Merge branch 'pm-cpufreq-fixes'
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly vmm_exclusive = 1;
88 module_param(vmm_exclusive, bool, S_IRUGO);
89
90 static bool __read_mostly fasteoi = 1;
91 module_param(fasteoi, bool, S_IRUGO);
92
93 static bool __read_mostly enable_apicv = 1;
94 module_param(enable_apicv, bool, S_IRUGO);
95
96 static bool __read_mostly enable_shadow_vmcs = 1;
97 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98 /*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
103 static bool __read_mostly nested = 0;
104 module_param(nested, bool, S_IRUGO);
105
106 static u64 __read_mostly host_xss;
107
108 static bool __read_mostly enable_pml = 1;
109 module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
113 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
115 #define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
117 #define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
120
121 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
124 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
126 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
128 /*
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
132 * According to test, this time is usually smaller than 128 cycles.
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 */
139 #define KVM_VMX_DEFAULT_PLE_GAP 128
140 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
146 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147 module_param(ple_gap, int, S_IRUGO);
148
149 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150 module_param(ple_window, int, S_IRUGO);
151
152 /* Default doubles per-vcpu window every exit. */
153 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154 module_param(ple_window_grow, int, S_IRUGO);
155
156 /* Default resets per-vcpu window every exit to ple_window. */
157 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158 module_param(ple_window_shrink, int, S_IRUGO);
159
160 /* Default is to compute the maximum so we can never overflow. */
161 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163 module_param(ple_window_max, int, S_IRUGO);
164
165 extern const ulong vmx_return;
166
167 #define NR_AUTOLOAD_MSRS 8
168 #define VMCS02_POOL_SIZE 1
169
170 struct vmcs {
171 u32 revision_id;
172 u32 abort;
173 char data[0];
174 };
175
176 /*
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
180 */
181 struct loaded_vmcs {
182 struct vmcs *vmcs;
183 int cpu;
184 int launched;
185 struct list_head loaded_vmcss_on_cpu_link;
186 };
187
188 struct shared_msr_entry {
189 unsigned index;
190 u64 data;
191 u64 mask;
192 };
193
194 /*
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 */
207 typedef u64 natural_width;
208 struct __packed vmcs12 {
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
211 */
212 u32 revision_id;
213 u32 abort;
214
215 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding[7]; /* room for future expansion */
217
218 u64 io_bitmap_a;
219 u64 io_bitmap_b;
220 u64 msr_bitmap;
221 u64 vm_exit_msr_store_addr;
222 u64 vm_exit_msr_load_addr;
223 u64 vm_entry_msr_load_addr;
224 u64 tsc_offset;
225 u64 virtual_apic_page_addr;
226 u64 apic_access_addr;
227 u64 posted_intr_desc_addr;
228 u64 ept_pointer;
229 u64 eoi_exit_bitmap0;
230 u64 eoi_exit_bitmap1;
231 u64 eoi_exit_bitmap2;
232 u64 eoi_exit_bitmap3;
233 u64 xss_exit_bitmap;
234 u64 guest_physical_address;
235 u64 vmcs_link_pointer;
236 u64 guest_ia32_debugctl;
237 u64 guest_ia32_pat;
238 u64 guest_ia32_efer;
239 u64 guest_ia32_perf_global_ctrl;
240 u64 guest_pdptr0;
241 u64 guest_pdptr1;
242 u64 guest_pdptr2;
243 u64 guest_pdptr3;
244 u64 guest_bndcfgs;
245 u64 host_ia32_pat;
246 u64 host_ia32_efer;
247 u64 host_ia32_perf_global_ctrl;
248 u64 padding64[8]; /* room for future expansion */
249 /*
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
254 */
255 natural_width cr0_guest_host_mask;
256 natural_width cr4_guest_host_mask;
257 natural_width cr0_read_shadow;
258 natural_width cr4_read_shadow;
259 natural_width cr3_target_value0;
260 natural_width cr3_target_value1;
261 natural_width cr3_target_value2;
262 natural_width cr3_target_value3;
263 natural_width exit_qualification;
264 natural_width guest_linear_address;
265 natural_width guest_cr0;
266 natural_width guest_cr3;
267 natural_width guest_cr4;
268 natural_width guest_es_base;
269 natural_width guest_cs_base;
270 natural_width guest_ss_base;
271 natural_width guest_ds_base;
272 natural_width guest_fs_base;
273 natural_width guest_gs_base;
274 natural_width guest_ldtr_base;
275 natural_width guest_tr_base;
276 natural_width guest_gdtr_base;
277 natural_width guest_idtr_base;
278 natural_width guest_dr7;
279 natural_width guest_rsp;
280 natural_width guest_rip;
281 natural_width guest_rflags;
282 natural_width guest_pending_dbg_exceptions;
283 natural_width guest_sysenter_esp;
284 natural_width guest_sysenter_eip;
285 natural_width host_cr0;
286 natural_width host_cr3;
287 natural_width host_cr4;
288 natural_width host_fs_base;
289 natural_width host_gs_base;
290 natural_width host_tr_base;
291 natural_width host_gdtr_base;
292 natural_width host_idtr_base;
293 natural_width host_ia32_sysenter_esp;
294 natural_width host_ia32_sysenter_eip;
295 natural_width host_rsp;
296 natural_width host_rip;
297 natural_width paddingl[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control;
299 u32 cpu_based_vm_exec_control;
300 u32 exception_bitmap;
301 u32 page_fault_error_code_mask;
302 u32 page_fault_error_code_match;
303 u32 cr3_target_count;
304 u32 vm_exit_controls;
305 u32 vm_exit_msr_store_count;
306 u32 vm_exit_msr_load_count;
307 u32 vm_entry_controls;
308 u32 vm_entry_msr_load_count;
309 u32 vm_entry_intr_info_field;
310 u32 vm_entry_exception_error_code;
311 u32 vm_entry_instruction_len;
312 u32 tpr_threshold;
313 u32 secondary_vm_exec_control;
314 u32 vm_instruction_error;
315 u32 vm_exit_reason;
316 u32 vm_exit_intr_info;
317 u32 vm_exit_intr_error_code;
318 u32 idt_vectoring_info_field;
319 u32 idt_vectoring_error_code;
320 u32 vm_exit_instruction_len;
321 u32 vmx_instruction_info;
322 u32 guest_es_limit;
323 u32 guest_cs_limit;
324 u32 guest_ss_limit;
325 u32 guest_ds_limit;
326 u32 guest_fs_limit;
327 u32 guest_gs_limit;
328 u32 guest_ldtr_limit;
329 u32 guest_tr_limit;
330 u32 guest_gdtr_limit;
331 u32 guest_idtr_limit;
332 u32 guest_es_ar_bytes;
333 u32 guest_cs_ar_bytes;
334 u32 guest_ss_ar_bytes;
335 u32 guest_ds_ar_bytes;
336 u32 guest_fs_ar_bytes;
337 u32 guest_gs_ar_bytes;
338 u32 guest_ldtr_ar_bytes;
339 u32 guest_tr_ar_bytes;
340 u32 guest_interruptibility_info;
341 u32 guest_activity_state;
342 u32 guest_sysenter_cs;
343 u32 host_ia32_sysenter_cs;
344 u32 vmx_preemption_timer_value;
345 u32 padding32[7]; /* room for future expansion */
346 u16 virtual_processor_id;
347 u16 posted_intr_nv;
348 u16 guest_es_selector;
349 u16 guest_cs_selector;
350 u16 guest_ss_selector;
351 u16 guest_ds_selector;
352 u16 guest_fs_selector;
353 u16 guest_gs_selector;
354 u16 guest_ldtr_selector;
355 u16 guest_tr_selector;
356 u16 guest_intr_status;
357 u16 host_es_selector;
358 u16 host_cs_selector;
359 u16 host_ss_selector;
360 u16 host_ds_selector;
361 u16 host_fs_selector;
362 u16 host_gs_selector;
363 u16 host_tr_selector;
364 };
365
366 /*
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 */
371 #define VMCS12_REVISION 0x11e57ed0
372
373 /*
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
377 */
378 #define VMCS12_SIZE 0x1000
379
380 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
381 struct vmcs02_list {
382 struct list_head list;
383 gpa_t vmptr;
384 struct loaded_vmcs vmcs02;
385 };
386
387 /*
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390 */
391 struct nested_vmx {
392 /* Has the level1 guest done vmxon? */
393 bool vmxon;
394 gpa_t vmxon_ptr;
395
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 gpa_t current_vmptr;
398 /* The host-usable pointer to the above */
399 struct page *current_vmcs12_page;
400 struct vmcs12 *current_vmcs12;
401 struct vmcs *current_shadow_vmcs;
402 /*
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
405 */
406 bool sync_shadow_vmcs;
407
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool;
410 int vmcs02_num;
411 u64 vmcs01_tsc_offset;
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending;
414 /*
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
417 */
418 struct page *apic_access_page;
419 struct page *virtual_apic_page;
420 struct page *pi_desc_page;
421 struct pi_desc *pi_desc;
422 bool pi_pending;
423 u16 posted_intr_nv;
424 u64 msr_ia32_feature_control;
425
426 struct hrtimer preemption_timer;
427 bool preemption_timer_expired;
428
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430 u64 vmcs01_debugctl;
431
432 u16 vpid02;
433 u16 last_vpid;
434
435 u32 nested_vmx_procbased_ctls_low;
436 u32 nested_vmx_procbased_ctls_high;
437 u32 nested_vmx_true_procbased_ctls_low;
438 u32 nested_vmx_secondary_ctls_low;
439 u32 nested_vmx_secondary_ctls_high;
440 u32 nested_vmx_pinbased_ctls_low;
441 u32 nested_vmx_pinbased_ctls_high;
442 u32 nested_vmx_exit_ctls_low;
443 u32 nested_vmx_exit_ctls_high;
444 u32 nested_vmx_true_exit_ctls_low;
445 u32 nested_vmx_entry_ctls_low;
446 u32 nested_vmx_entry_ctls_high;
447 u32 nested_vmx_true_entry_ctls_low;
448 u32 nested_vmx_misc_low;
449 u32 nested_vmx_misc_high;
450 u32 nested_vmx_ept_caps;
451 u32 nested_vmx_vpid_caps;
452 };
453
454 #define POSTED_INTR_ON 0
455 #define POSTED_INTR_SN 1
456
457 /* Posted-Interrupt Descriptor */
458 struct pi_desc {
459 u32 pir[8]; /* Posted interrupt requested */
460 union {
461 struct {
462 /* bit 256 - Outstanding Notification */
463 u16 on : 1,
464 /* bit 257 - Suppress Notification */
465 sn : 1,
466 /* bit 271:258 - Reserved */
467 rsvd_1 : 14;
468 /* bit 279:272 - Notification Vector */
469 u8 nv;
470 /* bit 287:280 - Reserved */
471 u8 rsvd_2;
472 /* bit 319:288 - Notification Destination */
473 u32 ndst;
474 };
475 u64 control;
476 };
477 u32 rsvd[6];
478 } __aligned(64);
479
480 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481 {
482 return test_and_set_bit(POSTED_INTR_ON,
483 (unsigned long *)&pi_desc->control);
484 }
485
486 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487 {
488 return test_and_clear_bit(POSTED_INTR_ON,
489 (unsigned long *)&pi_desc->control);
490 }
491
492 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493 {
494 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495 }
496
497 static inline void pi_clear_sn(struct pi_desc *pi_desc)
498 {
499 return clear_bit(POSTED_INTR_SN,
500 (unsigned long *)&pi_desc->control);
501 }
502
503 static inline void pi_set_sn(struct pi_desc *pi_desc)
504 {
505 return set_bit(POSTED_INTR_SN,
506 (unsigned long *)&pi_desc->control);
507 }
508
509 static inline int pi_test_on(struct pi_desc *pi_desc)
510 {
511 return test_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513 }
514
515 static inline int pi_test_sn(struct pi_desc *pi_desc)
516 {
517 return test_bit(POSTED_INTR_SN,
518 (unsigned long *)&pi_desc->control);
519 }
520
521 struct vcpu_vmx {
522 struct kvm_vcpu vcpu;
523 unsigned long host_rsp;
524 u8 fail;
525 bool nmi_known_unmasked;
526 u32 exit_intr_info;
527 u32 idt_vectoring_info;
528 ulong rflags;
529 struct shared_msr_entry *guest_msrs;
530 int nmsrs;
531 int save_nmsrs;
532 unsigned long host_idt_base;
533 #ifdef CONFIG_X86_64
534 u64 msr_host_kernel_gs_base;
535 u64 msr_guest_kernel_gs_base;
536 #endif
537 u32 vm_entry_controls_shadow;
538 u32 vm_exit_controls_shadow;
539 /*
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
543 */
544 struct loaded_vmcs vmcs01;
545 struct loaded_vmcs *loaded_vmcs;
546 bool __launched; /* temporary, used in vmx_vcpu_run */
547 struct msr_autoload {
548 unsigned nr;
549 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551 } msr_autoload;
552 struct {
553 int loaded;
554 u16 fs_sel, gs_sel, ldt_sel;
555 #ifdef CONFIG_X86_64
556 u16 ds_sel, es_sel;
557 #endif
558 int gs_ldt_reload_needed;
559 int fs_reload_needed;
560 u64 msr_host_bndcfgs;
561 unsigned long vmcs_host_cr4; /* May not match real cr4 */
562 } host_state;
563 struct {
564 int vm86_active;
565 ulong save_rflags;
566 struct kvm_segment segs[8];
567 } rmode;
568 struct {
569 u32 bitmask; /* 4 bits per segment (1 bit per field) */
570 struct kvm_save_segment {
571 u16 selector;
572 unsigned long base;
573 u32 limit;
574 u32 ar;
575 } seg[8];
576 } segment_cache;
577 int vpid;
578 bool emulation_required;
579
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked;
582 ktime_t entry_time;
583 s64 vnmi_blocked_time;
584 u32 exit_reason;
585
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc;
588
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested;
591
592 /* Dynamic PLE window. */
593 int ple_window;
594 bool ple_window_dirty;
595
596 /* Support for PML */
597 #define PML_ENTITY_NUM 512
598 struct page *pml_pg;
599
600 u64 current_tsc_ratio;
601
602 bool guest_pkru_valid;
603 u32 guest_pkru;
604 u32 host_pkru;
605 };
606
607 enum segment_cache_field {
608 SEG_FIELD_SEL = 0,
609 SEG_FIELD_BASE = 1,
610 SEG_FIELD_LIMIT = 2,
611 SEG_FIELD_AR = 3,
612
613 SEG_FIELD_NR = 4
614 };
615
616 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
617 {
618 return container_of(vcpu, struct vcpu_vmx, vcpu);
619 }
620
621 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
622 {
623 return &(to_vmx(vcpu)->pi_desc);
624 }
625
626 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
627 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
628 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
629 [number##_HIGH] = VMCS12_OFFSET(name)+4
630
631
632 static unsigned long shadow_read_only_fields[] = {
633 /*
634 * We do NOT shadow fields that are modified when L0
635 * traps and emulates any vmx instruction (e.g. VMPTRLD,
636 * VMXON...) executed by L1.
637 * For example, VM_INSTRUCTION_ERROR is read
638 * by L1 if a vmx instruction fails (part of the error path).
639 * Note the code assumes this logic. If for some reason
640 * we start shadowing these fields then we need to
641 * force a shadow sync when L0 emulates vmx instructions
642 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
643 * by nested_vmx_failValid)
644 */
645 VM_EXIT_REASON,
646 VM_EXIT_INTR_INFO,
647 VM_EXIT_INSTRUCTION_LEN,
648 IDT_VECTORING_INFO_FIELD,
649 IDT_VECTORING_ERROR_CODE,
650 VM_EXIT_INTR_ERROR_CODE,
651 EXIT_QUALIFICATION,
652 GUEST_LINEAR_ADDRESS,
653 GUEST_PHYSICAL_ADDRESS
654 };
655 static int max_shadow_read_only_fields =
656 ARRAY_SIZE(shadow_read_only_fields);
657
658 static unsigned long shadow_read_write_fields[] = {
659 TPR_THRESHOLD,
660 GUEST_RIP,
661 GUEST_RSP,
662 GUEST_CR0,
663 GUEST_CR3,
664 GUEST_CR4,
665 GUEST_INTERRUPTIBILITY_INFO,
666 GUEST_RFLAGS,
667 GUEST_CS_SELECTOR,
668 GUEST_CS_AR_BYTES,
669 GUEST_CS_LIMIT,
670 GUEST_CS_BASE,
671 GUEST_ES_BASE,
672 GUEST_BNDCFGS,
673 CR0_GUEST_HOST_MASK,
674 CR0_READ_SHADOW,
675 CR4_READ_SHADOW,
676 TSC_OFFSET,
677 EXCEPTION_BITMAP,
678 CPU_BASED_VM_EXEC_CONTROL,
679 VM_ENTRY_EXCEPTION_ERROR_CODE,
680 VM_ENTRY_INTR_INFO_FIELD,
681 VM_ENTRY_INSTRUCTION_LEN,
682 VM_ENTRY_EXCEPTION_ERROR_CODE,
683 HOST_FS_BASE,
684 HOST_GS_BASE,
685 HOST_FS_SELECTOR,
686 HOST_GS_SELECTOR
687 };
688 static int max_shadow_read_write_fields =
689 ARRAY_SIZE(shadow_read_write_fields);
690
691 static const unsigned short vmcs_field_to_offset_table[] = {
692 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
693 FIELD(POSTED_INTR_NV, posted_intr_nv),
694 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
695 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
696 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
697 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
698 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
699 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
700 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
701 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
702 FIELD(GUEST_INTR_STATUS, guest_intr_status),
703 FIELD(HOST_ES_SELECTOR, host_es_selector),
704 FIELD(HOST_CS_SELECTOR, host_cs_selector),
705 FIELD(HOST_SS_SELECTOR, host_ss_selector),
706 FIELD(HOST_DS_SELECTOR, host_ds_selector),
707 FIELD(HOST_FS_SELECTOR, host_fs_selector),
708 FIELD(HOST_GS_SELECTOR, host_gs_selector),
709 FIELD(HOST_TR_SELECTOR, host_tr_selector),
710 FIELD64(IO_BITMAP_A, io_bitmap_a),
711 FIELD64(IO_BITMAP_B, io_bitmap_b),
712 FIELD64(MSR_BITMAP, msr_bitmap),
713 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
714 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
715 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
716 FIELD64(TSC_OFFSET, tsc_offset),
717 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
718 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
719 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
720 FIELD64(EPT_POINTER, ept_pointer),
721 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
722 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
723 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
724 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
725 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
726 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
727 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
728 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
729 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
730 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
731 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
732 FIELD64(GUEST_PDPTR0, guest_pdptr0),
733 FIELD64(GUEST_PDPTR1, guest_pdptr1),
734 FIELD64(GUEST_PDPTR2, guest_pdptr2),
735 FIELD64(GUEST_PDPTR3, guest_pdptr3),
736 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
737 FIELD64(HOST_IA32_PAT, host_ia32_pat),
738 FIELD64(HOST_IA32_EFER, host_ia32_efer),
739 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
740 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
741 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
742 FIELD(EXCEPTION_BITMAP, exception_bitmap),
743 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
744 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
745 FIELD(CR3_TARGET_COUNT, cr3_target_count),
746 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
747 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
748 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
749 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
750 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
751 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
752 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
753 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
754 FIELD(TPR_THRESHOLD, tpr_threshold),
755 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
756 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
757 FIELD(VM_EXIT_REASON, vm_exit_reason),
758 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
759 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
760 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
761 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
762 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
763 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
764 FIELD(GUEST_ES_LIMIT, guest_es_limit),
765 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
766 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
767 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
768 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
769 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
770 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
771 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
772 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
773 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
774 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
775 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
776 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
777 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
778 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
779 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
780 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
781 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
782 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
783 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
784 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
785 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
786 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
787 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
788 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
789 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
790 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
791 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
792 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
793 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
794 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
795 FIELD(EXIT_QUALIFICATION, exit_qualification),
796 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
797 FIELD(GUEST_CR0, guest_cr0),
798 FIELD(GUEST_CR3, guest_cr3),
799 FIELD(GUEST_CR4, guest_cr4),
800 FIELD(GUEST_ES_BASE, guest_es_base),
801 FIELD(GUEST_CS_BASE, guest_cs_base),
802 FIELD(GUEST_SS_BASE, guest_ss_base),
803 FIELD(GUEST_DS_BASE, guest_ds_base),
804 FIELD(GUEST_FS_BASE, guest_fs_base),
805 FIELD(GUEST_GS_BASE, guest_gs_base),
806 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
807 FIELD(GUEST_TR_BASE, guest_tr_base),
808 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
809 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
810 FIELD(GUEST_DR7, guest_dr7),
811 FIELD(GUEST_RSP, guest_rsp),
812 FIELD(GUEST_RIP, guest_rip),
813 FIELD(GUEST_RFLAGS, guest_rflags),
814 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
815 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
816 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
817 FIELD(HOST_CR0, host_cr0),
818 FIELD(HOST_CR3, host_cr3),
819 FIELD(HOST_CR4, host_cr4),
820 FIELD(HOST_FS_BASE, host_fs_base),
821 FIELD(HOST_GS_BASE, host_gs_base),
822 FIELD(HOST_TR_BASE, host_tr_base),
823 FIELD(HOST_GDTR_BASE, host_gdtr_base),
824 FIELD(HOST_IDTR_BASE, host_idtr_base),
825 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
826 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
827 FIELD(HOST_RSP, host_rsp),
828 FIELD(HOST_RIP, host_rip),
829 };
830
831 static inline short vmcs_field_to_offset(unsigned long field)
832 {
833 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
834
835 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
836 vmcs_field_to_offset_table[field] == 0)
837 return -ENOENT;
838
839 return vmcs_field_to_offset_table[field];
840 }
841
842 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
843 {
844 return to_vmx(vcpu)->nested.current_vmcs12;
845 }
846
847 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
848 {
849 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
850 if (is_error_page(page))
851 return NULL;
852
853 return page;
854 }
855
856 static void nested_release_page(struct page *page)
857 {
858 kvm_release_page_dirty(page);
859 }
860
861 static void nested_release_page_clean(struct page *page)
862 {
863 kvm_release_page_clean(page);
864 }
865
866 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
867 static u64 construct_eptp(unsigned long root_hpa);
868 static void kvm_cpu_vmxon(u64 addr);
869 static void kvm_cpu_vmxoff(void);
870 static bool vmx_xsaves_supported(void);
871 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
872 static void vmx_set_segment(struct kvm_vcpu *vcpu,
873 struct kvm_segment *var, int seg);
874 static void vmx_get_segment(struct kvm_vcpu *vcpu,
875 struct kvm_segment *var, int seg);
876 static bool guest_state_valid(struct kvm_vcpu *vcpu);
877 static u32 vmx_segment_access_rights(struct kvm_segment *var);
878 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
879 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
880 static int alloc_identity_pagetable(struct kvm *kvm);
881
882 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
883 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
884 /*
885 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
886 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
887 */
888 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
889 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
890
891 /*
892 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
893 * can find which vCPU should be waken up.
894 */
895 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
896 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
897
898 static unsigned long *vmx_io_bitmap_a;
899 static unsigned long *vmx_io_bitmap_b;
900 static unsigned long *vmx_msr_bitmap_legacy;
901 static unsigned long *vmx_msr_bitmap_longmode;
902 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
903 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
904 static unsigned long *vmx_msr_bitmap_nested;
905 static unsigned long *vmx_vmread_bitmap;
906 static unsigned long *vmx_vmwrite_bitmap;
907
908 static bool cpu_has_load_ia32_efer;
909 static bool cpu_has_load_perf_global_ctrl;
910
911 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
912 static DEFINE_SPINLOCK(vmx_vpid_lock);
913
914 static struct vmcs_config {
915 int size;
916 int order;
917 u32 revision_id;
918 u32 pin_based_exec_ctrl;
919 u32 cpu_based_exec_ctrl;
920 u32 cpu_based_2nd_exec_ctrl;
921 u32 vmexit_ctrl;
922 u32 vmentry_ctrl;
923 } vmcs_config;
924
925 static struct vmx_capability {
926 u32 ept;
927 u32 vpid;
928 } vmx_capability;
929
930 #define VMX_SEGMENT_FIELD(seg) \
931 [VCPU_SREG_##seg] = { \
932 .selector = GUEST_##seg##_SELECTOR, \
933 .base = GUEST_##seg##_BASE, \
934 .limit = GUEST_##seg##_LIMIT, \
935 .ar_bytes = GUEST_##seg##_AR_BYTES, \
936 }
937
938 static const struct kvm_vmx_segment_field {
939 unsigned selector;
940 unsigned base;
941 unsigned limit;
942 unsigned ar_bytes;
943 } kvm_vmx_segment_fields[] = {
944 VMX_SEGMENT_FIELD(CS),
945 VMX_SEGMENT_FIELD(DS),
946 VMX_SEGMENT_FIELD(ES),
947 VMX_SEGMENT_FIELD(FS),
948 VMX_SEGMENT_FIELD(GS),
949 VMX_SEGMENT_FIELD(SS),
950 VMX_SEGMENT_FIELD(TR),
951 VMX_SEGMENT_FIELD(LDTR),
952 };
953
954 static u64 host_efer;
955
956 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
957
958 /*
959 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
960 * away by decrementing the array size.
961 */
962 static const u32 vmx_msr_index[] = {
963 #ifdef CONFIG_X86_64
964 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
965 #endif
966 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
967 };
968
969 static inline bool is_exception_n(u32 intr_info, u8 vector)
970 {
971 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
972 INTR_INFO_VALID_MASK)) ==
973 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
974 }
975
976 static inline bool is_debug(u32 intr_info)
977 {
978 return is_exception_n(intr_info, DB_VECTOR);
979 }
980
981 static inline bool is_breakpoint(u32 intr_info)
982 {
983 return is_exception_n(intr_info, BP_VECTOR);
984 }
985
986 static inline bool is_page_fault(u32 intr_info)
987 {
988 return is_exception_n(intr_info, PF_VECTOR);
989 }
990
991 static inline bool is_no_device(u32 intr_info)
992 {
993 return is_exception_n(intr_info, NM_VECTOR);
994 }
995
996 static inline bool is_invalid_opcode(u32 intr_info)
997 {
998 return is_exception_n(intr_info, UD_VECTOR);
999 }
1000
1001 static inline bool is_external_interrupt(u32 intr_info)
1002 {
1003 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1004 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1005 }
1006
1007 static inline bool is_machine_check(u32 intr_info)
1008 {
1009 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1010 INTR_INFO_VALID_MASK)) ==
1011 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1012 }
1013
1014 static inline bool cpu_has_vmx_msr_bitmap(void)
1015 {
1016 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1017 }
1018
1019 static inline bool cpu_has_vmx_tpr_shadow(void)
1020 {
1021 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1022 }
1023
1024 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1025 {
1026 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1027 }
1028
1029 static inline bool cpu_has_secondary_exec_ctrls(void)
1030 {
1031 return vmcs_config.cpu_based_exec_ctrl &
1032 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1033 }
1034
1035 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1036 {
1037 return vmcs_config.cpu_based_2nd_exec_ctrl &
1038 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1039 }
1040
1041 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1042 {
1043 return vmcs_config.cpu_based_2nd_exec_ctrl &
1044 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1045 }
1046
1047 static inline bool cpu_has_vmx_apic_register_virt(void)
1048 {
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1051 }
1052
1053 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1054 {
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1057 }
1058
1059 static inline bool cpu_has_vmx_posted_intr(void)
1060 {
1061 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1062 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1063 }
1064
1065 static inline bool cpu_has_vmx_apicv(void)
1066 {
1067 return cpu_has_vmx_apic_register_virt() &&
1068 cpu_has_vmx_virtual_intr_delivery() &&
1069 cpu_has_vmx_posted_intr();
1070 }
1071
1072 static inline bool cpu_has_vmx_flexpriority(void)
1073 {
1074 return cpu_has_vmx_tpr_shadow() &&
1075 cpu_has_vmx_virtualize_apic_accesses();
1076 }
1077
1078 static inline bool cpu_has_vmx_ept_execute_only(void)
1079 {
1080 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1081 }
1082
1083 static inline bool cpu_has_vmx_ept_2m_page(void)
1084 {
1085 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1086 }
1087
1088 static inline bool cpu_has_vmx_ept_1g_page(void)
1089 {
1090 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1091 }
1092
1093 static inline bool cpu_has_vmx_ept_4levels(void)
1094 {
1095 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1096 }
1097
1098 static inline bool cpu_has_vmx_ept_ad_bits(void)
1099 {
1100 return vmx_capability.ept & VMX_EPT_AD_BIT;
1101 }
1102
1103 static inline bool cpu_has_vmx_invept_context(void)
1104 {
1105 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1106 }
1107
1108 static inline bool cpu_has_vmx_invept_global(void)
1109 {
1110 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1111 }
1112
1113 static inline bool cpu_has_vmx_invvpid_single(void)
1114 {
1115 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1116 }
1117
1118 static inline bool cpu_has_vmx_invvpid_global(void)
1119 {
1120 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1121 }
1122
1123 static inline bool cpu_has_vmx_ept(void)
1124 {
1125 return vmcs_config.cpu_based_2nd_exec_ctrl &
1126 SECONDARY_EXEC_ENABLE_EPT;
1127 }
1128
1129 static inline bool cpu_has_vmx_unrestricted_guest(void)
1130 {
1131 return vmcs_config.cpu_based_2nd_exec_ctrl &
1132 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1133 }
1134
1135 static inline bool cpu_has_vmx_ple(void)
1136 {
1137 return vmcs_config.cpu_based_2nd_exec_ctrl &
1138 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1139 }
1140
1141 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1142 {
1143 return flexpriority_enabled && lapic_in_kernel(vcpu);
1144 }
1145
1146 static inline bool cpu_has_vmx_vpid(void)
1147 {
1148 return vmcs_config.cpu_based_2nd_exec_ctrl &
1149 SECONDARY_EXEC_ENABLE_VPID;
1150 }
1151
1152 static inline bool cpu_has_vmx_rdtscp(void)
1153 {
1154 return vmcs_config.cpu_based_2nd_exec_ctrl &
1155 SECONDARY_EXEC_RDTSCP;
1156 }
1157
1158 static inline bool cpu_has_vmx_invpcid(void)
1159 {
1160 return vmcs_config.cpu_based_2nd_exec_ctrl &
1161 SECONDARY_EXEC_ENABLE_INVPCID;
1162 }
1163
1164 static inline bool cpu_has_virtual_nmis(void)
1165 {
1166 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1167 }
1168
1169 static inline bool cpu_has_vmx_wbinvd_exit(void)
1170 {
1171 return vmcs_config.cpu_based_2nd_exec_ctrl &
1172 SECONDARY_EXEC_WBINVD_EXITING;
1173 }
1174
1175 static inline bool cpu_has_vmx_shadow_vmcs(void)
1176 {
1177 u64 vmx_msr;
1178 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1179 /* check if the cpu supports writing r/o exit information fields */
1180 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1181 return false;
1182
1183 return vmcs_config.cpu_based_2nd_exec_ctrl &
1184 SECONDARY_EXEC_SHADOW_VMCS;
1185 }
1186
1187 static inline bool cpu_has_vmx_pml(void)
1188 {
1189 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1190 }
1191
1192 static inline bool cpu_has_vmx_tsc_scaling(void)
1193 {
1194 return vmcs_config.cpu_based_2nd_exec_ctrl &
1195 SECONDARY_EXEC_TSC_SCALING;
1196 }
1197
1198 static inline bool report_flexpriority(void)
1199 {
1200 return flexpriority_enabled;
1201 }
1202
1203 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1204 {
1205 return vmcs12->cpu_based_vm_exec_control & bit;
1206 }
1207
1208 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1209 {
1210 return (vmcs12->cpu_based_vm_exec_control &
1211 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1212 (vmcs12->secondary_vm_exec_control & bit);
1213 }
1214
1215 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1216 {
1217 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1218 }
1219
1220 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1221 {
1222 return vmcs12->pin_based_vm_exec_control &
1223 PIN_BASED_VMX_PREEMPTION_TIMER;
1224 }
1225
1226 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1227 {
1228 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1229 }
1230
1231 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1232 {
1233 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1234 vmx_xsaves_supported();
1235 }
1236
1237 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1238 {
1239 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1240 }
1241
1242 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1243 {
1244 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1245 }
1246
1247 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1248 {
1249 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1250 }
1251
1252 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1253 {
1254 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1255 }
1256
1257 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1258 {
1259 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1260 }
1261
1262 static inline bool is_exception(u32 intr_info)
1263 {
1264 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1265 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1266 }
1267
1268 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1269 u32 exit_intr_info,
1270 unsigned long exit_qualification);
1271 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1272 struct vmcs12 *vmcs12,
1273 u32 reason, unsigned long qualification);
1274
1275 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1276 {
1277 int i;
1278
1279 for (i = 0; i < vmx->nmsrs; ++i)
1280 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1281 return i;
1282 return -1;
1283 }
1284
1285 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1286 {
1287 struct {
1288 u64 vpid : 16;
1289 u64 rsvd : 48;
1290 u64 gva;
1291 } operand = { vpid, 0, gva };
1292
1293 asm volatile (__ex(ASM_VMX_INVVPID)
1294 /* CF==1 or ZF==1 --> rc = -1 */
1295 "; ja 1f ; ud2 ; 1:"
1296 : : "a"(&operand), "c"(ext) : "cc", "memory");
1297 }
1298
1299 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1300 {
1301 struct {
1302 u64 eptp, gpa;
1303 } operand = {eptp, gpa};
1304
1305 asm volatile (__ex(ASM_VMX_INVEPT)
1306 /* CF==1 or ZF==1 --> rc = -1 */
1307 "; ja 1f ; ud2 ; 1:\n"
1308 : : "a" (&operand), "c" (ext) : "cc", "memory");
1309 }
1310
1311 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1312 {
1313 int i;
1314
1315 i = __find_msr_index(vmx, msr);
1316 if (i >= 0)
1317 return &vmx->guest_msrs[i];
1318 return NULL;
1319 }
1320
1321 static void vmcs_clear(struct vmcs *vmcs)
1322 {
1323 u64 phys_addr = __pa(vmcs);
1324 u8 error;
1325
1326 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1327 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1328 : "cc", "memory");
1329 if (error)
1330 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1331 vmcs, phys_addr);
1332 }
1333
1334 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1335 {
1336 vmcs_clear(loaded_vmcs->vmcs);
1337 loaded_vmcs->cpu = -1;
1338 loaded_vmcs->launched = 0;
1339 }
1340
1341 static void vmcs_load(struct vmcs *vmcs)
1342 {
1343 u64 phys_addr = __pa(vmcs);
1344 u8 error;
1345
1346 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1347 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1348 : "cc", "memory");
1349 if (error)
1350 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1351 vmcs, phys_addr);
1352 }
1353
1354 #ifdef CONFIG_KEXEC_CORE
1355 /*
1356 * This bitmap is used to indicate whether the vmclear
1357 * operation is enabled on all cpus. All disabled by
1358 * default.
1359 */
1360 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1361
1362 static inline void crash_enable_local_vmclear(int cpu)
1363 {
1364 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1365 }
1366
1367 static inline void crash_disable_local_vmclear(int cpu)
1368 {
1369 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1370 }
1371
1372 static inline int crash_local_vmclear_enabled(int cpu)
1373 {
1374 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1375 }
1376
1377 static void crash_vmclear_local_loaded_vmcss(void)
1378 {
1379 int cpu = raw_smp_processor_id();
1380 struct loaded_vmcs *v;
1381
1382 if (!crash_local_vmclear_enabled(cpu))
1383 return;
1384
1385 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1386 loaded_vmcss_on_cpu_link)
1387 vmcs_clear(v->vmcs);
1388 }
1389 #else
1390 static inline void crash_enable_local_vmclear(int cpu) { }
1391 static inline void crash_disable_local_vmclear(int cpu) { }
1392 #endif /* CONFIG_KEXEC_CORE */
1393
1394 static void __loaded_vmcs_clear(void *arg)
1395 {
1396 struct loaded_vmcs *loaded_vmcs = arg;
1397 int cpu = raw_smp_processor_id();
1398
1399 if (loaded_vmcs->cpu != cpu)
1400 return; /* vcpu migration can race with cpu offline */
1401 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1402 per_cpu(current_vmcs, cpu) = NULL;
1403 crash_disable_local_vmclear(cpu);
1404 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1405
1406 /*
1407 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1408 * is before setting loaded_vmcs->vcpu to -1 which is done in
1409 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1410 * then adds the vmcs into percpu list before it is deleted.
1411 */
1412 smp_wmb();
1413
1414 loaded_vmcs_init(loaded_vmcs);
1415 crash_enable_local_vmclear(cpu);
1416 }
1417
1418 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1419 {
1420 int cpu = loaded_vmcs->cpu;
1421
1422 if (cpu != -1)
1423 smp_call_function_single(cpu,
1424 __loaded_vmcs_clear, loaded_vmcs, 1);
1425 }
1426
1427 static inline void vpid_sync_vcpu_single(int vpid)
1428 {
1429 if (vpid == 0)
1430 return;
1431
1432 if (cpu_has_vmx_invvpid_single())
1433 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1434 }
1435
1436 static inline void vpid_sync_vcpu_global(void)
1437 {
1438 if (cpu_has_vmx_invvpid_global())
1439 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1440 }
1441
1442 static inline void vpid_sync_context(int vpid)
1443 {
1444 if (cpu_has_vmx_invvpid_single())
1445 vpid_sync_vcpu_single(vpid);
1446 else
1447 vpid_sync_vcpu_global();
1448 }
1449
1450 static inline void ept_sync_global(void)
1451 {
1452 if (cpu_has_vmx_invept_global())
1453 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1454 }
1455
1456 static inline void ept_sync_context(u64 eptp)
1457 {
1458 if (enable_ept) {
1459 if (cpu_has_vmx_invept_context())
1460 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1461 else
1462 ept_sync_global();
1463 }
1464 }
1465
1466 static __always_inline void vmcs_check16(unsigned long field)
1467 {
1468 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1469 "16-bit accessor invalid for 64-bit field");
1470 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1471 "16-bit accessor invalid for 64-bit high field");
1472 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1473 "16-bit accessor invalid for 32-bit high field");
1474 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1475 "16-bit accessor invalid for natural width field");
1476 }
1477
1478 static __always_inline void vmcs_check32(unsigned long field)
1479 {
1480 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1481 "32-bit accessor invalid for 16-bit field");
1482 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1483 "32-bit accessor invalid for natural width field");
1484 }
1485
1486 static __always_inline void vmcs_check64(unsigned long field)
1487 {
1488 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1489 "64-bit accessor invalid for 16-bit field");
1490 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1491 "64-bit accessor invalid for 64-bit high field");
1492 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1493 "64-bit accessor invalid for 32-bit field");
1494 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1495 "64-bit accessor invalid for natural width field");
1496 }
1497
1498 static __always_inline void vmcs_checkl(unsigned long field)
1499 {
1500 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1501 "Natural width accessor invalid for 16-bit field");
1502 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1503 "Natural width accessor invalid for 64-bit field");
1504 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1505 "Natural width accessor invalid for 64-bit high field");
1506 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1507 "Natural width accessor invalid for 32-bit field");
1508 }
1509
1510 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1511 {
1512 unsigned long value;
1513
1514 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1515 : "=a"(value) : "d"(field) : "cc");
1516 return value;
1517 }
1518
1519 static __always_inline u16 vmcs_read16(unsigned long field)
1520 {
1521 vmcs_check16(field);
1522 return __vmcs_readl(field);
1523 }
1524
1525 static __always_inline u32 vmcs_read32(unsigned long field)
1526 {
1527 vmcs_check32(field);
1528 return __vmcs_readl(field);
1529 }
1530
1531 static __always_inline u64 vmcs_read64(unsigned long field)
1532 {
1533 vmcs_check64(field);
1534 #ifdef CONFIG_X86_64
1535 return __vmcs_readl(field);
1536 #else
1537 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1538 #endif
1539 }
1540
1541 static __always_inline unsigned long vmcs_readl(unsigned long field)
1542 {
1543 vmcs_checkl(field);
1544 return __vmcs_readl(field);
1545 }
1546
1547 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1548 {
1549 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1550 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1551 dump_stack();
1552 }
1553
1554 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1555 {
1556 u8 error;
1557
1558 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1559 : "=q"(error) : "a"(value), "d"(field) : "cc");
1560 if (unlikely(error))
1561 vmwrite_error(field, value);
1562 }
1563
1564 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1565 {
1566 vmcs_check16(field);
1567 __vmcs_writel(field, value);
1568 }
1569
1570 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1571 {
1572 vmcs_check32(field);
1573 __vmcs_writel(field, value);
1574 }
1575
1576 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1577 {
1578 vmcs_check64(field);
1579 __vmcs_writel(field, value);
1580 #ifndef CONFIG_X86_64
1581 asm volatile ("");
1582 __vmcs_writel(field+1, value >> 32);
1583 #endif
1584 }
1585
1586 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1587 {
1588 vmcs_checkl(field);
1589 __vmcs_writel(field, value);
1590 }
1591
1592 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1593 {
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1595 "vmcs_clear_bits does not support 64-bit fields");
1596 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1597 }
1598
1599 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1600 {
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1602 "vmcs_set_bits does not support 64-bit fields");
1603 __vmcs_writel(field, __vmcs_readl(field) | mask);
1604 }
1605
1606 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1607 {
1608 vmcs_write32(VM_ENTRY_CONTROLS, val);
1609 vmx->vm_entry_controls_shadow = val;
1610 }
1611
1612 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1613 {
1614 if (vmx->vm_entry_controls_shadow != val)
1615 vm_entry_controls_init(vmx, val);
1616 }
1617
1618 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1619 {
1620 return vmx->vm_entry_controls_shadow;
1621 }
1622
1623
1624 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1625 {
1626 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1627 }
1628
1629 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1630 {
1631 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1632 }
1633
1634 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1635 {
1636 vmcs_write32(VM_EXIT_CONTROLS, val);
1637 vmx->vm_exit_controls_shadow = val;
1638 }
1639
1640 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1641 {
1642 if (vmx->vm_exit_controls_shadow != val)
1643 vm_exit_controls_init(vmx, val);
1644 }
1645
1646 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1647 {
1648 return vmx->vm_exit_controls_shadow;
1649 }
1650
1651
1652 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1653 {
1654 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1655 }
1656
1657 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1658 {
1659 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1660 }
1661
1662 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1663 {
1664 vmx->segment_cache.bitmask = 0;
1665 }
1666
1667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1668 unsigned field)
1669 {
1670 bool ret;
1671 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1672
1673 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1674 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1675 vmx->segment_cache.bitmask = 0;
1676 }
1677 ret = vmx->segment_cache.bitmask & mask;
1678 vmx->segment_cache.bitmask |= mask;
1679 return ret;
1680 }
1681
1682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1683 {
1684 u16 *p = &vmx->segment_cache.seg[seg].selector;
1685
1686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1688 return *p;
1689 }
1690
1691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1692 {
1693 ulong *p = &vmx->segment_cache.seg[seg].base;
1694
1695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1697 return *p;
1698 }
1699
1700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1701 {
1702 u32 *p = &vmx->segment_cache.seg[seg].limit;
1703
1704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1706 return *p;
1707 }
1708
1709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1710 {
1711 u32 *p = &vmx->segment_cache.seg[seg].ar;
1712
1713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1715 return *p;
1716 }
1717
1718 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1719 {
1720 u32 eb;
1721
1722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1723 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1724 if ((vcpu->guest_debug &
1725 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1726 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1727 eb |= 1u << BP_VECTOR;
1728 if (to_vmx(vcpu)->rmode.vm86_active)
1729 eb = ~0;
1730 if (enable_ept)
1731 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1732 if (vcpu->fpu_active)
1733 eb &= ~(1u << NM_VECTOR);
1734
1735 /* When we are running a nested L2 guest and L1 specified for it a
1736 * certain exception bitmap, we must trap the same exceptions and pass
1737 * them to L1. When running L2, we will only handle the exceptions
1738 * specified above if L1 did not want them.
1739 */
1740 if (is_guest_mode(vcpu))
1741 eb |= get_vmcs12(vcpu)->exception_bitmap;
1742
1743 vmcs_write32(EXCEPTION_BITMAP, eb);
1744 }
1745
1746 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1747 unsigned long entry, unsigned long exit)
1748 {
1749 vm_entry_controls_clearbit(vmx, entry);
1750 vm_exit_controls_clearbit(vmx, exit);
1751 }
1752
1753 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1754 {
1755 unsigned i;
1756 struct msr_autoload *m = &vmx->msr_autoload;
1757
1758 switch (msr) {
1759 case MSR_EFER:
1760 if (cpu_has_load_ia32_efer) {
1761 clear_atomic_switch_msr_special(vmx,
1762 VM_ENTRY_LOAD_IA32_EFER,
1763 VM_EXIT_LOAD_IA32_EFER);
1764 return;
1765 }
1766 break;
1767 case MSR_CORE_PERF_GLOBAL_CTRL:
1768 if (cpu_has_load_perf_global_ctrl) {
1769 clear_atomic_switch_msr_special(vmx,
1770 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1771 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1772 return;
1773 }
1774 break;
1775 }
1776
1777 for (i = 0; i < m->nr; ++i)
1778 if (m->guest[i].index == msr)
1779 break;
1780
1781 if (i == m->nr)
1782 return;
1783 --m->nr;
1784 m->guest[i] = m->guest[m->nr];
1785 m->host[i] = m->host[m->nr];
1786 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1787 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1788 }
1789
1790 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1791 unsigned long entry, unsigned long exit,
1792 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1793 u64 guest_val, u64 host_val)
1794 {
1795 vmcs_write64(guest_val_vmcs, guest_val);
1796 vmcs_write64(host_val_vmcs, host_val);
1797 vm_entry_controls_setbit(vmx, entry);
1798 vm_exit_controls_setbit(vmx, exit);
1799 }
1800
1801 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1802 u64 guest_val, u64 host_val)
1803 {
1804 unsigned i;
1805 struct msr_autoload *m = &vmx->msr_autoload;
1806
1807 switch (msr) {
1808 case MSR_EFER:
1809 if (cpu_has_load_ia32_efer) {
1810 add_atomic_switch_msr_special(vmx,
1811 VM_ENTRY_LOAD_IA32_EFER,
1812 VM_EXIT_LOAD_IA32_EFER,
1813 GUEST_IA32_EFER,
1814 HOST_IA32_EFER,
1815 guest_val, host_val);
1816 return;
1817 }
1818 break;
1819 case MSR_CORE_PERF_GLOBAL_CTRL:
1820 if (cpu_has_load_perf_global_ctrl) {
1821 add_atomic_switch_msr_special(vmx,
1822 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1823 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1824 GUEST_IA32_PERF_GLOBAL_CTRL,
1825 HOST_IA32_PERF_GLOBAL_CTRL,
1826 guest_val, host_val);
1827 return;
1828 }
1829 break;
1830 case MSR_IA32_PEBS_ENABLE:
1831 /* PEBS needs a quiescent period after being disabled (to write
1832 * a record). Disabling PEBS through VMX MSR swapping doesn't
1833 * provide that period, so a CPU could write host's record into
1834 * guest's memory.
1835 */
1836 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1837 }
1838
1839 for (i = 0; i < m->nr; ++i)
1840 if (m->guest[i].index == msr)
1841 break;
1842
1843 if (i == NR_AUTOLOAD_MSRS) {
1844 printk_once(KERN_WARNING "Not enough msr switch entries. "
1845 "Can't add msr %x\n", msr);
1846 return;
1847 } else if (i == m->nr) {
1848 ++m->nr;
1849 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1850 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1851 }
1852
1853 m->guest[i].index = msr;
1854 m->guest[i].value = guest_val;
1855 m->host[i].index = msr;
1856 m->host[i].value = host_val;
1857 }
1858
1859 static void reload_tss(void)
1860 {
1861 /*
1862 * VT restores TR but not its size. Useless.
1863 */
1864 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1865 struct desc_struct *descs;
1866
1867 descs = (void *)gdt->address;
1868 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1869 load_TR_desc();
1870 }
1871
1872 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1873 {
1874 u64 guest_efer = vmx->vcpu.arch.efer;
1875 u64 ignore_bits = 0;
1876
1877 if (!enable_ept) {
1878 /*
1879 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1880 * host CPUID is more efficient than testing guest CPUID
1881 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1882 */
1883 if (boot_cpu_has(X86_FEATURE_SMEP))
1884 guest_efer |= EFER_NX;
1885 else if (!(guest_efer & EFER_NX))
1886 ignore_bits |= EFER_NX;
1887 }
1888
1889 /*
1890 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1891 */
1892 ignore_bits |= EFER_SCE;
1893 #ifdef CONFIG_X86_64
1894 ignore_bits |= EFER_LMA | EFER_LME;
1895 /* SCE is meaningful only in long mode on Intel */
1896 if (guest_efer & EFER_LMA)
1897 ignore_bits &= ~(u64)EFER_SCE;
1898 #endif
1899
1900 clear_atomic_switch_msr(vmx, MSR_EFER);
1901
1902 /*
1903 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1904 * On CPUs that support "load IA32_EFER", always switch EFER
1905 * atomically, since it's faster than switching it manually.
1906 */
1907 if (cpu_has_load_ia32_efer ||
1908 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1909 if (!(guest_efer & EFER_LMA))
1910 guest_efer &= ~EFER_LME;
1911 if (guest_efer != host_efer)
1912 add_atomic_switch_msr(vmx, MSR_EFER,
1913 guest_efer, host_efer);
1914 return false;
1915 } else {
1916 guest_efer &= ~ignore_bits;
1917 guest_efer |= host_efer & ignore_bits;
1918
1919 vmx->guest_msrs[efer_offset].data = guest_efer;
1920 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1921
1922 return true;
1923 }
1924 }
1925
1926 static unsigned long segment_base(u16 selector)
1927 {
1928 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1929 struct desc_struct *d;
1930 unsigned long table_base;
1931 unsigned long v;
1932
1933 if (!(selector & ~3))
1934 return 0;
1935
1936 table_base = gdt->address;
1937
1938 if (selector & 4) { /* from ldt */
1939 u16 ldt_selector = kvm_read_ldt();
1940
1941 if (!(ldt_selector & ~3))
1942 return 0;
1943
1944 table_base = segment_base(ldt_selector);
1945 }
1946 d = (struct desc_struct *)(table_base + (selector & ~7));
1947 v = get_desc_base(d);
1948 #ifdef CONFIG_X86_64
1949 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1950 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1951 #endif
1952 return v;
1953 }
1954
1955 static inline unsigned long kvm_read_tr_base(void)
1956 {
1957 u16 tr;
1958 asm("str %0" : "=g"(tr));
1959 return segment_base(tr);
1960 }
1961
1962 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1963 {
1964 struct vcpu_vmx *vmx = to_vmx(vcpu);
1965 int i;
1966
1967 if (vmx->host_state.loaded)
1968 return;
1969
1970 vmx->host_state.loaded = 1;
1971 /*
1972 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1973 * allow segment selectors with cpl > 0 or ti == 1.
1974 */
1975 vmx->host_state.ldt_sel = kvm_read_ldt();
1976 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1977 savesegment(fs, vmx->host_state.fs_sel);
1978 if (!(vmx->host_state.fs_sel & 7)) {
1979 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1980 vmx->host_state.fs_reload_needed = 0;
1981 } else {
1982 vmcs_write16(HOST_FS_SELECTOR, 0);
1983 vmx->host_state.fs_reload_needed = 1;
1984 }
1985 savesegment(gs, vmx->host_state.gs_sel);
1986 if (!(vmx->host_state.gs_sel & 7))
1987 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1988 else {
1989 vmcs_write16(HOST_GS_SELECTOR, 0);
1990 vmx->host_state.gs_ldt_reload_needed = 1;
1991 }
1992
1993 #ifdef CONFIG_X86_64
1994 savesegment(ds, vmx->host_state.ds_sel);
1995 savesegment(es, vmx->host_state.es_sel);
1996 #endif
1997
1998 #ifdef CONFIG_X86_64
1999 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2000 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2001 #else
2002 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2003 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2004 #endif
2005
2006 #ifdef CONFIG_X86_64
2007 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2008 if (is_long_mode(&vmx->vcpu))
2009 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2010 #endif
2011 if (boot_cpu_has(X86_FEATURE_MPX))
2012 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2013 for (i = 0; i < vmx->save_nmsrs; ++i)
2014 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2015 vmx->guest_msrs[i].data,
2016 vmx->guest_msrs[i].mask);
2017 }
2018
2019 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2020 {
2021 if (!vmx->host_state.loaded)
2022 return;
2023
2024 ++vmx->vcpu.stat.host_state_reload;
2025 vmx->host_state.loaded = 0;
2026 #ifdef CONFIG_X86_64
2027 if (is_long_mode(&vmx->vcpu))
2028 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2029 #endif
2030 if (vmx->host_state.gs_ldt_reload_needed) {
2031 kvm_load_ldt(vmx->host_state.ldt_sel);
2032 #ifdef CONFIG_X86_64
2033 load_gs_index(vmx->host_state.gs_sel);
2034 #else
2035 loadsegment(gs, vmx->host_state.gs_sel);
2036 #endif
2037 }
2038 if (vmx->host_state.fs_reload_needed)
2039 loadsegment(fs, vmx->host_state.fs_sel);
2040 #ifdef CONFIG_X86_64
2041 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2042 loadsegment(ds, vmx->host_state.ds_sel);
2043 loadsegment(es, vmx->host_state.es_sel);
2044 }
2045 #endif
2046 reload_tss();
2047 #ifdef CONFIG_X86_64
2048 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2049 #endif
2050 if (vmx->host_state.msr_host_bndcfgs)
2051 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2052 /*
2053 * If the FPU is not active (through the host task or
2054 * the guest vcpu), then restore the cr0.TS bit.
2055 */
2056 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2057 stts();
2058 load_gdt(this_cpu_ptr(&host_gdt));
2059 }
2060
2061 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2062 {
2063 preempt_disable();
2064 __vmx_load_host_state(vmx);
2065 preempt_enable();
2066 }
2067
2068 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2069 {
2070 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2071 struct pi_desc old, new;
2072 unsigned int dest;
2073
2074 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2075 !irq_remapping_cap(IRQ_POSTING_CAP))
2076 return;
2077
2078 do {
2079 old.control = new.control = pi_desc->control;
2080
2081 /*
2082 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2083 * are two possible cases:
2084 * 1. After running 'pre_block', context switch
2085 * happened. For this case, 'sn' was set in
2086 * vmx_vcpu_put(), so we need to clear it here.
2087 * 2. After running 'pre_block', we were blocked,
2088 * and woken up by some other guy. For this case,
2089 * we don't need to do anything, 'pi_post_block'
2090 * will do everything for us. However, we cannot
2091 * check whether it is case #1 or case #2 here
2092 * (maybe, not needed), so we also clear sn here,
2093 * I think it is not a big deal.
2094 */
2095 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2096 if (vcpu->cpu != cpu) {
2097 dest = cpu_physical_id(cpu);
2098
2099 if (x2apic_enabled())
2100 new.ndst = dest;
2101 else
2102 new.ndst = (dest << 8) & 0xFF00;
2103 }
2104
2105 /* set 'NV' to 'notification vector' */
2106 new.nv = POSTED_INTR_VECTOR;
2107 }
2108
2109 /* Allow posting non-urgent interrupts */
2110 new.sn = 0;
2111 } while (cmpxchg(&pi_desc->control, old.control,
2112 new.control) != old.control);
2113 }
2114
2115 /*
2116 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2117 * vcpu mutex is already taken.
2118 */
2119 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2120 {
2121 struct vcpu_vmx *vmx = to_vmx(vcpu);
2122 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2123
2124 if (!vmm_exclusive)
2125 kvm_cpu_vmxon(phys_addr);
2126 else if (vmx->loaded_vmcs->cpu != cpu)
2127 loaded_vmcs_clear(vmx->loaded_vmcs);
2128
2129 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2130 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2131 vmcs_load(vmx->loaded_vmcs->vmcs);
2132 }
2133
2134 if (vmx->loaded_vmcs->cpu != cpu) {
2135 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2136 unsigned long sysenter_esp;
2137
2138 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2139 local_irq_disable();
2140 crash_disable_local_vmclear(cpu);
2141
2142 /*
2143 * Read loaded_vmcs->cpu should be before fetching
2144 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2145 * See the comments in __loaded_vmcs_clear().
2146 */
2147 smp_rmb();
2148
2149 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2150 &per_cpu(loaded_vmcss_on_cpu, cpu));
2151 crash_enable_local_vmclear(cpu);
2152 local_irq_enable();
2153
2154 /*
2155 * Linux uses per-cpu TSS and GDT, so set these when switching
2156 * processors.
2157 */
2158 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2159 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2160
2161 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2162 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2163
2164 vmx->loaded_vmcs->cpu = cpu;
2165 }
2166
2167 /* Setup TSC multiplier */
2168 if (kvm_has_tsc_control &&
2169 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2170 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2171 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2172 }
2173
2174 vmx_vcpu_pi_load(vcpu, cpu);
2175 vmx->host_pkru = read_pkru();
2176 }
2177
2178 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2179 {
2180 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2181
2182 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2183 !irq_remapping_cap(IRQ_POSTING_CAP))
2184 return;
2185
2186 /* Set SN when the vCPU is preempted */
2187 if (vcpu->preempted)
2188 pi_set_sn(pi_desc);
2189 }
2190
2191 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2192 {
2193 vmx_vcpu_pi_put(vcpu);
2194
2195 __vmx_load_host_state(to_vmx(vcpu));
2196 if (!vmm_exclusive) {
2197 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2198 vcpu->cpu = -1;
2199 kvm_cpu_vmxoff();
2200 }
2201 }
2202
2203 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2204 {
2205 ulong cr0;
2206
2207 if (vcpu->fpu_active)
2208 return;
2209 vcpu->fpu_active = 1;
2210 cr0 = vmcs_readl(GUEST_CR0);
2211 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2212 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2213 vmcs_writel(GUEST_CR0, cr0);
2214 update_exception_bitmap(vcpu);
2215 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2216 if (is_guest_mode(vcpu))
2217 vcpu->arch.cr0_guest_owned_bits &=
2218 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2219 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2220 }
2221
2222 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2223
2224 /*
2225 * Return the cr0 value that a nested guest would read. This is a combination
2226 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2227 * its hypervisor (cr0_read_shadow).
2228 */
2229 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2230 {
2231 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2232 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2233 }
2234 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2235 {
2236 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2237 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2238 }
2239
2240 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2241 {
2242 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2243 * set this *before* calling this function.
2244 */
2245 vmx_decache_cr0_guest_bits(vcpu);
2246 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2247 update_exception_bitmap(vcpu);
2248 vcpu->arch.cr0_guest_owned_bits = 0;
2249 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2250 if (is_guest_mode(vcpu)) {
2251 /*
2252 * L1's specified read shadow might not contain the TS bit,
2253 * so now that we turned on shadowing of this bit, we need to
2254 * set this bit of the shadow. Like in nested_vmx_run we need
2255 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2256 * up-to-date here because we just decached cr0.TS (and we'll
2257 * only update vmcs12->guest_cr0 on nested exit).
2258 */
2259 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2260 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2261 (vcpu->arch.cr0 & X86_CR0_TS);
2262 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2263 } else
2264 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2265 }
2266
2267 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2268 {
2269 unsigned long rflags, save_rflags;
2270
2271 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2272 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2273 rflags = vmcs_readl(GUEST_RFLAGS);
2274 if (to_vmx(vcpu)->rmode.vm86_active) {
2275 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2276 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2277 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2278 }
2279 to_vmx(vcpu)->rflags = rflags;
2280 }
2281 return to_vmx(vcpu)->rflags;
2282 }
2283
2284 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2285 {
2286 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2287 to_vmx(vcpu)->rflags = rflags;
2288 if (to_vmx(vcpu)->rmode.vm86_active) {
2289 to_vmx(vcpu)->rmode.save_rflags = rflags;
2290 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2291 }
2292 vmcs_writel(GUEST_RFLAGS, rflags);
2293 }
2294
2295 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2296 {
2297 return to_vmx(vcpu)->guest_pkru;
2298 }
2299
2300 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2301 {
2302 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2303 int ret = 0;
2304
2305 if (interruptibility & GUEST_INTR_STATE_STI)
2306 ret |= KVM_X86_SHADOW_INT_STI;
2307 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2308 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2309
2310 return ret;
2311 }
2312
2313 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2314 {
2315 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2316 u32 interruptibility = interruptibility_old;
2317
2318 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2319
2320 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2321 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2322 else if (mask & KVM_X86_SHADOW_INT_STI)
2323 interruptibility |= GUEST_INTR_STATE_STI;
2324
2325 if ((interruptibility != interruptibility_old))
2326 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2327 }
2328
2329 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2330 {
2331 unsigned long rip;
2332
2333 rip = kvm_rip_read(vcpu);
2334 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2335 kvm_rip_write(vcpu, rip);
2336
2337 /* skipping an emulated instruction also counts */
2338 vmx_set_interrupt_shadow(vcpu, 0);
2339 }
2340
2341 /*
2342 * KVM wants to inject page-faults which it got to the guest. This function
2343 * checks whether in a nested guest, we need to inject them to L1 or L2.
2344 */
2345 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2346 {
2347 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2348
2349 if (!(vmcs12->exception_bitmap & (1u << nr)))
2350 return 0;
2351
2352 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2353 vmcs_read32(VM_EXIT_INTR_INFO),
2354 vmcs_readl(EXIT_QUALIFICATION));
2355 return 1;
2356 }
2357
2358 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2359 bool has_error_code, u32 error_code,
2360 bool reinject)
2361 {
2362 struct vcpu_vmx *vmx = to_vmx(vcpu);
2363 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2364
2365 if (!reinject && is_guest_mode(vcpu) &&
2366 nested_vmx_check_exception(vcpu, nr))
2367 return;
2368
2369 if (has_error_code) {
2370 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2371 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2372 }
2373
2374 if (vmx->rmode.vm86_active) {
2375 int inc_eip = 0;
2376 if (kvm_exception_is_soft(nr))
2377 inc_eip = vcpu->arch.event_exit_inst_len;
2378 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2379 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2380 return;
2381 }
2382
2383 if (kvm_exception_is_soft(nr)) {
2384 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2385 vmx->vcpu.arch.event_exit_inst_len);
2386 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2387 } else
2388 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2389
2390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2391 }
2392
2393 static bool vmx_rdtscp_supported(void)
2394 {
2395 return cpu_has_vmx_rdtscp();
2396 }
2397
2398 static bool vmx_invpcid_supported(void)
2399 {
2400 return cpu_has_vmx_invpcid() && enable_ept;
2401 }
2402
2403 /*
2404 * Swap MSR entry in host/guest MSR entry array.
2405 */
2406 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2407 {
2408 struct shared_msr_entry tmp;
2409
2410 tmp = vmx->guest_msrs[to];
2411 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2412 vmx->guest_msrs[from] = tmp;
2413 }
2414
2415 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2416 {
2417 unsigned long *msr_bitmap;
2418
2419 if (is_guest_mode(vcpu))
2420 msr_bitmap = vmx_msr_bitmap_nested;
2421 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2422 if (is_long_mode(vcpu))
2423 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2424 else
2425 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2426 } else {
2427 if (is_long_mode(vcpu))
2428 msr_bitmap = vmx_msr_bitmap_longmode;
2429 else
2430 msr_bitmap = vmx_msr_bitmap_legacy;
2431 }
2432
2433 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2434 }
2435
2436 /*
2437 * Set up the vmcs to automatically save and restore system
2438 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2439 * mode, as fiddling with msrs is very expensive.
2440 */
2441 static void setup_msrs(struct vcpu_vmx *vmx)
2442 {
2443 int save_nmsrs, index;
2444
2445 save_nmsrs = 0;
2446 #ifdef CONFIG_X86_64
2447 if (is_long_mode(&vmx->vcpu)) {
2448 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2449 if (index >= 0)
2450 move_msr_up(vmx, index, save_nmsrs++);
2451 index = __find_msr_index(vmx, MSR_LSTAR);
2452 if (index >= 0)
2453 move_msr_up(vmx, index, save_nmsrs++);
2454 index = __find_msr_index(vmx, MSR_CSTAR);
2455 if (index >= 0)
2456 move_msr_up(vmx, index, save_nmsrs++);
2457 index = __find_msr_index(vmx, MSR_TSC_AUX);
2458 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2459 move_msr_up(vmx, index, save_nmsrs++);
2460 /*
2461 * MSR_STAR is only needed on long mode guests, and only
2462 * if efer.sce is enabled.
2463 */
2464 index = __find_msr_index(vmx, MSR_STAR);
2465 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2466 move_msr_up(vmx, index, save_nmsrs++);
2467 }
2468 #endif
2469 index = __find_msr_index(vmx, MSR_EFER);
2470 if (index >= 0 && update_transition_efer(vmx, index))
2471 move_msr_up(vmx, index, save_nmsrs++);
2472
2473 vmx->save_nmsrs = save_nmsrs;
2474
2475 if (cpu_has_vmx_msr_bitmap())
2476 vmx_set_msr_bitmap(&vmx->vcpu);
2477 }
2478
2479 /*
2480 * reads and returns guest's timestamp counter "register"
2481 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2482 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2483 */
2484 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2485 {
2486 u64 host_tsc, tsc_offset;
2487
2488 host_tsc = rdtsc();
2489 tsc_offset = vmcs_read64(TSC_OFFSET);
2490 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2491 }
2492
2493 /*
2494 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2495 * counter, even if a nested guest (L2) is currently running.
2496 */
2497 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2498 {
2499 u64 tsc_offset;
2500
2501 tsc_offset = is_guest_mode(vcpu) ?
2502 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2503 vmcs_read64(TSC_OFFSET);
2504 return host_tsc + tsc_offset;
2505 }
2506
2507 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2508 {
2509 return vmcs_read64(TSC_OFFSET);
2510 }
2511
2512 /*
2513 * writes 'offset' into guest's timestamp counter offset register
2514 */
2515 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2516 {
2517 if (is_guest_mode(vcpu)) {
2518 /*
2519 * We're here if L1 chose not to trap WRMSR to TSC. According
2520 * to the spec, this should set L1's TSC; The offset that L1
2521 * set for L2 remains unchanged, and still needs to be added
2522 * to the newly set TSC to get L2's TSC.
2523 */
2524 struct vmcs12 *vmcs12;
2525 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2526 /* recalculate vmcs02.TSC_OFFSET: */
2527 vmcs12 = get_vmcs12(vcpu);
2528 vmcs_write64(TSC_OFFSET, offset +
2529 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2530 vmcs12->tsc_offset : 0));
2531 } else {
2532 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2533 vmcs_read64(TSC_OFFSET), offset);
2534 vmcs_write64(TSC_OFFSET, offset);
2535 }
2536 }
2537
2538 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2539 {
2540 u64 offset = vmcs_read64(TSC_OFFSET);
2541
2542 vmcs_write64(TSC_OFFSET, offset + adjustment);
2543 if (is_guest_mode(vcpu)) {
2544 /* Even when running L2, the adjustment needs to apply to L1 */
2545 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2546 } else
2547 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2548 offset + adjustment);
2549 }
2550
2551 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2552 {
2553 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2554 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2555 }
2556
2557 /*
2558 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2559 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2560 * all guests if the "nested" module option is off, and can also be disabled
2561 * for a single guest by disabling its VMX cpuid bit.
2562 */
2563 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2564 {
2565 return nested && guest_cpuid_has_vmx(vcpu);
2566 }
2567
2568 /*
2569 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2570 * returned for the various VMX controls MSRs when nested VMX is enabled.
2571 * The same values should also be used to verify that vmcs12 control fields are
2572 * valid during nested entry from L1 to L2.
2573 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2574 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2575 * bit in the high half is on if the corresponding bit in the control field
2576 * may be on. See also vmx_control_verify().
2577 */
2578 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2579 {
2580 /*
2581 * Note that as a general rule, the high half of the MSRs (bits in
2582 * the control fields which may be 1) should be initialized by the
2583 * intersection of the underlying hardware's MSR (i.e., features which
2584 * can be supported) and the list of features we want to expose -
2585 * because they are known to be properly supported in our code.
2586 * Also, usually, the low half of the MSRs (bits which must be 1) can
2587 * be set to 0, meaning that L1 may turn off any of these bits. The
2588 * reason is that if one of these bits is necessary, it will appear
2589 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2590 * fields of vmcs01 and vmcs02, will turn these bits off - and
2591 * nested_vmx_exit_handled() will not pass related exits to L1.
2592 * These rules have exceptions below.
2593 */
2594
2595 /* pin-based controls */
2596 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2597 vmx->nested.nested_vmx_pinbased_ctls_low,
2598 vmx->nested.nested_vmx_pinbased_ctls_high);
2599 vmx->nested.nested_vmx_pinbased_ctls_low |=
2600 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2601 vmx->nested.nested_vmx_pinbased_ctls_high &=
2602 PIN_BASED_EXT_INTR_MASK |
2603 PIN_BASED_NMI_EXITING |
2604 PIN_BASED_VIRTUAL_NMIS;
2605 vmx->nested.nested_vmx_pinbased_ctls_high |=
2606 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2607 PIN_BASED_VMX_PREEMPTION_TIMER;
2608 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2609 vmx->nested.nested_vmx_pinbased_ctls_high |=
2610 PIN_BASED_POSTED_INTR;
2611
2612 /* exit controls */
2613 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2614 vmx->nested.nested_vmx_exit_ctls_low,
2615 vmx->nested.nested_vmx_exit_ctls_high);
2616 vmx->nested.nested_vmx_exit_ctls_low =
2617 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2618
2619 vmx->nested.nested_vmx_exit_ctls_high &=
2620 #ifdef CONFIG_X86_64
2621 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2622 #endif
2623 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2624 vmx->nested.nested_vmx_exit_ctls_high |=
2625 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2626 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2627 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2628
2629 if (kvm_mpx_supported())
2630 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2631
2632 /* We support free control of debug control saving. */
2633 vmx->nested.nested_vmx_true_exit_ctls_low =
2634 vmx->nested.nested_vmx_exit_ctls_low &
2635 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2636
2637 /* entry controls */
2638 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2639 vmx->nested.nested_vmx_entry_ctls_low,
2640 vmx->nested.nested_vmx_entry_ctls_high);
2641 vmx->nested.nested_vmx_entry_ctls_low =
2642 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2643 vmx->nested.nested_vmx_entry_ctls_high &=
2644 #ifdef CONFIG_X86_64
2645 VM_ENTRY_IA32E_MODE |
2646 #endif
2647 VM_ENTRY_LOAD_IA32_PAT;
2648 vmx->nested.nested_vmx_entry_ctls_high |=
2649 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2650 if (kvm_mpx_supported())
2651 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2652
2653 /* We support free control of debug control loading. */
2654 vmx->nested.nested_vmx_true_entry_ctls_low =
2655 vmx->nested.nested_vmx_entry_ctls_low &
2656 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2657
2658 /* cpu-based controls */
2659 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2660 vmx->nested.nested_vmx_procbased_ctls_low,
2661 vmx->nested.nested_vmx_procbased_ctls_high);
2662 vmx->nested.nested_vmx_procbased_ctls_low =
2663 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2664 vmx->nested.nested_vmx_procbased_ctls_high &=
2665 CPU_BASED_VIRTUAL_INTR_PENDING |
2666 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2667 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2668 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2669 CPU_BASED_CR3_STORE_EXITING |
2670 #ifdef CONFIG_X86_64
2671 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2672 #endif
2673 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2674 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2675 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2676 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2677 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2678 /*
2679 * We can allow some features even when not supported by the
2680 * hardware. For example, L1 can specify an MSR bitmap - and we
2681 * can use it to avoid exits to L1 - even when L0 runs L2
2682 * without MSR bitmaps.
2683 */
2684 vmx->nested.nested_vmx_procbased_ctls_high |=
2685 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2686 CPU_BASED_USE_MSR_BITMAPS;
2687
2688 /* We support free control of CR3 access interception. */
2689 vmx->nested.nested_vmx_true_procbased_ctls_low =
2690 vmx->nested.nested_vmx_procbased_ctls_low &
2691 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2692
2693 /* secondary cpu-based controls */
2694 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2695 vmx->nested.nested_vmx_secondary_ctls_low,
2696 vmx->nested.nested_vmx_secondary_ctls_high);
2697 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2698 vmx->nested.nested_vmx_secondary_ctls_high &=
2699 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2700 SECONDARY_EXEC_RDTSCP |
2701 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2702 SECONDARY_EXEC_ENABLE_VPID |
2703 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2704 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2705 SECONDARY_EXEC_WBINVD_EXITING |
2706 SECONDARY_EXEC_XSAVES |
2707 SECONDARY_EXEC_PCOMMIT;
2708
2709 if (enable_ept) {
2710 /* nested EPT: emulate EPT also to L1 */
2711 vmx->nested.nested_vmx_secondary_ctls_high |=
2712 SECONDARY_EXEC_ENABLE_EPT;
2713 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2714 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2715 VMX_EPT_INVEPT_BIT;
2716 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2717 /*
2718 * For nested guests, we don't do anything specific
2719 * for single context invalidation. Hence, only advertise
2720 * support for global context invalidation.
2721 */
2722 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2723 } else
2724 vmx->nested.nested_vmx_ept_caps = 0;
2725
2726 /*
2727 * Old versions of KVM use the single-context version without
2728 * checking for support, so declare that it is supported even
2729 * though it is treated as global context. The alternative is
2730 * not failing the single-context invvpid, and it is worse.
2731 */
2732 if (enable_vpid)
2733 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2734 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
2735 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2736 else
2737 vmx->nested.nested_vmx_vpid_caps = 0;
2738
2739 if (enable_unrestricted_guest)
2740 vmx->nested.nested_vmx_secondary_ctls_high |=
2741 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2742
2743 /* miscellaneous data */
2744 rdmsr(MSR_IA32_VMX_MISC,
2745 vmx->nested.nested_vmx_misc_low,
2746 vmx->nested.nested_vmx_misc_high);
2747 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2748 vmx->nested.nested_vmx_misc_low |=
2749 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2750 VMX_MISC_ACTIVITY_HLT;
2751 vmx->nested.nested_vmx_misc_high = 0;
2752 }
2753
2754 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2755 {
2756 /*
2757 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2758 */
2759 return ((control & high) | low) == control;
2760 }
2761
2762 static inline u64 vmx_control_msr(u32 low, u32 high)
2763 {
2764 return low | ((u64)high << 32);
2765 }
2766
2767 /* Returns 0 on success, non-0 otherwise. */
2768 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2769 {
2770 struct vcpu_vmx *vmx = to_vmx(vcpu);
2771
2772 switch (msr_index) {
2773 case MSR_IA32_VMX_BASIC:
2774 /*
2775 * This MSR reports some information about VMX support. We
2776 * should return information about the VMX we emulate for the
2777 * guest, and the VMCS structure we give it - not about the
2778 * VMX support of the underlying hardware.
2779 */
2780 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2781 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2782 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2783 break;
2784 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2785 case MSR_IA32_VMX_PINBASED_CTLS:
2786 *pdata = vmx_control_msr(
2787 vmx->nested.nested_vmx_pinbased_ctls_low,
2788 vmx->nested.nested_vmx_pinbased_ctls_high);
2789 break;
2790 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2791 *pdata = vmx_control_msr(
2792 vmx->nested.nested_vmx_true_procbased_ctls_low,
2793 vmx->nested.nested_vmx_procbased_ctls_high);
2794 break;
2795 case MSR_IA32_VMX_PROCBASED_CTLS:
2796 *pdata = vmx_control_msr(
2797 vmx->nested.nested_vmx_procbased_ctls_low,
2798 vmx->nested.nested_vmx_procbased_ctls_high);
2799 break;
2800 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2801 *pdata = vmx_control_msr(
2802 vmx->nested.nested_vmx_true_exit_ctls_low,
2803 vmx->nested.nested_vmx_exit_ctls_high);
2804 break;
2805 case MSR_IA32_VMX_EXIT_CTLS:
2806 *pdata = vmx_control_msr(
2807 vmx->nested.nested_vmx_exit_ctls_low,
2808 vmx->nested.nested_vmx_exit_ctls_high);
2809 break;
2810 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2811 *pdata = vmx_control_msr(
2812 vmx->nested.nested_vmx_true_entry_ctls_low,
2813 vmx->nested.nested_vmx_entry_ctls_high);
2814 break;
2815 case MSR_IA32_VMX_ENTRY_CTLS:
2816 *pdata = vmx_control_msr(
2817 vmx->nested.nested_vmx_entry_ctls_low,
2818 vmx->nested.nested_vmx_entry_ctls_high);
2819 break;
2820 case MSR_IA32_VMX_MISC:
2821 *pdata = vmx_control_msr(
2822 vmx->nested.nested_vmx_misc_low,
2823 vmx->nested.nested_vmx_misc_high);
2824 break;
2825 /*
2826 * These MSRs specify bits which the guest must keep fixed (on or off)
2827 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2828 * We picked the standard core2 setting.
2829 */
2830 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2831 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2832 case MSR_IA32_VMX_CR0_FIXED0:
2833 *pdata = VMXON_CR0_ALWAYSON;
2834 break;
2835 case MSR_IA32_VMX_CR0_FIXED1:
2836 *pdata = -1ULL;
2837 break;
2838 case MSR_IA32_VMX_CR4_FIXED0:
2839 *pdata = VMXON_CR4_ALWAYSON;
2840 break;
2841 case MSR_IA32_VMX_CR4_FIXED1:
2842 *pdata = -1ULL;
2843 break;
2844 case MSR_IA32_VMX_VMCS_ENUM:
2845 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2846 break;
2847 case MSR_IA32_VMX_PROCBASED_CTLS2:
2848 *pdata = vmx_control_msr(
2849 vmx->nested.nested_vmx_secondary_ctls_low,
2850 vmx->nested.nested_vmx_secondary_ctls_high);
2851 break;
2852 case MSR_IA32_VMX_EPT_VPID_CAP:
2853 /* Currently, no nested vpid support */
2854 *pdata = vmx->nested.nested_vmx_ept_caps |
2855 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2856 break;
2857 default:
2858 return 1;
2859 }
2860
2861 return 0;
2862 }
2863
2864 /*
2865 * Reads an msr value (of 'msr_index') into 'pdata'.
2866 * Returns 0 on success, non-0 otherwise.
2867 * Assumes vcpu_load() was already called.
2868 */
2869 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2870 {
2871 struct shared_msr_entry *msr;
2872
2873 switch (msr_info->index) {
2874 #ifdef CONFIG_X86_64
2875 case MSR_FS_BASE:
2876 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2877 break;
2878 case MSR_GS_BASE:
2879 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2880 break;
2881 case MSR_KERNEL_GS_BASE:
2882 vmx_load_host_state(to_vmx(vcpu));
2883 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2884 break;
2885 #endif
2886 case MSR_EFER:
2887 return kvm_get_msr_common(vcpu, msr_info);
2888 case MSR_IA32_TSC:
2889 msr_info->data = guest_read_tsc(vcpu);
2890 break;
2891 case MSR_IA32_SYSENTER_CS:
2892 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2893 break;
2894 case MSR_IA32_SYSENTER_EIP:
2895 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2896 break;
2897 case MSR_IA32_SYSENTER_ESP:
2898 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2899 break;
2900 case MSR_IA32_BNDCFGS:
2901 if (!kvm_mpx_supported())
2902 return 1;
2903 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2904 break;
2905 case MSR_IA32_FEATURE_CONTROL:
2906 if (!nested_vmx_allowed(vcpu))
2907 return 1;
2908 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2909 break;
2910 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2911 if (!nested_vmx_allowed(vcpu))
2912 return 1;
2913 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2914 case MSR_IA32_XSS:
2915 if (!vmx_xsaves_supported())
2916 return 1;
2917 msr_info->data = vcpu->arch.ia32_xss;
2918 break;
2919 case MSR_TSC_AUX:
2920 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2921 return 1;
2922 /* Otherwise falls through */
2923 default:
2924 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2925 if (msr) {
2926 msr_info->data = msr->data;
2927 break;
2928 }
2929 return kvm_get_msr_common(vcpu, msr_info);
2930 }
2931
2932 return 0;
2933 }
2934
2935 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2936
2937 /*
2938 * Writes msr value into into the appropriate "register".
2939 * Returns 0 on success, non-0 otherwise.
2940 * Assumes vcpu_load() was already called.
2941 */
2942 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2943 {
2944 struct vcpu_vmx *vmx = to_vmx(vcpu);
2945 struct shared_msr_entry *msr;
2946 int ret = 0;
2947 u32 msr_index = msr_info->index;
2948 u64 data = msr_info->data;
2949
2950 switch (msr_index) {
2951 case MSR_EFER:
2952 ret = kvm_set_msr_common(vcpu, msr_info);
2953 break;
2954 #ifdef CONFIG_X86_64
2955 case MSR_FS_BASE:
2956 vmx_segment_cache_clear(vmx);
2957 vmcs_writel(GUEST_FS_BASE, data);
2958 break;
2959 case MSR_GS_BASE:
2960 vmx_segment_cache_clear(vmx);
2961 vmcs_writel(GUEST_GS_BASE, data);
2962 break;
2963 case MSR_KERNEL_GS_BASE:
2964 vmx_load_host_state(vmx);
2965 vmx->msr_guest_kernel_gs_base = data;
2966 break;
2967 #endif
2968 case MSR_IA32_SYSENTER_CS:
2969 vmcs_write32(GUEST_SYSENTER_CS, data);
2970 break;
2971 case MSR_IA32_SYSENTER_EIP:
2972 vmcs_writel(GUEST_SYSENTER_EIP, data);
2973 break;
2974 case MSR_IA32_SYSENTER_ESP:
2975 vmcs_writel(GUEST_SYSENTER_ESP, data);
2976 break;
2977 case MSR_IA32_BNDCFGS:
2978 if (!kvm_mpx_supported())
2979 return 1;
2980 vmcs_write64(GUEST_BNDCFGS, data);
2981 break;
2982 case MSR_IA32_TSC:
2983 kvm_write_tsc(vcpu, msr_info);
2984 break;
2985 case MSR_IA32_CR_PAT:
2986 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2987 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2988 return 1;
2989 vmcs_write64(GUEST_IA32_PAT, data);
2990 vcpu->arch.pat = data;
2991 break;
2992 }
2993 ret = kvm_set_msr_common(vcpu, msr_info);
2994 break;
2995 case MSR_IA32_TSC_ADJUST:
2996 ret = kvm_set_msr_common(vcpu, msr_info);
2997 break;
2998 case MSR_IA32_FEATURE_CONTROL:
2999 if (!nested_vmx_allowed(vcpu) ||
3000 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
3001 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3002 return 1;
3003 vmx->nested.msr_ia32_feature_control = data;
3004 if (msr_info->host_initiated && data == 0)
3005 vmx_leave_nested(vcpu);
3006 break;
3007 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3008 return 1; /* they are read-only */
3009 case MSR_IA32_XSS:
3010 if (!vmx_xsaves_supported())
3011 return 1;
3012 /*
3013 * The only supported bit as of Skylake is bit 8, but
3014 * it is not supported on KVM.
3015 */
3016 if (data != 0)
3017 return 1;
3018 vcpu->arch.ia32_xss = data;
3019 if (vcpu->arch.ia32_xss != host_xss)
3020 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3021 vcpu->arch.ia32_xss, host_xss);
3022 else
3023 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3024 break;
3025 case MSR_TSC_AUX:
3026 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3027 return 1;
3028 /* Check reserved bit, higher 32 bits should be zero */
3029 if ((data >> 32) != 0)
3030 return 1;
3031 /* Otherwise falls through */
3032 default:
3033 msr = find_msr_entry(vmx, msr_index);
3034 if (msr) {
3035 u64 old_msr_data = msr->data;
3036 msr->data = data;
3037 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3038 preempt_disable();
3039 ret = kvm_set_shared_msr(msr->index, msr->data,
3040 msr->mask);
3041 preempt_enable();
3042 if (ret)
3043 msr->data = old_msr_data;
3044 }
3045 break;
3046 }
3047 ret = kvm_set_msr_common(vcpu, msr_info);
3048 }
3049
3050 return ret;
3051 }
3052
3053 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3054 {
3055 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3056 switch (reg) {
3057 case VCPU_REGS_RSP:
3058 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3059 break;
3060 case VCPU_REGS_RIP:
3061 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3062 break;
3063 case VCPU_EXREG_PDPTR:
3064 if (enable_ept)
3065 ept_save_pdptrs(vcpu);
3066 break;
3067 default:
3068 break;
3069 }
3070 }
3071
3072 static __init int cpu_has_kvm_support(void)
3073 {
3074 return cpu_has_vmx();
3075 }
3076
3077 static __init int vmx_disabled_by_bios(void)
3078 {
3079 u64 msr;
3080
3081 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3082 if (msr & FEATURE_CONTROL_LOCKED) {
3083 /* launched w/ TXT and VMX disabled */
3084 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3085 && tboot_enabled())
3086 return 1;
3087 /* launched w/o TXT and VMX only enabled w/ TXT */
3088 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3089 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3090 && !tboot_enabled()) {
3091 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3092 "activate TXT before enabling KVM\n");
3093 return 1;
3094 }
3095 /* launched w/o TXT and VMX disabled */
3096 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3097 && !tboot_enabled())
3098 return 1;
3099 }
3100
3101 return 0;
3102 }
3103
3104 static void kvm_cpu_vmxon(u64 addr)
3105 {
3106 asm volatile (ASM_VMX_VMXON_RAX
3107 : : "a"(&addr), "m"(addr)
3108 : "memory", "cc");
3109 }
3110
3111 static int hardware_enable(void)
3112 {
3113 int cpu = raw_smp_processor_id();
3114 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3115 u64 old, test_bits;
3116
3117 if (cr4_read_shadow() & X86_CR4_VMXE)
3118 return -EBUSY;
3119
3120 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3121 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3122 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3123
3124 /*
3125 * Now we can enable the vmclear operation in kdump
3126 * since the loaded_vmcss_on_cpu list on this cpu
3127 * has been initialized.
3128 *
3129 * Though the cpu is not in VMX operation now, there
3130 * is no problem to enable the vmclear operation
3131 * for the loaded_vmcss_on_cpu list is empty!
3132 */
3133 crash_enable_local_vmclear(cpu);
3134
3135 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3136
3137 test_bits = FEATURE_CONTROL_LOCKED;
3138 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3139 if (tboot_enabled())
3140 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3141
3142 if ((old & test_bits) != test_bits) {
3143 /* enable and lock */
3144 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3145 }
3146 cr4_set_bits(X86_CR4_VMXE);
3147
3148 if (vmm_exclusive) {
3149 kvm_cpu_vmxon(phys_addr);
3150 ept_sync_global();
3151 }
3152
3153 native_store_gdt(this_cpu_ptr(&host_gdt));
3154
3155 return 0;
3156 }
3157
3158 static void vmclear_local_loaded_vmcss(void)
3159 {
3160 int cpu = raw_smp_processor_id();
3161 struct loaded_vmcs *v, *n;
3162
3163 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3164 loaded_vmcss_on_cpu_link)
3165 __loaded_vmcs_clear(v);
3166 }
3167
3168
3169 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3170 * tricks.
3171 */
3172 static void kvm_cpu_vmxoff(void)
3173 {
3174 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3175 }
3176
3177 static void hardware_disable(void)
3178 {
3179 if (vmm_exclusive) {
3180 vmclear_local_loaded_vmcss();
3181 kvm_cpu_vmxoff();
3182 }
3183 cr4_clear_bits(X86_CR4_VMXE);
3184 }
3185
3186 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3187 u32 msr, u32 *result)
3188 {
3189 u32 vmx_msr_low, vmx_msr_high;
3190 u32 ctl = ctl_min | ctl_opt;
3191
3192 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3193
3194 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3195 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3196
3197 /* Ensure minimum (required) set of control bits are supported. */
3198 if (ctl_min & ~ctl)
3199 return -EIO;
3200
3201 *result = ctl;
3202 return 0;
3203 }
3204
3205 static __init bool allow_1_setting(u32 msr, u32 ctl)
3206 {
3207 u32 vmx_msr_low, vmx_msr_high;
3208
3209 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3210 return vmx_msr_high & ctl;
3211 }
3212
3213 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3214 {
3215 u32 vmx_msr_low, vmx_msr_high;
3216 u32 min, opt, min2, opt2;
3217 u32 _pin_based_exec_control = 0;
3218 u32 _cpu_based_exec_control = 0;
3219 u32 _cpu_based_2nd_exec_control = 0;
3220 u32 _vmexit_control = 0;
3221 u32 _vmentry_control = 0;
3222
3223 min = CPU_BASED_HLT_EXITING |
3224 #ifdef CONFIG_X86_64
3225 CPU_BASED_CR8_LOAD_EXITING |
3226 CPU_BASED_CR8_STORE_EXITING |
3227 #endif
3228 CPU_BASED_CR3_LOAD_EXITING |
3229 CPU_BASED_CR3_STORE_EXITING |
3230 CPU_BASED_USE_IO_BITMAPS |
3231 CPU_BASED_MOV_DR_EXITING |
3232 CPU_BASED_USE_TSC_OFFSETING |
3233 CPU_BASED_MWAIT_EXITING |
3234 CPU_BASED_MONITOR_EXITING |
3235 CPU_BASED_INVLPG_EXITING |
3236 CPU_BASED_RDPMC_EXITING;
3237
3238 opt = CPU_BASED_TPR_SHADOW |
3239 CPU_BASED_USE_MSR_BITMAPS |
3240 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3241 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3242 &_cpu_based_exec_control) < 0)
3243 return -EIO;
3244 #ifdef CONFIG_X86_64
3245 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3246 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3247 ~CPU_BASED_CR8_STORE_EXITING;
3248 #endif
3249 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3250 min2 = 0;
3251 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3252 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3253 SECONDARY_EXEC_WBINVD_EXITING |
3254 SECONDARY_EXEC_ENABLE_VPID |
3255 SECONDARY_EXEC_ENABLE_EPT |
3256 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3257 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3258 SECONDARY_EXEC_RDTSCP |
3259 SECONDARY_EXEC_ENABLE_INVPCID |
3260 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3261 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3262 SECONDARY_EXEC_SHADOW_VMCS |
3263 SECONDARY_EXEC_XSAVES |
3264 SECONDARY_EXEC_ENABLE_PML |
3265 SECONDARY_EXEC_PCOMMIT |
3266 SECONDARY_EXEC_TSC_SCALING;
3267 if (adjust_vmx_controls(min2, opt2,
3268 MSR_IA32_VMX_PROCBASED_CTLS2,
3269 &_cpu_based_2nd_exec_control) < 0)
3270 return -EIO;
3271 }
3272 #ifndef CONFIG_X86_64
3273 if (!(_cpu_based_2nd_exec_control &
3274 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3275 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3276 #endif
3277
3278 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3279 _cpu_based_2nd_exec_control &= ~(
3280 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3281 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3282 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3283
3284 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3285 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3286 enabled */
3287 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3288 CPU_BASED_CR3_STORE_EXITING |
3289 CPU_BASED_INVLPG_EXITING);
3290 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3291 vmx_capability.ept, vmx_capability.vpid);
3292 }
3293
3294 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3295 #ifdef CONFIG_X86_64
3296 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3297 #endif
3298 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3299 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3300 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3301 &_vmexit_control) < 0)
3302 return -EIO;
3303
3304 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3305 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3306 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3307 &_pin_based_exec_control) < 0)
3308 return -EIO;
3309
3310 if (!(_cpu_based_2nd_exec_control &
3311 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3312 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3313 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3314
3315 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3316 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3317 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3318 &_vmentry_control) < 0)
3319 return -EIO;
3320
3321 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3322
3323 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3324 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3325 return -EIO;
3326
3327 #ifdef CONFIG_X86_64
3328 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3329 if (vmx_msr_high & (1u<<16))
3330 return -EIO;
3331 #endif
3332
3333 /* Require Write-Back (WB) memory type for VMCS accesses. */
3334 if (((vmx_msr_high >> 18) & 15) != 6)
3335 return -EIO;
3336
3337 vmcs_conf->size = vmx_msr_high & 0x1fff;
3338 vmcs_conf->order = get_order(vmcs_config.size);
3339 vmcs_conf->revision_id = vmx_msr_low;
3340
3341 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3342 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3343 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3344 vmcs_conf->vmexit_ctrl = _vmexit_control;
3345 vmcs_conf->vmentry_ctrl = _vmentry_control;
3346
3347 cpu_has_load_ia32_efer =
3348 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3349 VM_ENTRY_LOAD_IA32_EFER)
3350 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3351 VM_EXIT_LOAD_IA32_EFER);
3352
3353 cpu_has_load_perf_global_ctrl =
3354 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3355 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3356 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3357 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3358
3359 /*
3360 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3361 * but due to arrata below it can't be used. Workaround is to use
3362 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3363 *
3364 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3365 *
3366 * AAK155 (model 26)
3367 * AAP115 (model 30)
3368 * AAT100 (model 37)
3369 * BC86,AAY89,BD102 (model 44)
3370 * BA97 (model 46)
3371 *
3372 */
3373 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3374 switch (boot_cpu_data.x86_model) {
3375 case 26:
3376 case 30:
3377 case 37:
3378 case 44:
3379 case 46:
3380 cpu_has_load_perf_global_ctrl = false;
3381 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3382 "does not work properly. Using workaround\n");
3383 break;
3384 default:
3385 break;
3386 }
3387 }
3388
3389 if (cpu_has_xsaves)
3390 rdmsrl(MSR_IA32_XSS, host_xss);
3391
3392 return 0;
3393 }
3394
3395 static struct vmcs *alloc_vmcs_cpu(int cpu)
3396 {
3397 int node = cpu_to_node(cpu);
3398 struct page *pages;
3399 struct vmcs *vmcs;
3400
3401 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3402 if (!pages)
3403 return NULL;
3404 vmcs = page_address(pages);
3405 memset(vmcs, 0, vmcs_config.size);
3406 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3407 return vmcs;
3408 }
3409
3410 static struct vmcs *alloc_vmcs(void)
3411 {
3412 return alloc_vmcs_cpu(raw_smp_processor_id());
3413 }
3414
3415 static void free_vmcs(struct vmcs *vmcs)
3416 {
3417 free_pages((unsigned long)vmcs, vmcs_config.order);
3418 }
3419
3420 /*
3421 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3422 */
3423 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3424 {
3425 if (!loaded_vmcs->vmcs)
3426 return;
3427 loaded_vmcs_clear(loaded_vmcs);
3428 free_vmcs(loaded_vmcs->vmcs);
3429 loaded_vmcs->vmcs = NULL;
3430 }
3431
3432 static void free_kvm_area(void)
3433 {
3434 int cpu;
3435
3436 for_each_possible_cpu(cpu) {
3437 free_vmcs(per_cpu(vmxarea, cpu));
3438 per_cpu(vmxarea, cpu) = NULL;
3439 }
3440 }
3441
3442 static void init_vmcs_shadow_fields(void)
3443 {
3444 int i, j;
3445
3446 /* No checks for read only fields yet */
3447
3448 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3449 switch (shadow_read_write_fields[i]) {
3450 case GUEST_BNDCFGS:
3451 if (!kvm_mpx_supported())
3452 continue;
3453 break;
3454 default:
3455 break;
3456 }
3457
3458 if (j < i)
3459 shadow_read_write_fields[j] =
3460 shadow_read_write_fields[i];
3461 j++;
3462 }
3463 max_shadow_read_write_fields = j;
3464
3465 /* shadowed fields guest access without vmexit */
3466 for (i = 0; i < max_shadow_read_write_fields; i++) {
3467 clear_bit(shadow_read_write_fields[i],
3468 vmx_vmwrite_bitmap);
3469 clear_bit(shadow_read_write_fields[i],
3470 vmx_vmread_bitmap);
3471 }
3472 for (i = 0; i < max_shadow_read_only_fields; i++)
3473 clear_bit(shadow_read_only_fields[i],
3474 vmx_vmread_bitmap);
3475 }
3476
3477 static __init int alloc_kvm_area(void)
3478 {
3479 int cpu;
3480
3481 for_each_possible_cpu(cpu) {
3482 struct vmcs *vmcs;
3483
3484 vmcs = alloc_vmcs_cpu(cpu);
3485 if (!vmcs) {
3486 free_kvm_area();
3487 return -ENOMEM;
3488 }
3489
3490 per_cpu(vmxarea, cpu) = vmcs;
3491 }
3492 return 0;
3493 }
3494
3495 static bool emulation_required(struct kvm_vcpu *vcpu)
3496 {
3497 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3498 }
3499
3500 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3501 struct kvm_segment *save)
3502 {
3503 if (!emulate_invalid_guest_state) {
3504 /*
3505 * CS and SS RPL should be equal during guest entry according
3506 * to VMX spec, but in reality it is not always so. Since vcpu
3507 * is in the middle of the transition from real mode to
3508 * protected mode it is safe to assume that RPL 0 is a good
3509 * default value.
3510 */
3511 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3512 save->selector &= ~SEGMENT_RPL_MASK;
3513 save->dpl = save->selector & SEGMENT_RPL_MASK;
3514 save->s = 1;
3515 }
3516 vmx_set_segment(vcpu, save, seg);
3517 }
3518
3519 static void enter_pmode(struct kvm_vcpu *vcpu)
3520 {
3521 unsigned long flags;
3522 struct vcpu_vmx *vmx = to_vmx(vcpu);
3523
3524 /*
3525 * Update real mode segment cache. It may be not up-to-date if sement
3526 * register was written while vcpu was in a guest mode.
3527 */
3528 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3529 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3530 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3531 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3532 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3533 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3534
3535 vmx->rmode.vm86_active = 0;
3536
3537 vmx_segment_cache_clear(vmx);
3538
3539 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3540
3541 flags = vmcs_readl(GUEST_RFLAGS);
3542 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3543 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3544 vmcs_writel(GUEST_RFLAGS, flags);
3545
3546 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3547 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3548
3549 update_exception_bitmap(vcpu);
3550
3551 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3552 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3553 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3554 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3555 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3556 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3557 }
3558
3559 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3560 {
3561 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3562 struct kvm_segment var = *save;
3563
3564 var.dpl = 0x3;
3565 if (seg == VCPU_SREG_CS)
3566 var.type = 0x3;
3567
3568 if (!emulate_invalid_guest_state) {
3569 var.selector = var.base >> 4;
3570 var.base = var.base & 0xffff0;
3571 var.limit = 0xffff;
3572 var.g = 0;
3573 var.db = 0;
3574 var.present = 1;
3575 var.s = 1;
3576 var.l = 0;
3577 var.unusable = 0;
3578 var.type = 0x3;
3579 var.avl = 0;
3580 if (save->base & 0xf)
3581 printk_once(KERN_WARNING "kvm: segment base is not "
3582 "paragraph aligned when entering "
3583 "protected mode (seg=%d)", seg);
3584 }
3585
3586 vmcs_write16(sf->selector, var.selector);
3587 vmcs_write32(sf->base, var.base);
3588 vmcs_write32(sf->limit, var.limit);
3589 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3590 }
3591
3592 static void enter_rmode(struct kvm_vcpu *vcpu)
3593 {
3594 unsigned long flags;
3595 struct vcpu_vmx *vmx = to_vmx(vcpu);
3596
3597 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3598 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3599 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3600 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3601 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3602 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3603 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3604
3605 vmx->rmode.vm86_active = 1;
3606
3607 /*
3608 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3609 * vcpu. Warn the user that an update is overdue.
3610 */
3611 if (!vcpu->kvm->arch.tss_addr)
3612 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3613 "called before entering vcpu\n");
3614
3615 vmx_segment_cache_clear(vmx);
3616
3617 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3618 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3619 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3620
3621 flags = vmcs_readl(GUEST_RFLAGS);
3622 vmx->rmode.save_rflags = flags;
3623
3624 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3625
3626 vmcs_writel(GUEST_RFLAGS, flags);
3627 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3628 update_exception_bitmap(vcpu);
3629
3630 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3631 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3632 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3633 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3634 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3635 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3636
3637 kvm_mmu_reset_context(vcpu);
3638 }
3639
3640 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3641 {
3642 struct vcpu_vmx *vmx = to_vmx(vcpu);
3643 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3644
3645 if (!msr)
3646 return;
3647
3648 /*
3649 * Force kernel_gs_base reloading before EFER changes, as control
3650 * of this msr depends on is_long_mode().
3651 */
3652 vmx_load_host_state(to_vmx(vcpu));
3653 vcpu->arch.efer = efer;
3654 if (efer & EFER_LMA) {
3655 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3656 msr->data = efer;
3657 } else {
3658 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3659
3660 msr->data = efer & ~EFER_LME;
3661 }
3662 setup_msrs(vmx);
3663 }
3664
3665 #ifdef CONFIG_X86_64
3666
3667 static void enter_lmode(struct kvm_vcpu *vcpu)
3668 {
3669 u32 guest_tr_ar;
3670
3671 vmx_segment_cache_clear(to_vmx(vcpu));
3672
3673 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3674 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3675 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3676 __func__);
3677 vmcs_write32(GUEST_TR_AR_BYTES,
3678 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3679 | VMX_AR_TYPE_BUSY_64_TSS);
3680 }
3681 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3682 }
3683
3684 static void exit_lmode(struct kvm_vcpu *vcpu)
3685 {
3686 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3687 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3688 }
3689
3690 #endif
3691
3692 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3693 {
3694 vpid_sync_context(vpid);
3695 if (enable_ept) {
3696 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3697 return;
3698 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3699 }
3700 }
3701
3702 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3703 {
3704 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3705 }
3706
3707 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3708 {
3709 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3710
3711 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3712 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3713 }
3714
3715 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3716 {
3717 if (enable_ept && is_paging(vcpu))
3718 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3719 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3720 }
3721
3722 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3723 {
3724 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3725
3726 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3727 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3728 }
3729
3730 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3731 {
3732 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3733
3734 if (!test_bit(VCPU_EXREG_PDPTR,
3735 (unsigned long *)&vcpu->arch.regs_dirty))
3736 return;
3737
3738 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3739 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3740 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3741 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3742 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3743 }
3744 }
3745
3746 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3747 {
3748 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3749
3750 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3751 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3752 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3753 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3754 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3755 }
3756
3757 __set_bit(VCPU_EXREG_PDPTR,
3758 (unsigned long *)&vcpu->arch.regs_avail);
3759 __set_bit(VCPU_EXREG_PDPTR,
3760 (unsigned long *)&vcpu->arch.regs_dirty);
3761 }
3762
3763 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3764
3765 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3766 unsigned long cr0,
3767 struct kvm_vcpu *vcpu)
3768 {
3769 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3770 vmx_decache_cr3(vcpu);
3771 if (!(cr0 & X86_CR0_PG)) {
3772 /* From paging/starting to nonpaging */
3773 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3774 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3775 (CPU_BASED_CR3_LOAD_EXITING |
3776 CPU_BASED_CR3_STORE_EXITING));
3777 vcpu->arch.cr0 = cr0;
3778 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3779 } else if (!is_paging(vcpu)) {
3780 /* From nonpaging to paging */
3781 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3782 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3783 ~(CPU_BASED_CR3_LOAD_EXITING |
3784 CPU_BASED_CR3_STORE_EXITING));
3785 vcpu->arch.cr0 = cr0;
3786 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3787 }
3788
3789 if (!(cr0 & X86_CR0_WP))
3790 *hw_cr0 &= ~X86_CR0_WP;
3791 }
3792
3793 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3794 {
3795 struct vcpu_vmx *vmx = to_vmx(vcpu);
3796 unsigned long hw_cr0;
3797
3798 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3799 if (enable_unrestricted_guest)
3800 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3801 else {
3802 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3803
3804 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3805 enter_pmode(vcpu);
3806
3807 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3808 enter_rmode(vcpu);
3809 }
3810
3811 #ifdef CONFIG_X86_64
3812 if (vcpu->arch.efer & EFER_LME) {
3813 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3814 enter_lmode(vcpu);
3815 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3816 exit_lmode(vcpu);
3817 }
3818 #endif
3819
3820 if (enable_ept)
3821 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3822
3823 if (!vcpu->fpu_active)
3824 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3825
3826 vmcs_writel(CR0_READ_SHADOW, cr0);
3827 vmcs_writel(GUEST_CR0, hw_cr0);
3828 vcpu->arch.cr0 = cr0;
3829
3830 /* depends on vcpu->arch.cr0 to be set to a new value */
3831 vmx->emulation_required = emulation_required(vcpu);
3832 }
3833
3834 static u64 construct_eptp(unsigned long root_hpa)
3835 {
3836 u64 eptp;
3837
3838 /* TODO write the value reading from MSR */
3839 eptp = VMX_EPT_DEFAULT_MT |
3840 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3841 if (enable_ept_ad_bits)
3842 eptp |= VMX_EPT_AD_ENABLE_BIT;
3843 eptp |= (root_hpa & PAGE_MASK);
3844
3845 return eptp;
3846 }
3847
3848 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3849 {
3850 unsigned long guest_cr3;
3851 u64 eptp;
3852
3853 guest_cr3 = cr3;
3854 if (enable_ept) {
3855 eptp = construct_eptp(cr3);
3856 vmcs_write64(EPT_POINTER, eptp);
3857 if (is_paging(vcpu) || is_guest_mode(vcpu))
3858 guest_cr3 = kvm_read_cr3(vcpu);
3859 else
3860 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3861 ept_load_pdptrs(vcpu);
3862 }
3863
3864 vmx_flush_tlb(vcpu);
3865 vmcs_writel(GUEST_CR3, guest_cr3);
3866 }
3867
3868 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3869 {
3870 /*
3871 * Pass through host's Machine Check Enable value to hw_cr4, which
3872 * is in force while we are in guest mode. Do not let guests control
3873 * this bit, even if host CR4.MCE == 0.
3874 */
3875 unsigned long hw_cr4 =
3876 (cr4_read_shadow() & X86_CR4_MCE) |
3877 (cr4 & ~X86_CR4_MCE) |
3878 (to_vmx(vcpu)->rmode.vm86_active ?
3879 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3880
3881 if (cr4 & X86_CR4_VMXE) {
3882 /*
3883 * To use VMXON (and later other VMX instructions), a guest
3884 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3885 * So basically the check on whether to allow nested VMX
3886 * is here.
3887 */
3888 if (!nested_vmx_allowed(vcpu))
3889 return 1;
3890 }
3891 if (to_vmx(vcpu)->nested.vmxon &&
3892 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3893 return 1;
3894
3895 vcpu->arch.cr4 = cr4;
3896 if (enable_ept) {
3897 if (!is_paging(vcpu)) {
3898 hw_cr4 &= ~X86_CR4_PAE;
3899 hw_cr4 |= X86_CR4_PSE;
3900 } else if (!(cr4 & X86_CR4_PAE)) {
3901 hw_cr4 &= ~X86_CR4_PAE;
3902 }
3903 }
3904
3905 if (!enable_unrestricted_guest && !is_paging(vcpu))
3906 /*
3907 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3908 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3909 * to be manually disabled when guest switches to non-paging
3910 * mode.
3911 *
3912 * If !enable_unrestricted_guest, the CPU is always running
3913 * with CR0.PG=1 and CR4 needs to be modified.
3914 * If enable_unrestricted_guest, the CPU automatically
3915 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3916 */
3917 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3918
3919 vmcs_writel(CR4_READ_SHADOW, cr4);
3920 vmcs_writel(GUEST_CR4, hw_cr4);
3921 return 0;
3922 }
3923
3924 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3925 struct kvm_segment *var, int seg)
3926 {
3927 struct vcpu_vmx *vmx = to_vmx(vcpu);
3928 u32 ar;
3929
3930 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3931 *var = vmx->rmode.segs[seg];
3932 if (seg == VCPU_SREG_TR
3933 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3934 return;
3935 var->base = vmx_read_guest_seg_base(vmx, seg);
3936 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3937 return;
3938 }
3939 var->base = vmx_read_guest_seg_base(vmx, seg);
3940 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3941 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3942 ar = vmx_read_guest_seg_ar(vmx, seg);
3943 var->unusable = (ar >> 16) & 1;
3944 var->type = ar & 15;
3945 var->s = (ar >> 4) & 1;
3946 var->dpl = (ar >> 5) & 3;
3947 /*
3948 * Some userspaces do not preserve unusable property. Since usable
3949 * segment has to be present according to VMX spec we can use present
3950 * property to amend userspace bug by making unusable segment always
3951 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3952 * segment as unusable.
3953 */
3954 var->present = !var->unusable;
3955 var->avl = (ar >> 12) & 1;
3956 var->l = (ar >> 13) & 1;
3957 var->db = (ar >> 14) & 1;
3958 var->g = (ar >> 15) & 1;
3959 }
3960
3961 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3962 {
3963 struct kvm_segment s;
3964
3965 if (to_vmx(vcpu)->rmode.vm86_active) {
3966 vmx_get_segment(vcpu, &s, seg);
3967 return s.base;
3968 }
3969 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3970 }
3971
3972 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3973 {
3974 struct vcpu_vmx *vmx = to_vmx(vcpu);
3975
3976 if (unlikely(vmx->rmode.vm86_active))
3977 return 0;
3978 else {
3979 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3980 return VMX_AR_DPL(ar);
3981 }
3982 }
3983
3984 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3985 {
3986 u32 ar;
3987
3988 if (var->unusable || !var->present)
3989 ar = 1 << 16;
3990 else {
3991 ar = var->type & 15;
3992 ar |= (var->s & 1) << 4;
3993 ar |= (var->dpl & 3) << 5;
3994 ar |= (var->present & 1) << 7;
3995 ar |= (var->avl & 1) << 12;
3996 ar |= (var->l & 1) << 13;
3997 ar |= (var->db & 1) << 14;
3998 ar |= (var->g & 1) << 15;
3999 }
4000
4001 return ar;
4002 }
4003
4004 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4005 struct kvm_segment *var, int seg)
4006 {
4007 struct vcpu_vmx *vmx = to_vmx(vcpu);
4008 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4009
4010 vmx_segment_cache_clear(vmx);
4011
4012 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4013 vmx->rmode.segs[seg] = *var;
4014 if (seg == VCPU_SREG_TR)
4015 vmcs_write16(sf->selector, var->selector);
4016 else if (var->s)
4017 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4018 goto out;
4019 }
4020
4021 vmcs_writel(sf->base, var->base);
4022 vmcs_write32(sf->limit, var->limit);
4023 vmcs_write16(sf->selector, var->selector);
4024
4025 /*
4026 * Fix the "Accessed" bit in AR field of segment registers for older
4027 * qemu binaries.
4028 * IA32 arch specifies that at the time of processor reset the
4029 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4030 * is setting it to 0 in the userland code. This causes invalid guest
4031 * state vmexit when "unrestricted guest" mode is turned on.
4032 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4033 * tree. Newer qemu binaries with that qemu fix would not need this
4034 * kvm hack.
4035 */
4036 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4037 var->type |= 0x1; /* Accessed */
4038
4039 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4040
4041 out:
4042 vmx->emulation_required = emulation_required(vcpu);
4043 }
4044
4045 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4046 {
4047 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4048
4049 *db = (ar >> 14) & 1;
4050 *l = (ar >> 13) & 1;
4051 }
4052
4053 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4054 {
4055 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4056 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4057 }
4058
4059 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4060 {
4061 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4062 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4063 }
4064
4065 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4066 {
4067 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4068 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4069 }
4070
4071 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4072 {
4073 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4074 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4075 }
4076
4077 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4078 {
4079 struct kvm_segment var;
4080 u32 ar;
4081
4082 vmx_get_segment(vcpu, &var, seg);
4083 var.dpl = 0x3;
4084 if (seg == VCPU_SREG_CS)
4085 var.type = 0x3;
4086 ar = vmx_segment_access_rights(&var);
4087
4088 if (var.base != (var.selector << 4))
4089 return false;
4090 if (var.limit != 0xffff)
4091 return false;
4092 if (ar != 0xf3)
4093 return false;
4094
4095 return true;
4096 }
4097
4098 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4099 {
4100 struct kvm_segment cs;
4101 unsigned int cs_rpl;
4102
4103 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4104 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4105
4106 if (cs.unusable)
4107 return false;
4108 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4109 return false;
4110 if (!cs.s)
4111 return false;
4112 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4113 if (cs.dpl > cs_rpl)
4114 return false;
4115 } else {
4116 if (cs.dpl != cs_rpl)
4117 return false;
4118 }
4119 if (!cs.present)
4120 return false;
4121
4122 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4123 return true;
4124 }
4125
4126 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4127 {
4128 struct kvm_segment ss;
4129 unsigned int ss_rpl;
4130
4131 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4132 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4133
4134 if (ss.unusable)
4135 return true;
4136 if (ss.type != 3 && ss.type != 7)
4137 return false;
4138 if (!ss.s)
4139 return false;
4140 if (ss.dpl != ss_rpl) /* DPL != RPL */
4141 return false;
4142 if (!ss.present)
4143 return false;
4144
4145 return true;
4146 }
4147
4148 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4149 {
4150 struct kvm_segment var;
4151 unsigned int rpl;
4152
4153 vmx_get_segment(vcpu, &var, seg);
4154 rpl = var.selector & SEGMENT_RPL_MASK;
4155
4156 if (var.unusable)
4157 return true;
4158 if (!var.s)
4159 return false;
4160 if (!var.present)
4161 return false;
4162 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4163 if (var.dpl < rpl) /* DPL < RPL */
4164 return false;
4165 }
4166
4167 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4168 * rights flags
4169 */
4170 return true;
4171 }
4172
4173 static bool tr_valid(struct kvm_vcpu *vcpu)
4174 {
4175 struct kvm_segment tr;
4176
4177 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4178
4179 if (tr.unusable)
4180 return false;
4181 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4182 return false;
4183 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4184 return false;
4185 if (!tr.present)
4186 return false;
4187
4188 return true;
4189 }
4190
4191 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4192 {
4193 struct kvm_segment ldtr;
4194
4195 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4196
4197 if (ldtr.unusable)
4198 return true;
4199 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4200 return false;
4201 if (ldtr.type != 2)
4202 return false;
4203 if (!ldtr.present)
4204 return false;
4205
4206 return true;
4207 }
4208
4209 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4210 {
4211 struct kvm_segment cs, ss;
4212
4213 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4214 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4215
4216 return ((cs.selector & SEGMENT_RPL_MASK) ==
4217 (ss.selector & SEGMENT_RPL_MASK));
4218 }
4219
4220 /*
4221 * Check if guest state is valid. Returns true if valid, false if
4222 * not.
4223 * We assume that registers are always usable
4224 */
4225 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4226 {
4227 if (enable_unrestricted_guest)
4228 return true;
4229
4230 /* real mode guest state checks */
4231 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4232 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4233 return false;
4234 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4235 return false;
4236 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4237 return false;
4238 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4239 return false;
4240 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4241 return false;
4242 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4243 return false;
4244 } else {
4245 /* protected mode guest state checks */
4246 if (!cs_ss_rpl_check(vcpu))
4247 return false;
4248 if (!code_segment_valid(vcpu))
4249 return false;
4250 if (!stack_segment_valid(vcpu))
4251 return false;
4252 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4253 return false;
4254 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4255 return false;
4256 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4257 return false;
4258 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4259 return false;
4260 if (!tr_valid(vcpu))
4261 return false;
4262 if (!ldtr_valid(vcpu))
4263 return false;
4264 }
4265 /* TODO:
4266 * - Add checks on RIP
4267 * - Add checks on RFLAGS
4268 */
4269
4270 return true;
4271 }
4272
4273 static int init_rmode_tss(struct kvm *kvm)
4274 {
4275 gfn_t fn;
4276 u16 data = 0;
4277 int idx, r;
4278
4279 idx = srcu_read_lock(&kvm->srcu);
4280 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4281 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4282 if (r < 0)
4283 goto out;
4284 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4285 r = kvm_write_guest_page(kvm, fn++, &data,
4286 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4287 if (r < 0)
4288 goto out;
4289 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4290 if (r < 0)
4291 goto out;
4292 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4293 if (r < 0)
4294 goto out;
4295 data = ~0;
4296 r = kvm_write_guest_page(kvm, fn, &data,
4297 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4298 sizeof(u8));
4299 out:
4300 srcu_read_unlock(&kvm->srcu, idx);
4301 return r;
4302 }
4303
4304 static int init_rmode_identity_map(struct kvm *kvm)
4305 {
4306 int i, idx, r = 0;
4307 kvm_pfn_t identity_map_pfn;
4308 u32 tmp;
4309
4310 if (!enable_ept)
4311 return 0;
4312
4313 /* Protect kvm->arch.ept_identity_pagetable_done. */
4314 mutex_lock(&kvm->slots_lock);
4315
4316 if (likely(kvm->arch.ept_identity_pagetable_done))
4317 goto out2;
4318
4319 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4320
4321 r = alloc_identity_pagetable(kvm);
4322 if (r < 0)
4323 goto out2;
4324
4325 idx = srcu_read_lock(&kvm->srcu);
4326 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4327 if (r < 0)
4328 goto out;
4329 /* Set up identity-mapping pagetable for EPT in real mode */
4330 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4331 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4332 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4333 r = kvm_write_guest_page(kvm, identity_map_pfn,
4334 &tmp, i * sizeof(tmp), sizeof(tmp));
4335 if (r < 0)
4336 goto out;
4337 }
4338 kvm->arch.ept_identity_pagetable_done = true;
4339
4340 out:
4341 srcu_read_unlock(&kvm->srcu, idx);
4342
4343 out2:
4344 mutex_unlock(&kvm->slots_lock);
4345 return r;
4346 }
4347
4348 static void seg_setup(int seg)
4349 {
4350 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4351 unsigned int ar;
4352
4353 vmcs_write16(sf->selector, 0);
4354 vmcs_writel(sf->base, 0);
4355 vmcs_write32(sf->limit, 0xffff);
4356 ar = 0x93;
4357 if (seg == VCPU_SREG_CS)
4358 ar |= 0x08; /* code segment */
4359
4360 vmcs_write32(sf->ar_bytes, ar);
4361 }
4362
4363 static int alloc_apic_access_page(struct kvm *kvm)
4364 {
4365 struct page *page;
4366 int r = 0;
4367
4368 mutex_lock(&kvm->slots_lock);
4369 if (kvm->arch.apic_access_page_done)
4370 goto out;
4371 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4372 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4373 if (r)
4374 goto out;
4375
4376 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4377 if (is_error_page(page)) {
4378 r = -EFAULT;
4379 goto out;
4380 }
4381
4382 /*
4383 * Do not pin the page in memory, so that memory hot-unplug
4384 * is able to migrate it.
4385 */
4386 put_page(page);
4387 kvm->arch.apic_access_page_done = true;
4388 out:
4389 mutex_unlock(&kvm->slots_lock);
4390 return r;
4391 }
4392
4393 static int alloc_identity_pagetable(struct kvm *kvm)
4394 {
4395 /* Called with kvm->slots_lock held. */
4396
4397 int r = 0;
4398
4399 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4400
4401 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4402 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4403
4404 return r;
4405 }
4406
4407 static int allocate_vpid(void)
4408 {
4409 int vpid;
4410
4411 if (!enable_vpid)
4412 return 0;
4413 spin_lock(&vmx_vpid_lock);
4414 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4415 if (vpid < VMX_NR_VPIDS)
4416 __set_bit(vpid, vmx_vpid_bitmap);
4417 else
4418 vpid = 0;
4419 spin_unlock(&vmx_vpid_lock);
4420 return vpid;
4421 }
4422
4423 static void free_vpid(int vpid)
4424 {
4425 if (!enable_vpid || vpid == 0)
4426 return;
4427 spin_lock(&vmx_vpid_lock);
4428 __clear_bit(vpid, vmx_vpid_bitmap);
4429 spin_unlock(&vmx_vpid_lock);
4430 }
4431
4432 #define MSR_TYPE_R 1
4433 #define MSR_TYPE_W 2
4434 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4435 u32 msr, int type)
4436 {
4437 int f = sizeof(unsigned long);
4438
4439 if (!cpu_has_vmx_msr_bitmap())
4440 return;
4441
4442 /*
4443 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4444 * have the write-low and read-high bitmap offsets the wrong way round.
4445 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4446 */
4447 if (msr <= 0x1fff) {
4448 if (type & MSR_TYPE_R)
4449 /* read-low */
4450 __clear_bit(msr, msr_bitmap + 0x000 / f);
4451
4452 if (type & MSR_TYPE_W)
4453 /* write-low */
4454 __clear_bit(msr, msr_bitmap + 0x800 / f);
4455
4456 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4457 msr &= 0x1fff;
4458 if (type & MSR_TYPE_R)
4459 /* read-high */
4460 __clear_bit(msr, msr_bitmap + 0x400 / f);
4461
4462 if (type & MSR_TYPE_W)
4463 /* write-high */
4464 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4465
4466 }
4467 }
4468
4469 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4470 u32 msr, int type)
4471 {
4472 int f = sizeof(unsigned long);
4473
4474 if (!cpu_has_vmx_msr_bitmap())
4475 return;
4476
4477 /*
4478 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4479 * have the write-low and read-high bitmap offsets the wrong way round.
4480 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4481 */
4482 if (msr <= 0x1fff) {
4483 if (type & MSR_TYPE_R)
4484 /* read-low */
4485 __set_bit(msr, msr_bitmap + 0x000 / f);
4486
4487 if (type & MSR_TYPE_W)
4488 /* write-low */
4489 __set_bit(msr, msr_bitmap + 0x800 / f);
4490
4491 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4492 msr &= 0x1fff;
4493 if (type & MSR_TYPE_R)
4494 /* read-high */
4495 __set_bit(msr, msr_bitmap + 0x400 / f);
4496
4497 if (type & MSR_TYPE_W)
4498 /* write-high */
4499 __set_bit(msr, msr_bitmap + 0xc00 / f);
4500
4501 }
4502 }
4503
4504 /*
4505 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4506 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4507 */
4508 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4509 unsigned long *msr_bitmap_nested,
4510 u32 msr, int type)
4511 {
4512 int f = sizeof(unsigned long);
4513
4514 if (!cpu_has_vmx_msr_bitmap()) {
4515 WARN_ON(1);
4516 return;
4517 }
4518
4519 /*
4520 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4521 * have the write-low and read-high bitmap offsets the wrong way round.
4522 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4523 */
4524 if (msr <= 0x1fff) {
4525 if (type & MSR_TYPE_R &&
4526 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4527 /* read-low */
4528 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4529
4530 if (type & MSR_TYPE_W &&
4531 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4532 /* write-low */
4533 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4534
4535 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4536 msr &= 0x1fff;
4537 if (type & MSR_TYPE_R &&
4538 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4539 /* read-high */
4540 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4541
4542 if (type & MSR_TYPE_W &&
4543 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4544 /* write-high */
4545 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4546
4547 }
4548 }
4549
4550 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4551 {
4552 if (!longmode_only)
4553 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4554 msr, MSR_TYPE_R | MSR_TYPE_W);
4555 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4556 msr, MSR_TYPE_R | MSR_TYPE_W);
4557 }
4558
4559 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4560 {
4561 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4562 msr, MSR_TYPE_R);
4563 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4564 msr, MSR_TYPE_R);
4565 }
4566
4567 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4568 {
4569 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4570 msr, MSR_TYPE_R);
4571 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4572 msr, MSR_TYPE_R);
4573 }
4574
4575 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4576 {
4577 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4578 msr, MSR_TYPE_W);
4579 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4580 msr, MSR_TYPE_W);
4581 }
4582
4583 static bool vmx_get_enable_apicv(void)
4584 {
4585 return enable_apicv;
4586 }
4587
4588 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4589 {
4590 struct vcpu_vmx *vmx = to_vmx(vcpu);
4591 int max_irr;
4592 void *vapic_page;
4593 u16 status;
4594
4595 if (vmx->nested.pi_desc &&
4596 vmx->nested.pi_pending) {
4597 vmx->nested.pi_pending = false;
4598 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4599 return 0;
4600
4601 max_irr = find_last_bit(
4602 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4603
4604 if (max_irr == 256)
4605 return 0;
4606
4607 vapic_page = kmap(vmx->nested.virtual_apic_page);
4608 if (!vapic_page) {
4609 WARN_ON(1);
4610 return -ENOMEM;
4611 }
4612 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4613 kunmap(vmx->nested.virtual_apic_page);
4614
4615 status = vmcs_read16(GUEST_INTR_STATUS);
4616 if ((u8)max_irr > ((u8)status & 0xff)) {
4617 status &= ~0xff;
4618 status |= (u8)max_irr;
4619 vmcs_write16(GUEST_INTR_STATUS, status);
4620 }
4621 }
4622 return 0;
4623 }
4624
4625 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4626 {
4627 #ifdef CONFIG_SMP
4628 if (vcpu->mode == IN_GUEST_MODE) {
4629 struct vcpu_vmx *vmx = to_vmx(vcpu);
4630
4631 /*
4632 * Currently, we don't support urgent interrupt,
4633 * all interrupts are recognized as non-urgent
4634 * interrupt, so we cannot post interrupts when
4635 * 'SN' is set.
4636 *
4637 * If the vcpu is in guest mode, it means it is
4638 * running instead of being scheduled out and
4639 * waiting in the run queue, and that's the only
4640 * case when 'SN' is set currently, warning if
4641 * 'SN' is set.
4642 */
4643 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4644
4645 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4646 POSTED_INTR_VECTOR);
4647 return true;
4648 }
4649 #endif
4650 return false;
4651 }
4652
4653 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4654 int vector)
4655 {
4656 struct vcpu_vmx *vmx = to_vmx(vcpu);
4657
4658 if (is_guest_mode(vcpu) &&
4659 vector == vmx->nested.posted_intr_nv) {
4660 /* the PIR and ON have been set by L1. */
4661 kvm_vcpu_trigger_posted_interrupt(vcpu);
4662 /*
4663 * If a posted intr is not recognized by hardware,
4664 * we will accomplish it in the next vmentry.
4665 */
4666 vmx->nested.pi_pending = true;
4667 kvm_make_request(KVM_REQ_EVENT, vcpu);
4668 return 0;
4669 }
4670 return -1;
4671 }
4672 /*
4673 * Send interrupt to vcpu via posted interrupt way.
4674 * 1. If target vcpu is running(non-root mode), send posted interrupt
4675 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4676 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4677 * interrupt from PIR in next vmentry.
4678 */
4679 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4680 {
4681 struct vcpu_vmx *vmx = to_vmx(vcpu);
4682 int r;
4683
4684 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4685 if (!r)
4686 return;
4687
4688 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4689 return;
4690
4691 r = pi_test_and_set_on(&vmx->pi_desc);
4692 kvm_make_request(KVM_REQ_EVENT, vcpu);
4693 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4694 kvm_vcpu_kick(vcpu);
4695 }
4696
4697 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4698 {
4699 struct vcpu_vmx *vmx = to_vmx(vcpu);
4700
4701 if (!pi_test_and_clear_on(&vmx->pi_desc))
4702 return;
4703
4704 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4705 }
4706
4707 /*
4708 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4709 * will not change in the lifetime of the guest.
4710 * Note that host-state that does change is set elsewhere. E.g., host-state
4711 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4712 */
4713 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4714 {
4715 u32 low32, high32;
4716 unsigned long tmpl;
4717 struct desc_ptr dt;
4718 unsigned long cr4;
4719
4720 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4721 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4722
4723 /* Save the most likely value for this task's CR4 in the VMCS. */
4724 cr4 = cr4_read_shadow();
4725 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4726 vmx->host_state.vmcs_host_cr4 = cr4;
4727
4728 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4729 #ifdef CONFIG_X86_64
4730 /*
4731 * Load null selectors, so we can avoid reloading them in
4732 * __vmx_load_host_state(), in case userspace uses the null selectors
4733 * too (the expected case).
4734 */
4735 vmcs_write16(HOST_DS_SELECTOR, 0);
4736 vmcs_write16(HOST_ES_SELECTOR, 0);
4737 #else
4738 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4739 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4740 #endif
4741 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4742 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4743
4744 native_store_idt(&dt);
4745 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4746 vmx->host_idt_base = dt.address;
4747
4748 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4749
4750 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4751 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4752 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4753 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4754
4755 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4756 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4757 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4758 }
4759 }
4760
4761 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4762 {
4763 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4764 if (enable_ept)
4765 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4766 if (is_guest_mode(&vmx->vcpu))
4767 vmx->vcpu.arch.cr4_guest_owned_bits &=
4768 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4769 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4770 }
4771
4772 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4773 {
4774 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4775
4776 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4777 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4778 return pin_based_exec_ctrl;
4779 }
4780
4781 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4782 {
4783 struct vcpu_vmx *vmx = to_vmx(vcpu);
4784
4785 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4786 }
4787
4788 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4789 {
4790 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4791
4792 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4793 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4794
4795 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4796 exec_control &= ~CPU_BASED_TPR_SHADOW;
4797 #ifdef CONFIG_X86_64
4798 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4799 CPU_BASED_CR8_LOAD_EXITING;
4800 #endif
4801 }
4802 if (!enable_ept)
4803 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4804 CPU_BASED_CR3_LOAD_EXITING |
4805 CPU_BASED_INVLPG_EXITING;
4806 return exec_control;
4807 }
4808
4809 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4810 {
4811 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4812 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4813 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4814 if (vmx->vpid == 0)
4815 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4816 if (!enable_ept) {
4817 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4818 enable_unrestricted_guest = 0;
4819 /* Enable INVPCID for non-ept guests may cause performance regression. */
4820 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4821 }
4822 if (!enable_unrestricted_guest)
4823 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4824 if (!ple_gap)
4825 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4826 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4827 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4828 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4829 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4830 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4831 (handle_vmptrld).
4832 We can NOT enable shadow_vmcs here because we don't have yet
4833 a current VMCS12
4834 */
4835 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4836
4837 if (!enable_pml)
4838 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4839
4840 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4841 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4842
4843 return exec_control;
4844 }
4845
4846 static void ept_set_mmio_spte_mask(void)
4847 {
4848 /*
4849 * EPT Misconfigurations can be generated if the value of bits 2:0
4850 * of an EPT paging-structure entry is 110b (write/execute).
4851 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4852 * spte.
4853 */
4854 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4855 }
4856
4857 #define VMX_XSS_EXIT_BITMAP 0
4858 /*
4859 * Sets up the vmcs for emulated real mode.
4860 */
4861 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4862 {
4863 #ifdef CONFIG_X86_64
4864 unsigned long a;
4865 #endif
4866 int i;
4867
4868 /* I/O */
4869 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4870 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4871
4872 if (enable_shadow_vmcs) {
4873 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4874 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4875 }
4876 if (cpu_has_vmx_msr_bitmap())
4877 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4878
4879 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4880
4881 /* Control */
4882 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4883
4884 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4885
4886 if (cpu_has_secondary_exec_ctrls())
4887 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4888 vmx_secondary_exec_control(vmx));
4889
4890 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4891 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4892 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4893 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4894 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4895
4896 vmcs_write16(GUEST_INTR_STATUS, 0);
4897
4898 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4899 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4900 }
4901
4902 if (ple_gap) {
4903 vmcs_write32(PLE_GAP, ple_gap);
4904 vmx->ple_window = ple_window;
4905 vmx->ple_window_dirty = true;
4906 }
4907
4908 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4910 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4911
4912 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4913 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4914 vmx_set_constant_host_state(vmx);
4915 #ifdef CONFIG_X86_64
4916 rdmsrl(MSR_FS_BASE, a);
4917 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4918 rdmsrl(MSR_GS_BASE, a);
4919 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4920 #else
4921 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4922 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4923 #endif
4924
4925 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4926 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4927 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4928 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4929 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4930
4931 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4932 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4933
4934 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4935 u32 index = vmx_msr_index[i];
4936 u32 data_low, data_high;
4937 int j = vmx->nmsrs;
4938
4939 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4940 continue;
4941 if (wrmsr_safe(index, data_low, data_high) < 0)
4942 continue;
4943 vmx->guest_msrs[j].index = i;
4944 vmx->guest_msrs[j].data = 0;
4945 vmx->guest_msrs[j].mask = -1ull;
4946 ++vmx->nmsrs;
4947 }
4948
4949
4950 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4951
4952 /* 22.2.1, 20.8.1 */
4953 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4954
4955 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4956 set_cr4_guest_host_mask(vmx);
4957
4958 if (vmx_xsaves_supported())
4959 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4960
4961 return 0;
4962 }
4963
4964 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4965 {
4966 struct vcpu_vmx *vmx = to_vmx(vcpu);
4967 struct msr_data apic_base_msr;
4968 u64 cr0;
4969
4970 vmx->rmode.vm86_active = 0;
4971
4972 vmx->soft_vnmi_blocked = 0;
4973
4974 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4975 kvm_set_cr8(vcpu, 0);
4976
4977 if (!init_event) {
4978 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4979 MSR_IA32_APICBASE_ENABLE;
4980 if (kvm_vcpu_is_reset_bsp(vcpu))
4981 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4982 apic_base_msr.host_initiated = true;
4983 kvm_set_apic_base(vcpu, &apic_base_msr);
4984 }
4985
4986 vmx_segment_cache_clear(vmx);
4987
4988 seg_setup(VCPU_SREG_CS);
4989 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4990 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4991
4992 seg_setup(VCPU_SREG_DS);
4993 seg_setup(VCPU_SREG_ES);
4994 seg_setup(VCPU_SREG_FS);
4995 seg_setup(VCPU_SREG_GS);
4996 seg_setup(VCPU_SREG_SS);
4997
4998 vmcs_write16(GUEST_TR_SELECTOR, 0);
4999 vmcs_writel(GUEST_TR_BASE, 0);
5000 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5001 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5002
5003 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5004 vmcs_writel(GUEST_LDTR_BASE, 0);
5005 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5006 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5007
5008 if (!init_event) {
5009 vmcs_write32(GUEST_SYSENTER_CS, 0);
5010 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5011 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5012 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5013 }
5014
5015 vmcs_writel(GUEST_RFLAGS, 0x02);
5016 kvm_rip_write(vcpu, 0xfff0);
5017
5018 vmcs_writel(GUEST_GDTR_BASE, 0);
5019 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5020
5021 vmcs_writel(GUEST_IDTR_BASE, 0);
5022 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5023
5024 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5025 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5026 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5027
5028 setup_msrs(vmx);
5029
5030 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5031
5032 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5033 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5034 if (cpu_need_tpr_shadow(vcpu))
5035 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5036 __pa(vcpu->arch.apic->regs));
5037 vmcs_write32(TPR_THRESHOLD, 0);
5038 }
5039
5040 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5041
5042 if (kvm_vcpu_apicv_active(vcpu))
5043 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5044
5045 if (vmx->vpid != 0)
5046 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5047
5048 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5049 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5050 vmx->vcpu.arch.cr0 = cr0;
5051 vmx_set_cr4(vcpu, 0);
5052 vmx_set_efer(vcpu, 0);
5053 vmx_fpu_activate(vcpu);
5054 update_exception_bitmap(vcpu);
5055
5056 vpid_sync_context(vmx->vpid);
5057 }
5058
5059 /*
5060 * In nested virtualization, check if L1 asked to exit on external interrupts.
5061 * For most existing hypervisors, this will always return true.
5062 */
5063 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5064 {
5065 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5066 PIN_BASED_EXT_INTR_MASK;
5067 }
5068
5069 /*
5070 * In nested virtualization, check if L1 has set
5071 * VM_EXIT_ACK_INTR_ON_EXIT
5072 */
5073 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5074 {
5075 return get_vmcs12(vcpu)->vm_exit_controls &
5076 VM_EXIT_ACK_INTR_ON_EXIT;
5077 }
5078
5079 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5080 {
5081 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5082 PIN_BASED_NMI_EXITING;
5083 }
5084
5085 static void enable_irq_window(struct kvm_vcpu *vcpu)
5086 {
5087 u32 cpu_based_vm_exec_control;
5088
5089 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5090 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5091 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5092 }
5093
5094 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5095 {
5096 u32 cpu_based_vm_exec_control;
5097
5098 if (!cpu_has_virtual_nmis() ||
5099 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5100 enable_irq_window(vcpu);
5101 return;
5102 }
5103
5104 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5105 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5106 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5107 }
5108
5109 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5110 {
5111 struct vcpu_vmx *vmx = to_vmx(vcpu);
5112 uint32_t intr;
5113 int irq = vcpu->arch.interrupt.nr;
5114
5115 trace_kvm_inj_virq(irq);
5116
5117 ++vcpu->stat.irq_injections;
5118 if (vmx->rmode.vm86_active) {
5119 int inc_eip = 0;
5120 if (vcpu->arch.interrupt.soft)
5121 inc_eip = vcpu->arch.event_exit_inst_len;
5122 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5123 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5124 return;
5125 }
5126 intr = irq | INTR_INFO_VALID_MASK;
5127 if (vcpu->arch.interrupt.soft) {
5128 intr |= INTR_TYPE_SOFT_INTR;
5129 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5130 vmx->vcpu.arch.event_exit_inst_len);
5131 } else
5132 intr |= INTR_TYPE_EXT_INTR;
5133 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5134 }
5135
5136 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5137 {
5138 struct vcpu_vmx *vmx = to_vmx(vcpu);
5139
5140 if (is_guest_mode(vcpu))
5141 return;
5142
5143 if (!cpu_has_virtual_nmis()) {
5144 /*
5145 * Tracking the NMI-blocked state in software is built upon
5146 * finding the next open IRQ window. This, in turn, depends on
5147 * well-behaving guests: They have to keep IRQs disabled at
5148 * least as long as the NMI handler runs. Otherwise we may
5149 * cause NMI nesting, maybe breaking the guest. But as this is
5150 * highly unlikely, we can live with the residual risk.
5151 */
5152 vmx->soft_vnmi_blocked = 1;
5153 vmx->vnmi_blocked_time = 0;
5154 }
5155
5156 ++vcpu->stat.nmi_injections;
5157 vmx->nmi_known_unmasked = false;
5158 if (vmx->rmode.vm86_active) {
5159 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5160 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5161 return;
5162 }
5163 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5164 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5165 }
5166
5167 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5168 {
5169 if (!cpu_has_virtual_nmis())
5170 return to_vmx(vcpu)->soft_vnmi_blocked;
5171 if (to_vmx(vcpu)->nmi_known_unmasked)
5172 return false;
5173 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5174 }
5175
5176 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5177 {
5178 struct vcpu_vmx *vmx = to_vmx(vcpu);
5179
5180 if (!cpu_has_virtual_nmis()) {
5181 if (vmx->soft_vnmi_blocked != masked) {
5182 vmx->soft_vnmi_blocked = masked;
5183 vmx->vnmi_blocked_time = 0;
5184 }
5185 } else {
5186 vmx->nmi_known_unmasked = !masked;
5187 if (masked)
5188 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5189 GUEST_INTR_STATE_NMI);
5190 else
5191 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5192 GUEST_INTR_STATE_NMI);
5193 }
5194 }
5195
5196 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5197 {
5198 if (to_vmx(vcpu)->nested.nested_run_pending)
5199 return 0;
5200
5201 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5202 return 0;
5203
5204 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5205 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5206 | GUEST_INTR_STATE_NMI));
5207 }
5208
5209 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5210 {
5211 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5212 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5213 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5214 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5215 }
5216
5217 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5218 {
5219 int ret;
5220
5221 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5222 PAGE_SIZE * 3);
5223 if (ret)
5224 return ret;
5225 kvm->arch.tss_addr = addr;
5226 return init_rmode_tss(kvm);
5227 }
5228
5229 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5230 {
5231 switch (vec) {
5232 case BP_VECTOR:
5233 /*
5234 * Update instruction length as we may reinject the exception
5235 * from user space while in guest debugging mode.
5236 */
5237 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5238 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5239 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5240 return false;
5241 /* fall through */
5242 case DB_VECTOR:
5243 if (vcpu->guest_debug &
5244 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5245 return false;
5246 /* fall through */
5247 case DE_VECTOR:
5248 case OF_VECTOR:
5249 case BR_VECTOR:
5250 case UD_VECTOR:
5251 case DF_VECTOR:
5252 case SS_VECTOR:
5253 case GP_VECTOR:
5254 case MF_VECTOR:
5255 return true;
5256 break;
5257 }
5258 return false;
5259 }
5260
5261 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5262 int vec, u32 err_code)
5263 {
5264 /*
5265 * Instruction with address size override prefix opcode 0x67
5266 * Cause the #SS fault with 0 error code in VM86 mode.
5267 */
5268 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5269 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5270 if (vcpu->arch.halt_request) {
5271 vcpu->arch.halt_request = 0;
5272 return kvm_vcpu_halt(vcpu);
5273 }
5274 return 1;
5275 }
5276 return 0;
5277 }
5278
5279 /*
5280 * Forward all other exceptions that are valid in real mode.
5281 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5282 * the required debugging infrastructure rework.
5283 */
5284 kvm_queue_exception(vcpu, vec);
5285 return 1;
5286 }
5287
5288 /*
5289 * Trigger machine check on the host. We assume all the MSRs are already set up
5290 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5291 * We pass a fake environment to the machine check handler because we want
5292 * the guest to be always treated like user space, no matter what context
5293 * it used internally.
5294 */
5295 static void kvm_machine_check(void)
5296 {
5297 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5298 struct pt_regs regs = {
5299 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5300 .flags = X86_EFLAGS_IF,
5301 };
5302
5303 do_machine_check(&regs, 0);
5304 #endif
5305 }
5306
5307 static int handle_machine_check(struct kvm_vcpu *vcpu)
5308 {
5309 /* already handled by vcpu_run */
5310 return 1;
5311 }
5312
5313 static int handle_exception(struct kvm_vcpu *vcpu)
5314 {
5315 struct vcpu_vmx *vmx = to_vmx(vcpu);
5316 struct kvm_run *kvm_run = vcpu->run;
5317 u32 intr_info, ex_no, error_code;
5318 unsigned long cr2, rip, dr6;
5319 u32 vect_info;
5320 enum emulation_result er;
5321
5322 vect_info = vmx->idt_vectoring_info;
5323 intr_info = vmx->exit_intr_info;
5324
5325 if (is_machine_check(intr_info))
5326 return handle_machine_check(vcpu);
5327
5328 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5329 return 1; /* already handled by vmx_vcpu_run() */
5330
5331 if (is_no_device(intr_info)) {
5332 vmx_fpu_activate(vcpu);
5333 return 1;
5334 }
5335
5336 if (is_invalid_opcode(intr_info)) {
5337 if (is_guest_mode(vcpu)) {
5338 kvm_queue_exception(vcpu, UD_VECTOR);
5339 return 1;
5340 }
5341 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5342 if (er != EMULATE_DONE)
5343 kvm_queue_exception(vcpu, UD_VECTOR);
5344 return 1;
5345 }
5346
5347 error_code = 0;
5348 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5349 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5350
5351 /*
5352 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5353 * MMIO, it is better to report an internal error.
5354 * See the comments in vmx_handle_exit.
5355 */
5356 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5357 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5358 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5359 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5360 vcpu->run->internal.ndata = 3;
5361 vcpu->run->internal.data[0] = vect_info;
5362 vcpu->run->internal.data[1] = intr_info;
5363 vcpu->run->internal.data[2] = error_code;
5364 return 0;
5365 }
5366
5367 if (is_page_fault(intr_info)) {
5368 /* EPT won't cause page fault directly */
5369 BUG_ON(enable_ept);
5370 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5371 trace_kvm_page_fault(cr2, error_code);
5372
5373 if (kvm_event_needs_reinjection(vcpu))
5374 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5375 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5376 }
5377
5378 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5379
5380 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5381 return handle_rmode_exception(vcpu, ex_no, error_code);
5382
5383 switch (ex_no) {
5384 case AC_VECTOR:
5385 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5386 return 1;
5387 case DB_VECTOR:
5388 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5389 if (!(vcpu->guest_debug &
5390 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5391 vcpu->arch.dr6 &= ~15;
5392 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5393 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5394 skip_emulated_instruction(vcpu);
5395
5396 kvm_queue_exception(vcpu, DB_VECTOR);
5397 return 1;
5398 }
5399 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5400 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5401 /* fall through */
5402 case BP_VECTOR:
5403 /*
5404 * Update instruction length as we may reinject #BP from
5405 * user space while in guest debugging mode. Reading it for
5406 * #DB as well causes no harm, it is not used in that case.
5407 */
5408 vmx->vcpu.arch.event_exit_inst_len =
5409 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5410 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5411 rip = kvm_rip_read(vcpu);
5412 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5413 kvm_run->debug.arch.exception = ex_no;
5414 break;
5415 default:
5416 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5417 kvm_run->ex.exception = ex_no;
5418 kvm_run->ex.error_code = error_code;
5419 break;
5420 }
5421 return 0;
5422 }
5423
5424 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5425 {
5426 ++vcpu->stat.irq_exits;
5427 return 1;
5428 }
5429
5430 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5431 {
5432 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5433 return 0;
5434 }
5435
5436 static int handle_io(struct kvm_vcpu *vcpu)
5437 {
5438 unsigned long exit_qualification;
5439 int size, in, string;
5440 unsigned port;
5441
5442 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5443 string = (exit_qualification & 16) != 0;
5444 in = (exit_qualification & 8) != 0;
5445
5446 ++vcpu->stat.io_exits;
5447
5448 if (string || in)
5449 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5450
5451 port = exit_qualification >> 16;
5452 size = (exit_qualification & 7) + 1;
5453 skip_emulated_instruction(vcpu);
5454
5455 return kvm_fast_pio_out(vcpu, size, port);
5456 }
5457
5458 static void
5459 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5460 {
5461 /*
5462 * Patch in the VMCALL instruction:
5463 */
5464 hypercall[0] = 0x0f;
5465 hypercall[1] = 0x01;
5466 hypercall[2] = 0xc1;
5467 }
5468
5469 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5470 {
5471 unsigned long always_on = VMXON_CR0_ALWAYSON;
5472 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5473
5474 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5475 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5476 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5477 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5478 return (val & always_on) == always_on;
5479 }
5480
5481 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5482 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5483 {
5484 if (is_guest_mode(vcpu)) {
5485 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5486 unsigned long orig_val = val;
5487
5488 /*
5489 * We get here when L2 changed cr0 in a way that did not change
5490 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5491 * but did change L0 shadowed bits. So we first calculate the
5492 * effective cr0 value that L1 would like to write into the
5493 * hardware. It consists of the L2-owned bits from the new
5494 * value combined with the L1-owned bits from L1's guest_cr0.
5495 */
5496 val = (val & ~vmcs12->cr0_guest_host_mask) |
5497 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5498
5499 if (!nested_cr0_valid(vcpu, val))
5500 return 1;
5501
5502 if (kvm_set_cr0(vcpu, val))
5503 return 1;
5504 vmcs_writel(CR0_READ_SHADOW, orig_val);
5505 return 0;
5506 } else {
5507 if (to_vmx(vcpu)->nested.vmxon &&
5508 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5509 return 1;
5510 return kvm_set_cr0(vcpu, val);
5511 }
5512 }
5513
5514 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5515 {
5516 if (is_guest_mode(vcpu)) {
5517 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5518 unsigned long orig_val = val;
5519
5520 /* analogously to handle_set_cr0 */
5521 val = (val & ~vmcs12->cr4_guest_host_mask) |
5522 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5523 if (kvm_set_cr4(vcpu, val))
5524 return 1;
5525 vmcs_writel(CR4_READ_SHADOW, orig_val);
5526 return 0;
5527 } else
5528 return kvm_set_cr4(vcpu, val);
5529 }
5530
5531 /* called to set cr0 as appropriate for clts instruction exit. */
5532 static void handle_clts(struct kvm_vcpu *vcpu)
5533 {
5534 if (is_guest_mode(vcpu)) {
5535 /*
5536 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5537 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5538 * just pretend it's off (also in arch.cr0 for fpu_activate).
5539 */
5540 vmcs_writel(CR0_READ_SHADOW,
5541 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5542 vcpu->arch.cr0 &= ~X86_CR0_TS;
5543 } else
5544 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5545 }
5546
5547 static int handle_cr(struct kvm_vcpu *vcpu)
5548 {
5549 unsigned long exit_qualification, val;
5550 int cr;
5551 int reg;
5552 int err;
5553
5554 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5555 cr = exit_qualification & 15;
5556 reg = (exit_qualification >> 8) & 15;
5557 switch ((exit_qualification >> 4) & 3) {
5558 case 0: /* mov to cr */
5559 val = kvm_register_readl(vcpu, reg);
5560 trace_kvm_cr_write(cr, val);
5561 switch (cr) {
5562 case 0:
5563 err = handle_set_cr0(vcpu, val);
5564 kvm_complete_insn_gp(vcpu, err);
5565 return 1;
5566 case 3:
5567 err = kvm_set_cr3(vcpu, val);
5568 kvm_complete_insn_gp(vcpu, err);
5569 return 1;
5570 case 4:
5571 err = handle_set_cr4(vcpu, val);
5572 kvm_complete_insn_gp(vcpu, err);
5573 return 1;
5574 case 8: {
5575 u8 cr8_prev = kvm_get_cr8(vcpu);
5576 u8 cr8 = (u8)val;
5577 err = kvm_set_cr8(vcpu, cr8);
5578 kvm_complete_insn_gp(vcpu, err);
5579 if (lapic_in_kernel(vcpu))
5580 return 1;
5581 if (cr8_prev <= cr8)
5582 return 1;
5583 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5584 return 0;
5585 }
5586 }
5587 break;
5588 case 2: /* clts */
5589 handle_clts(vcpu);
5590 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5591 skip_emulated_instruction(vcpu);
5592 vmx_fpu_activate(vcpu);
5593 return 1;
5594 case 1: /*mov from cr*/
5595 switch (cr) {
5596 case 3:
5597 val = kvm_read_cr3(vcpu);
5598 kvm_register_write(vcpu, reg, val);
5599 trace_kvm_cr_read(cr, val);
5600 skip_emulated_instruction(vcpu);
5601 return 1;
5602 case 8:
5603 val = kvm_get_cr8(vcpu);
5604 kvm_register_write(vcpu, reg, val);
5605 trace_kvm_cr_read(cr, val);
5606 skip_emulated_instruction(vcpu);
5607 return 1;
5608 }
5609 break;
5610 case 3: /* lmsw */
5611 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5612 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5613 kvm_lmsw(vcpu, val);
5614
5615 skip_emulated_instruction(vcpu);
5616 return 1;
5617 default:
5618 break;
5619 }
5620 vcpu->run->exit_reason = 0;
5621 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5622 (int)(exit_qualification >> 4) & 3, cr);
5623 return 0;
5624 }
5625
5626 static int handle_dr(struct kvm_vcpu *vcpu)
5627 {
5628 unsigned long exit_qualification;
5629 int dr, dr7, reg;
5630
5631 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5632 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5633
5634 /* First, if DR does not exist, trigger UD */
5635 if (!kvm_require_dr(vcpu, dr))
5636 return 1;
5637
5638 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5639 if (!kvm_require_cpl(vcpu, 0))
5640 return 1;
5641 dr7 = vmcs_readl(GUEST_DR7);
5642 if (dr7 & DR7_GD) {
5643 /*
5644 * As the vm-exit takes precedence over the debug trap, we
5645 * need to emulate the latter, either for the host or the
5646 * guest debugging itself.
5647 */
5648 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5649 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5650 vcpu->run->debug.arch.dr7 = dr7;
5651 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5652 vcpu->run->debug.arch.exception = DB_VECTOR;
5653 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5654 return 0;
5655 } else {
5656 vcpu->arch.dr6 &= ~15;
5657 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5658 kvm_queue_exception(vcpu, DB_VECTOR);
5659 return 1;
5660 }
5661 }
5662
5663 if (vcpu->guest_debug == 0) {
5664 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5665 CPU_BASED_MOV_DR_EXITING);
5666
5667 /*
5668 * No more DR vmexits; force a reload of the debug registers
5669 * and reenter on this instruction. The next vmexit will
5670 * retrieve the full state of the debug registers.
5671 */
5672 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5673 return 1;
5674 }
5675
5676 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5677 if (exit_qualification & TYPE_MOV_FROM_DR) {
5678 unsigned long val;
5679
5680 if (kvm_get_dr(vcpu, dr, &val))
5681 return 1;
5682 kvm_register_write(vcpu, reg, val);
5683 } else
5684 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5685 return 1;
5686
5687 skip_emulated_instruction(vcpu);
5688 return 1;
5689 }
5690
5691 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5692 {
5693 return vcpu->arch.dr6;
5694 }
5695
5696 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5697 {
5698 }
5699
5700 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5701 {
5702 get_debugreg(vcpu->arch.db[0], 0);
5703 get_debugreg(vcpu->arch.db[1], 1);
5704 get_debugreg(vcpu->arch.db[2], 2);
5705 get_debugreg(vcpu->arch.db[3], 3);
5706 get_debugreg(vcpu->arch.dr6, 6);
5707 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5708
5709 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5710 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5711 }
5712
5713 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5714 {
5715 vmcs_writel(GUEST_DR7, val);
5716 }
5717
5718 static int handle_cpuid(struct kvm_vcpu *vcpu)
5719 {
5720 kvm_emulate_cpuid(vcpu);
5721 return 1;
5722 }
5723
5724 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5725 {
5726 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5727 struct msr_data msr_info;
5728
5729 msr_info.index = ecx;
5730 msr_info.host_initiated = false;
5731 if (vmx_get_msr(vcpu, &msr_info)) {
5732 trace_kvm_msr_read_ex(ecx);
5733 kvm_inject_gp(vcpu, 0);
5734 return 1;
5735 }
5736
5737 trace_kvm_msr_read(ecx, msr_info.data);
5738
5739 /* FIXME: handling of bits 32:63 of rax, rdx */
5740 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5741 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5742 skip_emulated_instruction(vcpu);
5743 return 1;
5744 }
5745
5746 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5747 {
5748 struct msr_data msr;
5749 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5750 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5751 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5752
5753 msr.data = data;
5754 msr.index = ecx;
5755 msr.host_initiated = false;
5756 if (kvm_set_msr(vcpu, &msr) != 0) {
5757 trace_kvm_msr_write_ex(ecx, data);
5758 kvm_inject_gp(vcpu, 0);
5759 return 1;
5760 }
5761
5762 trace_kvm_msr_write(ecx, data);
5763 skip_emulated_instruction(vcpu);
5764 return 1;
5765 }
5766
5767 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5768 {
5769 kvm_make_request(KVM_REQ_EVENT, vcpu);
5770 return 1;
5771 }
5772
5773 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5774 {
5775 u32 cpu_based_vm_exec_control;
5776
5777 /* clear pending irq */
5778 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5779 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5780 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5781
5782 kvm_make_request(KVM_REQ_EVENT, vcpu);
5783
5784 ++vcpu->stat.irq_window_exits;
5785 return 1;
5786 }
5787
5788 static int handle_halt(struct kvm_vcpu *vcpu)
5789 {
5790 return kvm_emulate_halt(vcpu);
5791 }
5792
5793 static int handle_vmcall(struct kvm_vcpu *vcpu)
5794 {
5795 return kvm_emulate_hypercall(vcpu);
5796 }
5797
5798 static int handle_invd(struct kvm_vcpu *vcpu)
5799 {
5800 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5801 }
5802
5803 static int handle_invlpg(struct kvm_vcpu *vcpu)
5804 {
5805 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5806
5807 kvm_mmu_invlpg(vcpu, exit_qualification);
5808 skip_emulated_instruction(vcpu);
5809 return 1;
5810 }
5811
5812 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5813 {
5814 int err;
5815
5816 err = kvm_rdpmc(vcpu);
5817 kvm_complete_insn_gp(vcpu, err);
5818
5819 return 1;
5820 }
5821
5822 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5823 {
5824 kvm_emulate_wbinvd(vcpu);
5825 return 1;
5826 }
5827
5828 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5829 {
5830 u64 new_bv = kvm_read_edx_eax(vcpu);
5831 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5832
5833 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5834 skip_emulated_instruction(vcpu);
5835 return 1;
5836 }
5837
5838 static int handle_xsaves(struct kvm_vcpu *vcpu)
5839 {
5840 skip_emulated_instruction(vcpu);
5841 WARN(1, "this should never happen\n");
5842 return 1;
5843 }
5844
5845 static int handle_xrstors(struct kvm_vcpu *vcpu)
5846 {
5847 skip_emulated_instruction(vcpu);
5848 WARN(1, "this should never happen\n");
5849 return 1;
5850 }
5851
5852 static int handle_apic_access(struct kvm_vcpu *vcpu)
5853 {
5854 if (likely(fasteoi)) {
5855 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5856 int access_type, offset;
5857
5858 access_type = exit_qualification & APIC_ACCESS_TYPE;
5859 offset = exit_qualification & APIC_ACCESS_OFFSET;
5860 /*
5861 * Sane guest uses MOV to write EOI, with written value
5862 * not cared. So make a short-circuit here by avoiding
5863 * heavy instruction emulation.
5864 */
5865 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5866 (offset == APIC_EOI)) {
5867 kvm_lapic_set_eoi(vcpu);
5868 skip_emulated_instruction(vcpu);
5869 return 1;
5870 }
5871 }
5872 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5873 }
5874
5875 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5876 {
5877 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5878 int vector = exit_qualification & 0xff;
5879
5880 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5881 kvm_apic_set_eoi_accelerated(vcpu, vector);
5882 return 1;
5883 }
5884
5885 static int handle_apic_write(struct kvm_vcpu *vcpu)
5886 {
5887 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5888 u32 offset = exit_qualification & 0xfff;
5889
5890 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5891 kvm_apic_write_nodecode(vcpu, offset);
5892 return 1;
5893 }
5894
5895 static int handle_task_switch(struct kvm_vcpu *vcpu)
5896 {
5897 struct vcpu_vmx *vmx = to_vmx(vcpu);
5898 unsigned long exit_qualification;
5899 bool has_error_code = false;
5900 u32 error_code = 0;
5901 u16 tss_selector;
5902 int reason, type, idt_v, idt_index;
5903
5904 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5905 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5906 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5907
5908 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5909
5910 reason = (u32)exit_qualification >> 30;
5911 if (reason == TASK_SWITCH_GATE && idt_v) {
5912 switch (type) {
5913 case INTR_TYPE_NMI_INTR:
5914 vcpu->arch.nmi_injected = false;
5915 vmx_set_nmi_mask(vcpu, true);
5916 break;
5917 case INTR_TYPE_EXT_INTR:
5918 case INTR_TYPE_SOFT_INTR:
5919 kvm_clear_interrupt_queue(vcpu);
5920 break;
5921 case INTR_TYPE_HARD_EXCEPTION:
5922 if (vmx->idt_vectoring_info &
5923 VECTORING_INFO_DELIVER_CODE_MASK) {
5924 has_error_code = true;
5925 error_code =
5926 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5927 }
5928 /* fall through */
5929 case INTR_TYPE_SOFT_EXCEPTION:
5930 kvm_clear_exception_queue(vcpu);
5931 break;
5932 default:
5933 break;
5934 }
5935 }
5936 tss_selector = exit_qualification;
5937
5938 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5939 type != INTR_TYPE_EXT_INTR &&
5940 type != INTR_TYPE_NMI_INTR))
5941 skip_emulated_instruction(vcpu);
5942
5943 if (kvm_task_switch(vcpu, tss_selector,
5944 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5945 has_error_code, error_code) == EMULATE_FAIL) {
5946 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5947 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5948 vcpu->run->internal.ndata = 0;
5949 return 0;
5950 }
5951
5952 /*
5953 * TODO: What about debug traps on tss switch?
5954 * Are we supposed to inject them and update dr6?
5955 */
5956
5957 return 1;
5958 }
5959
5960 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5961 {
5962 unsigned long exit_qualification;
5963 gpa_t gpa;
5964 u32 error_code;
5965 int gla_validity;
5966
5967 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5968
5969 gla_validity = (exit_qualification >> 7) & 0x3;
5970 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5971 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5972 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5973 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5974 vmcs_readl(GUEST_LINEAR_ADDRESS));
5975 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5976 (long unsigned int)exit_qualification);
5977 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5978 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5979 return 0;
5980 }
5981
5982 /*
5983 * EPT violation happened while executing iret from NMI,
5984 * "blocked by NMI" bit has to be set before next VM entry.
5985 * There are errata that may cause this bit to not be set:
5986 * AAK134, BY25.
5987 */
5988 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5989 cpu_has_virtual_nmis() &&
5990 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5991 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5992
5993 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5994 trace_kvm_page_fault(gpa, exit_qualification);
5995
5996 /* It is a write fault? */
5997 error_code = exit_qualification & PFERR_WRITE_MASK;
5998 /* It is a fetch fault? */
5999 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6000 /* ept page table is present? */
6001 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
6002
6003 vcpu->arch.exit_qualification = exit_qualification;
6004
6005 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6006 }
6007
6008 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6009 {
6010 int ret;
6011 gpa_t gpa;
6012
6013 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6014 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6015 skip_emulated_instruction(vcpu);
6016 trace_kvm_fast_mmio(gpa);
6017 return 1;
6018 }
6019
6020 ret = handle_mmio_page_fault(vcpu, gpa, true);
6021 if (likely(ret == RET_MMIO_PF_EMULATE))
6022 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6023 EMULATE_DONE;
6024
6025 if (unlikely(ret == RET_MMIO_PF_INVALID))
6026 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6027
6028 if (unlikely(ret == RET_MMIO_PF_RETRY))
6029 return 1;
6030
6031 /* It is the real ept misconfig */
6032 WARN_ON(1);
6033
6034 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6035 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6036
6037 return 0;
6038 }
6039
6040 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6041 {
6042 u32 cpu_based_vm_exec_control;
6043
6044 /* clear pending NMI */
6045 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6046 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6047 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6048 ++vcpu->stat.nmi_window_exits;
6049 kvm_make_request(KVM_REQ_EVENT, vcpu);
6050
6051 return 1;
6052 }
6053
6054 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6055 {
6056 struct vcpu_vmx *vmx = to_vmx(vcpu);
6057 enum emulation_result err = EMULATE_DONE;
6058 int ret = 1;
6059 u32 cpu_exec_ctrl;
6060 bool intr_window_requested;
6061 unsigned count = 130;
6062
6063 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6064 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6065
6066 while (vmx->emulation_required && count-- != 0) {
6067 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6068 return handle_interrupt_window(&vmx->vcpu);
6069
6070 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6071 return 1;
6072
6073 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6074
6075 if (err == EMULATE_USER_EXIT) {
6076 ++vcpu->stat.mmio_exits;
6077 ret = 0;
6078 goto out;
6079 }
6080
6081 if (err != EMULATE_DONE) {
6082 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6083 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6084 vcpu->run->internal.ndata = 0;
6085 return 0;
6086 }
6087
6088 if (vcpu->arch.halt_request) {
6089 vcpu->arch.halt_request = 0;
6090 ret = kvm_vcpu_halt(vcpu);
6091 goto out;
6092 }
6093
6094 if (signal_pending(current))
6095 goto out;
6096 if (need_resched())
6097 schedule();
6098 }
6099
6100 out:
6101 return ret;
6102 }
6103
6104 static int __grow_ple_window(int val)
6105 {
6106 if (ple_window_grow < 1)
6107 return ple_window;
6108
6109 val = min(val, ple_window_actual_max);
6110
6111 if (ple_window_grow < ple_window)
6112 val *= ple_window_grow;
6113 else
6114 val += ple_window_grow;
6115
6116 return val;
6117 }
6118
6119 static int __shrink_ple_window(int val, int modifier, int minimum)
6120 {
6121 if (modifier < 1)
6122 return ple_window;
6123
6124 if (modifier < ple_window)
6125 val /= modifier;
6126 else
6127 val -= modifier;
6128
6129 return max(val, minimum);
6130 }
6131
6132 static void grow_ple_window(struct kvm_vcpu *vcpu)
6133 {
6134 struct vcpu_vmx *vmx = to_vmx(vcpu);
6135 int old = vmx->ple_window;
6136
6137 vmx->ple_window = __grow_ple_window(old);
6138
6139 if (vmx->ple_window != old)
6140 vmx->ple_window_dirty = true;
6141
6142 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6143 }
6144
6145 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6146 {
6147 struct vcpu_vmx *vmx = to_vmx(vcpu);
6148 int old = vmx->ple_window;
6149
6150 vmx->ple_window = __shrink_ple_window(old,
6151 ple_window_shrink, ple_window);
6152
6153 if (vmx->ple_window != old)
6154 vmx->ple_window_dirty = true;
6155
6156 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6157 }
6158
6159 /*
6160 * ple_window_actual_max is computed to be one grow_ple_window() below
6161 * ple_window_max. (See __grow_ple_window for the reason.)
6162 * This prevents overflows, because ple_window_max is int.
6163 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6164 * this process.
6165 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6166 */
6167 static void update_ple_window_actual_max(void)
6168 {
6169 ple_window_actual_max =
6170 __shrink_ple_window(max(ple_window_max, ple_window),
6171 ple_window_grow, INT_MIN);
6172 }
6173
6174 /*
6175 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6176 */
6177 static void wakeup_handler(void)
6178 {
6179 struct kvm_vcpu *vcpu;
6180 int cpu = smp_processor_id();
6181
6182 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6183 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6184 blocked_vcpu_list) {
6185 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6186
6187 if (pi_test_on(pi_desc) == 1)
6188 kvm_vcpu_kick(vcpu);
6189 }
6190 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6191 }
6192
6193 static __init int hardware_setup(void)
6194 {
6195 int r = -ENOMEM, i, msr;
6196
6197 rdmsrl_safe(MSR_EFER, &host_efer);
6198
6199 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6200 kvm_define_shared_msr(i, vmx_msr_index[i]);
6201
6202 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6203 if (!vmx_io_bitmap_a)
6204 return r;
6205
6206 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6207 if (!vmx_io_bitmap_b)
6208 goto out;
6209
6210 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6211 if (!vmx_msr_bitmap_legacy)
6212 goto out1;
6213
6214 vmx_msr_bitmap_legacy_x2apic =
6215 (unsigned long *)__get_free_page(GFP_KERNEL);
6216 if (!vmx_msr_bitmap_legacy_x2apic)
6217 goto out2;
6218
6219 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6220 if (!vmx_msr_bitmap_longmode)
6221 goto out3;
6222
6223 vmx_msr_bitmap_longmode_x2apic =
6224 (unsigned long *)__get_free_page(GFP_KERNEL);
6225 if (!vmx_msr_bitmap_longmode_x2apic)
6226 goto out4;
6227
6228 if (nested) {
6229 vmx_msr_bitmap_nested =
6230 (unsigned long *)__get_free_page(GFP_KERNEL);
6231 if (!vmx_msr_bitmap_nested)
6232 goto out5;
6233 }
6234
6235 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6236 if (!vmx_vmread_bitmap)
6237 goto out6;
6238
6239 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6240 if (!vmx_vmwrite_bitmap)
6241 goto out7;
6242
6243 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6244 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6245
6246 /*
6247 * Allow direct access to the PC debug port (it is often used for I/O
6248 * delays, but the vmexits simply slow things down).
6249 */
6250 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6251 clear_bit(0x80, vmx_io_bitmap_a);
6252
6253 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6254
6255 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6256 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6257 if (nested)
6258 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6259
6260 if (setup_vmcs_config(&vmcs_config) < 0) {
6261 r = -EIO;
6262 goto out8;
6263 }
6264
6265 if (boot_cpu_has(X86_FEATURE_NX))
6266 kvm_enable_efer_bits(EFER_NX);
6267
6268 if (!cpu_has_vmx_vpid())
6269 enable_vpid = 0;
6270 if (!cpu_has_vmx_shadow_vmcs())
6271 enable_shadow_vmcs = 0;
6272 if (enable_shadow_vmcs)
6273 init_vmcs_shadow_fields();
6274
6275 if (!cpu_has_vmx_ept() ||
6276 !cpu_has_vmx_ept_4levels()) {
6277 enable_ept = 0;
6278 enable_unrestricted_guest = 0;
6279 enable_ept_ad_bits = 0;
6280 }
6281
6282 if (!cpu_has_vmx_ept_ad_bits())
6283 enable_ept_ad_bits = 0;
6284
6285 if (!cpu_has_vmx_unrestricted_guest())
6286 enable_unrestricted_guest = 0;
6287
6288 if (!cpu_has_vmx_flexpriority())
6289 flexpriority_enabled = 0;
6290
6291 /*
6292 * set_apic_access_page_addr() is used to reload apic access
6293 * page upon invalidation. No need to do anything if not
6294 * using the APIC_ACCESS_ADDR VMCS field.
6295 */
6296 if (!flexpriority_enabled)
6297 kvm_x86_ops->set_apic_access_page_addr = NULL;
6298
6299 if (!cpu_has_vmx_tpr_shadow())
6300 kvm_x86_ops->update_cr8_intercept = NULL;
6301
6302 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6303 kvm_disable_largepages();
6304
6305 if (!cpu_has_vmx_ple())
6306 ple_gap = 0;
6307
6308 if (!cpu_has_vmx_apicv())
6309 enable_apicv = 0;
6310
6311 if (cpu_has_vmx_tsc_scaling()) {
6312 kvm_has_tsc_control = true;
6313 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6314 kvm_tsc_scaling_ratio_frac_bits = 48;
6315 }
6316
6317 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6318 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6319 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6320 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6321 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6322 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6323 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6324
6325 memcpy(vmx_msr_bitmap_legacy_x2apic,
6326 vmx_msr_bitmap_legacy, PAGE_SIZE);
6327 memcpy(vmx_msr_bitmap_longmode_x2apic,
6328 vmx_msr_bitmap_longmode, PAGE_SIZE);
6329
6330 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6331
6332 if (enable_apicv) {
6333 for (msr = 0x800; msr <= 0x8ff; msr++)
6334 vmx_disable_intercept_msr_read_x2apic(msr);
6335
6336 /* According SDM, in x2apic mode, the whole id reg is used.
6337 * But in KVM, it only use the highest eight bits. Need to
6338 * intercept it */
6339 vmx_enable_intercept_msr_read_x2apic(0x802);
6340 /* TMCCT */
6341 vmx_enable_intercept_msr_read_x2apic(0x839);
6342 /* TPR */
6343 vmx_disable_intercept_msr_write_x2apic(0x808);
6344 /* EOI */
6345 vmx_disable_intercept_msr_write_x2apic(0x80b);
6346 /* SELF-IPI */
6347 vmx_disable_intercept_msr_write_x2apic(0x83f);
6348 }
6349
6350 if (enable_ept) {
6351 kvm_mmu_set_mask_ptes(0ull,
6352 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6353 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6354 0ull, VMX_EPT_EXECUTABLE_MASK);
6355 ept_set_mmio_spte_mask();
6356 kvm_enable_tdp();
6357 } else
6358 kvm_disable_tdp();
6359
6360 update_ple_window_actual_max();
6361
6362 /*
6363 * Only enable PML when hardware supports PML feature, and both EPT
6364 * and EPT A/D bit features are enabled -- PML depends on them to work.
6365 */
6366 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6367 enable_pml = 0;
6368
6369 if (!enable_pml) {
6370 kvm_x86_ops->slot_enable_log_dirty = NULL;
6371 kvm_x86_ops->slot_disable_log_dirty = NULL;
6372 kvm_x86_ops->flush_log_dirty = NULL;
6373 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6374 }
6375
6376 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6377
6378 return alloc_kvm_area();
6379
6380 out8:
6381 free_page((unsigned long)vmx_vmwrite_bitmap);
6382 out7:
6383 free_page((unsigned long)vmx_vmread_bitmap);
6384 out6:
6385 if (nested)
6386 free_page((unsigned long)vmx_msr_bitmap_nested);
6387 out5:
6388 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6389 out4:
6390 free_page((unsigned long)vmx_msr_bitmap_longmode);
6391 out3:
6392 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6393 out2:
6394 free_page((unsigned long)vmx_msr_bitmap_legacy);
6395 out1:
6396 free_page((unsigned long)vmx_io_bitmap_b);
6397 out:
6398 free_page((unsigned long)vmx_io_bitmap_a);
6399
6400 return r;
6401 }
6402
6403 static __exit void hardware_unsetup(void)
6404 {
6405 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6406 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6407 free_page((unsigned long)vmx_msr_bitmap_legacy);
6408 free_page((unsigned long)vmx_msr_bitmap_longmode);
6409 free_page((unsigned long)vmx_io_bitmap_b);
6410 free_page((unsigned long)vmx_io_bitmap_a);
6411 free_page((unsigned long)vmx_vmwrite_bitmap);
6412 free_page((unsigned long)vmx_vmread_bitmap);
6413 if (nested)
6414 free_page((unsigned long)vmx_msr_bitmap_nested);
6415
6416 free_kvm_area();
6417 }
6418
6419 /*
6420 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6421 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6422 */
6423 static int handle_pause(struct kvm_vcpu *vcpu)
6424 {
6425 if (ple_gap)
6426 grow_ple_window(vcpu);
6427
6428 skip_emulated_instruction(vcpu);
6429 kvm_vcpu_on_spin(vcpu);
6430
6431 return 1;
6432 }
6433
6434 static int handle_nop(struct kvm_vcpu *vcpu)
6435 {
6436 skip_emulated_instruction(vcpu);
6437 return 1;
6438 }
6439
6440 static int handle_mwait(struct kvm_vcpu *vcpu)
6441 {
6442 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6443 return handle_nop(vcpu);
6444 }
6445
6446 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6447 {
6448 return 1;
6449 }
6450
6451 static int handle_monitor(struct kvm_vcpu *vcpu)
6452 {
6453 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6454 return handle_nop(vcpu);
6455 }
6456
6457 /*
6458 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6459 * We could reuse a single VMCS for all the L2 guests, but we also want the
6460 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6461 * allows keeping them loaded on the processor, and in the future will allow
6462 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6463 * every entry if they never change.
6464 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6465 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6466 *
6467 * The following functions allocate and free a vmcs02 in this pool.
6468 */
6469
6470 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6471 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6472 {
6473 struct vmcs02_list *item;
6474 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6475 if (item->vmptr == vmx->nested.current_vmptr) {
6476 list_move(&item->list, &vmx->nested.vmcs02_pool);
6477 return &item->vmcs02;
6478 }
6479
6480 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6481 /* Recycle the least recently used VMCS. */
6482 item = list_last_entry(&vmx->nested.vmcs02_pool,
6483 struct vmcs02_list, list);
6484 item->vmptr = vmx->nested.current_vmptr;
6485 list_move(&item->list, &vmx->nested.vmcs02_pool);
6486 return &item->vmcs02;
6487 }
6488
6489 /* Create a new VMCS */
6490 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6491 if (!item)
6492 return NULL;
6493 item->vmcs02.vmcs = alloc_vmcs();
6494 if (!item->vmcs02.vmcs) {
6495 kfree(item);
6496 return NULL;
6497 }
6498 loaded_vmcs_init(&item->vmcs02);
6499 item->vmptr = vmx->nested.current_vmptr;
6500 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6501 vmx->nested.vmcs02_num++;
6502 return &item->vmcs02;
6503 }
6504
6505 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6506 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6507 {
6508 struct vmcs02_list *item;
6509 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6510 if (item->vmptr == vmptr) {
6511 free_loaded_vmcs(&item->vmcs02);
6512 list_del(&item->list);
6513 kfree(item);
6514 vmx->nested.vmcs02_num--;
6515 return;
6516 }
6517 }
6518
6519 /*
6520 * Free all VMCSs saved for this vcpu, except the one pointed by
6521 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6522 * must be &vmx->vmcs01.
6523 */
6524 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6525 {
6526 struct vmcs02_list *item, *n;
6527
6528 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6529 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6530 /*
6531 * Something will leak if the above WARN triggers. Better than
6532 * a use-after-free.
6533 */
6534 if (vmx->loaded_vmcs == &item->vmcs02)
6535 continue;
6536
6537 free_loaded_vmcs(&item->vmcs02);
6538 list_del(&item->list);
6539 kfree(item);
6540 vmx->nested.vmcs02_num--;
6541 }
6542 }
6543
6544 /*
6545 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6546 * set the success or error code of an emulated VMX instruction, as specified
6547 * by Vol 2B, VMX Instruction Reference, "Conventions".
6548 */
6549 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6550 {
6551 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6552 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6553 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6554 }
6555
6556 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6557 {
6558 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6559 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6560 X86_EFLAGS_SF | X86_EFLAGS_OF))
6561 | X86_EFLAGS_CF);
6562 }
6563
6564 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6565 u32 vm_instruction_error)
6566 {
6567 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6568 /*
6569 * failValid writes the error number to the current VMCS, which
6570 * can't be done there isn't a current VMCS.
6571 */
6572 nested_vmx_failInvalid(vcpu);
6573 return;
6574 }
6575 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6576 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6577 X86_EFLAGS_SF | X86_EFLAGS_OF))
6578 | X86_EFLAGS_ZF);
6579 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6580 /*
6581 * We don't need to force a shadow sync because
6582 * VM_INSTRUCTION_ERROR is not shadowed
6583 */
6584 }
6585
6586 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6587 {
6588 /* TODO: not to reset guest simply here. */
6589 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6590 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6591 }
6592
6593 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6594 {
6595 struct vcpu_vmx *vmx =
6596 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6597
6598 vmx->nested.preemption_timer_expired = true;
6599 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6600 kvm_vcpu_kick(&vmx->vcpu);
6601
6602 return HRTIMER_NORESTART;
6603 }
6604
6605 /*
6606 * Decode the memory-address operand of a vmx instruction, as recorded on an
6607 * exit caused by such an instruction (run by a guest hypervisor).
6608 * On success, returns 0. When the operand is invalid, returns 1 and throws
6609 * #UD or #GP.
6610 */
6611 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6612 unsigned long exit_qualification,
6613 u32 vmx_instruction_info, bool wr, gva_t *ret)
6614 {
6615 gva_t off;
6616 bool exn;
6617 struct kvm_segment s;
6618
6619 /*
6620 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6621 * Execution", on an exit, vmx_instruction_info holds most of the
6622 * addressing components of the operand. Only the displacement part
6623 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6624 * For how an actual address is calculated from all these components,
6625 * refer to Vol. 1, "Operand Addressing".
6626 */
6627 int scaling = vmx_instruction_info & 3;
6628 int addr_size = (vmx_instruction_info >> 7) & 7;
6629 bool is_reg = vmx_instruction_info & (1u << 10);
6630 int seg_reg = (vmx_instruction_info >> 15) & 7;
6631 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6632 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6633 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6634 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6635
6636 if (is_reg) {
6637 kvm_queue_exception(vcpu, UD_VECTOR);
6638 return 1;
6639 }
6640
6641 /* Addr = segment_base + offset */
6642 /* offset = base + [index * scale] + displacement */
6643 off = exit_qualification; /* holds the displacement */
6644 if (base_is_valid)
6645 off += kvm_register_read(vcpu, base_reg);
6646 if (index_is_valid)
6647 off += kvm_register_read(vcpu, index_reg)<<scaling;
6648 vmx_get_segment(vcpu, &s, seg_reg);
6649 *ret = s.base + off;
6650
6651 if (addr_size == 1) /* 32 bit */
6652 *ret &= 0xffffffff;
6653
6654 /* Checks for #GP/#SS exceptions. */
6655 exn = false;
6656 if (is_protmode(vcpu)) {
6657 /* Protected mode: apply checks for segment validity in the
6658 * following order:
6659 * - segment type check (#GP(0) may be thrown)
6660 * - usability check (#GP(0)/#SS(0))
6661 * - limit check (#GP(0)/#SS(0))
6662 */
6663 if (wr)
6664 /* #GP(0) if the destination operand is located in a
6665 * read-only data segment or any code segment.
6666 */
6667 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6668 else
6669 /* #GP(0) if the source operand is located in an
6670 * execute-only code segment
6671 */
6672 exn = ((s.type & 0xa) == 8);
6673 }
6674 if (exn) {
6675 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6676 return 1;
6677 }
6678 if (is_long_mode(vcpu)) {
6679 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6680 * non-canonical form. This is an only check for long mode.
6681 */
6682 exn = is_noncanonical_address(*ret);
6683 } else if (is_protmode(vcpu)) {
6684 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6685 */
6686 exn = (s.unusable != 0);
6687 /* Protected mode: #GP(0)/#SS(0) if the memory
6688 * operand is outside the segment limit.
6689 */
6690 exn = exn || (off + sizeof(u64) > s.limit);
6691 }
6692 if (exn) {
6693 kvm_queue_exception_e(vcpu,
6694 seg_reg == VCPU_SREG_SS ?
6695 SS_VECTOR : GP_VECTOR,
6696 0);
6697 return 1;
6698 }
6699
6700 return 0;
6701 }
6702
6703 /*
6704 * This function performs the various checks including
6705 * - if it's 4KB aligned
6706 * - No bits beyond the physical address width are set
6707 * - Returns 0 on success or else 1
6708 * (Intel SDM Section 30.3)
6709 */
6710 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6711 gpa_t *vmpointer)
6712 {
6713 gva_t gva;
6714 gpa_t vmptr;
6715 struct x86_exception e;
6716 struct page *page;
6717 struct vcpu_vmx *vmx = to_vmx(vcpu);
6718 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6719
6720 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6721 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6722 return 1;
6723
6724 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6725 sizeof(vmptr), &e)) {
6726 kvm_inject_page_fault(vcpu, &e);
6727 return 1;
6728 }
6729
6730 switch (exit_reason) {
6731 case EXIT_REASON_VMON:
6732 /*
6733 * SDM 3: 24.11.5
6734 * The first 4 bytes of VMXON region contain the supported
6735 * VMCS revision identifier
6736 *
6737 * Note - IA32_VMX_BASIC[48] will never be 1
6738 * for the nested case;
6739 * which replaces physical address width with 32
6740 *
6741 */
6742 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6743 nested_vmx_failInvalid(vcpu);
6744 skip_emulated_instruction(vcpu);
6745 return 1;
6746 }
6747
6748 page = nested_get_page(vcpu, vmptr);
6749 if (page == NULL ||
6750 *(u32 *)kmap(page) != VMCS12_REVISION) {
6751 nested_vmx_failInvalid(vcpu);
6752 kunmap(page);
6753 skip_emulated_instruction(vcpu);
6754 return 1;
6755 }
6756 kunmap(page);
6757 vmx->nested.vmxon_ptr = vmptr;
6758 break;
6759 case EXIT_REASON_VMCLEAR:
6760 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6761 nested_vmx_failValid(vcpu,
6762 VMXERR_VMCLEAR_INVALID_ADDRESS);
6763 skip_emulated_instruction(vcpu);
6764 return 1;
6765 }
6766
6767 if (vmptr == vmx->nested.vmxon_ptr) {
6768 nested_vmx_failValid(vcpu,
6769 VMXERR_VMCLEAR_VMXON_POINTER);
6770 skip_emulated_instruction(vcpu);
6771 return 1;
6772 }
6773 break;
6774 case EXIT_REASON_VMPTRLD:
6775 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6776 nested_vmx_failValid(vcpu,
6777 VMXERR_VMPTRLD_INVALID_ADDRESS);
6778 skip_emulated_instruction(vcpu);
6779 return 1;
6780 }
6781
6782 if (vmptr == vmx->nested.vmxon_ptr) {
6783 nested_vmx_failValid(vcpu,
6784 VMXERR_VMCLEAR_VMXON_POINTER);
6785 skip_emulated_instruction(vcpu);
6786 return 1;
6787 }
6788 break;
6789 default:
6790 return 1; /* shouldn't happen */
6791 }
6792
6793 if (vmpointer)
6794 *vmpointer = vmptr;
6795 return 0;
6796 }
6797
6798 /*
6799 * Emulate the VMXON instruction.
6800 * Currently, we just remember that VMX is active, and do not save or even
6801 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6802 * do not currently need to store anything in that guest-allocated memory
6803 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6804 * argument is different from the VMXON pointer (which the spec says they do).
6805 */
6806 static int handle_vmon(struct kvm_vcpu *vcpu)
6807 {
6808 struct kvm_segment cs;
6809 struct vcpu_vmx *vmx = to_vmx(vcpu);
6810 struct vmcs *shadow_vmcs;
6811 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6812 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6813
6814 /* The Intel VMX Instruction Reference lists a bunch of bits that
6815 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6816 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6817 * Otherwise, we should fail with #UD. We test these now:
6818 */
6819 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6820 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6821 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6822 kvm_queue_exception(vcpu, UD_VECTOR);
6823 return 1;
6824 }
6825
6826 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6827 if (is_long_mode(vcpu) && !cs.l) {
6828 kvm_queue_exception(vcpu, UD_VECTOR);
6829 return 1;
6830 }
6831
6832 if (vmx_get_cpl(vcpu)) {
6833 kvm_inject_gp(vcpu, 0);
6834 return 1;
6835 }
6836
6837 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6838 return 1;
6839
6840 if (vmx->nested.vmxon) {
6841 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6842 skip_emulated_instruction(vcpu);
6843 return 1;
6844 }
6845
6846 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6847 != VMXON_NEEDED_FEATURES) {
6848 kvm_inject_gp(vcpu, 0);
6849 return 1;
6850 }
6851
6852 if (enable_shadow_vmcs) {
6853 shadow_vmcs = alloc_vmcs();
6854 if (!shadow_vmcs)
6855 return -ENOMEM;
6856 /* mark vmcs as shadow */
6857 shadow_vmcs->revision_id |= (1u << 31);
6858 /* init shadow vmcs */
6859 vmcs_clear(shadow_vmcs);
6860 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6861 }
6862
6863 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6864 vmx->nested.vmcs02_num = 0;
6865
6866 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6867 HRTIMER_MODE_REL);
6868 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6869
6870 vmx->nested.vmxon = true;
6871
6872 skip_emulated_instruction(vcpu);
6873 nested_vmx_succeed(vcpu);
6874 return 1;
6875 }
6876
6877 /*
6878 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6879 * for running VMX instructions (except VMXON, whose prerequisites are
6880 * slightly different). It also specifies what exception to inject otherwise.
6881 */
6882 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6883 {
6884 struct kvm_segment cs;
6885 struct vcpu_vmx *vmx = to_vmx(vcpu);
6886
6887 if (!vmx->nested.vmxon) {
6888 kvm_queue_exception(vcpu, UD_VECTOR);
6889 return 0;
6890 }
6891
6892 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6893 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6894 (is_long_mode(vcpu) && !cs.l)) {
6895 kvm_queue_exception(vcpu, UD_VECTOR);
6896 return 0;
6897 }
6898
6899 if (vmx_get_cpl(vcpu)) {
6900 kvm_inject_gp(vcpu, 0);
6901 return 0;
6902 }
6903
6904 return 1;
6905 }
6906
6907 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6908 {
6909 if (vmx->nested.current_vmptr == -1ull)
6910 return;
6911
6912 /* current_vmptr and current_vmcs12 are always set/reset together */
6913 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6914 return;
6915
6916 if (enable_shadow_vmcs) {
6917 /* copy to memory all shadowed fields in case
6918 they were modified */
6919 copy_shadow_to_vmcs12(vmx);
6920 vmx->nested.sync_shadow_vmcs = false;
6921 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6922 SECONDARY_EXEC_SHADOW_VMCS);
6923 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6924 }
6925 vmx->nested.posted_intr_nv = -1;
6926 kunmap(vmx->nested.current_vmcs12_page);
6927 nested_release_page(vmx->nested.current_vmcs12_page);
6928 vmx->nested.current_vmptr = -1ull;
6929 vmx->nested.current_vmcs12 = NULL;
6930 }
6931
6932 /*
6933 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6934 * just stops using VMX.
6935 */
6936 static void free_nested(struct vcpu_vmx *vmx)
6937 {
6938 if (!vmx->nested.vmxon)
6939 return;
6940
6941 vmx->nested.vmxon = false;
6942 free_vpid(vmx->nested.vpid02);
6943 nested_release_vmcs12(vmx);
6944 if (enable_shadow_vmcs)
6945 free_vmcs(vmx->nested.current_shadow_vmcs);
6946 /* Unpin physical memory we referred to in current vmcs02 */
6947 if (vmx->nested.apic_access_page) {
6948 nested_release_page(vmx->nested.apic_access_page);
6949 vmx->nested.apic_access_page = NULL;
6950 }
6951 if (vmx->nested.virtual_apic_page) {
6952 nested_release_page(vmx->nested.virtual_apic_page);
6953 vmx->nested.virtual_apic_page = NULL;
6954 }
6955 if (vmx->nested.pi_desc_page) {
6956 kunmap(vmx->nested.pi_desc_page);
6957 nested_release_page(vmx->nested.pi_desc_page);
6958 vmx->nested.pi_desc_page = NULL;
6959 vmx->nested.pi_desc = NULL;
6960 }
6961
6962 nested_free_all_saved_vmcss(vmx);
6963 }
6964
6965 /* Emulate the VMXOFF instruction */
6966 static int handle_vmoff(struct kvm_vcpu *vcpu)
6967 {
6968 if (!nested_vmx_check_permission(vcpu))
6969 return 1;
6970 free_nested(to_vmx(vcpu));
6971 skip_emulated_instruction(vcpu);
6972 nested_vmx_succeed(vcpu);
6973 return 1;
6974 }
6975
6976 /* Emulate the VMCLEAR instruction */
6977 static int handle_vmclear(struct kvm_vcpu *vcpu)
6978 {
6979 struct vcpu_vmx *vmx = to_vmx(vcpu);
6980 gpa_t vmptr;
6981 struct vmcs12 *vmcs12;
6982 struct page *page;
6983
6984 if (!nested_vmx_check_permission(vcpu))
6985 return 1;
6986
6987 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6988 return 1;
6989
6990 if (vmptr == vmx->nested.current_vmptr)
6991 nested_release_vmcs12(vmx);
6992
6993 page = nested_get_page(vcpu, vmptr);
6994 if (page == NULL) {
6995 /*
6996 * For accurate processor emulation, VMCLEAR beyond available
6997 * physical memory should do nothing at all. However, it is
6998 * possible that a nested vmx bug, not a guest hypervisor bug,
6999 * resulted in this case, so let's shut down before doing any
7000 * more damage:
7001 */
7002 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7003 return 1;
7004 }
7005 vmcs12 = kmap(page);
7006 vmcs12->launch_state = 0;
7007 kunmap(page);
7008 nested_release_page(page);
7009
7010 nested_free_vmcs02(vmx, vmptr);
7011
7012 skip_emulated_instruction(vcpu);
7013 nested_vmx_succeed(vcpu);
7014 return 1;
7015 }
7016
7017 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7018
7019 /* Emulate the VMLAUNCH instruction */
7020 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7021 {
7022 return nested_vmx_run(vcpu, true);
7023 }
7024
7025 /* Emulate the VMRESUME instruction */
7026 static int handle_vmresume(struct kvm_vcpu *vcpu)
7027 {
7028
7029 return nested_vmx_run(vcpu, false);
7030 }
7031
7032 enum vmcs_field_type {
7033 VMCS_FIELD_TYPE_U16 = 0,
7034 VMCS_FIELD_TYPE_U64 = 1,
7035 VMCS_FIELD_TYPE_U32 = 2,
7036 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7037 };
7038
7039 static inline int vmcs_field_type(unsigned long field)
7040 {
7041 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7042 return VMCS_FIELD_TYPE_U32;
7043 return (field >> 13) & 0x3 ;
7044 }
7045
7046 static inline int vmcs_field_readonly(unsigned long field)
7047 {
7048 return (((field >> 10) & 0x3) == 1);
7049 }
7050
7051 /*
7052 * Read a vmcs12 field. Since these can have varying lengths and we return
7053 * one type, we chose the biggest type (u64) and zero-extend the return value
7054 * to that size. Note that the caller, handle_vmread, might need to use only
7055 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7056 * 64-bit fields are to be returned).
7057 */
7058 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7059 unsigned long field, u64 *ret)
7060 {
7061 short offset = vmcs_field_to_offset(field);
7062 char *p;
7063
7064 if (offset < 0)
7065 return offset;
7066
7067 p = ((char *)(get_vmcs12(vcpu))) + offset;
7068
7069 switch (vmcs_field_type(field)) {
7070 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7071 *ret = *((natural_width *)p);
7072 return 0;
7073 case VMCS_FIELD_TYPE_U16:
7074 *ret = *((u16 *)p);
7075 return 0;
7076 case VMCS_FIELD_TYPE_U32:
7077 *ret = *((u32 *)p);
7078 return 0;
7079 case VMCS_FIELD_TYPE_U64:
7080 *ret = *((u64 *)p);
7081 return 0;
7082 default:
7083 WARN_ON(1);
7084 return -ENOENT;
7085 }
7086 }
7087
7088
7089 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7090 unsigned long field, u64 field_value){
7091 short offset = vmcs_field_to_offset(field);
7092 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7093 if (offset < 0)
7094 return offset;
7095
7096 switch (vmcs_field_type(field)) {
7097 case VMCS_FIELD_TYPE_U16:
7098 *(u16 *)p = field_value;
7099 return 0;
7100 case VMCS_FIELD_TYPE_U32:
7101 *(u32 *)p = field_value;
7102 return 0;
7103 case VMCS_FIELD_TYPE_U64:
7104 *(u64 *)p = field_value;
7105 return 0;
7106 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7107 *(natural_width *)p = field_value;
7108 return 0;
7109 default:
7110 WARN_ON(1);
7111 return -ENOENT;
7112 }
7113
7114 }
7115
7116 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7117 {
7118 int i;
7119 unsigned long field;
7120 u64 field_value;
7121 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7122 const unsigned long *fields = shadow_read_write_fields;
7123 const int num_fields = max_shadow_read_write_fields;
7124
7125 preempt_disable();
7126
7127 vmcs_load(shadow_vmcs);
7128
7129 for (i = 0; i < num_fields; i++) {
7130 field = fields[i];
7131 switch (vmcs_field_type(field)) {
7132 case VMCS_FIELD_TYPE_U16:
7133 field_value = vmcs_read16(field);
7134 break;
7135 case VMCS_FIELD_TYPE_U32:
7136 field_value = vmcs_read32(field);
7137 break;
7138 case VMCS_FIELD_TYPE_U64:
7139 field_value = vmcs_read64(field);
7140 break;
7141 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7142 field_value = vmcs_readl(field);
7143 break;
7144 default:
7145 WARN_ON(1);
7146 continue;
7147 }
7148 vmcs12_write_any(&vmx->vcpu, field, field_value);
7149 }
7150
7151 vmcs_clear(shadow_vmcs);
7152 vmcs_load(vmx->loaded_vmcs->vmcs);
7153
7154 preempt_enable();
7155 }
7156
7157 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7158 {
7159 const unsigned long *fields[] = {
7160 shadow_read_write_fields,
7161 shadow_read_only_fields
7162 };
7163 const int max_fields[] = {
7164 max_shadow_read_write_fields,
7165 max_shadow_read_only_fields
7166 };
7167 int i, q;
7168 unsigned long field;
7169 u64 field_value = 0;
7170 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7171
7172 vmcs_load(shadow_vmcs);
7173
7174 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7175 for (i = 0; i < max_fields[q]; i++) {
7176 field = fields[q][i];
7177 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7178
7179 switch (vmcs_field_type(field)) {
7180 case VMCS_FIELD_TYPE_U16:
7181 vmcs_write16(field, (u16)field_value);
7182 break;
7183 case VMCS_FIELD_TYPE_U32:
7184 vmcs_write32(field, (u32)field_value);
7185 break;
7186 case VMCS_FIELD_TYPE_U64:
7187 vmcs_write64(field, (u64)field_value);
7188 break;
7189 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7190 vmcs_writel(field, (long)field_value);
7191 break;
7192 default:
7193 WARN_ON(1);
7194 break;
7195 }
7196 }
7197 }
7198
7199 vmcs_clear(shadow_vmcs);
7200 vmcs_load(vmx->loaded_vmcs->vmcs);
7201 }
7202
7203 /*
7204 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7205 * used before) all generate the same failure when it is missing.
7206 */
7207 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7208 {
7209 struct vcpu_vmx *vmx = to_vmx(vcpu);
7210 if (vmx->nested.current_vmptr == -1ull) {
7211 nested_vmx_failInvalid(vcpu);
7212 skip_emulated_instruction(vcpu);
7213 return 0;
7214 }
7215 return 1;
7216 }
7217
7218 static int handle_vmread(struct kvm_vcpu *vcpu)
7219 {
7220 unsigned long field;
7221 u64 field_value;
7222 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7223 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7224 gva_t gva = 0;
7225
7226 if (!nested_vmx_check_permission(vcpu) ||
7227 !nested_vmx_check_vmcs12(vcpu))
7228 return 1;
7229
7230 /* Decode instruction info and find the field to read */
7231 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7232 /* Read the field, zero-extended to a u64 field_value */
7233 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7234 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7235 skip_emulated_instruction(vcpu);
7236 return 1;
7237 }
7238 /*
7239 * Now copy part of this value to register or memory, as requested.
7240 * Note that the number of bits actually copied is 32 or 64 depending
7241 * on the guest's mode (32 or 64 bit), not on the given field's length.
7242 */
7243 if (vmx_instruction_info & (1u << 10)) {
7244 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7245 field_value);
7246 } else {
7247 if (get_vmx_mem_address(vcpu, exit_qualification,
7248 vmx_instruction_info, true, &gva))
7249 return 1;
7250 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7251 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7252 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7253 }
7254
7255 nested_vmx_succeed(vcpu);
7256 skip_emulated_instruction(vcpu);
7257 return 1;
7258 }
7259
7260
7261 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7262 {
7263 unsigned long field;
7264 gva_t gva;
7265 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7266 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7267 /* The value to write might be 32 or 64 bits, depending on L1's long
7268 * mode, and eventually we need to write that into a field of several
7269 * possible lengths. The code below first zero-extends the value to 64
7270 * bit (field_value), and then copies only the appropriate number of
7271 * bits into the vmcs12 field.
7272 */
7273 u64 field_value = 0;
7274 struct x86_exception e;
7275
7276 if (!nested_vmx_check_permission(vcpu) ||
7277 !nested_vmx_check_vmcs12(vcpu))
7278 return 1;
7279
7280 if (vmx_instruction_info & (1u << 10))
7281 field_value = kvm_register_readl(vcpu,
7282 (((vmx_instruction_info) >> 3) & 0xf));
7283 else {
7284 if (get_vmx_mem_address(vcpu, exit_qualification,
7285 vmx_instruction_info, false, &gva))
7286 return 1;
7287 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7288 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7289 kvm_inject_page_fault(vcpu, &e);
7290 return 1;
7291 }
7292 }
7293
7294
7295 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7296 if (vmcs_field_readonly(field)) {
7297 nested_vmx_failValid(vcpu,
7298 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7299 skip_emulated_instruction(vcpu);
7300 return 1;
7301 }
7302
7303 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7304 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7305 skip_emulated_instruction(vcpu);
7306 return 1;
7307 }
7308
7309 nested_vmx_succeed(vcpu);
7310 skip_emulated_instruction(vcpu);
7311 return 1;
7312 }
7313
7314 /* Emulate the VMPTRLD instruction */
7315 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7316 {
7317 struct vcpu_vmx *vmx = to_vmx(vcpu);
7318 gpa_t vmptr;
7319
7320 if (!nested_vmx_check_permission(vcpu))
7321 return 1;
7322
7323 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7324 return 1;
7325
7326 if (vmx->nested.current_vmptr != vmptr) {
7327 struct vmcs12 *new_vmcs12;
7328 struct page *page;
7329 page = nested_get_page(vcpu, vmptr);
7330 if (page == NULL) {
7331 nested_vmx_failInvalid(vcpu);
7332 skip_emulated_instruction(vcpu);
7333 return 1;
7334 }
7335 new_vmcs12 = kmap(page);
7336 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7337 kunmap(page);
7338 nested_release_page_clean(page);
7339 nested_vmx_failValid(vcpu,
7340 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7341 skip_emulated_instruction(vcpu);
7342 return 1;
7343 }
7344
7345 nested_release_vmcs12(vmx);
7346 vmx->nested.current_vmptr = vmptr;
7347 vmx->nested.current_vmcs12 = new_vmcs12;
7348 vmx->nested.current_vmcs12_page = page;
7349 if (enable_shadow_vmcs) {
7350 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7351 SECONDARY_EXEC_SHADOW_VMCS);
7352 vmcs_write64(VMCS_LINK_POINTER,
7353 __pa(vmx->nested.current_shadow_vmcs));
7354 vmx->nested.sync_shadow_vmcs = true;
7355 }
7356 }
7357
7358 nested_vmx_succeed(vcpu);
7359 skip_emulated_instruction(vcpu);
7360 return 1;
7361 }
7362
7363 /* Emulate the VMPTRST instruction */
7364 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7365 {
7366 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7367 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7368 gva_t vmcs_gva;
7369 struct x86_exception e;
7370
7371 if (!nested_vmx_check_permission(vcpu))
7372 return 1;
7373
7374 if (get_vmx_mem_address(vcpu, exit_qualification,
7375 vmx_instruction_info, true, &vmcs_gva))
7376 return 1;
7377 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7378 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7379 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7380 sizeof(u64), &e)) {
7381 kvm_inject_page_fault(vcpu, &e);
7382 return 1;
7383 }
7384 nested_vmx_succeed(vcpu);
7385 skip_emulated_instruction(vcpu);
7386 return 1;
7387 }
7388
7389 /* Emulate the INVEPT instruction */
7390 static int handle_invept(struct kvm_vcpu *vcpu)
7391 {
7392 struct vcpu_vmx *vmx = to_vmx(vcpu);
7393 u32 vmx_instruction_info, types;
7394 unsigned long type;
7395 gva_t gva;
7396 struct x86_exception e;
7397 struct {
7398 u64 eptp, gpa;
7399 } operand;
7400
7401 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7402 SECONDARY_EXEC_ENABLE_EPT) ||
7403 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7404 kvm_queue_exception(vcpu, UD_VECTOR);
7405 return 1;
7406 }
7407
7408 if (!nested_vmx_check_permission(vcpu))
7409 return 1;
7410
7411 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7412 kvm_queue_exception(vcpu, UD_VECTOR);
7413 return 1;
7414 }
7415
7416 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7417 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7418
7419 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7420
7421 if (!(types & (1UL << type))) {
7422 nested_vmx_failValid(vcpu,
7423 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7424 skip_emulated_instruction(vcpu);
7425 return 1;
7426 }
7427
7428 /* According to the Intel VMX instruction reference, the memory
7429 * operand is read even if it isn't needed (e.g., for type==global)
7430 */
7431 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7432 vmx_instruction_info, false, &gva))
7433 return 1;
7434 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7435 sizeof(operand), &e)) {
7436 kvm_inject_page_fault(vcpu, &e);
7437 return 1;
7438 }
7439
7440 switch (type) {
7441 case VMX_EPT_EXTENT_GLOBAL:
7442 kvm_mmu_sync_roots(vcpu);
7443 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7444 nested_vmx_succeed(vcpu);
7445 break;
7446 default:
7447 /* Trap single context invalidation invept calls */
7448 BUG_ON(1);
7449 break;
7450 }
7451
7452 skip_emulated_instruction(vcpu);
7453 return 1;
7454 }
7455
7456 static int handle_invvpid(struct kvm_vcpu *vcpu)
7457 {
7458 struct vcpu_vmx *vmx = to_vmx(vcpu);
7459 u32 vmx_instruction_info;
7460 unsigned long type, types;
7461 gva_t gva;
7462 struct x86_exception e;
7463 int vpid;
7464
7465 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7466 SECONDARY_EXEC_ENABLE_VPID) ||
7467 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7468 kvm_queue_exception(vcpu, UD_VECTOR);
7469 return 1;
7470 }
7471
7472 if (!nested_vmx_check_permission(vcpu))
7473 return 1;
7474
7475 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7476 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7477
7478 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7479
7480 if (!(types & (1UL << type))) {
7481 nested_vmx_failValid(vcpu,
7482 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7483 skip_emulated_instruction(vcpu);
7484 return 1;
7485 }
7486
7487 /* according to the intel vmx instruction reference, the memory
7488 * operand is read even if it isn't needed (e.g., for type==global)
7489 */
7490 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7491 vmx_instruction_info, false, &gva))
7492 return 1;
7493 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7494 sizeof(u32), &e)) {
7495 kvm_inject_page_fault(vcpu, &e);
7496 return 1;
7497 }
7498
7499 switch (type) {
7500 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7501 /*
7502 * Old versions of KVM use the single-context version so we
7503 * have to support it; just treat it the same as all-context.
7504 */
7505 case VMX_VPID_EXTENT_ALL_CONTEXT:
7506 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7507 nested_vmx_succeed(vcpu);
7508 break;
7509 default:
7510 /* Trap individual address invalidation invvpid calls */
7511 BUG_ON(1);
7512 break;
7513 }
7514
7515 skip_emulated_instruction(vcpu);
7516 return 1;
7517 }
7518
7519 static int handle_pml_full(struct kvm_vcpu *vcpu)
7520 {
7521 unsigned long exit_qualification;
7522
7523 trace_kvm_pml_full(vcpu->vcpu_id);
7524
7525 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7526
7527 /*
7528 * PML buffer FULL happened while executing iret from NMI,
7529 * "blocked by NMI" bit has to be set before next VM entry.
7530 */
7531 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7532 cpu_has_virtual_nmis() &&
7533 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7534 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7535 GUEST_INTR_STATE_NMI);
7536
7537 /*
7538 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7539 * here.., and there's no userspace involvement needed for PML.
7540 */
7541 return 1;
7542 }
7543
7544 static int handle_pcommit(struct kvm_vcpu *vcpu)
7545 {
7546 /* we never catch pcommit instruct for L1 guest. */
7547 WARN_ON(1);
7548 return 1;
7549 }
7550
7551 /*
7552 * The exit handlers return 1 if the exit was handled fully and guest execution
7553 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7554 * to be done to userspace and return 0.
7555 */
7556 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7557 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7558 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7559 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7560 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7561 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7562 [EXIT_REASON_CR_ACCESS] = handle_cr,
7563 [EXIT_REASON_DR_ACCESS] = handle_dr,
7564 [EXIT_REASON_CPUID] = handle_cpuid,
7565 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7566 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7567 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7568 [EXIT_REASON_HLT] = handle_halt,
7569 [EXIT_REASON_INVD] = handle_invd,
7570 [EXIT_REASON_INVLPG] = handle_invlpg,
7571 [EXIT_REASON_RDPMC] = handle_rdpmc,
7572 [EXIT_REASON_VMCALL] = handle_vmcall,
7573 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7574 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7575 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7576 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7577 [EXIT_REASON_VMREAD] = handle_vmread,
7578 [EXIT_REASON_VMRESUME] = handle_vmresume,
7579 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7580 [EXIT_REASON_VMOFF] = handle_vmoff,
7581 [EXIT_REASON_VMON] = handle_vmon,
7582 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7583 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7584 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7585 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7586 [EXIT_REASON_WBINVD] = handle_wbinvd,
7587 [EXIT_REASON_XSETBV] = handle_xsetbv,
7588 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7589 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7590 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7591 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7592 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7593 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7594 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7595 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7596 [EXIT_REASON_INVEPT] = handle_invept,
7597 [EXIT_REASON_INVVPID] = handle_invvpid,
7598 [EXIT_REASON_XSAVES] = handle_xsaves,
7599 [EXIT_REASON_XRSTORS] = handle_xrstors,
7600 [EXIT_REASON_PML_FULL] = handle_pml_full,
7601 [EXIT_REASON_PCOMMIT] = handle_pcommit,
7602 };
7603
7604 static const int kvm_vmx_max_exit_handlers =
7605 ARRAY_SIZE(kvm_vmx_exit_handlers);
7606
7607 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7608 struct vmcs12 *vmcs12)
7609 {
7610 unsigned long exit_qualification;
7611 gpa_t bitmap, last_bitmap;
7612 unsigned int port;
7613 int size;
7614 u8 b;
7615
7616 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7617 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7618
7619 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7620
7621 port = exit_qualification >> 16;
7622 size = (exit_qualification & 7) + 1;
7623
7624 last_bitmap = (gpa_t)-1;
7625 b = -1;
7626
7627 while (size > 0) {
7628 if (port < 0x8000)
7629 bitmap = vmcs12->io_bitmap_a;
7630 else if (port < 0x10000)
7631 bitmap = vmcs12->io_bitmap_b;
7632 else
7633 return true;
7634 bitmap += (port & 0x7fff) / 8;
7635
7636 if (last_bitmap != bitmap)
7637 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7638 return true;
7639 if (b & (1 << (port & 7)))
7640 return true;
7641
7642 port++;
7643 size--;
7644 last_bitmap = bitmap;
7645 }
7646
7647 return false;
7648 }
7649
7650 /*
7651 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7652 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7653 * disinterest in the current event (read or write a specific MSR) by using an
7654 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7655 */
7656 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7657 struct vmcs12 *vmcs12, u32 exit_reason)
7658 {
7659 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7660 gpa_t bitmap;
7661
7662 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7663 return true;
7664
7665 /*
7666 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7667 * for the four combinations of read/write and low/high MSR numbers.
7668 * First we need to figure out which of the four to use:
7669 */
7670 bitmap = vmcs12->msr_bitmap;
7671 if (exit_reason == EXIT_REASON_MSR_WRITE)
7672 bitmap += 2048;
7673 if (msr_index >= 0xc0000000) {
7674 msr_index -= 0xc0000000;
7675 bitmap += 1024;
7676 }
7677
7678 /* Then read the msr_index'th bit from this bitmap: */
7679 if (msr_index < 1024*8) {
7680 unsigned char b;
7681 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7682 return true;
7683 return 1 & (b >> (msr_index & 7));
7684 } else
7685 return true; /* let L1 handle the wrong parameter */
7686 }
7687
7688 /*
7689 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7690 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7691 * intercept (via guest_host_mask etc.) the current event.
7692 */
7693 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7694 struct vmcs12 *vmcs12)
7695 {
7696 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7697 int cr = exit_qualification & 15;
7698 int reg = (exit_qualification >> 8) & 15;
7699 unsigned long val = kvm_register_readl(vcpu, reg);
7700
7701 switch ((exit_qualification >> 4) & 3) {
7702 case 0: /* mov to cr */
7703 switch (cr) {
7704 case 0:
7705 if (vmcs12->cr0_guest_host_mask &
7706 (val ^ vmcs12->cr0_read_shadow))
7707 return true;
7708 break;
7709 case 3:
7710 if ((vmcs12->cr3_target_count >= 1 &&
7711 vmcs12->cr3_target_value0 == val) ||
7712 (vmcs12->cr3_target_count >= 2 &&
7713 vmcs12->cr3_target_value1 == val) ||
7714 (vmcs12->cr3_target_count >= 3 &&
7715 vmcs12->cr3_target_value2 == val) ||
7716 (vmcs12->cr3_target_count >= 4 &&
7717 vmcs12->cr3_target_value3 == val))
7718 return false;
7719 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7720 return true;
7721 break;
7722 case 4:
7723 if (vmcs12->cr4_guest_host_mask &
7724 (vmcs12->cr4_read_shadow ^ val))
7725 return true;
7726 break;
7727 case 8:
7728 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7729 return true;
7730 break;
7731 }
7732 break;
7733 case 2: /* clts */
7734 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7735 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7736 return true;
7737 break;
7738 case 1: /* mov from cr */
7739 switch (cr) {
7740 case 3:
7741 if (vmcs12->cpu_based_vm_exec_control &
7742 CPU_BASED_CR3_STORE_EXITING)
7743 return true;
7744 break;
7745 case 8:
7746 if (vmcs12->cpu_based_vm_exec_control &
7747 CPU_BASED_CR8_STORE_EXITING)
7748 return true;
7749 break;
7750 }
7751 break;
7752 case 3: /* lmsw */
7753 /*
7754 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7755 * cr0. Other attempted changes are ignored, with no exit.
7756 */
7757 if (vmcs12->cr0_guest_host_mask & 0xe &
7758 (val ^ vmcs12->cr0_read_shadow))
7759 return true;
7760 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7761 !(vmcs12->cr0_read_shadow & 0x1) &&
7762 (val & 0x1))
7763 return true;
7764 break;
7765 }
7766 return false;
7767 }
7768
7769 /*
7770 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7771 * should handle it ourselves in L0 (and then continue L2). Only call this
7772 * when in is_guest_mode (L2).
7773 */
7774 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7775 {
7776 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7777 struct vcpu_vmx *vmx = to_vmx(vcpu);
7778 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7779 u32 exit_reason = vmx->exit_reason;
7780
7781 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7782 vmcs_readl(EXIT_QUALIFICATION),
7783 vmx->idt_vectoring_info,
7784 intr_info,
7785 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7786 KVM_ISA_VMX);
7787
7788 if (vmx->nested.nested_run_pending)
7789 return false;
7790
7791 if (unlikely(vmx->fail)) {
7792 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7793 vmcs_read32(VM_INSTRUCTION_ERROR));
7794 return true;
7795 }
7796
7797 switch (exit_reason) {
7798 case EXIT_REASON_EXCEPTION_NMI:
7799 if (!is_exception(intr_info))
7800 return false;
7801 else if (is_page_fault(intr_info))
7802 return enable_ept;
7803 else if (is_no_device(intr_info) &&
7804 !(vmcs12->guest_cr0 & X86_CR0_TS))
7805 return false;
7806 else if (is_debug(intr_info) &&
7807 vcpu->guest_debug &
7808 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7809 return false;
7810 else if (is_breakpoint(intr_info) &&
7811 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7812 return false;
7813 return vmcs12->exception_bitmap &
7814 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7815 case EXIT_REASON_EXTERNAL_INTERRUPT:
7816 return false;
7817 case EXIT_REASON_TRIPLE_FAULT:
7818 return true;
7819 case EXIT_REASON_PENDING_INTERRUPT:
7820 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7821 case EXIT_REASON_NMI_WINDOW:
7822 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7823 case EXIT_REASON_TASK_SWITCH:
7824 return true;
7825 case EXIT_REASON_CPUID:
7826 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7827 return false;
7828 return true;
7829 case EXIT_REASON_HLT:
7830 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7831 case EXIT_REASON_INVD:
7832 return true;
7833 case EXIT_REASON_INVLPG:
7834 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7835 case EXIT_REASON_RDPMC:
7836 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7837 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7838 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7839 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7840 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7841 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7842 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7843 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7844 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7845 /*
7846 * VMX instructions trap unconditionally. This allows L1 to
7847 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7848 */
7849 return true;
7850 case EXIT_REASON_CR_ACCESS:
7851 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7852 case EXIT_REASON_DR_ACCESS:
7853 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7854 case EXIT_REASON_IO_INSTRUCTION:
7855 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7856 case EXIT_REASON_MSR_READ:
7857 case EXIT_REASON_MSR_WRITE:
7858 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7859 case EXIT_REASON_INVALID_STATE:
7860 return true;
7861 case EXIT_REASON_MWAIT_INSTRUCTION:
7862 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7863 case EXIT_REASON_MONITOR_TRAP_FLAG:
7864 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7865 case EXIT_REASON_MONITOR_INSTRUCTION:
7866 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7867 case EXIT_REASON_PAUSE_INSTRUCTION:
7868 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7869 nested_cpu_has2(vmcs12,
7870 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7871 case EXIT_REASON_MCE_DURING_VMENTRY:
7872 return false;
7873 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7874 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7875 case EXIT_REASON_APIC_ACCESS:
7876 return nested_cpu_has2(vmcs12,
7877 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7878 case EXIT_REASON_APIC_WRITE:
7879 case EXIT_REASON_EOI_INDUCED:
7880 /* apic_write and eoi_induced should exit unconditionally. */
7881 return true;
7882 case EXIT_REASON_EPT_VIOLATION:
7883 /*
7884 * L0 always deals with the EPT violation. If nested EPT is
7885 * used, and the nested mmu code discovers that the address is
7886 * missing in the guest EPT table (EPT12), the EPT violation
7887 * will be injected with nested_ept_inject_page_fault()
7888 */
7889 return false;
7890 case EXIT_REASON_EPT_MISCONFIG:
7891 /*
7892 * L2 never uses directly L1's EPT, but rather L0's own EPT
7893 * table (shadow on EPT) or a merged EPT table that L0 built
7894 * (EPT on EPT). So any problems with the structure of the
7895 * table is L0's fault.
7896 */
7897 return false;
7898 case EXIT_REASON_WBINVD:
7899 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7900 case EXIT_REASON_XSETBV:
7901 return true;
7902 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7903 /*
7904 * This should never happen, since it is not possible to
7905 * set XSS to a non-zero value---neither in L1 nor in L2.
7906 * If if it were, XSS would have to be checked against
7907 * the XSS exit bitmap in vmcs12.
7908 */
7909 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7910 case EXIT_REASON_PCOMMIT:
7911 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7912 default:
7913 return true;
7914 }
7915 }
7916
7917 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7918 {
7919 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7920 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7921 }
7922
7923 static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
7924 {
7925 struct page *pml_pg;
7926
7927 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7928 if (!pml_pg)
7929 return -ENOMEM;
7930
7931 vmx->pml_pg = pml_pg;
7932
7933 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7934 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7935
7936 return 0;
7937 }
7938
7939 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7940 {
7941 if (vmx->pml_pg) {
7942 __free_page(vmx->pml_pg);
7943 vmx->pml_pg = NULL;
7944 }
7945 }
7946
7947 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7948 {
7949 struct vcpu_vmx *vmx = to_vmx(vcpu);
7950 u64 *pml_buf;
7951 u16 pml_idx;
7952
7953 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7954
7955 /* Do nothing if PML buffer is empty */
7956 if (pml_idx == (PML_ENTITY_NUM - 1))
7957 return;
7958
7959 /* PML index always points to next available PML buffer entity */
7960 if (pml_idx >= PML_ENTITY_NUM)
7961 pml_idx = 0;
7962 else
7963 pml_idx++;
7964
7965 pml_buf = page_address(vmx->pml_pg);
7966 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7967 u64 gpa;
7968
7969 gpa = pml_buf[pml_idx];
7970 WARN_ON(gpa & (PAGE_SIZE - 1));
7971 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7972 }
7973
7974 /* reset PML index */
7975 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7976 }
7977
7978 /*
7979 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7980 * Called before reporting dirty_bitmap to userspace.
7981 */
7982 static void kvm_flush_pml_buffers(struct kvm *kvm)
7983 {
7984 int i;
7985 struct kvm_vcpu *vcpu;
7986 /*
7987 * We only need to kick vcpu out of guest mode here, as PML buffer
7988 * is flushed at beginning of all VMEXITs, and it's obvious that only
7989 * vcpus running in guest are possible to have unflushed GPAs in PML
7990 * buffer.
7991 */
7992 kvm_for_each_vcpu(i, vcpu, kvm)
7993 kvm_vcpu_kick(vcpu);
7994 }
7995
7996 static void vmx_dump_sel(char *name, uint32_t sel)
7997 {
7998 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7999 name, vmcs_read32(sel),
8000 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8001 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8002 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8003 }
8004
8005 static void vmx_dump_dtsel(char *name, uint32_t limit)
8006 {
8007 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8008 name, vmcs_read32(limit),
8009 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8010 }
8011
8012 static void dump_vmcs(void)
8013 {
8014 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8015 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8016 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8017 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8018 u32 secondary_exec_control = 0;
8019 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8020 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8021 int i, n;
8022
8023 if (cpu_has_secondary_exec_ctrls())
8024 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8025
8026 pr_err("*** Guest State ***\n");
8027 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8028 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8029 vmcs_readl(CR0_GUEST_HOST_MASK));
8030 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8031 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8032 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8033 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8034 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8035 {
8036 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8037 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8038 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8039 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8040 }
8041 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8042 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8043 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8044 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8045 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8046 vmcs_readl(GUEST_SYSENTER_ESP),
8047 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8048 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8049 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8050 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8051 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8052 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8053 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8054 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8055 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8056 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8057 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8058 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8059 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8060 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8061 efer, vmcs_read64(GUEST_IA32_PAT));
8062 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8063 vmcs_read64(GUEST_IA32_DEBUGCTL),
8064 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8065 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8066 pr_err("PerfGlobCtl = 0x%016llx\n",
8067 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8068 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8069 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8070 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8071 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8072 vmcs_read32(GUEST_ACTIVITY_STATE));
8073 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8074 pr_err("InterruptStatus = %04x\n",
8075 vmcs_read16(GUEST_INTR_STATUS));
8076
8077 pr_err("*** Host State ***\n");
8078 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8079 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8080 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8081 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8082 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8083 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8084 vmcs_read16(HOST_TR_SELECTOR));
8085 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8086 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8087 vmcs_readl(HOST_TR_BASE));
8088 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8089 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8090 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8091 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8092 vmcs_readl(HOST_CR4));
8093 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8094 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8095 vmcs_read32(HOST_IA32_SYSENTER_CS),
8096 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8097 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8098 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8099 vmcs_read64(HOST_IA32_EFER),
8100 vmcs_read64(HOST_IA32_PAT));
8101 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8102 pr_err("PerfGlobCtl = 0x%016llx\n",
8103 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8104
8105 pr_err("*** Control State ***\n");
8106 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8107 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8108 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8109 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8110 vmcs_read32(EXCEPTION_BITMAP),
8111 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8112 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8113 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8114 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8115 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8116 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8117 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8118 vmcs_read32(VM_EXIT_INTR_INFO),
8119 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8120 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8121 pr_err(" reason=%08x qualification=%016lx\n",
8122 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8123 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8124 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8125 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8126 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8127 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8128 pr_err("TSC Multiplier = 0x%016llx\n",
8129 vmcs_read64(TSC_MULTIPLIER));
8130 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8131 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8132 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8133 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8134 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8135 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8136 n = vmcs_read32(CR3_TARGET_COUNT);
8137 for (i = 0; i + 1 < n; i += 4)
8138 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8139 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8140 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8141 if (i < n)
8142 pr_err("CR3 target%u=%016lx\n",
8143 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8144 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8145 pr_err("PLE Gap=%08x Window=%08x\n",
8146 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8147 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8148 pr_err("Virtual processor ID = 0x%04x\n",
8149 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8150 }
8151
8152 /*
8153 * The guest has exited. See if we can fix it or if we need userspace
8154 * assistance.
8155 */
8156 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8157 {
8158 struct vcpu_vmx *vmx = to_vmx(vcpu);
8159 u32 exit_reason = vmx->exit_reason;
8160 u32 vectoring_info = vmx->idt_vectoring_info;
8161
8162 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8163
8164 /*
8165 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8166 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8167 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8168 * mode as if vcpus is in root mode, the PML buffer must has been
8169 * flushed already.
8170 */
8171 if (enable_pml)
8172 vmx_flush_pml_buffer(vcpu);
8173
8174 /* If guest state is invalid, start emulating */
8175 if (vmx->emulation_required)
8176 return handle_invalid_guest_state(vcpu);
8177
8178 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8179 nested_vmx_vmexit(vcpu, exit_reason,
8180 vmcs_read32(VM_EXIT_INTR_INFO),
8181 vmcs_readl(EXIT_QUALIFICATION));
8182 return 1;
8183 }
8184
8185 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8186 dump_vmcs();
8187 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8188 vcpu->run->fail_entry.hardware_entry_failure_reason
8189 = exit_reason;
8190 return 0;
8191 }
8192
8193 if (unlikely(vmx->fail)) {
8194 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8195 vcpu->run->fail_entry.hardware_entry_failure_reason
8196 = vmcs_read32(VM_INSTRUCTION_ERROR);
8197 return 0;
8198 }
8199
8200 /*
8201 * Note:
8202 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8203 * delivery event since it indicates guest is accessing MMIO.
8204 * The vm-exit can be triggered again after return to guest that
8205 * will cause infinite loop.
8206 */
8207 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8208 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8209 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8210 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8211 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8212 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8213 vcpu->run->internal.ndata = 2;
8214 vcpu->run->internal.data[0] = vectoring_info;
8215 vcpu->run->internal.data[1] = exit_reason;
8216 return 0;
8217 }
8218
8219 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8220 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8221 get_vmcs12(vcpu))))) {
8222 if (vmx_interrupt_allowed(vcpu)) {
8223 vmx->soft_vnmi_blocked = 0;
8224 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8225 vcpu->arch.nmi_pending) {
8226 /*
8227 * This CPU don't support us in finding the end of an
8228 * NMI-blocked window if the guest runs with IRQs
8229 * disabled. So we pull the trigger after 1 s of
8230 * futile waiting, but inform the user about this.
8231 */
8232 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8233 "state on VCPU %d after 1 s timeout\n",
8234 __func__, vcpu->vcpu_id);
8235 vmx->soft_vnmi_blocked = 0;
8236 }
8237 }
8238
8239 if (exit_reason < kvm_vmx_max_exit_handlers
8240 && kvm_vmx_exit_handlers[exit_reason])
8241 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8242 else {
8243 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8244 kvm_queue_exception(vcpu, UD_VECTOR);
8245 return 1;
8246 }
8247 }
8248
8249 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8250 {
8251 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8252
8253 if (is_guest_mode(vcpu) &&
8254 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8255 return;
8256
8257 if (irr == -1 || tpr < irr) {
8258 vmcs_write32(TPR_THRESHOLD, 0);
8259 return;
8260 }
8261
8262 vmcs_write32(TPR_THRESHOLD, irr);
8263 }
8264
8265 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8266 {
8267 u32 sec_exec_control;
8268
8269 /*
8270 * There is not point to enable virtualize x2apic without enable
8271 * apicv
8272 */
8273 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8274 !kvm_vcpu_apicv_active(vcpu))
8275 return;
8276
8277 if (!cpu_need_tpr_shadow(vcpu))
8278 return;
8279
8280 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8281
8282 if (set) {
8283 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8284 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8285 } else {
8286 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8287 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8288 }
8289 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8290
8291 vmx_set_msr_bitmap(vcpu);
8292 }
8293
8294 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8295 {
8296 struct vcpu_vmx *vmx = to_vmx(vcpu);
8297
8298 /*
8299 * Currently we do not handle the nested case where L2 has an
8300 * APIC access page of its own; that page is still pinned.
8301 * Hence, we skip the case where the VCPU is in guest mode _and_
8302 * L1 prepared an APIC access page for L2.
8303 *
8304 * For the case where L1 and L2 share the same APIC access page
8305 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8306 * in the vmcs12), this function will only update either the vmcs01
8307 * or the vmcs02. If the former, the vmcs02 will be updated by
8308 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8309 * the next L2->L1 exit.
8310 */
8311 if (!is_guest_mode(vcpu) ||
8312 !nested_cpu_has2(vmx->nested.current_vmcs12,
8313 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8314 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8315 }
8316
8317 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8318 {
8319 u16 status;
8320 u8 old;
8321
8322 if (isr == -1)
8323 isr = 0;
8324
8325 status = vmcs_read16(GUEST_INTR_STATUS);
8326 old = status >> 8;
8327 if (isr != old) {
8328 status &= 0xff;
8329 status |= isr << 8;
8330 vmcs_write16(GUEST_INTR_STATUS, status);
8331 }
8332 }
8333
8334 static void vmx_set_rvi(int vector)
8335 {
8336 u16 status;
8337 u8 old;
8338
8339 if (vector == -1)
8340 vector = 0;
8341
8342 status = vmcs_read16(GUEST_INTR_STATUS);
8343 old = (u8)status & 0xff;
8344 if ((u8)vector != old) {
8345 status &= ~0xff;
8346 status |= (u8)vector;
8347 vmcs_write16(GUEST_INTR_STATUS, status);
8348 }
8349 }
8350
8351 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8352 {
8353 if (!is_guest_mode(vcpu)) {
8354 vmx_set_rvi(max_irr);
8355 return;
8356 }
8357
8358 if (max_irr == -1)
8359 return;
8360
8361 /*
8362 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8363 * handles it.
8364 */
8365 if (nested_exit_on_intr(vcpu))
8366 return;
8367
8368 /*
8369 * Else, fall back to pre-APICv interrupt injection since L2
8370 * is run without virtual interrupt delivery.
8371 */
8372 if (!kvm_event_needs_reinjection(vcpu) &&
8373 vmx_interrupt_allowed(vcpu)) {
8374 kvm_queue_interrupt(vcpu, max_irr, false);
8375 vmx_inject_irq(vcpu);
8376 }
8377 }
8378
8379 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8380 {
8381 if (!kvm_vcpu_apicv_active(vcpu))
8382 return;
8383
8384 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8385 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8386 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8387 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8388 }
8389
8390 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8391 {
8392 u32 exit_intr_info;
8393
8394 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8395 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8396 return;
8397
8398 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8399 exit_intr_info = vmx->exit_intr_info;
8400
8401 /* Handle machine checks before interrupts are enabled */
8402 if (is_machine_check(exit_intr_info))
8403 kvm_machine_check();
8404
8405 /* We need to handle NMIs before interrupts are enabled */
8406 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8407 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8408 kvm_before_handle_nmi(&vmx->vcpu);
8409 asm("int $2");
8410 kvm_after_handle_nmi(&vmx->vcpu);
8411 }
8412 }
8413
8414 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8415 {
8416 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8417 register void *__sp asm(_ASM_SP);
8418
8419 /*
8420 * If external interrupt exists, IF bit is set in rflags/eflags on the
8421 * interrupt stack frame, and interrupt will be enabled on a return
8422 * from interrupt handler.
8423 */
8424 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8425 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8426 unsigned int vector;
8427 unsigned long entry;
8428 gate_desc *desc;
8429 struct vcpu_vmx *vmx = to_vmx(vcpu);
8430 #ifdef CONFIG_X86_64
8431 unsigned long tmp;
8432 #endif
8433
8434 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8435 desc = (gate_desc *)vmx->host_idt_base + vector;
8436 entry = gate_offset(*desc);
8437 asm volatile(
8438 #ifdef CONFIG_X86_64
8439 "mov %%" _ASM_SP ", %[sp]\n\t"
8440 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8441 "push $%c[ss]\n\t"
8442 "push %[sp]\n\t"
8443 #endif
8444 "pushf\n\t"
8445 "orl $0x200, (%%" _ASM_SP ")\n\t"
8446 __ASM_SIZE(push) " $%c[cs]\n\t"
8447 "call *%[entry]\n\t"
8448 :
8449 #ifdef CONFIG_X86_64
8450 [sp]"=&r"(tmp),
8451 #endif
8452 "+r"(__sp)
8453 :
8454 [entry]"r"(entry),
8455 [ss]"i"(__KERNEL_DS),
8456 [cs]"i"(__KERNEL_CS)
8457 );
8458 } else
8459 local_irq_enable();
8460 }
8461
8462 static bool vmx_has_high_real_mode_segbase(void)
8463 {
8464 return enable_unrestricted_guest || emulate_invalid_guest_state;
8465 }
8466
8467 static bool vmx_mpx_supported(void)
8468 {
8469 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8470 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8471 }
8472
8473 static bool vmx_xsaves_supported(void)
8474 {
8475 return vmcs_config.cpu_based_2nd_exec_ctrl &
8476 SECONDARY_EXEC_XSAVES;
8477 }
8478
8479 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8480 {
8481 u32 exit_intr_info;
8482 bool unblock_nmi;
8483 u8 vector;
8484 bool idtv_info_valid;
8485
8486 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8487
8488 if (cpu_has_virtual_nmis()) {
8489 if (vmx->nmi_known_unmasked)
8490 return;
8491 /*
8492 * Can't use vmx->exit_intr_info since we're not sure what
8493 * the exit reason is.
8494 */
8495 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8496 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8497 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8498 /*
8499 * SDM 3: 27.7.1.2 (September 2008)
8500 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8501 * a guest IRET fault.
8502 * SDM 3: 23.2.2 (September 2008)
8503 * Bit 12 is undefined in any of the following cases:
8504 * If the VM exit sets the valid bit in the IDT-vectoring
8505 * information field.
8506 * If the VM exit is due to a double fault.
8507 */
8508 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8509 vector != DF_VECTOR && !idtv_info_valid)
8510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8511 GUEST_INTR_STATE_NMI);
8512 else
8513 vmx->nmi_known_unmasked =
8514 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8515 & GUEST_INTR_STATE_NMI);
8516 } else if (unlikely(vmx->soft_vnmi_blocked))
8517 vmx->vnmi_blocked_time +=
8518 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8519 }
8520
8521 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8522 u32 idt_vectoring_info,
8523 int instr_len_field,
8524 int error_code_field)
8525 {
8526 u8 vector;
8527 int type;
8528 bool idtv_info_valid;
8529
8530 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8531
8532 vcpu->arch.nmi_injected = false;
8533 kvm_clear_exception_queue(vcpu);
8534 kvm_clear_interrupt_queue(vcpu);
8535
8536 if (!idtv_info_valid)
8537 return;
8538
8539 kvm_make_request(KVM_REQ_EVENT, vcpu);
8540
8541 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8542 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8543
8544 switch (type) {
8545 case INTR_TYPE_NMI_INTR:
8546 vcpu->arch.nmi_injected = true;
8547 /*
8548 * SDM 3: 27.7.1.2 (September 2008)
8549 * Clear bit "block by NMI" before VM entry if a NMI
8550 * delivery faulted.
8551 */
8552 vmx_set_nmi_mask(vcpu, false);
8553 break;
8554 case INTR_TYPE_SOFT_EXCEPTION:
8555 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8556 /* fall through */
8557 case INTR_TYPE_HARD_EXCEPTION:
8558 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8559 u32 err = vmcs_read32(error_code_field);
8560 kvm_requeue_exception_e(vcpu, vector, err);
8561 } else
8562 kvm_requeue_exception(vcpu, vector);
8563 break;
8564 case INTR_TYPE_SOFT_INTR:
8565 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8566 /* fall through */
8567 case INTR_TYPE_EXT_INTR:
8568 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8569 break;
8570 default:
8571 break;
8572 }
8573 }
8574
8575 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8576 {
8577 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8578 VM_EXIT_INSTRUCTION_LEN,
8579 IDT_VECTORING_ERROR_CODE);
8580 }
8581
8582 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8583 {
8584 __vmx_complete_interrupts(vcpu,
8585 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8586 VM_ENTRY_INSTRUCTION_LEN,
8587 VM_ENTRY_EXCEPTION_ERROR_CODE);
8588
8589 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8590 }
8591
8592 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8593 {
8594 int i, nr_msrs;
8595 struct perf_guest_switch_msr *msrs;
8596
8597 msrs = perf_guest_get_msrs(&nr_msrs);
8598
8599 if (!msrs)
8600 return;
8601
8602 for (i = 0; i < nr_msrs; i++)
8603 if (msrs[i].host == msrs[i].guest)
8604 clear_atomic_switch_msr(vmx, msrs[i].msr);
8605 else
8606 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8607 msrs[i].host);
8608 }
8609
8610 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8611 {
8612 struct vcpu_vmx *vmx = to_vmx(vcpu);
8613 unsigned long debugctlmsr, cr4;
8614
8615 /* Record the guest's net vcpu time for enforced NMI injections. */
8616 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8617 vmx->entry_time = ktime_get();
8618
8619 /* Don't enter VMX if guest state is invalid, let the exit handler
8620 start emulation until we arrive back to a valid state */
8621 if (vmx->emulation_required)
8622 return;
8623
8624 if (vmx->ple_window_dirty) {
8625 vmx->ple_window_dirty = false;
8626 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8627 }
8628
8629 if (vmx->nested.sync_shadow_vmcs) {
8630 copy_vmcs12_to_shadow(vmx);
8631 vmx->nested.sync_shadow_vmcs = false;
8632 }
8633
8634 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8635 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8636 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8637 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8638
8639 cr4 = cr4_read_shadow();
8640 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8641 vmcs_writel(HOST_CR4, cr4);
8642 vmx->host_state.vmcs_host_cr4 = cr4;
8643 }
8644
8645 /* When single-stepping over STI and MOV SS, we must clear the
8646 * corresponding interruptibility bits in the guest state. Otherwise
8647 * vmentry fails as it then expects bit 14 (BS) in pending debug
8648 * exceptions being set, but that's not correct for the guest debugging
8649 * case. */
8650 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8651 vmx_set_interrupt_shadow(vcpu, 0);
8652
8653 if (vmx->guest_pkru_valid)
8654 __write_pkru(vmx->guest_pkru);
8655
8656 atomic_switch_perf_msrs(vmx);
8657 debugctlmsr = get_debugctlmsr();
8658
8659 vmx->__launched = vmx->loaded_vmcs->launched;
8660 asm(
8661 /* Store host registers */
8662 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8663 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8664 "push %%" _ASM_CX " \n\t"
8665 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8666 "je 1f \n\t"
8667 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8668 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8669 "1: \n\t"
8670 /* Reload cr2 if changed */
8671 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8672 "mov %%cr2, %%" _ASM_DX " \n\t"
8673 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8674 "je 2f \n\t"
8675 "mov %%" _ASM_AX", %%cr2 \n\t"
8676 "2: \n\t"
8677 /* Check if vmlaunch of vmresume is needed */
8678 "cmpl $0, %c[launched](%0) \n\t"
8679 /* Load guest registers. Don't clobber flags. */
8680 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8681 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8682 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8683 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8684 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8685 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8686 #ifdef CONFIG_X86_64
8687 "mov %c[r8](%0), %%r8 \n\t"
8688 "mov %c[r9](%0), %%r9 \n\t"
8689 "mov %c[r10](%0), %%r10 \n\t"
8690 "mov %c[r11](%0), %%r11 \n\t"
8691 "mov %c[r12](%0), %%r12 \n\t"
8692 "mov %c[r13](%0), %%r13 \n\t"
8693 "mov %c[r14](%0), %%r14 \n\t"
8694 "mov %c[r15](%0), %%r15 \n\t"
8695 #endif
8696 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8697
8698 /* Enter guest mode */
8699 "jne 1f \n\t"
8700 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8701 "jmp 2f \n\t"
8702 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8703 "2: "
8704 /* Save guest registers, load host registers, keep flags */
8705 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8706 "pop %0 \n\t"
8707 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8708 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8709 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8710 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8711 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8712 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8713 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8714 #ifdef CONFIG_X86_64
8715 "mov %%r8, %c[r8](%0) \n\t"
8716 "mov %%r9, %c[r9](%0) \n\t"
8717 "mov %%r10, %c[r10](%0) \n\t"
8718 "mov %%r11, %c[r11](%0) \n\t"
8719 "mov %%r12, %c[r12](%0) \n\t"
8720 "mov %%r13, %c[r13](%0) \n\t"
8721 "mov %%r14, %c[r14](%0) \n\t"
8722 "mov %%r15, %c[r15](%0) \n\t"
8723 #endif
8724 "mov %%cr2, %%" _ASM_AX " \n\t"
8725 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8726
8727 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8728 "setbe %c[fail](%0) \n\t"
8729 ".pushsection .rodata \n\t"
8730 ".global vmx_return \n\t"
8731 "vmx_return: " _ASM_PTR " 2b \n\t"
8732 ".popsection"
8733 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8734 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8735 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8736 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8737 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8738 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8739 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8740 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8741 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8742 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8743 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8744 #ifdef CONFIG_X86_64
8745 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8746 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8747 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8748 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8749 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8750 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8751 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8752 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8753 #endif
8754 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8755 [wordsize]"i"(sizeof(ulong))
8756 : "cc", "memory"
8757 #ifdef CONFIG_X86_64
8758 , "rax", "rbx", "rdi", "rsi"
8759 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8760 #else
8761 , "eax", "ebx", "edi", "esi"
8762 #endif
8763 );
8764
8765 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8766 if (debugctlmsr)
8767 update_debugctlmsr(debugctlmsr);
8768
8769 #ifndef CONFIG_X86_64
8770 /*
8771 * The sysexit path does not restore ds/es, so we must set them to
8772 * a reasonable value ourselves.
8773 *
8774 * We can't defer this to vmx_load_host_state() since that function
8775 * may be executed in interrupt context, which saves and restore segments
8776 * around it, nullifying its effect.
8777 */
8778 loadsegment(ds, __USER_DS);
8779 loadsegment(es, __USER_DS);
8780 #endif
8781
8782 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8783 | (1 << VCPU_EXREG_RFLAGS)
8784 | (1 << VCPU_EXREG_PDPTR)
8785 | (1 << VCPU_EXREG_SEGMENTS)
8786 | (1 << VCPU_EXREG_CR3));
8787 vcpu->arch.regs_dirty = 0;
8788
8789 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8790
8791 vmx->loaded_vmcs->launched = 1;
8792
8793 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8794
8795 /*
8796 * eager fpu is enabled if PKEY is supported and CR4 is switched
8797 * back on host, so it is safe to read guest PKRU from current
8798 * XSAVE.
8799 */
8800 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
8801 vmx->guest_pkru = __read_pkru();
8802 if (vmx->guest_pkru != vmx->host_pkru) {
8803 vmx->guest_pkru_valid = true;
8804 __write_pkru(vmx->host_pkru);
8805 } else
8806 vmx->guest_pkru_valid = false;
8807 }
8808
8809 /*
8810 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8811 * we did not inject a still-pending event to L1 now because of
8812 * nested_run_pending, we need to re-enable this bit.
8813 */
8814 if (vmx->nested.nested_run_pending)
8815 kvm_make_request(KVM_REQ_EVENT, vcpu);
8816
8817 vmx->nested.nested_run_pending = 0;
8818
8819 vmx_complete_atomic_exit(vmx);
8820 vmx_recover_nmi_blocking(vmx);
8821 vmx_complete_interrupts(vmx);
8822 }
8823
8824 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8825 {
8826 struct vcpu_vmx *vmx = to_vmx(vcpu);
8827 int cpu;
8828
8829 if (vmx->loaded_vmcs == &vmx->vmcs01)
8830 return;
8831
8832 cpu = get_cpu();
8833 vmx->loaded_vmcs = &vmx->vmcs01;
8834 vmx_vcpu_put(vcpu);
8835 vmx_vcpu_load(vcpu, cpu);
8836 vcpu->cpu = cpu;
8837 put_cpu();
8838 }
8839
8840 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8841 {
8842 struct vcpu_vmx *vmx = to_vmx(vcpu);
8843
8844 if (enable_pml)
8845 vmx_destroy_pml_buffer(vmx);
8846 free_vpid(vmx->vpid);
8847 leave_guest_mode(vcpu);
8848 vmx_load_vmcs01(vcpu);
8849 free_nested(vmx);
8850 free_loaded_vmcs(vmx->loaded_vmcs);
8851 kfree(vmx->guest_msrs);
8852 kvm_vcpu_uninit(vcpu);
8853 kmem_cache_free(kvm_vcpu_cache, vmx);
8854 }
8855
8856 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8857 {
8858 int err;
8859 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8860 int cpu;
8861
8862 if (!vmx)
8863 return ERR_PTR(-ENOMEM);
8864
8865 vmx->vpid = allocate_vpid();
8866
8867 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8868 if (err)
8869 goto free_vcpu;
8870
8871 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8872 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8873 > PAGE_SIZE);
8874
8875 err = -ENOMEM;
8876 if (!vmx->guest_msrs) {
8877 goto uninit_vcpu;
8878 }
8879
8880 vmx->loaded_vmcs = &vmx->vmcs01;
8881 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8882 if (!vmx->loaded_vmcs->vmcs)
8883 goto free_msrs;
8884 if (!vmm_exclusive)
8885 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8886 loaded_vmcs_init(vmx->loaded_vmcs);
8887 if (!vmm_exclusive)
8888 kvm_cpu_vmxoff();
8889
8890 cpu = get_cpu();
8891 vmx_vcpu_load(&vmx->vcpu, cpu);
8892 vmx->vcpu.cpu = cpu;
8893 err = vmx_vcpu_setup(vmx);
8894 vmx_vcpu_put(&vmx->vcpu);
8895 put_cpu();
8896 if (err)
8897 goto free_vmcs;
8898 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8899 err = alloc_apic_access_page(kvm);
8900 if (err)
8901 goto free_vmcs;
8902 }
8903
8904 if (enable_ept) {
8905 if (!kvm->arch.ept_identity_map_addr)
8906 kvm->arch.ept_identity_map_addr =
8907 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8908 err = init_rmode_identity_map(kvm);
8909 if (err)
8910 goto free_vmcs;
8911 }
8912
8913 if (nested) {
8914 nested_vmx_setup_ctls_msrs(vmx);
8915 vmx->nested.vpid02 = allocate_vpid();
8916 }
8917
8918 vmx->nested.posted_intr_nv = -1;
8919 vmx->nested.current_vmptr = -1ull;
8920 vmx->nested.current_vmcs12 = NULL;
8921
8922 /*
8923 * If PML is turned on, failure on enabling PML just results in failure
8924 * of creating the vcpu, therefore we can simplify PML logic (by
8925 * avoiding dealing with cases, such as enabling PML partially on vcpus
8926 * for the guest, etc.
8927 */
8928 if (enable_pml) {
8929 err = vmx_create_pml_buffer(vmx);
8930 if (err)
8931 goto free_vmcs;
8932 }
8933
8934 return &vmx->vcpu;
8935
8936 free_vmcs:
8937 free_vpid(vmx->nested.vpid02);
8938 free_loaded_vmcs(vmx->loaded_vmcs);
8939 free_msrs:
8940 kfree(vmx->guest_msrs);
8941 uninit_vcpu:
8942 kvm_vcpu_uninit(&vmx->vcpu);
8943 free_vcpu:
8944 free_vpid(vmx->vpid);
8945 kmem_cache_free(kvm_vcpu_cache, vmx);
8946 return ERR_PTR(err);
8947 }
8948
8949 static void __init vmx_check_processor_compat(void *rtn)
8950 {
8951 struct vmcs_config vmcs_conf;
8952
8953 *(int *)rtn = 0;
8954 if (setup_vmcs_config(&vmcs_conf) < 0)
8955 *(int *)rtn = -EIO;
8956 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8957 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8958 smp_processor_id());
8959 *(int *)rtn = -EIO;
8960 }
8961 }
8962
8963 static int get_ept_level(void)
8964 {
8965 return VMX_EPT_DEFAULT_GAW + 1;
8966 }
8967
8968 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8969 {
8970 u8 cache;
8971 u64 ipat = 0;
8972
8973 /* For VT-d and EPT combination
8974 * 1. MMIO: always map as UC
8975 * 2. EPT with VT-d:
8976 * a. VT-d without snooping control feature: can't guarantee the
8977 * result, try to trust guest.
8978 * b. VT-d with snooping control feature: snooping control feature of
8979 * VT-d engine can guarantee the cache correctness. Just set it
8980 * to WB to keep consistent with host. So the same as item 3.
8981 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8982 * consistent with host MTRR
8983 */
8984 if (is_mmio) {
8985 cache = MTRR_TYPE_UNCACHABLE;
8986 goto exit;
8987 }
8988
8989 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8990 ipat = VMX_EPT_IPAT_BIT;
8991 cache = MTRR_TYPE_WRBACK;
8992 goto exit;
8993 }
8994
8995 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8996 ipat = VMX_EPT_IPAT_BIT;
8997 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8998 cache = MTRR_TYPE_WRBACK;
8999 else
9000 cache = MTRR_TYPE_UNCACHABLE;
9001 goto exit;
9002 }
9003
9004 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9005
9006 exit:
9007 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9008 }
9009
9010 static int vmx_get_lpage_level(void)
9011 {
9012 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9013 return PT_DIRECTORY_LEVEL;
9014 else
9015 /* For shadow and EPT supported 1GB page */
9016 return PT_PDPE_LEVEL;
9017 }
9018
9019 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9020 {
9021 /*
9022 * These bits in the secondary execution controls field
9023 * are dynamic, the others are mostly based on the hypervisor
9024 * architecture and the guest's CPUID. Do not touch the
9025 * dynamic bits.
9026 */
9027 u32 mask =
9028 SECONDARY_EXEC_SHADOW_VMCS |
9029 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9030 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9031
9032 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9033
9034 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9035 (new_ctl & ~mask) | (cur_ctl & mask));
9036 }
9037
9038 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9039 {
9040 struct kvm_cpuid_entry2 *best;
9041 struct vcpu_vmx *vmx = to_vmx(vcpu);
9042 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9043
9044 if (vmx_rdtscp_supported()) {
9045 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9046 if (!rdtscp_enabled)
9047 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9048
9049 if (nested) {
9050 if (rdtscp_enabled)
9051 vmx->nested.nested_vmx_secondary_ctls_high |=
9052 SECONDARY_EXEC_RDTSCP;
9053 else
9054 vmx->nested.nested_vmx_secondary_ctls_high &=
9055 ~SECONDARY_EXEC_RDTSCP;
9056 }
9057 }
9058
9059 /* Exposing INVPCID only when PCID is exposed */
9060 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9061 if (vmx_invpcid_supported() &&
9062 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9063 !guest_cpuid_has_pcid(vcpu))) {
9064 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9065
9066 if (best)
9067 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9068 }
9069
9070 if (cpu_has_secondary_exec_ctrls())
9071 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9072
9073 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9074 if (guest_cpuid_has_pcommit(vcpu))
9075 vmx->nested.nested_vmx_secondary_ctls_high |=
9076 SECONDARY_EXEC_PCOMMIT;
9077 else
9078 vmx->nested.nested_vmx_secondary_ctls_high &=
9079 ~SECONDARY_EXEC_PCOMMIT;
9080 }
9081 }
9082
9083 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9084 {
9085 if (func == 1 && nested)
9086 entry->ecx |= bit(X86_FEATURE_VMX);
9087 }
9088
9089 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9090 struct x86_exception *fault)
9091 {
9092 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9093 u32 exit_reason;
9094
9095 if (fault->error_code & PFERR_RSVD_MASK)
9096 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9097 else
9098 exit_reason = EXIT_REASON_EPT_VIOLATION;
9099 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9100 vmcs12->guest_physical_address = fault->address;
9101 }
9102
9103 /* Callbacks for nested_ept_init_mmu_context: */
9104
9105 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9106 {
9107 /* return the page table to be shadowed - in our case, EPT12 */
9108 return get_vmcs12(vcpu)->ept_pointer;
9109 }
9110
9111 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9112 {
9113 WARN_ON(mmu_is_nested(vcpu));
9114 kvm_init_shadow_ept_mmu(vcpu,
9115 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9116 VMX_EPT_EXECUTE_ONLY_BIT);
9117 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9118 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9119 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9120
9121 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9122 }
9123
9124 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9125 {
9126 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9127 }
9128
9129 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9130 u16 error_code)
9131 {
9132 bool inequality, bit;
9133
9134 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9135 inequality =
9136 (error_code & vmcs12->page_fault_error_code_mask) !=
9137 vmcs12->page_fault_error_code_match;
9138 return inequality ^ bit;
9139 }
9140
9141 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9142 struct x86_exception *fault)
9143 {
9144 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9145
9146 WARN_ON(!is_guest_mode(vcpu));
9147
9148 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9149 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9150 vmcs_read32(VM_EXIT_INTR_INFO),
9151 vmcs_readl(EXIT_QUALIFICATION));
9152 else
9153 kvm_inject_page_fault(vcpu, fault);
9154 }
9155
9156 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9157 struct vmcs12 *vmcs12)
9158 {
9159 struct vcpu_vmx *vmx = to_vmx(vcpu);
9160 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9161
9162 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9163 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9164 vmcs12->apic_access_addr >> maxphyaddr)
9165 return false;
9166
9167 /*
9168 * Translate L1 physical address to host physical
9169 * address for vmcs02. Keep the page pinned, so this
9170 * physical address remains valid. We keep a reference
9171 * to it so we can release it later.
9172 */
9173 if (vmx->nested.apic_access_page) /* shouldn't happen */
9174 nested_release_page(vmx->nested.apic_access_page);
9175 vmx->nested.apic_access_page =
9176 nested_get_page(vcpu, vmcs12->apic_access_addr);
9177 }
9178
9179 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9180 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9181 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9182 return false;
9183
9184 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9185 nested_release_page(vmx->nested.virtual_apic_page);
9186 vmx->nested.virtual_apic_page =
9187 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9188
9189 /*
9190 * Failing the vm entry is _not_ what the processor does
9191 * but it's basically the only possibility we have.
9192 * We could still enter the guest if CR8 load exits are
9193 * enabled, CR8 store exits are enabled, and virtualize APIC
9194 * access is disabled; in this case the processor would never
9195 * use the TPR shadow and we could simply clear the bit from
9196 * the execution control. But such a configuration is useless,
9197 * so let's keep the code simple.
9198 */
9199 if (!vmx->nested.virtual_apic_page)
9200 return false;
9201 }
9202
9203 if (nested_cpu_has_posted_intr(vmcs12)) {
9204 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9205 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9206 return false;
9207
9208 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9209 kunmap(vmx->nested.pi_desc_page);
9210 nested_release_page(vmx->nested.pi_desc_page);
9211 }
9212 vmx->nested.pi_desc_page =
9213 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9214 if (!vmx->nested.pi_desc_page)
9215 return false;
9216
9217 vmx->nested.pi_desc =
9218 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9219 if (!vmx->nested.pi_desc) {
9220 nested_release_page_clean(vmx->nested.pi_desc_page);
9221 return false;
9222 }
9223 vmx->nested.pi_desc =
9224 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9225 (unsigned long)(vmcs12->posted_intr_desc_addr &
9226 (PAGE_SIZE - 1)));
9227 }
9228
9229 return true;
9230 }
9231
9232 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9233 {
9234 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9235 struct vcpu_vmx *vmx = to_vmx(vcpu);
9236
9237 if (vcpu->arch.virtual_tsc_khz == 0)
9238 return;
9239
9240 /* Make sure short timeouts reliably trigger an immediate vmexit.
9241 * hrtimer_start does not guarantee this. */
9242 if (preemption_timeout <= 1) {
9243 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9244 return;
9245 }
9246
9247 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9248 preemption_timeout *= 1000000;
9249 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9250 hrtimer_start(&vmx->nested.preemption_timer,
9251 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9252 }
9253
9254 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9255 struct vmcs12 *vmcs12)
9256 {
9257 int maxphyaddr;
9258 u64 addr;
9259
9260 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9261 return 0;
9262
9263 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9264 WARN_ON(1);
9265 return -EINVAL;
9266 }
9267 maxphyaddr = cpuid_maxphyaddr(vcpu);
9268
9269 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9270 ((addr + PAGE_SIZE) >> maxphyaddr))
9271 return -EINVAL;
9272
9273 return 0;
9274 }
9275
9276 /*
9277 * Merge L0's and L1's MSR bitmap, return false to indicate that
9278 * we do not use the hardware.
9279 */
9280 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9281 struct vmcs12 *vmcs12)
9282 {
9283 int msr;
9284 struct page *page;
9285 unsigned long *msr_bitmap;
9286
9287 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9288 return false;
9289
9290 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9291 if (!page) {
9292 WARN_ON(1);
9293 return false;
9294 }
9295 msr_bitmap = (unsigned long *)kmap(page);
9296 if (!msr_bitmap) {
9297 nested_release_page_clean(page);
9298 WARN_ON(1);
9299 return false;
9300 }
9301
9302 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9303 if (nested_cpu_has_apic_reg_virt(vmcs12))
9304 for (msr = 0x800; msr <= 0x8ff; msr++)
9305 nested_vmx_disable_intercept_for_msr(
9306 msr_bitmap,
9307 vmx_msr_bitmap_nested,
9308 msr, MSR_TYPE_R);
9309 /* TPR is allowed */
9310 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9311 vmx_msr_bitmap_nested,
9312 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9313 MSR_TYPE_R | MSR_TYPE_W);
9314 if (nested_cpu_has_vid(vmcs12)) {
9315 /* EOI and self-IPI are allowed */
9316 nested_vmx_disable_intercept_for_msr(
9317 msr_bitmap,
9318 vmx_msr_bitmap_nested,
9319 APIC_BASE_MSR + (APIC_EOI >> 4),
9320 MSR_TYPE_W);
9321 nested_vmx_disable_intercept_for_msr(
9322 msr_bitmap,
9323 vmx_msr_bitmap_nested,
9324 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9325 MSR_TYPE_W);
9326 }
9327 } else {
9328 /*
9329 * Enable reading intercept of all the x2apic
9330 * MSRs. We should not rely on vmcs12 to do any
9331 * optimizations here, it may have been modified
9332 * by L1.
9333 */
9334 for (msr = 0x800; msr <= 0x8ff; msr++)
9335 __vmx_enable_intercept_for_msr(
9336 vmx_msr_bitmap_nested,
9337 msr,
9338 MSR_TYPE_R);
9339
9340 __vmx_enable_intercept_for_msr(
9341 vmx_msr_bitmap_nested,
9342 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9343 MSR_TYPE_W);
9344 __vmx_enable_intercept_for_msr(
9345 vmx_msr_bitmap_nested,
9346 APIC_BASE_MSR + (APIC_EOI >> 4),
9347 MSR_TYPE_W);
9348 __vmx_enable_intercept_for_msr(
9349 vmx_msr_bitmap_nested,
9350 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9351 MSR_TYPE_W);
9352 }
9353 kunmap(page);
9354 nested_release_page_clean(page);
9355
9356 return true;
9357 }
9358
9359 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9360 struct vmcs12 *vmcs12)
9361 {
9362 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9363 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9364 !nested_cpu_has_vid(vmcs12) &&
9365 !nested_cpu_has_posted_intr(vmcs12))
9366 return 0;
9367
9368 /*
9369 * If virtualize x2apic mode is enabled,
9370 * virtualize apic access must be disabled.
9371 */
9372 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9373 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9374 return -EINVAL;
9375
9376 /*
9377 * If virtual interrupt delivery is enabled,
9378 * we must exit on external interrupts.
9379 */
9380 if (nested_cpu_has_vid(vmcs12) &&
9381 !nested_exit_on_intr(vcpu))
9382 return -EINVAL;
9383
9384 /*
9385 * bits 15:8 should be zero in posted_intr_nv,
9386 * the descriptor address has been already checked
9387 * in nested_get_vmcs12_pages.
9388 */
9389 if (nested_cpu_has_posted_intr(vmcs12) &&
9390 (!nested_cpu_has_vid(vmcs12) ||
9391 !nested_exit_intr_ack_set(vcpu) ||
9392 vmcs12->posted_intr_nv & 0xff00))
9393 return -EINVAL;
9394
9395 /* tpr shadow is needed by all apicv features. */
9396 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9397 return -EINVAL;
9398
9399 return 0;
9400 }
9401
9402 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9403 unsigned long count_field,
9404 unsigned long addr_field)
9405 {
9406 int maxphyaddr;
9407 u64 count, addr;
9408
9409 if (vmcs12_read_any(vcpu, count_field, &count) ||
9410 vmcs12_read_any(vcpu, addr_field, &addr)) {
9411 WARN_ON(1);
9412 return -EINVAL;
9413 }
9414 if (count == 0)
9415 return 0;
9416 maxphyaddr = cpuid_maxphyaddr(vcpu);
9417 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9418 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9419 pr_warn_ratelimited(
9420 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9421 addr_field, maxphyaddr, count, addr);
9422 return -EINVAL;
9423 }
9424 return 0;
9425 }
9426
9427 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9428 struct vmcs12 *vmcs12)
9429 {
9430 if (vmcs12->vm_exit_msr_load_count == 0 &&
9431 vmcs12->vm_exit_msr_store_count == 0 &&
9432 vmcs12->vm_entry_msr_load_count == 0)
9433 return 0; /* Fast path */
9434 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9435 VM_EXIT_MSR_LOAD_ADDR) ||
9436 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9437 VM_EXIT_MSR_STORE_ADDR) ||
9438 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9439 VM_ENTRY_MSR_LOAD_ADDR))
9440 return -EINVAL;
9441 return 0;
9442 }
9443
9444 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9445 struct vmx_msr_entry *e)
9446 {
9447 /* x2APIC MSR accesses are not allowed */
9448 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9449 return -EINVAL;
9450 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9451 e->index == MSR_IA32_UCODE_REV)
9452 return -EINVAL;
9453 if (e->reserved != 0)
9454 return -EINVAL;
9455 return 0;
9456 }
9457
9458 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9459 struct vmx_msr_entry *e)
9460 {
9461 if (e->index == MSR_FS_BASE ||
9462 e->index == MSR_GS_BASE ||
9463 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9464 nested_vmx_msr_check_common(vcpu, e))
9465 return -EINVAL;
9466 return 0;
9467 }
9468
9469 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9470 struct vmx_msr_entry *e)
9471 {
9472 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9473 nested_vmx_msr_check_common(vcpu, e))
9474 return -EINVAL;
9475 return 0;
9476 }
9477
9478 /*
9479 * Load guest's/host's msr at nested entry/exit.
9480 * return 0 for success, entry index for failure.
9481 */
9482 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9483 {
9484 u32 i;
9485 struct vmx_msr_entry e;
9486 struct msr_data msr;
9487
9488 msr.host_initiated = false;
9489 for (i = 0; i < count; i++) {
9490 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9491 &e, sizeof(e))) {
9492 pr_warn_ratelimited(
9493 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9494 __func__, i, gpa + i * sizeof(e));
9495 goto fail;
9496 }
9497 if (nested_vmx_load_msr_check(vcpu, &e)) {
9498 pr_warn_ratelimited(
9499 "%s check failed (%u, 0x%x, 0x%x)\n",
9500 __func__, i, e.index, e.reserved);
9501 goto fail;
9502 }
9503 msr.index = e.index;
9504 msr.data = e.value;
9505 if (kvm_set_msr(vcpu, &msr)) {
9506 pr_warn_ratelimited(
9507 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9508 __func__, i, e.index, e.value);
9509 goto fail;
9510 }
9511 }
9512 return 0;
9513 fail:
9514 return i + 1;
9515 }
9516
9517 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9518 {
9519 u32 i;
9520 struct vmx_msr_entry e;
9521
9522 for (i = 0; i < count; i++) {
9523 struct msr_data msr_info;
9524 if (kvm_vcpu_read_guest(vcpu,
9525 gpa + i * sizeof(e),
9526 &e, 2 * sizeof(u32))) {
9527 pr_warn_ratelimited(
9528 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9529 __func__, i, gpa + i * sizeof(e));
9530 return -EINVAL;
9531 }
9532 if (nested_vmx_store_msr_check(vcpu, &e)) {
9533 pr_warn_ratelimited(
9534 "%s check failed (%u, 0x%x, 0x%x)\n",
9535 __func__, i, e.index, e.reserved);
9536 return -EINVAL;
9537 }
9538 msr_info.host_initiated = false;
9539 msr_info.index = e.index;
9540 if (kvm_get_msr(vcpu, &msr_info)) {
9541 pr_warn_ratelimited(
9542 "%s cannot read MSR (%u, 0x%x)\n",
9543 __func__, i, e.index);
9544 return -EINVAL;
9545 }
9546 if (kvm_vcpu_write_guest(vcpu,
9547 gpa + i * sizeof(e) +
9548 offsetof(struct vmx_msr_entry, value),
9549 &msr_info.data, sizeof(msr_info.data))) {
9550 pr_warn_ratelimited(
9551 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9552 __func__, i, e.index, msr_info.data);
9553 return -EINVAL;
9554 }
9555 }
9556 return 0;
9557 }
9558
9559 /*
9560 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9561 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9562 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9563 * guest in a way that will both be appropriate to L1's requests, and our
9564 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9565 * function also has additional necessary side-effects, like setting various
9566 * vcpu->arch fields.
9567 */
9568 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9569 {
9570 struct vcpu_vmx *vmx = to_vmx(vcpu);
9571 u32 exec_control;
9572
9573 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9574 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9575 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9576 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9577 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9578 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9579 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9580 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9581 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9582 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9583 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9584 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9585 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9586 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9587 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9588 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9589 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9590 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9591 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9592 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9593 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9594 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9595 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9596 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9597 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9598 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9599 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9600 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9601 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9602 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9603 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9604 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9605 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9606 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9607 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9608 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9609
9610 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9611 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9612 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9613 } else {
9614 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9615 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9616 }
9617 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9618 vmcs12->vm_entry_intr_info_field);
9619 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9620 vmcs12->vm_entry_exception_error_code);
9621 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9622 vmcs12->vm_entry_instruction_len);
9623 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9624 vmcs12->guest_interruptibility_info);
9625 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9626 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9627 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9628 vmcs12->guest_pending_dbg_exceptions);
9629 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9630 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9631
9632 if (nested_cpu_has_xsaves(vmcs12))
9633 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9634 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9635
9636 exec_control = vmcs12->pin_based_vm_exec_control;
9637 exec_control |= vmcs_config.pin_based_exec_ctrl;
9638 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9639
9640 if (nested_cpu_has_posted_intr(vmcs12)) {
9641 /*
9642 * Note that we use L0's vector here and in
9643 * vmx_deliver_nested_posted_interrupt.
9644 */
9645 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9646 vmx->nested.pi_pending = false;
9647 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9648 vmcs_write64(POSTED_INTR_DESC_ADDR,
9649 page_to_phys(vmx->nested.pi_desc_page) +
9650 (unsigned long)(vmcs12->posted_intr_desc_addr &
9651 (PAGE_SIZE - 1)));
9652 } else
9653 exec_control &= ~PIN_BASED_POSTED_INTR;
9654
9655 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9656
9657 vmx->nested.preemption_timer_expired = false;
9658 if (nested_cpu_has_preemption_timer(vmcs12))
9659 vmx_start_preemption_timer(vcpu);
9660
9661 /*
9662 * Whether page-faults are trapped is determined by a combination of
9663 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9664 * If enable_ept, L0 doesn't care about page faults and we should
9665 * set all of these to L1's desires. However, if !enable_ept, L0 does
9666 * care about (at least some) page faults, and because it is not easy
9667 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9668 * to exit on each and every L2 page fault. This is done by setting
9669 * MASK=MATCH=0 and (see below) EB.PF=1.
9670 * Note that below we don't need special code to set EB.PF beyond the
9671 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9672 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9673 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9674 *
9675 * A problem with this approach (when !enable_ept) is that L1 may be
9676 * injected with more page faults than it asked for. This could have
9677 * caused problems, but in practice existing hypervisors don't care.
9678 * To fix this, we will need to emulate the PFEC checking (on the L1
9679 * page tables), using walk_addr(), when injecting PFs to L1.
9680 */
9681 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9682 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9683 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9684 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9685
9686 if (cpu_has_secondary_exec_ctrls()) {
9687 exec_control = vmx_secondary_exec_control(vmx);
9688
9689 /* Take the following fields only from vmcs12 */
9690 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9691 SECONDARY_EXEC_RDTSCP |
9692 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9693 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9694 SECONDARY_EXEC_PCOMMIT);
9695 if (nested_cpu_has(vmcs12,
9696 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9697 exec_control |= vmcs12->secondary_vm_exec_control;
9698
9699 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9700 /*
9701 * If translation failed, no matter: This feature asks
9702 * to exit when accessing the given address, and if it
9703 * can never be accessed, this feature won't do
9704 * anything anyway.
9705 */
9706 if (!vmx->nested.apic_access_page)
9707 exec_control &=
9708 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9709 else
9710 vmcs_write64(APIC_ACCESS_ADDR,
9711 page_to_phys(vmx->nested.apic_access_page));
9712 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9713 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9714 exec_control |=
9715 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9716 kvm_vcpu_reload_apic_access_page(vcpu);
9717 }
9718
9719 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9720 vmcs_write64(EOI_EXIT_BITMAP0,
9721 vmcs12->eoi_exit_bitmap0);
9722 vmcs_write64(EOI_EXIT_BITMAP1,
9723 vmcs12->eoi_exit_bitmap1);
9724 vmcs_write64(EOI_EXIT_BITMAP2,
9725 vmcs12->eoi_exit_bitmap2);
9726 vmcs_write64(EOI_EXIT_BITMAP3,
9727 vmcs12->eoi_exit_bitmap3);
9728 vmcs_write16(GUEST_INTR_STATUS,
9729 vmcs12->guest_intr_status);
9730 }
9731
9732 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9733 }
9734
9735
9736 /*
9737 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9738 * Some constant fields are set here by vmx_set_constant_host_state().
9739 * Other fields are different per CPU, and will be set later when
9740 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9741 */
9742 vmx_set_constant_host_state(vmx);
9743
9744 /*
9745 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9746 * entry, but only if the current (host) sp changed from the value
9747 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9748 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9749 * here we just force the write to happen on entry.
9750 */
9751 vmx->host_rsp = 0;
9752
9753 exec_control = vmx_exec_control(vmx); /* L0's desires */
9754 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9755 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9756 exec_control &= ~CPU_BASED_TPR_SHADOW;
9757 exec_control |= vmcs12->cpu_based_vm_exec_control;
9758
9759 if (exec_control & CPU_BASED_TPR_SHADOW) {
9760 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9761 page_to_phys(vmx->nested.virtual_apic_page));
9762 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9763 }
9764
9765 if (cpu_has_vmx_msr_bitmap() &&
9766 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9767 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9768 /* MSR_BITMAP will be set by following vmx_set_efer. */
9769 } else
9770 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9771
9772 /*
9773 * Merging of IO bitmap not currently supported.
9774 * Rather, exit every time.
9775 */
9776 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9777 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9778
9779 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9780
9781 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9782 * bitwise-or of what L1 wants to trap for L2, and what we want to
9783 * trap. Note that CR0.TS also needs updating - we do this later.
9784 */
9785 update_exception_bitmap(vcpu);
9786 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9787 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9788
9789 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9790 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9791 * bits are further modified by vmx_set_efer() below.
9792 */
9793 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9794
9795 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9796 * emulated by vmx_set_efer(), below.
9797 */
9798 vm_entry_controls_init(vmx,
9799 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9800 ~VM_ENTRY_IA32E_MODE) |
9801 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9802
9803 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9804 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9805 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9806 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9807 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9808
9809
9810 set_cr4_guest_host_mask(vmx);
9811
9812 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9813 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9814
9815 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9816 vmcs_write64(TSC_OFFSET,
9817 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9818 else
9819 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9820
9821 if (enable_vpid) {
9822 /*
9823 * There is no direct mapping between vpid02 and vpid12, the
9824 * vpid02 is per-vCPU for L0 and reused while the value of
9825 * vpid12 is changed w/ one invvpid during nested vmentry.
9826 * The vpid12 is allocated by L1 for L2, so it will not
9827 * influence global bitmap(for vpid01 and vpid02 allocation)
9828 * even if spawn a lot of nested vCPUs.
9829 */
9830 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9831 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9832 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9833 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9834 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9835 }
9836 } else {
9837 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9838 vmx_flush_tlb(vcpu);
9839 }
9840
9841 }
9842
9843 if (nested_cpu_has_ept(vmcs12)) {
9844 kvm_mmu_unload(vcpu);
9845 nested_ept_init_mmu_context(vcpu);
9846 }
9847
9848 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9849 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9850 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9851 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9852 else
9853 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9854 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9855 vmx_set_efer(vcpu, vcpu->arch.efer);
9856
9857 /*
9858 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9859 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9860 * The CR0_READ_SHADOW is what L2 should have expected to read given
9861 * the specifications by L1; It's not enough to take
9862 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9863 * have more bits than L1 expected.
9864 */
9865 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9866 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9867
9868 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9869 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9870
9871 /* shadow page tables on either EPT or shadow page tables */
9872 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9873 kvm_mmu_reset_context(vcpu);
9874
9875 if (!enable_ept)
9876 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9877
9878 /*
9879 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9880 */
9881 if (enable_ept) {
9882 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9883 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9884 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9885 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9886 }
9887
9888 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9889 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9890 }
9891
9892 /*
9893 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9894 * for running an L2 nested guest.
9895 */
9896 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9897 {
9898 struct vmcs12 *vmcs12;
9899 struct vcpu_vmx *vmx = to_vmx(vcpu);
9900 int cpu;
9901 struct loaded_vmcs *vmcs02;
9902 bool ia32e;
9903 u32 msr_entry_idx;
9904
9905 if (!nested_vmx_check_permission(vcpu) ||
9906 !nested_vmx_check_vmcs12(vcpu))
9907 return 1;
9908
9909 skip_emulated_instruction(vcpu);
9910 vmcs12 = get_vmcs12(vcpu);
9911
9912 if (enable_shadow_vmcs)
9913 copy_shadow_to_vmcs12(vmx);
9914
9915 /*
9916 * The nested entry process starts with enforcing various prerequisites
9917 * on vmcs12 as required by the Intel SDM, and act appropriately when
9918 * they fail: As the SDM explains, some conditions should cause the
9919 * instruction to fail, while others will cause the instruction to seem
9920 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9921 * To speed up the normal (success) code path, we should avoid checking
9922 * for misconfigurations which will anyway be caught by the processor
9923 * when using the merged vmcs02.
9924 */
9925 if (vmcs12->launch_state == launch) {
9926 nested_vmx_failValid(vcpu,
9927 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9928 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9929 return 1;
9930 }
9931
9932 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9933 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9934 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9935 return 1;
9936 }
9937
9938 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9939 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9940 return 1;
9941 }
9942
9943 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9944 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9945 return 1;
9946 }
9947
9948 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9949 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9950 return 1;
9951 }
9952
9953 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9954 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9955 return 1;
9956 }
9957
9958 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9959 vmx->nested.nested_vmx_true_procbased_ctls_low,
9960 vmx->nested.nested_vmx_procbased_ctls_high) ||
9961 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9962 vmx->nested.nested_vmx_secondary_ctls_low,
9963 vmx->nested.nested_vmx_secondary_ctls_high) ||
9964 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9965 vmx->nested.nested_vmx_pinbased_ctls_low,
9966 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9967 !vmx_control_verify(vmcs12->vm_exit_controls,
9968 vmx->nested.nested_vmx_true_exit_ctls_low,
9969 vmx->nested.nested_vmx_exit_ctls_high) ||
9970 !vmx_control_verify(vmcs12->vm_entry_controls,
9971 vmx->nested.nested_vmx_true_entry_ctls_low,
9972 vmx->nested.nested_vmx_entry_ctls_high))
9973 {
9974 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9975 return 1;
9976 }
9977
9978 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9979 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9980 nested_vmx_failValid(vcpu,
9981 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9982 return 1;
9983 }
9984
9985 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9986 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9987 nested_vmx_entry_failure(vcpu, vmcs12,
9988 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9989 return 1;
9990 }
9991 if (vmcs12->vmcs_link_pointer != -1ull) {
9992 nested_vmx_entry_failure(vcpu, vmcs12,
9993 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9994 return 1;
9995 }
9996
9997 /*
9998 * If the load IA32_EFER VM-entry control is 1, the following checks
9999 * are performed on the field for the IA32_EFER MSR:
10000 * - Bits reserved in the IA32_EFER MSR must be 0.
10001 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10002 * the IA-32e mode guest VM-exit control. It must also be identical
10003 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10004 * CR0.PG) is 1.
10005 */
10006 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10007 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10008 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10009 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10010 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10011 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10012 nested_vmx_entry_failure(vcpu, vmcs12,
10013 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10014 return 1;
10015 }
10016 }
10017
10018 /*
10019 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10020 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10021 * the values of the LMA and LME bits in the field must each be that of
10022 * the host address-space size VM-exit control.
10023 */
10024 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10025 ia32e = (vmcs12->vm_exit_controls &
10026 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10027 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10028 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10029 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10030 nested_vmx_entry_failure(vcpu, vmcs12,
10031 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10032 return 1;
10033 }
10034 }
10035
10036 /*
10037 * We're finally done with prerequisite checking, and can start with
10038 * the nested entry.
10039 */
10040
10041 vmcs02 = nested_get_current_vmcs02(vmx);
10042 if (!vmcs02)
10043 return -ENOMEM;
10044
10045 enter_guest_mode(vcpu);
10046
10047 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10048
10049 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10050 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10051
10052 cpu = get_cpu();
10053 vmx->loaded_vmcs = vmcs02;
10054 vmx_vcpu_put(vcpu);
10055 vmx_vcpu_load(vcpu, cpu);
10056 vcpu->cpu = cpu;
10057 put_cpu();
10058
10059 vmx_segment_cache_clear(vmx);
10060
10061 prepare_vmcs02(vcpu, vmcs12);
10062
10063 msr_entry_idx = nested_vmx_load_msr(vcpu,
10064 vmcs12->vm_entry_msr_load_addr,
10065 vmcs12->vm_entry_msr_load_count);
10066 if (msr_entry_idx) {
10067 leave_guest_mode(vcpu);
10068 vmx_load_vmcs01(vcpu);
10069 nested_vmx_entry_failure(vcpu, vmcs12,
10070 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10071 return 1;
10072 }
10073
10074 vmcs12->launch_state = 1;
10075
10076 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10077 return kvm_vcpu_halt(vcpu);
10078
10079 vmx->nested.nested_run_pending = 1;
10080
10081 /*
10082 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10083 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10084 * returned as far as L1 is concerned. It will only return (and set
10085 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10086 */
10087 return 1;
10088 }
10089
10090 /*
10091 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10092 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10093 * This function returns the new value we should put in vmcs12.guest_cr0.
10094 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10095 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10096 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10097 * didn't trap the bit, because if L1 did, so would L0).
10098 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10099 * been modified by L2, and L1 knows it. So just leave the old value of
10100 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10101 * isn't relevant, because if L0 traps this bit it can set it to anything.
10102 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10103 * changed these bits, and therefore they need to be updated, but L0
10104 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10105 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10106 */
10107 static inline unsigned long
10108 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10109 {
10110 return
10111 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10112 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10113 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10114 vcpu->arch.cr0_guest_owned_bits));
10115 }
10116
10117 static inline unsigned long
10118 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10119 {
10120 return
10121 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10122 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10123 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10124 vcpu->arch.cr4_guest_owned_bits));
10125 }
10126
10127 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10128 struct vmcs12 *vmcs12)
10129 {
10130 u32 idt_vectoring;
10131 unsigned int nr;
10132
10133 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10134 nr = vcpu->arch.exception.nr;
10135 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10136
10137 if (kvm_exception_is_soft(nr)) {
10138 vmcs12->vm_exit_instruction_len =
10139 vcpu->arch.event_exit_inst_len;
10140 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10141 } else
10142 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10143
10144 if (vcpu->arch.exception.has_error_code) {
10145 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10146 vmcs12->idt_vectoring_error_code =
10147 vcpu->arch.exception.error_code;
10148 }
10149
10150 vmcs12->idt_vectoring_info_field = idt_vectoring;
10151 } else if (vcpu->arch.nmi_injected) {
10152 vmcs12->idt_vectoring_info_field =
10153 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10154 } else if (vcpu->arch.interrupt.pending) {
10155 nr = vcpu->arch.interrupt.nr;
10156 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10157
10158 if (vcpu->arch.interrupt.soft) {
10159 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10160 vmcs12->vm_entry_instruction_len =
10161 vcpu->arch.event_exit_inst_len;
10162 } else
10163 idt_vectoring |= INTR_TYPE_EXT_INTR;
10164
10165 vmcs12->idt_vectoring_info_field = idt_vectoring;
10166 }
10167 }
10168
10169 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10170 {
10171 struct vcpu_vmx *vmx = to_vmx(vcpu);
10172
10173 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10174 vmx->nested.preemption_timer_expired) {
10175 if (vmx->nested.nested_run_pending)
10176 return -EBUSY;
10177 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10178 return 0;
10179 }
10180
10181 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10182 if (vmx->nested.nested_run_pending ||
10183 vcpu->arch.interrupt.pending)
10184 return -EBUSY;
10185 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10186 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10187 INTR_INFO_VALID_MASK, 0);
10188 /*
10189 * The NMI-triggered VM exit counts as injection:
10190 * clear this one and block further NMIs.
10191 */
10192 vcpu->arch.nmi_pending = 0;
10193 vmx_set_nmi_mask(vcpu, true);
10194 return 0;
10195 }
10196
10197 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10198 nested_exit_on_intr(vcpu)) {
10199 if (vmx->nested.nested_run_pending)
10200 return -EBUSY;
10201 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10202 return 0;
10203 }
10204
10205 return vmx_complete_nested_posted_interrupt(vcpu);
10206 }
10207
10208 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10209 {
10210 ktime_t remaining =
10211 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10212 u64 value;
10213
10214 if (ktime_to_ns(remaining) <= 0)
10215 return 0;
10216
10217 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10218 do_div(value, 1000000);
10219 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10220 }
10221
10222 /*
10223 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10224 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10225 * and this function updates it to reflect the changes to the guest state while
10226 * L2 was running (and perhaps made some exits which were handled directly by L0
10227 * without going back to L1), and to reflect the exit reason.
10228 * Note that we do not have to copy here all VMCS fields, just those that
10229 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10230 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10231 * which already writes to vmcs12 directly.
10232 */
10233 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10234 u32 exit_reason, u32 exit_intr_info,
10235 unsigned long exit_qualification)
10236 {
10237 /* update guest state fields: */
10238 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10239 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10240
10241 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10242 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10243 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10244
10245 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10246 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10247 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10248 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10249 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10250 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10251 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10252 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10253 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10254 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10255 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10256 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10257 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10258 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10259 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10260 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10261 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10262 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10263 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10264 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10265 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10266 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10267 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10268 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10269 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10270 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10271 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10272 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10273 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10274 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10275 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10276 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10277 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10278 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10279 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10280 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10281
10282 vmcs12->guest_interruptibility_info =
10283 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10284 vmcs12->guest_pending_dbg_exceptions =
10285 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10286 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10287 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10288 else
10289 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10290
10291 if (nested_cpu_has_preemption_timer(vmcs12)) {
10292 if (vmcs12->vm_exit_controls &
10293 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10294 vmcs12->vmx_preemption_timer_value =
10295 vmx_get_preemption_timer_value(vcpu);
10296 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10297 }
10298
10299 /*
10300 * In some cases (usually, nested EPT), L2 is allowed to change its
10301 * own CR3 without exiting. If it has changed it, we must keep it.
10302 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10303 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10304 *
10305 * Additionally, restore L2's PDPTR to vmcs12.
10306 */
10307 if (enable_ept) {
10308 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10309 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10310 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10311 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10312 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10313 }
10314
10315 if (nested_cpu_has_vid(vmcs12))
10316 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10317
10318 vmcs12->vm_entry_controls =
10319 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10320 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10321
10322 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10323 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10324 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10325 }
10326
10327 /* TODO: These cannot have changed unless we have MSR bitmaps and
10328 * the relevant bit asks not to trap the change */
10329 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10330 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10331 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10332 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10333 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10334 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10335 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10336 if (kvm_mpx_supported())
10337 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10338 if (nested_cpu_has_xsaves(vmcs12))
10339 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10340
10341 /* update exit information fields: */
10342
10343 vmcs12->vm_exit_reason = exit_reason;
10344 vmcs12->exit_qualification = exit_qualification;
10345
10346 vmcs12->vm_exit_intr_info = exit_intr_info;
10347 if ((vmcs12->vm_exit_intr_info &
10348 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10349 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10350 vmcs12->vm_exit_intr_error_code =
10351 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10352 vmcs12->idt_vectoring_info_field = 0;
10353 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10354 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10355
10356 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10357 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10358 * instead of reading the real value. */
10359 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10360
10361 /*
10362 * Transfer the event that L0 or L1 may wanted to inject into
10363 * L2 to IDT_VECTORING_INFO_FIELD.
10364 */
10365 vmcs12_save_pending_event(vcpu, vmcs12);
10366 }
10367
10368 /*
10369 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10370 * preserved above and would only end up incorrectly in L1.
10371 */
10372 vcpu->arch.nmi_injected = false;
10373 kvm_clear_exception_queue(vcpu);
10374 kvm_clear_interrupt_queue(vcpu);
10375 }
10376
10377 /*
10378 * A part of what we need to when the nested L2 guest exits and we want to
10379 * run its L1 parent, is to reset L1's guest state to the host state specified
10380 * in vmcs12.
10381 * This function is to be called not only on normal nested exit, but also on
10382 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10383 * Failures During or After Loading Guest State").
10384 * This function should be called when the active VMCS is L1's (vmcs01).
10385 */
10386 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10387 struct vmcs12 *vmcs12)
10388 {
10389 struct kvm_segment seg;
10390
10391 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10392 vcpu->arch.efer = vmcs12->host_ia32_efer;
10393 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10394 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10395 else
10396 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10397 vmx_set_efer(vcpu, vcpu->arch.efer);
10398
10399 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10400 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10401 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10402 /*
10403 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10404 * actually changed, because it depends on the current state of
10405 * fpu_active (which may have changed).
10406 * Note that vmx_set_cr0 refers to efer set above.
10407 */
10408 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10409 /*
10410 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10411 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10412 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10413 */
10414 update_exception_bitmap(vcpu);
10415 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10416 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10417
10418 /*
10419 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10420 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10421 */
10422 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10423 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10424
10425 nested_ept_uninit_mmu_context(vcpu);
10426
10427 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10428 kvm_mmu_reset_context(vcpu);
10429
10430 if (!enable_ept)
10431 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10432
10433 if (enable_vpid) {
10434 /*
10435 * Trivially support vpid by letting L2s share their parent
10436 * L1's vpid. TODO: move to a more elaborate solution, giving
10437 * each L2 its own vpid and exposing the vpid feature to L1.
10438 */
10439 vmx_flush_tlb(vcpu);
10440 }
10441
10442
10443 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10444 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10445 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10446 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10447 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10448
10449 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10450 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10451 vmcs_write64(GUEST_BNDCFGS, 0);
10452
10453 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10454 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10455 vcpu->arch.pat = vmcs12->host_ia32_pat;
10456 }
10457 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10458 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10459 vmcs12->host_ia32_perf_global_ctrl);
10460
10461 /* Set L1 segment info according to Intel SDM
10462 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10463 seg = (struct kvm_segment) {
10464 .base = 0,
10465 .limit = 0xFFFFFFFF,
10466 .selector = vmcs12->host_cs_selector,
10467 .type = 11,
10468 .present = 1,
10469 .s = 1,
10470 .g = 1
10471 };
10472 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10473 seg.l = 1;
10474 else
10475 seg.db = 1;
10476 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10477 seg = (struct kvm_segment) {
10478 .base = 0,
10479 .limit = 0xFFFFFFFF,
10480 .type = 3,
10481 .present = 1,
10482 .s = 1,
10483 .db = 1,
10484 .g = 1
10485 };
10486 seg.selector = vmcs12->host_ds_selector;
10487 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10488 seg.selector = vmcs12->host_es_selector;
10489 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10490 seg.selector = vmcs12->host_ss_selector;
10491 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10492 seg.selector = vmcs12->host_fs_selector;
10493 seg.base = vmcs12->host_fs_base;
10494 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10495 seg.selector = vmcs12->host_gs_selector;
10496 seg.base = vmcs12->host_gs_base;
10497 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10498 seg = (struct kvm_segment) {
10499 .base = vmcs12->host_tr_base,
10500 .limit = 0x67,
10501 .selector = vmcs12->host_tr_selector,
10502 .type = 11,
10503 .present = 1
10504 };
10505 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10506
10507 kvm_set_dr(vcpu, 7, 0x400);
10508 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10509
10510 if (cpu_has_vmx_msr_bitmap())
10511 vmx_set_msr_bitmap(vcpu);
10512
10513 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10514 vmcs12->vm_exit_msr_load_count))
10515 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10516 }
10517
10518 /*
10519 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10520 * and modify vmcs12 to make it see what it would expect to see there if
10521 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10522 */
10523 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10524 u32 exit_intr_info,
10525 unsigned long exit_qualification)
10526 {
10527 struct vcpu_vmx *vmx = to_vmx(vcpu);
10528 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10529
10530 /* trying to cancel vmlaunch/vmresume is a bug */
10531 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10532
10533 leave_guest_mode(vcpu);
10534 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10535 exit_qualification);
10536
10537 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10538 vmcs12->vm_exit_msr_store_count))
10539 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10540
10541 vmx_load_vmcs01(vcpu);
10542
10543 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10544 && nested_exit_intr_ack_set(vcpu)) {
10545 int irq = kvm_cpu_get_interrupt(vcpu);
10546 WARN_ON(irq < 0);
10547 vmcs12->vm_exit_intr_info = irq |
10548 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10549 }
10550
10551 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10552 vmcs12->exit_qualification,
10553 vmcs12->idt_vectoring_info_field,
10554 vmcs12->vm_exit_intr_info,
10555 vmcs12->vm_exit_intr_error_code,
10556 KVM_ISA_VMX);
10557
10558 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10559 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10560 vmx_segment_cache_clear(vmx);
10561
10562 /* if no vmcs02 cache requested, remove the one we used */
10563 if (VMCS02_POOL_SIZE == 0)
10564 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10565
10566 load_vmcs12_host_state(vcpu, vmcs12);
10567
10568 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10569 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10570
10571 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10572 vmx->host_rsp = 0;
10573
10574 /* Unpin physical memory we referred to in vmcs02 */
10575 if (vmx->nested.apic_access_page) {
10576 nested_release_page(vmx->nested.apic_access_page);
10577 vmx->nested.apic_access_page = NULL;
10578 }
10579 if (vmx->nested.virtual_apic_page) {
10580 nested_release_page(vmx->nested.virtual_apic_page);
10581 vmx->nested.virtual_apic_page = NULL;
10582 }
10583 if (vmx->nested.pi_desc_page) {
10584 kunmap(vmx->nested.pi_desc_page);
10585 nested_release_page(vmx->nested.pi_desc_page);
10586 vmx->nested.pi_desc_page = NULL;
10587 vmx->nested.pi_desc = NULL;
10588 }
10589
10590 /*
10591 * We are now running in L2, mmu_notifier will force to reload the
10592 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10593 */
10594 kvm_vcpu_reload_apic_access_page(vcpu);
10595
10596 /*
10597 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10598 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10599 * success or failure flag accordingly.
10600 */
10601 if (unlikely(vmx->fail)) {
10602 vmx->fail = 0;
10603 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10604 } else
10605 nested_vmx_succeed(vcpu);
10606 if (enable_shadow_vmcs)
10607 vmx->nested.sync_shadow_vmcs = true;
10608
10609 /* in case we halted in L2 */
10610 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10611 }
10612
10613 /*
10614 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10615 */
10616 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10617 {
10618 if (is_guest_mode(vcpu))
10619 nested_vmx_vmexit(vcpu, -1, 0, 0);
10620 free_nested(to_vmx(vcpu));
10621 }
10622
10623 /*
10624 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10625 * 23.7 "VM-entry failures during or after loading guest state" (this also
10626 * lists the acceptable exit-reason and exit-qualification parameters).
10627 * It should only be called before L2 actually succeeded to run, and when
10628 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10629 */
10630 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10631 struct vmcs12 *vmcs12,
10632 u32 reason, unsigned long qualification)
10633 {
10634 load_vmcs12_host_state(vcpu, vmcs12);
10635 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10636 vmcs12->exit_qualification = qualification;
10637 nested_vmx_succeed(vcpu);
10638 if (enable_shadow_vmcs)
10639 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10640 }
10641
10642 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10643 struct x86_instruction_info *info,
10644 enum x86_intercept_stage stage)
10645 {
10646 return X86EMUL_CONTINUE;
10647 }
10648
10649 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10650 {
10651 if (ple_gap)
10652 shrink_ple_window(vcpu);
10653 }
10654
10655 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10656 struct kvm_memory_slot *slot)
10657 {
10658 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10659 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10660 }
10661
10662 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10663 struct kvm_memory_slot *slot)
10664 {
10665 kvm_mmu_slot_set_dirty(kvm, slot);
10666 }
10667
10668 static void vmx_flush_log_dirty(struct kvm *kvm)
10669 {
10670 kvm_flush_pml_buffers(kvm);
10671 }
10672
10673 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10674 struct kvm_memory_slot *memslot,
10675 gfn_t offset, unsigned long mask)
10676 {
10677 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10678 }
10679
10680 /*
10681 * This routine does the following things for vCPU which is going
10682 * to be blocked if VT-d PI is enabled.
10683 * - Store the vCPU to the wakeup list, so when interrupts happen
10684 * we can find the right vCPU to wake up.
10685 * - Change the Posted-interrupt descriptor as below:
10686 * 'NDST' <-- vcpu->pre_pcpu
10687 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10688 * - If 'ON' is set during this process, which means at least one
10689 * interrupt is posted for this vCPU, we cannot block it, in
10690 * this case, return 1, otherwise, return 0.
10691 *
10692 */
10693 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10694 {
10695 unsigned long flags;
10696 unsigned int dest;
10697 struct pi_desc old, new;
10698 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10699
10700 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10701 !irq_remapping_cap(IRQ_POSTING_CAP))
10702 return 0;
10703
10704 vcpu->pre_pcpu = vcpu->cpu;
10705 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10706 vcpu->pre_pcpu), flags);
10707 list_add_tail(&vcpu->blocked_vcpu_list,
10708 &per_cpu(blocked_vcpu_on_cpu,
10709 vcpu->pre_pcpu));
10710 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10711 vcpu->pre_pcpu), flags);
10712
10713 do {
10714 old.control = new.control = pi_desc->control;
10715
10716 /*
10717 * We should not block the vCPU if
10718 * an interrupt is posted for it.
10719 */
10720 if (pi_test_on(pi_desc) == 1) {
10721 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10722 vcpu->pre_pcpu), flags);
10723 list_del(&vcpu->blocked_vcpu_list);
10724 spin_unlock_irqrestore(
10725 &per_cpu(blocked_vcpu_on_cpu_lock,
10726 vcpu->pre_pcpu), flags);
10727 vcpu->pre_pcpu = -1;
10728
10729 return 1;
10730 }
10731
10732 WARN((pi_desc->sn == 1),
10733 "Warning: SN field of posted-interrupts "
10734 "is set before blocking\n");
10735
10736 /*
10737 * Since vCPU can be preempted during this process,
10738 * vcpu->cpu could be different with pre_pcpu, we
10739 * need to set pre_pcpu as the destination of wakeup
10740 * notification event, then we can find the right vCPU
10741 * to wakeup in wakeup handler if interrupts happen
10742 * when the vCPU is in blocked state.
10743 */
10744 dest = cpu_physical_id(vcpu->pre_pcpu);
10745
10746 if (x2apic_enabled())
10747 new.ndst = dest;
10748 else
10749 new.ndst = (dest << 8) & 0xFF00;
10750
10751 /* set 'NV' to 'wakeup vector' */
10752 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10753 } while (cmpxchg(&pi_desc->control, old.control,
10754 new.control) != old.control);
10755
10756 return 0;
10757 }
10758
10759 static void vmx_post_block(struct kvm_vcpu *vcpu)
10760 {
10761 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10762 struct pi_desc old, new;
10763 unsigned int dest;
10764 unsigned long flags;
10765
10766 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10767 !irq_remapping_cap(IRQ_POSTING_CAP))
10768 return;
10769
10770 do {
10771 old.control = new.control = pi_desc->control;
10772
10773 dest = cpu_physical_id(vcpu->cpu);
10774
10775 if (x2apic_enabled())
10776 new.ndst = dest;
10777 else
10778 new.ndst = (dest << 8) & 0xFF00;
10779
10780 /* Allow posting non-urgent interrupts */
10781 new.sn = 0;
10782
10783 /* set 'NV' to 'notification vector' */
10784 new.nv = POSTED_INTR_VECTOR;
10785 } while (cmpxchg(&pi_desc->control, old.control,
10786 new.control) != old.control);
10787
10788 if(vcpu->pre_pcpu != -1) {
10789 spin_lock_irqsave(
10790 &per_cpu(blocked_vcpu_on_cpu_lock,
10791 vcpu->pre_pcpu), flags);
10792 list_del(&vcpu->blocked_vcpu_list);
10793 spin_unlock_irqrestore(
10794 &per_cpu(blocked_vcpu_on_cpu_lock,
10795 vcpu->pre_pcpu), flags);
10796 vcpu->pre_pcpu = -1;
10797 }
10798 }
10799
10800 /*
10801 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10802 *
10803 * @kvm: kvm
10804 * @host_irq: host irq of the interrupt
10805 * @guest_irq: gsi of the interrupt
10806 * @set: set or unset PI
10807 * returns 0 on success, < 0 on failure
10808 */
10809 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10810 uint32_t guest_irq, bool set)
10811 {
10812 struct kvm_kernel_irq_routing_entry *e;
10813 struct kvm_irq_routing_table *irq_rt;
10814 struct kvm_lapic_irq irq;
10815 struct kvm_vcpu *vcpu;
10816 struct vcpu_data vcpu_info;
10817 int idx, ret = -EINVAL;
10818
10819 if (!kvm_arch_has_assigned_device(kvm) ||
10820 !irq_remapping_cap(IRQ_POSTING_CAP))
10821 return 0;
10822
10823 idx = srcu_read_lock(&kvm->irq_srcu);
10824 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10825 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10826
10827 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10828 if (e->type != KVM_IRQ_ROUTING_MSI)
10829 continue;
10830 /*
10831 * VT-d PI cannot support posting multicast/broadcast
10832 * interrupts to a vCPU, we still use interrupt remapping
10833 * for these kind of interrupts.
10834 *
10835 * For lowest-priority interrupts, we only support
10836 * those with single CPU as the destination, e.g. user
10837 * configures the interrupts via /proc/irq or uses
10838 * irqbalance to make the interrupts single-CPU.
10839 *
10840 * We will support full lowest-priority interrupt later.
10841 */
10842
10843 kvm_set_msi_irq(e, &irq);
10844 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
10845 /*
10846 * Make sure the IRTE is in remapped mode if
10847 * we don't handle it in posted mode.
10848 */
10849 ret = irq_set_vcpu_affinity(host_irq, NULL);
10850 if (ret < 0) {
10851 printk(KERN_INFO
10852 "failed to back to remapped mode, irq: %u\n",
10853 host_irq);
10854 goto out;
10855 }
10856
10857 continue;
10858 }
10859
10860 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10861 vcpu_info.vector = irq.vector;
10862
10863 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
10864 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10865
10866 if (set)
10867 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10868 else {
10869 /* suppress notification event before unposting */
10870 pi_set_sn(vcpu_to_pi_desc(vcpu));
10871 ret = irq_set_vcpu_affinity(host_irq, NULL);
10872 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10873 }
10874
10875 if (ret < 0) {
10876 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10877 __func__);
10878 goto out;
10879 }
10880 }
10881
10882 ret = 0;
10883 out:
10884 srcu_read_unlock(&kvm->irq_srcu, idx);
10885 return ret;
10886 }
10887
10888 static struct kvm_x86_ops vmx_x86_ops = {
10889 .cpu_has_kvm_support = cpu_has_kvm_support,
10890 .disabled_by_bios = vmx_disabled_by_bios,
10891 .hardware_setup = hardware_setup,
10892 .hardware_unsetup = hardware_unsetup,
10893 .check_processor_compatibility = vmx_check_processor_compat,
10894 .hardware_enable = hardware_enable,
10895 .hardware_disable = hardware_disable,
10896 .cpu_has_accelerated_tpr = report_flexpriority,
10897 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10898
10899 .vcpu_create = vmx_create_vcpu,
10900 .vcpu_free = vmx_free_vcpu,
10901 .vcpu_reset = vmx_vcpu_reset,
10902
10903 .prepare_guest_switch = vmx_save_host_state,
10904 .vcpu_load = vmx_vcpu_load,
10905 .vcpu_put = vmx_vcpu_put,
10906
10907 .update_bp_intercept = update_exception_bitmap,
10908 .get_msr = vmx_get_msr,
10909 .set_msr = vmx_set_msr,
10910 .get_segment_base = vmx_get_segment_base,
10911 .get_segment = vmx_get_segment,
10912 .set_segment = vmx_set_segment,
10913 .get_cpl = vmx_get_cpl,
10914 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10915 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10916 .decache_cr3 = vmx_decache_cr3,
10917 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10918 .set_cr0 = vmx_set_cr0,
10919 .set_cr3 = vmx_set_cr3,
10920 .set_cr4 = vmx_set_cr4,
10921 .set_efer = vmx_set_efer,
10922 .get_idt = vmx_get_idt,
10923 .set_idt = vmx_set_idt,
10924 .get_gdt = vmx_get_gdt,
10925 .set_gdt = vmx_set_gdt,
10926 .get_dr6 = vmx_get_dr6,
10927 .set_dr6 = vmx_set_dr6,
10928 .set_dr7 = vmx_set_dr7,
10929 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10930 .cache_reg = vmx_cache_reg,
10931 .get_rflags = vmx_get_rflags,
10932 .set_rflags = vmx_set_rflags,
10933
10934 .get_pkru = vmx_get_pkru,
10935
10936 .fpu_activate = vmx_fpu_activate,
10937 .fpu_deactivate = vmx_fpu_deactivate,
10938
10939 .tlb_flush = vmx_flush_tlb,
10940
10941 .run = vmx_vcpu_run,
10942 .handle_exit = vmx_handle_exit,
10943 .skip_emulated_instruction = skip_emulated_instruction,
10944 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10945 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10946 .patch_hypercall = vmx_patch_hypercall,
10947 .set_irq = vmx_inject_irq,
10948 .set_nmi = vmx_inject_nmi,
10949 .queue_exception = vmx_queue_exception,
10950 .cancel_injection = vmx_cancel_injection,
10951 .interrupt_allowed = vmx_interrupt_allowed,
10952 .nmi_allowed = vmx_nmi_allowed,
10953 .get_nmi_mask = vmx_get_nmi_mask,
10954 .set_nmi_mask = vmx_set_nmi_mask,
10955 .enable_nmi_window = enable_nmi_window,
10956 .enable_irq_window = enable_irq_window,
10957 .update_cr8_intercept = update_cr8_intercept,
10958 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10959 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10960 .get_enable_apicv = vmx_get_enable_apicv,
10961 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
10962 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10963 .hwapic_irr_update = vmx_hwapic_irr_update,
10964 .hwapic_isr_update = vmx_hwapic_isr_update,
10965 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10966 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10967
10968 .set_tss_addr = vmx_set_tss_addr,
10969 .get_tdp_level = get_ept_level,
10970 .get_mt_mask = vmx_get_mt_mask,
10971
10972 .get_exit_info = vmx_get_exit_info,
10973
10974 .get_lpage_level = vmx_get_lpage_level,
10975
10976 .cpuid_update = vmx_cpuid_update,
10977
10978 .rdtscp_supported = vmx_rdtscp_supported,
10979 .invpcid_supported = vmx_invpcid_supported,
10980
10981 .set_supported_cpuid = vmx_set_supported_cpuid,
10982
10983 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10984
10985 .read_tsc_offset = vmx_read_tsc_offset,
10986 .write_tsc_offset = vmx_write_tsc_offset,
10987 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
10988 .read_l1_tsc = vmx_read_l1_tsc,
10989
10990 .set_tdp_cr3 = vmx_set_cr3,
10991
10992 .check_intercept = vmx_check_intercept,
10993 .handle_external_intr = vmx_handle_external_intr,
10994 .mpx_supported = vmx_mpx_supported,
10995 .xsaves_supported = vmx_xsaves_supported,
10996
10997 .check_nested_events = vmx_check_nested_events,
10998
10999 .sched_in = vmx_sched_in,
11000
11001 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11002 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11003 .flush_log_dirty = vmx_flush_log_dirty,
11004 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11005
11006 .pre_block = vmx_pre_block,
11007 .post_block = vmx_post_block,
11008
11009 .pmu_ops = &intel_pmu_ops,
11010
11011 .update_pi_irte = vmx_update_pi_irte,
11012 };
11013
11014 static int __init vmx_init(void)
11015 {
11016 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11017 __alignof__(struct vcpu_vmx), THIS_MODULE);
11018 if (r)
11019 return r;
11020
11021 #ifdef CONFIG_KEXEC_CORE
11022 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11023 crash_vmclear_local_loaded_vmcss);
11024 #endif
11025
11026 return 0;
11027 }
11028
11029 static void __exit vmx_exit(void)
11030 {
11031 #ifdef CONFIG_KEXEC_CORE
11032 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11033 synchronize_rcu();
11034 #endif
11035
11036 kvm_exit();
11037 }
11038
11039 module_init(vmx_init)
11040 module_exit(vmx_exit)
This page took 0.254564 seconds and 6 git commands to generate.