmcs);
6368 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6369 }
6370
6371 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6372 vmx->nested.vmcs02_num = 0;
6373
6374 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6375 HRTIMER_MODE_REL);
6376 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6377
6378 vmx->nested.vmxon = true;
6379
6380 skip_emulated_instruction(vcpu);
6381 nested_vmx_succeed(vcpu);
6382 return 1;
6383 }
6384
6385 /*
6386 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6387 * for running VMX instructions (except VMXON, whose prerequisites are
6388 * slightly different). It also specifies what exception to inject otherwise.
6389 */
6390 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6391 {
6392 struct kvm_segment cs;
6393 struct vcpu_vmx *vmx = to_vmx(vcpu);
6394
6395 if (!vmx->nested.vmxon) {
6396 kvm_queue_exception(vcpu, UD_VECTOR);
6397 return 0;
6398 }
6399
6400 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6401 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6402 (is_long_mode(vcpu) && !cs.l)) {
6403 kvm_queue_exception(vcpu, UD_VECTOR);
6404 return 0;
6405 }
6406
6407 if (vmx_get_cpl(vcpu)) {
6408 kvm_inject_gp(vcpu, 0);
6409 return 0;
6410 }
6411
6412 return 1;
6413 }
6414
6415 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6416 {
6417 u32 exec_control;
6418 if (vmx->nested.current_vmptr == -1ull)
6419 return;
6420
6421 /* current_vmptr and current_vmcs12 are always set/reset together */
6422 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6423 return;
6424
6425 if (enable_shadow_vmcs) {
6426 /* copy to memory all shadowed fields in case
6427 they were modified */
6428 copy_shadow_to_vmcs12(vmx);
6429 vmx->nested.sync_shadow_vmcs = false;
6430 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6431 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6432 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6433 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6434 }
6435 kunmap(vmx->nested.current_vmcs12_page);
6436 nested_release_page(vmx->nested.current_vmcs12_page);
6437 vmx->nested.current_vmptr = -1ull;
6438 vmx->nested.current_vmcs12 = NULL;
6439 }
6440
6441 /*
6442 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6443 * just stops using VMX.
6444 */
6445 static void free_nested(struct vcpu_vmx *vmx)
6446 {
6447 if (!vmx->nested.vmxon)
6448 return;
6449
6450 vmx->nested.vmxon = false;
6451 nested_release_vmcs12(vmx);
6452 if (enable_shadow_vmcs)
6453 free_vmcs(vmx->nested.current_shadow_vmcs);
6454 /* Unpin physical memory we referred to in current vmcs02 */
6455 if (vmx->nested.apic_access_page) {
6456 nested_release_page(vmx->nested.apic_access_page);
6457 vmx->nested.apic_access_page = NULL;
6458 }
6459 if (vmx->nested.virtual_apic_page) {
6460 nested_release_page(vmx->nested.virtual_apic_page);
6461 vmx->nested.virtual_apic_page = NULL;
6462 }
6463
6464 nested_free_all_saved_vmcss(vmx);
6465 }
6466
6467 /* Emulate the VMXOFF instruction */
6468 static int handle_vmoff(struct kvm_vcpu *vcpu)
6469 {
6470 if (!nested_vmx_check_permission(vcpu))
6471 return 1;
6472 free_nested(to_vmx(vcpu));
6473 skip_emulated_instruction(vcpu);
6474 nested_vmx_succeed(vcpu);
6475 return 1;
6476 }
6477
6478 /* Emulate the VMCLEAR instruction */
6479 static int handle_vmclear(struct kvm_vcpu *vcpu)
6480 {
6481 struct vcpu_vmx *vmx = to_vmx(vcpu);
6482 gpa_t vmptr;
6483 struct vmcs12 *vmcs12;
6484 struct page *page;
6485
6486 if (!nested_vmx_check_permission(vcpu))
6487 return 1;
6488
6489 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6490 return 1;
6491
6492 if (vmptr == vmx->nested.current_vmptr)
6493 nested_release_vmcs12(vmx);
6494
6495 page = nested_get_page(vcpu, vmptr);
6496 if (page == NULL) {
6497 /*
6498 * For accurate processor emulation, VMCLEAR beyond available
6499 * physical memory should do nothing at all. However, it is
6500 * possible that a nested vmx bug, not a guest hypervisor bug,
6501 * resulted in this case, so let's shut down before doing any
6502 * more damage:
6503 */
6504 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6505 return 1;
6506 }
6507 vmcs12 = kmap(page);
6508 vmcs12->launch_state = 0;
6509 kunmap(page);
6510 nested_release_page(page);
6511
6512 nested_free_vmcs02(vmx, vmptr);
6513
6514 skip_emulated_instruction(vcpu);
6515 nested_vmx_succeed(vcpu);
6516 return 1;
6517 }
6518
6519 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6520
6521 /* Emulate the VMLAUNCH instruction */
6522 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6523 {
6524 return nested_vmx_run(vcpu, true);
6525 }
6526
6527 /* Emulate the VMRESUME instruction */
6528 static int handle_vmresume(struct kvm_vcpu *vcpu)
6529 {
6530
6531 return nested_vmx_run(vcpu, false);
6532 }
6533
6534 enum vmcs_field_type {
6535 VMCS_FIELD_TYPE_U16 = 0,
6536 VMCS_FIELD_TYPE_U64 = 1,
6537 VMCS_FIELD_TYPE_U32 = 2,
6538 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6539 };
6540
6541 static inline int vmcs_field_type(unsigned long field)
6542 {
6543 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6544 return VMCS_FIELD_TYPE_U32;
6545 return (field >> 13) & 0x3 ;
6546 }
6547
6548 static inline int vmcs_field_readonly(unsigned long field)
6549 {
6550 return (((field >> 10) & 0x3) == 1);
6551 }
6552
6553 /*
6554 * Read a vmcs12 field. Since these can have varying lengths and we return
6555 * one type, we chose the biggest type (u64) and zero-extend the return value
6556 * to that size. Note that the caller, handle_vmread, might need to use only
6557 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6558 * 64-bit fields are to be returned).
6559 */
6560 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6561 unsigned long field, u64 *ret)
6562 {
6563 short offset = vmcs_field_to_offset(field);
6564 char *p;
6565
6566 if (offset < 0)
6567 return offset;
6568
6569 p = ((char *)(get_vmcs12(vcpu))) + offset;
6570
6571 switch (vmcs_field_type(field)) {
6572 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6573 *ret = *((natural_width *)p);
6574 return 0;
6575 case VMCS_FIELD_TYPE_U16:
6576 *ret = *((u16 *)p);
6577 return 0;
6578 case VMCS_FIELD_TYPE_U32:
6579 *ret = *((u32 *)p);
6580 return 0;
6581 case VMCS_FIELD_TYPE_U64:
6582 *ret = *((u64 *)p);
6583 return 0;
6584 default:
6585 WARN_ON(1);
6586 return -ENOENT;
6587 }
6588 }
6589
6590
6591 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6592 unsigned long field, u64 field_value){
6593 short offset = vmcs_field_to_offset(field);
6594 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6595 if (offset < 0)
6596 return offset;
6597
6598 switch (vmcs_field_type(field)) {
6599 case VMCS_FIELD_TYPE_U16:
6600 *(u16 *)p = field_value;
6601 return 0;
6602 case VMCS_FIELD_TYPE_U32:
6603 *(u32 *)p = field_value;
6604 return 0;
6605 case VMCS_FIELD_TYPE_U64:
6606 *(u64 *)p = field_value;
6607 return 0;
6608 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6609 *(natural_width *)p = field_value;
6610 return 0;
6611 default:
6612 WARN_ON(1);
6613 return -ENOENT;
6614 }
6615
6616 }
6617
6618 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6619 {
6620 int i;
6621 unsigned long field;
6622 u64 field_value;
6623 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6624 const unsigned long *fields = shadow_read_write_fields;
6625 const int num_fields = max_shadow_read_write_fields;
6626
6627 preempt_disable();
6628
6629 vmcs_load(shadow_vmcs);
6630
6631 for (i = 0; i < num_fields; i++) {
6632 field = fields[i];
6633 switch (vmcs_field_type(field)) {
6634 case VMCS_FIELD_TYPE_U16:
6635 field_value = vmcs_read16(field);
6636 break;
6637 case VMCS_FIELD_TYPE_U32:
6638 field_value = vmcs_read32(field);
6639 break;
6640 case VMCS_FIELD_TYPE_U64:
6641 field_value = vmcs_read64(field);
6642 break;
6643 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6644 field_value = vmcs_readl(field);
6645 break;
6646 default:
6647 WARN_ON(1);
6648 continue;
6649 }
6650 vmcs12_write_any(&vmx->vcpu, field, field_value);
6651 }
6652
6653 vmcs_clear(shadow_vmcs);
6654 vmcs_load(vmx->loaded_vmcs->vmcs);
6655
6656 preempt_enable();
6657 }
6658
6659 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6660 {
6661 const unsigned long *fields[] = {
6662 shadow_read_write_fields,
6663 shadow_read_only_fields
6664 };
6665 const int max_fields[] = {
6666 max_shadow_read_write_fields,
6667 max_shadow_read_only_fields
6668 };
6669 int i, q;
6670 unsigned long field;
6671 u64 field_value = 0;
6672 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6673
6674 vmcs_load(shadow_vmcs);
6675
6676 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6677 for (i = 0; i < max_fields[q]; i++) {
6678 field = fields[q][i];
6679 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6680
6681 switch (vmcs_field_type(field)) {
6682 case VMCS_FIELD_TYPE_U16:
6683 vmcs_write16(field, (u16)field_value);
6684 break;
6685 case VMCS_FIELD_TYPE_U32:
6686 vmcs_write32(field, (u32)field_value);
6687 break;
6688 case VMCS_FIELD_TYPE_U64:
6689 vmcs_write64(field, (u64)field_value);
6690 break;
6691 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6692 vmcs_writel(field, (long)field_value);
6693 break;
6694 default:
6695 WARN_ON(1);
6696 break;
6697 }
6698 }
6699 }
6700
6701 vmcs_clear(shadow_vmcs);
6702 vmcs_load(vmx->loaded_vmcs->vmcs);
6703 }
6704
6705 /*
6706 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6707 * used before) all generate the same failure when it is missing.
6708 */
6709 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6710 {
6711 struct vcpu_vmx *vmx = to_vmx(vcpu);
6712 if (vmx->nested.current_vmptr == -1ull) {
6713 nested_vmx_failInvalid(vcpu);
6714 skip_emulated_instruction(vcpu);
6715 return 0;
6716 }
6717 return 1;
6718 }
6719
6720 static int handle_vmread(struct kvm_vcpu *vcpu)
6721 {
6722 unsigned long field;
6723 u64 field_value;
6724 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6725 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6726 gva_t gva = 0;
6727
6728 if (!nested_vmx_check_permission(vcpu) ||
6729 !nested_vmx_check_vmcs12(vcpu))
6730 return 1;
6731
6732 /* Decode instruction info and find the field to read */
6733 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6734 /* Read the field, zero-extended to a u64 field_value */
6735 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6736 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6737 skip_emulated_instruction(vcpu);
6738 return 1;
6739 }
6740 /*
6741 * Now copy part of this value to register or memory, as requested.
6742 * Note that the number of bits actually copied is 32 or 64 depending
6743 * on the guest's mode (32 or 64 bit), not on the given field's length.
6744 */
6745 if (vmx_instruction_info & (1u << 10)) {
6746 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6747 field_value);
6748 } else {
6749 if (get_vmx_mem_address(vcpu, exit_qualification,
6750 vmx_instruction_info, &gva))
6751 return 1;
6752 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6753 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6754 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6755 }
6756
6757 nested_vmx_succeed(vcpu);
6758 skip_emulated_instruction(vcpu);
6759 return 1;
6760 }
6761
6762
6763 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6764 {
6765 unsigned long field;
6766 gva_t gva;
6767 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6768 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6769 /* The value to write might be 32 or 64 bits, depending on L1's long
6770 * mode, and eventually we need to write that into a field of several
6771 * possible lengths. The code below first zero-extends the value to 64
6772 * bit (field_value), and then copies only the approriate number of
6773 * bits into the vmcs12 field.
6774 */
6775 u64 field_value = 0;
6776 struct x86_exception e;
6777
6778 if (!nested_vmx_check_permission(vcpu) ||
6779 !nested_vmx_check_vmcs12(vcpu))
6780 return 1;
6781
6782 if (vmx_instruction_info & (1u << 10))
6783 field_value = kvm_register_readl(vcpu,
6784 (((vmx_instruction_info) >> 3) & 0xf));
6785 else {
6786 if (get_vmx_mem_address(vcpu, exit_qualification,
6787 vmx_instruction_info, &gva))
6788 return 1;
6789 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6790 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6791 kvm_inject_page_fault(vcpu, &e);
6792 return 1;
6793 }
6794 }
6795
6796
6797 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6798 if (vmcs_field_readonly(field)) {
6799 nested_vmx_failValid(vcpu,
6800 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6801 skip_emulated_instruction(vcpu);
6802 return 1;
6803 }
6804
6805 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
6806 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6807 skip_emulated_instruction(vcpu);
6808 return 1;
6809 }
6810
6811 nested_vmx_succeed(vcpu);
6812 skip_emulated_instruction(vcpu);
6813 return 1;
6814 }
6815
6816 /* Emulate the VMPTRLD instruction */
6817 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6818 {
6819 struct vcpu_vmx *vmx = to_vmx(vcpu);
6820 gpa_t vmptr;
6821 u32 exec_control;
6822
6823 if (!nested_vmx_check_permission(vcpu))
6824 return 1;
6825
6826 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6827 return 1;
6828
6829 if (vmx->nested.current_vmptr != vmptr) {
6830 struct vmcs12 *new_vmcs12;
6831 struct page *page;
6832 page = nested_get_page(vcpu, vmptr);
6833 if (page == NULL) {
6834 nested_vmx_failInvalid(vcpu);
6835 skip_emulated_instruction(vcpu);
6836 return 1;
6837 }
6838 new_vmcs12 = kmap(page);
6839 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6840 kunmap(page);
6841 nested_release_page_clean(page);
6842 nested_vmx_failValid(vcpu,
6843 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6844 skip_emulated_instruction(vcpu);
6845 return 1;
6846 }
6847
6848 nested_release_vmcs12(vmx);
6849 vmx->nested.current_vmptr = vmptr;
6850 vmx->nested.current_vmcs12 = new_vmcs12;
6851 vmx->nested.current_vmcs12_page = page;
6852 if (enable_shadow_vmcs) {
6853 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6854 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6855 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6856 vmcs_write64(VMCS_LINK_POINTER,
6857 __pa(vmx->nested.current_shadow_vmcs));
6858 vmx->nested.sync_shadow_vmcs = true;
6859 }
6860 }
6861
6862 nested_vmx_succeed(vcpu);
6863 skip_emulated_instruction(vcpu);
6864 return 1;
6865 }
6866
6867 /* Emulate the VMPTRST instruction */
6868 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6869 {
6870 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6871 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6872 gva_t vmcs_gva;
6873 struct x86_exception e;
6874
6875 if (!nested_vmx_check_permission(vcpu))
6876 return 1;
6877
6878 if (get_vmx_mem_address(vcpu, exit_qualification,
6879 vmx_instruction_info, &vmcs_gva))
6880 return 1;
6881 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6882 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6883 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6884 sizeof(u64), &e)) {
6885 kvm_inject_page_fault(vcpu, &e);
6886 return 1;
6887 }
6888 nested_vmx_succeed(vcpu);
6889 skip_emulated_instruction(vcpu);
6890 return 1;
6891 }
6892
6893 /* Emulate the INVEPT instruction */
6894 static int handle_invept(struct kvm_vcpu *vcpu)
6895 {
6896 u32 vmx_instruction_info, types;
6897 unsigned long type;
6898 gva_t gva;
6899 struct x86_exception e;
6900 struct {
6901 u64 eptp, gpa;
6902 } operand;
6903
6904 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6905 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6906 kvm_queue_exception(vcpu, UD_VECTOR);
6907 return 1;
6908 }
6909
6910 if (!nested_vmx_check_permission(vcpu))
6911 return 1;
6912
6913 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6914 kvm_queue_exception(vcpu, UD_VECTOR);
6915 return 1;
6916 }
6917
6918 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6919 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6920
6921 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6922
6923 if (!(types & (1UL << type))) {
6924 nested_vmx_failValid(vcpu,
6925 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6926 return 1;
6927 }
6928
6929 /* According to the Intel VMX instruction reference, the memory
6930 * operand is read even if it isn't needed (e.g., for type==global)
6931 */
6932 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6933 vmx_instruction_info, &gva))
6934 return 1;
6935 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6936 sizeof(operand), &e)) {
6937 kvm_inject_page_fault(vcpu, &e);
6938 return 1;
6939 }
6940
6941 switch (type) {
6942 case VMX_EPT_EXTENT_GLOBAL:
6943 kvm_mmu_sync_roots(vcpu);
6944 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6945 nested_vmx_succeed(vcpu);
6946 break;
6947 default:
6948 /* Trap single context invalidation invept calls */
6949 BUG_ON(1);
6950 break;
6951 }
6952
6953 skip_emulated_instruction(vcpu);
6954 return 1;
6955 }
6956
6957 static int handle_invvpid(struct kvm_vcpu *vcpu)
6958 {
6959 kvm_queue_exception(vcpu, UD_VECTOR);
6960 return 1;
6961 }
6962
6963 /*
6964 * The exit handlers return 1 if the exit was handled fully and guest execution
6965 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6966 * to be done to userspace and return 0.
6967 */
6968 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6969 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6970 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6971 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6972 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6973 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6974 [EXIT_REASON_CR_ACCESS] = handle_cr,
6975 [EXIT_REASON_DR_ACCESS] = handle_dr,
6976 [EXIT_REASON_CPUID] = handle_cpuid,
6977 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6978 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6979 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6980 [EXIT_REASON_HLT] = handle_halt,
6981 [EXIT_REASON_INVD] = handle_invd,
6982 [EXIT_REASON_INVLPG] = handle_invlpg,
6983 [EXIT_REASON_RDPMC] = handle_rdpmc,
6984 [EXIT_REASON_VMCALL] = handle_vmcall,
6985 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6986 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6987 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6988 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6989 [EXIT_REASON_VMREAD] = handle_vmread,
6990 [EXIT_REASON_VMRESUME] = handle_vmresume,
6991 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6992 [EXIT_REASON_VMOFF] = handle_vmoff,
6993 [EXIT_REASON_VMON] = handle_vmon,
6994 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6995 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6996 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6997 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6998 [EXIT_REASON_WBINVD] = handle_wbinvd,
6999 [EXIT_REASON_XSETBV] = handle_xsetbv,
7000 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7001 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7002 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7003 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7004 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7005 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7006 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7007 [EXIT_REASON_INVEPT] = handle_invept,
7008 [EXIT_REASON_INVVPID] = handle_invvpid,
7009 [EXIT_REASON_XSAVES] = handle_xsaves,
7010 [EXIT_REASON_XRSTORS] = handle_xrstors,
7011 };
7012
7013 static const int kvm_vmx_max_exit_handlers =
7014 ARRAY_SIZE(kvm_vmx_exit_handlers);
7015
7016 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7017 struct vmcs12 *vmcs12)
7018 {
7019 unsigned long exit_qualification;
7020 gpa_t bitmap, last_bitmap;
7021 unsigned int port;
7022 int size;
7023 u8 b;
7024
7025 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7026 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7027
7028 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7029
7030 port = exit_qualification >> 16;
7031 size = (exit_qualification & 7) + 1;
7032
7033 last_bitmap = (gpa_t)-1;
7034 b = -1;
7035
7036 while (size > 0) {
7037 if (port < 0x8000)
7038 bitmap = vmcs12->io_bitmap_a;
7039 else if (port < 0x10000)
7040 bitmap = vmcs12->io_bitmap_b;
7041 else
7042 return 1;
7043 bitmap += (port & 0x7fff) / 8;
7044
7045 if (last_bitmap != bitmap)
7046 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
7047 return 1;
7048 if (b & (1 << (port & 7)))
7049 return 1;
7050
7051 port++;
7052 size--;
7053 last_bitmap = bitmap;
7054 }
7055
7056 return 0;
7057 }
7058
7059 /*
7060 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7061 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7062 * disinterest in the current event (read or write a specific MSR) by using an
7063 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7064 */
7065 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7066 struct vmcs12 *vmcs12, u32 exit_reason)
7067 {
7068 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7069 gpa_t bitmap;
7070
7071 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7072 return 1;
7073
7074 /*
7075 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7076 * for the four combinations of read/write and low/high MSR numbers.
7077 * First we need to figure out which of the four to use:
7078 */
7079 bitmap = vmcs12->msr_bitmap;
7080 if (exit_reason == EXIT_REASON_MSR_WRITE)
7081 bitmap += 2048;
7082 if (msr_index >= 0xc0000000) {
7083 msr_index -= 0xc0000000;
7084 bitmap += 1024;
7085 }
7086
7087 /* Then read the msr_index'th bit from this bitmap: */
7088 if (msr_index < 1024*8) {
7089 unsigned char b;
7090 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7091 return 1;
7092 return 1 & (b >> (msr_index & 7));
7093 } else
7094 return 1; /* let L1 handle the wrong parameter */
7095 }
7096
7097 /*
7098 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7099 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7100 * intercept (via guest_host_mask etc.) the current event.
7101 */
7102 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7103 struct vmcs12 *vmcs12)
7104 {
7105 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7106 int cr = exit_qualification & 15;
7107 int reg = (exit_qualification >> 8) & 15;
7108 unsigned long val = kvm_register_readl(vcpu, reg);
7109
7110 switch ((exit_qualification >> 4) & 3) {
7111 case 0: /* mov to cr */
7112 switch (cr) {
7113 case 0:
7114 if (vmcs12->cr0_guest_host_mask &
7115 (val ^ vmcs12->cr0_read_shadow))
7116 return 1;
7117 break;
7118 case 3:
7119 if ((vmcs12->cr3_target_count >= 1 &&
7120 vmcs12->cr3_target_value0 == val) ||
7121 (vmcs12->cr3_target_count >= 2 &&
7122 vmcs12->cr3_target_value1 == val) ||
7123 (vmcs12->cr3_target_count >= 3 &&
7124 vmcs12->cr3_target_value2 == val) ||
7125 (vmcs12->cr3_target_count >= 4 &&
7126 vmcs12->cr3_target_value3 == val))
7127 return 0;
7128 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7129 return 1;
7130 break;
7131 case 4:
7132 if (vmcs12->cr4_guest_host_mask &
7133 (vmcs12->cr4_read_shadow ^ val))
7134 return 1;
7135 break;
7136 case 8:
7137 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7138 return 1;
7139 break;
7140 }
7141 break;
7142 case 2: /* clts */
7143 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7144 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7145 return 1;
7146 break;
7147 case 1: /* mov from cr */
7148 switch (cr) {
7149 case 3:
7150 if (vmcs12->cpu_based_vm_exec_control &
7151 CPU_BASED_CR3_STORE_EXITING)
7152 return 1;
7153 break;
7154 case 8:
7155 if (vmcs12->cpu_based_vm_exec_control &
7156 CPU_BASED_CR8_STORE_EXITING)
7157 return 1;
7158 break;
7159 }
7160 break;
7161 case 3: /* lmsw */
7162 /*
7163 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7164 * cr0. Other attempted changes are ignored, with no exit.
7165 */
7166 if (vmcs12->cr0_guest_host_mask & 0xe &
7167 (val ^ vmcs12->cr0_read_shadow))
7168 return 1;
7169 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7170 !(vmcs12->cr0_read_shadow & 0x1) &&
7171 (val & 0x1))
7172 return 1;
7173 break;
7174 }
7175 return 0;
7176 }
7177
7178 /*
7179 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7180 * should handle it ourselves in L0 (and then continue L2). Only call this
7181 * when in is_guest_mode (L2).
7182 */
7183 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7184 {
7185 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7186 struct vcpu_vmx *vmx = to_vmx(vcpu);
7187 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7188 u32 exit_reason = vmx->exit_reason;
7189
7190 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7191 vmcs_readl(EXIT_QUALIFICATION),
7192 vmx->idt_vectoring_info,
7193 intr_info,
7194 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7195 KVM_ISA_VMX);
7196
7197 if (vmx->nested.nested_run_pending)
7198 return 0;
7199
7200 if (unlikely(vmx->fail)) {
7201 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7202 vmcs_read32(VM_INSTRUCTION_ERROR));
7203 return 1;
7204 }
7205
7206 switch (exit_reason) {
7207 case EXIT_REASON_EXCEPTION_NMI:
7208 if (!is_exception(intr_info))
7209 return 0;
7210 else if (is_page_fault(intr_info))
7211 return enable_ept;
7212 else if (is_no_device(intr_info) &&
7213 !(vmcs12->guest_cr0 & X86_CR0_TS))
7214 return 0;
7215 return vmcs12->exception_bitmap &
7216 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7217 case EXIT_REASON_EXTERNAL_INTERRUPT:
7218 return 0;
7219 case EXIT_REASON_TRIPLE_FAULT:
7220 return 1;
7221 case EXIT_REASON_PENDING_INTERRUPT:
7222 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7223 case EXIT_REASON_NMI_WINDOW:
7224 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7225 case EXIT_REASON_TASK_SWITCH:
7226 return 1;
7227 case EXIT_REASON_CPUID:
7228 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7229 return 0;
7230 return 1;
7231 case EXIT_REASON_HLT:
7232 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7233 case EXIT_REASON_INVD:
7234 return 1;
7235 case EXIT_REASON_INVLPG:
7236 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7237 case EXIT_REASON_RDPMC:
7238 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7239 case EXIT_REASON_RDTSC:
7240 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7241 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7242 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7243 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7244 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7245 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7246 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7247 /*
7248 * VMX instructions trap unconditionally. This allows L1 to
7249 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7250 */
7251 return 1;
7252 case EXIT_REASON_CR_ACCESS:
7253 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7254 case EXIT_REASON_DR_ACCESS:
7255 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7256 case EXIT_REASON_IO_INSTRUCTION:
7257 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7258 case EXIT_REASON_MSR_READ:
7259 case EXIT_REASON_MSR_WRITE:
7260 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7261 case EXIT_REASON_INVALID_STATE:
7262 return 1;
7263 case EXIT_REASON_MWAIT_INSTRUCTION:
7264 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7265 case EXIT_REASON_MONITOR_INSTRUCTION:
7266 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7267 case EXIT_REASON_PAUSE_INSTRUCTION:
7268 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7269 nested_cpu_has2(vmcs12,
7270 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7271 case EXIT_REASON_MCE_DURING_VMENTRY:
7272 return 0;
7273 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7274 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7275 case EXIT_REASON_APIC_ACCESS:
7276 return nested_cpu_has2(vmcs12,
7277 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7278 case EXIT_REASON_EPT_VIOLATION:
7279 /*
7280 * L0 always deals with the EPT violation. If nested EPT is
7281 * used, and the nested mmu code discovers that the address is
7282 * missing in the guest EPT table (EPT12), the EPT violation
7283 * will be injected with nested_ept_inject_page_fault()
7284 */
7285 return 0;
7286 case EXIT_REASON_EPT_MISCONFIG:
7287 /*
7288 * L2 never uses directly L1's EPT, but rather L0's own EPT
7289 * table (shadow on EPT) or a merged EPT table that L0 built
7290 * (EPT on EPT). So any problems with the structure of the
7291 * table is L0's fault.
7292 */
7293 return 0;
7294 case EXIT_REASON_WBINVD:
7295 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7296 case EXIT_REASON_XSETBV:
7297 return 1;
7298 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7299 /*
7300 * This should never happen, since it is not possible to
7301 * set XSS to a non-zero value---neither in L1 nor in L2.
7302 * If if it were, XSS would have to be checked against
7303 * the XSS exit bitmap in vmcs12.
7304 */
7305 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7306 default:
7307 return 1;
7308 }
7309 }
7310
7311 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7312 {
7313 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7314 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7315 }
7316
7317 /*
7318 * The guest has exited. See if we can fix it or if we need userspace
7319 * assistance.
7320 */
7321 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7322 {
7323 struct vcpu_vmx *vmx = to_vmx(vcpu);
7324 u32 exit_reason = vmx->exit_reason;
7325 u32 vectoring_info = vmx->idt_vectoring_info;
7326
7327 /* If guest state is invalid, start emulating */
7328 if (vmx->emulation_required)
7329 return handle_invalid_guest_state(vcpu);
7330
7331 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7332 nested_vmx_vmexit(vcpu, exit_reason,
7333 vmcs_read32(VM_EXIT_INTR_INFO),
7334 vmcs_readl(EXIT_QUALIFICATION));
7335 return 1;
7336 }
7337
7338 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7339 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7340 vcpu->run->fail_entry.hardware_entry_failure_reason
7341 = exit_reason;
7342 return 0;
7343 }
7344
7345 if (unlikely(vmx->fail)) {
7346 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7347 vcpu->run->fail_entry.hardware_entry_failure_reason
7348 = vmcs_read32(VM_INSTRUCTION_ERROR);
7349 return 0;
7350 }
7351
7352 /*
7353 * Note:
7354 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7355 * delivery event since it indicates guest is accessing MMIO.
7356 * The vm-exit can be triggered again after return to guest that
7357 * will cause infinite loop.
7358 */
7359 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7360 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7361 exit_reason != EXIT_REASON_EPT_VIOLATION &&
7362 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7363 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7364 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7365 vcpu->run->internal.ndata = 2;
7366 vcpu->run->internal.data[0] = vectoring_info;
7367 vcpu->run->internal.data[1] = exit_reason;
7368 return 0;
7369 }
7370
7371 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7372 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7373 get_vmcs12(vcpu))))) {
7374 if (vmx_interrupt_allowed(vcpu)) {
7375 vmx->soft_vnmi_blocked = 0;
7376 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7377 vcpu->arch.nmi_pending) {
7378 /*
7379 * This CPU don't support us in finding the end of an
7380 * NMI-blocked window if the guest runs with IRQs
7381 * disabled. So we pull the trigger after 1 s of
7382 * futile waiting, but inform the user about this.
7383 */
7384 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7385 "state on VCPU %d after 1 s timeout\n",
7386 __func__, vcpu->vcpu_id);
7387 vmx->soft_vnmi_blocked = 0;
7388 }
7389 }
7390
7391 if (exit_reason < kvm_vmx_max_exit_handlers
7392 && kvm_vmx_exit_handlers[exit_reason])
7393 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7394 else {
7395 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7396 kvm_queue_exception(vcpu, UD_VECTOR);
7397 return 1;
7398 }
7399 }
7400
7401 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7402 {
7403 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7404
7405 if (is_guest_mode(vcpu) &&
7406 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7407 return;
7408
7409 if (irr == -1 || tpr < irr) {
7410 vmcs_write32(TPR_THRESHOLD, 0);
7411 return;
7412 }
7413
7414 vmcs_write32(TPR_THRESHOLD, irr);
7415 }
7416
7417 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7418 {
7419 u32 sec_exec_control;
7420
7421 /*
7422 * There is not point to enable virtualize x2apic without enable
7423 * apicv
7424 */
7425 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7426 !vmx_vm_has_apicv(vcpu->kvm))
7427 return;
7428
7429 if (!vm_need_tpr_shadow(vcpu->kvm))
7430 return;
7431
7432 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7433
7434 if (set) {
7435 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7436 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7437 } else {
7438 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7439 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7440 }
7441 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7442
7443 vmx_set_msr_bitmap(vcpu);
7444 }
7445
7446 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7447 {
7448 struct vcpu_vmx *vmx = to_vmx(vcpu);
7449
7450 /*
7451 * Currently we do not handle the nested case where L2 has an
7452 * APIC access page of its own; that page is still pinned.
7453 * Hence, we skip the case where the VCPU is in guest mode _and_
7454 * L1 prepared an APIC access page for L2.
7455 *
7456 * For the case where L1 and L2 share the same APIC access page
7457 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7458 * in the vmcs12), this function will only update either the vmcs01
7459 * or the vmcs02. If the former, the vmcs02 will be updated by
7460 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7461 * the next L2->L1 exit.
7462 */
7463 if (!is_guest_mode(vcpu) ||
7464 !nested_cpu_has2(vmx->nested.current_vmcs12,
7465 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7466 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7467 }
7468
7469 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7470 {
7471 u16 status;
7472 u8 old;
7473
7474 if (!vmx_vm_has_apicv(kvm))
7475 return;
7476
7477 if (isr == -1)
7478 isr = 0;
7479
7480 status = vmcs_read16(GUEST_INTR_STATUS);
7481 old = status >> 8;
7482 if (isr != old) {
7483 status &= 0xff;
7484 status |= isr << 8;
7485 vmcs_write16(GUEST_INTR_STATUS, status);
7486 }
7487 }
7488
7489 static void vmx_set_rvi(int vector)
7490 {
7491 u16 status;
7492 u8 old;
7493
7494 if (vector == -1)
7495 vector = 0;
7496
7497 status = vmcs_read16(GUEST_INTR_STATUS);
7498 old = (u8)status & 0xff;
7499 if ((u8)vector != old) {
7500 status &= ~0xff;
7501 status |= (u8)vector;
7502 vmcs_write16(GUEST_INTR_STATUS, status);
7503 }
7504 }
7505
7506 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7507 {
7508 if (!is_guest_mode(vcpu)) {
7509 vmx_set_rvi(max_irr);
7510 return;
7511 }
7512
7513 if (max_irr == -1)
7514 return;
7515
7516 /*
7517 * In guest mode. If a vmexit is needed, vmx_check_nested_events
7518 * handles it.
7519 */
7520 if (nested_exit_on_intr(vcpu))
7521 return;
7522
7523 /*
7524 * Else, fall back to pre-APICv interrupt injection since L2
7525 * is run without virtual interrupt delivery.
7526 */
7527 if (!kvm_event_needs_reinjection(vcpu) &&
7528 vmx_interrupt_allowed(vcpu)) {
7529 kvm_queue_interrupt(vcpu, max_irr, false);
7530 vmx_inject_irq(vcpu);
7531 }
7532 }
7533
7534 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7535 {
7536 if (!vmx_vm_has_apicv(vcpu->kvm))
7537 return;
7538
7539 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7540 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7541 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7542 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7543 }
7544
7545 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7546 {
7547 u32 exit_intr_info;
7548
7549 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7550 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7551 return;
7552
7553 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7554 exit_intr_info = vmx->exit_intr_info;
7555
7556 /* Handle machine checks before interrupts are enabled */
7557 if (is_machine_check(exit_intr_info))
7558 kvm_machine_check();
7559
7560 /* We need to handle NMIs before interrupts are enabled */
7561 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7562 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7563 kvm_before_handle_nmi(&vmx->vcpu);
7564 asm("int $2");
7565 kvm_after_handle_nmi(&vmx->vcpu);
7566 }
7567 }
7568
7569 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7570 {
7571 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7572
7573 /*
7574 * If external interrupt exists, IF bit is set in rflags/eflags on the
7575 * interrupt stack frame, and interrupt will be enabled on a return
7576 * from interrupt handler.
7577 */
7578 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7579 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7580 unsigned int vector;
7581 unsigned long entry;
7582 gate_desc *desc;
7583 struct vcpu_vmx *vmx = to_vmx(vcpu);
7584 #ifdef CONFIG_X86_64
7585 unsigned long tmp;
7586 #endif
7587
7588 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7589 desc = (gate_desc *)vmx->host_idt_base + vector;
7590 entry = gate_offset(*desc);
7591 asm volatile(
7592 #ifdef CONFIG_X86_64
7593 "mov %%" _ASM_SP ", %[sp]\n\t"
7594 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7595 "push $%c[ss]\n\t"
7596 "push %[sp]\n\t"
7597 #endif
7598 "pushf\n\t"
7599 "orl $0x200, (%%" _ASM_SP ")\n\t"
7600 __ASM_SIZE(push) " $%c[cs]\n\t"
7601 "call *%[entry]\n\t"
7602 :
7603 #ifdef CONFIG_X86_64
7604 [sp]"=&r"(tmp)
7605 #endif
7606 :
7607 [entry]"r"(entry),
7608 [ss]"i"(__KERNEL_DS),
7609 [cs]"i"(__KERNEL_CS)
7610 );
7611 } else
7612 local_irq_enable();
7613 }
7614
7615 static bool vmx_mpx_supported(void)
7616 {
7617 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7618 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7619 }
7620
7621 static bool vmx_xsaves_supported(void)
7622 {
7623 return vmcs_config.cpu_based_2nd_exec_ctrl &
7624 SECONDARY_EXEC_XSAVES;
7625 }
7626
7627 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7628 {
7629 u32 exit_intr_info;
7630 bool unblock_nmi;
7631 u8 vector;
7632 bool idtv_info_valid;
7633
7634 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7635
7636 if (cpu_has_virtual_nmis()) {
7637 if (vmx->nmi_known_unmasked)
7638 return;
7639 /*
7640 * Can't use vmx->exit_intr_info since we're not sure what
7641 * the exit reason is.
7642 */
7643 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7644 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7645 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7646 /*
7647 * SDM 3: 27.7.1.2 (September 2008)
7648 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7649 * a guest IRET fault.
7650 * SDM 3: 23.2.2 (September 2008)
7651 * Bit 12 is undefined in any of the following cases:
7652 * If the VM exit sets the valid bit in the IDT-vectoring
7653 * information field.
7654 * If the VM exit is due to a double fault.
7655 */
7656 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7657 vector != DF_VECTOR && !idtv_info_valid)
7658 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7659 GUEST_INTR_STATE_NMI);
7660 else
7661 vmx->nmi_known_unmasked =
7662 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7663 & GUEST_INTR_STATE_NMI);
7664 } else if (unlikely(vmx->soft_vnmi_blocked))
7665 vmx->vnmi_blocked_time +=
7666 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7667 }
7668
7669 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7670 u32 idt_vectoring_info,
7671 int instr_len_field,
7672 int error_code_field)
7673 {
7674 u8 vector;
7675 int type;
7676 bool idtv_info_valid;
7677
7678 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7679
7680 vcpu->arch.nmi_injected = false;
7681 kvm_clear_exception_queue(vcpu);
7682 kvm_clear_interrupt_queue(vcpu);
7683
7684 if (!idtv_info_valid)
7685 return;
7686
7687 kvm_make_request(KVM_REQ_EVENT, vcpu);
7688
7689 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7690 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7691
7692 switch (type) {
7693 case INTR_TYPE_NMI_INTR:
7694 vcpu->arch.nmi_injected = true;
7695 /*
7696 * SDM 3: 27.7.1.2 (September 2008)
7697 * Clear bit "block by NMI" before VM entry if a NMI
7698 * delivery faulted.
7699 */
7700 vmx_set_nmi_mask(vcpu, false);
7701 break;
7702 case INTR_TYPE_SOFT_EXCEPTION:
7703 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7704 /* fall through */
7705 case INTR_TYPE_HARD_EXCEPTION:
7706 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7707 u32 err = vmcs_read32(error_code_field);
7708 kvm_requeue_exception_e(vcpu, vector, err);
7709 } else
7710 kvm_requeue_exception(vcpu, vector);
7711 break;
7712 case INTR_TYPE_SOFT_INTR:
7713 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7714 /* fall through */
7715 case INTR_TYPE_EXT_INTR:
7716 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7717 break;
7718 default:
7719 break;
7720 }
7721 }
7722
7723 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7724 {
7725 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7726 VM_EXIT_INSTRUCTION_LEN,
7727 IDT_VECTORING_ERROR_CODE);
7728 }
7729
7730 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7731 {
7732 __vmx_complete_interrupts(vcpu,
7733 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7734 VM_ENTRY_INSTRUCTION_LEN,
7735 VM_ENTRY_EXCEPTION_ERROR_CODE);
7736
7737 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7738 }
7739
7740 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7741 {
7742 int i, nr_msrs;
7743 struct perf_guest_switch_msr *msrs;
7744
7745 msrs = perf_guest_get_msrs(&nr_msrs);
7746
7747 if (!msrs)
7748 return;
7749
7750 for (i = 0; i < nr_msrs; i++)
7751 if (msrs[i].host == msrs[i].guest)
7752 clear_atomic_switch_msr(vmx, msrs[i].msr);
7753 else
7754 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7755 msrs[i].host);
7756 }
7757
7758 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7759 {
7760 struct vcpu_vmx *vmx = to_vmx(vcpu);
7761 unsigned long debugctlmsr, cr4;
7762
7763 /* Record the guest's net vcpu time for enforced NMI injections. */
7764 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7765 vmx->entry_time = ktime_get();
7766
7767 /* Don't enter VMX if guest state is invalid, let the exit handler
7768 start emulation until we arrive back to a valid state */
7769 if (vmx->emulation_required)
7770 return;
7771
7772 if (vmx->ple_window_dirty) {
7773 vmx->ple_window_dirty = false;
7774 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7775 }
7776
7777 if (vmx->nested.sync_shadow_vmcs) {
7778 copy_vmcs12_to_shadow(vmx);
7779 vmx->nested.sync_shadow_vmcs = false;
7780 }
7781
7782 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7783 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7784 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7785 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7786
7787 cr4 = read_cr4();
7788 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7789 vmcs_writel(HOST_CR4, cr4);
7790 vmx->host_state.vmcs_host_cr4 = cr4;
7791 }
7792
7793 /* When single-stepping over STI and MOV SS, we must clear the
7794 * corresponding interruptibility bits in the guest state. Otherwise
7795 * vmentry fails as it then expects bit 14 (BS) in pending debug
7796 * exceptions being set, but that's not correct for the guest debugging
7797 * case. */
7798 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7799 vmx_set_interrupt_shadow(vcpu, 0);
7800
7801 atomic_switch_perf_msrs(vmx);
7802 debugctlmsr = get_debugctlmsr();
7803
7804 vmx->__launched = vmx->loaded_vmcs->launched;
7805 asm(
7806 /* Store host registers */
7807 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7808 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7809 "push %%" _ASM_CX " \n\t"
7810 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7811 "je 1f \n\t"
7812 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7813 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7814 "1: \n\t"
7815 /* Reload cr2 if changed */
7816 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7817 "mov %%cr2, %%" _ASM_DX " \n\t"
7818 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7819 "je 2f \n\t"
7820 "mov %%" _ASM_AX", %%cr2 \n\t"
7821 "2: \n\t"
7822 /* Check if vmlaunch of vmresume is needed */
7823 "cmpl $0, %c[launched](%0) \n\t"
7824 /* Load guest registers. Don't clobber flags. */
7825 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7826 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7827 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7828 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7829 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7830 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7831 #ifdef CONFIG_X86_64
7832 "mov %c[r8](%0), %%r8 \n\t"
7833 "mov %c[r9](%0), %%r9 \n\t"
7834 "mov %c[r10](%0), %%r10 \n\t"
7835 "mov %c[r11](%0), %%r11 \n\t"
7836 "mov %c[r12](%0), %%r12 \n\t"
7837 "mov %c[r13](%0), %%r13 \n\t"
7838 "mov %c[r14](%0), %%r14 \n\t"
7839 "mov %c[r15](%0), %%r15 \n\t"
7840 #endif
7841 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7842
7843 /* Enter guest mode */
7844 "jne 1f \n\t"
7845 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7846 "jmp 2f \n\t"
7847 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7848 "2: "
7849 /* Save guest registers, load host registers, keep flags */
7850 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7851 "pop %0 \n\t"
7852 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7853 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7854 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7855 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7856 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7857 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7858 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7859 #ifdef CONFIG_X86_64
7860 "mov %%r8, %c[r8](%0) \n\t"
7861 "mov %%r9, %c[r9](%0) \n\t"
7862 "mov %%r10, %c[r10](%0) \n\t"
7863 "mov %%r11, %c[r11](%0) \n\t"
7864 "mov %%r12, %c[r12](%0) \n\t"
7865 "mov %%r13, %c[r13](%0) \n\t"
7866 "mov %%r14, %c[r14](%0) \n\t"
7867 "mov %%r15, %c[r15](%0) \n\t"
7868 #endif
7869 "mov %%cr2, %%" _ASM_AX " \n\t"
7870 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7871
7872 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7873 "setbe %c[fail](%0) \n\t"
7874 ".pushsection .rodata \n\t"
7875 ".global vmx_return \n\t"
7876 "vmx_return: " _ASM_PTR " 2b \n\t"
7877 ".popsection"
7878 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7879 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7880 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7881 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7882 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7883 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7884 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7885 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7886 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7887 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7888 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7889 #ifdef CONFIG_X86_64
7890 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7891 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7892 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7893 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7894 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7895 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7896 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7897 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7898 #endif
7899 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7900 [wordsize]"i"(sizeof(ulong))
7901 : "cc", "memory"
7902 #ifdef CONFIG_X86_64
7903 , "rax", "rbx", "rdi", "rsi"
7904 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7905 #else
7906 , "eax", "ebx", "edi", "esi"
7907 #endif
7908 );
7909
7910 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7911 if (debugctlmsr)
7912 update_debugctlmsr(debugctlmsr);
7913
7914 #ifndef CONFIG_X86_64
7915 /*
7916 * The sysexit path does not restore ds/es, so we must set them to
7917 * a reasonable value ourselves.
7918 *
7919 * We can't defer this to vmx_load_host_state() since that function
7920 * may be executed in interrupt context, which saves and restore segments
7921 * around it, nullifying its effect.
7922 */
7923 loadsegment(ds, __USER_DS);
7924 loadsegment(es, __USER_DS);
7925 #endif
7926
7927 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7928 | (1 << VCPU_EXREG_RFLAGS)
7929 | (1 << VCPU_EXREG_PDPTR)
7930 | (1 << VCPU_EXREG_SEGMENTS)
7931 | (1 << VCPU_EXREG_CR3));
7932 vcpu->arch.regs_dirty = 0;
7933
7934 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7935
7936 vmx->loaded_vmcs->launched = 1;
7937
7938 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7939 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7940
7941 /*
7942 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7943 * we did not inject a still-pending event to L1 now because of
7944 * nested_run_pending, we need to re-enable this bit.
7945 */
7946 if (vmx->nested.nested_run_pending)
7947 kvm_make_request(KVM_REQ_EVENT, vcpu);
7948
7949 vmx->nested.nested_run_pending = 0;
7950
7951 vmx_complete_atomic_exit(vmx);
7952 vmx_recover_nmi_blocking(vmx);
7953 vmx_complete_interrupts(vmx);
7954 }
7955
7956 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7957 {
7958 struct vcpu_vmx *vmx = to_vmx(vcpu);
7959 int cpu;
7960
7961 if (vmx->loaded_vmcs == &vmx->vmcs01)
7962 return;
7963
7964 cpu = get_cpu();
7965 vmx->loaded_vmcs = &vmx->vmcs01;
7966 vmx_vcpu_put(vcpu);
7967 vmx_vcpu_load(vcpu, cpu);
7968 vcpu->cpu = cpu;
7969 put_cpu();
7970 }
7971
7972 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7973 {
7974 struct vcpu_vmx *vmx = to_vmx(vcpu);
7975
7976 free_vpid(vmx);
7977 leave_guest_mode(vcpu);
7978 vmx_load_vmcs01(vcpu);
7979 free_nested(vmx);
7980 free_loaded_vmcs(vmx->loaded_vmcs);
7981 kfree(vmx->guest_msrs);
7982 kvm_vcpu_uninit(vcpu);
7983 kmem_cache_free(kvm_vcpu_cache, vmx);
7984 }
7985
7986 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7987 {
7988 int err;
7989 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7990 int cpu;
7991
7992 if (!vmx)
7993 return ERR_PTR(-ENOMEM);
7994
7995 allocate_vpid(vmx);
7996
7997 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7998 if (err)
7999 goto free_vcpu;
8000
8001 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8002 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8003 > PAGE_SIZE);
8004
8005 err = -ENOMEM;
8006 if (!vmx->guest_msrs) {
8007 goto uninit_vcpu;
8008 }
8009
8010 vmx->loaded_vmcs = &vmx->vmcs01;
8011 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8012 if (!vmx->loaded_vmcs->vmcs)
8013 goto free_msrs;
8014 if (!vmm_exclusive)
8015 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8016 loaded_vmcs_init(vmx->loaded_vmcs);
8017 if (!vmm_exclusive)
8018 kvm_cpu_vmxoff();
8019
8020 cpu = get_cpu();
8021 vmx_vcpu_load(&vmx->vcpu, cpu);
8022 vmx->vcpu.cpu = cpu;
8023 err = vmx_vcpu_setup(vmx);
8024 vmx_vcpu_put(&vmx->vcpu);
8025 put_cpu();
8026 if (err)
8027 goto free_vmcs;
8028 if (vm_need_virtualize_apic_accesses(kvm)) {
8029 err = alloc_apic_access_page(kvm);
8030 if (err)
8031 goto free_vmcs;
8032 }
8033
8034 if (enable_ept) {
8035 if (!kvm->arch.ept_identity_map_addr)
8036 kvm->arch.ept_identity_map_addr =
8037 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8038 err = init_rmode_identity_map(kvm);
8039 if (err)
8040 goto free_vmcs;
8041 }
8042
8043 vmx->nested.current_vmptr = -1ull;
8044 vmx->nested.current_vmcs12 = NULL;
8045
8046 return &vmx->vcpu;
8047
8048 free_vmcs:
8049 free_loaded_vmcs(vmx->loaded_vmcs);
8050 free_msrs:
8051 kfree(vmx->guest_msrs);
8052 uninit_vcpu:
8053 kvm_vcpu_uninit(&vmx->vcpu);
8054 free_vcpu:
8055 free_vpid(vmx);
8056 kmem_cache_free(kvm_vcpu_cache, vmx);
8057 return ERR_PTR(err);
8058 }
8059
8060 static void __init vmx_check_processor_compat(void *rtn)
8061 {
8062 struct vmcs_config vmcs_conf;
8063
8064 *(int *)rtn = 0;
8065 if (setup_vmcs_config(&vmcs_conf) < 0)
8066 *(int *)rtn = -EIO;
8067 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8068 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8069 smp_processor_id());
8070 *(int *)rtn = -EIO;
8071 }
8072 }
8073
8074 static int get_ept_level(void)
8075 {
8076 return VMX_EPT_DEFAULT_GAW + 1;
8077 }
8078
8079 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8080 {
8081 u64 ret;
8082
8083 /* For VT-d and EPT combination
8084 * 1. MMIO: always map as UC
8085 * 2. EPT with VT-d:
8086 * a. VT-d without snooping control feature: can't guarantee the
8087 * result, try to trust guest.
8088 * b. VT-d with snooping control feature: snooping control feature of
8089 * VT-d engine can guarantee the cache correctness. Just set it
8090 * to WB to keep consistent with host. So the same as item 3.
8091 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8092 * consistent with host MTRR
8093 */
8094 if (is_mmio)
8095 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
8096 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
8097 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8098 VMX_EPT_MT_EPTE_SHIFT;
8099 else
8100 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
8101 | VMX_EPT_IPAT_BIT;
8102
8103 return ret;
8104 }
8105
8106 static int vmx_get_lpage_level(void)
8107 {
8108 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8109 return PT_DIRECTORY_LEVEL;
8110 else
8111 /* For shadow and EPT supported 1GB page */
8112 return PT_PDPE_LEVEL;
8113 }
8114
8115 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8116 {
8117 struct kvm_cpuid_entry2 *best;
8118 struct vcpu_vmx *vmx = to_vmx(vcpu);
8119 u32 exec_control;
8120
8121 vmx->rdtscp_enabled = false;
8122 if (vmx_rdtscp_supported()) {
8123 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8124 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8125 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8126 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8127 vmx->rdtscp_enabled = true;
8128 else {
8129 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8130 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8131 exec_control);
8132 }
8133 }
8134 }
8135
8136 /* Exposing INVPCID only when PCID is exposed */
8137 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8138 if (vmx_invpcid_supported() &&
8139 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8140 guest_cpuid_has_pcid(vcpu)) {
8141 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8142 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8143 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8144 exec_control);
8145 } else {
8146 if (cpu_has_secondary_exec_ctrls()) {
8147 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8148 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8149 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8150 exec_control);
8151 }
8152 if (best)
8153 best->ebx &= ~bit(X86_FEATURE_INVPCID);
8154 }
8155 }
8156
8157 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8158 {
8159 if (func == 1 && nested)
8160 entry->ecx |= bit(X86_FEATURE_VMX);
8161 }
8162
8163 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8164 struct x86_exception *fault)
8165 {
8166 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8167 u32 exit_reason;
8168
8169 if (fault->error_code & PFERR_RSVD_MASK)
8170 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8171 else
8172 exit_reason = EXIT_REASON_EPT_VIOLATION;
8173 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8174 vmcs12->guest_physical_address = fault->address;
8175 }
8176
8177 /* Callbacks for nested_ept_init_mmu_context: */
8178
8179 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8180 {
8181 /* return the page table to be shadowed - in our case, EPT12 */
8182 return get_vmcs12(vcpu)->ept_pointer;
8183 }
8184
8185 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8186 {
8187 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
8188 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
8189
8190 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8191 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8192 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8193
8194 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
8195 }
8196
8197 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8198 {
8199 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8200 }
8201
8202 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8203 struct x86_exception *fault)
8204 {
8205 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8206
8207 WARN_ON(!is_guest_mode(vcpu));
8208
8209 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
8210 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
8211 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8212 vmcs_read32(VM_EXIT_INTR_INFO),
8213 vmcs_readl(EXIT_QUALIFICATION));
8214 else
8215 kvm_inject_page_fault(vcpu, fault);
8216 }
8217
8218 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8219 struct vmcs12 *vmcs12)
8220 {
8221 struct vcpu_vmx *vmx = to_vmx(vcpu);
8222
8223 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8224 /* TODO: Also verify bits beyond physical address width are 0 */
8225 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
8226 return false;
8227
8228 /*
8229 * Translate L1 physical address to host physical
8230 * address for vmcs02. Keep the page pinned, so this
8231 * physical address remains valid. We keep a reference
8232 * to it so we can release it later.
8233 */
8234 if (vmx->nested.apic_access_page) /* shouldn't happen */
8235 nested_release_page(vmx->nested.apic_access_page);
8236 vmx->nested.apic_access_page =
8237 nested_get_page(vcpu, vmcs12->apic_access_addr);
8238 }
8239
8240 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8241 /* TODO: Also verify bits beyond physical address width are 0 */
8242 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8243 return false;
8244
8245 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8246 nested_release_page(vmx->nested.virtual_apic_page);
8247 vmx->nested.virtual_apic_page =
8248 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8249
8250 /*
8251 * Failing the vm entry is _not_ what the processor does
8252 * but it's basically the only possibility we have.
8253 * We could still enter the guest if CR8 load exits are
8254 * enabled, CR8 store exits are enabled, and virtualize APIC
8255 * access is disabled; in this case the processor would never
8256 * use the TPR shadow and we could simply clear the bit from
8257 * the execution control. But such a configuration is useless,
8258 * so let's keep the code simple.
8259 */
8260 if (!vmx->nested.virtual_apic_page)
8261 return false;
8262 }
8263
8264 return true;
8265 }
8266
8267 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8268 {
8269 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8270 struct vcpu_vmx *vmx = to_vmx(vcpu);
8271
8272 if (vcpu->arch.virtual_tsc_khz == 0)
8273 return;
8274
8275 /* Make sure short timeouts reliably trigger an immediate vmexit.
8276 * hrtimer_start does not guarantee this. */
8277 if (preemption_timeout <= 1) {
8278 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8279 return;
8280 }
8281
8282 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8283 preemption_timeout *= 1000000;
8284 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8285 hrtimer_start(&vmx->nested.preemption_timer,
8286 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8287 }
8288
8289 /*
8290 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8291 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8292 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8293 * guest in a way that will both be appropriate to L1's requests, and our
8294 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8295 * function also has additional necessary side-effects, like setting various
8296 * vcpu->arch fields.
8297 */
8298 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8299 {
8300 struct vcpu_vmx *vmx = to_vmx(vcpu);
8301 u32 exec_control;
8302
8303 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8304 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8305 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8306 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8307 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8308 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8309 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8310 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8311 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8312 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8313 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8314 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8315 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8316 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8317 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8318 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8319 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8320 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8321 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8322 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8323 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8324 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8325 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8326 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8327 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8328 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8329 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8330 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8331 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8332 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8333 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8334 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8335 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8336 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8337 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8338 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8339
8340 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8341 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8342 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8343 } else {
8344 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8345 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8346 }
8347 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8348 vmcs12->vm_entry_intr_info_field);
8349 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8350 vmcs12->vm_entry_exception_error_code);
8351 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8352 vmcs12->vm_entry_instruction_len);
8353 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8354 vmcs12->guest_interruptibility_info);
8355 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8356 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8357 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8358 vmcs12->guest_pending_dbg_exceptions);
8359 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8360 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8361
8362 if (nested_cpu_has_xsaves(vmcs12))
8363 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
8364 vmcs_write64(VMCS_LINK_POINTER, -1ull);
8365
8366 exec_control = vmcs12->pin_based_vm_exec_control;
8367 exec_control |= vmcs_config.pin_based_exec_ctrl;
8368 exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8369 PIN_BASED_POSTED_INTR);
8370 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8371
8372 vmx->nested.preemption_timer_expired = false;
8373 if (nested_cpu_has_preemption_timer(vmcs12))
8374 vmx_start_preemption_timer(vcpu);
8375
8376 /*
8377 * Whether page-faults are trapped is determined by a combination of
8378 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8379 * If enable_ept, L0 doesn't care about page faults and we should
8380 * set all of these to L1's desires. However, if !enable_ept, L0 does
8381 * care about (at least some) page faults, and because it is not easy
8382 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8383 * to exit on each and every L2 page fault. This is done by setting
8384 * MASK=MATCH=0 and (see below) EB.PF=1.
8385 * Note that below we don't need special code to set EB.PF beyond the
8386 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8387 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8388 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8389 *
8390 * A problem with this approach (when !enable_ept) is that L1 may be
8391 * injected with more page faults than it asked for. This could have
8392 * caused problems, but in practice existing hypervisors don't care.
8393 * To fix this, we will need to emulate the PFEC checking (on the L1
8394 * page tables), using walk_addr(), when injecting PFs to L1.
8395 */
8396 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8397 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8398 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8399 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8400
8401 if (cpu_has_secondary_exec_ctrls()) {
8402 exec_control = vmx_secondary_exec_control(vmx);
8403 if (!vmx->rdtscp_enabled)
8404 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8405 /* Take the following fields only from vmcs12 */
8406 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8407 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8408 SECONDARY_EXEC_APIC_REGISTER_VIRT);
8409 if (nested_cpu_has(vmcs12,
8410 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8411 exec_control |= vmcs12->secondary_vm_exec_control;
8412
8413 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8414 /*
8415 * If translation failed, no matter: This feature asks
8416 * to exit when accessing the given address, and if it
8417 * can never be accessed, this feature won't do
8418 * anything anyway.
8419 */
8420 if (!vmx->nested.apic_access_page)
8421 exec_control &=
8422 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8423 else
8424 vmcs_write64(APIC_ACCESS_ADDR,
8425 page_to_phys(vmx->nested.apic_access_page));
8426 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8427 exec_control |=
8428 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8429 kvm_vcpu_reload_apic_access_page(vcpu);
8430 }
8431
8432 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8433 }
8434
8435
8436 /*
8437 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8438 * Some constant fields are set here by vmx_set_constant_host_state().
8439 * Other fields are different per CPU, and will be set later when
8440 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8441 */
8442 vmx_set_constant_host_state(vmx);
8443
8444 /*
8445 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8446 * entry, but only if the current (host) sp changed from the value
8447 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8448 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8449 * here we just force the write to happen on entry.
8450 */
8451 vmx->host_rsp = 0;
8452
8453 exec_control = vmx_exec_control(vmx); /* L0's desires */
8454 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8455 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8456 exec_control &= ~CPU_BASED_TPR_SHADOW;
8457 exec_control |= vmcs12->cpu_based_vm_exec_control;
8458
8459 if (exec_control & CPU_BASED_TPR_SHADOW) {
8460 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8461 page_to_phys(vmx->nested.virtual_apic_page));
8462 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8463 }
8464
8465 /*
8466 * Merging of IO and MSR bitmaps not currently supported.
8467 * Rather, exit every time.
8468 */
8469 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8470 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8471 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8472
8473 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8474
8475 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8476 * bitwise-or of what L1 wants to trap for L2, and what we want to
8477 * trap. Note that CR0.TS also needs updating - we do this later.
8478 */
8479 update_exception_bitmap(vcpu);
8480 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8481 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8482
8483 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8484 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8485 * bits are further modified by vmx_set_efer() below.
8486 */
8487 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8488
8489 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8490 * emulated by vmx_set_efer(), below.
8491 */
8492 vm_entry_controls_init(vmx,
8493 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8494 ~VM_ENTRY_IA32E_MODE) |
8495 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8496
8497 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8498 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8499 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8500 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8501 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8502
8503
8504 set_cr4_guest_host_mask(vmx);
8505
8506 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8507 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8508
8509 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8510 vmcs_write64(TSC_OFFSET,
8511 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8512 else
8513 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8514
8515 if (enable_vpid) {
8516 /*
8517 * Trivially support vpid by letting L2s share their parent
8518 * L1's vpid. TODO: move to a more elaborate solution, giving
8519 * each L2 its own vpid and exposing the vpid feature to L1.
8520 */
8521 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8522 vmx_flush_tlb(vcpu);
8523 }
8524
8525 if (nested_cpu_has_ept(vmcs12)) {
8526 kvm_mmu_unload(vcpu);
8527 nested_ept_init_mmu_context(vcpu);
8528 }
8529
8530 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8531 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8532 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8533 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8534 else
8535 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8536 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8537 vmx_set_efer(vcpu, vcpu->arch.efer);
8538
8539 /*
8540 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8541 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8542 * The CR0_READ_SHADOW is what L2 should have expected to read given
8543 * the specifications by L1; It's not enough to take
8544 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8545 * have more bits than L1 expected.
8546 */
8547 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8548 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8549
8550 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8551 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8552
8553 /* shadow page tables on either EPT or shadow page tables */
8554 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8555 kvm_mmu_reset_context(vcpu);
8556
8557 if (!enable_ept)
8558 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8559
8560 /*
8561 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8562 */
8563 if (enable_ept) {
8564 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8565 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8566 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8567 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8568 }
8569
8570 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8571 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8572 }
8573
8574 /*
8575 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8576 * for running an L2 nested guest.
8577 */
8578 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8579 {
8580 struct vmcs12 *vmcs12;
8581 struct vcpu_vmx *vmx = to_vmx(vcpu);
8582 int cpu;
8583 struct loaded_vmcs *vmcs02;
8584 bool ia32e;
8585
8586 if (!nested_vmx_check_permission(vcpu) ||
8587 !nested_vmx_check_vmcs12(vcpu))
8588 return 1;
8589
8590 skip_emulated_instruction(vcpu);
8591 vmcs12 = get_vmcs12(vcpu);
8592
8593 if (enable_shadow_vmcs)
8594 copy_shadow_to_vmcs12(vmx);
8595
8596 /*
8597 * The nested entry process starts with enforcing various prerequisites
8598 * on vmcs12 as required by the Intel SDM, and act appropriately when
8599 * they fail: As the SDM explains, some conditions should cause the
8600 * instruction to fail, while others will cause the instruction to seem
8601 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8602 * To speed up the normal (success) code path, we should avoid checking
8603 * for misconfigurations which will anyway be caught by the processor
8604 * when using the merged vmcs02.
8605 */
8606 if (vmcs12->launch_state == launch) {
8607 nested_vmx_failValid(vcpu,
8608 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8609 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8610 return 1;
8611 }
8612
8613 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8614 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8615 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8616 return 1;
8617 }
8618
8619 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8620 !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8621 /*TODO: Also verify bits beyond physical address width are 0*/
8622 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8623 return 1;
8624 }
8625
8626 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8627 /*TODO: Also verify bits beyond physical address width are 0*/
8628 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8629 return 1;
8630 }
8631
8632 if (vmcs12->vm_entry_msr_load_count > 0 ||
8633 vmcs12->vm_exit_msr_load_count > 0 ||
8634 vmcs12->vm_exit_msr_store_count > 0) {
8635 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8636 __func__);
8637 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8638 return 1;
8639 }
8640
8641 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8642 nested_vmx_true_procbased_ctls_low,
8643 nested_vmx_procbased_ctls_high) ||
8644 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8645 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8646 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8647 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8648 !vmx_control_verify(vmcs12->vm_exit_controls,
8649 nested_vmx_true_exit_ctls_low,
8650 nested_vmx_exit_ctls_high) ||
8651 !vmx_control_verify(vmcs12->vm_entry_controls,
8652 nested_vmx_true_entry_ctls_low,
8653 nested_vmx_entry_ctls_high))
8654 {
8655 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8656 return 1;
8657 }
8658
8659 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8660 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8661 nested_vmx_failValid(vcpu,
8662 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8663 return 1;
8664 }
8665
8666 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8667 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8668 nested_vmx_entry_failure(vcpu, vmcs12,
8669 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8670 return 1;
8671 }
8672 if (vmcs12->vmcs_link_pointer != -1ull) {
8673 nested_vmx_entry_failure(vcpu, vmcs12,
8674 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8675 return 1;
8676 }
8677
8678 /*
8679 * If the load IA32_EFER VM-entry control is 1, the following checks
8680 * are performed on the field for the IA32_EFER MSR:
8681 * - Bits reserved in the IA32_EFER MSR must be 0.
8682 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8683 * the IA-32e mode guest VM-exit control. It must also be identical
8684 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8685 * CR0.PG) is 1.
8686 */
8687 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8688 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8689 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8690 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8691 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8692 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8693 nested_vmx_entry_failure(vcpu, vmcs12,
8694 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8695 return 1;
8696 }
8697 }
8698
8699 /*
8700 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8701 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8702 * the values of the LMA and LME bits in the field must each be that of
8703 * the host address-space size VM-exit control.
8704 */
8705 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8706 ia32e = (vmcs12->vm_exit_controls &
8707 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8708 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8709 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8710 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8711 nested_vmx_entry_failure(vcpu, vmcs12,
8712 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8713 return 1;
8714 }
8715 }
8716
8717 /*
8718 * We're finally done with prerequisite checking, and can start with
8719 * the nested entry.
8720 */
8721
8722 vmcs02 = nested_get_current_vmcs02(vmx);
8723 if (!vmcs02)
8724 return -ENOMEM;
8725
8726 enter_guest_mode(vcpu);
8727
8728 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8729
8730 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8731 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8732
8733 cpu = get_cpu();
8734 vmx->loaded_vmcs = vmcs02;
8735 vmx_vcpu_put(vcpu);
8736 vmx_vcpu_load(vcpu, cpu);
8737 vcpu->cpu = cpu;
8738 put_cpu();
8739
8740 vmx_segment_cache_clear(vmx);
8741
8742 vmcs12->launch_state = 1;
8743
8744 prepare_vmcs02(vcpu, vmcs12);
8745
8746 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8747 return kvm_emulate_halt(vcpu);
8748
8749 vmx->nested.nested_run_pending = 1;
8750
8751 /*
8752 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8753 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8754 * returned as far as L1 is concerned. It will only return (and set
8755 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8756 */
8757 return 1;
8758 }
8759
8760 /*
8761 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8762 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8763 * This function returns the new value we should put in vmcs12.guest_cr0.
8764 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8765 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8766 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8767 * didn't trap the bit, because if L1 did, so would L0).
8768 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8769 * been modified by L2, and L1 knows it. So just leave the old value of
8770 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8771 * isn't relevant, because if L0 traps this bit it can set it to anything.
8772 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8773 * changed these bits, and therefore they need to be updated, but L0
8774 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8775 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8776 */
8777 static inline unsigned long
8778 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8779 {
8780 return
8781 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8782 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8783 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8784 vcpu->arch.cr0_guest_owned_bits));
8785 }
8786
8787 static inline unsigned long
8788 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8789 {
8790 return
8791 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8792 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8793 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8794 vcpu->arch.cr4_guest_owned_bits));
8795 }
8796
8797 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8798 struct vmcs12 *vmcs12)
8799 {
8800 u32 idt_vectoring;
8801 unsigned int nr;
8802
8803 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8804 nr = vcpu->arch.exception.nr;
8805 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8806
8807 if (kvm_exception_is_soft(nr)) {
8808 vmcs12->vm_exit_instruction_len =
8809 vcpu->arch.event_exit_inst_len;
8810 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8811 } else
8812 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8813
8814 if (vcpu->arch.exception.has_error_code) {
8815 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8816 vmcs12->idt_vectoring_error_code =
8817 vcpu->arch.exception.error_code;
8818 }
8819
8820 vmcs12->idt_vectoring_info_field = idt_vectoring;
8821 } else if (vcpu->arch.nmi_injected) {
8822 vmcs12->idt_vectoring_info_field =
8823 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8824 } else if (vcpu->arch.interrupt.pending) {
8825 nr = vcpu->arch.interrupt.nr;
8826 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8827
8828 if (vcpu->arch.interrupt.soft) {
8829 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8830 vmcs12->vm_entry_instruction_len =
8831 vcpu->arch.event_exit_inst_len;
8832 } else
8833 idt_vectoring |= INTR_TYPE_EXT_INTR;
8834
8835 vmcs12->idt_vectoring_info_field = idt_vectoring;
8836 }
8837 }
8838
8839 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8840 {
8841 struct vcpu_vmx *vmx = to_vmx(vcpu);
8842
8843 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8844 vmx->nested.preemption_timer_expired) {
8845 if (vmx->nested.nested_run_pending)
8846 return -EBUSY;
8847 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8848 return 0;
8849 }
8850
8851 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8852 if (vmx->nested.nested_run_pending ||
8853 vcpu->arch.interrupt.pending)
8854 return -EBUSY;
8855 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8856 NMI_VECTOR | INTR_TYPE_NMI_INTR |
8857 INTR_INFO_VALID_MASK, 0);
8858 /*
8859 * The NMI-triggered VM exit counts as injection:
8860 * clear this one and block further NMIs.
8861 */
8862 vcpu->arch.nmi_pending = 0;
8863 vmx_set_nmi_mask(vcpu, true);
8864 return 0;
8865 }
8866
8867 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8868 nested_exit_on_intr(vcpu)) {
8869 if (vmx->nested.nested_run_pending)
8870 return -EBUSY;
8871 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8872 }
8873
8874 return 0;
8875 }
8876
8877 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8878 {
8879 ktime_t remaining =
8880 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8881 u64 value;
8882
8883 if (ktime_to_ns(remaining) <= 0)
8884 return 0;
8885
8886 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8887 do_div(value, 1000000);
8888 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8889 }
8890
8891 /*
8892 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8893 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8894 * and this function updates it to reflect the changes to the guest state while
8895 * L2 was running (and perhaps made some exits which were handled directly by L0
8896 * without going back to L1), and to reflect the exit reason.
8897 * Note that we do not have to copy here all VMCS fields, just those that
8898 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8899 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8900 * which already writes to vmcs12 directly.
8901 */
8902 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8903 u32 exit_reason, u32 exit_intr_info,
8904 unsigned long exit_qualification)
8905 {
8906 /* update guest state fields: */
8907 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8908 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8909
8910 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8911 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8912 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8913
8914 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8915 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8916 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8917 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8918 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8919 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8920 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8921 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8922 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8923 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8924 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8925 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8926 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8927 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8928 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8929 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8930 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8931 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8932 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8933 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8934 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8935 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8936 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8937 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8938 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8939 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8940 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8941 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8942 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8943 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8944 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8945 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8946 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8947 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8948 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8949 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8950
8951 vmcs12->guest_interruptibility_info =
8952 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8953 vmcs12->guest_pending_dbg_exceptions =
8954 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8955 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8956 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8957 else
8958 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8959
8960 if (nested_cpu_has_preemption_timer(vmcs12)) {
8961 if (vmcs12->vm_exit_controls &
8962 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8963 vmcs12->vmx_preemption_timer_value =
8964 vmx_get_preemption_timer_value(vcpu);
8965 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8966 }
8967
8968 /*
8969 * In some cases (usually, nested EPT), L2 is allowed to change its
8970 * own CR3 without exiting. If it has changed it, we must keep it.
8971 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8972 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8973 *
8974 * Additionally, restore L2's PDPTR to vmcs12.
8975 */
8976 if (enable_ept) {
8977 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8978 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8979 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8980 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8981 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8982 }
8983
8984 vmcs12->vm_entry_controls =
8985 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8986 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8987
8988 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8989 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8990 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8991 }
8992
8993 /* TODO: These cannot have changed unless we have MSR bitmaps and
8994 * the relevant bit asks not to trap the change */
8995 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8996 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8997 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8998 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8999 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9000 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9001 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9002 if (vmx_mpx_supported())
9003 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9004 if (nested_cpu_has_xsaves(vmcs12))
9005 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9006
9007 /* update exit information fields: */
9008
9009 vmcs12->vm_exit_reason = exit_reason;
9010 vmcs12->exit_qualification = exit_qualification;
9011
9012 vmcs12->vm_exit_intr_info = exit_intr_info;
9013 if ((vmcs12->vm_exit_intr_info &
9014 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9015 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9016 vmcs12->vm_exit_intr_error_code =
9017 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9018 vmcs12->idt_vectoring_info_field = 0;
9019 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9020 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9021
9022 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9023 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9024 * instead of reading the real value. */
9025 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9026
9027 /*
9028 * Transfer the event that L0 or L1 may wanted to inject into
9029 * L2 to IDT_VECTORING_INFO_FIELD.
9030 */
9031 vmcs12_save_pending_event(vcpu, vmcs12);
9032 }
9033
9034 /*
9035 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9036 * preserved above and would only end up incorrectly in L1.
9037 */
9038 vcpu->arch.nmi_injected = false;
9039 kvm_clear_exception_queue(vcpu);
9040 kvm_clear_interrupt_queue(vcpu);
9041 }
9042
9043 /*
9044 * A part of what we need to when the nested L2 guest exits and we want to
9045 * run its L1 parent, is to reset L1's guest state to the host state specified
9046 * in vmcs12.
9047 * This function is to be called not only on normal nested exit, but also on
9048 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9049 * Failures During or After Loading Guest State").
9050 * This function should be called when the active VMCS is L1's (vmcs01).
9051 */
9052 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9053 struct vmcs12 *vmcs12)
9054 {
9055 struct kvm_segment seg;
9056
9057 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9058 vcpu->arch.efer = vmcs12->host_ia32_efer;
9059 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9060 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9061 else
9062 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9063 vmx_set_efer(vcpu, vcpu->arch.efer);
9064
9065 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
9066 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
9067 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
9068 /*
9069 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
9070 * actually changed, because it depends on the current state of
9071 * fpu_active (which may have changed).
9072 * Note that vmx_set_cr0 refers to efer set above.
9073 */
9074 vmx_set_cr0(vcpu, vmcs12->host_cr0);
9075 /*
9076 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9077 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9078 * but we also need to update cr0_guest_host_mask and exception_bitmap.
9079 */
9080 update_exception_bitmap(vcpu);
9081 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
9082 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9083
9084 /*
9085 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9086 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9087 */
9088 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9089 kvm_set_cr4(vcpu, vmcs12->host_cr4);
9090
9091 nested_ept_uninit_mmu_context(vcpu);
9092
9093 kvm_set_cr3(vcpu, vmcs12->host_cr3);
9094 kvm_mmu_reset_context(vcpu);
9095
9096 if (!enable_ept)
9097 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9098
9099 if (enable_vpid) {
9100 /*
9101 * Trivially support vpid by letting L2s share their parent
9102 * L1's vpid. TODO: move to a more elaborate solution, giving
9103 * each L2 its own vpid and exposing the vpid feature to L1.
9104 */
9105 vmx_flush_tlb(vcpu);
9106 }
9107
9108
9109 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9110 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9111 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9112 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9113 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
9114
9115 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
9116 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9117 vmcs_write64(GUEST_BNDCFGS, 0);
9118
9119 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
9120 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
9121 vcpu->arch.pat = vmcs12->host_ia32_pat;
9122 }
9123 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9124 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9125 vmcs12->host_ia32_perf_global_ctrl);
9126
9127 /* Set L1 segment info according to Intel SDM
9128 27.5.2 Loading Host Segment and Descriptor-Table Registers */
9129 seg = (struct kvm_segment) {
9130 .base = 0,
9131 .limit = 0xFFFFFFFF,
9132 .selector = vmcs12->host_cs_selector,
9133 .type = 11,
9134 .present = 1,
9135 .s = 1,
9136 .g = 1
9137 };
9138 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9139 seg.l = 1;
9140 else
9141 seg.db = 1;
9142 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9143 seg = (struct kvm_segment) {
9144 .base = 0,
9145 .limit = 0xFFFFFFFF,
9146 .type = 3,
9147 .present = 1,
9148 .s = 1,
9149 .db = 1,
9150 .g = 1
9151 };
9152 seg.selector = vmcs12->host_ds_selector;
9153 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9154 seg.selector = vmcs12->host_es_selector;
9155 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9156 seg.selector = vmcs12->host_ss_selector;
9157 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9158 seg.selector = vmcs12->host_fs_selector;
9159 seg.base = vmcs12->host_fs_base;
9160 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9161 seg.selector = vmcs12->host_gs_selector;
9162 seg.base = vmcs12->host_gs_base;
9163 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9164 seg = (struct kvm_segment) {
9165 .base = vmcs12->host_tr_base,
9166 .limit = 0x67,
9167 .selector = vmcs12->host_tr_selector,
9168 .type = 11,
9169 .present = 1
9170 };
9171 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9172
9173 kvm_set_dr(vcpu, 7, 0x400);
9174 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
9175 }
9176
9177 /*
9178 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9179 * and modify vmcs12 to make it see what it would expect to see there if
9180 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9181 */
9182 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
9183 u32 exit_intr_info,
9184 unsigned long exit_qualification)
9185 {
9186 struct vcpu_vmx *vmx = to_vmx(vcpu);
9187 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9188
9189 /* trying to cancel vmlaunch/vmresume is a bug */
9190 WARN_ON_ONCE(vmx->nested.nested_run_pending);
9191
9192 leave_guest_mode(vcpu);
9193 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
9194 exit_qualification);
9195
9196 vmx_load_vmcs01(vcpu);
9197
9198 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
9199 && nested_exit_intr_ack_set(vcpu)) {
9200 int irq = kvm_cpu_get_interrupt(vcpu);
9201 WARN_ON(irq < 0);
9202 vmcs12->vm_exit_intr_info = irq |
9203 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
9204 }
9205
9206 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
9207 vmcs12->exit_qualification,
9208 vmcs12->idt_vectoring_info_field,
9209 vmcs12->vm_exit_intr_info,
9210 vmcs12->vm_exit_intr_error_code,
9211 KVM_ISA_VMX);
9212
9213 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
9214 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
9215 vmx_segment_cache_clear(vmx);
9216
9217 /* if no vmcs02 cache requested, remove the one we used */
9218 if (VMCS02_POOL_SIZE == 0)
9219 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
9220
9221 load_vmcs12_host_state(vcpu, vmcs12);
9222
9223 /* Update TSC_OFFSET if TSC was changed while L2 ran */
9224 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9225
9226 /* This is needed for same reason as it was needed in prepare_vmcs02 */
9227 vmx->host_rsp = 0;
9228
9229 /* Unpin physical memory we referred to in vmcs02 */
9230 if (vmx->nested.apic_access_page) {
9231 nested_release_page(vmx->nested.apic_access_page);
9232 vmx->nested.apic_access_page = NULL;
9233 }
9234 if (vmx->nested.virtual_apic_page) {
9235 nested_release_page(vmx->nested.virtual_apic_page);
9236 vmx->nested.virtual_apic_page = NULL;
9237 }
9238
9239 /*
9240 * We are now running in L2, mmu_notifier will force to reload the
9241 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9242 */
9243 kvm_vcpu_reload_apic_access_page(vcpu);
9244
9245 /*
9246 * Exiting from L2 to L1, we're now back to L1 which thinks it just
9247 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9248 * success or failure flag accordingly.
9249 */
9250 if (unlikely(vmx->fail)) {
9251 vmx->fail = 0;
9252 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9253 } else
9254 nested_vmx_succeed(vcpu);
9255 if (enable_shadow_vmcs)
9256 vmx->nested.sync_shadow_vmcs = true;
9257
9258 /* in case we halted in L2 */
9259 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9260 }
9261
9262 /*
9263 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9264 */
9265 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9266 {
9267 if (is_guest_mode(vcpu))
9268 nested_vmx_vmexit(vcpu, -1, 0, 0);
9269 free_nested(to_vmx(vcpu));
9270 }
9271
9272 /*
9273 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9274 * 23.7 "VM-entry failures during or after loading guest state" (this also
9275 * lists the acceptable exit-reason and exit-qualification parameters).
9276 * It should only be called before L2 actually succeeded to run, and when
9277 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9278 */
9279 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9280 struct vmcs12 *vmcs12,
9281 u32 reason, unsigned long qualification)
9282 {
9283 load_vmcs12_host_state(vcpu, vmcs12);
9284 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9285 vmcs12->exit_qualification = qualification;
9286 nested_vmx_succeed(vcpu);
9287 if (enable_shadow_vmcs)
9288 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9289 }
9290
9291 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9292 struct x86_instruction_info *info,
9293 enum x86_intercept_stage stage)
9294 {
9295 return X86EMUL_CONTINUE;
9296 }
9297
9298 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9299 {
9300 if (ple_gap)
9301 shrink_ple_window(vcpu);
9302 }
9303
9304 static struct kvm_x86_ops vmx_x86_ops = {
9305 .cpu_has_kvm_support = cpu_has_kvm_support,
9306 .disabled_by_bios = vmx_disabled_by_bios,
9307 .hardware_setup = hardware_setup,
9308 .hardware_unsetup = hardware_unsetup,
9309 .check_processor_compatibility = vmx_check_processor_compat,
9310 .hardware_enable = hardware_enable,
9311 .hardware_disable = hardware_disable,
9312 .cpu_has_accelerated_tpr = report_flexpriority,
9313
9314 .vcpu_create = vmx_create_vcpu,
9315 .vcpu_free = vmx_free_vcpu,
9316 .vcpu_reset = vmx_vcpu_reset,
9317
9318 .prepare_guest_switch = vmx_save_host_state,
9319 .vcpu_load = vmx_vcpu_load,
9320 .vcpu_put = vmx_vcpu_put,
9321
9322 .update_db_bp_intercept = update_exception_bitmap,
9323 .get_msr = vmx_get_msr,
9324 .set_msr = vmx_set_msr,
9325 .get_segment_base = vmx_get_segment_base,
9326 .get_segment = vmx_get_segment,
9327 .set_segment = vmx_set_segment,
9328 .get_cpl = vmx_get_cpl,
9329 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9330 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9331 .decache_cr3 = vmx_decache_cr3,
9332 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9333 .set_cr0 = vmx_set_cr0,
9334 .set_cr3 = vmx_set_cr3,
9335 .set_cr4 = vmx_set_cr4,
9336 .set_efer = vmx_set_efer,
9337 .get_idt = vmx_get_idt,
9338 .set_idt = vmx_set_idt,
9339 .get_gdt = vmx_get_gdt,
9340 .set_gdt = vmx_set_gdt,
9341 .get_dr6 = vmx_get_dr6,
9342 .set_dr6 = vmx_set_dr6,
9343 .set_dr7 = vmx_set_dr7,
9344 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9345 .cache_reg = vmx_cache_reg,
9346 .get_rflags = vmx_get_rflags,
9347 .set_rflags = vmx_set_rflags,
9348 .fpu_deactivate = vmx_fpu_deactivate,
9349
9350 .tlb_flush = vmx_flush_tlb,
9351
9352 .run = vmx_vcpu_run,
9353 .handle_exit = vmx_handle_exit,
9354 .skip_emulated_instruction = skip_emulated_instruction,
9355 .set_interrupt_shadow = vmx_set_interrupt_shadow,
9356 .get_interrupt_shadow = vmx_get_interrupt_shadow,
9357 .patch_hypercall = vmx_patch_hypercall,
9358 .set_irq = vmx_inject_irq,
9359 .set_nmi = vmx_inject_nmi,
9360 .queue_exception = vmx_queue_exception,
9361 .cancel_injection = vmx_cancel_injection,
9362 .interrupt_allowed = vmx_interrupt_allowed,
9363 .nmi_allowed = vmx_nmi_allowed,
9364 .get_nmi_mask = vmx_get_nmi_mask,
9365 .set_nmi_mask = vmx_set_nmi_mask,
9366 .enable_nmi_window = enable_nmi_window,
9367 .enable_irq_window = enable_irq_window,
9368 .update_cr8_intercept = update_cr8_intercept,
9369 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9370 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
9371 .vm_has_apicv = vmx_vm_has_apicv,
9372 .load_eoi_exitmap = vmx_load_eoi_exitmap,
9373 .hwapic_irr_update = vmx_hwapic_irr_update,
9374 .hwapic_isr_update = vmx_hwapic_isr_update,
9375 .sync_pir_to_irr = vmx_sync_pir_to_irr,
9376 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9377
9378 .set_tss_addr = vmx_set_tss_addr,
9379 .get_tdp_level = get_ept_level,
9380 .get_mt_mask = vmx_get_mt_mask,
9381
9382 .get_exit_info = vmx_get_exit_info,
9383
9384 .get_lpage_level = vmx_get_lpage_level,
9385
9386 .cpuid_update = vmx_cpuid_update,
9387
9388 .rdtscp_supported = vmx_rdtscp_supported,
9389 .invpcid_supported = vmx_invpcid_supported,
9390
9391 .set_supported_cpuid = vmx_set_supported_cpuid,
9392
9393 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9394
9395 .set_tsc_khz = vmx_set_tsc_khz,
9396 .read_tsc_offset = vmx_read_tsc_offset,
9397 .write_tsc_offset = vmx_write_tsc_offset,
9398 .adjust_tsc_offset = vmx_adjust_tsc_offset,
9399 .compute_tsc_offset = vmx_compute_tsc_offset,
9400 .read_l1_tsc = vmx_read_l1_tsc,
9401
9402 .set_tdp_cr3 = vmx_set_cr3,
9403
9404 .check_intercept = vmx_check_intercept,
9405 .handle_external_intr = vmx_handle_external_intr,
9406 .mpx_supported = vmx_mpx_supported,
9407 .xsaves_supported = vmx_xsaves_supported,
9408
9409 .check_nested_events = vmx_check_nested_events,
9410
9411 .sched_in = vmx_sched_in,
9412 };
9413
9414 static int __init vmx_init(void)
9415 {
9416 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9417 __alignof__(struct vcpu_vmx), THIS_MODULE);
9418 if (r)
9419 return r;
9420
9421 #ifdef CONFIG_KEXEC
9422 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9423 crash_vmclear_local_loaded_vmcss);
9424 #endif
9425
9426 return 0;
9427 }
9428
9429 static void __exit vmx_exit(void)
9430 {
9431 #ifdef CONFIG_KEXEC
9432 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9433 synchronize_rcu();
9434 #endif
9435
9436 kvm_exit();
9437 }
9438
9439 module_init(vmx_init)
9440 module_exit(vmx_exit)
This page took 0.249159 seconds and 5 git commands to generate.