KVM: VMX: introduce __vmx_flush_tlb to handle specific vpid
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/cpu.h>
39 #include <asm/io.h>
40 #include <asm/desc.h>
41 #include <asm/vmx.h>
42 #include <asm/virtext.h>
43 #include <asm/mce.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48 #include <asm/apic.h>
49 #include <asm/irq_remapping.h>
50
51 #include "trace.h"
52 #include "pmu.h"
53
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55 #define __ex_clear(x, reg) \
56 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
57
58 MODULE_AUTHOR("Qumranet");
59 MODULE_LICENSE("GPL");
60
61 static const struct x86_cpu_id vmx_cpu_id[] = {
62 X86_FEATURE_MATCH(X86_FEATURE_VMX),
63 {}
64 };
65 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
66
67 static bool __read_mostly enable_vpid = 1;
68 module_param_named(vpid, enable_vpid, bool, 0444);
69
70 static bool __read_mostly flexpriority_enabled = 1;
71 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
72
73 static bool __read_mostly enable_ept = 1;
74 module_param_named(ept, enable_ept, bool, S_IRUGO);
75
76 static bool __read_mostly enable_unrestricted_guest = 1;
77 module_param_named(unrestricted_guest,
78 enable_unrestricted_guest, bool, S_IRUGO);
79
80 static bool __read_mostly enable_ept_ad_bits = 1;
81 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
82
83 static bool __read_mostly emulate_invalid_guest_state = true;
84 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
85
86 static bool __read_mostly vmm_exclusive = 1;
87 module_param(vmm_exclusive, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
111 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
112 #define KVM_VM_CR0_ALWAYS_ON \
113 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
114 #define KVM_CR4_GUEST_OWNED_BITS \
115 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
116 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
117
118 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
119 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
120
121 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
122
123 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
124
125 /*
126 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
127 * ple_gap: upper bound on the amount of time between two successive
128 * executions of PAUSE in a loop. Also indicate if ple enabled.
129 * According to test, this time is usually smaller than 128 cycles.
130 * ple_window: upper bound on the amount of time a guest is allowed to execute
131 * in a PAUSE loop. Tests indicate that most spinlocks are held for
132 * less than 2^12 cycles
133 * Time is measured based on a counter that runs at the same rate as the TSC,
134 * refer SDM volume 3b section 21.6.13 & 22.1.3.
135 */
136 #define KVM_VMX_DEFAULT_PLE_GAP 128
137 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
139 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
140 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
141 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
142
143 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
144 module_param(ple_gap, int, S_IRUGO);
145
146 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
147 module_param(ple_window, int, S_IRUGO);
148
149 /* Default doubles per-vcpu window every exit. */
150 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
151 module_param(ple_window_grow, int, S_IRUGO);
152
153 /* Default resets per-vcpu window every exit to ple_window. */
154 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
155 module_param(ple_window_shrink, int, S_IRUGO);
156
157 /* Default is to compute the maximum so we can never overflow. */
158 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
159 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
160 module_param(ple_window_max, int, S_IRUGO);
161
162 extern const ulong vmx_return;
163
164 #define NR_AUTOLOAD_MSRS 8
165 #define VMCS02_POOL_SIZE 1
166
167 struct vmcs {
168 u32 revision_id;
169 u32 abort;
170 char data[0];
171 };
172
173 /*
174 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
175 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
176 * loaded on this CPU (so we can clear them if the CPU goes down).
177 */
178 struct loaded_vmcs {
179 struct vmcs *vmcs;
180 int cpu;
181 int launched;
182 struct list_head loaded_vmcss_on_cpu_link;
183 };
184
185 struct shared_msr_entry {
186 unsigned index;
187 u64 data;
188 u64 mask;
189 };
190
191 /*
192 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
193 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
194 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
195 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
196 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
197 * More than one of these structures may exist, if L1 runs multiple L2 guests.
198 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
199 * underlying hardware which will be used to run L2.
200 * This structure is packed to ensure that its layout is identical across
201 * machines (necessary for live migration).
202 * If there are changes in this struct, VMCS12_REVISION must be changed.
203 */
204 typedef u64 natural_width;
205 struct __packed vmcs12 {
206 /* According to the Intel spec, a VMCS region must start with the
207 * following two fields. Then follow implementation-specific data.
208 */
209 u32 revision_id;
210 u32 abort;
211
212 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
213 u32 padding[7]; /* room for future expansion */
214
215 u64 io_bitmap_a;
216 u64 io_bitmap_b;
217 u64 msr_bitmap;
218 u64 vm_exit_msr_store_addr;
219 u64 vm_exit_msr_load_addr;
220 u64 vm_entry_msr_load_addr;
221 u64 tsc_offset;
222 u64 virtual_apic_page_addr;
223 u64 apic_access_addr;
224 u64 posted_intr_desc_addr;
225 u64 ept_pointer;
226 u64 eoi_exit_bitmap0;
227 u64 eoi_exit_bitmap1;
228 u64 eoi_exit_bitmap2;
229 u64 eoi_exit_bitmap3;
230 u64 xss_exit_bitmap;
231 u64 guest_physical_address;
232 u64 vmcs_link_pointer;
233 u64 guest_ia32_debugctl;
234 u64 guest_ia32_pat;
235 u64 guest_ia32_efer;
236 u64 guest_ia32_perf_global_ctrl;
237 u64 guest_pdptr0;
238 u64 guest_pdptr1;
239 u64 guest_pdptr2;
240 u64 guest_pdptr3;
241 u64 guest_bndcfgs;
242 u64 host_ia32_pat;
243 u64 host_ia32_efer;
244 u64 host_ia32_perf_global_ctrl;
245 u64 padding64[8]; /* room for future expansion */
246 /*
247 * To allow migration of L1 (complete with its L2 guests) between
248 * machines of different natural widths (32 or 64 bit), we cannot have
249 * unsigned long fields with no explict size. We use u64 (aliased
250 * natural_width) instead. Luckily, x86 is little-endian.
251 */
252 natural_width cr0_guest_host_mask;
253 natural_width cr4_guest_host_mask;
254 natural_width cr0_read_shadow;
255 natural_width cr4_read_shadow;
256 natural_width cr3_target_value0;
257 natural_width cr3_target_value1;
258 natural_width cr3_target_value2;
259 natural_width cr3_target_value3;
260 natural_width exit_qualification;
261 natural_width guest_linear_address;
262 natural_width guest_cr0;
263 natural_width guest_cr3;
264 natural_width guest_cr4;
265 natural_width guest_es_base;
266 natural_width guest_cs_base;
267 natural_width guest_ss_base;
268 natural_width guest_ds_base;
269 natural_width guest_fs_base;
270 natural_width guest_gs_base;
271 natural_width guest_ldtr_base;
272 natural_width guest_tr_base;
273 natural_width guest_gdtr_base;
274 natural_width guest_idtr_base;
275 natural_width guest_dr7;
276 natural_width guest_rsp;
277 natural_width guest_rip;
278 natural_width guest_rflags;
279 natural_width guest_pending_dbg_exceptions;
280 natural_width guest_sysenter_esp;
281 natural_width guest_sysenter_eip;
282 natural_width host_cr0;
283 natural_width host_cr3;
284 natural_width host_cr4;
285 natural_width host_fs_base;
286 natural_width host_gs_base;
287 natural_width host_tr_base;
288 natural_width host_gdtr_base;
289 natural_width host_idtr_base;
290 natural_width host_ia32_sysenter_esp;
291 natural_width host_ia32_sysenter_eip;
292 natural_width host_rsp;
293 natural_width host_rip;
294 natural_width paddingl[8]; /* room for future expansion */
295 u32 pin_based_vm_exec_control;
296 u32 cpu_based_vm_exec_control;
297 u32 exception_bitmap;
298 u32 page_fault_error_code_mask;
299 u32 page_fault_error_code_match;
300 u32 cr3_target_count;
301 u32 vm_exit_controls;
302 u32 vm_exit_msr_store_count;
303 u32 vm_exit_msr_load_count;
304 u32 vm_entry_controls;
305 u32 vm_entry_msr_load_count;
306 u32 vm_entry_intr_info_field;
307 u32 vm_entry_exception_error_code;
308 u32 vm_entry_instruction_len;
309 u32 tpr_threshold;
310 u32 secondary_vm_exec_control;
311 u32 vm_instruction_error;
312 u32 vm_exit_reason;
313 u32 vm_exit_intr_info;
314 u32 vm_exit_intr_error_code;
315 u32 idt_vectoring_info_field;
316 u32 idt_vectoring_error_code;
317 u32 vm_exit_instruction_len;
318 u32 vmx_instruction_info;
319 u32 guest_es_limit;
320 u32 guest_cs_limit;
321 u32 guest_ss_limit;
322 u32 guest_ds_limit;
323 u32 guest_fs_limit;
324 u32 guest_gs_limit;
325 u32 guest_ldtr_limit;
326 u32 guest_tr_limit;
327 u32 guest_gdtr_limit;
328 u32 guest_idtr_limit;
329 u32 guest_es_ar_bytes;
330 u32 guest_cs_ar_bytes;
331 u32 guest_ss_ar_bytes;
332 u32 guest_ds_ar_bytes;
333 u32 guest_fs_ar_bytes;
334 u32 guest_gs_ar_bytes;
335 u32 guest_ldtr_ar_bytes;
336 u32 guest_tr_ar_bytes;
337 u32 guest_interruptibility_info;
338 u32 guest_activity_state;
339 u32 guest_sysenter_cs;
340 u32 host_ia32_sysenter_cs;
341 u32 vmx_preemption_timer_value;
342 u32 padding32[7]; /* room for future expansion */
343 u16 virtual_processor_id;
344 u16 posted_intr_nv;
345 u16 guest_es_selector;
346 u16 guest_cs_selector;
347 u16 guest_ss_selector;
348 u16 guest_ds_selector;
349 u16 guest_fs_selector;
350 u16 guest_gs_selector;
351 u16 guest_ldtr_selector;
352 u16 guest_tr_selector;
353 u16 guest_intr_status;
354 u16 host_es_selector;
355 u16 host_cs_selector;
356 u16 host_ss_selector;
357 u16 host_ds_selector;
358 u16 host_fs_selector;
359 u16 host_gs_selector;
360 u16 host_tr_selector;
361 };
362
363 /*
364 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
365 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
366 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
367 */
368 #define VMCS12_REVISION 0x11e57ed0
369
370 /*
371 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
372 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
373 * current implementation, 4K are reserved to avoid future complications.
374 */
375 #define VMCS12_SIZE 0x1000
376
377 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
378 struct vmcs02_list {
379 struct list_head list;
380 gpa_t vmptr;
381 struct loaded_vmcs vmcs02;
382 };
383
384 /*
385 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
386 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
387 */
388 struct nested_vmx {
389 /* Has the level1 guest done vmxon? */
390 bool vmxon;
391 gpa_t vmxon_ptr;
392
393 /* The guest-physical address of the current VMCS L1 keeps for L2 */
394 gpa_t current_vmptr;
395 /* The host-usable pointer to the above */
396 struct page *current_vmcs12_page;
397 struct vmcs12 *current_vmcs12;
398 struct vmcs *current_shadow_vmcs;
399 /*
400 * Indicates if the shadow vmcs must be updated with the
401 * data hold by vmcs12
402 */
403 bool sync_shadow_vmcs;
404
405 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
406 struct list_head vmcs02_pool;
407 int vmcs02_num;
408 u64 vmcs01_tsc_offset;
409 /* L2 must run next, and mustn't decide to exit to L1. */
410 bool nested_run_pending;
411 /*
412 * Guest pages referred to in vmcs02 with host-physical pointers, so
413 * we must keep them pinned while L2 runs.
414 */
415 struct page *apic_access_page;
416 struct page *virtual_apic_page;
417 struct page *pi_desc_page;
418 struct pi_desc *pi_desc;
419 bool pi_pending;
420 u16 posted_intr_nv;
421 u64 msr_ia32_feature_control;
422
423 struct hrtimer preemption_timer;
424 bool preemption_timer_expired;
425
426 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
427 u64 vmcs01_debugctl;
428
429 u32 nested_vmx_procbased_ctls_low;
430 u32 nested_vmx_procbased_ctls_high;
431 u32 nested_vmx_true_procbased_ctls_low;
432 u32 nested_vmx_secondary_ctls_low;
433 u32 nested_vmx_secondary_ctls_high;
434 u32 nested_vmx_pinbased_ctls_low;
435 u32 nested_vmx_pinbased_ctls_high;
436 u32 nested_vmx_exit_ctls_low;
437 u32 nested_vmx_exit_ctls_high;
438 u32 nested_vmx_true_exit_ctls_low;
439 u32 nested_vmx_entry_ctls_low;
440 u32 nested_vmx_entry_ctls_high;
441 u32 nested_vmx_true_entry_ctls_low;
442 u32 nested_vmx_misc_low;
443 u32 nested_vmx_misc_high;
444 u32 nested_vmx_ept_caps;
445 };
446
447 #define POSTED_INTR_ON 0
448 #define POSTED_INTR_SN 1
449
450 /* Posted-Interrupt Descriptor */
451 struct pi_desc {
452 u32 pir[8]; /* Posted interrupt requested */
453 union {
454 struct {
455 /* bit 256 - Outstanding Notification */
456 u16 on : 1,
457 /* bit 257 - Suppress Notification */
458 sn : 1,
459 /* bit 271:258 - Reserved */
460 rsvd_1 : 14;
461 /* bit 279:272 - Notification Vector */
462 u8 nv;
463 /* bit 287:280 - Reserved */
464 u8 rsvd_2;
465 /* bit 319:288 - Notification Destination */
466 u32 ndst;
467 };
468 u64 control;
469 };
470 u32 rsvd[6];
471 } __aligned(64);
472
473 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
474 {
475 return test_and_set_bit(POSTED_INTR_ON,
476 (unsigned long *)&pi_desc->control);
477 }
478
479 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
480 {
481 return test_and_clear_bit(POSTED_INTR_ON,
482 (unsigned long *)&pi_desc->control);
483 }
484
485 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
486 {
487 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
488 }
489
490 static inline void pi_clear_sn(struct pi_desc *pi_desc)
491 {
492 return clear_bit(POSTED_INTR_SN,
493 (unsigned long *)&pi_desc->control);
494 }
495
496 static inline void pi_set_sn(struct pi_desc *pi_desc)
497 {
498 return set_bit(POSTED_INTR_SN,
499 (unsigned long *)&pi_desc->control);
500 }
501
502 static inline int pi_test_on(struct pi_desc *pi_desc)
503 {
504 return test_bit(POSTED_INTR_ON,
505 (unsigned long *)&pi_desc->control);
506 }
507
508 static inline int pi_test_sn(struct pi_desc *pi_desc)
509 {
510 return test_bit(POSTED_INTR_SN,
511 (unsigned long *)&pi_desc->control);
512 }
513
514 struct vcpu_vmx {
515 struct kvm_vcpu vcpu;
516 unsigned long host_rsp;
517 u8 fail;
518 bool nmi_known_unmasked;
519 u32 exit_intr_info;
520 u32 idt_vectoring_info;
521 ulong rflags;
522 struct shared_msr_entry *guest_msrs;
523 int nmsrs;
524 int save_nmsrs;
525 unsigned long host_idt_base;
526 #ifdef CONFIG_X86_64
527 u64 msr_host_kernel_gs_base;
528 u64 msr_guest_kernel_gs_base;
529 #endif
530 u32 vm_entry_controls_shadow;
531 u32 vm_exit_controls_shadow;
532 /*
533 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
534 * non-nested (L1) guest, it always points to vmcs01. For a nested
535 * guest (L2), it points to a different VMCS.
536 */
537 struct loaded_vmcs vmcs01;
538 struct loaded_vmcs *loaded_vmcs;
539 bool __launched; /* temporary, used in vmx_vcpu_run */
540 struct msr_autoload {
541 unsigned nr;
542 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
543 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
544 } msr_autoload;
545 struct {
546 int loaded;
547 u16 fs_sel, gs_sel, ldt_sel;
548 #ifdef CONFIG_X86_64
549 u16 ds_sel, es_sel;
550 #endif
551 int gs_ldt_reload_needed;
552 int fs_reload_needed;
553 u64 msr_host_bndcfgs;
554 unsigned long vmcs_host_cr4; /* May not match real cr4 */
555 } host_state;
556 struct {
557 int vm86_active;
558 ulong save_rflags;
559 struct kvm_segment segs[8];
560 } rmode;
561 struct {
562 u32 bitmask; /* 4 bits per segment (1 bit per field) */
563 struct kvm_save_segment {
564 u16 selector;
565 unsigned long base;
566 u32 limit;
567 u32 ar;
568 } seg[8];
569 } segment_cache;
570 int vpid;
571 bool emulation_required;
572
573 /* Support for vnmi-less CPUs */
574 int soft_vnmi_blocked;
575 ktime_t entry_time;
576 s64 vnmi_blocked_time;
577 u32 exit_reason;
578
579 /* Posted interrupt descriptor */
580 struct pi_desc pi_desc;
581
582 /* Support for a guest hypervisor (nested VMX) */
583 struct nested_vmx nested;
584
585 /* Dynamic PLE window. */
586 int ple_window;
587 bool ple_window_dirty;
588
589 /* Support for PML */
590 #define PML_ENTITY_NUM 512
591 struct page *pml_pg;
592 };
593
594 enum segment_cache_field {
595 SEG_FIELD_SEL = 0,
596 SEG_FIELD_BASE = 1,
597 SEG_FIELD_LIMIT = 2,
598 SEG_FIELD_AR = 3,
599
600 SEG_FIELD_NR = 4
601 };
602
603 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
604 {
605 return container_of(vcpu, struct vcpu_vmx, vcpu);
606 }
607
608 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
609 {
610 return &(to_vmx(vcpu)->pi_desc);
611 }
612
613 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
614 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
615 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
616 [number##_HIGH] = VMCS12_OFFSET(name)+4
617
618
619 static unsigned long shadow_read_only_fields[] = {
620 /*
621 * We do NOT shadow fields that are modified when L0
622 * traps and emulates any vmx instruction (e.g. VMPTRLD,
623 * VMXON...) executed by L1.
624 * For example, VM_INSTRUCTION_ERROR is read
625 * by L1 if a vmx instruction fails (part of the error path).
626 * Note the code assumes this logic. If for some reason
627 * we start shadowing these fields then we need to
628 * force a shadow sync when L0 emulates vmx instructions
629 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
630 * by nested_vmx_failValid)
631 */
632 VM_EXIT_REASON,
633 VM_EXIT_INTR_INFO,
634 VM_EXIT_INSTRUCTION_LEN,
635 IDT_VECTORING_INFO_FIELD,
636 IDT_VECTORING_ERROR_CODE,
637 VM_EXIT_INTR_ERROR_CODE,
638 EXIT_QUALIFICATION,
639 GUEST_LINEAR_ADDRESS,
640 GUEST_PHYSICAL_ADDRESS
641 };
642 static int max_shadow_read_only_fields =
643 ARRAY_SIZE(shadow_read_only_fields);
644
645 static unsigned long shadow_read_write_fields[] = {
646 TPR_THRESHOLD,
647 GUEST_RIP,
648 GUEST_RSP,
649 GUEST_CR0,
650 GUEST_CR3,
651 GUEST_CR4,
652 GUEST_INTERRUPTIBILITY_INFO,
653 GUEST_RFLAGS,
654 GUEST_CS_SELECTOR,
655 GUEST_CS_AR_BYTES,
656 GUEST_CS_LIMIT,
657 GUEST_CS_BASE,
658 GUEST_ES_BASE,
659 GUEST_BNDCFGS,
660 CR0_GUEST_HOST_MASK,
661 CR0_READ_SHADOW,
662 CR4_READ_SHADOW,
663 TSC_OFFSET,
664 EXCEPTION_BITMAP,
665 CPU_BASED_VM_EXEC_CONTROL,
666 VM_ENTRY_EXCEPTION_ERROR_CODE,
667 VM_ENTRY_INTR_INFO_FIELD,
668 VM_ENTRY_INSTRUCTION_LEN,
669 VM_ENTRY_EXCEPTION_ERROR_CODE,
670 HOST_FS_BASE,
671 HOST_GS_BASE,
672 HOST_FS_SELECTOR,
673 HOST_GS_SELECTOR
674 };
675 static int max_shadow_read_write_fields =
676 ARRAY_SIZE(shadow_read_write_fields);
677
678 static const unsigned short vmcs_field_to_offset_table[] = {
679 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
680 FIELD(POSTED_INTR_NV, posted_intr_nv),
681 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
682 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
683 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
684 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
685 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
686 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
687 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
688 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
689 FIELD(GUEST_INTR_STATUS, guest_intr_status),
690 FIELD(HOST_ES_SELECTOR, host_es_selector),
691 FIELD(HOST_CS_SELECTOR, host_cs_selector),
692 FIELD(HOST_SS_SELECTOR, host_ss_selector),
693 FIELD(HOST_DS_SELECTOR, host_ds_selector),
694 FIELD(HOST_FS_SELECTOR, host_fs_selector),
695 FIELD(HOST_GS_SELECTOR, host_gs_selector),
696 FIELD(HOST_TR_SELECTOR, host_tr_selector),
697 FIELD64(IO_BITMAP_A, io_bitmap_a),
698 FIELD64(IO_BITMAP_B, io_bitmap_b),
699 FIELD64(MSR_BITMAP, msr_bitmap),
700 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
701 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
702 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
703 FIELD64(TSC_OFFSET, tsc_offset),
704 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
705 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
706 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
707 FIELD64(EPT_POINTER, ept_pointer),
708 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
709 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
710 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
711 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
712 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
713 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
714 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
715 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
716 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
717 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
718 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
719 FIELD64(GUEST_PDPTR0, guest_pdptr0),
720 FIELD64(GUEST_PDPTR1, guest_pdptr1),
721 FIELD64(GUEST_PDPTR2, guest_pdptr2),
722 FIELD64(GUEST_PDPTR3, guest_pdptr3),
723 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
724 FIELD64(HOST_IA32_PAT, host_ia32_pat),
725 FIELD64(HOST_IA32_EFER, host_ia32_efer),
726 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
727 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
728 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
729 FIELD(EXCEPTION_BITMAP, exception_bitmap),
730 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
731 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
732 FIELD(CR3_TARGET_COUNT, cr3_target_count),
733 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
734 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
735 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
736 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
737 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
738 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
739 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
740 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
741 FIELD(TPR_THRESHOLD, tpr_threshold),
742 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
743 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
744 FIELD(VM_EXIT_REASON, vm_exit_reason),
745 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
746 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
747 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
748 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
749 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
750 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
751 FIELD(GUEST_ES_LIMIT, guest_es_limit),
752 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
753 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
754 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
755 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
756 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
757 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
758 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
759 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
760 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
761 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
762 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
763 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
764 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
765 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
766 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
767 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
768 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
769 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
770 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
771 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
772 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
773 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
774 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
775 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
776 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
777 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
778 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
779 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
780 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
781 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
782 FIELD(EXIT_QUALIFICATION, exit_qualification),
783 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
784 FIELD(GUEST_CR0, guest_cr0),
785 FIELD(GUEST_CR3, guest_cr3),
786 FIELD(GUEST_CR4, guest_cr4),
787 FIELD(GUEST_ES_BASE, guest_es_base),
788 FIELD(GUEST_CS_BASE, guest_cs_base),
789 FIELD(GUEST_SS_BASE, guest_ss_base),
790 FIELD(GUEST_DS_BASE, guest_ds_base),
791 FIELD(GUEST_FS_BASE, guest_fs_base),
792 FIELD(GUEST_GS_BASE, guest_gs_base),
793 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
794 FIELD(GUEST_TR_BASE, guest_tr_base),
795 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
796 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
797 FIELD(GUEST_DR7, guest_dr7),
798 FIELD(GUEST_RSP, guest_rsp),
799 FIELD(GUEST_RIP, guest_rip),
800 FIELD(GUEST_RFLAGS, guest_rflags),
801 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
802 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
803 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
804 FIELD(HOST_CR0, host_cr0),
805 FIELD(HOST_CR3, host_cr3),
806 FIELD(HOST_CR4, host_cr4),
807 FIELD(HOST_FS_BASE, host_fs_base),
808 FIELD(HOST_GS_BASE, host_gs_base),
809 FIELD(HOST_TR_BASE, host_tr_base),
810 FIELD(HOST_GDTR_BASE, host_gdtr_base),
811 FIELD(HOST_IDTR_BASE, host_idtr_base),
812 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
813 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
814 FIELD(HOST_RSP, host_rsp),
815 FIELD(HOST_RIP, host_rip),
816 };
817
818 static inline short vmcs_field_to_offset(unsigned long field)
819 {
820 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
821
822 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
823 vmcs_field_to_offset_table[field] == 0)
824 return -ENOENT;
825
826 return vmcs_field_to_offset_table[field];
827 }
828
829 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
830 {
831 return to_vmx(vcpu)->nested.current_vmcs12;
832 }
833
834 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
835 {
836 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
837 if (is_error_page(page))
838 return NULL;
839
840 return page;
841 }
842
843 static void nested_release_page(struct page *page)
844 {
845 kvm_release_page_dirty(page);
846 }
847
848 static void nested_release_page_clean(struct page *page)
849 {
850 kvm_release_page_clean(page);
851 }
852
853 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
854 static u64 construct_eptp(unsigned long root_hpa);
855 static void kvm_cpu_vmxon(u64 addr);
856 static void kvm_cpu_vmxoff(void);
857 static bool vmx_mpx_supported(void);
858 static bool vmx_xsaves_supported(void);
859 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
860 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
861 static void vmx_set_segment(struct kvm_vcpu *vcpu,
862 struct kvm_segment *var, int seg);
863 static void vmx_get_segment(struct kvm_vcpu *vcpu,
864 struct kvm_segment *var, int seg);
865 static bool guest_state_valid(struct kvm_vcpu *vcpu);
866 static u32 vmx_segment_access_rights(struct kvm_segment *var);
867 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
868 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
869 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
870 static int alloc_identity_pagetable(struct kvm *kvm);
871
872 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
873 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
874 /*
875 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
876 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
877 */
878 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
879 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
880
881 /*
882 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
883 * can find which vCPU should be waken up.
884 */
885 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
886 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
887
888 static unsigned long *vmx_io_bitmap_a;
889 static unsigned long *vmx_io_bitmap_b;
890 static unsigned long *vmx_msr_bitmap_legacy;
891 static unsigned long *vmx_msr_bitmap_longmode;
892 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
893 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
894 static unsigned long *vmx_msr_bitmap_nested;
895 static unsigned long *vmx_vmread_bitmap;
896 static unsigned long *vmx_vmwrite_bitmap;
897
898 static bool cpu_has_load_ia32_efer;
899 static bool cpu_has_load_perf_global_ctrl;
900
901 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
902 static DEFINE_SPINLOCK(vmx_vpid_lock);
903
904 static struct vmcs_config {
905 int size;
906 int order;
907 u32 revision_id;
908 u32 pin_based_exec_ctrl;
909 u32 cpu_based_exec_ctrl;
910 u32 cpu_based_2nd_exec_ctrl;
911 u32 vmexit_ctrl;
912 u32 vmentry_ctrl;
913 } vmcs_config;
914
915 static struct vmx_capability {
916 u32 ept;
917 u32 vpid;
918 } vmx_capability;
919
920 #define VMX_SEGMENT_FIELD(seg) \
921 [VCPU_SREG_##seg] = { \
922 .selector = GUEST_##seg##_SELECTOR, \
923 .base = GUEST_##seg##_BASE, \
924 .limit = GUEST_##seg##_LIMIT, \
925 .ar_bytes = GUEST_##seg##_AR_BYTES, \
926 }
927
928 static const struct kvm_vmx_segment_field {
929 unsigned selector;
930 unsigned base;
931 unsigned limit;
932 unsigned ar_bytes;
933 } kvm_vmx_segment_fields[] = {
934 VMX_SEGMENT_FIELD(CS),
935 VMX_SEGMENT_FIELD(DS),
936 VMX_SEGMENT_FIELD(ES),
937 VMX_SEGMENT_FIELD(FS),
938 VMX_SEGMENT_FIELD(GS),
939 VMX_SEGMENT_FIELD(SS),
940 VMX_SEGMENT_FIELD(TR),
941 VMX_SEGMENT_FIELD(LDTR),
942 };
943
944 static u64 host_efer;
945
946 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
947
948 /*
949 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
950 * away by decrementing the array size.
951 */
952 static const u32 vmx_msr_index[] = {
953 #ifdef CONFIG_X86_64
954 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
955 #endif
956 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
957 };
958
959 static inline bool is_page_fault(u32 intr_info)
960 {
961 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
962 INTR_INFO_VALID_MASK)) ==
963 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
964 }
965
966 static inline bool is_no_device(u32 intr_info)
967 {
968 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
969 INTR_INFO_VALID_MASK)) ==
970 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
971 }
972
973 static inline bool is_invalid_opcode(u32 intr_info)
974 {
975 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
976 INTR_INFO_VALID_MASK)) ==
977 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
978 }
979
980 static inline bool is_external_interrupt(u32 intr_info)
981 {
982 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
983 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
984 }
985
986 static inline bool is_machine_check(u32 intr_info)
987 {
988 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
989 INTR_INFO_VALID_MASK)) ==
990 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
991 }
992
993 static inline bool cpu_has_vmx_msr_bitmap(void)
994 {
995 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
996 }
997
998 static inline bool cpu_has_vmx_tpr_shadow(void)
999 {
1000 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1001 }
1002
1003 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1004 {
1005 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1006 }
1007
1008 static inline bool cpu_has_secondary_exec_ctrls(void)
1009 {
1010 return vmcs_config.cpu_based_exec_ctrl &
1011 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1012 }
1013
1014 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1015 {
1016 return vmcs_config.cpu_based_2nd_exec_ctrl &
1017 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1018 }
1019
1020 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1021 {
1022 return vmcs_config.cpu_based_2nd_exec_ctrl &
1023 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1024 }
1025
1026 static inline bool cpu_has_vmx_apic_register_virt(void)
1027 {
1028 return vmcs_config.cpu_based_2nd_exec_ctrl &
1029 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1030 }
1031
1032 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1033 {
1034 return vmcs_config.cpu_based_2nd_exec_ctrl &
1035 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1036 }
1037
1038 static inline bool cpu_has_vmx_posted_intr(void)
1039 {
1040 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1041 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1042 }
1043
1044 static inline bool cpu_has_vmx_apicv(void)
1045 {
1046 return cpu_has_vmx_apic_register_virt() &&
1047 cpu_has_vmx_virtual_intr_delivery() &&
1048 cpu_has_vmx_posted_intr();
1049 }
1050
1051 static inline bool cpu_has_vmx_flexpriority(void)
1052 {
1053 return cpu_has_vmx_tpr_shadow() &&
1054 cpu_has_vmx_virtualize_apic_accesses();
1055 }
1056
1057 static inline bool cpu_has_vmx_ept_execute_only(void)
1058 {
1059 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1060 }
1061
1062 static inline bool cpu_has_vmx_ept_2m_page(void)
1063 {
1064 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1065 }
1066
1067 static inline bool cpu_has_vmx_ept_1g_page(void)
1068 {
1069 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1070 }
1071
1072 static inline bool cpu_has_vmx_ept_4levels(void)
1073 {
1074 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1075 }
1076
1077 static inline bool cpu_has_vmx_ept_ad_bits(void)
1078 {
1079 return vmx_capability.ept & VMX_EPT_AD_BIT;
1080 }
1081
1082 static inline bool cpu_has_vmx_invept_context(void)
1083 {
1084 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1085 }
1086
1087 static inline bool cpu_has_vmx_invept_global(void)
1088 {
1089 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1090 }
1091
1092 static inline bool cpu_has_vmx_invvpid_single(void)
1093 {
1094 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1095 }
1096
1097 static inline bool cpu_has_vmx_invvpid_global(void)
1098 {
1099 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1100 }
1101
1102 static inline bool cpu_has_vmx_ept(void)
1103 {
1104 return vmcs_config.cpu_based_2nd_exec_ctrl &
1105 SECONDARY_EXEC_ENABLE_EPT;
1106 }
1107
1108 static inline bool cpu_has_vmx_unrestricted_guest(void)
1109 {
1110 return vmcs_config.cpu_based_2nd_exec_ctrl &
1111 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1112 }
1113
1114 static inline bool cpu_has_vmx_ple(void)
1115 {
1116 return vmcs_config.cpu_based_2nd_exec_ctrl &
1117 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1118 }
1119
1120 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1121 {
1122 return flexpriority_enabled && lapic_in_kernel(vcpu);
1123 }
1124
1125 static inline bool cpu_has_vmx_vpid(void)
1126 {
1127 return vmcs_config.cpu_based_2nd_exec_ctrl &
1128 SECONDARY_EXEC_ENABLE_VPID;
1129 }
1130
1131 static inline bool cpu_has_vmx_rdtscp(void)
1132 {
1133 return vmcs_config.cpu_based_2nd_exec_ctrl &
1134 SECONDARY_EXEC_RDTSCP;
1135 }
1136
1137 static inline bool cpu_has_vmx_invpcid(void)
1138 {
1139 return vmcs_config.cpu_based_2nd_exec_ctrl &
1140 SECONDARY_EXEC_ENABLE_INVPCID;
1141 }
1142
1143 static inline bool cpu_has_virtual_nmis(void)
1144 {
1145 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1146 }
1147
1148 static inline bool cpu_has_vmx_wbinvd_exit(void)
1149 {
1150 return vmcs_config.cpu_based_2nd_exec_ctrl &
1151 SECONDARY_EXEC_WBINVD_EXITING;
1152 }
1153
1154 static inline bool cpu_has_vmx_shadow_vmcs(void)
1155 {
1156 u64 vmx_msr;
1157 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1158 /* check if the cpu supports writing r/o exit information fields */
1159 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1160 return false;
1161
1162 return vmcs_config.cpu_based_2nd_exec_ctrl &
1163 SECONDARY_EXEC_SHADOW_VMCS;
1164 }
1165
1166 static inline bool cpu_has_vmx_pml(void)
1167 {
1168 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1169 }
1170
1171 static inline bool report_flexpriority(void)
1172 {
1173 return flexpriority_enabled;
1174 }
1175
1176 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1177 {
1178 return vmcs12->cpu_based_vm_exec_control & bit;
1179 }
1180
1181 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1182 {
1183 return (vmcs12->cpu_based_vm_exec_control &
1184 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1185 (vmcs12->secondary_vm_exec_control & bit);
1186 }
1187
1188 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1189 {
1190 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1191 }
1192
1193 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1194 {
1195 return vmcs12->pin_based_vm_exec_control &
1196 PIN_BASED_VMX_PREEMPTION_TIMER;
1197 }
1198
1199 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1200 {
1201 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1202 }
1203
1204 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1205 {
1206 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1207 vmx_xsaves_supported();
1208 }
1209
1210 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1211 {
1212 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1213 }
1214
1215 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1216 {
1217 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1218 }
1219
1220 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1221 {
1222 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1223 }
1224
1225 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1226 {
1227 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1228 }
1229
1230 static inline bool is_exception(u32 intr_info)
1231 {
1232 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1233 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1234 }
1235
1236 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1237 u32 exit_intr_info,
1238 unsigned long exit_qualification);
1239 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1240 struct vmcs12 *vmcs12,
1241 u32 reason, unsigned long qualification);
1242
1243 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1244 {
1245 int i;
1246
1247 for (i = 0; i < vmx->nmsrs; ++i)
1248 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1249 return i;
1250 return -1;
1251 }
1252
1253 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1254 {
1255 struct {
1256 u64 vpid : 16;
1257 u64 rsvd : 48;
1258 u64 gva;
1259 } operand = { vpid, 0, gva };
1260
1261 asm volatile (__ex(ASM_VMX_INVVPID)
1262 /* CF==1 or ZF==1 --> rc = -1 */
1263 "; ja 1f ; ud2 ; 1:"
1264 : : "a"(&operand), "c"(ext) : "cc", "memory");
1265 }
1266
1267 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1268 {
1269 struct {
1270 u64 eptp, gpa;
1271 } operand = {eptp, gpa};
1272
1273 asm volatile (__ex(ASM_VMX_INVEPT)
1274 /* CF==1 or ZF==1 --> rc = -1 */
1275 "; ja 1f ; ud2 ; 1:\n"
1276 : : "a" (&operand), "c" (ext) : "cc", "memory");
1277 }
1278
1279 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1280 {
1281 int i;
1282
1283 i = __find_msr_index(vmx, msr);
1284 if (i >= 0)
1285 return &vmx->guest_msrs[i];
1286 return NULL;
1287 }
1288
1289 static void vmcs_clear(struct vmcs *vmcs)
1290 {
1291 u64 phys_addr = __pa(vmcs);
1292 u8 error;
1293
1294 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1295 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1296 : "cc", "memory");
1297 if (error)
1298 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1299 vmcs, phys_addr);
1300 }
1301
1302 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1303 {
1304 vmcs_clear(loaded_vmcs->vmcs);
1305 loaded_vmcs->cpu = -1;
1306 loaded_vmcs->launched = 0;
1307 }
1308
1309 static void vmcs_load(struct vmcs *vmcs)
1310 {
1311 u64 phys_addr = __pa(vmcs);
1312 u8 error;
1313
1314 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1315 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1316 : "cc", "memory");
1317 if (error)
1318 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1319 vmcs, phys_addr);
1320 }
1321
1322 #ifdef CONFIG_KEXEC_CORE
1323 /*
1324 * This bitmap is used to indicate whether the vmclear
1325 * operation is enabled on all cpus. All disabled by
1326 * default.
1327 */
1328 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1329
1330 static inline void crash_enable_local_vmclear(int cpu)
1331 {
1332 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1333 }
1334
1335 static inline void crash_disable_local_vmclear(int cpu)
1336 {
1337 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1338 }
1339
1340 static inline int crash_local_vmclear_enabled(int cpu)
1341 {
1342 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1343 }
1344
1345 static void crash_vmclear_local_loaded_vmcss(void)
1346 {
1347 int cpu = raw_smp_processor_id();
1348 struct loaded_vmcs *v;
1349
1350 if (!crash_local_vmclear_enabled(cpu))
1351 return;
1352
1353 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1354 loaded_vmcss_on_cpu_link)
1355 vmcs_clear(v->vmcs);
1356 }
1357 #else
1358 static inline void crash_enable_local_vmclear(int cpu) { }
1359 static inline void crash_disable_local_vmclear(int cpu) { }
1360 #endif /* CONFIG_KEXEC_CORE */
1361
1362 static void __loaded_vmcs_clear(void *arg)
1363 {
1364 struct loaded_vmcs *loaded_vmcs = arg;
1365 int cpu = raw_smp_processor_id();
1366
1367 if (loaded_vmcs->cpu != cpu)
1368 return; /* vcpu migration can race with cpu offline */
1369 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1370 per_cpu(current_vmcs, cpu) = NULL;
1371 crash_disable_local_vmclear(cpu);
1372 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1373
1374 /*
1375 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1376 * is before setting loaded_vmcs->vcpu to -1 which is done in
1377 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1378 * then adds the vmcs into percpu list before it is deleted.
1379 */
1380 smp_wmb();
1381
1382 loaded_vmcs_init(loaded_vmcs);
1383 crash_enable_local_vmclear(cpu);
1384 }
1385
1386 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1387 {
1388 int cpu = loaded_vmcs->cpu;
1389
1390 if (cpu != -1)
1391 smp_call_function_single(cpu,
1392 __loaded_vmcs_clear, loaded_vmcs, 1);
1393 }
1394
1395 static inline void vpid_sync_vcpu_single(int vpid)
1396 {
1397 if (vpid == 0)
1398 return;
1399
1400 if (cpu_has_vmx_invvpid_single())
1401 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1402 }
1403
1404 static inline void vpid_sync_vcpu_global(void)
1405 {
1406 if (cpu_has_vmx_invvpid_global())
1407 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1408 }
1409
1410 static inline void vpid_sync_context(int vpid)
1411 {
1412 if (cpu_has_vmx_invvpid_single())
1413 vpid_sync_vcpu_single(vpid);
1414 else
1415 vpid_sync_vcpu_global();
1416 }
1417
1418 static inline void ept_sync_global(void)
1419 {
1420 if (cpu_has_vmx_invept_global())
1421 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1422 }
1423
1424 static inline void ept_sync_context(u64 eptp)
1425 {
1426 if (enable_ept) {
1427 if (cpu_has_vmx_invept_context())
1428 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1429 else
1430 ept_sync_global();
1431 }
1432 }
1433
1434 static __always_inline unsigned long vmcs_readl(unsigned long field)
1435 {
1436 unsigned long value;
1437
1438 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1439 : "=a"(value) : "d"(field) : "cc");
1440 return value;
1441 }
1442
1443 static __always_inline u16 vmcs_read16(unsigned long field)
1444 {
1445 return vmcs_readl(field);
1446 }
1447
1448 static __always_inline u32 vmcs_read32(unsigned long field)
1449 {
1450 return vmcs_readl(field);
1451 }
1452
1453 static __always_inline u64 vmcs_read64(unsigned long field)
1454 {
1455 #ifdef CONFIG_X86_64
1456 return vmcs_readl(field);
1457 #else
1458 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1459 #endif
1460 }
1461
1462 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1463 {
1464 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1465 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1466 dump_stack();
1467 }
1468
1469 static void vmcs_writel(unsigned long field, unsigned long value)
1470 {
1471 u8 error;
1472
1473 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1474 : "=q"(error) : "a"(value), "d"(field) : "cc");
1475 if (unlikely(error))
1476 vmwrite_error(field, value);
1477 }
1478
1479 static void vmcs_write16(unsigned long field, u16 value)
1480 {
1481 vmcs_writel(field, value);
1482 }
1483
1484 static void vmcs_write32(unsigned long field, u32 value)
1485 {
1486 vmcs_writel(field, value);
1487 }
1488
1489 static void vmcs_write64(unsigned long field, u64 value)
1490 {
1491 vmcs_writel(field, value);
1492 #ifndef CONFIG_X86_64
1493 asm volatile ("");
1494 vmcs_writel(field+1, value >> 32);
1495 #endif
1496 }
1497
1498 static void vmcs_clear_bits(unsigned long field, u32 mask)
1499 {
1500 vmcs_writel(field, vmcs_readl(field) & ~mask);
1501 }
1502
1503 static void vmcs_set_bits(unsigned long field, u32 mask)
1504 {
1505 vmcs_writel(field, vmcs_readl(field) | mask);
1506 }
1507
1508 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1509 {
1510 vmcs_write32(VM_ENTRY_CONTROLS, val);
1511 vmx->vm_entry_controls_shadow = val;
1512 }
1513
1514 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1515 {
1516 if (vmx->vm_entry_controls_shadow != val)
1517 vm_entry_controls_init(vmx, val);
1518 }
1519
1520 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1521 {
1522 return vmx->vm_entry_controls_shadow;
1523 }
1524
1525
1526 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1527 {
1528 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1529 }
1530
1531 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1532 {
1533 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1534 }
1535
1536 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1537 {
1538 vmcs_write32(VM_EXIT_CONTROLS, val);
1539 vmx->vm_exit_controls_shadow = val;
1540 }
1541
1542 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1543 {
1544 if (vmx->vm_exit_controls_shadow != val)
1545 vm_exit_controls_init(vmx, val);
1546 }
1547
1548 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1549 {
1550 return vmx->vm_exit_controls_shadow;
1551 }
1552
1553
1554 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1555 {
1556 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1557 }
1558
1559 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1560 {
1561 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1562 }
1563
1564 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1565 {
1566 vmx->segment_cache.bitmask = 0;
1567 }
1568
1569 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1570 unsigned field)
1571 {
1572 bool ret;
1573 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1574
1575 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1576 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1577 vmx->segment_cache.bitmask = 0;
1578 }
1579 ret = vmx->segment_cache.bitmask & mask;
1580 vmx->segment_cache.bitmask |= mask;
1581 return ret;
1582 }
1583
1584 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1585 {
1586 u16 *p = &vmx->segment_cache.seg[seg].selector;
1587
1588 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1589 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1590 return *p;
1591 }
1592
1593 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1594 {
1595 ulong *p = &vmx->segment_cache.seg[seg].base;
1596
1597 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1598 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1599 return *p;
1600 }
1601
1602 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1603 {
1604 u32 *p = &vmx->segment_cache.seg[seg].limit;
1605
1606 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1607 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1608 return *p;
1609 }
1610
1611 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1612 {
1613 u32 *p = &vmx->segment_cache.seg[seg].ar;
1614
1615 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1616 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1617 return *p;
1618 }
1619
1620 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1621 {
1622 u32 eb;
1623
1624 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1625 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1626 if ((vcpu->guest_debug &
1627 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1628 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1629 eb |= 1u << BP_VECTOR;
1630 if (to_vmx(vcpu)->rmode.vm86_active)
1631 eb = ~0;
1632 if (enable_ept)
1633 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1634 if (vcpu->fpu_active)
1635 eb &= ~(1u << NM_VECTOR);
1636
1637 /* When we are running a nested L2 guest and L1 specified for it a
1638 * certain exception bitmap, we must trap the same exceptions and pass
1639 * them to L1. When running L2, we will only handle the exceptions
1640 * specified above if L1 did not want them.
1641 */
1642 if (is_guest_mode(vcpu))
1643 eb |= get_vmcs12(vcpu)->exception_bitmap;
1644
1645 vmcs_write32(EXCEPTION_BITMAP, eb);
1646 }
1647
1648 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1649 unsigned long entry, unsigned long exit)
1650 {
1651 vm_entry_controls_clearbit(vmx, entry);
1652 vm_exit_controls_clearbit(vmx, exit);
1653 }
1654
1655 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1656 {
1657 unsigned i;
1658 struct msr_autoload *m = &vmx->msr_autoload;
1659
1660 switch (msr) {
1661 case MSR_EFER:
1662 if (cpu_has_load_ia32_efer) {
1663 clear_atomic_switch_msr_special(vmx,
1664 VM_ENTRY_LOAD_IA32_EFER,
1665 VM_EXIT_LOAD_IA32_EFER);
1666 return;
1667 }
1668 break;
1669 case MSR_CORE_PERF_GLOBAL_CTRL:
1670 if (cpu_has_load_perf_global_ctrl) {
1671 clear_atomic_switch_msr_special(vmx,
1672 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1673 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1674 return;
1675 }
1676 break;
1677 }
1678
1679 for (i = 0; i < m->nr; ++i)
1680 if (m->guest[i].index == msr)
1681 break;
1682
1683 if (i == m->nr)
1684 return;
1685 --m->nr;
1686 m->guest[i] = m->guest[m->nr];
1687 m->host[i] = m->host[m->nr];
1688 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1689 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1690 }
1691
1692 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1693 unsigned long entry, unsigned long exit,
1694 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1695 u64 guest_val, u64 host_val)
1696 {
1697 vmcs_write64(guest_val_vmcs, guest_val);
1698 vmcs_write64(host_val_vmcs, host_val);
1699 vm_entry_controls_setbit(vmx, entry);
1700 vm_exit_controls_setbit(vmx, exit);
1701 }
1702
1703 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1704 u64 guest_val, u64 host_val)
1705 {
1706 unsigned i;
1707 struct msr_autoload *m = &vmx->msr_autoload;
1708
1709 switch (msr) {
1710 case MSR_EFER:
1711 if (cpu_has_load_ia32_efer) {
1712 add_atomic_switch_msr_special(vmx,
1713 VM_ENTRY_LOAD_IA32_EFER,
1714 VM_EXIT_LOAD_IA32_EFER,
1715 GUEST_IA32_EFER,
1716 HOST_IA32_EFER,
1717 guest_val, host_val);
1718 return;
1719 }
1720 break;
1721 case MSR_CORE_PERF_GLOBAL_CTRL:
1722 if (cpu_has_load_perf_global_ctrl) {
1723 add_atomic_switch_msr_special(vmx,
1724 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1725 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1726 GUEST_IA32_PERF_GLOBAL_CTRL,
1727 HOST_IA32_PERF_GLOBAL_CTRL,
1728 guest_val, host_val);
1729 return;
1730 }
1731 break;
1732 }
1733
1734 for (i = 0; i < m->nr; ++i)
1735 if (m->guest[i].index == msr)
1736 break;
1737
1738 if (i == NR_AUTOLOAD_MSRS) {
1739 printk_once(KERN_WARNING "Not enough msr switch entries. "
1740 "Can't add msr %x\n", msr);
1741 return;
1742 } else if (i == m->nr) {
1743 ++m->nr;
1744 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1745 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1746 }
1747
1748 m->guest[i].index = msr;
1749 m->guest[i].value = guest_val;
1750 m->host[i].index = msr;
1751 m->host[i].value = host_val;
1752 }
1753
1754 static void reload_tss(void)
1755 {
1756 /*
1757 * VT restores TR but not its size. Useless.
1758 */
1759 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1760 struct desc_struct *descs;
1761
1762 descs = (void *)gdt->address;
1763 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1764 load_TR_desc();
1765 }
1766
1767 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1768 {
1769 u64 guest_efer;
1770 u64 ignore_bits;
1771
1772 guest_efer = vmx->vcpu.arch.efer;
1773
1774 /*
1775 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1776 * outside long mode
1777 */
1778 ignore_bits = EFER_NX | EFER_SCE;
1779 #ifdef CONFIG_X86_64
1780 ignore_bits |= EFER_LMA | EFER_LME;
1781 /* SCE is meaningful only in long mode on Intel */
1782 if (guest_efer & EFER_LMA)
1783 ignore_bits &= ~(u64)EFER_SCE;
1784 #endif
1785 guest_efer &= ~ignore_bits;
1786 guest_efer |= host_efer & ignore_bits;
1787 vmx->guest_msrs[efer_offset].data = guest_efer;
1788 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1789
1790 clear_atomic_switch_msr(vmx, MSR_EFER);
1791
1792 /*
1793 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1794 * On CPUs that support "load IA32_EFER", always switch EFER
1795 * atomically, since it's faster than switching it manually.
1796 */
1797 if (cpu_has_load_ia32_efer ||
1798 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1799 guest_efer = vmx->vcpu.arch.efer;
1800 if (!(guest_efer & EFER_LMA))
1801 guest_efer &= ~EFER_LME;
1802 if (guest_efer != host_efer)
1803 add_atomic_switch_msr(vmx, MSR_EFER,
1804 guest_efer, host_efer);
1805 return false;
1806 }
1807
1808 return true;
1809 }
1810
1811 static unsigned long segment_base(u16 selector)
1812 {
1813 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1814 struct desc_struct *d;
1815 unsigned long table_base;
1816 unsigned long v;
1817
1818 if (!(selector & ~3))
1819 return 0;
1820
1821 table_base = gdt->address;
1822
1823 if (selector & 4) { /* from ldt */
1824 u16 ldt_selector = kvm_read_ldt();
1825
1826 if (!(ldt_selector & ~3))
1827 return 0;
1828
1829 table_base = segment_base(ldt_selector);
1830 }
1831 d = (struct desc_struct *)(table_base + (selector & ~7));
1832 v = get_desc_base(d);
1833 #ifdef CONFIG_X86_64
1834 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1835 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1836 #endif
1837 return v;
1838 }
1839
1840 static inline unsigned long kvm_read_tr_base(void)
1841 {
1842 u16 tr;
1843 asm("str %0" : "=g"(tr));
1844 return segment_base(tr);
1845 }
1846
1847 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1848 {
1849 struct vcpu_vmx *vmx = to_vmx(vcpu);
1850 int i;
1851
1852 if (vmx->host_state.loaded)
1853 return;
1854
1855 vmx->host_state.loaded = 1;
1856 /*
1857 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1858 * allow segment selectors with cpl > 0 or ti == 1.
1859 */
1860 vmx->host_state.ldt_sel = kvm_read_ldt();
1861 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1862 savesegment(fs, vmx->host_state.fs_sel);
1863 if (!(vmx->host_state.fs_sel & 7)) {
1864 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1865 vmx->host_state.fs_reload_needed = 0;
1866 } else {
1867 vmcs_write16(HOST_FS_SELECTOR, 0);
1868 vmx->host_state.fs_reload_needed = 1;
1869 }
1870 savesegment(gs, vmx->host_state.gs_sel);
1871 if (!(vmx->host_state.gs_sel & 7))
1872 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1873 else {
1874 vmcs_write16(HOST_GS_SELECTOR, 0);
1875 vmx->host_state.gs_ldt_reload_needed = 1;
1876 }
1877
1878 #ifdef CONFIG_X86_64
1879 savesegment(ds, vmx->host_state.ds_sel);
1880 savesegment(es, vmx->host_state.es_sel);
1881 #endif
1882
1883 #ifdef CONFIG_X86_64
1884 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1885 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1886 #else
1887 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1888 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1889 #endif
1890
1891 #ifdef CONFIG_X86_64
1892 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1893 if (is_long_mode(&vmx->vcpu))
1894 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1895 #endif
1896 if (boot_cpu_has(X86_FEATURE_MPX))
1897 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1898 for (i = 0; i < vmx->save_nmsrs; ++i)
1899 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1900 vmx->guest_msrs[i].data,
1901 vmx->guest_msrs[i].mask);
1902 }
1903
1904 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1905 {
1906 if (!vmx->host_state.loaded)
1907 return;
1908
1909 ++vmx->vcpu.stat.host_state_reload;
1910 vmx->host_state.loaded = 0;
1911 #ifdef CONFIG_X86_64
1912 if (is_long_mode(&vmx->vcpu))
1913 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1914 #endif
1915 if (vmx->host_state.gs_ldt_reload_needed) {
1916 kvm_load_ldt(vmx->host_state.ldt_sel);
1917 #ifdef CONFIG_X86_64
1918 load_gs_index(vmx->host_state.gs_sel);
1919 #else
1920 loadsegment(gs, vmx->host_state.gs_sel);
1921 #endif
1922 }
1923 if (vmx->host_state.fs_reload_needed)
1924 loadsegment(fs, vmx->host_state.fs_sel);
1925 #ifdef CONFIG_X86_64
1926 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1927 loadsegment(ds, vmx->host_state.ds_sel);
1928 loadsegment(es, vmx->host_state.es_sel);
1929 }
1930 #endif
1931 reload_tss();
1932 #ifdef CONFIG_X86_64
1933 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1934 #endif
1935 if (vmx->host_state.msr_host_bndcfgs)
1936 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1937 /*
1938 * If the FPU is not active (through the host task or
1939 * the guest vcpu), then restore the cr0.TS bit.
1940 */
1941 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1942 stts();
1943 load_gdt(this_cpu_ptr(&host_gdt));
1944 }
1945
1946 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1947 {
1948 preempt_disable();
1949 __vmx_load_host_state(vmx);
1950 preempt_enable();
1951 }
1952
1953 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1954 {
1955 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1956 struct pi_desc old, new;
1957 unsigned int dest;
1958
1959 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1960 !irq_remapping_cap(IRQ_POSTING_CAP))
1961 return;
1962
1963 do {
1964 old.control = new.control = pi_desc->control;
1965
1966 /*
1967 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
1968 * are two possible cases:
1969 * 1. After running 'pre_block', context switch
1970 * happened. For this case, 'sn' was set in
1971 * vmx_vcpu_put(), so we need to clear it here.
1972 * 2. After running 'pre_block', we were blocked,
1973 * and woken up by some other guy. For this case,
1974 * we don't need to do anything, 'pi_post_block'
1975 * will do everything for us. However, we cannot
1976 * check whether it is case #1 or case #2 here
1977 * (maybe, not needed), so we also clear sn here,
1978 * I think it is not a big deal.
1979 */
1980 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
1981 if (vcpu->cpu != cpu) {
1982 dest = cpu_physical_id(cpu);
1983
1984 if (x2apic_enabled())
1985 new.ndst = dest;
1986 else
1987 new.ndst = (dest << 8) & 0xFF00;
1988 }
1989
1990 /* set 'NV' to 'notification vector' */
1991 new.nv = POSTED_INTR_VECTOR;
1992 }
1993
1994 /* Allow posting non-urgent interrupts */
1995 new.sn = 0;
1996 } while (cmpxchg(&pi_desc->control, old.control,
1997 new.control) != old.control);
1998 }
1999 /*
2000 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2001 * vcpu mutex is already taken.
2002 */
2003 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2004 {
2005 struct vcpu_vmx *vmx = to_vmx(vcpu);
2006 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2007
2008 if (!vmm_exclusive)
2009 kvm_cpu_vmxon(phys_addr);
2010 else if (vmx->loaded_vmcs->cpu != cpu)
2011 loaded_vmcs_clear(vmx->loaded_vmcs);
2012
2013 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2014 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2015 vmcs_load(vmx->loaded_vmcs->vmcs);
2016 }
2017
2018 if (vmx->loaded_vmcs->cpu != cpu) {
2019 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2020 unsigned long sysenter_esp;
2021
2022 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2023 local_irq_disable();
2024 crash_disable_local_vmclear(cpu);
2025
2026 /*
2027 * Read loaded_vmcs->cpu should be before fetching
2028 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2029 * See the comments in __loaded_vmcs_clear().
2030 */
2031 smp_rmb();
2032
2033 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2034 &per_cpu(loaded_vmcss_on_cpu, cpu));
2035 crash_enable_local_vmclear(cpu);
2036 local_irq_enable();
2037
2038 /*
2039 * Linux uses per-cpu TSS and GDT, so set these when switching
2040 * processors.
2041 */
2042 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2043 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2044
2045 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2046 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2047 vmx->loaded_vmcs->cpu = cpu;
2048 }
2049
2050 vmx_vcpu_pi_load(vcpu, cpu);
2051 }
2052
2053 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2054 {
2055 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2056
2057 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2058 !irq_remapping_cap(IRQ_POSTING_CAP))
2059 return;
2060
2061 /* Set SN when the vCPU is preempted */
2062 if (vcpu->preempted)
2063 pi_set_sn(pi_desc);
2064 }
2065
2066 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2067 {
2068 vmx_vcpu_pi_put(vcpu);
2069
2070 __vmx_load_host_state(to_vmx(vcpu));
2071 if (!vmm_exclusive) {
2072 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2073 vcpu->cpu = -1;
2074 kvm_cpu_vmxoff();
2075 }
2076 }
2077
2078 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2079 {
2080 ulong cr0;
2081
2082 if (vcpu->fpu_active)
2083 return;
2084 vcpu->fpu_active = 1;
2085 cr0 = vmcs_readl(GUEST_CR0);
2086 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2087 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2088 vmcs_writel(GUEST_CR0, cr0);
2089 update_exception_bitmap(vcpu);
2090 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2091 if (is_guest_mode(vcpu))
2092 vcpu->arch.cr0_guest_owned_bits &=
2093 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2094 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2095 }
2096
2097 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2098
2099 /*
2100 * Return the cr0 value that a nested guest would read. This is a combination
2101 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2102 * its hypervisor (cr0_read_shadow).
2103 */
2104 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2105 {
2106 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2107 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2108 }
2109 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2110 {
2111 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2112 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2113 }
2114
2115 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2116 {
2117 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2118 * set this *before* calling this function.
2119 */
2120 vmx_decache_cr0_guest_bits(vcpu);
2121 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2122 update_exception_bitmap(vcpu);
2123 vcpu->arch.cr0_guest_owned_bits = 0;
2124 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2125 if (is_guest_mode(vcpu)) {
2126 /*
2127 * L1's specified read shadow might not contain the TS bit,
2128 * so now that we turned on shadowing of this bit, we need to
2129 * set this bit of the shadow. Like in nested_vmx_run we need
2130 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2131 * up-to-date here because we just decached cr0.TS (and we'll
2132 * only update vmcs12->guest_cr0 on nested exit).
2133 */
2134 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2135 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2136 (vcpu->arch.cr0 & X86_CR0_TS);
2137 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2138 } else
2139 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2140 }
2141
2142 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2143 {
2144 unsigned long rflags, save_rflags;
2145
2146 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2147 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2148 rflags = vmcs_readl(GUEST_RFLAGS);
2149 if (to_vmx(vcpu)->rmode.vm86_active) {
2150 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2151 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2152 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2153 }
2154 to_vmx(vcpu)->rflags = rflags;
2155 }
2156 return to_vmx(vcpu)->rflags;
2157 }
2158
2159 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2160 {
2161 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2162 to_vmx(vcpu)->rflags = rflags;
2163 if (to_vmx(vcpu)->rmode.vm86_active) {
2164 to_vmx(vcpu)->rmode.save_rflags = rflags;
2165 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2166 }
2167 vmcs_writel(GUEST_RFLAGS, rflags);
2168 }
2169
2170 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2171 {
2172 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2173 int ret = 0;
2174
2175 if (interruptibility & GUEST_INTR_STATE_STI)
2176 ret |= KVM_X86_SHADOW_INT_STI;
2177 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2178 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2179
2180 return ret;
2181 }
2182
2183 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2184 {
2185 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2186 u32 interruptibility = interruptibility_old;
2187
2188 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2189
2190 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2191 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2192 else if (mask & KVM_X86_SHADOW_INT_STI)
2193 interruptibility |= GUEST_INTR_STATE_STI;
2194
2195 if ((interruptibility != interruptibility_old))
2196 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2197 }
2198
2199 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2200 {
2201 unsigned long rip;
2202
2203 rip = kvm_rip_read(vcpu);
2204 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2205 kvm_rip_write(vcpu, rip);
2206
2207 /* skipping an emulated instruction also counts */
2208 vmx_set_interrupt_shadow(vcpu, 0);
2209 }
2210
2211 /*
2212 * KVM wants to inject page-faults which it got to the guest. This function
2213 * checks whether in a nested guest, we need to inject them to L1 or L2.
2214 */
2215 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2216 {
2217 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2218
2219 if (!(vmcs12->exception_bitmap & (1u << nr)))
2220 return 0;
2221
2222 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2223 vmcs_read32(VM_EXIT_INTR_INFO),
2224 vmcs_readl(EXIT_QUALIFICATION));
2225 return 1;
2226 }
2227
2228 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2229 bool has_error_code, u32 error_code,
2230 bool reinject)
2231 {
2232 struct vcpu_vmx *vmx = to_vmx(vcpu);
2233 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2234
2235 if (!reinject && is_guest_mode(vcpu) &&
2236 nested_vmx_check_exception(vcpu, nr))
2237 return;
2238
2239 if (has_error_code) {
2240 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2241 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2242 }
2243
2244 if (vmx->rmode.vm86_active) {
2245 int inc_eip = 0;
2246 if (kvm_exception_is_soft(nr))
2247 inc_eip = vcpu->arch.event_exit_inst_len;
2248 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2249 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2250 return;
2251 }
2252
2253 if (kvm_exception_is_soft(nr)) {
2254 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2255 vmx->vcpu.arch.event_exit_inst_len);
2256 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2257 } else
2258 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2259
2260 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2261 }
2262
2263 static bool vmx_rdtscp_supported(void)
2264 {
2265 return cpu_has_vmx_rdtscp();
2266 }
2267
2268 static bool vmx_invpcid_supported(void)
2269 {
2270 return cpu_has_vmx_invpcid() && enable_ept;
2271 }
2272
2273 /*
2274 * Swap MSR entry in host/guest MSR entry array.
2275 */
2276 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2277 {
2278 struct shared_msr_entry tmp;
2279
2280 tmp = vmx->guest_msrs[to];
2281 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2282 vmx->guest_msrs[from] = tmp;
2283 }
2284
2285 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2286 {
2287 unsigned long *msr_bitmap;
2288
2289 if (is_guest_mode(vcpu))
2290 msr_bitmap = vmx_msr_bitmap_nested;
2291 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2292 if (is_long_mode(vcpu))
2293 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2294 else
2295 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2296 } else {
2297 if (is_long_mode(vcpu))
2298 msr_bitmap = vmx_msr_bitmap_longmode;
2299 else
2300 msr_bitmap = vmx_msr_bitmap_legacy;
2301 }
2302
2303 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2304 }
2305
2306 /*
2307 * Set up the vmcs to automatically save and restore system
2308 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2309 * mode, as fiddling with msrs is very expensive.
2310 */
2311 static void setup_msrs(struct vcpu_vmx *vmx)
2312 {
2313 int save_nmsrs, index;
2314
2315 save_nmsrs = 0;
2316 #ifdef CONFIG_X86_64
2317 if (is_long_mode(&vmx->vcpu)) {
2318 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2319 if (index >= 0)
2320 move_msr_up(vmx, index, save_nmsrs++);
2321 index = __find_msr_index(vmx, MSR_LSTAR);
2322 if (index >= 0)
2323 move_msr_up(vmx, index, save_nmsrs++);
2324 index = __find_msr_index(vmx, MSR_CSTAR);
2325 if (index >= 0)
2326 move_msr_up(vmx, index, save_nmsrs++);
2327 index = __find_msr_index(vmx, MSR_TSC_AUX);
2328 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2329 move_msr_up(vmx, index, save_nmsrs++);
2330 /*
2331 * MSR_STAR is only needed on long mode guests, and only
2332 * if efer.sce is enabled.
2333 */
2334 index = __find_msr_index(vmx, MSR_STAR);
2335 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2336 move_msr_up(vmx, index, save_nmsrs++);
2337 }
2338 #endif
2339 index = __find_msr_index(vmx, MSR_EFER);
2340 if (index >= 0 && update_transition_efer(vmx, index))
2341 move_msr_up(vmx, index, save_nmsrs++);
2342
2343 vmx->save_nmsrs = save_nmsrs;
2344
2345 if (cpu_has_vmx_msr_bitmap())
2346 vmx_set_msr_bitmap(&vmx->vcpu);
2347 }
2348
2349 /*
2350 * reads and returns guest's timestamp counter "register"
2351 * guest_tsc = host_tsc + tsc_offset -- 21.3
2352 */
2353 static u64 guest_read_tsc(void)
2354 {
2355 u64 host_tsc, tsc_offset;
2356
2357 host_tsc = rdtsc();
2358 tsc_offset = vmcs_read64(TSC_OFFSET);
2359 return host_tsc + tsc_offset;
2360 }
2361
2362 /*
2363 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2364 * counter, even if a nested guest (L2) is currently running.
2365 */
2366 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2367 {
2368 u64 tsc_offset;
2369
2370 tsc_offset = is_guest_mode(vcpu) ?
2371 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2372 vmcs_read64(TSC_OFFSET);
2373 return host_tsc + tsc_offset;
2374 }
2375
2376 /*
2377 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2378 * software catchup for faster rates on slower CPUs.
2379 */
2380 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2381 {
2382 if (!scale)
2383 return;
2384
2385 if (user_tsc_khz > tsc_khz) {
2386 vcpu->arch.tsc_catchup = 1;
2387 vcpu->arch.tsc_always_catchup = 1;
2388 } else
2389 WARN(1, "user requested TSC rate below hardware speed\n");
2390 }
2391
2392 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2393 {
2394 return vmcs_read64(TSC_OFFSET);
2395 }
2396
2397 /*
2398 * writes 'offset' into guest's timestamp counter offset register
2399 */
2400 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2401 {
2402 if (is_guest_mode(vcpu)) {
2403 /*
2404 * We're here if L1 chose not to trap WRMSR to TSC. According
2405 * to the spec, this should set L1's TSC; The offset that L1
2406 * set for L2 remains unchanged, and still needs to be added
2407 * to the newly set TSC to get L2's TSC.
2408 */
2409 struct vmcs12 *vmcs12;
2410 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2411 /* recalculate vmcs02.TSC_OFFSET: */
2412 vmcs12 = get_vmcs12(vcpu);
2413 vmcs_write64(TSC_OFFSET, offset +
2414 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2415 vmcs12->tsc_offset : 0));
2416 } else {
2417 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2418 vmcs_read64(TSC_OFFSET), offset);
2419 vmcs_write64(TSC_OFFSET, offset);
2420 }
2421 }
2422
2423 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2424 {
2425 u64 offset = vmcs_read64(TSC_OFFSET);
2426
2427 vmcs_write64(TSC_OFFSET, offset + adjustment);
2428 if (is_guest_mode(vcpu)) {
2429 /* Even when running L2, the adjustment needs to apply to L1 */
2430 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2431 } else
2432 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2433 offset + adjustment);
2434 }
2435
2436 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2437 {
2438 return target_tsc - rdtsc();
2439 }
2440
2441 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2442 {
2443 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2444 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2445 }
2446
2447 /*
2448 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2449 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2450 * all guests if the "nested" module option is off, and can also be disabled
2451 * for a single guest by disabling its VMX cpuid bit.
2452 */
2453 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2454 {
2455 return nested && guest_cpuid_has_vmx(vcpu);
2456 }
2457
2458 /*
2459 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2460 * returned for the various VMX controls MSRs when nested VMX is enabled.
2461 * The same values should also be used to verify that vmcs12 control fields are
2462 * valid during nested entry from L1 to L2.
2463 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2464 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2465 * bit in the high half is on if the corresponding bit in the control field
2466 * may be on. See also vmx_control_verify().
2467 */
2468 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2469 {
2470 /*
2471 * Note that as a general rule, the high half of the MSRs (bits in
2472 * the control fields which may be 1) should be initialized by the
2473 * intersection of the underlying hardware's MSR (i.e., features which
2474 * can be supported) and the list of features we want to expose -
2475 * because they are known to be properly supported in our code.
2476 * Also, usually, the low half of the MSRs (bits which must be 1) can
2477 * be set to 0, meaning that L1 may turn off any of these bits. The
2478 * reason is that if one of these bits is necessary, it will appear
2479 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2480 * fields of vmcs01 and vmcs02, will turn these bits off - and
2481 * nested_vmx_exit_handled() will not pass related exits to L1.
2482 * These rules have exceptions below.
2483 */
2484
2485 /* pin-based controls */
2486 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2487 vmx->nested.nested_vmx_pinbased_ctls_low,
2488 vmx->nested.nested_vmx_pinbased_ctls_high);
2489 vmx->nested.nested_vmx_pinbased_ctls_low |=
2490 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2491 vmx->nested.nested_vmx_pinbased_ctls_high &=
2492 PIN_BASED_EXT_INTR_MASK |
2493 PIN_BASED_NMI_EXITING |
2494 PIN_BASED_VIRTUAL_NMIS;
2495 vmx->nested.nested_vmx_pinbased_ctls_high |=
2496 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2497 PIN_BASED_VMX_PREEMPTION_TIMER;
2498 if (vmx_cpu_uses_apicv(&vmx->vcpu))
2499 vmx->nested.nested_vmx_pinbased_ctls_high |=
2500 PIN_BASED_POSTED_INTR;
2501
2502 /* exit controls */
2503 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2504 vmx->nested.nested_vmx_exit_ctls_low,
2505 vmx->nested.nested_vmx_exit_ctls_high);
2506 vmx->nested.nested_vmx_exit_ctls_low =
2507 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2508
2509 vmx->nested.nested_vmx_exit_ctls_high &=
2510 #ifdef CONFIG_X86_64
2511 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2512 #endif
2513 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2514 vmx->nested.nested_vmx_exit_ctls_high |=
2515 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2516 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2517 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2518
2519 if (vmx_mpx_supported())
2520 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2521
2522 /* We support free control of debug control saving. */
2523 vmx->nested.nested_vmx_true_exit_ctls_low =
2524 vmx->nested.nested_vmx_exit_ctls_low &
2525 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2526
2527 /* entry controls */
2528 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2529 vmx->nested.nested_vmx_entry_ctls_low,
2530 vmx->nested.nested_vmx_entry_ctls_high);
2531 vmx->nested.nested_vmx_entry_ctls_low =
2532 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2533 vmx->nested.nested_vmx_entry_ctls_high &=
2534 #ifdef CONFIG_X86_64
2535 VM_ENTRY_IA32E_MODE |
2536 #endif
2537 VM_ENTRY_LOAD_IA32_PAT;
2538 vmx->nested.nested_vmx_entry_ctls_high |=
2539 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2540 if (vmx_mpx_supported())
2541 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2542
2543 /* We support free control of debug control loading. */
2544 vmx->nested.nested_vmx_true_entry_ctls_low =
2545 vmx->nested.nested_vmx_entry_ctls_low &
2546 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2547
2548 /* cpu-based controls */
2549 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2550 vmx->nested.nested_vmx_procbased_ctls_low,
2551 vmx->nested.nested_vmx_procbased_ctls_high);
2552 vmx->nested.nested_vmx_procbased_ctls_low =
2553 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2554 vmx->nested.nested_vmx_procbased_ctls_high &=
2555 CPU_BASED_VIRTUAL_INTR_PENDING |
2556 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2557 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2558 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2559 CPU_BASED_CR3_STORE_EXITING |
2560 #ifdef CONFIG_X86_64
2561 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2562 #endif
2563 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2564 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2565 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2566 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2567 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2568 /*
2569 * We can allow some features even when not supported by the
2570 * hardware. For example, L1 can specify an MSR bitmap - and we
2571 * can use it to avoid exits to L1 - even when L0 runs L2
2572 * without MSR bitmaps.
2573 */
2574 vmx->nested.nested_vmx_procbased_ctls_high |=
2575 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2576 CPU_BASED_USE_MSR_BITMAPS;
2577
2578 /* We support free control of CR3 access interception. */
2579 vmx->nested.nested_vmx_true_procbased_ctls_low =
2580 vmx->nested.nested_vmx_procbased_ctls_low &
2581 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2582
2583 /* secondary cpu-based controls */
2584 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2585 vmx->nested.nested_vmx_secondary_ctls_low,
2586 vmx->nested.nested_vmx_secondary_ctls_high);
2587 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2588 vmx->nested.nested_vmx_secondary_ctls_high &=
2589 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2590 SECONDARY_EXEC_RDTSCP |
2591 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2592 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2593 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2594 SECONDARY_EXEC_WBINVD_EXITING |
2595 SECONDARY_EXEC_XSAVES |
2596 SECONDARY_EXEC_PCOMMIT;
2597
2598 if (enable_ept) {
2599 /* nested EPT: emulate EPT also to L1 */
2600 vmx->nested.nested_vmx_secondary_ctls_high |=
2601 SECONDARY_EXEC_ENABLE_EPT;
2602 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2603 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2604 VMX_EPT_INVEPT_BIT;
2605 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2606 /*
2607 * For nested guests, we don't do anything specific
2608 * for single context invalidation. Hence, only advertise
2609 * support for global context invalidation.
2610 */
2611 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2612 } else
2613 vmx->nested.nested_vmx_ept_caps = 0;
2614
2615 if (enable_unrestricted_guest)
2616 vmx->nested.nested_vmx_secondary_ctls_high |=
2617 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2618
2619 /* miscellaneous data */
2620 rdmsr(MSR_IA32_VMX_MISC,
2621 vmx->nested.nested_vmx_misc_low,
2622 vmx->nested.nested_vmx_misc_high);
2623 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2624 vmx->nested.nested_vmx_misc_low |=
2625 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2626 VMX_MISC_ACTIVITY_HLT;
2627 vmx->nested.nested_vmx_misc_high = 0;
2628 }
2629
2630 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2631 {
2632 /*
2633 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2634 */
2635 return ((control & high) | low) == control;
2636 }
2637
2638 static inline u64 vmx_control_msr(u32 low, u32 high)
2639 {
2640 return low | ((u64)high << 32);
2641 }
2642
2643 /* Returns 0 on success, non-0 otherwise. */
2644 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2645 {
2646 struct vcpu_vmx *vmx = to_vmx(vcpu);
2647
2648 switch (msr_index) {
2649 case MSR_IA32_VMX_BASIC:
2650 /*
2651 * This MSR reports some information about VMX support. We
2652 * should return information about the VMX we emulate for the
2653 * guest, and the VMCS structure we give it - not about the
2654 * VMX support of the underlying hardware.
2655 */
2656 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2657 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2658 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2659 break;
2660 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2661 case MSR_IA32_VMX_PINBASED_CTLS:
2662 *pdata = vmx_control_msr(
2663 vmx->nested.nested_vmx_pinbased_ctls_low,
2664 vmx->nested.nested_vmx_pinbased_ctls_high);
2665 break;
2666 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2667 *pdata = vmx_control_msr(
2668 vmx->nested.nested_vmx_true_procbased_ctls_low,
2669 vmx->nested.nested_vmx_procbased_ctls_high);
2670 break;
2671 case MSR_IA32_VMX_PROCBASED_CTLS:
2672 *pdata = vmx_control_msr(
2673 vmx->nested.nested_vmx_procbased_ctls_low,
2674 vmx->nested.nested_vmx_procbased_ctls_high);
2675 break;
2676 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2677 *pdata = vmx_control_msr(
2678 vmx->nested.nested_vmx_true_exit_ctls_low,
2679 vmx->nested.nested_vmx_exit_ctls_high);
2680 break;
2681 case MSR_IA32_VMX_EXIT_CTLS:
2682 *pdata = vmx_control_msr(
2683 vmx->nested.nested_vmx_exit_ctls_low,
2684 vmx->nested.nested_vmx_exit_ctls_high);
2685 break;
2686 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2687 *pdata = vmx_control_msr(
2688 vmx->nested.nested_vmx_true_entry_ctls_low,
2689 vmx->nested.nested_vmx_entry_ctls_high);
2690 break;
2691 case MSR_IA32_VMX_ENTRY_CTLS:
2692 *pdata = vmx_control_msr(
2693 vmx->nested.nested_vmx_entry_ctls_low,
2694 vmx->nested.nested_vmx_entry_ctls_high);
2695 break;
2696 case MSR_IA32_VMX_MISC:
2697 *pdata = vmx_control_msr(
2698 vmx->nested.nested_vmx_misc_low,
2699 vmx->nested.nested_vmx_misc_high);
2700 break;
2701 /*
2702 * These MSRs specify bits which the guest must keep fixed (on or off)
2703 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2704 * We picked the standard core2 setting.
2705 */
2706 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2707 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2708 case MSR_IA32_VMX_CR0_FIXED0:
2709 *pdata = VMXON_CR0_ALWAYSON;
2710 break;
2711 case MSR_IA32_VMX_CR0_FIXED1:
2712 *pdata = -1ULL;
2713 break;
2714 case MSR_IA32_VMX_CR4_FIXED0:
2715 *pdata = VMXON_CR4_ALWAYSON;
2716 break;
2717 case MSR_IA32_VMX_CR4_FIXED1:
2718 *pdata = -1ULL;
2719 break;
2720 case MSR_IA32_VMX_VMCS_ENUM:
2721 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2722 break;
2723 case MSR_IA32_VMX_PROCBASED_CTLS2:
2724 *pdata = vmx_control_msr(
2725 vmx->nested.nested_vmx_secondary_ctls_low,
2726 vmx->nested.nested_vmx_secondary_ctls_high);
2727 break;
2728 case MSR_IA32_VMX_EPT_VPID_CAP:
2729 /* Currently, no nested vpid support */
2730 *pdata = vmx->nested.nested_vmx_ept_caps;
2731 break;
2732 default:
2733 return 1;
2734 }
2735
2736 return 0;
2737 }
2738
2739 /*
2740 * Reads an msr value (of 'msr_index') into 'pdata'.
2741 * Returns 0 on success, non-0 otherwise.
2742 * Assumes vcpu_load() was already called.
2743 */
2744 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2745 {
2746 struct shared_msr_entry *msr;
2747
2748 switch (msr_info->index) {
2749 #ifdef CONFIG_X86_64
2750 case MSR_FS_BASE:
2751 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2752 break;
2753 case MSR_GS_BASE:
2754 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2755 break;
2756 case MSR_KERNEL_GS_BASE:
2757 vmx_load_host_state(to_vmx(vcpu));
2758 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2759 break;
2760 #endif
2761 case MSR_EFER:
2762 return kvm_get_msr_common(vcpu, msr_info);
2763 case MSR_IA32_TSC:
2764 msr_info->data = guest_read_tsc();
2765 break;
2766 case MSR_IA32_SYSENTER_CS:
2767 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2768 break;
2769 case MSR_IA32_SYSENTER_EIP:
2770 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2771 break;
2772 case MSR_IA32_SYSENTER_ESP:
2773 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2774 break;
2775 case MSR_IA32_BNDCFGS:
2776 if (!vmx_mpx_supported())
2777 return 1;
2778 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2779 break;
2780 case MSR_IA32_FEATURE_CONTROL:
2781 if (!nested_vmx_allowed(vcpu))
2782 return 1;
2783 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2784 break;
2785 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2786 if (!nested_vmx_allowed(vcpu))
2787 return 1;
2788 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2789 case MSR_IA32_XSS:
2790 if (!vmx_xsaves_supported())
2791 return 1;
2792 msr_info->data = vcpu->arch.ia32_xss;
2793 break;
2794 case MSR_TSC_AUX:
2795 if (!guest_cpuid_has_rdtscp(vcpu))
2796 return 1;
2797 /* Otherwise falls through */
2798 default:
2799 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2800 if (msr) {
2801 msr_info->data = msr->data;
2802 break;
2803 }
2804 return kvm_get_msr_common(vcpu, msr_info);
2805 }
2806
2807 return 0;
2808 }
2809
2810 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2811
2812 /*
2813 * Writes msr value into into the appropriate "register".
2814 * Returns 0 on success, non-0 otherwise.
2815 * Assumes vcpu_load() was already called.
2816 */
2817 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2818 {
2819 struct vcpu_vmx *vmx = to_vmx(vcpu);
2820 struct shared_msr_entry *msr;
2821 int ret = 0;
2822 u32 msr_index = msr_info->index;
2823 u64 data = msr_info->data;
2824
2825 switch (msr_index) {
2826 case MSR_EFER:
2827 ret = kvm_set_msr_common(vcpu, msr_info);
2828 break;
2829 #ifdef CONFIG_X86_64
2830 case MSR_FS_BASE:
2831 vmx_segment_cache_clear(vmx);
2832 vmcs_writel(GUEST_FS_BASE, data);
2833 break;
2834 case MSR_GS_BASE:
2835 vmx_segment_cache_clear(vmx);
2836 vmcs_writel(GUEST_GS_BASE, data);
2837 break;
2838 case MSR_KERNEL_GS_BASE:
2839 vmx_load_host_state(vmx);
2840 vmx->msr_guest_kernel_gs_base = data;
2841 break;
2842 #endif
2843 case MSR_IA32_SYSENTER_CS:
2844 vmcs_write32(GUEST_SYSENTER_CS, data);
2845 break;
2846 case MSR_IA32_SYSENTER_EIP:
2847 vmcs_writel(GUEST_SYSENTER_EIP, data);
2848 break;
2849 case MSR_IA32_SYSENTER_ESP:
2850 vmcs_writel(GUEST_SYSENTER_ESP, data);
2851 break;
2852 case MSR_IA32_BNDCFGS:
2853 if (!vmx_mpx_supported())
2854 return 1;
2855 vmcs_write64(GUEST_BNDCFGS, data);
2856 break;
2857 case MSR_IA32_TSC:
2858 kvm_write_tsc(vcpu, msr_info);
2859 break;
2860 case MSR_IA32_CR_PAT:
2861 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2862 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2863 return 1;
2864 vmcs_write64(GUEST_IA32_PAT, data);
2865 vcpu->arch.pat = data;
2866 break;
2867 }
2868 ret = kvm_set_msr_common(vcpu, msr_info);
2869 break;
2870 case MSR_IA32_TSC_ADJUST:
2871 ret = kvm_set_msr_common(vcpu, msr_info);
2872 break;
2873 case MSR_IA32_FEATURE_CONTROL:
2874 if (!nested_vmx_allowed(vcpu) ||
2875 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2876 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2877 return 1;
2878 vmx->nested.msr_ia32_feature_control = data;
2879 if (msr_info->host_initiated && data == 0)
2880 vmx_leave_nested(vcpu);
2881 break;
2882 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2883 return 1; /* they are read-only */
2884 case MSR_IA32_XSS:
2885 if (!vmx_xsaves_supported())
2886 return 1;
2887 /*
2888 * The only supported bit as of Skylake is bit 8, but
2889 * it is not supported on KVM.
2890 */
2891 if (data != 0)
2892 return 1;
2893 vcpu->arch.ia32_xss = data;
2894 if (vcpu->arch.ia32_xss != host_xss)
2895 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2896 vcpu->arch.ia32_xss, host_xss);
2897 else
2898 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2899 break;
2900 case MSR_TSC_AUX:
2901 if (!guest_cpuid_has_rdtscp(vcpu))
2902 return 1;
2903 /* Check reserved bit, higher 32 bits should be zero */
2904 if ((data >> 32) != 0)
2905 return 1;
2906 /* Otherwise falls through */
2907 default:
2908 msr = find_msr_entry(vmx, msr_index);
2909 if (msr) {
2910 u64 old_msr_data = msr->data;
2911 msr->data = data;
2912 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2913 preempt_disable();
2914 ret = kvm_set_shared_msr(msr->index, msr->data,
2915 msr->mask);
2916 preempt_enable();
2917 if (ret)
2918 msr->data = old_msr_data;
2919 }
2920 break;
2921 }
2922 ret = kvm_set_msr_common(vcpu, msr_info);
2923 }
2924
2925 return ret;
2926 }
2927
2928 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2929 {
2930 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2931 switch (reg) {
2932 case VCPU_REGS_RSP:
2933 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2934 break;
2935 case VCPU_REGS_RIP:
2936 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2937 break;
2938 case VCPU_EXREG_PDPTR:
2939 if (enable_ept)
2940 ept_save_pdptrs(vcpu);
2941 break;
2942 default:
2943 break;
2944 }
2945 }
2946
2947 static __init int cpu_has_kvm_support(void)
2948 {
2949 return cpu_has_vmx();
2950 }
2951
2952 static __init int vmx_disabled_by_bios(void)
2953 {
2954 u64 msr;
2955
2956 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2957 if (msr & FEATURE_CONTROL_LOCKED) {
2958 /* launched w/ TXT and VMX disabled */
2959 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2960 && tboot_enabled())
2961 return 1;
2962 /* launched w/o TXT and VMX only enabled w/ TXT */
2963 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2964 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2965 && !tboot_enabled()) {
2966 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2967 "activate TXT before enabling KVM\n");
2968 return 1;
2969 }
2970 /* launched w/o TXT and VMX disabled */
2971 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2972 && !tboot_enabled())
2973 return 1;
2974 }
2975
2976 return 0;
2977 }
2978
2979 static void kvm_cpu_vmxon(u64 addr)
2980 {
2981 asm volatile (ASM_VMX_VMXON_RAX
2982 : : "a"(&addr), "m"(addr)
2983 : "memory", "cc");
2984 }
2985
2986 static int hardware_enable(void)
2987 {
2988 int cpu = raw_smp_processor_id();
2989 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2990 u64 old, test_bits;
2991
2992 if (cr4_read_shadow() & X86_CR4_VMXE)
2993 return -EBUSY;
2994
2995 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2996 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2997 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2998
2999 /*
3000 * Now we can enable the vmclear operation in kdump
3001 * since the loaded_vmcss_on_cpu list on this cpu
3002 * has been initialized.
3003 *
3004 * Though the cpu is not in VMX operation now, there
3005 * is no problem to enable the vmclear operation
3006 * for the loaded_vmcss_on_cpu list is empty!
3007 */
3008 crash_enable_local_vmclear(cpu);
3009
3010 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3011
3012 test_bits = FEATURE_CONTROL_LOCKED;
3013 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3014 if (tboot_enabled())
3015 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3016
3017 if ((old & test_bits) != test_bits) {
3018 /* enable and lock */
3019 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3020 }
3021 cr4_set_bits(X86_CR4_VMXE);
3022
3023 if (vmm_exclusive) {
3024 kvm_cpu_vmxon(phys_addr);
3025 ept_sync_global();
3026 }
3027
3028 native_store_gdt(this_cpu_ptr(&host_gdt));
3029
3030 return 0;
3031 }
3032
3033 static void vmclear_local_loaded_vmcss(void)
3034 {
3035 int cpu = raw_smp_processor_id();
3036 struct loaded_vmcs *v, *n;
3037
3038 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3039 loaded_vmcss_on_cpu_link)
3040 __loaded_vmcs_clear(v);
3041 }
3042
3043
3044 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3045 * tricks.
3046 */
3047 static void kvm_cpu_vmxoff(void)
3048 {
3049 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3050 }
3051
3052 static void hardware_disable(void)
3053 {
3054 if (vmm_exclusive) {
3055 vmclear_local_loaded_vmcss();
3056 kvm_cpu_vmxoff();
3057 }
3058 cr4_clear_bits(X86_CR4_VMXE);
3059 }
3060
3061 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3062 u32 msr, u32 *result)
3063 {
3064 u32 vmx_msr_low, vmx_msr_high;
3065 u32 ctl = ctl_min | ctl_opt;
3066
3067 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3068
3069 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3070 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3071
3072 /* Ensure minimum (required) set of control bits are supported. */
3073 if (ctl_min & ~ctl)
3074 return -EIO;
3075
3076 *result = ctl;
3077 return 0;
3078 }
3079
3080 static __init bool allow_1_setting(u32 msr, u32 ctl)
3081 {
3082 u32 vmx_msr_low, vmx_msr_high;
3083
3084 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3085 return vmx_msr_high & ctl;
3086 }
3087
3088 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3089 {
3090 u32 vmx_msr_low, vmx_msr_high;
3091 u32 min, opt, min2, opt2;
3092 u32 _pin_based_exec_control = 0;
3093 u32 _cpu_based_exec_control = 0;
3094 u32 _cpu_based_2nd_exec_control = 0;
3095 u32 _vmexit_control = 0;
3096 u32 _vmentry_control = 0;
3097
3098 min = CPU_BASED_HLT_EXITING |
3099 #ifdef CONFIG_X86_64
3100 CPU_BASED_CR8_LOAD_EXITING |
3101 CPU_BASED_CR8_STORE_EXITING |
3102 #endif
3103 CPU_BASED_CR3_LOAD_EXITING |
3104 CPU_BASED_CR3_STORE_EXITING |
3105 CPU_BASED_USE_IO_BITMAPS |
3106 CPU_BASED_MOV_DR_EXITING |
3107 CPU_BASED_USE_TSC_OFFSETING |
3108 CPU_BASED_MWAIT_EXITING |
3109 CPU_BASED_MONITOR_EXITING |
3110 CPU_BASED_INVLPG_EXITING |
3111 CPU_BASED_RDPMC_EXITING;
3112
3113 opt = CPU_BASED_TPR_SHADOW |
3114 CPU_BASED_USE_MSR_BITMAPS |
3115 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3116 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3117 &_cpu_based_exec_control) < 0)
3118 return -EIO;
3119 #ifdef CONFIG_X86_64
3120 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3121 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3122 ~CPU_BASED_CR8_STORE_EXITING;
3123 #endif
3124 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3125 min2 = 0;
3126 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3127 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3128 SECONDARY_EXEC_WBINVD_EXITING |
3129 SECONDARY_EXEC_ENABLE_VPID |
3130 SECONDARY_EXEC_ENABLE_EPT |
3131 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3132 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3133 SECONDARY_EXEC_RDTSCP |
3134 SECONDARY_EXEC_ENABLE_INVPCID |
3135 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3136 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3137 SECONDARY_EXEC_SHADOW_VMCS |
3138 SECONDARY_EXEC_XSAVES |
3139 SECONDARY_EXEC_ENABLE_PML |
3140 SECONDARY_EXEC_PCOMMIT;
3141 if (adjust_vmx_controls(min2, opt2,
3142 MSR_IA32_VMX_PROCBASED_CTLS2,
3143 &_cpu_based_2nd_exec_control) < 0)
3144 return -EIO;
3145 }
3146 #ifndef CONFIG_X86_64
3147 if (!(_cpu_based_2nd_exec_control &
3148 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3149 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3150 #endif
3151
3152 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3153 _cpu_based_2nd_exec_control &= ~(
3154 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3155 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3156 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3157
3158 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3159 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3160 enabled */
3161 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3162 CPU_BASED_CR3_STORE_EXITING |
3163 CPU_BASED_INVLPG_EXITING);
3164 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3165 vmx_capability.ept, vmx_capability.vpid);
3166 }
3167
3168 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3169 #ifdef CONFIG_X86_64
3170 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3171 #endif
3172 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3173 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3174 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3175 &_vmexit_control) < 0)
3176 return -EIO;
3177
3178 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3179 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3180 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3181 &_pin_based_exec_control) < 0)
3182 return -EIO;
3183
3184 if (!(_cpu_based_2nd_exec_control &
3185 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3186 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3187 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3188
3189 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3190 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3191 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3192 &_vmentry_control) < 0)
3193 return -EIO;
3194
3195 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3196
3197 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3198 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3199 return -EIO;
3200
3201 #ifdef CONFIG_X86_64
3202 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3203 if (vmx_msr_high & (1u<<16))
3204 return -EIO;
3205 #endif
3206
3207 /* Require Write-Back (WB) memory type for VMCS accesses. */
3208 if (((vmx_msr_high >> 18) & 15) != 6)
3209 return -EIO;
3210
3211 vmcs_conf->size = vmx_msr_high & 0x1fff;
3212 vmcs_conf->order = get_order(vmcs_config.size);
3213 vmcs_conf->revision_id = vmx_msr_low;
3214
3215 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3216 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3217 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3218 vmcs_conf->vmexit_ctrl = _vmexit_control;
3219 vmcs_conf->vmentry_ctrl = _vmentry_control;
3220
3221 cpu_has_load_ia32_efer =
3222 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3223 VM_ENTRY_LOAD_IA32_EFER)
3224 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3225 VM_EXIT_LOAD_IA32_EFER);
3226
3227 cpu_has_load_perf_global_ctrl =
3228 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3229 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3230 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3231 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3232
3233 /*
3234 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3235 * but due to arrata below it can't be used. Workaround is to use
3236 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3237 *
3238 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3239 *
3240 * AAK155 (model 26)
3241 * AAP115 (model 30)
3242 * AAT100 (model 37)
3243 * BC86,AAY89,BD102 (model 44)
3244 * BA97 (model 46)
3245 *
3246 */
3247 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3248 switch (boot_cpu_data.x86_model) {
3249 case 26:
3250 case 30:
3251 case 37:
3252 case 44:
3253 case 46:
3254 cpu_has_load_perf_global_ctrl = false;
3255 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3256 "does not work properly. Using workaround\n");
3257 break;
3258 default:
3259 break;
3260 }
3261 }
3262
3263 if (cpu_has_xsaves)
3264 rdmsrl(MSR_IA32_XSS, host_xss);
3265
3266 return 0;
3267 }
3268
3269 static struct vmcs *alloc_vmcs_cpu(int cpu)
3270 {
3271 int node = cpu_to_node(cpu);
3272 struct page *pages;
3273 struct vmcs *vmcs;
3274
3275 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3276 if (!pages)
3277 return NULL;
3278 vmcs = page_address(pages);
3279 memset(vmcs, 0, vmcs_config.size);
3280 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3281 return vmcs;
3282 }
3283
3284 static struct vmcs *alloc_vmcs(void)
3285 {
3286 return alloc_vmcs_cpu(raw_smp_processor_id());
3287 }
3288
3289 static void free_vmcs(struct vmcs *vmcs)
3290 {
3291 free_pages((unsigned long)vmcs, vmcs_config.order);
3292 }
3293
3294 /*
3295 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3296 */
3297 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3298 {
3299 if (!loaded_vmcs->vmcs)
3300 return;
3301 loaded_vmcs_clear(loaded_vmcs);
3302 free_vmcs(loaded_vmcs->vmcs);
3303 loaded_vmcs->vmcs = NULL;
3304 }
3305
3306 static void free_kvm_area(void)
3307 {
3308 int cpu;
3309
3310 for_each_possible_cpu(cpu) {
3311 free_vmcs(per_cpu(vmxarea, cpu));
3312 per_cpu(vmxarea, cpu) = NULL;
3313 }
3314 }
3315
3316 static void init_vmcs_shadow_fields(void)
3317 {
3318 int i, j;
3319
3320 /* No checks for read only fields yet */
3321
3322 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3323 switch (shadow_read_write_fields[i]) {
3324 case GUEST_BNDCFGS:
3325 if (!vmx_mpx_supported())
3326 continue;
3327 break;
3328 default:
3329 break;
3330 }
3331
3332 if (j < i)
3333 shadow_read_write_fields[j] =
3334 shadow_read_write_fields[i];
3335 j++;
3336 }
3337 max_shadow_read_write_fields = j;
3338
3339 /* shadowed fields guest access without vmexit */
3340 for (i = 0; i < max_shadow_read_write_fields; i++) {
3341 clear_bit(shadow_read_write_fields[i],
3342 vmx_vmwrite_bitmap);
3343 clear_bit(shadow_read_write_fields[i],
3344 vmx_vmread_bitmap);
3345 }
3346 for (i = 0; i < max_shadow_read_only_fields; i++)
3347 clear_bit(shadow_read_only_fields[i],
3348 vmx_vmread_bitmap);
3349 }
3350
3351 static __init int alloc_kvm_area(void)
3352 {
3353 int cpu;
3354
3355 for_each_possible_cpu(cpu) {
3356 struct vmcs *vmcs;
3357
3358 vmcs = alloc_vmcs_cpu(cpu);
3359 if (!vmcs) {
3360 free_kvm_area();
3361 return -ENOMEM;
3362 }
3363
3364 per_cpu(vmxarea, cpu) = vmcs;
3365 }
3366 return 0;
3367 }
3368
3369 static bool emulation_required(struct kvm_vcpu *vcpu)
3370 {
3371 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3372 }
3373
3374 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3375 struct kvm_segment *save)
3376 {
3377 if (!emulate_invalid_guest_state) {
3378 /*
3379 * CS and SS RPL should be equal during guest entry according
3380 * to VMX spec, but in reality it is not always so. Since vcpu
3381 * is in the middle of the transition from real mode to
3382 * protected mode it is safe to assume that RPL 0 is a good
3383 * default value.
3384 */
3385 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3386 save->selector &= ~SEGMENT_RPL_MASK;
3387 save->dpl = save->selector & SEGMENT_RPL_MASK;
3388 save->s = 1;
3389 }
3390 vmx_set_segment(vcpu, save, seg);
3391 }
3392
3393 static void enter_pmode(struct kvm_vcpu *vcpu)
3394 {
3395 unsigned long flags;
3396 struct vcpu_vmx *vmx = to_vmx(vcpu);
3397
3398 /*
3399 * Update real mode segment cache. It may be not up-to-date if sement
3400 * register was written while vcpu was in a guest mode.
3401 */
3402 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3403 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3404 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3405 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3406 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3407 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3408
3409 vmx->rmode.vm86_active = 0;
3410
3411 vmx_segment_cache_clear(vmx);
3412
3413 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3414
3415 flags = vmcs_readl(GUEST_RFLAGS);
3416 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3417 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3418 vmcs_writel(GUEST_RFLAGS, flags);
3419
3420 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3421 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3422
3423 update_exception_bitmap(vcpu);
3424
3425 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3426 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3427 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3428 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3429 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3430 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3431 }
3432
3433 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3434 {
3435 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3436 struct kvm_segment var = *save;
3437
3438 var.dpl = 0x3;
3439 if (seg == VCPU_SREG_CS)
3440 var.type = 0x3;
3441
3442 if (!emulate_invalid_guest_state) {
3443 var.selector = var.base >> 4;
3444 var.base = var.base & 0xffff0;
3445 var.limit = 0xffff;
3446 var.g = 0;
3447 var.db = 0;
3448 var.present = 1;
3449 var.s = 1;
3450 var.l = 0;
3451 var.unusable = 0;
3452 var.type = 0x3;
3453 var.avl = 0;
3454 if (save->base & 0xf)
3455 printk_once(KERN_WARNING "kvm: segment base is not "
3456 "paragraph aligned when entering "
3457 "protected mode (seg=%d)", seg);
3458 }
3459
3460 vmcs_write16(sf->selector, var.selector);
3461 vmcs_write32(sf->base, var.base);
3462 vmcs_write32(sf->limit, var.limit);
3463 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3464 }
3465
3466 static void enter_rmode(struct kvm_vcpu *vcpu)
3467 {
3468 unsigned long flags;
3469 struct vcpu_vmx *vmx = to_vmx(vcpu);
3470
3471 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3472 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3473 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3474 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3475 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3476 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3477 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3478
3479 vmx->rmode.vm86_active = 1;
3480
3481 /*
3482 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3483 * vcpu. Warn the user that an update is overdue.
3484 */
3485 if (!vcpu->kvm->arch.tss_addr)
3486 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3487 "called before entering vcpu\n");
3488
3489 vmx_segment_cache_clear(vmx);
3490
3491 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3492 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3493 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3494
3495 flags = vmcs_readl(GUEST_RFLAGS);
3496 vmx->rmode.save_rflags = flags;
3497
3498 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3499
3500 vmcs_writel(GUEST_RFLAGS, flags);
3501 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3502 update_exception_bitmap(vcpu);
3503
3504 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3505 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3506 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3507 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3508 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3509 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3510
3511 kvm_mmu_reset_context(vcpu);
3512 }
3513
3514 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3515 {
3516 struct vcpu_vmx *vmx = to_vmx(vcpu);
3517 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3518
3519 if (!msr)
3520 return;
3521
3522 /*
3523 * Force kernel_gs_base reloading before EFER changes, as control
3524 * of this msr depends on is_long_mode().
3525 */
3526 vmx_load_host_state(to_vmx(vcpu));
3527 vcpu->arch.efer = efer;
3528 if (efer & EFER_LMA) {
3529 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3530 msr->data = efer;
3531 } else {
3532 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3533
3534 msr->data = efer & ~EFER_LME;
3535 }
3536 setup_msrs(vmx);
3537 }
3538
3539 #ifdef CONFIG_X86_64
3540
3541 static void enter_lmode(struct kvm_vcpu *vcpu)
3542 {
3543 u32 guest_tr_ar;
3544
3545 vmx_segment_cache_clear(to_vmx(vcpu));
3546
3547 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3548 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3549 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3550 __func__);
3551 vmcs_write32(GUEST_TR_AR_BYTES,
3552 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3553 | VMX_AR_TYPE_BUSY_64_TSS);
3554 }
3555 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3556 }
3557
3558 static void exit_lmode(struct kvm_vcpu *vcpu)
3559 {
3560 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3561 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3562 }
3563
3564 #endif
3565
3566 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3567 {
3568 vpid_sync_context(vpid);
3569 if (enable_ept) {
3570 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3571 return;
3572 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3573 }
3574 }
3575
3576 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3577 {
3578 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3579 }
3580
3581 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3582 {
3583 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3584
3585 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3586 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3587 }
3588
3589 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3590 {
3591 if (enable_ept && is_paging(vcpu))
3592 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3593 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3594 }
3595
3596 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3597 {
3598 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3599
3600 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3601 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3602 }
3603
3604 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3605 {
3606 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3607
3608 if (!test_bit(VCPU_EXREG_PDPTR,
3609 (unsigned long *)&vcpu->arch.regs_dirty))
3610 return;
3611
3612 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3613 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3614 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3615 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3616 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3617 }
3618 }
3619
3620 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3621 {
3622 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3623
3624 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3625 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3626 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3627 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3628 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3629 }
3630
3631 __set_bit(VCPU_EXREG_PDPTR,
3632 (unsigned long *)&vcpu->arch.regs_avail);
3633 __set_bit(VCPU_EXREG_PDPTR,
3634 (unsigned long *)&vcpu->arch.regs_dirty);
3635 }
3636
3637 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3638
3639 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3640 unsigned long cr0,
3641 struct kvm_vcpu *vcpu)
3642 {
3643 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3644 vmx_decache_cr3(vcpu);
3645 if (!(cr0 & X86_CR0_PG)) {
3646 /* From paging/starting to nonpaging */
3647 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3648 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3649 (CPU_BASED_CR3_LOAD_EXITING |
3650 CPU_BASED_CR3_STORE_EXITING));
3651 vcpu->arch.cr0 = cr0;
3652 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3653 } else if (!is_paging(vcpu)) {
3654 /* From nonpaging to paging */
3655 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3656 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3657 ~(CPU_BASED_CR3_LOAD_EXITING |
3658 CPU_BASED_CR3_STORE_EXITING));
3659 vcpu->arch.cr0 = cr0;
3660 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3661 }
3662
3663 if (!(cr0 & X86_CR0_WP))
3664 *hw_cr0 &= ~X86_CR0_WP;
3665 }
3666
3667 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3668 {
3669 struct vcpu_vmx *vmx = to_vmx(vcpu);
3670 unsigned long hw_cr0;
3671
3672 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3673 if (enable_unrestricted_guest)
3674 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3675 else {
3676 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3677
3678 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3679 enter_pmode(vcpu);
3680
3681 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3682 enter_rmode(vcpu);
3683 }
3684
3685 #ifdef CONFIG_X86_64
3686 if (vcpu->arch.efer & EFER_LME) {
3687 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3688 enter_lmode(vcpu);
3689 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3690 exit_lmode(vcpu);
3691 }
3692 #endif
3693
3694 if (enable_ept)
3695 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3696
3697 if (!vcpu->fpu_active)
3698 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3699
3700 vmcs_writel(CR0_READ_SHADOW, cr0);
3701 vmcs_writel(GUEST_CR0, hw_cr0);
3702 vcpu->arch.cr0 = cr0;
3703
3704 /* depends on vcpu->arch.cr0 to be set to a new value */
3705 vmx->emulation_required = emulation_required(vcpu);
3706 }
3707
3708 static u64 construct_eptp(unsigned long root_hpa)
3709 {
3710 u64 eptp;
3711
3712 /* TODO write the value reading from MSR */
3713 eptp = VMX_EPT_DEFAULT_MT |
3714 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3715 if (enable_ept_ad_bits)
3716 eptp |= VMX_EPT_AD_ENABLE_BIT;
3717 eptp |= (root_hpa & PAGE_MASK);
3718
3719 return eptp;
3720 }
3721
3722 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3723 {
3724 unsigned long guest_cr3;
3725 u64 eptp;
3726
3727 guest_cr3 = cr3;
3728 if (enable_ept) {
3729 eptp = construct_eptp(cr3);
3730 vmcs_write64(EPT_POINTER, eptp);
3731 if (is_paging(vcpu) || is_guest_mode(vcpu))
3732 guest_cr3 = kvm_read_cr3(vcpu);
3733 else
3734 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3735 ept_load_pdptrs(vcpu);
3736 }
3737
3738 vmx_flush_tlb(vcpu);
3739 vmcs_writel(GUEST_CR3, guest_cr3);
3740 }
3741
3742 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3743 {
3744 /*
3745 * Pass through host's Machine Check Enable value to hw_cr4, which
3746 * is in force while we are in guest mode. Do not let guests control
3747 * this bit, even if host CR4.MCE == 0.
3748 */
3749 unsigned long hw_cr4 =
3750 (cr4_read_shadow() & X86_CR4_MCE) |
3751 (cr4 & ~X86_CR4_MCE) |
3752 (to_vmx(vcpu)->rmode.vm86_active ?
3753 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3754
3755 if (cr4 & X86_CR4_VMXE) {
3756 /*
3757 * To use VMXON (and later other VMX instructions), a guest
3758 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3759 * So basically the check on whether to allow nested VMX
3760 * is here.
3761 */
3762 if (!nested_vmx_allowed(vcpu))
3763 return 1;
3764 }
3765 if (to_vmx(vcpu)->nested.vmxon &&
3766 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3767 return 1;
3768
3769 vcpu->arch.cr4 = cr4;
3770 if (enable_ept) {
3771 if (!is_paging(vcpu)) {
3772 hw_cr4 &= ~X86_CR4_PAE;
3773 hw_cr4 |= X86_CR4_PSE;
3774 /*
3775 * SMEP/SMAP is disabled if CPU is in non-paging mode
3776 * in hardware. However KVM always uses paging mode to
3777 * emulate guest non-paging mode with TDP.
3778 * To emulate this behavior, SMEP/SMAP needs to be
3779 * manually disabled when guest switches to non-paging
3780 * mode.
3781 */
3782 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3783 } else if (!(cr4 & X86_CR4_PAE)) {
3784 hw_cr4 &= ~X86_CR4_PAE;
3785 }
3786 }
3787
3788 vmcs_writel(CR4_READ_SHADOW, cr4);
3789 vmcs_writel(GUEST_CR4, hw_cr4);
3790 return 0;
3791 }
3792
3793 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3794 struct kvm_segment *var, int seg)
3795 {
3796 struct vcpu_vmx *vmx = to_vmx(vcpu);
3797 u32 ar;
3798
3799 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3800 *var = vmx->rmode.segs[seg];
3801 if (seg == VCPU_SREG_TR
3802 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3803 return;
3804 var->base = vmx_read_guest_seg_base(vmx, seg);
3805 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3806 return;
3807 }
3808 var->base = vmx_read_guest_seg_base(vmx, seg);
3809 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3810 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3811 ar = vmx_read_guest_seg_ar(vmx, seg);
3812 var->unusable = (ar >> 16) & 1;
3813 var->type = ar & 15;
3814 var->s = (ar >> 4) & 1;
3815 var->dpl = (ar >> 5) & 3;
3816 /*
3817 * Some userspaces do not preserve unusable property. Since usable
3818 * segment has to be present according to VMX spec we can use present
3819 * property to amend userspace bug by making unusable segment always
3820 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3821 * segment as unusable.
3822 */
3823 var->present = !var->unusable;
3824 var->avl = (ar >> 12) & 1;
3825 var->l = (ar >> 13) & 1;
3826 var->db = (ar >> 14) & 1;
3827 var->g = (ar >> 15) & 1;
3828 }
3829
3830 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3831 {
3832 struct kvm_segment s;
3833
3834 if (to_vmx(vcpu)->rmode.vm86_active) {
3835 vmx_get_segment(vcpu, &s, seg);
3836 return s.base;
3837 }
3838 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3839 }
3840
3841 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3842 {
3843 struct vcpu_vmx *vmx = to_vmx(vcpu);
3844
3845 if (unlikely(vmx->rmode.vm86_active))
3846 return 0;
3847 else {
3848 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3849 return VMX_AR_DPL(ar);
3850 }
3851 }
3852
3853 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3854 {
3855 u32 ar;
3856
3857 if (var->unusable || !var->present)
3858 ar = 1 << 16;
3859 else {
3860 ar = var->type & 15;
3861 ar |= (var->s & 1) << 4;
3862 ar |= (var->dpl & 3) << 5;
3863 ar |= (var->present & 1) << 7;
3864 ar |= (var->avl & 1) << 12;
3865 ar |= (var->l & 1) << 13;
3866 ar |= (var->db & 1) << 14;
3867 ar |= (var->g & 1) << 15;
3868 }
3869
3870 return ar;
3871 }
3872
3873 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3874 struct kvm_segment *var, int seg)
3875 {
3876 struct vcpu_vmx *vmx = to_vmx(vcpu);
3877 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3878
3879 vmx_segment_cache_clear(vmx);
3880
3881 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3882 vmx->rmode.segs[seg] = *var;
3883 if (seg == VCPU_SREG_TR)
3884 vmcs_write16(sf->selector, var->selector);
3885 else if (var->s)
3886 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3887 goto out;
3888 }
3889
3890 vmcs_writel(sf->base, var->base);
3891 vmcs_write32(sf->limit, var->limit);
3892 vmcs_write16(sf->selector, var->selector);
3893
3894 /*
3895 * Fix the "Accessed" bit in AR field of segment registers for older
3896 * qemu binaries.
3897 * IA32 arch specifies that at the time of processor reset the
3898 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3899 * is setting it to 0 in the userland code. This causes invalid guest
3900 * state vmexit when "unrestricted guest" mode is turned on.
3901 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3902 * tree. Newer qemu binaries with that qemu fix would not need this
3903 * kvm hack.
3904 */
3905 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3906 var->type |= 0x1; /* Accessed */
3907
3908 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3909
3910 out:
3911 vmx->emulation_required = emulation_required(vcpu);
3912 }
3913
3914 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3915 {
3916 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3917
3918 *db = (ar >> 14) & 1;
3919 *l = (ar >> 13) & 1;
3920 }
3921
3922 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3923 {
3924 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3925 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3926 }
3927
3928 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3929 {
3930 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3931 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3932 }
3933
3934 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3935 {
3936 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3937 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3938 }
3939
3940 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3941 {
3942 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3943 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3944 }
3945
3946 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3947 {
3948 struct kvm_segment var;
3949 u32 ar;
3950
3951 vmx_get_segment(vcpu, &var, seg);
3952 var.dpl = 0x3;
3953 if (seg == VCPU_SREG_CS)
3954 var.type = 0x3;
3955 ar = vmx_segment_access_rights(&var);
3956
3957 if (var.base != (var.selector << 4))
3958 return false;
3959 if (var.limit != 0xffff)
3960 return false;
3961 if (ar != 0xf3)
3962 return false;
3963
3964 return true;
3965 }
3966
3967 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3968 {
3969 struct kvm_segment cs;
3970 unsigned int cs_rpl;
3971
3972 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3973 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3974
3975 if (cs.unusable)
3976 return false;
3977 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3978 return false;
3979 if (!cs.s)
3980 return false;
3981 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3982 if (cs.dpl > cs_rpl)
3983 return false;
3984 } else {
3985 if (cs.dpl != cs_rpl)
3986 return false;
3987 }
3988 if (!cs.present)
3989 return false;
3990
3991 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3992 return true;
3993 }
3994
3995 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3996 {
3997 struct kvm_segment ss;
3998 unsigned int ss_rpl;
3999
4000 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4001 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4002
4003 if (ss.unusable)
4004 return true;
4005 if (ss.type != 3 && ss.type != 7)
4006 return false;
4007 if (!ss.s)
4008 return false;
4009 if (ss.dpl != ss_rpl) /* DPL != RPL */
4010 return false;
4011 if (!ss.present)
4012 return false;
4013
4014 return true;
4015 }
4016
4017 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4018 {
4019 struct kvm_segment var;
4020 unsigned int rpl;
4021
4022 vmx_get_segment(vcpu, &var, seg);
4023 rpl = var.selector & SEGMENT_RPL_MASK;
4024
4025 if (var.unusable)
4026 return true;
4027 if (!var.s)
4028 return false;
4029 if (!var.present)
4030 return false;
4031 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4032 if (var.dpl < rpl) /* DPL < RPL */
4033 return false;
4034 }
4035
4036 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4037 * rights flags
4038 */
4039 return true;
4040 }
4041
4042 static bool tr_valid(struct kvm_vcpu *vcpu)
4043 {
4044 struct kvm_segment tr;
4045
4046 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4047
4048 if (tr.unusable)
4049 return false;
4050 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4051 return false;
4052 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4053 return false;
4054 if (!tr.present)
4055 return false;
4056
4057 return true;
4058 }
4059
4060 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4061 {
4062 struct kvm_segment ldtr;
4063
4064 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4065
4066 if (ldtr.unusable)
4067 return true;
4068 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4069 return false;
4070 if (ldtr.type != 2)
4071 return false;
4072 if (!ldtr.present)
4073 return false;
4074
4075 return true;
4076 }
4077
4078 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4079 {
4080 struct kvm_segment cs, ss;
4081
4082 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4083 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4084
4085 return ((cs.selector & SEGMENT_RPL_MASK) ==
4086 (ss.selector & SEGMENT_RPL_MASK));
4087 }
4088
4089 /*
4090 * Check if guest state is valid. Returns true if valid, false if
4091 * not.
4092 * We assume that registers are always usable
4093 */
4094 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4095 {
4096 if (enable_unrestricted_guest)
4097 return true;
4098
4099 /* real mode guest state checks */
4100 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4101 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4102 return false;
4103 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4104 return false;
4105 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4106 return false;
4107 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4108 return false;
4109 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4110 return false;
4111 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4112 return false;
4113 } else {
4114 /* protected mode guest state checks */
4115 if (!cs_ss_rpl_check(vcpu))
4116 return false;
4117 if (!code_segment_valid(vcpu))
4118 return false;
4119 if (!stack_segment_valid(vcpu))
4120 return false;
4121 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4122 return false;
4123 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4124 return false;
4125 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4126 return false;
4127 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4128 return false;
4129 if (!tr_valid(vcpu))
4130 return false;
4131 if (!ldtr_valid(vcpu))
4132 return false;
4133 }
4134 /* TODO:
4135 * - Add checks on RIP
4136 * - Add checks on RFLAGS
4137 */
4138
4139 return true;
4140 }
4141
4142 static int init_rmode_tss(struct kvm *kvm)
4143 {
4144 gfn_t fn;
4145 u16 data = 0;
4146 int idx, r;
4147
4148 idx = srcu_read_lock(&kvm->srcu);
4149 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4150 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4151 if (r < 0)
4152 goto out;
4153 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4154 r = kvm_write_guest_page(kvm, fn++, &data,
4155 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4156 if (r < 0)
4157 goto out;
4158 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4159 if (r < 0)
4160 goto out;
4161 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4162 if (r < 0)
4163 goto out;
4164 data = ~0;
4165 r = kvm_write_guest_page(kvm, fn, &data,
4166 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4167 sizeof(u8));
4168 out:
4169 srcu_read_unlock(&kvm->srcu, idx);
4170 return r;
4171 }
4172
4173 static int init_rmode_identity_map(struct kvm *kvm)
4174 {
4175 int i, idx, r = 0;
4176 pfn_t identity_map_pfn;
4177 u32 tmp;
4178
4179 if (!enable_ept)
4180 return 0;
4181
4182 /* Protect kvm->arch.ept_identity_pagetable_done. */
4183 mutex_lock(&kvm->slots_lock);
4184
4185 if (likely(kvm->arch.ept_identity_pagetable_done))
4186 goto out2;
4187
4188 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4189
4190 r = alloc_identity_pagetable(kvm);
4191 if (r < 0)
4192 goto out2;
4193
4194 idx = srcu_read_lock(&kvm->srcu);
4195 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4196 if (r < 0)
4197 goto out;
4198 /* Set up identity-mapping pagetable for EPT in real mode */
4199 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4200 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4201 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4202 r = kvm_write_guest_page(kvm, identity_map_pfn,
4203 &tmp, i * sizeof(tmp), sizeof(tmp));
4204 if (r < 0)
4205 goto out;
4206 }
4207 kvm->arch.ept_identity_pagetable_done = true;
4208
4209 out:
4210 srcu_read_unlock(&kvm->srcu, idx);
4211
4212 out2:
4213 mutex_unlock(&kvm->slots_lock);
4214 return r;
4215 }
4216
4217 static void seg_setup(int seg)
4218 {
4219 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4220 unsigned int ar;
4221
4222 vmcs_write16(sf->selector, 0);
4223 vmcs_writel(sf->base, 0);
4224 vmcs_write32(sf->limit, 0xffff);
4225 ar = 0x93;
4226 if (seg == VCPU_SREG_CS)
4227 ar |= 0x08; /* code segment */
4228
4229 vmcs_write32(sf->ar_bytes, ar);
4230 }
4231
4232 static int alloc_apic_access_page(struct kvm *kvm)
4233 {
4234 struct page *page;
4235 int r = 0;
4236
4237 mutex_lock(&kvm->slots_lock);
4238 if (kvm->arch.apic_access_page_done)
4239 goto out;
4240 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4241 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4242 if (r)
4243 goto out;
4244
4245 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4246 if (is_error_page(page)) {
4247 r = -EFAULT;
4248 goto out;
4249 }
4250
4251 /*
4252 * Do not pin the page in memory, so that memory hot-unplug
4253 * is able to migrate it.
4254 */
4255 put_page(page);
4256 kvm->arch.apic_access_page_done = true;
4257 out:
4258 mutex_unlock(&kvm->slots_lock);
4259 return r;
4260 }
4261
4262 static int alloc_identity_pagetable(struct kvm *kvm)
4263 {
4264 /* Called with kvm->slots_lock held. */
4265
4266 int r = 0;
4267
4268 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4269
4270 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4271 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4272
4273 return r;
4274 }
4275
4276 static int allocate_vpid(void)
4277 {
4278 int vpid;
4279
4280 if (!enable_vpid)
4281 return 0;
4282 spin_lock(&vmx_vpid_lock);
4283 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4284 if (vpid < VMX_NR_VPIDS)
4285 __set_bit(vpid, vmx_vpid_bitmap);
4286 else
4287 vpid = 0;
4288 spin_unlock(&vmx_vpid_lock);
4289 return vpid;
4290 }
4291
4292 static void free_vpid(int vpid)
4293 {
4294 if (!enable_vpid || vpid == 0)
4295 return;
4296 spin_lock(&vmx_vpid_lock);
4297 __clear_bit(vpid, vmx_vpid_bitmap);
4298 spin_unlock(&vmx_vpid_lock);
4299 }
4300
4301 #define MSR_TYPE_R 1
4302 #define MSR_TYPE_W 2
4303 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4304 u32 msr, int type)
4305 {
4306 int f = sizeof(unsigned long);
4307
4308 if (!cpu_has_vmx_msr_bitmap())
4309 return;
4310
4311 /*
4312 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4313 * have the write-low and read-high bitmap offsets the wrong way round.
4314 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4315 */
4316 if (msr <= 0x1fff) {
4317 if (type & MSR_TYPE_R)
4318 /* read-low */
4319 __clear_bit(msr, msr_bitmap + 0x000 / f);
4320
4321 if (type & MSR_TYPE_W)
4322 /* write-low */
4323 __clear_bit(msr, msr_bitmap + 0x800 / f);
4324
4325 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4326 msr &= 0x1fff;
4327 if (type & MSR_TYPE_R)
4328 /* read-high */
4329 __clear_bit(msr, msr_bitmap + 0x400 / f);
4330
4331 if (type & MSR_TYPE_W)
4332 /* write-high */
4333 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4334
4335 }
4336 }
4337
4338 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4339 u32 msr, int type)
4340 {
4341 int f = sizeof(unsigned long);
4342
4343 if (!cpu_has_vmx_msr_bitmap())
4344 return;
4345
4346 /*
4347 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4348 * have the write-low and read-high bitmap offsets the wrong way round.
4349 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4350 */
4351 if (msr <= 0x1fff) {
4352 if (type & MSR_TYPE_R)
4353 /* read-low */
4354 __set_bit(msr, msr_bitmap + 0x000 / f);
4355
4356 if (type & MSR_TYPE_W)
4357 /* write-low */
4358 __set_bit(msr, msr_bitmap + 0x800 / f);
4359
4360 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4361 msr &= 0x1fff;
4362 if (type & MSR_TYPE_R)
4363 /* read-high */
4364 __set_bit(msr, msr_bitmap + 0x400 / f);
4365
4366 if (type & MSR_TYPE_W)
4367 /* write-high */
4368 __set_bit(msr, msr_bitmap + 0xc00 / f);
4369
4370 }
4371 }
4372
4373 /*
4374 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4375 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4376 */
4377 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4378 unsigned long *msr_bitmap_nested,
4379 u32 msr, int type)
4380 {
4381 int f = sizeof(unsigned long);
4382
4383 if (!cpu_has_vmx_msr_bitmap()) {
4384 WARN_ON(1);
4385 return;
4386 }
4387
4388 /*
4389 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4390 * have the write-low and read-high bitmap offsets the wrong way round.
4391 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4392 */
4393 if (msr <= 0x1fff) {
4394 if (type & MSR_TYPE_R &&
4395 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4396 /* read-low */
4397 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4398
4399 if (type & MSR_TYPE_W &&
4400 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4401 /* write-low */
4402 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4403
4404 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4405 msr &= 0x1fff;
4406 if (type & MSR_TYPE_R &&
4407 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4408 /* read-high */
4409 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4410
4411 if (type & MSR_TYPE_W &&
4412 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4413 /* write-high */
4414 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4415
4416 }
4417 }
4418
4419 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4420 {
4421 if (!longmode_only)
4422 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4423 msr, MSR_TYPE_R | MSR_TYPE_W);
4424 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4425 msr, MSR_TYPE_R | MSR_TYPE_W);
4426 }
4427
4428 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4429 {
4430 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4431 msr, MSR_TYPE_R);
4432 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4433 msr, MSR_TYPE_R);
4434 }
4435
4436 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4437 {
4438 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4439 msr, MSR_TYPE_R);
4440 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4441 msr, MSR_TYPE_R);
4442 }
4443
4444 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4445 {
4446 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4447 msr, MSR_TYPE_W);
4448 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4449 msr, MSR_TYPE_W);
4450 }
4451
4452 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4453 {
4454 return enable_apicv && lapic_in_kernel(vcpu);
4455 }
4456
4457 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4458 {
4459 struct vcpu_vmx *vmx = to_vmx(vcpu);
4460 int max_irr;
4461 void *vapic_page;
4462 u16 status;
4463
4464 if (vmx->nested.pi_desc &&
4465 vmx->nested.pi_pending) {
4466 vmx->nested.pi_pending = false;
4467 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4468 return 0;
4469
4470 max_irr = find_last_bit(
4471 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4472
4473 if (max_irr == 256)
4474 return 0;
4475
4476 vapic_page = kmap(vmx->nested.virtual_apic_page);
4477 if (!vapic_page) {
4478 WARN_ON(1);
4479 return -ENOMEM;
4480 }
4481 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4482 kunmap(vmx->nested.virtual_apic_page);
4483
4484 status = vmcs_read16(GUEST_INTR_STATUS);
4485 if ((u8)max_irr > ((u8)status & 0xff)) {
4486 status &= ~0xff;
4487 status |= (u8)max_irr;
4488 vmcs_write16(GUEST_INTR_STATUS, status);
4489 }
4490 }
4491 return 0;
4492 }
4493
4494 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4495 {
4496 #ifdef CONFIG_SMP
4497 if (vcpu->mode == IN_GUEST_MODE) {
4498 struct vcpu_vmx *vmx = to_vmx(vcpu);
4499
4500 /*
4501 * Currently, we don't support urgent interrupt,
4502 * all interrupts are recognized as non-urgent
4503 * interrupt, so we cannot post interrupts when
4504 * 'SN' is set.
4505 *
4506 * If the vcpu is in guest mode, it means it is
4507 * running instead of being scheduled out and
4508 * waiting in the run queue, and that's the only
4509 * case when 'SN' is set currently, warning if
4510 * 'SN' is set.
4511 */
4512 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4513
4514 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4515 POSTED_INTR_VECTOR);
4516 return true;
4517 }
4518 #endif
4519 return false;
4520 }
4521
4522 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4523 int vector)
4524 {
4525 struct vcpu_vmx *vmx = to_vmx(vcpu);
4526
4527 if (is_guest_mode(vcpu) &&
4528 vector == vmx->nested.posted_intr_nv) {
4529 /* the PIR and ON have been set by L1. */
4530 kvm_vcpu_trigger_posted_interrupt(vcpu);
4531 /*
4532 * If a posted intr is not recognized by hardware,
4533 * we will accomplish it in the next vmentry.
4534 */
4535 vmx->nested.pi_pending = true;
4536 kvm_make_request(KVM_REQ_EVENT, vcpu);
4537 return 0;
4538 }
4539 return -1;
4540 }
4541 /*
4542 * Send interrupt to vcpu via posted interrupt way.
4543 * 1. If target vcpu is running(non-root mode), send posted interrupt
4544 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4545 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4546 * interrupt from PIR in next vmentry.
4547 */
4548 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4549 {
4550 struct vcpu_vmx *vmx = to_vmx(vcpu);
4551 int r;
4552
4553 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4554 if (!r)
4555 return;
4556
4557 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4558 return;
4559
4560 r = pi_test_and_set_on(&vmx->pi_desc);
4561 kvm_make_request(KVM_REQ_EVENT, vcpu);
4562 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4563 kvm_vcpu_kick(vcpu);
4564 }
4565
4566 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4567 {
4568 struct vcpu_vmx *vmx = to_vmx(vcpu);
4569
4570 if (!pi_test_and_clear_on(&vmx->pi_desc))
4571 return;
4572
4573 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4574 }
4575
4576 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4577 {
4578 return;
4579 }
4580
4581 /*
4582 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4583 * will not change in the lifetime of the guest.
4584 * Note that host-state that does change is set elsewhere. E.g., host-state
4585 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4586 */
4587 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4588 {
4589 u32 low32, high32;
4590 unsigned long tmpl;
4591 struct desc_ptr dt;
4592 unsigned long cr4;
4593
4594 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4595 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4596
4597 /* Save the most likely value for this task's CR4 in the VMCS. */
4598 cr4 = cr4_read_shadow();
4599 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4600 vmx->host_state.vmcs_host_cr4 = cr4;
4601
4602 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4603 #ifdef CONFIG_X86_64
4604 /*
4605 * Load null selectors, so we can avoid reloading them in
4606 * __vmx_load_host_state(), in case userspace uses the null selectors
4607 * too (the expected case).
4608 */
4609 vmcs_write16(HOST_DS_SELECTOR, 0);
4610 vmcs_write16(HOST_ES_SELECTOR, 0);
4611 #else
4612 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4613 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4614 #endif
4615 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4616 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4617
4618 native_store_idt(&dt);
4619 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4620 vmx->host_idt_base = dt.address;
4621
4622 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4623
4624 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4625 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4626 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4627 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4628
4629 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4630 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4631 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4632 }
4633 }
4634
4635 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4636 {
4637 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4638 if (enable_ept)
4639 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4640 if (is_guest_mode(&vmx->vcpu))
4641 vmx->vcpu.arch.cr4_guest_owned_bits &=
4642 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4643 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4644 }
4645
4646 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4647 {
4648 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4649
4650 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4651 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4652 return pin_based_exec_ctrl;
4653 }
4654
4655 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4656 {
4657 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4658
4659 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4660 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4661
4662 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4663 exec_control &= ~CPU_BASED_TPR_SHADOW;
4664 #ifdef CONFIG_X86_64
4665 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4666 CPU_BASED_CR8_LOAD_EXITING;
4667 #endif
4668 }
4669 if (!enable_ept)
4670 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4671 CPU_BASED_CR3_LOAD_EXITING |
4672 CPU_BASED_INVLPG_EXITING;
4673 return exec_control;
4674 }
4675
4676 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4677 {
4678 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4679 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4680 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4681 if (vmx->vpid == 0)
4682 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4683 if (!enable_ept) {
4684 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4685 enable_unrestricted_guest = 0;
4686 /* Enable INVPCID for non-ept guests may cause performance regression. */
4687 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4688 }
4689 if (!enable_unrestricted_guest)
4690 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4691 if (!ple_gap)
4692 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4693 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4694 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4695 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4696 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4697 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4698 (handle_vmptrld).
4699 We can NOT enable shadow_vmcs here because we don't have yet
4700 a current VMCS12
4701 */
4702 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4703 /* PML is enabled/disabled in creating/destorying vcpu */
4704 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4705
4706 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4707 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4708
4709 return exec_control;
4710 }
4711
4712 static void ept_set_mmio_spte_mask(void)
4713 {
4714 /*
4715 * EPT Misconfigurations can be generated if the value of bits 2:0
4716 * of an EPT paging-structure entry is 110b (write/execute).
4717 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4718 * spte.
4719 */
4720 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4721 }
4722
4723 #define VMX_XSS_EXIT_BITMAP 0
4724 /*
4725 * Sets up the vmcs for emulated real mode.
4726 */
4727 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4728 {
4729 #ifdef CONFIG_X86_64
4730 unsigned long a;
4731 #endif
4732 int i;
4733
4734 /* I/O */
4735 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4736 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4737
4738 if (enable_shadow_vmcs) {
4739 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4740 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4741 }
4742 if (cpu_has_vmx_msr_bitmap())
4743 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4744
4745 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4746
4747 /* Control */
4748 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4749
4750 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4751
4752 if (cpu_has_secondary_exec_ctrls())
4753 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4754 vmx_secondary_exec_control(vmx));
4755
4756 if (vmx_cpu_uses_apicv(&vmx->vcpu)) {
4757 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4758 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4759 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4760 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4761
4762 vmcs_write16(GUEST_INTR_STATUS, 0);
4763
4764 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4765 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4766 }
4767
4768 if (ple_gap) {
4769 vmcs_write32(PLE_GAP, ple_gap);
4770 vmx->ple_window = ple_window;
4771 vmx->ple_window_dirty = true;
4772 }
4773
4774 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4775 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4776 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4777
4778 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4779 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4780 vmx_set_constant_host_state(vmx);
4781 #ifdef CONFIG_X86_64
4782 rdmsrl(MSR_FS_BASE, a);
4783 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4784 rdmsrl(MSR_GS_BASE, a);
4785 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4786 #else
4787 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4788 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4789 #endif
4790
4791 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4792 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4793 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4794 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4795 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4796
4797 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4798 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4799
4800 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4801 u32 index = vmx_msr_index[i];
4802 u32 data_low, data_high;
4803 int j = vmx->nmsrs;
4804
4805 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4806 continue;
4807 if (wrmsr_safe(index, data_low, data_high) < 0)
4808 continue;
4809 vmx->guest_msrs[j].index = i;
4810 vmx->guest_msrs[j].data = 0;
4811 vmx->guest_msrs[j].mask = -1ull;
4812 ++vmx->nmsrs;
4813 }
4814
4815
4816 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4817
4818 /* 22.2.1, 20.8.1 */
4819 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4820
4821 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4822 set_cr4_guest_host_mask(vmx);
4823
4824 if (vmx_xsaves_supported())
4825 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4826
4827 return 0;
4828 }
4829
4830 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4831 {
4832 struct vcpu_vmx *vmx = to_vmx(vcpu);
4833 struct msr_data apic_base_msr;
4834 u64 cr0;
4835
4836 vmx->rmode.vm86_active = 0;
4837
4838 vmx->soft_vnmi_blocked = 0;
4839
4840 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4841 kvm_set_cr8(vcpu, 0);
4842
4843 if (!init_event) {
4844 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4845 MSR_IA32_APICBASE_ENABLE;
4846 if (kvm_vcpu_is_reset_bsp(vcpu))
4847 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4848 apic_base_msr.host_initiated = true;
4849 kvm_set_apic_base(vcpu, &apic_base_msr);
4850 }
4851
4852 vmx_segment_cache_clear(vmx);
4853
4854 seg_setup(VCPU_SREG_CS);
4855 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4856 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4857
4858 seg_setup(VCPU_SREG_DS);
4859 seg_setup(VCPU_SREG_ES);
4860 seg_setup(VCPU_SREG_FS);
4861 seg_setup(VCPU_SREG_GS);
4862 seg_setup(VCPU_SREG_SS);
4863
4864 vmcs_write16(GUEST_TR_SELECTOR, 0);
4865 vmcs_writel(GUEST_TR_BASE, 0);
4866 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4867 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4868
4869 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4870 vmcs_writel(GUEST_LDTR_BASE, 0);
4871 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4872 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4873
4874 if (!init_event) {
4875 vmcs_write32(GUEST_SYSENTER_CS, 0);
4876 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4877 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4878 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4879 }
4880
4881 vmcs_writel(GUEST_RFLAGS, 0x02);
4882 kvm_rip_write(vcpu, 0xfff0);
4883
4884 vmcs_writel(GUEST_GDTR_BASE, 0);
4885 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4886
4887 vmcs_writel(GUEST_IDTR_BASE, 0);
4888 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4889
4890 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4891 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4892 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4893
4894 setup_msrs(vmx);
4895
4896 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4897
4898 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4899 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4900 if (cpu_need_tpr_shadow(vcpu))
4901 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4902 __pa(vcpu->arch.apic->regs));
4903 vmcs_write32(TPR_THRESHOLD, 0);
4904 }
4905
4906 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4907
4908 if (vmx_cpu_uses_apicv(vcpu))
4909 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4910
4911 if (vmx->vpid != 0)
4912 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4913
4914 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4915 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4916 vmx->vcpu.arch.cr0 = cr0;
4917 vmx_set_cr4(vcpu, 0);
4918 if (!init_event)
4919 vmx_set_efer(vcpu, 0);
4920 vmx_fpu_activate(vcpu);
4921 update_exception_bitmap(vcpu);
4922
4923 vpid_sync_context(vmx->vpid);
4924 }
4925
4926 /*
4927 * In nested virtualization, check if L1 asked to exit on external interrupts.
4928 * For most existing hypervisors, this will always return true.
4929 */
4930 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4931 {
4932 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4933 PIN_BASED_EXT_INTR_MASK;
4934 }
4935
4936 /*
4937 * In nested virtualization, check if L1 has set
4938 * VM_EXIT_ACK_INTR_ON_EXIT
4939 */
4940 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4941 {
4942 return get_vmcs12(vcpu)->vm_exit_controls &
4943 VM_EXIT_ACK_INTR_ON_EXIT;
4944 }
4945
4946 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4947 {
4948 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4949 PIN_BASED_NMI_EXITING;
4950 }
4951
4952 static void enable_irq_window(struct kvm_vcpu *vcpu)
4953 {
4954 u32 cpu_based_vm_exec_control;
4955
4956 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4957 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4958 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4959 }
4960
4961 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4962 {
4963 u32 cpu_based_vm_exec_control;
4964
4965 if (!cpu_has_virtual_nmis() ||
4966 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4967 enable_irq_window(vcpu);
4968 return;
4969 }
4970
4971 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4972 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4973 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4974 }
4975
4976 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4977 {
4978 struct vcpu_vmx *vmx = to_vmx(vcpu);
4979 uint32_t intr;
4980 int irq = vcpu->arch.interrupt.nr;
4981
4982 trace_kvm_inj_virq(irq);
4983
4984 ++vcpu->stat.irq_injections;
4985 if (vmx->rmode.vm86_active) {
4986 int inc_eip = 0;
4987 if (vcpu->arch.interrupt.soft)
4988 inc_eip = vcpu->arch.event_exit_inst_len;
4989 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4990 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4991 return;
4992 }
4993 intr = irq | INTR_INFO_VALID_MASK;
4994 if (vcpu->arch.interrupt.soft) {
4995 intr |= INTR_TYPE_SOFT_INTR;
4996 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4997 vmx->vcpu.arch.event_exit_inst_len);
4998 } else
4999 intr |= INTR_TYPE_EXT_INTR;
5000 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5001 }
5002
5003 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5004 {
5005 struct vcpu_vmx *vmx = to_vmx(vcpu);
5006
5007 if (is_guest_mode(vcpu))
5008 return;
5009
5010 if (!cpu_has_virtual_nmis()) {
5011 /*
5012 * Tracking the NMI-blocked state in software is built upon
5013 * finding the next open IRQ window. This, in turn, depends on
5014 * well-behaving guests: They have to keep IRQs disabled at
5015 * least as long as the NMI handler runs. Otherwise we may
5016 * cause NMI nesting, maybe breaking the guest. But as this is
5017 * highly unlikely, we can live with the residual risk.
5018 */
5019 vmx->soft_vnmi_blocked = 1;
5020 vmx->vnmi_blocked_time = 0;
5021 }
5022
5023 ++vcpu->stat.nmi_injections;
5024 vmx->nmi_known_unmasked = false;
5025 if (vmx->rmode.vm86_active) {
5026 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5027 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5028 return;
5029 }
5030 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5031 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5032 }
5033
5034 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5035 {
5036 if (!cpu_has_virtual_nmis())
5037 return to_vmx(vcpu)->soft_vnmi_blocked;
5038 if (to_vmx(vcpu)->nmi_known_unmasked)
5039 return false;
5040 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5041 }
5042
5043 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5044 {
5045 struct vcpu_vmx *vmx = to_vmx(vcpu);
5046
5047 if (!cpu_has_virtual_nmis()) {
5048 if (vmx->soft_vnmi_blocked != masked) {
5049 vmx->soft_vnmi_blocked = masked;
5050 vmx->vnmi_blocked_time = 0;
5051 }
5052 } else {
5053 vmx->nmi_known_unmasked = !masked;
5054 if (masked)
5055 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5056 GUEST_INTR_STATE_NMI);
5057 else
5058 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5059 GUEST_INTR_STATE_NMI);
5060 }
5061 }
5062
5063 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5064 {
5065 if (to_vmx(vcpu)->nested.nested_run_pending)
5066 return 0;
5067
5068 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5069 return 0;
5070
5071 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5072 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5073 | GUEST_INTR_STATE_NMI));
5074 }
5075
5076 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5077 {
5078 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5079 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5080 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5081 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5082 }
5083
5084 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5085 {
5086 int ret;
5087
5088 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5089 PAGE_SIZE * 3);
5090 if (ret)
5091 return ret;
5092 kvm->arch.tss_addr = addr;
5093 return init_rmode_tss(kvm);
5094 }
5095
5096 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5097 {
5098 switch (vec) {
5099 case BP_VECTOR:
5100 /*
5101 * Update instruction length as we may reinject the exception
5102 * from user space while in guest debugging mode.
5103 */
5104 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5105 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5106 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5107 return false;
5108 /* fall through */
5109 case DB_VECTOR:
5110 if (vcpu->guest_debug &
5111 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5112 return false;
5113 /* fall through */
5114 case DE_VECTOR:
5115 case OF_VECTOR:
5116 case BR_VECTOR:
5117 case UD_VECTOR:
5118 case DF_VECTOR:
5119 case SS_VECTOR:
5120 case GP_VECTOR:
5121 case MF_VECTOR:
5122 return true;
5123 break;
5124 }
5125 return false;
5126 }
5127
5128 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5129 int vec, u32 err_code)
5130 {
5131 /*
5132 * Instruction with address size override prefix opcode 0x67
5133 * Cause the #SS fault with 0 error code in VM86 mode.
5134 */
5135 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5136 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5137 if (vcpu->arch.halt_request) {
5138 vcpu->arch.halt_request = 0;
5139 return kvm_vcpu_halt(vcpu);
5140 }
5141 return 1;
5142 }
5143 return 0;
5144 }
5145
5146 /*
5147 * Forward all other exceptions that are valid in real mode.
5148 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5149 * the required debugging infrastructure rework.
5150 */
5151 kvm_queue_exception(vcpu, vec);
5152 return 1;
5153 }
5154
5155 /*
5156 * Trigger machine check on the host. We assume all the MSRs are already set up
5157 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5158 * We pass a fake environment to the machine check handler because we want
5159 * the guest to be always treated like user space, no matter what context
5160 * it used internally.
5161 */
5162 static void kvm_machine_check(void)
5163 {
5164 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5165 struct pt_regs regs = {
5166 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5167 .flags = X86_EFLAGS_IF,
5168 };
5169
5170 do_machine_check(&regs, 0);
5171 #endif
5172 }
5173
5174 static int handle_machine_check(struct kvm_vcpu *vcpu)
5175 {
5176 /* already handled by vcpu_run */
5177 return 1;
5178 }
5179
5180 static int handle_exception(struct kvm_vcpu *vcpu)
5181 {
5182 struct vcpu_vmx *vmx = to_vmx(vcpu);
5183 struct kvm_run *kvm_run = vcpu->run;
5184 u32 intr_info, ex_no, error_code;
5185 unsigned long cr2, rip, dr6;
5186 u32 vect_info;
5187 enum emulation_result er;
5188
5189 vect_info = vmx->idt_vectoring_info;
5190 intr_info = vmx->exit_intr_info;
5191
5192 if (is_machine_check(intr_info))
5193 return handle_machine_check(vcpu);
5194
5195 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5196 return 1; /* already handled by vmx_vcpu_run() */
5197
5198 if (is_no_device(intr_info)) {
5199 vmx_fpu_activate(vcpu);
5200 return 1;
5201 }
5202
5203 if (is_invalid_opcode(intr_info)) {
5204 if (is_guest_mode(vcpu)) {
5205 kvm_queue_exception(vcpu, UD_VECTOR);
5206 return 1;
5207 }
5208 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5209 if (er != EMULATE_DONE)
5210 kvm_queue_exception(vcpu, UD_VECTOR);
5211 return 1;
5212 }
5213
5214 error_code = 0;
5215 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5216 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5217
5218 /*
5219 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5220 * MMIO, it is better to report an internal error.
5221 * See the comments in vmx_handle_exit.
5222 */
5223 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5224 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5225 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5226 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5227 vcpu->run->internal.ndata = 3;
5228 vcpu->run->internal.data[0] = vect_info;
5229 vcpu->run->internal.data[1] = intr_info;
5230 vcpu->run->internal.data[2] = error_code;
5231 return 0;
5232 }
5233
5234 if (is_page_fault(intr_info)) {
5235 /* EPT won't cause page fault directly */
5236 BUG_ON(enable_ept);
5237 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5238 trace_kvm_page_fault(cr2, error_code);
5239
5240 if (kvm_event_needs_reinjection(vcpu))
5241 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5242 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5243 }
5244
5245 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5246
5247 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5248 return handle_rmode_exception(vcpu, ex_no, error_code);
5249
5250 switch (ex_no) {
5251 case DB_VECTOR:
5252 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5253 if (!(vcpu->guest_debug &
5254 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5255 vcpu->arch.dr6 &= ~15;
5256 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5257 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5258 skip_emulated_instruction(vcpu);
5259
5260 kvm_queue_exception(vcpu, DB_VECTOR);
5261 return 1;
5262 }
5263 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5264 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5265 /* fall through */
5266 case BP_VECTOR:
5267 /*
5268 * Update instruction length as we may reinject #BP from
5269 * user space while in guest debugging mode. Reading it for
5270 * #DB as well causes no harm, it is not used in that case.
5271 */
5272 vmx->vcpu.arch.event_exit_inst_len =
5273 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5274 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5275 rip = kvm_rip_read(vcpu);
5276 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5277 kvm_run->debug.arch.exception = ex_no;
5278 break;
5279 default:
5280 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5281 kvm_run->ex.exception = ex_no;
5282 kvm_run->ex.error_code = error_code;
5283 break;
5284 }
5285 return 0;
5286 }
5287
5288 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5289 {
5290 ++vcpu->stat.irq_exits;
5291 return 1;
5292 }
5293
5294 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5295 {
5296 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5297 return 0;
5298 }
5299
5300 static int handle_io(struct kvm_vcpu *vcpu)
5301 {
5302 unsigned long exit_qualification;
5303 int size, in, string;
5304 unsigned port;
5305
5306 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5307 string = (exit_qualification & 16) != 0;
5308 in = (exit_qualification & 8) != 0;
5309
5310 ++vcpu->stat.io_exits;
5311
5312 if (string || in)
5313 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5314
5315 port = exit_qualification >> 16;
5316 size = (exit_qualification & 7) + 1;
5317 skip_emulated_instruction(vcpu);
5318
5319 return kvm_fast_pio_out(vcpu, size, port);
5320 }
5321
5322 static void
5323 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5324 {
5325 /*
5326 * Patch in the VMCALL instruction:
5327 */
5328 hypercall[0] = 0x0f;
5329 hypercall[1] = 0x01;
5330 hypercall[2] = 0xc1;
5331 }
5332
5333 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5334 {
5335 unsigned long always_on = VMXON_CR0_ALWAYSON;
5336 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5337
5338 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5339 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5340 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5341 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5342 return (val & always_on) == always_on;
5343 }
5344
5345 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5346 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5347 {
5348 if (is_guest_mode(vcpu)) {
5349 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5350 unsigned long orig_val = val;
5351
5352 /*
5353 * We get here when L2 changed cr0 in a way that did not change
5354 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5355 * but did change L0 shadowed bits. So we first calculate the
5356 * effective cr0 value that L1 would like to write into the
5357 * hardware. It consists of the L2-owned bits from the new
5358 * value combined with the L1-owned bits from L1's guest_cr0.
5359 */
5360 val = (val & ~vmcs12->cr0_guest_host_mask) |
5361 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5362
5363 if (!nested_cr0_valid(vcpu, val))
5364 return 1;
5365
5366 if (kvm_set_cr0(vcpu, val))
5367 return 1;
5368 vmcs_writel(CR0_READ_SHADOW, orig_val);
5369 return 0;
5370 } else {
5371 if (to_vmx(vcpu)->nested.vmxon &&
5372 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5373 return 1;
5374 return kvm_set_cr0(vcpu, val);
5375 }
5376 }
5377
5378 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5379 {
5380 if (is_guest_mode(vcpu)) {
5381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5382 unsigned long orig_val = val;
5383
5384 /* analogously to handle_set_cr0 */
5385 val = (val & ~vmcs12->cr4_guest_host_mask) |
5386 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5387 if (kvm_set_cr4(vcpu, val))
5388 return 1;
5389 vmcs_writel(CR4_READ_SHADOW, orig_val);
5390 return 0;
5391 } else
5392 return kvm_set_cr4(vcpu, val);
5393 }
5394
5395 /* called to set cr0 as approriate for clts instruction exit. */
5396 static void handle_clts(struct kvm_vcpu *vcpu)
5397 {
5398 if (is_guest_mode(vcpu)) {
5399 /*
5400 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5401 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5402 * just pretend it's off (also in arch.cr0 for fpu_activate).
5403 */
5404 vmcs_writel(CR0_READ_SHADOW,
5405 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5406 vcpu->arch.cr0 &= ~X86_CR0_TS;
5407 } else
5408 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5409 }
5410
5411 static int handle_cr(struct kvm_vcpu *vcpu)
5412 {
5413 unsigned long exit_qualification, val;
5414 int cr;
5415 int reg;
5416 int err;
5417
5418 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5419 cr = exit_qualification & 15;
5420 reg = (exit_qualification >> 8) & 15;
5421 switch ((exit_qualification >> 4) & 3) {
5422 case 0: /* mov to cr */
5423 val = kvm_register_readl(vcpu, reg);
5424 trace_kvm_cr_write(cr, val);
5425 switch (cr) {
5426 case 0:
5427 err = handle_set_cr0(vcpu, val);
5428 kvm_complete_insn_gp(vcpu, err);
5429 return 1;
5430 case 3:
5431 err = kvm_set_cr3(vcpu, val);
5432 kvm_complete_insn_gp(vcpu, err);
5433 return 1;
5434 case 4:
5435 err = handle_set_cr4(vcpu, val);
5436 kvm_complete_insn_gp(vcpu, err);
5437 return 1;
5438 case 8: {
5439 u8 cr8_prev = kvm_get_cr8(vcpu);
5440 u8 cr8 = (u8)val;
5441 err = kvm_set_cr8(vcpu, cr8);
5442 kvm_complete_insn_gp(vcpu, err);
5443 if (lapic_in_kernel(vcpu))
5444 return 1;
5445 if (cr8_prev <= cr8)
5446 return 1;
5447 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5448 return 0;
5449 }
5450 }
5451 break;
5452 case 2: /* clts */
5453 handle_clts(vcpu);
5454 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5455 skip_emulated_instruction(vcpu);
5456 vmx_fpu_activate(vcpu);
5457 return 1;
5458 case 1: /*mov from cr*/
5459 switch (cr) {
5460 case 3:
5461 val = kvm_read_cr3(vcpu);
5462 kvm_register_write(vcpu, reg, val);
5463 trace_kvm_cr_read(cr, val);
5464 skip_emulated_instruction(vcpu);
5465 return 1;
5466 case 8:
5467 val = kvm_get_cr8(vcpu);
5468 kvm_register_write(vcpu, reg, val);
5469 trace_kvm_cr_read(cr, val);
5470 skip_emulated_instruction(vcpu);
5471 return 1;
5472 }
5473 break;
5474 case 3: /* lmsw */
5475 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5476 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5477 kvm_lmsw(vcpu, val);
5478
5479 skip_emulated_instruction(vcpu);
5480 return 1;
5481 default:
5482 break;
5483 }
5484 vcpu->run->exit_reason = 0;
5485 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5486 (int)(exit_qualification >> 4) & 3, cr);
5487 return 0;
5488 }
5489
5490 static int handle_dr(struct kvm_vcpu *vcpu)
5491 {
5492 unsigned long exit_qualification;
5493 int dr, dr7, reg;
5494
5495 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5496 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5497
5498 /* First, if DR does not exist, trigger UD */
5499 if (!kvm_require_dr(vcpu, dr))
5500 return 1;
5501
5502 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5503 if (!kvm_require_cpl(vcpu, 0))
5504 return 1;
5505 dr7 = vmcs_readl(GUEST_DR7);
5506 if (dr7 & DR7_GD) {
5507 /*
5508 * As the vm-exit takes precedence over the debug trap, we
5509 * need to emulate the latter, either for the host or the
5510 * guest debugging itself.
5511 */
5512 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5513 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5514 vcpu->run->debug.arch.dr7 = dr7;
5515 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5516 vcpu->run->debug.arch.exception = DB_VECTOR;
5517 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5518 return 0;
5519 } else {
5520 vcpu->arch.dr6 &= ~15;
5521 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5522 kvm_queue_exception(vcpu, DB_VECTOR);
5523 return 1;
5524 }
5525 }
5526
5527 if (vcpu->guest_debug == 0) {
5528 u32 cpu_based_vm_exec_control;
5529
5530 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5531 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5532 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5533
5534 /*
5535 * No more DR vmexits; force a reload of the debug registers
5536 * and reenter on this instruction. The next vmexit will
5537 * retrieve the full state of the debug registers.
5538 */
5539 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5540 return 1;
5541 }
5542
5543 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5544 if (exit_qualification & TYPE_MOV_FROM_DR) {
5545 unsigned long val;
5546
5547 if (kvm_get_dr(vcpu, dr, &val))
5548 return 1;
5549 kvm_register_write(vcpu, reg, val);
5550 } else
5551 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5552 return 1;
5553
5554 skip_emulated_instruction(vcpu);
5555 return 1;
5556 }
5557
5558 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5559 {
5560 return vcpu->arch.dr6;
5561 }
5562
5563 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5564 {
5565 }
5566
5567 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5568 {
5569 u32 cpu_based_vm_exec_control;
5570
5571 get_debugreg(vcpu->arch.db[0], 0);
5572 get_debugreg(vcpu->arch.db[1], 1);
5573 get_debugreg(vcpu->arch.db[2], 2);
5574 get_debugreg(vcpu->arch.db[3], 3);
5575 get_debugreg(vcpu->arch.dr6, 6);
5576 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5577
5578 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5579
5580 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5581 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5582 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5583 }
5584
5585 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5586 {
5587 vmcs_writel(GUEST_DR7, val);
5588 }
5589
5590 static int handle_cpuid(struct kvm_vcpu *vcpu)
5591 {
5592 kvm_emulate_cpuid(vcpu);
5593 return 1;
5594 }
5595
5596 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5597 {
5598 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5599 struct msr_data msr_info;
5600
5601 msr_info.index = ecx;
5602 msr_info.host_initiated = false;
5603 if (vmx_get_msr(vcpu, &msr_info)) {
5604 trace_kvm_msr_read_ex(ecx);
5605 kvm_inject_gp(vcpu, 0);
5606 return 1;
5607 }
5608
5609 trace_kvm_msr_read(ecx, msr_info.data);
5610
5611 /* FIXME: handling of bits 32:63 of rax, rdx */
5612 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5613 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5614 skip_emulated_instruction(vcpu);
5615 return 1;
5616 }
5617
5618 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5619 {
5620 struct msr_data msr;
5621 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5622 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5623 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5624
5625 msr.data = data;
5626 msr.index = ecx;
5627 msr.host_initiated = false;
5628 if (kvm_set_msr(vcpu, &msr) != 0) {
5629 trace_kvm_msr_write_ex(ecx, data);
5630 kvm_inject_gp(vcpu, 0);
5631 return 1;
5632 }
5633
5634 trace_kvm_msr_write(ecx, data);
5635 skip_emulated_instruction(vcpu);
5636 return 1;
5637 }
5638
5639 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5640 {
5641 kvm_make_request(KVM_REQ_EVENT, vcpu);
5642 return 1;
5643 }
5644
5645 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5646 {
5647 u32 cpu_based_vm_exec_control;
5648
5649 /* clear pending irq */
5650 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5651 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5652 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5653
5654 kvm_make_request(KVM_REQ_EVENT, vcpu);
5655
5656 ++vcpu->stat.irq_window_exits;
5657 return 1;
5658 }
5659
5660 static int handle_halt(struct kvm_vcpu *vcpu)
5661 {
5662 return kvm_emulate_halt(vcpu);
5663 }
5664
5665 static int handle_vmcall(struct kvm_vcpu *vcpu)
5666 {
5667 kvm_emulate_hypercall(vcpu);
5668 return 1;
5669 }
5670
5671 static int handle_invd(struct kvm_vcpu *vcpu)
5672 {
5673 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5674 }
5675
5676 static int handle_invlpg(struct kvm_vcpu *vcpu)
5677 {
5678 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5679
5680 kvm_mmu_invlpg(vcpu, exit_qualification);
5681 skip_emulated_instruction(vcpu);
5682 return 1;
5683 }
5684
5685 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5686 {
5687 int err;
5688
5689 err = kvm_rdpmc(vcpu);
5690 kvm_complete_insn_gp(vcpu, err);
5691
5692 return 1;
5693 }
5694
5695 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5696 {
5697 kvm_emulate_wbinvd(vcpu);
5698 return 1;
5699 }
5700
5701 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5702 {
5703 u64 new_bv = kvm_read_edx_eax(vcpu);
5704 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5705
5706 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5707 skip_emulated_instruction(vcpu);
5708 return 1;
5709 }
5710
5711 static int handle_xsaves(struct kvm_vcpu *vcpu)
5712 {
5713 skip_emulated_instruction(vcpu);
5714 WARN(1, "this should never happen\n");
5715 return 1;
5716 }
5717
5718 static int handle_xrstors(struct kvm_vcpu *vcpu)
5719 {
5720 skip_emulated_instruction(vcpu);
5721 WARN(1, "this should never happen\n");
5722 return 1;
5723 }
5724
5725 static int handle_apic_access(struct kvm_vcpu *vcpu)
5726 {
5727 if (likely(fasteoi)) {
5728 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5729 int access_type, offset;
5730
5731 access_type = exit_qualification & APIC_ACCESS_TYPE;
5732 offset = exit_qualification & APIC_ACCESS_OFFSET;
5733 /*
5734 * Sane guest uses MOV to write EOI, with written value
5735 * not cared. So make a short-circuit here by avoiding
5736 * heavy instruction emulation.
5737 */
5738 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5739 (offset == APIC_EOI)) {
5740 kvm_lapic_set_eoi(vcpu);
5741 skip_emulated_instruction(vcpu);
5742 return 1;
5743 }
5744 }
5745 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5746 }
5747
5748 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5749 {
5750 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5751 int vector = exit_qualification & 0xff;
5752
5753 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5754 kvm_apic_set_eoi_accelerated(vcpu, vector);
5755 return 1;
5756 }
5757
5758 static int handle_apic_write(struct kvm_vcpu *vcpu)
5759 {
5760 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5761 u32 offset = exit_qualification & 0xfff;
5762
5763 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5764 kvm_apic_write_nodecode(vcpu, offset);
5765 return 1;
5766 }
5767
5768 static int handle_task_switch(struct kvm_vcpu *vcpu)
5769 {
5770 struct vcpu_vmx *vmx = to_vmx(vcpu);
5771 unsigned long exit_qualification;
5772 bool has_error_code = false;
5773 u32 error_code = 0;
5774 u16 tss_selector;
5775 int reason, type, idt_v, idt_index;
5776
5777 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5778 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5779 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5780
5781 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5782
5783 reason = (u32)exit_qualification >> 30;
5784 if (reason == TASK_SWITCH_GATE && idt_v) {
5785 switch (type) {
5786 case INTR_TYPE_NMI_INTR:
5787 vcpu->arch.nmi_injected = false;
5788 vmx_set_nmi_mask(vcpu, true);
5789 break;
5790 case INTR_TYPE_EXT_INTR:
5791 case INTR_TYPE_SOFT_INTR:
5792 kvm_clear_interrupt_queue(vcpu);
5793 break;
5794 case INTR_TYPE_HARD_EXCEPTION:
5795 if (vmx->idt_vectoring_info &
5796 VECTORING_INFO_DELIVER_CODE_MASK) {
5797 has_error_code = true;
5798 error_code =
5799 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5800 }
5801 /* fall through */
5802 case INTR_TYPE_SOFT_EXCEPTION:
5803 kvm_clear_exception_queue(vcpu);
5804 break;
5805 default:
5806 break;
5807 }
5808 }
5809 tss_selector = exit_qualification;
5810
5811 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5812 type != INTR_TYPE_EXT_INTR &&
5813 type != INTR_TYPE_NMI_INTR))
5814 skip_emulated_instruction(vcpu);
5815
5816 if (kvm_task_switch(vcpu, tss_selector,
5817 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5818 has_error_code, error_code) == EMULATE_FAIL) {
5819 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5820 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5821 vcpu->run->internal.ndata = 0;
5822 return 0;
5823 }
5824
5825 /*
5826 * TODO: What about debug traps on tss switch?
5827 * Are we supposed to inject them and update dr6?
5828 */
5829
5830 return 1;
5831 }
5832
5833 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5834 {
5835 unsigned long exit_qualification;
5836 gpa_t gpa;
5837 u32 error_code;
5838 int gla_validity;
5839
5840 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5841
5842 gla_validity = (exit_qualification >> 7) & 0x3;
5843 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5844 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5845 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5846 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5847 vmcs_readl(GUEST_LINEAR_ADDRESS));
5848 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5849 (long unsigned int)exit_qualification);
5850 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5851 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5852 return 0;
5853 }
5854
5855 /*
5856 * EPT violation happened while executing iret from NMI,
5857 * "blocked by NMI" bit has to be set before next VM entry.
5858 * There are errata that may cause this bit to not be set:
5859 * AAK134, BY25.
5860 */
5861 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5862 cpu_has_virtual_nmis() &&
5863 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5864 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5865
5866 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5867 trace_kvm_page_fault(gpa, exit_qualification);
5868
5869 /* It is a write fault? */
5870 error_code = exit_qualification & PFERR_WRITE_MASK;
5871 /* It is a fetch fault? */
5872 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5873 /* ept page table is present? */
5874 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5875
5876 vcpu->arch.exit_qualification = exit_qualification;
5877
5878 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5879 }
5880
5881 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5882 {
5883 int ret;
5884 gpa_t gpa;
5885
5886 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5887 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5888 skip_emulated_instruction(vcpu);
5889 trace_kvm_fast_mmio(gpa);
5890 return 1;
5891 }
5892
5893 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5894 if (likely(ret == RET_MMIO_PF_EMULATE))
5895 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5896 EMULATE_DONE;
5897
5898 if (unlikely(ret == RET_MMIO_PF_INVALID))
5899 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5900
5901 if (unlikely(ret == RET_MMIO_PF_RETRY))
5902 return 1;
5903
5904 /* It is the real ept misconfig */
5905 WARN_ON(1);
5906
5907 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5908 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5909
5910 return 0;
5911 }
5912
5913 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5914 {
5915 u32 cpu_based_vm_exec_control;
5916
5917 /* clear pending NMI */
5918 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5919 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5920 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5921 ++vcpu->stat.nmi_window_exits;
5922 kvm_make_request(KVM_REQ_EVENT, vcpu);
5923
5924 return 1;
5925 }
5926
5927 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5928 {
5929 struct vcpu_vmx *vmx = to_vmx(vcpu);
5930 enum emulation_result err = EMULATE_DONE;
5931 int ret = 1;
5932 u32 cpu_exec_ctrl;
5933 bool intr_window_requested;
5934 unsigned count = 130;
5935
5936 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5937 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5938
5939 while (vmx->emulation_required && count-- != 0) {
5940 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5941 return handle_interrupt_window(&vmx->vcpu);
5942
5943 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5944 return 1;
5945
5946 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5947
5948 if (err == EMULATE_USER_EXIT) {
5949 ++vcpu->stat.mmio_exits;
5950 ret = 0;
5951 goto out;
5952 }
5953
5954 if (err != EMULATE_DONE) {
5955 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5956 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5957 vcpu->run->internal.ndata = 0;
5958 return 0;
5959 }
5960
5961 if (vcpu->arch.halt_request) {
5962 vcpu->arch.halt_request = 0;
5963 ret = kvm_vcpu_halt(vcpu);
5964 goto out;
5965 }
5966
5967 if (signal_pending(current))
5968 goto out;
5969 if (need_resched())
5970 schedule();
5971 }
5972
5973 out:
5974 return ret;
5975 }
5976
5977 static int __grow_ple_window(int val)
5978 {
5979 if (ple_window_grow < 1)
5980 return ple_window;
5981
5982 val = min(val, ple_window_actual_max);
5983
5984 if (ple_window_grow < ple_window)
5985 val *= ple_window_grow;
5986 else
5987 val += ple_window_grow;
5988
5989 return val;
5990 }
5991
5992 static int __shrink_ple_window(int val, int modifier, int minimum)
5993 {
5994 if (modifier < 1)
5995 return ple_window;
5996
5997 if (modifier < ple_window)
5998 val /= modifier;
5999 else
6000 val -= modifier;
6001
6002 return max(val, minimum);
6003 }
6004
6005 static void grow_ple_window(struct kvm_vcpu *vcpu)
6006 {
6007 struct vcpu_vmx *vmx = to_vmx(vcpu);
6008 int old = vmx->ple_window;
6009
6010 vmx->ple_window = __grow_ple_window(old);
6011
6012 if (vmx->ple_window != old)
6013 vmx->ple_window_dirty = true;
6014
6015 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6016 }
6017
6018 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6019 {
6020 struct vcpu_vmx *vmx = to_vmx(vcpu);
6021 int old = vmx->ple_window;
6022
6023 vmx->ple_window = __shrink_ple_window(old,
6024 ple_window_shrink, ple_window);
6025
6026 if (vmx->ple_window != old)
6027 vmx->ple_window_dirty = true;
6028
6029 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6030 }
6031
6032 /*
6033 * ple_window_actual_max is computed to be one grow_ple_window() below
6034 * ple_window_max. (See __grow_ple_window for the reason.)
6035 * This prevents overflows, because ple_window_max is int.
6036 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6037 * this process.
6038 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6039 */
6040 static void update_ple_window_actual_max(void)
6041 {
6042 ple_window_actual_max =
6043 __shrink_ple_window(max(ple_window_max, ple_window),
6044 ple_window_grow, INT_MIN);
6045 }
6046
6047 /*
6048 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6049 */
6050 static void wakeup_handler(void)
6051 {
6052 struct kvm_vcpu *vcpu;
6053 int cpu = smp_processor_id();
6054
6055 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6056 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6057 blocked_vcpu_list) {
6058 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6059
6060 if (pi_test_on(pi_desc) == 1)
6061 kvm_vcpu_kick(vcpu);
6062 }
6063 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6064 }
6065
6066 static __init int hardware_setup(void)
6067 {
6068 int r = -ENOMEM, i, msr;
6069
6070 rdmsrl_safe(MSR_EFER, &host_efer);
6071
6072 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6073 kvm_define_shared_msr(i, vmx_msr_index[i]);
6074
6075 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6076 if (!vmx_io_bitmap_a)
6077 return r;
6078
6079 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6080 if (!vmx_io_bitmap_b)
6081 goto out;
6082
6083 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6084 if (!vmx_msr_bitmap_legacy)
6085 goto out1;
6086
6087 vmx_msr_bitmap_legacy_x2apic =
6088 (unsigned long *)__get_free_page(GFP_KERNEL);
6089 if (!vmx_msr_bitmap_legacy_x2apic)
6090 goto out2;
6091
6092 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6093 if (!vmx_msr_bitmap_longmode)
6094 goto out3;
6095
6096 vmx_msr_bitmap_longmode_x2apic =
6097 (unsigned long *)__get_free_page(GFP_KERNEL);
6098 if (!vmx_msr_bitmap_longmode_x2apic)
6099 goto out4;
6100
6101 if (nested) {
6102 vmx_msr_bitmap_nested =
6103 (unsigned long *)__get_free_page(GFP_KERNEL);
6104 if (!vmx_msr_bitmap_nested)
6105 goto out5;
6106 }
6107
6108 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6109 if (!vmx_vmread_bitmap)
6110 goto out6;
6111
6112 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6113 if (!vmx_vmwrite_bitmap)
6114 goto out7;
6115
6116 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6117 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6118
6119 /*
6120 * Allow direct access to the PC debug port (it is often used for I/O
6121 * delays, but the vmexits simply slow things down).
6122 */
6123 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6124 clear_bit(0x80, vmx_io_bitmap_a);
6125
6126 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6127
6128 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6129 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6130 if (nested)
6131 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6132
6133 if (setup_vmcs_config(&vmcs_config) < 0) {
6134 r = -EIO;
6135 goto out8;
6136 }
6137
6138 if (boot_cpu_has(X86_FEATURE_NX))
6139 kvm_enable_efer_bits(EFER_NX);
6140
6141 if (!cpu_has_vmx_vpid())
6142 enable_vpid = 0;
6143 if (!cpu_has_vmx_shadow_vmcs())
6144 enable_shadow_vmcs = 0;
6145 if (enable_shadow_vmcs)
6146 init_vmcs_shadow_fields();
6147
6148 if (!cpu_has_vmx_ept() ||
6149 !cpu_has_vmx_ept_4levels()) {
6150 enable_ept = 0;
6151 enable_unrestricted_guest = 0;
6152 enable_ept_ad_bits = 0;
6153 }
6154
6155 if (!cpu_has_vmx_ept_ad_bits())
6156 enable_ept_ad_bits = 0;
6157
6158 if (!cpu_has_vmx_unrestricted_guest())
6159 enable_unrestricted_guest = 0;
6160
6161 if (!cpu_has_vmx_flexpriority())
6162 flexpriority_enabled = 0;
6163
6164 /*
6165 * set_apic_access_page_addr() is used to reload apic access
6166 * page upon invalidation. No need to do anything if not
6167 * using the APIC_ACCESS_ADDR VMCS field.
6168 */
6169 if (!flexpriority_enabled)
6170 kvm_x86_ops->set_apic_access_page_addr = NULL;
6171
6172 if (!cpu_has_vmx_tpr_shadow())
6173 kvm_x86_ops->update_cr8_intercept = NULL;
6174
6175 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6176 kvm_disable_largepages();
6177
6178 if (!cpu_has_vmx_ple())
6179 ple_gap = 0;
6180
6181 if (!cpu_has_vmx_apicv())
6182 enable_apicv = 0;
6183
6184 if (enable_apicv)
6185 kvm_x86_ops->update_cr8_intercept = NULL;
6186 else {
6187 kvm_x86_ops->hwapic_irr_update = NULL;
6188 kvm_x86_ops->hwapic_isr_update = NULL;
6189 kvm_x86_ops->deliver_posted_interrupt = NULL;
6190 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6191 }
6192
6193 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6194 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6195 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6196 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6197 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6198 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6199 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6200
6201 memcpy(vmx_msr_bitmap_legacy_x2apic,
6202 vmx_msr_bitmap_legacy, PAGE_SIZE);
6203 memcpy(vmx_msr_bitmap_longmode_x2apic,
6204 vmx_msr_bitmap_longmode, PAGE_SIZE);
6205
6206 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6207
6208 if (enable_apicv) {
6209 for (msr = 0x800; msr <= 0x8ff; msr++)
6210 vmx_disable_intercept_msr_read_x2apic(msr);
6211
6212 /* According SDM, in x2apic mode, the whole id reg is used.
6213 * But in KVM, it only use the highest eight bits. Need to
6214 * intercept it */
6215 vmx_enable_intercept_msr_read_x2apic(0x802);
6216 /* TMCCT */
6217 vmx_enable_intercept_msr_read_x2apic(0x839);
6218 /* TPR */
6219 vmx_disable_intercept_msr_write_x2apic(0x808);
6220 /* EOI */
6221 vmx_disable_intercept_msr_write_x2apic(0x80b);
6222 /* SELF-IPI */
6223 vmx_disable_intercept_msr_write_x2apic(0x83f);
6224 }
6225
6226 if (enable_ept) {
6227 kvm_mmu_set_mask_ptes(0ull,
6228 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6229 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6230 0ull, VMX_EPT_EXECUTABLE_MASK);
6231 ept_set_mmio_spte_mask();
6232 kvm_enable_tdp();
6233 } else
6234 kvm_disable_tdp();
6235
6236 update_ple_window_actual_max();
6237
6238 /*
6239 * Only enable PML when hardware supports PML feature, and both EPT
6240 * and EPT A/D bit features are enabled -- PML depends on them to work.
6241 */
6242 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6243 enable_pml = 0;
6244
6245 if (!enable_pml) {
6246 kvm_x86_ops->slot_enable_log_dirty = NULL;
6247 kvm_x86_ops->slot_disable_log_dirty = NULL;
6248 kvm_x86_ops->flush_log_dirty = NULL;
6249 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6250 }
6251
6252 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6253
6254 return alloc_kvm_area();
6255
6256 out8:
6257 free_page((unsigned long)vmx_vmwrite_bitmap);
6258 out7:
6259 free_page((unsigned long)vmx_vmread_bitmap);
6260 out6:
6261 if (nested)
6262 free_page((unsigned long)vmx_msr_bitmap_nested);
6263 out5:
6264 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6265 out4:
6266 free_page((unsigned long)vmx_msr_bitmap_longmode);
6267 out3:
6268 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6269 out2:
6270 free_page((unsigned long)vmx_msr_bitmap_legacy);
6271 out1:
6272 free_page((unsigned long)vmx_io_bitmap_b);
6273 out:
6274 free_page((unsigned long)vmx_io_bitmap_a);
6275
6276 return r;
6277 }
6278
6279 static __exit void hardware_unsetup(void)
6280 {
6281 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6282 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6283 free_page((unsigned long)vmx_msr_bitmap_legacy);
6284 free_page((unsigned long)vmx_msr_bitmap_longmode);
6285 free_page((unsigned long)vmx_io_bitmap_b);
6286 free_page((unsigned long)vmx_io_bitmap_a);
6287 free_page((unsigned long)vmx_vmwrite_bitmap);
6288 free_page((unsigned long)vmx_vmread_bitmap);
6289 if (nested)
6290 free_page((unsigned long)vmx_msr_bitmap_nested);
6291
6292 free_kvm_area();
6293 }
6294
6295 /*
6296 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6297 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6298 */
6299 static int handle_pause(struct kvm_vcpu *vcpu)
6300 {
6301 if (ple_gap)
6302 grow_ple_window(vcpu);
6303
6304 skip_emulated_instruction(vcpu);
6305 kvm_vcpu_on_spin(vcpu);
6306
6307 return 1;
6308 }
6309
6310 static int handle_nop(struct kvm_vcpu *vcpu)
6311 {
6312 skip_emulated_instruction(vcpu);
6313 return 1;
6314 }
6315
6316 static int handle_mwait(struct kvm_vcpu *vcpu)
6317 {
6318 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6319 return handle_nop(vcpu);
6320 }
6321
6322 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6323 {
6324 return 1;
6325 }
6326
6327 static int handle_monitor(struct kvm_vcpu *vcpu)
6328 {
6329 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6330 return handle_nop(vcpu);
6331 }
6332
6333 /*
6334 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6335 * We could reuse a single VMCS for all the L2 guests, but we also want the
6336 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6337 * allows keeping them loaded on the processor, and in the future will allow
6338 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6339 * every entry if they never change.
6340 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6341 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6342 *
6343 * The following functions allocate and free a vmcs02 in this pool.
6344 */
6345
6346 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6347 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6348 {
6349 struct vmcs02_list *item;
6350 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6351 if (item->vmptr == vmx->nested.current_vmptr) {
6352 list_move(&item->list, &vmx->nested.vmcs02_pool);
6353 return &item->vmcs02;
6354 }
6355
6356 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6357 /* Recycle the least recently used VMCS. */
6358 item = list_entry(vmx->nested.vmcs02_pool.prev,
6359 struct vmcs02_list, list);
6360 item->vmptr = vmx->nested.current_vmptr;
6361 list_move(&item->list, &vmx->nested.vmcs02_pool);
6362 return &item->vmcs02;
6363 }
6364
6365 /* Create a new VMCS */
6366 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6367 if (!item)
6368 return NULL;
6369 item->vmcs02.vmcs = alloc_vmcs();
6370 if (!item->vmcs02.vmcs) {
6371 kfree(item);
6372 return NULL;
6373 }
6374 loaded_vmcs_init(&item->vmcs02);
6375 item->vmptr = vmx->nested.current_vmptr;
6376 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6377 vmx->nested.vmcs02_num++;
6378 return &item->vmcs02;
6379 }
6380
6381 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6382 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6383 {
6384 struct vmcs02_list *item;
6385 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6386 if (item->vmptr == vmptr) {
6387 free_loaded_vmcs(&item->vmcs02);
6388 list_del(&item->list);
6389 kfree(item);
6390 vmx->nested.vmcs02_num--;
6391 return;
6392 }
6393 }
6394
6395 /*
6396 * Free all VMCSs saved for this vcpu, except the one pointed by
6397 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6398 * must be &vmx->vmcs01.
6399 */
6400 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6401 {
6402 struct vmcs02_list *item, *n;
6403
6404 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6405 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6406 /*
6407 * Something will leak if the above WARN triggers. Better than
6408 * a use-after-free.
6409 */
6410 if (vmx->loaded_vmcs == &item->vmcs02)
6411 continue;
6412
6413 free_loaded_vmcs(&item->vmcs02);
6414 list_del(&item->list);
6415 kfree(item);
6416 vmx->nested.vmcs02_num--;
6417 }
6418 }
6419
6420 /*
6421 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6422 * set the success or error code of an emulated VMX instruction, as specified
6423 * by Vol 2B, VMX Instruction Reference, "Conventions".
6424 */
6425 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6426 {
6427 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6428 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6429 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6430 }
6431
6432 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6433 {
6434 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6435 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6436 X86_EFLAGS_SF | X86_EFLAGS_OF))
6437 | X86_EFLAGS_CF);
6438 }
6439
6440 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6441 u32 vm_instruction_error)
6442 {
6443 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6444 /*
6445 * failValid writes the error number to the current VMCS, which
6446 * can't be done there isn't a current VMCS.
6447 */
6448 nested_vmx_failInvalid(vcpu);
6449 return;
6450 }
6451 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6452 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6453 X86_EFLAGS_SF | X86_EFLAGS_OF))
6454 | X86_EFLAGS_ZF);
6455 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6456 /*
6457 * We don't need to force a shadow sync because
6458 * VM_INSTRUCTION_ERROR is not shadowed
6459 */
6460 }
6461
6462 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6463 {
6464 /* TODO: not to reset guest simply here. */
6465 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6466 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6467 }
6468
6469 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6470 {
6471 struct vcpu_vmx *vmx =
6472 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6473
6474 vmx->nested.preemption_timer_expired = true;
6475 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6476 kvm_vcpu_kick(&vmx->vcpu);
6477
6478 return HRTIMER_NORESTART;
6479 }
6480
6481 /*
6482 * Decode the memory-address operand of a vmx instruction, as recorded on an
6483 * exit caused by such an instruction (run by a guest hypervisor).
6484 * On success, returns 0. When the operand is invalid, returns 1 and throws
6485 * #UD or #GP.
6486 */
6487 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6488 unsigned long exit_qualification,
6489 u32 vmx_instruction_info, bool wr, gva_t *ret)
6490 {
6491 gva_t off;
6492 bool exn;
6493 struct kvm_segment s;
6494
6495 /*
6496 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6497 * Execution", on an exit, vmx_instruction_info holds most of the
6498 * addressing components of the operand. Only the displacement part
6499 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6500 * For how an actual address is calculated from all these components,
6501 * refer to Vol. 1, "Operand Addressing".
6502 */
6503 int scaling = vmx_instruction_info & 3;
6504 int addr_size = (vmx_instruction_info >> 7) & 7;
6505 bool is_reg = vmx_instruction_info & (1u << 10);
6506 int seg_reg = (vmx_instruction_info >> 15) & 7;
6507 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6508 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6509 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6510 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6511
6512 if (is_reg) {
6513 kvm_queue_exception(vcpu, UD_VECTOR);
6514 return 1;
6515 }
6516
6517 /* Addr = segment_base + offset */
6518 /* offset = base + [index * scale] + displacement */
6519 off = exit_qualification; /* holds the displacement */
6520 if (base_is_valid)
6521 off += kvm_register_read(vcpu, base_reg);
6522 if (index_is_valid)
6523 off += kvm_register_read(vcpu, index_reg)<<scaling;
6524 vmx_get_segment(vcpu, &s, seg_reg);
6525 *ret = s.base + off;
6526
6527 if (addr_size == 1) /* 32 bit */
6528 *ret &= 0xffffffff;
6529
6530 /* Checks for #GP/#SS exceptions. */
6531 exn = false;
6532 if (is_protmode(vcpu)) {
6533 /* Protected mode: apply checks for segment validity in the
6534 * following order:
6535 * - segment type check (#GP(0) may be thrown)
6536 * - usability check (#GP(0)/#SS(0))
6537 * - limit check (#GP(0)/#SS(0))
6538 */
6539 if (wr)
6540 /* #GP(0) if the destination operand is located in a
6541 * read-only data segment or any code segment.
6542 */
6543 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6544 else
6545 /* #GP(0) if the source operand is located in an
6546 * execute-only code segment
6547 */
6548 exn = ((s.type & 0xa) == 8);
6549 }
6550 if (exn) {
6551 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6552 return 1;
6553 }
6554 if (is_long_mode(vcpu)) {
6555 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6556 * non-canonical form. This is an only check for long mode.
6557 */
6558 exn = is_noncanonical_address(*ret);
6559 } else if (is_protmode(vcpu)) {
6560 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6561 */
6562 exn = (s.unusable != 0);
6563 /* Protected mode: #GP(0)/#SS(0) if the memory
6564 * operand is outside the segment limit.
6565 */
6566 exn = exn || (off + sizeof(u64) > s.limit);
6567 }
6568 if (exn) {
6569 kvm_queue_exception_e(vcpu,
6570 seg_reg == VCPU_SREG_SS ?
6571 SS_VECTOR : GP_VECTOR,
6572 0);
6573 return 1;
6574 }
6575
6576 return 0;
6577 }
6578
6579 /*
6580 * This function performs the various checks including
6581 * - if it's 4KB aligned
6582 * - No bits beyond the physical address width are set
6583 * - Returns 0 on success or else 1
6584 * (Intel SDM Section 30.3)
6585 */
6586 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6587 gpa_t *vmpointer)
6588 {
6589 gva_t gva;
6590 gpa_t vmptr;
6591 struct x86_exception e;
6592 struct page *page;
6593 struct vcpu_vmx *vmx = to_vmx(vcpu);
6594 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6595
6596 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6597 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6598 return 1;
6599
6600 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6601 sizeof(vmptr), &e)) {
6602 kvm_inject_page_fault(vcpu, &e);
6603 return 1;
6604 }
6605
6606 switch (exit_reason) {
6607 case EXIT_REASON_VMON:
6608 /*
6609 * SDM 3: 24.11.5
6610 * The first 4 bytes of VMXON region contain the supported
6611 * VMCS revision identifier
6612 *
6613 * Note - IA32_VMX_BASIC[48] will never be 1
6614 * for the nested case;
6615 * which replaces physical address width with 32
6616 *
6617 */
6618 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6619 nested_vmx_failInvalid(vcpu);
6620 skip_emulated_instruction(vcpu);
6621 return 1;
6622 }
6623
6624 page = nested_get_page(vcpu, vmptr);
6625 if (page == NULL ||
6626 *(u32 *)kmap(page) != VMCS12_REVISION) {
6627 nested_vmx_failInvalid(vcpu);
6628 kunmap(page);
6629 skip_emulated_instruction(vcpu);
6630 return 1;
6631 }
6632 kunmap(page);
6633 vmx->nested.vmxon_ptr = vmptr;
6634 break;
6635 case EXIT_REASON_VMCLEAR:
6636 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6637 nested_vmx_failValid(vcpu,
6638 VMXERR_VMCLEAR_INVALID_ADDRESS);
6639 skip_emulated_instruction(vcpu);
6640 return 1;
6641 }
6642
6643 if (vmptr == vmx->nested.vmxon_ptr) {
6644 nested_vmx_failValid(vcpu,
6645 VMXERR_VMCLEAR_VMXON_POINTER);
6646 skip_emulated_instruction(vcpu);
6647 return 1;
6648 }
6649 break;
6650 case EXIT_REASON_VMPTRLD:
6651 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6652 nested_vmx_failValid(vcpu,
6653 VMXERR_VMPTRLD_INVALID_ADDRESS);
6654 skip_emulated_instruction(vcpu);
6655 return 1;
6656 }
6657
6658 if (vmptr == vmx->nested.vmxon_ptr) {
6659 nested_vmx_failValid(vcpu,
6660 VMXERR_VMCLEAR_VMXON_POINTER);
6661 skip_emulated_instruction(vcpu);
6662 return 1;
6663 }
6664 break;
6665 default:
6666 return 1; /* shouldn't happen */
6667 }
6668
6669 if (vmpointer)
6670 *vmpointer = vmptr;
6671 return 0;
6672 }
6673
6674 /*
6675 * Emulate the VMXON instruction.
6676 * Currently, we just remember that VMX is active, and do not save or even
6677 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6678 * do not currently need to store anything in that guest-allocated memory
6679 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6680 * argument is different from the VMXON pointer (which the spec says they do).
6681 */
6682 static int handle_vmon(struct kvm_vcpu *vcpu)
6683 {
6684 struct kvm_segment cs;
6685 struct vcpu_vmx *vmx = to_vmx(vcpu);
6686 struct vmcs *shadow_vmcs;
6687 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6688 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6689
6690 /* The Intel VMX Instruction Reference lists a bunch of bits that
6691 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6692 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6693 * Otherwise, we should fail with #UD. We test these now:
6694 */
6695 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6696 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6697 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6698 kvm_queue_exception(vcpu, UD_VECTOR);
6699 return 1;
6700 }
6701
6702 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6703 if (is_long_mode(vcpu) && !cs.l) {
6704 kvm_queue_exception(vcpu, UD_VECTOR);
6705 return 1;
6706 }
6707
6708 if (vmx_get_cpl(vcpu)) {
6709 kvm_inject_gp(vcpu, 0);
6710 return 1;
6711 }
6712
6713 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6714 return 1;
6715
6716 if (vmx->nested.vmxon) {
6717 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6718 skip_emulated_instruction(vcpu);
6719 return 1;
6720 }
6721
6722 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6723 != VMXON_NEEDED_FEATURES) {
6724 kvm_inject_gp(vcpu, 0);
6725 return 1;
6726 }
6727
6728 if (enable_shadow_vmcs) {
6729 shadow_vmcs = alloc_vmcs();
6730 if (!shadow_vmcs)
6731 return -ENOMEM;
6732 /* mark vmcs as shadow */
6733 shadow_vmcs->revision_id |= (1u << 31);
6734 /* init shadow vmcs */
6735 vmcs_clear(shadow_vmcs);
6736 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6737 }
6738
6739 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6740 vmx->nested.vmcs02_num = 0;
6741
6742 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6743 HRTIMER_MODE_REL);
6744 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6745
6746 vmx->nested.vmxon = true;
6747
6748 skip_emulated_instruction(vcpu);
6749 nested_vmx_succeed(vcpu);
6750 return 1;
6751 }
6752
6753 /*
6754 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6755 * for running VMX instructions (except VMXON, whose prerequisites are
6756 * slightly different). It also specifies what exception to inject otherwise.
6757 */
6758 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6759 {
6760 struct kvm_segment cs;
6761 struct vcpu_vmx *vmx = to_vmx(vcpu);
6762
6763 if (!vmx->nested.vmxon) {
6764 kvm_queue_exception(vcpu, UD_VECTOR);
6765 return 0;
6766 }
6767
6768 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6769 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6770 (is_long_mode(vcpu) && !cs.l)) {
6771 kvm_queue_exception(vcpu, UD_VECTOR);
6772 return 0;
6773 }
6774
6775 if (vmx_get_cpl(vcpu)) {
6776 kvm_inject_gp(vcpu, 0);
6777 return 0;
6778 }
6779
6780 return 1;
6781 }
6782
6783 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6784 {
6785 if (vmx->nested.current_vmptr == -1ull)
6786 return;
6787
6788 /* current_vmptr and current_vmcs12 are always set/reset together */
6789 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6790 return;
6791
6792 if (enable_shadow_vmcs) {
6793 /* copy to memory all shadowed fields in case
6794 they were modified */
6795 copy_shadow_to_vmcs12(vmx);
6796 vmx->nested.sync_shadow_vmcs = false;
6797 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6798 SECONDARY_EXEC_SHADOW_VMCS);
6799 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6800 }
6801 vmx->nested.posted_intr_nv = -1;
6802 kunmap(vmx->nested.current_vmcs12_page);
6803 nested_release_page(vmx->nested.current_vmcs12_page);
6804 vmx->nested.current_vmptr = -1ull;
6805 vmx->nested.current_vmcs12 = NULL;
6806 }
6807
6808 /*
6809 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6810 * just stops using VMX.
6811 */
6812 static void free_nested(struct vcpu_vmx *vmx)
6813 {
6814 if (!vmx->nested.vmxon)
6815 return;
6816
6817 vmx->nested.vmxon = false;
6818 nested_release_vmcs12(vmx);
6819 if (enable_shadow_vmcs)
6820 free_vmcs(vmx->nested.current_shadow_vmcs);
6821 /* Unpin physical memory we referred to in current vmcs02 */
6822 if (vmx->nested.apic_access_page) {
6823 nested_release_page(vmx->nested.apic_access_page);
6824 vmx->nested.apic_access_page = NULL;
6825 }
6826 if (vmx->nested.virtual_apic_page) {
6827 nested_release_page(vmx->nested.virtual_apic_page);
6828 vmx->nested.virtual_apic_page = NULL;
6829 }
6830 if (vmx->nested.pi_desc_page) {
6831 kunmap(vmx->nested.pi_desc_page);
6832 nested_release_page(vmx->nested.pi_desc_page);
6833 vmx->nested.pi_desc_page = NULL;
6834 vmx->nested.pi_desc = NULL;
6835 }
6836
6837 nested_free_all_saved_vmcss(vmx);
6838 }
6839
6840 /* Emulate the VMXOFF instruction */
6841 static int handle_vmoff(struct kvm_vcpu *vcpu)
6842 {
6843 if (!nested_vmx_check_permission(vcpu))
6844 return 1;
6845 free_nested(to_vmx(vcpu));
6846 skip_emulated_instruction(vcpu);
6847 nested_vmx_succeed(vcpu);
6848 return 1;
6849 }
6850
6851 /* Emulate the VMCLEAR instruction */
6852 static int handle_vmclear(struct kvm_vcpu *vcpu)
6853 {
6854 struct vcpu_vmx *vmx = to_vmx(vcpu);
6855 gpa_t vmptr;
6856 struct vmcs12 *vmcs12;
6857 struct page *page;
6858
6859 if (!nested_vmx_check_permission(vcpu))
6860 return 1;
6861
6862 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6863 return 1;
6864
6865 if (vmptr == vmx->nested.current_vmptr)
6866 nested_release_vmcs12(vmx);
6867
6868 page = nested_get_page(vcpu, vmptr);
6869 if (page == NULL) {
6870 /*
6871 * For accurate processor emulation, VMCLEAR beyond available
6872 * physical memory should do nothing at all. However, it is
6873 * possible that a nested vmx bug, not a guest hypervisor bug,
6874 * resulted in this case, so let's shut down before doing any
6875 * more damage:
6876 */
6877 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6878 return 1;
6879 }
6880 vmcs12 = kmap(page);
6881 vmcs12->launch_state = 0;
6882 kunmap(page);
6883 nested_release_page(page);
6884
6885 nested_free_vmcs02(vmx, vmptr);
6886
6887 skip_emulated_instruction(vcpu);
6888 nested_vmx_succeed(vcpu);
6889 return 1;
6890 }
6891
6892 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6893
6894 /* Emulate the VMLAUNCH instruction */
6895 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6896 {
6897 return nested_vmx_run(vcpu, true);
6898 }
6899
6900 /* Emulate the VMRESUME instruction */
6901 static int handle_vmresume(struct kvm_vcpu *vcpu)
6902 {
6903
6904 return nested_vmx_run(vcpu, false);
6905 }
6906
6907 enum vmcs_field_type {
6908 VMCS_FIELD_TYPE_U16 = 0,
6909 VMCS_FIELD_TYPE_U64 = 1,
6910 VMCS_FIELD_TYPE_U32 = 2,
6911 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6912 };
6913
6914 static inline int vmcs_field_type(unsigned long field)
6915 {
6916 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6917 return VMCS_FIELD_TYPE_U32;
6918 return (field >> 13) & 0x3 ;
6919 }
6920
6921 static inline int vmcs_field_readonly(unsigned long field)
6922 {
6923 return (((field >> 10) & 0x3) == 1);
6924 }
6925
6926 /*
6927 * Read a vmcs12 field. Since these can have varying lengths and we return
6928 * one type, we chose the biggest type (u64) and zero-extend the return value
6929 * to that size. Note that the caller, handle_vmread, might need to use only
6930 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6931 * 64-bit fields are to be returned).
6932 */
6933 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6934 unsigned long field, u64 *ret)
6935 {
6936 short offset = vmcs_field_to_offset(field);
6937 char *p;
6938
6939 if (offset < 0)
6940 return offset;
6941
6942 p = ((char *)(get_vmcs12(vcpu))) + offset;
6943
6944 switch (vmcs_field_type(field)) {
6945 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6946 *ret = *((natural_width *)p);
6947 return 0;
6948 case VMCS_FIELD_TYPE_U16:
6949 *ret = *((u16 *)p);
6950 return 0;
6951 case VMCS_FIELD_TYPE_U32:
6952 *ret = *((u32 *)p);
6953 return 0;
6954 case VMCS_FIELD_TYPE_U64:
6955 *ret = *((u64 *)p);
6956 return 0;
6957 default:
6958 WARN_ON(1);
6959 return -ENOENT;
6960 }
6961 }
6962
6963
6964 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6965 unsigned long field, u64 field_value){
6966 short offset = vmcs_field_to_offset(field);
6967 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6968 if (offset < 0)
6969 return offset;
6970
6971 switch (vmcs_field_type(field)) {
6972 case VMCS_FIELD_TYPE_U16:
6973 *(u16 *)p = field_value;
6974 return 0;
6975 case VMCS_FIELD_TYPE_U32:
6976 *(u32 *)p = field_value;
6977 return 0;
6978 case VMCS_FIELD_TYPE_U64:
6979 *(u64 *)p = field_value;
6980 return 0;
6981 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6982 *(natural_width *)p = field_value;
6983 return 0;
6984 default:
6985 WARN_ON(1);
6986 return -ENOENT;
6987 }
6988
6989 }
6990
6991 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6992 {
6993 int i;
6994 unsigned long field;
6995 u64 field_value;
6996 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6997 const unsigned long *fields = shadow_read_write_fields;
6998 const int num_fields = max_shadow_read_write_fields;
6999
7000 preempt_disable();
7001
7002 vmcs_load(shadow_vmcs);
7003
7004 for (i = 0; i < num_fields; i++) {
7005 field = fields[i];
7006 switch (vmcs_field_type(field)) {
7007 case VMCS_FIELD_TYPE_U16:
7008 field_value = vmcs_read16(field);
7009 break;
7010 case VMCS_FIELD_TYPE_U32:
7011 field_value = vmcs_read32(field);
7012 break;
7013 case VMCS_FIELD_TYPE_U64:
7014 field_value = vmcs_read64(field);
7015 break;
7016 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7017 field_value = vmcs_readl(field);
7018 break;
7019 default:
7020 WARN_ON(1);
7021 continue;
7022 }
7023 vmcs12_write_any(&vmx->vcpu, field, field_value);
7024 }
7025
7026 vmcs_clear(shadow_vmcs);
7027 vmcs_load(vmx->loaded_vmcs->vmcs);
7028
7029 preempt_enable();
7030 }
7031
7032 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7033 {
7034 const unsigned long *fields[] = {
7035 shadow_read_write_fields,
7036 shadow_read_only_fields
7037 };
7038 const int max_fields[] = {
7039 max_shadow_read_write_fields,
7040 max_shadow_read_only_fields
7041 };
7042 int i, q;
7043 unsigned long field;
7044 u64 field_value = 0;
7045 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7046
7047 vmcs_load(shadow_vmcs);
7048
7049 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7050 for (i = 0; i < max_fields[q]; i++) {
7051 field = fields[q][i];
7052 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7053
7054 switch (vmcs_field_type(field)) {
7055 case VMCS_FIELD_TYPE_U16:
7056 vmcs_write16(field, (u16)field_value);
7057 break;
7058 case VMCS_FIELD_TYPE_U32:
7059 vmcs_write32(field, (u32)field_value);
7060 break;
7061 case VMCS_FIELD_TYPE_U64:
7062 vmcs_write64(field, (u64)field_value);
7063 break;
7064 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7065 vmcs_writel(field, (long)field_value);
7066 break;
7067 default:
7068 WARN_ON(1);
7069 break;
7070 }
7071 }
7072 }
7073
7074 vmcs_clear(shadow_vmcs);
7075 vmcs_load(vmx->loaded_vmcs->vmcs);
7076 }
7077
7078 /*
7079 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7080 * used before) all generate the same failure when it is missing.
7081 */
7082 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7083 {
7084 struct vcpu_vmx *vmx = to_vmx(vcpu);
7085 if (vmx->nested.current_vmptr == -1ull) {
7086 nested_vmx_failInvalid(vcpu);
7087 skip_emulated_instruction(vcpu);
7088 return 0;
7089 }
7090 return 1;
7091 }
7092
7093 static int handle_vmread(struct kvm_vcpu *vcpu)
7094 {
7095 unsigned long field;
7096 u64 field_value;
7097 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7098 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7099 gva_t gva = 0;
7100
7101 if (!nested_vmx_check_permission(vcpu) ||
7102 !nested_vmx_check_vmcs12(vcpu))
7103 return 1;
7104
7105 /* Decode instruction info and find the field to read */
7106 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7107 /* Read the field, zero-extended to a u64 field_value */
7108 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7109 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7110 skip_emulated_instruction(vcpu);
7111 return 1;
7112 }
7113 /*
7114 * Now copy part of this value to register or memory, as requested.
7115 * Note that the number of bits actually copied is 32 or 64 depending
7116 * on the guest's mode (32 or 64 bit), not on the given field's length.
7117 */
7118 if (vmx_instruction_info & (1u << 10)) {
7119 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7120 field_value);
7121 } else {
7122 if (get_vmx_mem_address(vcpu, exit_qualification,
7123 vmx_instruction_info, true, &gva))
7124 return 1;
7125 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7126 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7127 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7128 }
7129
7130 nested_vmx_succeed(vcpu);
7131 skip_emulated_instruction(vcpu);
7132 return 1;
7133 }
7134
7135
7136 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7137 {
7138 unsigned long field;
7139 gva_t gva;
7140 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7141 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7142 /* The value to write might be 32 or 64 bits, depending on L1's long
7143 * mode, and eventually we need to write that into a field of several
7144 * possible lengths. The code below first zero-extends the value to 64
7145 * bit (field_value), and then copies only the approriate number of
7146 * bits into the vmcs12 field.
7147 */
7148 u64 field_value = 0;
7149 struct x86_exception e;
7150
7151 if (!nested_vmx_check_permission(vcpu) ||
7152 !nested_vmx_check_vmcs12(vcpu))
7153 return 1;
7154
7155 if (vmx_instruction_info & (1u << 10))
7156 field_value = kvm_register_readl(vcpu,
7157 (((vmx_instruction_info) >> 3) & 0xf));
7158 else {
7159 if (get_vmx_mem_address(vcpu, exit_qualification,
7160 vmx_instruction_info, false, &gva))
7161 return 1;
7162 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7163 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7164 kvm_inject_page_fault(vcpu, &e);
7165 return 1;
7166 }
7167 }
7168
7169
7170 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7171 if (vmcs_field_readonly(field)) {
7172 nested_vmx_failValid(vcpu,
7173 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7174 skip_emulated_instruction(vcpu);
7175 return 1;
7176 }
7177
7178 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7179 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7180 skip_emulated_instruction(vcpu);
7181 return 1;
7182 }
7183
7184 nested_vmx_succeed(vcpu);
7185 skip_emulated_instruction(vcpu);
7186 return 1;
7187 }
7188
7189 /* Emulate the VMPTRLD instruction */
7190 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7191 {
7192 struct vcpu_vmx *vmx = to_vmx(vcpu);
7193 gpa_t vmptr;
7194
7195 if (!nested_vmx_check_permission(vcpu))
7196 return 1;
7197
7198 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7199 return 1;
7200
7201 if (vmx->nested.current_vmptr != vmptr) {
7202 struct vmcs12 *new_vmcs12;
7203 struct page *page;
7204 page = nested_get_page(vcpu, vmptr);
7205 if (page == NULL) {
7206 nested_vmx_failInvalid(vcpu);
7207 skip_emulated_instruction(vcpu);
7208 return 1;
7209 }
7210 new_vmcs12 = kmap(page);
7211 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7212 kunmap(page);
7213 nested_release_page_clean(page);
7214 nested_vmx_failValid(vcpu,
7215 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7216 skip_emulated_instruction(vcpu);
7217 return 1;
7218 }
7219
7220 nested_release_vmcs12(vmx);
7221 vmx->nested.current_vmptr = vmptr;
7222 vmx->nested.current_vmcs12 = new_vmcs12;
7223 vmx->nested.current_vmcs12_page = page;
7224 if (enable_shadow_vmcs) {
7225 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7226 SECONDARY_EXEC_SHADOW_VMCS);
7227 vmcs_write64(VMCS_LINK_POINTER,
7228 __pa(vmx->nested.current_shadow_vmcs));
7229 vmx->nested.sync_shadow_vmcs = true;
7230 }
7231 }
7232
7233 nested_vmx_succeed(vcpu);
7234 skip_emulated_instruction(vcpu);
7235 return 1;
7236 }
7237
7238 /* Emulate the VMPTRST instruction */
7239 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7240 {
7241 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7242 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7243 gva_t vmcs_gva;
7244 struct x86_exception e;
7245
7246 if (!nested_vmx_check_permission(vcpu))
7247 return 1;
7248
7249 if (get_vmx_mem_address(vcpu, exit_qualification,
7250 vmx_instruction_info, true, &vmcs_gva))
7251 return 1;
7252 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7253 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7254 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7255 sizeof(u64), &e)) {
7256 kvm_inject_page_fault(vcpu, &e);
7257 return 1;
7258 }
7259 nested_vmx_succeed(vcpu);
7260 skip_emulated_instruction(vcpu);
7261 return 1;
7262 }
7263
7264 /* Emulate the INVEPT instruction */
7265 static int handle_invept(struct kvm_vcpu *vcpu)
7266 {
7267 struct vcpu_vmx *vmx = to_vmx(vcpu);
7268 u32 vmx_instruction_info, types;
7269 unsigned long type;
7270 gva_t gva;
7271 struct x86_exception e;
7272 struct {
7273 u64 eptp, gpa;
7274 } operand;
7275
7276 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7277 SECONDARY_EXEC_ENABLE_EPT) ||
7278 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7279 kvm_queue_exception(vcpu, UD_VECTOR);
7280 return 1;
7281 }
7282
7283 if (!nested_vmx_check_permission(vcpu))
7284 return 1;
7285
7286 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7287 kvm_queue_exception(vcpu, UD_VECTOR);
7288 return 1;
7289 }
7290
7291 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7292 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7293
7294 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7295
7296 if (!(types & (1UL << type))) {
7297 nested_vmx_failValid(vcpu,
7298 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7299 return 1;
7300 }
7301
7302 /* According to the Intel VMX instruction reference, the memory
7303 * operand is read even if it isn't needed (e.g., for type==global)
7304 */
7305 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7306 vmx_instruction_info, false, &gva))
7307 return 1;
7308 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7309 sizeof(operand), &e)) {
7310 kvm_inject_page_fault(vcpu, &e);
7311 return 1;
7312 }
7313
7314 switch (type) {
7315 case VMX_EPT_EXTENT_GLOBAL:
7316 kvm_mmu_sync_roots(vcpu);
7317 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7318 nested_vmx_succeed(vcpu);
7319 break;
7320 default:
7321 /* Trap single context invalidation invept calls */
7322 BUG_ON(1);
7323 break;
7324 }
7325
7326 skip_emulated_instruction(vcpu);
7327 return 1;
7328 }
7329
7330 static int handle_invvpid(struct kvm_vcpu *vcpu)
7331 {
7332 kvm_queue_exception(vcpu, UD_VECTOR);
7333 return 1;
7334 }
7335
7336 static int handle_pml_full(struct kvm_vcpu *vcpu)
7337 {
7338 unsigned long exit_qualification;
7339
7340 trace_kvm_pml_full(vcpu->vcpu_id);
7341
7342 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7343
7344 /*
7345 * PML buffer FULL happened while executing iret from NMI,
7346 * "blocked by NMI" bit has to be set before next VM entry.
7347 */
7348 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7349 cpu_has_virtual_nmis() &&
7350 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7351 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7352 GUEST_INTR_STATE_NMI);
7353
7354 /*
7355 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7356 * here.., and there's no userspace involvement needed for PML.
7357 */
7358 return 1;
7359 }
7360
7361 static int handle_pcommit(struct kvm_vcpu *vcpu)
7362 {
7363 /* we never catch pcommit instruct for L1 guest. */
7364 WARN_ON(1);
7365 return 1;
7366 }
7367
7368 /*
7369 * The exit handlers return 1 if the exit was handled fully and guest execution
7370 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7371 * to be done to userspace and return 0.
7372 */
7373 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7374 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7375 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7376 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7377 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7378 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7379 [EXIT_REASON_CR_ACCESS] = handle_cr,
7380 [EXIT_REASON_DR_ACCESS] = handle_dr,
7381 [EXIT_REASON_CPUID] = handle_cpuid,
7382 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7383 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7384 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7385 [EXIT_REASON_HLT] = handle_halt,
7386 [EXIT_REASON_INVD] = handle_invd,
7387 [EXIT_REASON_INVLPG] = handle_invlpg,
7388 [EXIT_REASON_RDPMC] = handle_rdpmc,
7389 [EXIT_REASON_VMCALL] = handle_vmcall,
7390 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7391 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7392 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7393 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7394 [EXIT_REASON_VMREAD] = handle_vmread,
7395 [EXIT_REASON_VMRESUME] = handle_vmresume,
7396 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7397 [EXIT_REASON_VMOFF] = handle_vmoff,
7398 [EXIT_REASON_VMON] = handle_vmon,
7399 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7400 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7401 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7402 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7403 [EXIT_REASON_WBINVD] = handle_wbinvd,
7404 [EXIT_REASON_XSETBV] = handle_xsetbv,
7405 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7406 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7407 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7408 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7409 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7410 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7411 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7412 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7413 [EXIT_REASON_INVEPT] = handle_invept,
7414 [EXIT_REASON_INVVPID] = handle_invvpid,
7415 [EXIT_REASON_XSAVES] = handle_xsaves,
7416 [EXIT_REASON_XRSTORS] = handle_xrstors,
7417 [EXIT_REASON_PML_FULL] = handle_pml_full,
7418 [EXIT_REASON_PCOMMIT] = handle_pcommit,
7419 };
7420
7421 static const int kvm_vmx_max_exit_handlers =
7422 ARRAY_SIZE(kvm_vmx_exit_handlers);
7423
7424 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7425 struct vmcs12 *vmcs12)
7426 {
7427 unsigned long exit_qualification;
7428 gpa_t bitmap, last_bitmap;
7429 unsigned int port;
7430 int size;
7431 u8 b;
7432
7433 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7434 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7435
7436 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7437
7438 port = exit_qualification >> 16;
7439 size = (exit_qualification & 7) + 1;
7440
7441 last_bitmap = (gpa_t)-1;
7442 b = -1;
7443
7444 while (size > 0) {
7445 if (port < 0x8000)
7446 bitmap = vmcs12->io_bitmap_a;
7447 else if (port < 0x10000)
7448 bitmap = vmcs12->io_bitmap_b;
7449 else
7450 return true;
7451 bitmap += (port & 0x7fff) / 8;
7452
7453 if (last_bitmap != bitmap)
7454 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7455 return true;
7456 if (b & (1 << (port & 7)))
7457 return true;
7458
7459 port++;
7460 size--;
7461 last_bitmap = bitmap;
7462 }
7463
7464 return false;
7465 }
7466
7467 /*
7468 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7469 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7470 * disinterest in the current event (read or write a specific MSR) by using an
7471 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7472 */
7473 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7474 struct vmcs12 *vmcs12, u32 exit_reason)
7475 {
7476 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7477 gpa_t bitmap;
7478
7479 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7480 return true;
7481
7482 /*
7483 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7484 * for the four combinations of read/write and low/high MSR numbers.
7485 * First we need to figure out which of the four to use:
7486 */
7487 bitmap = vmcs12->msr_bitmap;
7488 if (exit_reason == EXIT_REASON_MSR_WRITE)
7489 bitmap += 2048;
7490 if (msr_index >= 0xc0000000) {
7491 msr_index -= 0xc0000000;
7492 bitmap += 1024;
7493 }
7494
7495 /* Then read the msr_index'th bit from this bitmap: */
7496 if (msr_index < 1024*8) {
7497 unsigned char b;
7498 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7499 return true;
7500 return 1 & (b >> (msr_index & 7));
7501 } else
7502 return true; /* let L1 handle the wrong parameter */
7503 }
7504
7505 /*
7506 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7507 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7508 * intercept (via guest_host_mask etc.) the current event.
7509 */
7510 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7511 struct vmcs12 *vmcs12)
7512 {
7513 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7514 int cr = exit_qualification & 15;
7515 int reg = (exit_qualification >> 8) & 15;
7516 unsigned long val = kvm_register_readl(vcpu, reg);
7517
7518 switch ((exit_qualification >> 4) & 3) {
7519 case 0: /* mov to cr */
7520 switch (cr) {
7521 case 0:
7522 if (vmcs12->cr0_guest_host_mask &
7523 (val ^ vmcs12->cr0_read_shadow))
7524 return true;
7525 break;
7526 case 3:
7527 if ((vmcs12->cr3_target_count >= 1 &&
7528 vmcs12->cr3_target_value0 == val) ||
7529 (vmcs12->cr3_target_count >= 2 &&
7530 vmcs12->cr3_target_value1 == val) ||
7531 (vmcs12->cr3_target_count >= 3 &&
7532 vmcs12->cr3_target_value2 == val) ||
7533 (vmcs12->cr3_target_count >= 4 &&
7534 vmcs12->cr3_target_value3 == val))
7535 return false;
7536 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7537 return true;
7538 break;
7539 case 4:
7540 if (vmcs12->cr4_guest_host_mask &
7541 (vmcs12->cr4_read_shadow ^ val))
7542 return true;
7543 break;
7544 case 8:
7545 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7546 return true;
7547 break;
7548 }
7549 break;
7550 case 2: /* clts */
7551 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7552 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7553 return true;
7554 break;
7555 case 1: /* mov from cr */
7556 switch (cr) {
7557 case 3:
7558 if (vmcs12->cpu_based_vm_exec_control &
7559 CPU_BASED_CR3_STORE_EXITING)
7560 return true;
7561 break;
7562 case 8:
7563 if (vmcs12->cpu_based_vm_exec_control &
7564 CPU_BASED_CR8_STORE_EXITING)
7565 return true;
7566 break;
7567 }
7568 break;
7569 case 3: /* lmsw */
7570 /*
7571 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7572 * cr0. Other attempted changes are ignored, with no exit.
7573 */
7574 if (vmcs12->cr0_guest_host_mask & 0xe &
7575 (val ^ vmcs12->cr0_read_shadow))
7576 return true;
7577 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7578 !(vmcs12->cr0_read_shadow & 0x1) &&
7579 (val & 0x1))
7580 return true;
7581 break;
7582 }
7583 return false;
7584 }
7585
7586 /*
7587 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7588 * should handle it ourselves in L0 (and then continue L2). Only call this
7589 * when in is_guest_mode (L2).
7590 */
7591 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7592 {
7593 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7594 struct vcpu_vmx *vmx = to_vmx(vcpu);
7595 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7596 u32 exit_reason = vmx->exit_reason;
7597
7598 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7599 vmcs_readl(EXIT_QUALIFICATION),
7600 vmx->idt_vectoring_info,
7601 intr_info,
7602 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7603 KVM_ISA_VMX);
7604
7605 if (vmx->nested.nested_run_pending)
7606 return false;
7607
7608 if (unlikely(vmx->fail)) {
7609 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7610 vmcs_read32(VM_INSTRUCTION_ERROR));
7611 return true;
7612 }
7613
7614 switch (exit_reason) {
7615 case EXIT_REASON_EXCEPTION_NMI:
7616 if (!is_exception(intr_info))
7617 return false;
7618 else if (is_page_fault(intr_info))
7619 return enable_ept;
7620 else if (is_no_device(intr_info) &&
7621 !(vmcs12->guest_cr0 & X86_CR0_TS))
7622 return false;
7623 return vmcs12->exception_bitmap &
7624 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7625 case EXIT_REASON_EXTERNAL_INTERRUPT:
7626 return false;
7627 case EXIT_REASON_TRIPLE_FAULT:
7628 return true;
7629 case EXIT_REASON_PENDING_INTERRUPT:
7630 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7631 case EXIT_REASON_NMI_WINDOW:
7632 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7633 case EXIT_REASON_TASK_SWITCH:
7634 return true;
7635 case EXIT_REASON_CPUID:
7636 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7637 return false;
7638 return true;
7639 case EXIT_REASON_HLT:
7640 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7641 case EXIT_REASON_INVD:
7642 return true;
7643 case EXIT_REASON_INVLPG:
7644 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7645 case EXIT_REASON_RDPMC:
7646 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7647 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7648 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7649 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7650 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7651 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7652 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7653 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7654 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7655 /*
7656 * VMX instructions trap unconditionally. This allows L1 to
7657 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7658 */
7659 return true;
7660 case EXIT_REASON_CR_ACCESS:
7661 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7662 case EXIT_REASON_DR_ACCESS:
7663 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7664 case EXIT_REASON_IO_INSTRUCTION:
7665 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7666 case EXIT_REASON_MSR_READ:
7667 case EXIT_REASON_MSR_WRITE:
7668 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7669 case EXIT_REASON_INVALID_STATE:
7670 return true;
7671 case EXIT_REASON_MWAIT_INSTRUCTION:
7672 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7673 case EXIT_REASON_MONITOR_TRAP_FLAG:
7674 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7675 case EXIT_REASON_MONITOR_INSTRUCTION:
7676 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7677 case EXIT_REASON_PAUSE_INSTRUCTION:
7678 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7679 nested_cpu_has2(vmcs12,
7680 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7681 case EXIT_REASON_MCE_DURING_VMENTRY:
7682 return false;
7683 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7684 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7685 case EXIT_REASON_APIC_ACCESS:
7686 return nested_cpu_has2(vmcs12,
7687 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7688 case EXIT_REASON_APIC_WRITE:
7689 case EXIT_REASON_EOI_INDUCED:
7690 /* apic_write and eoi_induced should exit unconditionally. */
7691 return true;
7692 case EXIT_REASON_EPT_VIOLATION:
7693 /*
7694 * L0 always deals with the EPT violation. If nested EPT is
7695 * used, and the nested mmu code discovers that the address is
7696 * missing in the guest EPT table (EPT12), the EPT violation
7697 * will be injected with nested_ept_inject_page_fault()
7698 */
7699 return false;
7700 case EXIT_REASON_EPT_MISCONFIG:
7701 /*
7702 * L2 never uses directly L1's EPT, but rather L0's own EPT
7703 * table (shadow on EPT) or a merged EPT table that L0 built
7704 * (EPT on EPT). So any problems with the structure of the
7705 * table is L0's fault.
7706 */
7707 return false;
7708 case EXIT_REASON_WBINVD:
7709 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7710 case EXIT_REASON_XSETBV:
7711 return true;
7712 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7713 /*
7714 * This should never happen, since it is not possible to
7715 * set XSS to a non-zero value---neither in L1 nor in L2.
7716 * If if it were, XSS would have to be checked against
7717 * the XSS exit bitmap in vmcs12.
7718 */
7719 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7720 case EXIT_REASON_PCOMMIT:
7721 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7722 default:
7723 return true;
7724 }
7725 }
7726
7727 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7728 {
7729 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7730 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7731 }
7732
7733 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7734 {
7735 struct page *pml_pg;
7736
7737 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7738 if (!pml_pg)
7739 return -ENOMEM;
7740
7741 vmx->pml_pg = pml_pg;
7742
7743 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7744 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7745
7746 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_ENABLE_PML);
7747
7748 return 0;
7749 }
7750
7751 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7752 {
7753 ASSERT(vmx->pml_pg);
7754 __free_page(vmx->pml_pg);
7755 vmx->pml_pg = NULL;
7756
7757 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_ENABLE_PML);
7758 }
7759
7760 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7761 {
7762 struct vcpu_vmx *vmx = to_vmx(vcpu);
7763 u64 *pml_buf;
7764 u16 pml_idx;
7765
7766 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7767
7768 /* Do nothing if PML buffer is empty */
7769 if (pml_idx == (PML_ENTITY_NUM - 1))
7770 return;
7771
7772 /* PML index always points to next available PML buffer entity */
7773 if (pml_idx >= PML_ENTITY_NUM)
7774 pml_idx = 0;
7775 else
7776 pml_idx++;
7777
7778 pml_buf = page_address(vmx->pml_pg);
7779 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7780 u64 gpa;
7781
7782 gpa = pml_buf[pml_idx];
7783 WARN_ON(gpa & (PAGE_SIZE - 1));
7784 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7785 }
7786
7787 /* reset PML index */
7788 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7789 }
7790
7791 /*
7792 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7793 * Called before reporting dirty_bitmap to userspace.
7794 */
7795 static void kvm_flush_pml_buffers(struct kvm *kvm)
7796 {
7797 int i;
7798 struct kvm_vcpu *vcpu;
7799 /*
7800 * We only need to kick vcpu out of guest mode here, as PML buffer
7801 * is flushed at beginning of all VMEXITs, and it's obvious that only
7802 * vcpus running in guest are possible to have unflushed GPAs in PML
7803 * buffer.
7804 */
7805 kvm_for_each_vcpu(i, vcpu, kvm)
7806 kvm_vcpu_kick(vcpu);
7807 }
7808
7809 static void vmx_dump_sel(char *name, uint32_t sel)
7810 {
7811 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7812 name, vmcs_read32(sel),
7813 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7814 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7815 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7816 }
7817
7818 static void vmx_dump_dtsel(char *name, uint32_t limit)
7819 {
7820 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7821 name, vmcs_read32(limit),
7822 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7823 }
7824
7825 static void dump_vmcs(void)
7826 {
7827 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7828 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7829 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7830 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7831 u32 secondary_exec_control = 0;
7832 unsigned long cr4 = vmcs_readl(GUEST_CR4);
7833 u64 efer = vmcs_readl(GUEST_IA32_EFER);
7834 int i, n;
7835
7836 if (cpu_has_secondary_exec_ctrls())
7837 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7838
7839 pr_err("*** Guest State ***\n");
7840 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7841 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7842 vmcs_readl(CR0_GUEST_HOST_MASK));
7843 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7844 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7845 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7846 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7847 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7848 {
7849 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
7850 vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7851 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
7852 vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7853 }
7854 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
7855 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7856 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
7857 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7858 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7859 vmcs_readl(GUEST_SYSENTER_ESP),
7860 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7861 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
7862 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
7863 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
7864 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
7865 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
7866 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
7867 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7868 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7869 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7870 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
7871 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7872 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7873 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
7874 efer, vmcs_readl(GUEST_IA32_PAT));
7875 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
7876 vmcs_readl(GUEST_IA32_DEBUGCTL),
7877 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7878 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7879 pr_err("PerfGlobCtl = 0x%016lx\n",
7880 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7881 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7882 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7883 pr_err("Interruptibility = %08x ActivityState = %08x\n",
7884 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7885 vmcs_read32(GUEST_ACTIVITY_STATE));
7886 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7887 pr_err("InterruptStatus = %04x\n",
7888 vmcs_read16(GUEST_INTR_STATUS));
7889
7890 pr_err("*** Host State ***\n");
7891 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
7892 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7893 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7894 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7895 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7896 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7897 vmcs_read16(HOST_TR_SELECTOR));
7898 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7899 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7900 vmcs_readl(HOST_TR_BASE));
7901 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7902 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7903 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7904 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7905 vmcs_readl(HOST_CR4));
7906 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7907 vmcs_readl(HOST_IA32_SYSENTER_ESP),
7908 vmcs_read32(HOST_IA32_SYSENTER_CS),
7909 vmcs_readl(HOST_IA32_SYSENTER_EIP));
7910 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7911 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
7912 vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7913 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7914 pr_err("PerfGlobCtl = 0x%016lx\n",
7915 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7916
7917 pr_err("*** Control State ***\n");
7918 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7919 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7920 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7921 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7922 vmcs_read32(EXCEPTION_BITMAP),
7923 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7924 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7925 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7926 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7927 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7928 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7929 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7930 vmcs_read32(VM_EXIT_INTR_INFO),
7931 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7932 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7933 pr_err(" reason=%08x qualification=%016lx\n",
7934 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
7935 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
7936 vmcs_read32(IDT_VECTORING_INFO_FIELD),
7937 vmcs_read32(IDT_VECTORING_ERROR_CODE));
7938 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
7939 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
7940 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
7941 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
7942 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
7943 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
7944 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
7945 n = vmcs_read32(CR3_TARGET_COUNT);
7946 for (i = 0; i + 1 < n; i += 4)
7947 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
7948 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
7949 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
7950 if (i < n)
7951 pr_err("CR3 target%u=%016lx\n",
7952 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
7953 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
7954 pr_err("PLE Gap=%08x Window=%08x\n",
7955 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
7956 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
7957 pr_err("Virtual processor ID = 0x%04x\n",
7958 vmcs_read16(VIRTUAL_PROCESSOR_ID));
7959 }
7960
7961 /*
7962 * The guest has exited. See if we can fix it or if we need userspace
7963 * assistance.
7964 */
7965 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7966 {
7967 struct vcpu_vmx *vmx = to_vmx(vcpu);
7968 u32 exit_reason = vmx->exit_reason;
7969 u32 vectoring_info = vmx->idt_vectoring_info;
7970
7971 /*
7972 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7973 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7974 * querying dirty_bitmap, we only need to kick all vcpus out of guest
7975 * mode as if vcpus is in root mode, the PML buffer must has been
7976 * flushed already.
7977 */
7978 if (enable_pml)
7979 vmx_flush_pml_buffer(vcpu);
7980
7981 /* If guest state is invalid, start emulating */
7982 if (vmx->emulation_required)
7983 return handle_invalid_guest_state(vcpu);
7984
7985 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7986 nested_vmx_vmexit(vcpu, exit_reason,
7987 vmcs_read32(VM_EXIT_INTR_INFO),
7988 vmcs_readl(EXIT_QUALIFICATION));
7989 return 1;
7990 }
7991
7992 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7993 dump_vmcs();
7994 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7995 vcpu->run->fail_entry.hardware_entry_failure_reason
7996 = exit_reason;
7997 return 0;
7998 }
7999
8000 if (unlikely(vmx->fail)) {
8001 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8002 vcpu->run->fail_entry.hardware_entry_failure_reason
8003 = vmcs_read32(VM_INSTRUCTION_ERROR);
8004 return 0;
8005 }
8006
8007 /*
8008 * Note:
8009 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8010 * delivery event since it indicates guest is accessing MMIO.
8011 * The vm-exit can be triggered again after return to guest that
8012 * will cause infinite loop.
8013 */
8014 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8015 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8016 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8017 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8018 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8019 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8020 vcpu->run->internal.ndata = 2;
8021 vcpu->run->internal.data[0] = vectoring_info;
8022 vcpu->run->internal.data[1] = exit_reason;
8023 return 0;
8024 }
8025
8026 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8027 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8028 get_vmcs12(vcpu))))) {
8029 if (vmx_interrupt_allowed(vcpu)) {
8030 vmx->soft_vnmi_blocked = 0;
8031 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8032 vcpu->arch.nmi_pending) {
8033 /*
8034 * This CPU don't support us in finding the end of an
8035 * NMI-blocked window if the guest runs with IRQs
8036 * disabled. So we pull the trigger after 1 s of
8037 * futile waiting, but inform the user about this.
8038 */
8039 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8040 "state on VCPU %d after 1 s timeout\n",
8041 __func__, vcpu->vcpu_id);
8042 vmx->soft_vnmi_blocked = 0;
8043 }
8044 }
8045
8046 if (exit_reason < kvm_vmx_max_exit_handlers
8047 && kvm_vmx_exit_handlers[exit_reason])
8048 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8049 else {
8050 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8051 kvm_queue_exception(vcpu, UD_VECTOR);
8052 return 1;
8053 }
8054 }
8055
8056 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8057 {
8058 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8059
8060 if (is_guest_mode(vcpu) &&
8061 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8062 return;
8063
8064 if (irr == -1 || tpr < irr) {
8065 vmcs_write32(TPR_THRESHOLD, 0);
8066 return;
8067 }
8068
8069 vmcs_write32(TPR_THRESHOLD, irr);
8070 }
8071
8072 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8073 {
8074 u32 sec_exec_control;
8075
8076 /*
8077 * There is not point to enable virtualize x2apic without enable
8078 * apicv
8079 */
8080 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8081 !vmx_cpu_uses_apicv(vcpu))
8082 return;
8083
8084 if (!cpu_need_tpr_shadow(vcpu))
8085 return;
8086
8087 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8088
8089 if (set) {
8090 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8091 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8092 } else {
8093 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8094 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8095 }
8096 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8097
8098 vmx_set_msr_bitmap(vcpu);
8099 }
8100
8101 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8102 {
8103 struct vcpu_vmx *vmx = to_vmx(vcpu);
8104
8105 /*
8106 * Currently we do not handle the nested case where L2 has an
8107 * APIC access page of its own; that page is still pinned.
8108 * Hence, we skip the case where the VCPU is in guest mode _and_
8109 * L1 prepared an APIC access page for L2.
8110 *
8111 * For the case where L1 and L2 share the same APIC access page
8112 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8113 * in the vmcs12), this function will only update either the vmcs01
8114 * or the vmcs02. If the former, the vmcs02 will be updated by
8115 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8116 * the next L2->L1 exit.
8117 */
8118 if (!is_guest_mode(vcpu) ||
8119 !nested_cpu_has2(vmx->nested.current_vmcs12,
8120 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8121 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8122 }
8123
8124 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8125 {
8126 u16 status;
8127 u8 old;
8128
8129 if (isr == -1)
8130 isr = 0;
8131
8132 status = vmcs_read16(GUEST_INTR_STATUS);
8133 old = status >> 8;
8134 if (isr != old) {
8135 status &= 0xff;
8136 status |= isr << 8;
8137 vmcs_write16(GUEST_INTR_STATUS, status);
8138 }
8139 }
8140
8141 static void vmx_set_rvi(int vector)
8142 {
8143 u16 status;
8144 u8 old;
8145
8146 if (vector == -1)
8147 vector = 0;
8148
8149 status = vmcs_read16(GUEST_INTR_STATUS);
8150 old = (u8)status & 0xff;
8151 if ((u8)vector != old) {
8152 status &= ~0xff;
8153 status |= (u8)vector;
8154 vmcs_write16(GUEST_INTR_STATUS, status);
8155 }
8156 }
8157
8158 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8159 {
8160 if (!is_guest_mode(vcpu)) {
8161 vmx_set_rvi(max_irr);
8162 return;
8163 }
8164
8165 if (max_irr == -1)
8166 return;
8167
8168 /*
8169 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8170 * handles it.
8171 */
8172 if (nested_exit_on_intr(vcpu))
8173 return;
8174
8175 /*
8176 * Else, fall back to pre-APICv interrupt injection since L2
8177 * is run without virtual interrupt delivery.
8178 */
8179 if (!kvm_event_needs_reinjection(vcpu) &&
8180 vmx_interrupt_allowed(vcpu)) {
8181 kvm_queue_interrupt(vcpu, max_irr, false);
8182 vmx_inject_irq(vcpu);
8183 }
8184 }
8185
8186 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8187 {
8188 u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
8189 if (!vmx_cpu_uses_apicv(vcpu))
8190 return;
8191
8192 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8193 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8194 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8195 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8196 }
8197
8198 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8199 {
8200 u32 exit_intr_info;
8201
8202 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8203 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8204 return;
8205
8206 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8207 exit_intr_info = vmx->exit_intr_info;
8208
8209 /* Handle machine checks before interrupts are enabled */
8210 if (is_machine_check(exit_intr_info))
8211 kvm_machine_check();
8212
8213 /* We need to handle NMIs before interrupts are enabled */
8214 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8215 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8216 kvm_before_handle_nmi(&vmx->vcpu);
8217 asm("int $2");
8218 kvm_after_handle_nmi(&vmx->vcpu);
8219 }
8220 }
8221
8222 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8223 {
8224 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8225
8226 /*
8227 * If external interrupt exists, IF bit is set in rflags/eflags on the
8228 * interrupt stack frame, and interrupt will be enabled on a return
8229 * from interrupt handler.
8230 */
8231 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8232 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8233 unsigned int vector;
8234 unsigned long entry;
8235 gate_desc *desc;
8236 struct vcpu_vmx *vmx = to_vmx(vcpu);
8237 #ifdef CONFIG_X86_64
8238 unsigned long tmp;
8239 #endif
8240
8241 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8242 desc = (gate_desc *)vmx->host_idt_base + vector;
8243 entry = gate_offset(*desc);
8244 asm volatile(
8245 #ifdef CONFIG_X86_64
8246 "mov %%" _ASM_SP ", %[sp]\n\t"
8247 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8248 "push $%c[ss]\n\t"
8249 "push %[sp]\n\t"
8250 #endif
8251 "pushf\n\t"
8252 "orl $0x200, (%%" _ASM_SP ")\n\t"
8253 __ASM_SIZE(push) " $%c[cs]\n\t"
8254 "call *%[entry]\n\t"
8255 :
8256 #ifdef CONFIG_X86_64
8257 [sp]"=&r"(tmp)
8258 #endif
8259 :
8260 [entry]"r"(entry),
8261 [ss]"i"(__KERNEL_DS),
8262 [cs]"i"(__KERNEL_CS)
8263 );
8264 } else
8265 local_irq_enable();
8266 }
8267
8268 static bool vmx_has_high_real_mode_segbase(void)
8269 {
8270 return enable_unrestricted_guest || emulate_invalid_guest_state;
8271 }
8272
8273 static bool vmx_mpx_supported(void)
8274 {
8275 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8276 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8277 }
8278
8279 static bool vmx_xsaves_supported(void)
8280 {
8281 return vmcs_config.cpu_based_2nd_exec_ctrl &
8282 SECONDARY_EXEC_XSAVES;
8283 }
8284
8285 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8286 {
8287 u32 exit_intr_info;
8288 bool unblock_nmi;
8289 u8 vector;
8290 bool idtv_info_valid;
8291
8292 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8293
8294 if (cpu_has_virtual_nmis()) {
8295 if (vmx->nmi_known_unmasked)
8296 return;
8297 /*
8298 * Can't use vmx->exit_intr_info since we're not sure what
8299 * the exit reason is.
8300 */
8301 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8302 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8303 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8304 /*
8305 * SDM 3: 27.7.1.2 (September 2008)
8306 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8307 * a guest IRET fault.
8308 * SDM 3: 23.2.2 (September 2008)
8309 * Bit 12 is undefined in any of the following cases:
8310 * If the VM exit sets the valid bit in the IDT-vectoring
8311 * information field.
8312 * If the VM exit is due to a double fault.
8313 */
8314 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8315 vector != DF_VECTOR && !idtv_info_valid)
8316 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8317 GUEST_INTR_STATE_NMI);
8318 else
8319 vmx->nmi_known_unmasked =
8320 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8321 & GUEST_INTR_STATE_NMI);
8322 } else if (unlikely(vmx->soft_vnmi_blocked))
8323 vmx->vnmi_blocked_time +=
8324 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8325 }
8326
8327 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8328 u32 idt_vectoring_info,
8329 int instr_len_field,
8330 int error_code_field)
8331 {
8332 u8 vector;
8333 int type;
8334 bool idtv_info_valid;
8335
8336 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8337
8338 vcpu->arch.nmi_injected = false;
8339 kvm_clear_exception_queue(vcpu);
8340 kvm_clear_interrupt_queue(vcpu);
8341
8342 if (!idtv_info_valid)
8343 return;
8344
8345 kvm_make_request(KVM_REQ_EVENT, vcpu);
8346
8347 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8348 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8349
8350 switch (type) {
8351 case INTR_TYPE_NMI_INTR:
8352 vcpu->arch.nmi_injected = true;
8353 /*
8354 * SDM 3: 27.7.1.2 (September 2008)
8355 * Clear bit "block by NMI" before VM entry if a NMI
8356 * delivery faulted.
8357 */
8358 vmx_set_nmi_mask(vcpu, false);
8359 break;
8360 case INTR_TYPE_SOFT_EXCEPTION:
8361 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8362 /* fall through */
8363 case INTR_TYPE_HARD_EXCEPTION:
8364 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8365 u32 err = vmcs_read32(error_code_field);
8366 kvm_requeue_exception_e(vcpu, vector, err);
8367 } else
8368 kvm_requeue_exception(vcpu, vector);
8369 break;
8370 case INTR_TYPE_SOFT_INTR:
8371 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8372 /* fall through */
8373 case INTR_TYPE_EXT_INTR:
8374 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8375 break;
8376 default:
8377 break;
8378 }
8379 }
8380
8381 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8382 {
8383 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8384 VM_EXIT_INSTRUCTION_LEN,
8385 IDT_VECTORING_ERROR_CODE);
8386 }
8387
8388 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8389 {
8390 __vmx_complete_interrupts(vcpu,
8391 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8392 VM_ENTRY_INSTRUCTION_LEN,
8393 VM_ENTRY_EXCEPTION_ERROR_CODE);
8394
8395 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8396 }
8397
8398 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8399 {
8400 int i, nr_msrs;
8401 struct perf_guest_switch_msr *msrs;
8402
8403 msrs = perf_guest_get_msrs(&nr_msrs);
8404
8405 if (!msrs)
8406 return;
8407
8408 for (i = 0; i < nr_msrs; i++)
8409 if (msrs[i].host == msrs[i].guest)
8410 clear_atomic_switch_msr(vmx, msrs[i].msr);
8411 else
8412 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8413 msrs[i].host);
8414 }
8415
8416 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8417 {
8418 struct vcpu_vmx *vmx = to_vmx(vcpu);
8419 unsigned long debugctlmsr, cr4;
8420
8421 /* Record the guest's net vcpu time for enforced NMI injections. */
8422 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8423 vmx->entry_time = ktime_get();
8424
8425 /* Don't enter VMX if guest state is invalid, let the exit handler
8426 start emulation until we arrive back to a valid state */
8427 if (vmx->emulation_required)
8428 return;
8429
8430 if (vmx->ple_window_dirty) {
8431 vmx->ple_window_dirty = false;
8432 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8433 }
8434
8435 if (vmx->nested.sync_shadow_vmcs) {
8436 copy_vmcs12_to_shadow(vmx);
8437 vmx->nested.sync_shadow_vmcs = false;
8438 }
8439
8440 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8441 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8442 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8443 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8444
8445 cr4 = cr4_read_shadow();
8446 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8447 vmcs_writel(HOST_CR4, cr4);
8448 vmx->host_state.vmcs_host_cr4 = cr4;
8449 }
8450
8451 /* When single-stepping over STI and MOV SS, we must clear the
8452 * corresponding interruptibility bits in the guest state. Otherwise
8453 * vmentry fails as it then expects bit 14 (BS) in pending debug
8454 * exceptions being set, but that's not correct for the guest debugging
8455 * case. */
8456 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8457 vmx_set_interrupt_shadow(vcpu, 0);
8458
8459 atomic_switch_perf_msrs(vmx);
8460 debugctlmsr = get_debugctlmsr();
8461
8462 vmx->__launched = vmx->loaded_vmcs->launched;
8463 asm(
8464 /* Store host registers */
8465 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8466 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8467 "push %%" _ASM_CX " \n\t"
8468 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8469 "je 1f \n\t"
8470 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8471 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8472 "1: \n\t"
8473 /* Reload cr2 if changed */
8474 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8475 "mov %%cr2, %%" _ASM_DX " \n\t"
8476 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8477 "je 2f \n\t"
8478 "mov %%" _ASM_AX", %%cr2 \n\t"
8479 "2: \n\t"
8480 /* Check if vmlaunch of vmresume is needed */
8481 "cmpl $0, %c[launched](%0) \n\t"
8482 /* Load guest registers. Don't clobber flags. */
8483 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8484 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8485 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8486 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8487 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8488 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8489 #ifdef CONFIG_X86_64
8490 "mov %c[r8](%0), %%r8 \n\t"
8491 "mov %c[r9](%0), %%r9 \n\t"
8492 "mov %c[r10](%0), %%r10 \n\t"
8493 "mov %c[r11](%0), %%r11 \n\t"
8494 "mov %c[r12](%0), %%r12 \n\t"
8495 "mov %c[r13](%0), %%r13 \n\t"
8496 "mov %c[r14](%0), %%r14 \n\t"
8497 "mov %c[r15](%0), %%r15 \n\t"
8498 #endif
8499 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8500
8501 /* Enter guest mode */
8502 "jne 1f \n\t"
8503 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8504 "jmp 2f \n\t"
8505 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8506 "2: "
8507 /* Save guest registers, load host registers, keep flags */
8508 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8509 "pop %0 \n\t"
8510 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8511 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8512 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8513 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8514 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8515 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8516 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8517 #ifdef CONFIG_X86_64
8518 "mov %%r8, %c[r8](%0) \n\t"
8519 "mov %%r9, %c[r9](%0) \n\t"
8520 "mov %%r10, %c[r10](%0) \n\t"
8521 "mov %%r11, %c[r11](%0) \n\t"
8522 "mov %%r12, %c[r12](%0) \n\t"
8523 "mov %%r13, %c[r13](%0) \n\t"
8524 "mov %%r14, %c[r14](%0) \n\t"
8525 "mov %%r15, %c[r15](%0) \n\t"
8526 #endif
8527 "mov %%cr2, %%" _ASM_AX " \n\t"
8528 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8529
8530 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8531 "setbe %c[fail](%0) \n\t"
8532 ".pushsection .rodata \n\t"
8533 ".global vmx_return \n\t"
8534 "vmx_return: " _ASM_PTR " 2b \n\t"
8535 ".popsection"
8536 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8537 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8538 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8539 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8540 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8541 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8542 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8543 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8544 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8545 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8546 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8547 #ifdef CONFIG_X86_64
8548 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8549 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8550 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8551 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8552 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8553 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8554 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8555 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8556 #endif
8557 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8558 [wordsize]"i"(sizeof(ulong))
8559 : "cc", "memory"
8560 #ifdef CONFIG_X86_64
8561 , "rax", "rbx", "rdi", "rsi"
8562 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8563 #else
8564 , "eax", "ebx", "edi", "esi"
8565 #endif
8566 );
8567
8568 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8569 if (debugctlmsr)
8570 update_debugctlmsr(debugctlmsr);
8571
8572 #ifndef CONFIG_X86_64
8573 /*
8574 * The sysexit path does not restore ds/es, so we must set them to
8575 * a reasonable value ourselves.
8576 *
8577 * We can't defer this to vmx_load_host_state() since that function
8578 * may be executed in interrupt context, which saves and restore segments
8579 * around it, nullifying its effect.
8580 */
8581 loadsegment(ds, __USER_DS);
8582 loadsegment(es, __USER_DS);
8583 #endif
8584
8585 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8586 | (1 << VCPU_EXREG_RFLAGS)
8587 | (1 << VCPU_EXREG_PDPTR)
8588 | (1 << VCPU_EXREG_SEGMENTS)
8589 | (1 << VCPU_EXREG_CR3));
8590 vcpu->arch.regs_dirty = 0;
8591
8592 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8593
8594 vmx->loaded_vmcs->launched = 1;
8595
8596 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8597 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8598
8599 /*
8600 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8601 * we did not inject a still-pending event to L1 now because of
8602 * nested_run_pending, we need to re-enable this bit.
8603 */
8604 if (vmx->nested.nested_run_pending)
8605 kvm_make_request(KVM_REQ_EVENT, vcpu);
8606
8607 vmx->nested.nested_run_pending = 0;
8608
8609 vmx_complete_atomic_exit(vmx);
8610 vmx_recover_nmi_blocking(vmx);
8611 vmx_complete_interrupts(vmx);
8612 }
8613
8614 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8615 {
8616 struct vcpu_vmx *vmx = to_vmx(vcpu);
8617 int cpu;
8618
8619 if (vmx->loaded_vmcs == &vmx->vmcs01)
8620 return;
8621
8622 cpu = get_cpu();
8623 vmx->loaded_vmcs = &vmx->vmcs01;
8624 vmx_vcpu_put(vcpu);
8625 vmx_vcpu_load(vcpu, cpu);
8626 vcpu->cpu = cpu;
8627 put_cpu();
8628 }
8629
8630 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8631 {
8632 struct vcpu_vmx *vmx = to_vmx(vcpu);
8633
8634 if (enable_pml)
8635 vmx_disable_pml(vmx);
8636 free_vpid(vmx->vpid);
8637 leave_guest_mode(vcpu);
8638 vmx_load_vmcs01(vcpu);
8639 free_nested(vmx);
8640 free_loaded_vmcs(vmx->loaded_vmcs);
8641 kfree(vmx->guest_msrs);
8642 kvm_vcpu_uninit(vcpu);
8643 kmem_cache_free(kvm_vcpu_cache, vmx);
8644 }
8645
8646 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8647 {
8648 int err;
8649 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8650 int cpu;
8651
8652 if (!vmx)
8653 return ERR_PTR(-ENOMEM);
8654
8655 vmx->vpid = allocate_vpid();
8656
8657 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8658 if (err)
8659 goto free_vcpu;
8660
8661 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8662 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8663 > PAGE_SIZE);
8664
8665 err = -ENOMEM;
8666 if (!vmx->guest_msrs) {
8667 goto uninit_vcpu;
8668 }
8669
8670 vmx->loaded_vmcs = &vmx->vmcs01;
8671 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8672 if (!vmx->loaded_vmcs->vmcs)
8673 goto free_msrs;
8674 if (!vmm_exclusive)
8675 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8676 loaded_vmcs_init(vmx->loaded_vmcs);
8677 if (!vmm_exclusive)
8678 kvm_cpu_vmxoff();
8679
8680 cpu = get_cpu();
8681 vmx_vcpu_load(&vmx->vcpu, cpu);
8682 vmx->vcpu.cpu = cpu;
8683 err = vmx_vcpu_setup(vmx);
8684 vmx_vcpu_put(&vmx->vcpu);
8685 put_cpu();
8686 if (err)
8687 goto free_vmcs;
8688 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8689 err = alloc_apic_access_page(kvm);
8690 if (err)
8691 goto free_vmcs;
8692 }
8693
8694 if (enable_ept) {
8695 if (!kvm->arch.ept_identity_map_addr)
8696 kvm->arch.ept_identity_map_addr =
8697 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8698 err = init_rmode_identity_map(kvm);
8699 if (err)
8700 goto free_vmcs;
8701 }
8702
8703 if (nested)
8704 nested_vmx_setup_ctls_msrs(vmx);
8705
8706 vmx->nested.posted_intr_nv = -1;
8707 vmx->nested.current_vmptr = -1ull;
8708 vmx->nested.current_vmcs12 = NULL;
8709
8710 /*
8711 * If PML is turned on, failure on enabling PML just results in failure
8712 * of creating the vcpu, therefore we can simplify PML logic (by
8713 * avoiding dealing with cases, such as enabling PML partially on vcpus
8714 * for the guest, etc.
8715 */
8716 if (enable_pml) {
8717 err = vmx_enable_pml(vmx);
8718 if (err)
8719 goto free_vmcs;
8720 }
8721
8722 return &vmx->vcpu;
8723
8724 free_vmcs:
8725 free_loaded_vmcs(vmx->loaded_vmcs);
8726 free_msrs:
8727 kfree(vmx->guest_msrs);
8728 uninit_vcpu:
8729 kvm_vcpu_uninit(&vmx->vcpu);
8730 free_vcpu:
8731 free_vpid(vmx->vpid);
8732 kmem_cache_free(kvm_vcpu_cache, vmx);
8733 return ERR_PTR(err);
8734 }
8735
8736 static void __init vmx_check_processor_compat(void *rtn)
8737 {
8738 struct vmcs_config vmcs_conf;
8739
8740 *(int *)rtn = 0;
8741 if (setup_vmcs_config(&vmcs_conf) < 0)
8742 *(int *)rtn = -EIO;
8743 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8744 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8745 smp_processor_id());
8746 *(int *)rtn = -EIO;
8747 }
8748 }
8749
8750 static int get_ept_level(void)
8751 {
8752 return VMX_EPT_DEFAULT_GAW + 1;
8753 }
8754
8755 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8756 {
8757 u8 cache;
8758 u64 ipat = 0;
8759
8760 /* For VT-d and EPT combination
8761 * 1. MMIO: always map as UC
8762 * 2. EPT with VT-d:
8763 * a. VT-d without snooping control feature: can't guarantee the
8764 * result, try to trust guest.
8765 * b. VT-d with snooping control feature: snooping control feature of
8766 * VT-d engine can guarantee the cache correctness. Just set it
8767 * to WB to keep consistent with host. So the same as item 3.
8768 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8769 * consistent with host MTRR
8770 */
8771 if (is_mmio) {
8772 cache = MTRR_TYPE_UNCACHABLE;
8773 goto exit;
8774 }
8775
8776 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8777 ipat = VMX_EPT_IPAT_BIT;
8778 cache = MTRR_TYPE_WRBACK;
8779 goto exit;
8780 }
8781
8782 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8783 ipat = VMX_EPT_IPAT_BIT;
8784 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8785 cache = MTRR_TYPE_WRBACK;
8786 else
8787 cache = MTRR_TYPE_UNCACHABLE;
8788 goto exit;
8789 }
8790
8791 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8792
8793 exit:
8794 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8795 }
8796
8797 static int vmx_get_lpage_level(void)
8798 {
8799 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8800 return PT_DIRECTORY_LEVEL;
8801 else
8802 /* For shadow and EPT supported 1GB page */
8803 return PT_PDPE_LEVEL;
8804 }
8805
8806 static void vmcs_set_secondary_exec_control(u32 new_ctl)
8807 {
8808 /*
8809 * These bits in the secondary execution controls field
8810 * are dynamic, the others are mostly based on the hypervisor
8811 * architecture and the guest's CPUID. Do not touch the
8812 * dynamic bits.
8813 */
8814 u32 mask =
8815 SECONDARY_EXEC_SHADOW_VMCS |
8816 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
8817 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8818
8819 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8820
8821 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8822 (new_ctl & ~mask) | (cur_ctl & mask));
8823 }
8824
8825 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8826 {
8827 struct kvm_cpuid_entry2 *best;
8828 struct vcpu_vmx *vmx = to_vmx(vcpu);
8829 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
8830
8831 if (vmx_rdtscp_supported()) {
8832 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
8833 if (!rdtscp_enabled)
8834 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
8835
8836 if (nested) {
8837 if (rdtscp_enabled)
8838 vmx->nested.nested_vmx_secondary_ctls_high |=
8839 SECONDARY_EXEC_RDTSCP;
8840 else
8841 vmx->nested.nested_vmx_secondary_ctls_high &=
8842 ~SECONDARY_EXEC_RDTSCP;
8843 }
8844 }
8845
8846 /* Exposing INVPCID only when PCID is exposed */
8847 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8848 if (vmx_invpcid_supported() &&
8849 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
8850 !guest_cpuid_has_pcid(vcpu))) {
8851 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8852
8853 if (best)
8854 best->ebx &= ~bit(X86_FEATURE_INVPCID);
8855 }
8856
8857 vmcs_set_secondary_exec_control(secondary_exec_ctl);
8858
8859 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
8860 if (guest_cpuid_has_pcommit(vcpu))
8861 vmx->nested.nested_vmx_secondary_ctls_high |=
8862 SECONDARY_EXEC_PCOMMIT;
8863 else
8864 vmx->nested.nested_vmx_secondary_ctls_high &=
8865 ~SECONDARY_EXEC_PCOMMIT;
8866 }
8867 }
8868
8869 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8870 {
8871 if (func == 1 && nested)
8872 entry->ecx |= bit(X86_FEATURE_VMX);
8873 }
8874
8875 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8876 struct x86_exception *fault)
8877 {
8878 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8879 u32 exit_reason;
8880
8881 if (fault->error_code & PFERR_RSVD_MASK)
8882 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8883 else
8884 exit_reason = EXIT_REASON_EPT_VIOLATION;
8885 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8886 vmcs12->guest_physical_address = fault->address;
8887 }
8888
8889 /* Callbacks for nested_ept_init_mmu_context: */
8890
8891 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8892 {
8893 /* return the page table to be shadowed - in our case, EPT12 */
8894 return get_vmcs12(vcpu)->ept_pointer;
8895 }
8896
8897 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8898 {
8899 WARN_ON(mmu_is_nested(vcpu));
8900 kvm_init_shadow_ept_mmu(vcpu,
8901 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8902 VMX_EPT_EXECUTE_ONLY_BIT);
8903 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8904 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8905 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8906
8907 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
8908 }
8909
8910 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8911 {
8912 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8913 }
8914
8915 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8916 u16 error_code)
8917 {
8918 bool inequality, bit;
8919
8920 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8921 inequality =
8922 (error_code & vmcs12->page_fault_error_code_mask) !=
8923 vmcs12->page_fault_error_code_match;
8924 return inequality ^ bit;
8925 }
8926
8927 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8928 struct x86_exception *fault)
8929 {
8930 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8931
8932 WARN_ON(!is_guest_mode(vcpu));
8933
8934 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8935 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8936 vmcs_read32(VM_EXIT_INTR_INFO),
8937 vmcs_readl(EXIT_QUALIFICATION));
8938 else
8939 kvm_inject_page_fault(vcpu, fault);
8940 }
8941
8942 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8943 struct vmcs12 *vmcs12)
8944 {
8945 struct vcpu_vmx *vmx = to_vmx(vcpu);
8946 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8947
8948 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8949 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8950 vmcs12->apic_access_addr >> maxphyaddr)
8951 return false;
8952
8953 /*
8954 * Translate L1 physical address to host physical
8955 * address for vmcs02. Keep the page pinned, so this
8956 * physical address remains valid. We keep a reference
8957 * to it so we can release it later.
8958 */
8959 if (vmx->nested.apic_access_page) /* shouldn't happen */
8960 nested_release_page(vmx->nested.apic_access_page);
8961 vmx->nested.apic_access_page =
8962 nested_get_page(vcpu, vmcs12->apic_access_addr);
8963 }
8964
8965 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8966 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8967 vmcs12->virtual_apic_page_addr >> maxphyaddr)
8968 return false;
8969
8970 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8971 nested_release_page(vmx->nested.virtual_apic_page);
8972 vmx->nested.virtual_apic_page =
8973 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8974
8975 /*
8976 * Failing the vm entry is _not_ what the processor does
8977 * but it's basically the only possibility we have.
8978 * We could still enter the guest if CR8 load exits are
8979 * enabled, CR8 store exits are enabled, and virtualize APIC
8980 * access is disabled; in this case the processor would never
8981 * use the TPR shadow and we could simply clear the bit from
8982 * the execution control. But such a configuration is useless,
8983 * so let's keep the code simple.
8984 */
8985 if (!vmx->nested.virtual_apic_page)
8986 return false;
8987 }
8988
8989 if (nested_cpu_has_posted_intr(vmcs12)) {
8990 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8991 vmcs12->posted_intr_desc_addr >> maxphyaddr)
8992 return false;
8993
8994 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8995 kunmap(vmx->nested.pi_desc_page);
8996 nested_release_page(vmx->nested.pi_desc_page);
8997 }
8998 vmx->nested.pi_desc_page =
8999 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9000 if (!vmx->nested.pi_desc_page)
9001 return false;
9002
9003 vmx->nested.pi_desc =
9004 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9005 if (!vmx->nested.pi_desc) {
9006 nested_release_page_clean(vmx->nested.pi_desc_page);
9007 return false;
9008 }
9009 vmx->nested.pi_desc =
9010 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9011 (unsigned long)(vmcs12->posted_intr_desc_addr &
9012 (PAGE_SIZE - 1)));
9013 }
9014
9015 return true;
9016 }
9017
9018 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9019 {
9020 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9021 struct vcpu_vmx *vmx = to_vmx(vcpu);
9022
9023 if (vcpu->arch.virtual_tsc_khz == 0)
9024 return;
9025
9026 /* Make sure short timeouts reliably trigger an immediate vmexit.
9027 * hrtimer_start does not guarantee this. */
9028 if (preemption_timeout <= 1) {
9029 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9030 return;
9031 }
9032
9033 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9034 preemption_timeout *= 1000000;
9035 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9036 hrtimer_start(&vmx->nested.preemption_timer,
9037 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9038 }
9039
9040 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9041 struct vmcs12 *vmcs12)
9042 {
9043 int maxphyaddr;
9044 u64 addr;
9045
9046 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9047 return 0;
9048
9049 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9050 WARN_ON(1);
9051 return -EINVAL;
9052 }
9053 maxphyaddr = cpuid_maxphyaddr(vcpu);
9054
9055 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9056 ((addr + PAGE_SIZE) >> maxphyaddr))
9057 return -EINVAL;
9058
9059 return 0;
9060 }
9061
9062 /*
9063 * Merge L0's and L1's MSR bitmap, return false to indicate that
9064 * we do not use the hardware.
9065 */
9066 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9067 struct vmcs12 *vmcs12)
9068 {
9069 int msr;
9070 struct page *page;
9071 unsigned long *msr_bitmap;
9072
9073 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9074 return false;
9075
9076 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9077 if (!page) {
9078 WARN_ON(1);
9079 return false;
9080 }
9081 msr_bitmap = (unsigned long *)kmap(page);
9082 if (!msr_bitmap) {
9083 nested_release_page_clean(page);
9084 WARN_ON(1);
9085 return false;
9086 }
9087
9088 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9089 if (nested_cpu_has_apic_reg_virt(vmcs12))
9090 for (msr = 0x800; msr <= 0x8ff; msr++)
9091 nested_vmx_disable_intercept_for_msr(
9092 msr_bitmap,
9093 vmx_msr_bitmap_nested,
9094 msr, MSR_TYPE_R);
9095 /* TPR is allowed */
9096 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9097 vmx_msr_bitmap_nested,
9098 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9099 MSR_TYPE_R | MSR_TYPE_W);
9100 if (nested_cpu_has_vid(vmcs12)) {
9101 /* EOI and self-IPI are allowed */
9102 nested_vmx_disable_intercept_for_msr(
9103 msr_bitmap,
9104 vmx_msr_bitmap_nested,
9105 APIC_BASE_MSR + (APIC_EOI >> 4),
9106 MSR_TYPE_W);
9107 nested_vmx_disable_intercept_for_msr(
9108 msr_bitmap,
9109 vmx_msr_bitmap_nested,
9110 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9111 MSR_TYPE_W);
9112 }
9113 } else {
9114 /*
9115 * Enable reading intercept of all the x2apic
9116 * MSRs. We should not rely on vmcs12 to do any
9117 * optimizations here, it may have been modified
9118 * by L1.
9119 */
9120 for (msr = 0x800; msr <= 0x8ff; msr++)
9121 __vmx_enable_intercept_for_msr(
9122 vmx_msr_bitmap_nested,
9123 msr,
9124 MSR_TYPE_R);
9125
9126 __vmx_enable_intercept_for_msr(
9127 vmx_msr_bitmap_nested,
9128 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9129 MSR_TYPE_W);
9130 __vmx_enable_intercept_for_msr(
9131 vmx_msr_bitmap_nested,
9132 APIC_BASE_MSR + (APIC_EOI >> 4),
9133 MSR_TYPE_W);
9134 __vmx_enable_intercept_for_msr(
9135 vmx_msr_bitmap_nested,
9136 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9137 MSR_TYPE_W);
9138 }
9139 kunmap(page);
9140 nested_release_page_clean(page);
9141
9142 return true;
9143 }
9144
9145 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9146 struct vmcs12 *vmcs12)
9147 {
9148 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9149 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9150 !nested_cpu_has_vid(vmcs12) &&
9151 !nested_cpu_has_posted_intr(vmcs12))
9152 return 0;
9153
9154 /*
9155 * If virtualize x2apic mode is enabled,
9156 * virtualize apic access must be disabled.
9157 */
9158 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9159 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9160 return -EINVAL;
9161
9162 /*
9163 * If virtual interrupt delivery is enabled,
9164 * we must exit on external interrupts.
9165 */
9166 if (nested_cpu_has_vid(vmcs12) &&
9167 !nested_exit_on_intr(vcpu))
9168 return -EINVAL;
9169
9170 /*
9171 * bits 15:8 should be zero in posted_intr_nv,
9172 * the descriptor address has been already checked
9173 * in nested_get_vmcs12_pages.
9174 */
9175 if (nested_cpu_has_posted_intr(vmcs12) &&
9176 (!nested_cpu_has_vid(vmcs12) ||
9177 !nested_exit_intr_ack_set(vcpu) ||
9178 vmcs12->posted_intr_nv & 0xff00))
9179 return -EINVAL;
9180
9181 /* tpr shadow is needed by all apicv features. */
9182 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9183 return -EINVAL;
9184
9185 return 0;
9186 }
9187
9188 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9189 unsigned long count_field,
9190 unsigned long addr_field)
9191 {
9192 int maxphyaddr;
9193 u64 count, addr;
9194
9195 if (vmcs12_read_any(vcpu, count_field, &count) ||
9196 vmcs12_read_any(vcpu, addr_field, &addr)) {
9197 WARN_ON(1);
9198 return -EINVAL;
9199 }
9200 if (count == 0)
9201 return 0;
9202 maxphyaddr = cpuid_maxphyaddr(vcpu);
9203 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9204 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9205 pr_warn_ratelimited(
9206 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9207 addr_field, maxphyaddr, count, addr);
9208 return -EINVAL;
9209 }
9210 return 0;
9211 }
9212
9213 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9214 struct vmcs12 *vmcs12)
9215 {
9216 if (vmcs12->vm_exit_msr_load_count == 0 &&
9217 vmcs12->vm_exit_msr_store_count == 0 &&
9218 vmcs12->vm_entry_msr_load_count == 0)
9219 return 0; /* Fast path */
9220 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9221 VM_EXIT_MSR_LOAD_ADDR) ||
9222 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9223 VM_EXIT_MSR_STORE_ADDR) ||
9224 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9225 VM_ENTRY_MSR_LOAD_ADDR))
9226 return -EINVAL;
9227 return 0;
9228 }
9229
9230 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9231 struct vmx_msr_entry *e)
9232 {
9233 /* x2APIC MSR accesses are not allowed */
9234 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9235 return -EINVAL;
9236 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9237 e->index == MSR_IA32_UCODE_REV)
9238 return -EINVAL;
9239 if (e->reserved != 0)
9240 return -EINVAL;
9241 return 0;
9242 }
9243
9244 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9245 struct vmx_msr_entry *e)
9246 {
9247 if (e->index == MSR_FS_BASE ||
9248 e->index == MSR_GS_BASE ||
9249 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9250 nested_vmx_msr_check_common(vcpu, e))
9251 return -EINVAL;
9252 return 0;
9253 }
9254
9255 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9256 struct vmx_msr_entry *e)
9257 {
9258 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9259 nested_vmx_msr_check_common(vcpu, e))
9260 return -EINVAL;
9261 return 0;
9262 }
9263
9264 /*
9265 * Load guest's/host's msr at nested entry/exit.
9266 * return 0 for success, entry index for failure.
9267 */
9268 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9269 {
9270 u32 i;
9271 struct vmx_msr_entry e;
9272 struct msr_data msr;
9273
9274 msr.host_initiated = false;
9275 for (i = 0; i < count; i++) {
9276 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9277 &e, sizeof(e))) {
9278 pr_warn_ratelimited(
9279 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9280 __func__, i, gpa + i * sizeof(e));
9281 goto fail;
9282 }
9283 if (nested_vmx_load_msr_check(vcpu, &e)) {
9284 pr_warn_ratelimited(
9285 "%s check failed (%u, 0x%x, 0x%x)\n",
9286 __func__, i, e.index, e.reserved);
9287 goto fail;
9288 }
9289 msr.index = e.index;
9290 msr.data = e.value;
9291 if (kvm_set_msr(vcpu, &msr)) {
9292 pr_warn_ratelimited(
9293 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9294 __func__, i, e.index, e.value);
9295 goto fail;
9296 }
9297 }
9298 return 0;
9299 fail:
9300 return i + 1;
9301 }
9302
9303 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9304 {
9305 u32 i;
9306 struct vmx_msr_entry e;
9307
9308 for (i = 0; i < count; i++) {
9309 struct msr_data msr_info;
9310 if (kvm_vcpu_read_guest(vcpu,
9311 gpa + i * sizeof(e),
9312 &e, 2 * sizeof(u32))) {
9313 pr_warn_ratelimited(
9314 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9315 __func__, i, gpa + i * sizeof(e));
9316 return -EINVAL;
9317 }
9318 if (nested_vmx_store_msr_check(vcpu, &e)) {
9319 pr_warn_ratelimited(
9320 "%s check failed (%u, 0x%x, 0x%x)\n",
9321 __func__, i, e.index, e.reserved);
9322 return -EINVAL;
9323 }
9324 msr_info.host_initiated = false;
9325 msr_info.index = e.index;
9326 if (kvm_get_msr(vcpu, &msr_info)) {
9327 pr_warn_ratelimited(
9328 "%s cannot read MSR (%u, 0x%x)\n",
9329 __func__, i, e.index);
9330 return -EINVAL;
9331 }
9332 if (kvm_vcpu_write_guest(vcpu,
9333 gpa + i * sizeof(e) +
9334 offsetof(struct vmx_msr_entry, value),
9335 &msr_info.data, sizeof(msr_info.data))) {
9336 pr_warn_ratelimited(
9337 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9338 __func__, i, e.index, msr_info.data);
9339 return -EINVAL;
9340 }
9341 }
9342 return 0;
9343 }
9344
9345 /*
9346 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9347 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9348 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9349 * guest in a way that will both be appropriate to L1's requests, and our
9350 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9351 * function also has additional necessary side-effects, like setting various
9352 * vcpu->arch fields.
9353 */
9354 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9355 {
9356 struct vcpu_vmx *vmx = to_vmx(vcpu);
9357 u32 exec_control;
9358
9359 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9360 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9361 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9362 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9363 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9364 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9365 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9366 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9367 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9368 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9369 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9370 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9371 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9372 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9373 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9374 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9375 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9376 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9377 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9378 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9379 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9380 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9381 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9382 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9383 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9384 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9385 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9386 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9387 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9388 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9389 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9390 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9391 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9392 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9393 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9394 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9395
9396 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9397 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9398 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9399 } else {
9400 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9401 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9402 }
9403 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9404 vmcs12->vm_entry_intr_info_field);
9405 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9406 vmcs12->vm_entry_exception_error_code);
9407 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9408 vmcs12->vm_entry_instruction_len);
9409 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9410 vmcs12->guest_interruptibility_info);
9411 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9412 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9413 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9414 vmcs12->guest_pending_dbg_exceptions);
9415 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9416 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9417
9418 if (nested_cpu_has_xsaves(vmcs12))
9419 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9420 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9421
9422 exec_control = vmcs12->pin_based_vm_exec_control;
9423 exec_control |= vmcs_config.pin_based_exec_ctrl;
9424 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9425
9426 if (nested_cpu_has_posted_intr(vmcs12)) {
9427 /*
9428 * Note that we use L0's vector here and in
9429 * vmx_deliver_nested_posted_interrupt.
9430 */
9431 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9432 vmx->nested.pi_pending = false;
9433 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9434 vmcs_write64(POSTED_INTR_DESC_ADDR,
9435 page_to_phys(vmx->nested.pi_desc_page) +
9436 (unsigned long)(vmcs12->posted_intr_desc_addr &
9437 (PAGE_SIZE - 1)));
9438 } else
9439 exec_control &= ~PIN_BASED_POSTED_INTR;
9440
9441 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9442
9443 vmx->nested.preemption_timer_expired = false;
9444 if (nested_cpu_has_preemption_timer(vmcs12))
9445 vmx_start_preemption_timer(vcpu);
9446
9447 /*
9448 * Whether page-faults are trapped is determined by a combination of
9449 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9450 * If enable_ept, L0 doesn't care about page faults and we should
9451 * set all of these to L1's desires. However, if !enable_ept, L0 does
9452 * care about (at least some) page faults, and because it is not easy
9453 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9454 * to exit on each and every L2 page fault. This is done by setting
9455 * MASK=MATCH=0 and (see below) EB.PF=1.
9456 * Note that below we don't need special code to set EB.PF beyond the
9457 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9458 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9459 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9460 *
9461 * A problem with this approach (when !enable_ept) is that L1 may be
9462 * injected with more page faults than it asked for. This could have
9463 * caused problems, but in practice existing hypervisors don't care.
9464 * To fix this, we will need to emulate the PFEC checking (on the L1
9465 * page tables), using walk_addr(), when injecting PFs to L1.
9466 */
9467 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9468 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9469 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9470 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9471
9472 if (cpu_has_secondary_exec_ctrls()) {
9473 exec_control = vmx_secondary_exec_control(vmx);
9474
9475 /* Take the following fields only from vmcs12 */
9476 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9477 SECONDARY_EXEC_RDTSCP |
9478 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9479 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9480 SECONDARY_EXEC_PCOMMIT);
9481 if (nested_cpu_has(vmcs12,
9482 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9483 exec_control |= vmcs12->secondary_vm_exec_control;
9484
9485 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9486 /*
9487 * If translation failed, no matter: This feature asks
9488 * to exit when accessing the given address, and if it
9489 * can never be accessed, this feature won't do
9490 * anything anyway.
9491 */
9492 if (!vmx->nested.apic_access_page)
9493 exec_control &=
9494 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9495 else
9496 vmcs_write64(APIC_ACCESS_ADDR,
9497 page_to_phys(vmx->nested.apic_access_page));
9498 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9499 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9500 exec_control |=
9501 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9502 kvm_vcpu_reload_apic_access_page(vcpu);
9503 }
9504
9505 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9506 vmcs_write64(EOI_EXIT_BITMAP0,
9507 vmcs12->eoi_exit_bitmap0);
9508 vmcs_write64(EOI_EXIT_BITMAP1,
9509 vmcs12->eoi_exit_bitmap1);
9510 vmcs_write64(EOI_EXIT_BITMAP2,
9511 vmcs12->eoi_exit_bitmap2);
9512 vmcs_write64(EOI_EXIT_BITMAP3,
9513 vmcs12->eoi_exit_bitmap3);
9514 vmcs_write16(GUEST_INTR_STATUS,
9515 vmcs12->guest_intr_status);
9516 }
9517
9518 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9519 }
9520
9521
9522 /*
9523 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9524 * Some constant fields are set here by vmx_set_constant_host_state().
9525 * Other fields are different per CPU, and will be set later when
9526 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9527 */
9528 vmx_set_constant_host_state(vmx);
9529
9530 /*
9531 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9532 * entry, but only if the current (host) sp changed from the value
9533 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9534 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9535 * here we just force the write to happen on entry.
9536 */
9537 vmx->host_rsp = 0;
9538
9539 exec_control = vmx_exec_control(vmx); /* L0's desires */
9540 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9541 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9542 exec_control &= ~CPU_BASED_TPR_SHADOW;
9543 exec_control |= vmcs12->cpu_based_vm_exec_control;
9544
9545 if (exec_control & CPU_BASED_TPR_SHADOW) {
9546 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9547 page_to_phys(vmx->nested.virtual_apic_page));
9548 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9549 }
9550
9551 if (cpu_has_vmx_msr_bitmap() &&
9552 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9553 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9554 /* MSR_BITMAP will be set by following vmx_set_efer. */
9555 } else
9556 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9557
9558 /*
9559 * Merging of IO bitmap not currently supported.
9560 * Rather, exit every time.
9561 */
9562 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9563 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9564
9565 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9566
9567 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9568 * bitwise-or of what L1 wants to trap for L2, and what we want to
9569 * trap. Note that CR0.TS also needs updating - we do this later.
9570 */
9571 update_exception_bitmap(vcpu);
9572 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9573 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9574
9575 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9576 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9577 * bits are further modified by vmx_set_efer() below.
9578 */
9579 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9580
9581 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9582 * emulated by vmx_set_efer(), below.
9583 */
9584 vm_entry_controls_init(vmx,
9585 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9586 ~VM_ENTRY_IA32E_MODE) |
9587 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9588
9589 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9590 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9591 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9592 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9593 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9594
9595
9596 set_cr4_guest_host_mask(vmx);
9597
9598 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9599 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9600
9601 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9602 vmcs_write64(TSC_OFFSET,
9603 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9604 else
9605 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9606
9607 if (enable_vpid) {
9608 /*
9609 * Trivially support vpid by letting L2s share their parent
9610 * L1's vpid. TODO: move to a more elaborate solution, giving
9611 * each L2 its own vpid and exposing the vpid feature to L1.
9612 */
9613 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9614 vmx_flush_tlb(vcpu);
9615 }
9616
9617 if (nested_cpu_has_ept(vmcs12)) {
9618 kvm_mmu_unload(vcpu);
9619 nested_ept_init_mmu_context(vcpu);
9620 }
9621
9622 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9623 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9624 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9625 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9626 else
9627 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9628 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9629 vmx_set_efer(vcpu, vcpu->arch.efer);
9630
9631 /*
9632 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9633 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9634 * The CR0_READ_SHADOW is what L2 should have expected to read given
9635 * the specifications by L1; It's not enough to take
9636 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9637 * have more bits than L1 expected.
9638 */
9639 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9640 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9641
9642 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9643 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9644
9645 /* shadow page tables on either EPT or shadow page tables */
9646 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9647 kvm_mmu_reset_context(vcpu);
9648
9649 if (!enable_ept)
9650 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9651
9652 /*
9653 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9654 */
9655 if (enable_ept) {
9656 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9657 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9658 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9659 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9660 }
9661
9662 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9663 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9664 }
9665
9666 /*
9667 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9668 * for running an L2 nested guest.
9669 */
9670 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9671 {
9672 struct vmcs12 *vmcs12;
9673 struct vcpu_vmx *vmx = to_vmx(vcpu);
9674 int cpu;
9675 struct loaded_vmcs *vmcs02;
9676 bool ia32e;
9677 u32 msr_entry_idx;
9678
9679 if (!nested_vmx_check_permission(vcpu) ||
9680 !nested_vmx_check_vmcs12(vcpu))
9681 return 1;
9682
9683 skip_emulated_instruction(vcpu);
9684 vmcs12 = get_vmcs12(vcpu);
9685
9686 if (enable_shadow_vmcs)
9687 copy_shadow_to_vmcs12(vmx);
9688
9689 /*
9690 * The nested entry process starts with enforcing various prerequisites
9691 * on vmcs12 as required by the Intel SDM, and act appropriately when
9692 * they fail: As the SDM explains, some conditions should cause the
9693 * instruction to fail, while others will cause the instruction to seem
9694 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9695 * To speed up the normal (success) code path, we should avoid checking
9696 * for misconfigurations which will anyway be caught by the processor
9697 * when using the merged vmcs02.
9698 */
9699 if (vmcs12->launch_state == launch) {
9700 nested_vmx_failValid(vcpu,
9701 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9702 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9703 return 1;
9704 }
9705
9706 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9707 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9708 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9709 return 1;
9710 }
9711
9712 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9713 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9714 return 1;
9715 }
9716
9717 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9718 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9719 return 1;
9720 }
9721
9722 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9723 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9724 return 1;
9725 }
9726
9727 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9728 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9729 return 1;
9730 }
9731
9732 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9733 vmx->nested.nested_vmx_true_procbased_ctls_low,
9734 vmx->nested.nested_vmx_procbased_ctls_high) ||
9735 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9736 vmx->nested.nested_vmx_secondary_ctls_low,
9737 vmx->nested.nested_vmx_secondary_ctls_high) ||
9738 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9739 vmx->nested.nested_vmx_pinbased_ctls_low,
9740 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9741 !vmx_control_verify(vmcs12->vm_exit_controls,
9742 vmx->nested.nested_vmx_true_exit_ctls_low,
9743 vmx->nested.nested_vmx_exit_ctls_high) ||
9744 !vmx_control_verify(vmcs12->vm_entry_controls,
9745 vmx->nested.nested_vmx_true_entry_ctls_low,
9746 vmx->nested.nested_vmx_entry_ctls_high))
9747 {
9748 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9749 return 1;
9750 }
9751
9752 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9753 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9754 nested_vmx_failValid(vcpu,
9755 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9756 return 1;
9757 }
9758
9759 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9760 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9761 nested_vmx_entry_failure(vcpu, vmcs12,
9762 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9763 return 1;
9764 }
9765 if (vmcs12->vmcs_link_pointer != -1ull) {
9766 nested_vmx_entry_failure(vcpu, vmcs12,
9767 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9768 return 1;
9769 }
9770
9771 /*
9772 * If the load IA32_EFER VM-entry control is 1, the following checks
9773 * are performed on the field for the IA32_EFER MSR:
9774 * - Bits reserved in the IA32_EFER MSR must be 0.
9775 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9776 * the IA-32e mode guest VM-exit control. It must also be identical
9777 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9778 * CR0.PG) is 1.
9779 */
9780 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9781 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9782 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9783 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9784 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9785 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9786 nested_vmx_entry_failure(vcpu, vmcs12,
9787 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9788 return 1;
9789 }
9790 }
9791
9792 /*
9793 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9794 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9795 * the values of the LMA and LME bits in the field must each be that of
9796 * the host address-space size VM-exit control.
9797 */
9798 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9799 ia32e = (vmcs12->vm_exit_controls &
9800 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9801 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9802 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9803 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9804 nested_vmx_entry_failure(vcpu, vmcs12,
9805 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9806 return 1;
9807 }
9808 }
9809
9810 /*
9811 * We're finally done with prerequisite checking, and can start with
9812 * the nested entry.
9813 */
9814
9815 vmcs02 = nested_get_current_vmcs02(vmx);
9816 if (!vmcs02)
9817 return -ENOMEM;
9818
9819 enter_guest_mode(vcpu);
9820
9821 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9822
9823 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9824 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9825
9826 cpu = get_cpu();
9827 vmx->loaded_vmcs = vmcs02;
9828 vmx_vcpu_put(vcpu);
9829 vmx_vcpu_load(vcpu, cpu);
9830 vcpu->cpu = cpu;
9831 put_cpu();
9832
9833 vmx_segment_cache_clear(vmx);
9834
9835 prepare_vmcs02(vcpu, vmcs12);
9836
9837 msr_entry_idx = nested_vmx_load_msr(vcpu,
9838 vmcs12->vm_entry_msr_load_addr,
9839 vmcs12->vm_entry_msr_load_count);
9840 if (msr_entry_idx) {
9841 leave_guest_mode(vcpu);
9842 vmx_load_vmcs01(vcpu);
9843 nested_vmx_entry_failure(vcpu, vmcs12,
9844 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9845 return 1;
9846 }
9847
9848 vmcs12->launch_state = 1;
9849
9850 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9851 return kvm_vcpu_halt(vcpu);
9852
9853 vmx->nested.nested_run_pending = 1;
9854
9855 /*
9856 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9857 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9858 * returned as far as L1 is concerned. It will only return (and set
9859 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9860 */
9861 return 1;
9862 }
9863
9864 /*
9865 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9866 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9867 * This function returns the new value we should put in vmcs12.guest_cr0.
9868 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9869 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9870 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9871 * didn't trap the bit, because if L1 did, so would L0).
9872 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9873 * been modified by L2, and L1 knows it. So just leave the old value of
9874 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9875 * isn't relevant, because if L0 traps this bit it can set it to anything.
9876 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9877 * changed these bits, and therefore they need to be updated, but L0
9878 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9879 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9880 */
9881 static inline unsigned long
9882 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9883 {
9884 return
9885 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9886 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9887 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9888 vcpu->arch.cr0_guest_owned_bits));
9889 }
9890
9891 static inline unsigned long
9892 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9893 {
9894 return
9895 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9896 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9897 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9898 vcpu->arch.cr4_guest_owned_bits));
9899 }
9900
9901 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9902 struct vmcs12 *vmcs12)
9903 {
9904 u32 idt_vectoring;
9905 unsigned int nr;
9906
9907 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9908 nr = vcpu->arch.exception.nr;
9909 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9910
9911 if (kvm_exception_is_soft(nr)) {
9912 vmcs12->vm_exit_instruction_len =
9913 vcpu->arch.event_exit_inst_len;
9914 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9915 } else
9916 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9917
9918 if (vcpu->arch.exception.has_error_code) {
9919 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9920 vmcs12->idt_vectoring_error_code =
9921 vcpu->arch.exception.error_code;
9922 }
9923
9924 vmcs12->idt_vectoring_info_field = idt_vectoring;
9925 } else if (vcpu->arch.nmi_injected) {
9926 vmcs12->idt_vectoring_info_field =
9927 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9928 } else if (vcpu->arch.interrupt.pending) {
9929 nr = vcpu->arch.interrupt.nr;
9930 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9931
9932 if (vcpu->arch.interrupt.soft) {
9933 idt_vectoring |= INTR_TYPE_SOFT_INTR;
9934 vmcs12->vm_entry_instruction_len =
9935 vcpu->arch.event_exit_inst_len;
9936 } else
9937 idt_vectoring |= INTR_TYPE_EXT_INTR;
9938
9939 vmcs12->idt_vectoring_info_field = idt_vectoring;
9940 }
9941 }
9942
9943 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9944 {
9945 struct vcpu_vmx *vmx = to_vmx(vcpu);
9946
9947 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9948 vmx->nested.preemption_timer_expired) {
9949 if (vmx->nested.nested_run_pending)
9950 return -EBUSY;
9951 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9952 return 0;
9953 }
9954
9955 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9956 if (vmx->nested.nested_run_pending ||
9957 vcpu->arch.interrupt.pending)
9958 return -EBUSY;
9959 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9960 NMI_VECTOR | INTR_TYPE_NMI_INTR |
9961 INTR_INFO_VALID_MASK, 0);
9962 /*
9963 * The NMI-triggered VM exit counts as injection:
9964 * clear this one and block further NMIs.
9965 */
9966 vcpu->arch.nmi_pending = 0;
9967 vmx_set_nmi_mask(vcpu, true);
9968 return 0;
9969 }
9970
9971 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9972 nested_exit_on_intr(vcpu)) {
9973 if (vmx->nested.nested_run_pending)
9974 return -EBUSY;
9975 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9976 return 0;
9977 }
9978
9979 return vmx_complete_nested_posted_interrupt(vcpu);
9980 }
9981
9982 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9983 {
9984 ktime_t remaining =
9985 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9986 u64 value;
9987
9988 if (ktime_to_ns(remaining) <= 0)
9989 return 0;
9990
9991 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9992 do_div(value, 1000000);
9993 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9994 }
9995
9996 /*
9997 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9998 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9999 * and this function updates it to reflect the changes to the guest state while
10000 * L2 was running (and perhaps made some exits which were handled directly by L0
10001 * without going back to L1), and to reflect the exit reason.
10002 * Note that we do not have to copy here all VMCS fields, just those that
10003 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10004 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10005 * which already writes to vmcs12 directly.
10006 */
10007 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10008 u32 exit_reason, u32 exit_intr_info,
10009 unsigned long exit_qualification)
10010 {
10011 /* update guest state fields: */
10012 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10013 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10014
10015 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10016 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10017 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10018
10019 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10020 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10021 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10022 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10023 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10024 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10025 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10026 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10027 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10028 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10029 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10030 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10031 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10032 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10033 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10034 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10035 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10036 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10037 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10038 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10039 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10040 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10041 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10042 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10043 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10044 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10045 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10046 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10047 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10048 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10049 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10050 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10051 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10052 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10053 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10054 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10055
10056 vmcs12->guest_interruptibility_info =
10057 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10058 vmcs12->guest_pending_dbg_exceptions =
10059 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10060 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10061 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10062 else
10063 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10064
10065 if (nested_cpu_has_preemption_timer(vmcs12)) {
10066 if (vmcs12->vm_exit_controls &
10067 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10068 vmcs12->vmx_preemption_timer_value =
10069 vmx_get_preemption_timer_value(vcpu);
10070 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10071 }
10072
10073 /*
10074 * In some cases (usually, nested EPT), L2 is allowed to change its
10075 * own CR3 without exiting. If it has changed it, we must keep it.
10076 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10077 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10078 *
10079 * Additionally, restore L2's PDPTR to vmcs12.
10080 */
10081 if (enable_ept) {
10082 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
10083 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10084 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10085 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10086 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10087 }
10088
10089 if (nested_cpu_has_vid(vmcs12))
10090 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10091
10092 vmcs12->vm_entry_controls =
10093 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10094 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10095
10096 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10097 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10098 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10099 }
10100
10101 /* TODO: These cannot have changed unless we have MSR bitmaps and
10102 * the relevant bit asks not to trap the change */
10103 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10104 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10105 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10106 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10107 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10108 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10109 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10110 if (vmx_mpx_supported())
10111 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10112 if (nested_cpu_has_xsaves(vmcs12))
10113 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10114
10115 /* update exit information fields: */
10116
10117 vmcs12->vm_exit_reason = exit_reason;
10118 vmcs12->exit_qualification = exit_qualification;
10119
10120 vmcs12->vm_exit_intr_info = exit_intr_info;
10121 if ((vmcs12->vm_exit_intr_info &
10122 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10123 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10124 vmcs12->vm_exit_intr_error_code =
10125 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10126 vmcs12->idt_vectoring_info_field = 0;
10127 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10128 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10129
10130 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10131 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10132 * instead of reading the real value. */
10133 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10134
10135 /*
10136 * Transfer the event that L0 or L1 may wanted to inject into
10137 * L2 to IDT_VECTORING_INFO_FIELD.
10138 */
10139 vmcs12_save_pending_event(vcpu, vmcs12);
10140 }
10141
10142 /*
10143 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10144 * preserved above and would only end up incorrectly in L1.
10145 */
10146 vcpu->arch.nmi_injected = false;
10147 kvm_clear_exception_queue(vcpu);
10148 kvm_clear_interrupt_queue(vcpu);
10149 }
10150
10151 /*
10152 * A part of what we need to when the nested L2 guest exits and we want to
10153 * run its L1 parent, is to reset L1's guest state to the host state specified
10154 * in vmcs12.
10155 * This function is to be called not only on normal nested exit, but also on
10156 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10157 * Failures During or After Loading Guest State").
10158 * This function should be called when the active VMCS is L1's (vmcs01).
10159 */
10160 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10161 struct vmcs12 *vmcs12)
10162 {
10163 struct kvm_segment seg;
10164
10165 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10166 vcpu->arch.efer = vmcs12->host_ia32_efer;
10167 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10168 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10169 else
10170 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10171 vmx_set_efer(vcpu, vcpu->arch.efer);
10172
10173 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10174 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10175 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10176 /*
10177 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10178 * actually changed, because it depends on the current state of
10179 * fpu_active (which may have changed).
10180 * Note that vmx_set_cr0 refers to efer set above.
10181 */
10182 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10183 /*
10184 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10185 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10186 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10187 */
10188 update_exception_bitmap(vcpu);
10189 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10190 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10191
10192 /*
10193 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10194 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10195 */
10196 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10197 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10198
10199 nested_ept_uninit_mmu_context(vcpu);
10200
10201 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10202 kvm_mmu_reset_context(vcpu);
10203
10204 if (!enable_ept)
10205 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10206
10207 if (enable_vpid) {
10208 /*
10209 * Trivially support vpid by letting L2s share their parent
10210 * L1's vpid. TODO: move to a more elaborate solution, giving
10211 * each L2 its own vpid and exposing the vpid feature to L1.
10212 */
10213 vmx_flush_tlb(vcpu);
10214 }
10215
10216
10217 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10218 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10219 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10220 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10221 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10222
10223 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10224 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10225 vmcs_write64(GUEST_BNDCFGS, 0);
10226
10227 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10228 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10229 vcpu->arch.pat = vmcs12->host_ia32_pat;
10230 }
10231 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10232 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10233 vmcs12->host_ia32_perf_global_ctrl);
10234
10235 /* Set L1 segment info according to Intel SDM
10236 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10237 seg = (struct kvm_segment) {
10238 .base = 0,
10239 .limit = 0xFFFFFFFF,
10240 .selector = vmcs12->host_cs_selector,
10241 .type = 11,
10242 .present = 1,
10243 .s = 1,
10244 .g = 1
10245 };
10246 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10247 seg.l = 1;
10248 else
10249 seg.db = 1;
10250 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10251 seg = (struct kvm_segment) {
10252 .base = 0,
10253 .limit = 0xFFFFFFFF,
10254 .type = 3,
10255 .present = 1,
10256 .s = 1,
10257 .db = 1,
10258 .g = 1
10259 };
10260 seg.selector = vmcs12->host_ds_selector;
10261 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10262 seg.selector = vmcs12->host_es_selector;
10263 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10264 seg.selector = vmcs12->host_ss_selector;
10265 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10266 seg.selector = vmcs12->host_fs_selector;
10267 seg.base = vmcs12->host_fs_base;
10268 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10269 seg.selector = vmcs12->host_gs_selector;
10270 seg.base = vmcs12->host_gs_base;
10271 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10272 seg = (struct kvm_segment) {
10273 .base = vmcs12->host_tr_base,
10274 .limit = 0x67,
10275 .selector = vmcs12->host_tr_selector,
10276 .type = 11,
10277 .present = 1
10278 };
10279 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10280
10281 kvm_set_dr(vcpu, 7, 0x400);
10282 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10283
10284 if (cpu_has_vmx_msr_bitmap())
10285 vmx_set_msr_bitmap(vcpu);
10286
10287 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10288 vmcs12->vm_exit_msr_load_count))
10289 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10290 }
10291
10292 /*
10293 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10294 * and modify vmcs12 to make it see what it would expect to see there if
10295 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10296 */
10297 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10298 u32 exit_intr_info,
10299 unsigned long exit_qualification)
10300 {
10301 struct vcpu_vmx *vmx = to_vmx(vcpu);
10302 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10303
10304 /* trying to cancel vmlaunch/vmresume is a bug */
10305 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10306
10307 leave_guest_mode(vcpu);
10308 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10309 exit_qualification);
10310
10311 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10312 vmcs12->vm_exit_msr_store_count))
10313 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10314
10315 vmx_load_vmcs01(vcpu);
10316
10317 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10318 && nested_exit_intr_ack_set(vcpu)) {
10319 int irq = kvm_cpu_get_interrupt(vcpu);
10320 WARN_ON(irq < 0);
10321 vmcs12->vm_exit_intr_info = irq |
10322 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10323 }
10324
10325 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10326 vmcs12->exit_qualification,
10327 vmcs12->idt_vectoring_info_field,
10328 vmcs12->vm_exit_intr_info,
10329 vmcs12->vm_exit_intr_error_code,
10330 KVM_ISA_VMX);
10331
10332 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10333 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10334 vmx_segment_cache_clear(vmx);
10335
10336 /* if no vmcs02 cache requested, remove the one we used */
10337 if (VMCS02_POOL_SIZE == 0)
10338 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10339
10340 load_vmcs12_host_state(vcpu, vmcs12);
10341
10342 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10343 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10344
10345 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10346 vmx->host_rsp = 0;
10347
10348 /* Unpin physical memory we referred to in vmcs02 */
10349 if (vmx->nested.apic_access_page) {
10350 nested_release_page(vmx->nested.apic_access_page);
10351 vmx->nested.apic_access_page = NULL;
10352 }
10353 if (vmx->nested.virtual_apic_page) {
10354 nested_release_page(vmx->nested.virtual_apic_page);
10355 vmx->nested.virtual_apic_page = NULL;
10356 }
10357 if (vmx->nested.pi_desc_page) {
10358 kunmap(vmx->nested.pi_desc_page);
10359 nested_release_page(vmx->nested.pi_desc_page);
10360 vmx->nested.pi_desc_page = NULL;
10361 vmx->nested.pi_desc = NULL;
10362 }
10363
10364 /*
10365 * We are now running in L2, mmu_notifier will force to reload the
10366 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10367 */
10368 kvm_vcpu_reload_apic_access_page(vcpu);
10369
10370 /*
10371 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10372 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10373 * success or failure flag accordingly.
10374 */
10375 if (unlikely(vmx->fail)) {
10376 vmx->fail = 0;
10377 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10378 } else
10379 nested_vmx_succeed(vcpu);
10380 if (enable_shadow_vmcs)
10381 vmx->nested.sync_shadow_vmcs = true;
10382
10383 /* in case we halted in L2 */
10384 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10385 }
10386
10387 /*
10388 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10389 */
10390 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10391 {
10392 if (is_guest_mode(vcpu))
10393 nested_vmx_vmexit(vcpu, -1, 0, 0);
10394 free_nested(to_vmx(vcpu));
10395 }
10396
10397 /*
10398 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10399 * 23.7 "VM-entry failures during or after loading guest state" (this also
10400 * lists the acceptable exit-reason and exit-qualification parameters).
10401 * It should only be called before L2 actually succeeded to run, and when
10402 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10403 */
10404 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10405 struct vmcs12 *vmcs12,
10406 u32 reason, unsigned long qualification)
10407 {
10408 load_vmcs12_host_state(vcpu, vmcs12);
10409 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10410 vmcs12->exit_qualification = qualification;
10411 nested_vmx_succeed(vcpu);
10412 if (enable_shadow_vmcs)
10413 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10414 }
10415
10416 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10417 struct x86_instruction_info *info,
10418 enum x86_intercept_stage stage)
10419 {
10420 return X86EMUL_CONTINUE;
10421 }
10422
10423 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10424 {
10425 if (ple_gap)
10426 shrink_ple_window(vcpu);
10427 }
10428
10429 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10430 struct kvm_memory_slot *slot)
10431 {
10432 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10433 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10434 }
10435
10436 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10437 struct kvm_memory_slot *slot)
10438 {
10439 kvm_mmu_slot_set_dirty(kvm, slot);
10440 }
10441
10442 static void vmx_flush_log_dirty(struct kvm *kvm)
10443 {
10444 kvm_flush_pml_buffers(kvm);
10445 }
10446
10447 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10448 struct kvm_memory_slot *memslot,
10449 gfn_t offset, unsigned long mask)
10450 {
10451 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10452 }
10453
10454 /*
10455 * This routine does the following things for vCPU which is going
10456 * to be blocked if VT-d PI is enabled.
10457 * - Store the vCPU to the wakeup list, so when interrupts happen
10458 * we can find the right vCPU to wake up.
10459 * - Change the Posted-interrupt descriptor as below:
10460 * 'NDST' <-- vcpu->pre_pcpu
10461 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10462 * - If 'ON' is set during this process, which means at least one
10463 * interrupt is posted for this vCPU, we cannot block it, in
10464 * this case, return 1, otherwise, return 0.
10465 *
10466 */
10467 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10468 {
10469 unsigned long flags;
10470 unsigned int dest;
10471 struct pi_desc old, new;
10472 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10473
10474 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10475 !irq_remapping_cap(IRQ_POSTING_CAP))
10476 return 0;
10477
10478 vcpu->pre_pcpu = vcpu->cpu;
10479 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10480 vcpu->pre_pcpu), flags);
10481 list_add_tail(&vcpu->blocked_vcpu_list,
10482 &per_cpu(blocked_vcpu_on_cpu,
10483 vcpu->pre_pcpu));
10484 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10485 vcpu->pre_pcpu), flags);
10486
10487 do {
10488 old.control = new.control = pi_desc->control;
10489
10490 /*
10491 * We should not block the vCPU if
10492 * an interrupt is posted for it.
10493 */
10494 if (pi_test_on(pi_desc) == 1) {
10495 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10496 vcpu->pre_pcpu), flags);
10497 list_del(&vcpu->blocked_vcpu_list);
10498 spin_unlock_irqrestore(
10499 &per_cpu(blocked_vcpu_on_cpu_lock,
10500 vcpu->pre_pcpu), flags);
10501 vcpu->pre_pcpu = -1;
10502
10503 return 1;
10504 }
10505
10506 WARN((pi_desc->sn == 1),
10507 "Warning: SN field of posted-interrupts "
10508 "is set before blocking\n");
10509
10510 /*
10511 * Since vCPU can be preempted during this process,
10512 * vcpu->cpu could be different with pre_pcpu, we
10513 * need to set pre_pcpu as the destination of wakeup
10514 * notification event, then we can find the right vCPU
10515 * to wakeup in wakeup handler if interrupts happen
10516 * when the vCPU is in blocked state.
10517 */
10518 dest = cpu_physical_id(vcpu->pre_pcpu);
10519
10520 if (x2apic_enabled())
10521 new.ndst = dest;
10522 else
10523 new.ndst = (dest << 8) & 0xFF00;
10524
10525 /* set 'NV' to 'wakeup vector' */
10526 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10527 } while (cmpxchg(&pi_desc->control, old.control,
10528 new.control) != old.control);
10529
10530 return 0;
10531 }
10532
10533 static void vmx_post_block(struct kvm_vcpu *vcpu)
10534 {
10535 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10536 struct pi_desc old, new;
10537 unsigned int dest;
10538 unsigned long flags;
10539
10540 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10541 !irq_remapping_cap(IRQ_POSTING_CAP))
10542 return;
10543
10544 do {
10545 old.control = new.control = pi_desc->control;
10546
10547 dest = cpu_physical_id(vcpu->cpu);
10548
10549 if (x2apic_enabled())
10550 new.ndst = dest;
10551 else
10552 new.ndst = (dest << 8) & 0xFF00;
10553
10554 /* Allow posting non-urgent interrupts */
10555 new.sn = 0;
10556
10557 /* set 'NV' to 'notification vector' */
10558 new.nv = POSTED_INTR_VECTOR;
10559 } while (cmpxchg(&pi_desc->control, old.control,
10560 new.control) != old.control);
10561
10562 if(vcpu->pre_pcpu != -1) {
10563 spin_lock_irqsave(
10564 &per_cpu(blocked_vcpu_on_cpu_lock,
10565 vcpu->pre_pcpu), flags);
10566 list_del(&vcpu->blocked_vcpu_list);
10567 spin_unlock_irqrestore(
10568 &per_cpu(blocked_vcpu_on_cpu_lock,
10569 vcpu->pre_pcpu), flags);
10570 vcpu->pre_pcpu = -1;
10571 }
10572 }
10573
10574 /*
10575 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10576 *
10577 * @kvm: kvm
10578 * @host_irq: host irq of the interrupt
10579 * @guest_irq: gsi of the interrupt
10580 * @set: set or unset PI
10581 * returns 0 on success, < 0 on failure
10582 */
10583 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10584 uint32_t guest_irq, bool set)
10585 {
10586 struct kvm_kernel_irq_routing_entry *e;
10587 struct kvm_irq_routing_table *irq_rt;
10588 struct kvm_lapic_irq irq;
10589 struct kvm_vcpu *vcpu;
10590 struct vcpu_data vcpu_info;
10591 int idx, ret = -EINVAL;
10592
10593 if (!kvm_arch_has_assigned_device(kvm) ||
10594 !irq_remapping_cap(IRQ_POSTING_CAP))
10595 return 0;
10596
10597 idx = srcu_read_lock(&kvm->irq_srcu);
10598 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10599 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10600
10601 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10602 if (e->type != KVM_IRQ_ROUTING_MSI)
10603 continue;
10604 /*
10605 * VT-d PI cannot support posting multicast/broadcast
10606 * interrupts to a vCPU, we still use interrupt remapping
10607 * for these kind of interrupts.
10608 *
10609 * For lowest-priority interrupts, we only support
10610 * those with single CPU as the destination, e.g. user
10611 * configures the interrupts via /proc/irq or uses
10612 * irqbalance to make the interrupts single-CPU.
10613 *
10614 * We will support full lowest-priority interrupt later.
10615 */
10616
10617 kvm_set_msi_irq(e, &irq);
10618 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
10619 continue;
10620
10621 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10622 vcpu_info.vector = irq.vector;
10623
10624 trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
10625 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10626
10627 if (set)
10628 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10629 else {
10630 /* suppress notification event before unposting */
10631 pi_set_sn(vcpu_to_pi_desc(vcpu));
10632 ret = irq_set_vcpu_affinity(host_irq, NULL);
10633 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10634 }
10635
10636 if (ret < 0) {
10637 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10638 __func__);
10639 goto out;
10640 }
10641 }
10642
10643 ret = 0;
10644 out:
10645 srcu_read_unlock(&kvm->irq_srcu, idx);
10646 return ret;
10647 }
10648
10649 static struct kvm_x86_ops vmx_x86_ops = {
10650 .cpu_has_kvm_support = cpu_has_kvm_support,
10651 .disabled_by_bios = vmx_disabled_by_bios,
10652 .hardware_setup = hardware_setup,
10653 .hardware_unsetup = hardware_unsetup,
10654 .check_processor_compatibility = vmx_check_processor_compat,
10655 .hardware_enable = hardware_enable,
10656 .hardware_disable = hardware_disable,
10657 .cpu_has_accelerated_tpr = report_flexpriority,
10658 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10659
10660 .vcpu_create = vmx_create_vcpu,
10661 .vcpu_free = vmx_free_vcpu,
10662 .vcpu_reset = vmx_vcpu_reset,
10663
10664 .prepare_guest_switch = vmx_save_host_state,
10665 .vcpu_load = vmx_vcpu_load,
10666 .vcpu_put = vmx_vcpu_put,
10667
10668 .update_db_bp_intercept = update_exception_bitmap,
10669 .get_msr = vmx_get_msr,
10670 .set_msr = vmx_set_msr,
10671 .get_segment_base = vmx_get_segment_base,
10672 .get_segment = vmx_get_segment,
10673 .set_segment = vmx_set_segment,
10674 .get_cpl = vmx_get_cpl,
10675 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10676 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10677 .decache_cr3 = vmx_decache_cr3,
10678 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10679 .set_cr0 = vmx_set_cr0,
10680 .set_cr3 = vmx_set_cr3,
10681 .set_cr4 = vmx_set_cr4,
10682 .set_efer = vmx_set_efer,
10683 .get_idt = vmx_get_idt,
10684 .set_idt = vmx_set_idt,
10685 .get_gdt = vmx_get_gdt,
10686 .set_gdt = vmx_set_gdt,
10687 .get_dr6 = vmx_get_dr6,
10688 .set_dr6 = vmx_set_dr6,
10689 .set_dr7 = vmx_set_dr7,
10690 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10691 .cache_reg = vmx_cache_reg,
10692 .get_rflags = vmx_get_rflags,
10693 .set_rflags = vmx_set_rflags,
10694 .fpu_activate = vmx_fpu_activate,
10695 .fpu_deactivate = vmx_fpu_deactivate,
10696
10697 .tlb_flush = vmx_flush_tlb,
10698
10699 .run = vmx_vcpu_run,
10700 .handle_exit = vmx_handle_exit,
10701 .skip_emulated_instruction = skip_emulated_instruction,
10702 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10703 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10704 .patch_hypercall = vmx_patch_hypercall,
10705 .set_irq = vmx_inject_irq,
10706 .set_nmi = vmx_inject_nmi,
10707 .queue_exception = vmx_queue_exception,
10708 .cancel_injection = vmx_cancel_injection,
10709 .interrupt_allowed = vmx_interrupt_allowed,
10710 .nmi_allowed = vmx_nmi_allowed,
10711 .get_nmi_mask = vmx_get_nmi_mask,
10712 .set_nmi_mask = vmx_set_nmi_mask,
10713 .enable_nmi_window = enable_nmi_window,
10714 .enable_irq_window = enable_irq_window,
10715 .update_cr8_intercept = update_cr8_intercept,
10716 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10717 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10718 .cpu_uses_apicv = vmx_cpu_uses_apicv,
10719 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10720 .hwapic_irr_update = vmx_hwapic_irr_update,
10721 .hwapic_isr_update = vmx_hwapic_isr_update,
10722 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10723 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10724
10725 .set_tss_addr = vmx_set_tss_addr,
10726 .get_tdp_level = get_ept_level,
10727 .get_mt_mask = vmx_get_mt_mask,
10728
10729 .get_exit_info = vmx_get_exit_info,
10730
10731 .get_lpage_level = vmx_get_lpage_level,
10732
10733 .cpuid_update = vmx_cpuid_update,
10734
10735 .rdtscp_supported = vmx_rdtscp_supported,
10736 .invpcid_supported = vmx_invpcid_supported,
10737
10738 .set_supported_cpuid = vmx_set_supported_cpuid,
10739
10740 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10741
10742 .set_tsc_khz = vmx_set_tsc_khz,
10743 .read_tsc_offset = vmx_read_tsc_offset,
10744 .write_tsc_offset = vmx_write_tsc_offset,
10745 .adjust_tsc_offset = vmx_adjust_tsc_offset,
10746 .compute_tsc_offset = vmx_compute_tsc_offset,
10747 .read_l1_tsc = vmx_read_l1_tsc,
10748
10749 .set_tdp_cr3 = vmx_set_cr3,
10750
10751 .check_intercept = vmx_check_intercept,
10752 .handle_external_intr = vmx_handle_external_intr,
10753 .mpx_supported = vmx_mpx_supported,
10754 .xsaves_supported = vmx_xsaves_supported,
10755
10756 .check_nested_events = vmx_check_nested_events,
10757
10758 .sched_in = vmx_sched_in,
10759
10760 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10761 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10762 .flush_log_dirty = vmx_flush_log_dirty,
10763 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10764
10765 .pre_block = vmx_pre_block,
10766 .post_block = vmx_post_block,
10767
10768 .pmu_ops = &intel_pmu_ops,
10769
10770 .update_pi_irte = vmx_update_pi_irte,
10771 };
10772
10773 static int __init vmx_init(void)
10774 {
10775 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10776 __alignof__(struct vcpu_vmx), THIS_MODULE);
10777 if (r)
10778 return r;
10779
10780 #ifdef CONFIG_KEXEC_CORE
10781 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10782 crash_vmclear_local_loaded_vmcss);
10783 #endif
10784
10785 return 0;
10786 }
10787
10788 static void __exit vmx_exit(void)
10789 {
10790 #ifdef CONFIG_KEXEC_CORE
10791 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10792 synchronize_rcu();
10793 #endif
10794
10795 kvm_exit();
10796 }
10797
10798 module_init(vmx_init)
10799 module_exit(vmx_exit)
This page took 0.370933 seconds and 5 git commands to generate.