2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
43 #include <asm/virtext.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
50 #include <asm/irq_remapping.h>
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
62 static const struct x86_cpu_id vmx_cpu_id
[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
66 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
68 static bool __read_mostly enable_vpid
= 1;
69 module_param_named(vpid
, enable_vpid
, bool, 0444);
71 static bool __read_mostly flexpriority_enabled
= 1;
72 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
74 static bool __read_mostly enable_ept
= 1;
75 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
77 static bool __read_mostly enable_unrestricted_guest
= 1;
78 module_param_named(unrestricted_guest
,
79 enable_unrestricted_guest
, bool, S_IRUGO
);
81 static bool __read_mostly enable_ept_ad_bits
= 1;
82 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
84 static bool __read_mostly emulate_invalid_guest_state
= true;
85 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
87 static bool __read_mostly vmm_exclusive
= 1;
88 module_param(vmm_exclusive
, bool, S_IRUGO
);
90 static bool __read_mostly fasteoi
= 1;
91 module_param(fasteoi
, bool, S_IRUGO
);
93 static bool __read_mostly enable_apicv
= 1;
94 module_param(enable_apicv
, bool, S_IRUGO
);
96 static bool __read_mostly enable_shadow_vmcs
= 1;
97 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
103 static bool __read_mostly nested
= 0;
104 module_param(nested
, bool, S_IRUGO
);
106 static u64 __read_mostly host_xss
;
108 static bool __read_mostly enable_pml
= 1;
109 module_param_named(pml
, enable_pml
, bool, S_IRUGO
);
111 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
113 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
115 #define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
117 #define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
121 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
124 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
126 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
132 * According to test, this time is usually smaller than 128 cycles.
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
139 #define KVM_VMX_DEFAULT_PLE_GAP 128
140 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
146 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
147 module_param(ple_gap
, int, S_IRUGO
);
149 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
150 module_param(ple_window
, int, S_IRUGO
);
152 /* Default doubles per-vcpu window every exit. */
153 static int ple_window_grow
= KVM_VMX_DEFAULT_PLE_WINDOW_GROW
;
154 module_param(ple_window_grow
, int, S_IRUGO
);
156 /* Default resets per-vcpu window every exit to ple_window. */
157 static int ple_window_shrink
= KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK
;
158 module_param(ple_window_shrink
, int, S_IRUGO
);
160 /* Default is to compute the maximum so we can never overflow. */
161 static int ple_window_actual_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
162 static int ple_window_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
163 module_param(ple_window_max
, int, S_IRUGO
);
165 extern const ulong vmx_return
;
167 #define NR_AUTOLOAD_MSRS 8
168 #define VMCS02_POOL_SIZE 1
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
185 struct list_head loaded_vmcss_on_cpu_link
;
188 struct shared_msr_entry
{
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
207 typedef u64 natural_width
;
208 struct __packed vmcs12
{
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
215 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding
[7]; /* room for future expansion */
221 u64 vm_exit_msr_store_addr
;
222 u64 vm_exit_msr_load_addr
;
223 u64 vm_entry_msr_load_addr
;
225 u64 virtual_apic_page_addr
;
226 u64 apic_access_addr
;
227 u64 posted_intr_desc_addr
;
229 u64 eoi_exit_bitmap0
;
230 u64 eoi_exit_bitmap1
;
231 u64 eoi_exit_bitmap2
;
232 u64 eoi_exit_bitmap3
;
234 u64 guest_physical_address
;
235 u64 vmcs_link_pointer
;
236 u64 guest_ia32_debugctl
;
239 u64 guest_ia32_perf_global_ctrl
;
247 u64 host_ia32_perf_global_ctrl
;
248 u64 padding64
[8]; /* room for future expansion */
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
255 natural_width cr0_guest_host_mask
;
256 natural_width cr4_guest_host_mask
;
257 natural_width cr0_read_shadow
;
258 natural_width cr4_read_shadow
;
259 natural_width cr3_target_value0
;
260 natural_width cr3_target_value1
;
261 natural_width cr3_target_value2
;
262 natural_width cr3_target_value3
;
263 natural_width exit_qualification
;
264 natural_width guest_linear_address
;
265 natural_width guest_cr0
;
266 natural_width guest_cr3
;
267 natural_width guest_cr4
;
268 natural_width guest_es_base
;
269 natural_width guest_cs_base
;
270 natural_width guest_ss_base
;
271 natural_width guest_ds_base
;
272 natural_width guest_fs_base
;
273 natural_width guest_gs_base
;
274 natural_width guest_ldtr_base
;
275 natural_width guest_tr_base
;
276 natural_width guest_gdtr_base
;
277 natural_width guest_idtr_base
;
278 natural_width guest_dr7
;
279 natural_width guest_rsp
;
280 natural_width guest_rip
;
281 natural_width guest_rflags
;
282 natural_width guest_pending_dbg_exceptions
;
283 natural_width guest_sysenter_esp
;
284 natural_width guest_sysenter_eip
;
285 natural_width host_cr0
;
286 natural_width host_cr3
;
287 natural_width host_cr4
;
288 natural_width host_fs_base
;
289 natural_width host_gs_base
;
290 natural_width host_tr_base
;
291 natural_width host_gdtr_base
;
292 natural_width host_idtr_base
;
293 natural_width host_ia32_sysenter_esp
;
294 natural_width host_ia32_sysenter_eip
;
295 natural_width host_rsp
;
296 natural_width host_rip
;
297 natural_width paddingl
[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control
;
299 u32 cpu_based_vm_exec_control
;
300 u32 exception_bitmap
;
301 u32 page_fault_error_code_mask
;
302 u32 page_fault_error_code_match
;
303 u32 cr3_target_count
;
304 u32 vm_exit_controls
;
305 u32 vm_exit_msr_store_count
;
306 u32 vm_exit_msr_load_count
;
307 u32 vm_entry_controls
;
308 u32 vm_entry_msr_load_count
;
309 u32 vm_entry_intr_info_field
;
310 u32 vm_entry_exception_error_code
;
311 u32 vm_entry_instruction_len
;
313 u32 secondary_vm_exec_control
;
314 u32 vm_instruction_error
;
316 u32 vm_exit_intr_info
;
317 u32 vm_exit_intr_error_code
;
318 u32 idt_vectoring_info_field
;
319 u32 idt_vectoring_error_code
;
320 u32 vm_exit_instruction_len
;
321 u32 vmx_instruction_info
;
328 u32 guest_ldtr_limit
;
330 u32 guest_gdtr_limit
;
331 u32 guest_idtr_limit
;
332 u32 guest_es_ar_bytes
;
333 u32 guest_cs_ar_bytes
;
334 u32 guest_ss_ar_bytes
;
335 u32 guest_ds_ar_bytes
;
336 u32 guest_fs_ar_bytes
;
337 u32 guest_gs_ar_bytes
;
338 u32 guest_ldtr_ar_bytes
;
339 u32 guest_tr_ar_bytes
;
340 u32 guest_interruptibility_info
;
341 u32 guest_activity_state
;
342 u32 guest_sysenter_cs
;
343 u32 host_ia32_sysenter_cs
;
344 u32 vmx_preemption_timer_value
;
345 u32 padding32
[7]; /* room for future expansion */
346 u16 virtual_processor_id
;
348 u16 guest_es_selector
;
349 u16 guest_cs_selector
;
350 u16 guest_ss_selector
;
351 u16 guest_ds_selector
;
352 u16 guest_fs_selector
;
353 u16 guest_gs_selector
;
354 u16 guest_ldtr_selector
;
355 u16 guest_tr_selector
;
356 u16 guest_intr_status
;
357 u16 host_es_selector
;
358 u16 host_cs_selector
;
359 u16 host_ss_selector
;
360 u16 host_ds_selector
;
361 u16 host_fs_selector
;
362 u16 host_gs_selector
;
363 u16 host_tr_selector
;
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
371 #define VMCS12_REVISION 0x11e57ed0
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
378 #define VMCS12_SIZE 0x1000
380 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
382 struct list_head list
;
384 struct loaded_vmcs vmcs02
;
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
392 /* Has the level1 guest done vmxon? */
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
398 /* The host-usable pointer to the above */
399 struct page
*current_vmcs12_page
;
400 struct vmcs12
*current_vmcs12
;
401 struct vmcs
*current_shadow_vmcs
;
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
406 bool sync_shadow_vmcs
;
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool
;
411 u64 vmcs01_tsc_offset
;
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending
;
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
418 struct page
*apic_access_page
;
419 struct page
*virtual_apic_page
;
420 struct page
*pi_desc_page
;
421 struct pi_desc
*pi_desc
;
424 u64 msr_ia32_feature_control
;
426 struct hrtimer preemption_timer
;
427 bool preemption_timer_expired
;
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
435 u32 nested_vmx_procbased_ctls_low
;
436 u32 nested_vmx_procbased_ctls_high
;
437 u32 nested_vmx_true_procbased_ctls_low
;
438 u32 nested_vmx_secondary_ctls_low
;
439 u32 nested_vmx_secondary_ctls_high
;
440 u32 nested_vmx_pinbased_ctls_low
;
441 u32 nested_vmx_pinbased_ctls_high
;
442 u32 nested_vmx_exit_ctls_low
;
443 u32 nested_vmx_exit_ctls_high
;
444 u32 nested_vmx_true_exit_ctls_low
;
445 u32 nested_vmx_entry_ctls_low
;
446 u32 nested_vmx_entry_ctls_high
;
447 u32 nested_vmx_true_entry_ctls_low
;
448 u32 nested_vmx_misc_low
;
449 u32 nested_vmx_misc_high
;
450 u32 nested_vmx_ept_caps
;
451 u32 nested_vmx_vpid_caps
;
454 #define POSTED_INTR_ON 0
455 #define POSTED_INTR_SN 1
457 /* Posted-Interrupt Descriptor */
459 u32 pir
[8]; /* Posted interrupt requested */
462 /* bit 256 - Outstanding Notification */
464 /* bit 257 - Suppress Notification */
466 /* bit 271:258 - Reserved */
468 /* bit 279:272 - Notification Vector */
470 /* bit 287:280 - Reserved */
472 /* bit 319:288 - Notification Destination */
480 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
482 return test_and_set_bit(POSTED_INTR_ON
,
483 (unsigned long *)&pi_desc
->control
);
486 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
488 return test_and_clear_bit(POSTED_INTR_ON
,
489 (unsigned long *)&pi_desc
->control
);
492 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
494 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
497 static inline void pi_clear_sn(struct pi_desc
*pi_desc
)
499 return clear_bit(POSTED_INTR_SN
,
500 (unsigned long *)&pi_desc
->control
);
503 static inline void pi_set_sn(struct pi_desc
*pi_desc
)
505 return set_bit(POSTED_INTR_SN
,
506 (unsigned long *)&pi_desc
->control
);
509 static inline int pi_test_on(struct pi_desc
*pi_desc
)
511 return test_bit(POSTED_INTR_ON
,
512 (unsigned long *)&pi_desc
->control
);
515 static inline int pi_test_sn(struct pi_desc
*pi_desc
)
517 return test_bit(POSTED_INTR_SN
,
518 (unsigned long *)&pi_desc
->control
);
522 struct kvm_vcpu vcpu
;
523 unsigned long host_rsp
;
525 bool nmi_known_unmasked
;
527 u32 idt_vectoring_info
;
529 struct shared_msr_entry
*guest_msrs
;
532 unsigned long host_idt_base
;
534 u64 msr_host_kernel_gs_base
;
535 u64 msr_guest_kernel_gs_base
;
537 u32 vm_entry_controls_shadow
;
538 u32 vm_exit_controls_shadow
;
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
544 struct loaded_vmcs vmcs01
;
545 struct loaded_vmcs
*loaded_vmcs
;
546 bool __launched
; /* temporary, used in vmx_vcpu_run */
547 struct msr_autoload
{
549 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
550 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
554 u16 fs_sel
, gs_sel
, ldt_sel
;
558 int gs_ldt_reload_needed
;
559 int fs_reload_needed
;
560 u64 msr_host_bndcfgs
;
561 unsigned long vmcs_host_cr4
; /* May not match real cr4 */
566 struct kvm_segment segs
[8];
569 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
570 struct kvm_save_segment
{
578 bool emulation_required
;
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked
;
583 s64 vnmi_blocked_time
;
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc
;
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested
;
592 /* Dynamic PLE window. */
594 bool ple_window_dirty
;
596 /* Support for PML */
597 #define PML_ENTITY_NUM 512
600 u64 current_tsc_ratio
;
602 bool guest_pkru_valid
;
607 enum segment_cache_field
{
616 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
618 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
621 static struct pi_desc
*vcpu_to_pi_desc(struct kvm_vcpu
*vcpu
)
623 return &(to_vmx(vcpu
)->pi_desc
);
626 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
627 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
628 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
629 [number##_HIGH] = VMCS12_OFFSET(name)+4
632 static unsigned long shadow_read_only_fields
[] = {
634 * We do NOT shadow fields that are modified when L0
635 * traps and emulates any vmx instruction (e.g. VMPTRLD,
636 * VMXON...) executed by L1.
637 * For example, VM_INSTRUCTION_ERROR is read
638 * by L1 if a vmx instruction fails (part of the error path).
639 * Note the code assumes this logic. If for some reason
640 * we start shadowing these fields then we need to
641 * force a shadow sync when L0 emulates vmx instructions
642 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
643 * by nested_vmx_failValid)
647 VM_EXIT_INSTRUCTION_LEN
,
648 IDT_VECTORING_INFO_FIELD
,
649 IDT_VECTORING_ERROR_CODE
,
650 VM_EXIT_INTR_ERROR_CODE
,
652 GUEST_LINEAR_ADDRESS
,
653 GUEST_PHYSICAL_ADDRESS
655 static int max_shadow_read_only_fields
=
656 ARRAY_SIZE(shadow_read_only_fields
);
658 static unsigned long shadow_read_write_fields
[] = {
665 GUEST_INTERRUPTIBILITY_INFO
,
678 CPU_BASED_VM_EXEC_CONTROL
,
679 VM_ENTRY_EXCEPTION_ERROR_CODE
,
680 VM_ENTRY_INTR_INFO_FIELD
,
681 VM_ENTRY_INSTRUCTION_LEN
,
682 VM_ENTRY_EXCEPTION_ERROR_CODE
,
688 static int max_shadow_read_write_fields
=
689 ARRAY_SIZE(shadow_read_write_fields
);
691 static const unsigned short vmcs_field_to_offset_table
[] = {
692 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
693 FIELD(POSTED_INTR_NV
, posted_intr_nv
),
694 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
695 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
696 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
697 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
698 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
699 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
700 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
701 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
702 FIELD(GUEST_INTR_STATUS
, guest_intr_status
),
703 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
704 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
705 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
706 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
707 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
708 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
709 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
710 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
711 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
712 FIELD64(MSR_BITMAP
, msr_bitmap
),
713 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
714 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
715 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
716 FIELD64(TSC_OFFSET
, tsc_offset
),
717 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
718 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
719 FIELD64(POSTED_INTR_DESC_ADDR
, posted_intr_desc_addr
),
720 FIELD64(EPT_POINTER
, ept_pointer
),
721 FIELD64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap0
),
722 FIELD64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap1
),
723 FIELD64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap2
),
724 FIELD64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap3
),
725 FIELD64(XSS_EXIT_BITMAP
, xss_exit_bitmap
),
726 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
727 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
728 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
729 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
730 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
731 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
732 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
733 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
734 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
735 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
736 FIELD64(GUEST_BNDCFGS
, guest_bndcfgs
),
737 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
738 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
739 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
740 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
741 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
742 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
743 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
744 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
745 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
746 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
747 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
748 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
749 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
750 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
751 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
752 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
753 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
754 FIELD(TPR_THRESHOLD
, tpr_threshold
),
755 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
756 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
757 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
758 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
759 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
760 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
761 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
762 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
763 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
764 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
765 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
766 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
767 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
768 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
769 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
770 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
771 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
772 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
773 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
774 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
775 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
776 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
777 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
778 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
779 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
780 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
781 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
782 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
783 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
784 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
785 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
786 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
787 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
788 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
789 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
790 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
791 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
792 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
793 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
794 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
795 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
796 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
797 FIELD(GUEST_CR0
, guest_cr0
),
798 FIELD(GUEST_CR3
, guest_cr3
),
799 FIELD(GUEST_CR4
, guest_cr4
),
800 FIELD(GUEST_ES_BASE
, guest_es_base
),
801 FIELD(GUEST_CS_BASE
, guest_cs_base
),
802 FIELD(GUEST_SS_BASE
, guest_ss_base
),
803 FIELD(GUEST_DS_BASE
, guest_ds_base
),
804 FIELD(GUEST_FS_BASE
, guest_fs_base
),
805 FIELD(GUEST_GS_BASE
, guest_gs_base
),
806 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
807 FIELD(GUEST_TR_BASE
, guest_tr_base
),
808 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
809 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
810 FIELD(GUEST_DR7
, guest_dr7
),
811 FIELD(GUEST_RSP
, guest_rsp
),
812 FIELD(GUEST_RIP
, guest_rip
),
813 FIELD(GUEST_RFLAGS
, guest_rflags
),
814 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
815 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
816 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
817 FIELD(HOST_CR0
, host_cr0
),
818 FIELD(HOST_CR3
, host_cr3
),
819 FIELD(HOST_CR4
, host_cr4
),
820 FIELD(HOST_FS_BASE
, host_fs_base
),
821 FIELD(HOST_GS_BASE
, host_gs_base
),
822 FIELD(HOST_TR_BASE
, host_tr_base
),
823 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
824 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
825 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
826 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
827 FIELD(HOST_RSP
, host_rsp
),
828 FIELD(HOST_RIP
, host_rip
),
831 static inline short vmcs_field_to_offset(unsigned long field
)
833 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table
) > SHRT_MAX
);
835 if (field
>= ARRAY_SIZE(vmcs_field_to_offset_table
) ||
836 vmcs_field_to_offset_table
[field
] == 0)
839 return vmcs_field_to_offset_table
[field
];
842 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
844 return to_vmx(vcpu
)->nested
.current_vmcs12
;
847 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
849 struct page
*page
= kvm_vcpu_gfn_to_page(vcpu
, addr
>> PAGE_SHIFT
);
850 if (is_error_page(page
))
856 static void nested_release_page(struct page
*page
)
858 kvm_release_page_dirty(page
);
861 static void nested_release_page_clean(struct page
*page
)
863 kvm_release_page_clean(page
);
866 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
867 static u64
construct_eptp(unsigned long root_hpa
);
868 static void kvm_cpu_vmxon(u64 addr
);
869 static void kvm_cpu_vmxoff(void);
870 static bool vmx_xsaves_supported(void);
871 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
872 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
873 struct kvm_segment
*var
, int seg
);
874 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
875 struct kvm_segment
*var
, int seg
);
876 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
877 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
878 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
);
879 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
880 static int alloc_identity_pagetable(struct kvm
*kvm
);
882 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
883 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
885 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
886 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
888 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
889 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
892 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
893 * can find which vCPU should be waken up.
895 static DEFINE_PER_CPU(struct list_head
, blocked_vcpu_on_cpu
);
896 static DEFINE_PER_CPU(spinlock_t
, blocked_vcpu_on_cpu_lock
);
898 static unsigned long *vmx_io_bitmap_a
;
899 static unsigned long *vmx_io_bitmap_b
;
900 static unsigned long *vmx_msr_bitmap_legacy
;
901 static unsigned long *vmx_msr_bitmap_longmode
;
902 static unsigned long *vmx_msr_bitmap_legacy_x2apic
;
903 static unsigned long *vmx_msr_bitmap_longmode_x2apic
;
904 static unsigned long *vmx_msr_bitmap_nested
;
905 static unsigned long *vmx_vmread_bitmap
;
906 static unsigned long *vmx_vmwrite_bitmap
;
908 static bool cpu_has_load_ia32_efer
;
909 static bool cpu_has_load_perf_global_ctrl
;
911 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
912 static DEFINE_SPINLOCK(vmx_vpid_lock
);
914 static struct vmcs_config
{
918 u32 pin_based_exec_ctrl
;
919 u32 cpu_based_exec_ctrl
;
920 u32 cpu_based_2nd_exec_ctrl
;
925 static struct vmx_capability
{
930 #define VMX_SEGMENT_FIELD(seg) \
931 [VCPU_SREG_##seg] = { \
932 .selector = GUEST_##seg##_SELECTOR, \
933 .base = GUEST_##seg##_BASE, \
934 .limit = GUEST_##seg##_LIMIT, \
935 .ar_bytes = GUEST_##seg##_AR_BYTES, \
938 static const struct kvm_vmx_segment_field
{
943 } kvm_vmx_segment_fields
[] = {
944 VMX_SEGMENT_FIELD(CS
),
945 VMX_SEGMENT_FIELD(DS
),
946 VMX_SEGMENT_FIELD(ES
),
947 VMX_SEGMENT_FIELD(FS
),
948 VMX_SEGMENT_FIELD(GS
),
949 VMX_SEGMENT_FIELD(SS
),
950 VMX_SEGMENT_FIELD(TR
),
951 VMX_SEGMENT_FIELD(LDTR
),
954 static u64 host_efer
;
956 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
959 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
960 * away by decrementing the array size.
962 static const u32 vmx_msr_index
[] = {
964 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
966 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
969 static inline bool is_exception_n(u32 intr_info
, u8 vector
)
971 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
972 INTR_INFO_VALID_MASK
)) ==
973 (INTR_TYPE_HARD_EXCEPTION
| vector
| INTR_INFO_VALID_MASK
);
976 static inline bool is_debug(u32 intr_info
)
978 return is_exception_n(intr_info
, DB_VECTOR
);
981 static inline bool is_breakpoint(u32 intr_info
)
983 return is_exception_n(intr_info
, BP_VECTOR
);
986 static inline bool is_page_fault(u32 intr_info
)
988 return is_exception_n(intr_info
, PF_VECTOR
);
991 static inline bool is_no_device(u32 intr_info
)
993 return is_exception_n(intr_info
, NM_VECTOR
);
996 static inline bool is_invalid_opcode(u32 intr_info
)
998 return is_exception_n(intr_info
, UD_VECTOR
);
1001 static inline bool is_external_interrupt(u32 intr_info
)
1003 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1004 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1007 static inline bool is_machine_check(u32 intr_info
)
1009 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
1010 INTR_INFO_VALID_MASK
)) ==
1011 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
1014 static inline bool cpu_has_vmx_msr_bitmap(void)
1016 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
1019 static inline bool cpu_has_vmx_tpr_shadow(void)
1021 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
1024 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu
*vcpu
)
1026 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu
);
1029 static inline bool cpu_has_secondary_exec_ctrls(void)
1031 return vmcs_config
.cpu_based_exec_ctrl
&
1032 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1035 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1037 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1038 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1041 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1043 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1044 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
1047 static inline bool cpu_has_vmx_apic_register_virt(void)
1049 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1050 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
1053 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1055 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1056 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
1059 static inline bool cpu_has_vmx_posted_intr(void)
1061 return IS_ENABLED(CONFIG_X86_LOCAL_APIC
) &&
1062 vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
1065 static inline bool cpu_has_vmx_apicv(void)
1067 return cpu_has_vmx_apic_register_virt() &&
1068 cpu_has_vmx_virtual_intr_delivery() &&
1069 cpu_has_vmx_posted_intr();
1072 static inline bool cpu_has_vmx_flexpriority(void)
1074 return cpu_has_vmx_tpr_shadow() &&
1075 cpu_has_vmx_virtualize_apic_accesses();
1078 static inline bool cpu_has_vmx_ept_execute_only(void)
1080 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
1083 static inline bool cpu_has_vmx_ept_2m_page(void)
1085 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
1088 static inline bool cpu_has_vmx_ept_1g_page(void)
1090 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
1093 static inline bool cpu_has_vmx_ept_4levels(void)
1095 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
1098 static inline bool cpu_has_vmx_ept_ad_bits(void)
1100 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
1103 static inline bool cpu_has_vmx_invept_context(void)
1105 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
1108 static inline bool cpu_has_vmx_invept_global(void)
1110 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
1113 static inline bool cpu_has_vmx_invvpid_single(void)
1115 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
1118 static inline bool cpu_has_vmx_invvpid_global(void)
1120 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
1123 static inline bool cpu_has_vmx_ept(void)
1125 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1126 SECONDARY_EXEC_ENABLE_EPT
;
1129 static inline bool cpu_has_vmx_unrestricted_guest(void)
1131 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1132 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1135 static inline bool cpu_has_vmx_ple(void)
1137 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1138 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1141 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu
*vcpu
)
1143 return flexpriority_enabled
&& lapic_in_kernel(vcpu
);
1146 static inline bool cpu_has_vmx_vpid(void)
1148 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1149 SECONDARY_EXEC_ENABLE_VPID
;
1152 static inline bool cpu_has_vmx_rdtscp(void)
1154 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1155 SECONDARY_EXEC_RDTSCP
;
1158 static inline bool cpu_has_vmx_invpcid(void)
1160 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1161 SECONDARY_EXEC_ENABLE_INVPCID
;
1164 static inline bool cpu_has_virtual_nmis(void)
1166 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
1169 static inline bool cpu_has_vmx_wbinvd_exit(void)
1171 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1172 SECONDARY_EXEC_WBINVD_EXITING
;
1175 static inline bool cpu_has_vmx_shadow_vmcs(void)
1178 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1179 /* check if the cpu supports writing r/o exit information fields */
1180 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1183 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1184 SECONDARY_EXEC_SHADOW_VMCS
;
1187 static inline bool cpu_has_vmx_pml(void)
1189 return vmcs_config
.cpu_based_2nd_exec_ctrl
& SECONDARY_EXEC_ENABLE_PML
;
1192 static inline bool cpu_has_vmx_tsc_scaling(void)
1194 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1195 SECONDARY_EXEC_TSC_SCALING
;
1198 static inline bool report_flexpriority(void)
1200 return flexpriority_enabled
;
1203 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1205 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1208 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1210 return (vmcs12
->cpu_based_vm_exec_control
&
1211 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1212 (vmcs12
->secondary_vm_exec_control
& bit
);
1215 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
)
1217 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
1220 static inline bool nested_cpu_has_preemption_timer(struct vmcs12
*vmcs12
)
1222 return vmcs12
->pin_based_vm_exec_control
&
1223 PIN_BASED_VMX_PREEMPTION_TIMER
;
1226 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
1228 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
1231 static inline bool nested_cpu_has_xsaves(struct vmcs12
*vmcs12
)
1233 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
) &&
1234 vmx_xsaves_supported();
1237 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12
*vmcs12
)
1239 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
);
1242 static inline bool nested_cpu_has_vpid(struct vmcs12
*vmcs12
)
1244 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_VPID
);
1247 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12
*vmcs12
)
1249 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_APIC_REGISTER_VIRT
);
1252 static inline bool nested_cpu_has_vid(struct vmcs12
*vmcs12
)
1254 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
1257 static inline bool nested_cpu_has_posted_intr(struct vmcs12
*vmcs12
)
1259 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_POSTED_INTR
;
1262 static inline bool is_exception(u32 intr_info
)
1264 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1265 == (INTR_TYPE_HARD_EXCEPTION
| INTR_INFO_VALID_MASK
);
1268 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
1270 unsigned long exit_qualification
);
1271 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
1272 struct vmcs12
*vmcs12
,
1273 u32 reason
, unsigned long qualification
);
1275 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
1279 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
1280 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
1285 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
1291 } operand
= { vpid
, 0, gva
};
1293 asm volatile (__ex(ASM_VMX_INVVPID
)
1294 /* CF==1 or ZF==1 --> rc = -1 */
1295 "; ja 1f ; ud2 ; 1:"
1296 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
1299 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
1303 } operand
= {eptp
, gpa
};
1305 asm volatile (__ex(ASM_VMX_INVEPT
)
1306 /* CF==1 or ZF==1 --> rc = -1 */
1307 "; ja 1f ; ud2 ; 1:\n"
1308 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
1311 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
1315 i
= __find_msr_index(vmx
, msr
);
1317 return &vmx
->guest_msrs
[i
];
1321 static void vmcs_clear(struct vmcs
*vmcs
)
1323 u64 phys_addr
= __pa(vmcs
);
1326 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
1327 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1330 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
1334 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
1336 vmcs_clear(loaded_vmcs
->vmcs
);
1337 loaded_vmcs
->cpu
= -1;
1338 loaded_vmcs
->launched
= 0;
1341 static void vmcs_load(struct vmcs
*vmcs
)
1343 u64 phys_addr
= __pa(vmcs
);
1346 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
1347 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1350 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
1354 #ifdef CONFIG_KEXEC_CORE
1356 * This bitmap is used to indicate whether the vmclear
1357 * operation is enabled on all cpus. All disabled by
1360 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
1362 static inline void crash_enable_local_vmclear(int cpu
)
1364 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1367 static inline void crash_disable_local_vmclear(int cpu
)
1369 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1372 static inline int crash_local_vmclear_enabled(int cpu
)
1374 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1377 static void crash_vmclear_local_loaded_vmcss(void)
1379 int cpu
= raw_smp_processor_id();
1380 struct loaded_vmcs
*v
;
1382 if (!crash_local_vmclear_enabled(cpu
))
1385 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1386 loaded_vmcss_on_cpu_link
)
1387 vmcs_clear(v
->vmcs
);
1390 static inline void crash_enable_local_vmclear(int cpu
) { }
1391 static inline void crash_disable_local_vmclear(int cpu
) { }
1392 #endif /* CONFIG_KEXEC_CORE */
1394 static void __loaded_vmcs_clear(void *arg
)
1396 struct loaded_vmcs
*loaded_vmcs
= arg
;
1397 int cpu
= raw_smp_processor_id();
1399 if (loaded_vmcs
->cpu
!= cpu
)
1400 return; /* vcpu migration can race with cpu offline */
1401 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1402 per_cpu(current_vmcs
, cpu
) = NULL
;
1403 crash_disable_local_vmclear(cpu
);
1404 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1407 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1408 * is before setting loaded_vmcs->vcpu to -1 which is done in
1409 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1410 * then adds the vmcs into percpu list before it is deleted.
1414 loaded_vmcs_init(loaded_vmcs
);
1415 crash_enable_local_vmclear(cpu
);
1418 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1420 int cpu
= loaded_vmcs
->cpu
;
1423 smp_call_function_single(cpu
,
1424 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1427 static inline void vpid_sync_vcpu_single(int vpid
)
1432 if (cpu_has_vmx_invvpid_single())
1433 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vpid
, 0);
1436 static inline void vpid_sync_vcpu_global(void)
1438 if (cpu_has_vmx_invvpid_global())
1439 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1442 static inline void vpid_sync_context(int vpid
)
1444 if (cpu_has_vmx_invvpid_single())
1445 vpid_sync_vcpu_single(vpid
);
1447 vpid_sync_vcpu_global();
1450 static inline void ept_sync_global(void)
1452 if (cpu_has_vmx_invept_global())
1453 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1456 static inline void ept_sync_context(u64 eptp
)
1459 if (cpu_has_vmx_invept_context())
1460 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1466 static __always_inline
void vmcs_check16(unsigned long field
)
1468 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
1469 "16-bit accessor invalid for 64-bit field");
1470 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1471 "16-bit accessor invalid for 64-bit high field");
1472 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1473 "16-bit accessor invalid for 32-bit high field");
1474 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1475 "16-bit accessor invalid for natural width field");
1478 static __always_inline
void vmcs_check32(unsigned long field
)
1480 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1481 "32-bit accessor invalid for 16-bit field");
1482 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1483 "32-bit accessor invalid for natural width field");
1486 static __always_inline
void vmcs_check64(unsigned long field
)
1488 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1489 "64-bit accessor invalid for 16-bit field");
1490 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1491 "64-bit accessor invalid for 64-bit high field");
1492 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1493 "64-bit accessor invalid for 32-bit field");
1494 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1495 "64-bit accessor invalid for natural width field");
1498 static __always_inline
void vmcs_checkl(unsigned long field
)
1500 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1501 "Natural width accessor invalid for 16-bit field");
1502 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
1503 "Natural width accessor invalid for 64-bit field");
1504 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1505 "Natural width accessor invalid for 64-bit high field");
1506 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1507 "Natural width accessor invalid for 32-bit field");
1510 static __always_inline
unsigned long __vmcs_readl(unsigned long field
)
1512 unsigned long value
;
1514 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1515 : "=a"(value
) : "d"(field
) : "cc");
1519 static __always_inline u16
vmcs_read16(unsigned long field
)
1521 vmcs_check16(field
);
1522 return __vmcs_readl(field
);
1525 static __always_inline u32
vmcs_read32(unsigned long field
)
1527 vmcs_check32(field
);
1528 return __vmcs_readl(field
);
1531 static __always_inline u64
vmcs_read64(unsigned long field
)
1533 vmcs_check64(field
);
1534 #ifdef CONFIG_X86_64
1535 return __vmcs_readl(field
);
1537 return __vmcs_readl(field
) | ((u64
)__vmcs_readl(field
+1) << 32);
1541 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1544 return __vmcs_readl(field
);
1547 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1549 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1550 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1554 static __always_inline
void __vmcs_writel(unsigned long field
, unsigned long value
)
1558 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1559 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1560 if (unlikely(error
))
1561 vmwrite_error(field
, value
);
1564 static __always_inline
void vmcs_write16(unsigned long field
, u16 value
)
1566 vmcs_check16(field
);
1567 __vmcs_writel(field
, value
);
1570 static __always_inline
void vmcs_write32(unsigned long field
, u32 value
)
1572 vmcs_check32(field
);
1573 __vmcs_writel(field
, value
);
1576 static __always_inline
void vmcs_write64(unsigned long field
, u64 value
)
1578 vmcs_check64(field
);
1579 __vmcs_writel(field
, value
);
1580 #ifndef CONFIG_X86_64
1582 __vmcs_writel(field
+1, value
>> 32);
1586 static __always_inline
void vmcs_writel(unsigned long field
, unsigned long value
)
1589 __vmcs_writel(field
, value
);
1592 static __always_inline
void vmcs_clear_bits(unsigned long field
, u32 mask
)
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
1595 "vmcs_clear_bits does not support 64-bit fields");
1596 __vmcs_writel(field
, __vmcs_readl(field
) & ~mask
);
1599 static __always_inline
void vmcs_set_bits(unsigned long field
, u32 mask
)
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
1602 "vmcs_set_bits does not support 64-bit fields");
1603 __vmcs_writel(field
, __vmcs_readl(field
) | mask
);
1606 static inline void vm_entry_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1608 vmcs_write32(VM_ENTRY_CONTROLS
, val
);
1609 vmx
->vm_entry_controls_shadow
= val
;
1612 static inline void vm_entry_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1614 if (vmx
->vm_entry_controls_shadow
!= val
)
1615 vm_entry_controls_init(vmx
, val
);
1618 static inline u32
vm_entry_controls_get(struct vcpu_vmx
*vmx
)
1620 return vmx
->vm_entry_controls_shadow
;
1624 static inline void vm_entry_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1626 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) | val
);
1629 static inline void vm_entry_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1631 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) & ~val
);
1634 static inline void vm_exit_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1636 vmcs_write32(VM_EXIT_CONTROLS
, val
);
1637 vmx
->vm_exit_controls_shadow
= val
;
1640 static inline void vm_exit_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1642 if (vmx
->vm_exit_controls_shadow
!= val
)
1643 vm_exit_controls_init(vmx
, val
);
1646 static inline u32
vm_exit_controls_get(struct vcpu_vmx
*vmx
)
1648 return vmx
->vm_exit_controls_shadow
;
1652 static inline void vm_exit_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1654 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) | val
);
1657 static inline void vm_exit_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1659 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) & ~val
);
1662 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1664 vmx
->segment_cache
.bitmask
= 0;
1667 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1671 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1673 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1674 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1675 vmx
->segment_cache
.bitmask
= 0;
1677 ret
= vmx
->segment_cache
.bitmask
& mask
;
1678 vmx
->segment_cache
.bitmask
|= mask
;
1682 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1684 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1686 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1687 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1691 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1693 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1695 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1696 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1700 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1702 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1704 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1705 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1709 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1711 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1713 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1714 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1718 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1722 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1723 (1u << NM_VECTOR
) | (1u << DB_VECTOR
) | (1u << AC_VECTOR
);
1724 if ((vcpu
->guest_debug
&
1725 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1726 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1727 eb
|= 1u << BP_VECTOR
;
1728 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1731 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1732 if (vcpu
->fpu_active
)
1733 eb
&= ~(1u << NM_VECTOR
);
1735 /* When we are running a nested L2 guest and L1 specified for it a
1736 * certain exception bitmap, we must trap the same exceptions and pass
1737 * them to L1. When running L2, we will only handle the exceptions
1738 * specified above if L1 did not want them.
1740 if (is_guest_mode(vcpu
))
1741 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1743 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1746 static void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1747 unsigned long entry
, unsigned long exit
)
1749 vm_entry_controls_clearbit(vmx
, entry
);
1750 vm_exit_controls_clearbit(vmx
, exit
);
1753 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1756 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1760 if (cpu_has_load_ia32_efer
) {
1761 clear_atomic_switch_msr_special(vmx
,
1762 VM_ENTRY_LOAD_IA32_EFER
,
1763 VM_EXIT_LOAD_IA32_EFER
);
1767 case MSR_CORE_PERF_GLOBAL_CTRL
:
1768 if (cpu_has_load_perf_global_ctrl
) {
1769 clear_atomic_switch_msr_special(vmx
,
1770 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1771 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1777 for (i
= 0; i
< m
->nr
; ++i
)
1778 if (m
->guest
[i
].index
== msr
)
1784 m
->guest
[i
] = m
->guest
[m
->nr
];
1785 m
->host
[i
] = m
->host
[m
->nr
];
1786 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1787 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1790 static void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1791 unsigned long entry
, unsigned long exit
,
1792 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
1793 u64 guest_val
, u64 host_val
)
1795 vmcs_write64(guest_val_vmcs
, guest_val
);
1796 vmcs_write64(host_val_vmcs
, host_val
);
1797 vm_entry_controls_setbit(vmx
, entry
);
1798 vm_exit_controls_setbit(vmx
, exit
);
1801 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1802 u64 guest_val
, u64 host_val
)
1805 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1809 if (cpu_has_load_ia32_efer
) {
1810 add_atomic_switch_msr_special(vmx
,
1811 VM_ENTRY_LOAD_IA32_EFER
,
1812 VM_EXIT_LOAD_IA32_EFER
,
1815 guest_val
, host_val
);
1819 case MSR_CORE_PERF_GLOBAL_CTRL
:
1820 if (cpu_has_load_perf_global_ctrl
) {
1821 add_atomic_switch_msr_special(vmx
,
1822 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1823 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1824 GUEST_IA32_PERF_GLOBAL_CTRL
,
1825 HOST_IA32_PERF_GLOBAL_CTRL
,
1826 guest_val
, host_val
);
1830 case MSR_IA32_PEBS_ENABLE
:
1831 /* PEBS needs a quiescent period after being disabled (to write
1832 * a record). Disabling PEBS through VMX MSR swapping doesn't
1833 * provide that period, so a CPU could write host's record into
1836 wrmsrl(MSR_IA32_PEBS_ENABLE
, 0);
1839 for (i
= 0; i
< m
->nr
; ++i
)
1840 if (m
->guest
[i
].index
== msr
)
1843 if (i
== NR_AUTOLOAD_MSRS
) {
1844 printk_once(KERN_WARNING
"Not enough msr switch entries. "
1845 "Can't add msr %x\n", msr
);
1847 } else if (i
== m
->nr
) {
1849 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1850 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1853 m
->guest
[i
].index
= msr
;
1854 m
->guest
[i
].value
= guest_val
;
1855 m
->host
[i
].index
= msr
;
1856 m
->host
[i
].value
= host_val
;
1859 static void reload_tss(void)
1862 * VT restores TR but not its size. Useless.
1864 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
1865 struct desc_struct
*descs
;
1867 descs
= (void *)gdt
->address
;
1868 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
1872 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
1874 u64 guest_efer
= vmx
->vcpu
.arch
.efer
;
1875 u64 ignore_bits
= 0;
1879 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1880 * host CPUID is more efficient than testing guest CPUID
1881 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1883 if (boot_cpu_has(X86_FEATURE_SMEP
))
1884 guest_efer
|= EFER_NX
;
1885 else if (!(guest_efer
& EFER_NX
))
1886 ignore_bits
|= EFER_NX
;
1890 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1892 ignore_bits
|= EFER_SCE
;
1893 #ifdef CONFIG_X86_64
1894 ignore_bits
|= EFER_LMA
| EFER_LME
;
1895 /* SCE is meaningful only in long mode on Intel */
1896 if (guest_efer
& EFER_LMA
)
1897 ignore_bits
&= ~(u64
)EFER_SCE
;
1900 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1903 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1904 * On CPUs that support "load IA32_EFER", always switch EFER
1905 * atomically, since it's faster than switching it manually.
1907 if (cpu_has_load_ia32_efer
||
1908 (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
))) {
1909 if (!(guest_efer
& EFER_LMA
))
1910 guest_efer
&= ~EFER_LME
;
1911 if (guest_efer
!= host_efer
)
1912 add_atomic_switch_msr(vmx
, MSR_EFER
,
1913 guest_efer
, host_efer
);
1916 guest_efer
&= ~ignore_bits
;
1917 guest_efer
|= host_efer
& ignore_bits
;
1919 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
1920 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
1926 static unsigned long segment_base(u16 selector
)
1928 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
1929 struct desc_struct
*d
;
1930 unsigned long table_base
;
1933 if (!(selector
& ~3))
1936 table_base
= gdt
->address
;
1938 if (selector
& 4) { /* from ldt */
1939 u16 ldt_selector
= kvm_read_ldt();
1941 if (!(ldt_selector
& ~3))
1944 table_base
= segment_base(ldt_selector
);
1946 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
1947 v
= get_desc_base(d
);
1948 #ifdef CONFIG_X86_64
1949 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
1950 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
1955 static inline unsigned long kvm_read_tr_base(void)
1958 asm("str %0" : "=g"(tr
));
1959 return segment_base(tr
);
1962 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
1964 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1967 if (vmx
->host_state
.loaded
)
1970 vmx
->host_state
.loaded
= 1;
1972 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1973 * allow segment selectors with cpl > 0 or ti == 1.
1975 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
1976 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
1977 savesegment(fs
, vmx
->host_state
.fs_sel
);
1978 if (!(vmx
->host_state
.fs_sel
& 7)) {
1979 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
1980 vmx
->host_state
.fs_reload_needed
= 0;
1982 vmcs_write16(HOST_FS_SELECTOR
, 0);
1983 vmx
->host_state
.fs_reload_needed
= 1;
1985 savesegment(gs
, vmx
->host_state
.gs_sel
);
1986 if (!(vmx
->host_state
.gs_sel
& 7))
1987 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
1989 vmcs_write16(HOST_GS_SELECTOR
, 0);
1990 vmx
->host_state
.gs_ldt_reload_needed
= 1;
1993 #ifdef CONFIG_X86_64
1994 savesegment(ds
, vmx
->host_state
.ds_sel
);
1995 savesegment(es
, vmx
->host_state
.es_sel
);
1998 #ifdef CONFIG_X86_64
1999 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
2000 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
2002 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
2003 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
2006 #ifdef CONFIG_X86_64
2007 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2008 if (is_long_mode(&vmx
->vcpu
))
2009 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2011 if (boot_cpu_has(X86_FEATURE_MPX
))
2012 rdmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
2013 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
2014 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
2015 vmx
->guest_msrs
[i
].data
,
2016 vmx
->guest_msrs
[i
].mask
);
2019 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
2021 if (!vmx
->host_state
.loaded
)
2024 ++vmx
->vcpu
.stat
.host_state_reload
;
2025 vmx
->host_state
.loaded
= 0;
2026 #ifdef CONFIG_X86_64
2027 if (is_long_mode(&vmx
->vcpu
))
2028 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2030 if (vmx
->host_state
.gs_ldt_reload_needed
) {
2031 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
2032 #ifdef CONFIG_X86_64
2033 load_gs_index(vmx
->host_state
.gs_sel
);
2035 loadsegment(gs
, vmx
->host_state
.gs_sel
);
2038 if (vmx
->host_state
.fs_reload_needed
)
2039 loadsegment(fs
, vmx
->host_state
.fs_sel
);
2040 #ifdef CONFIG_X86_64
2041 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
2042 loadsegment(ds
, vmx
->host_state
.ds_sel
);
2043 loadsegment(es
, vmx
->host_state
.es_sel
);
2047 #ifdef CONFIG_X86_64
2048 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2050 if (vmx
->host_state
.msr_host_bndcfgs
)
2051 wrmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
2053 * If the FPU is not active (through the host task or
2054 * the guest vcpu), then restore the cr0.TS bit.
2056 if (!fpregs_active() && !vmx
->vcpu
.guest_fpu_loaded
)
2058 load_gdt(this_cpu_ptr(&host_gdt
));
2061 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
2064 __vmx_load_host_state(vmx
);
2068 static void vmx_vcpu_pi_load(struct kvm_vcpu
*vcpu
, int cpu
)
2070 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2071 struct pi_desc old
, new;
2074 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
2075 !irq_remapping_cap(IRQ_POSTING_CAP
))
2079 old
.control
= new.control
= pi_desc
->control
;
2082 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2083 * are two possible cases:
2084 * 1. After running 'pre_block', context switch
2085 * happened. For this case, 'sn' was set in
2086 * vmx_vcpu_put(), so we need to clear it here.
2087 * 2. After running 'pre_block', we were blocked,
2088 * and woken up by some other guy. For this case,
2089 * we don't need to do anything, 'pi_post_block'
2090 * will do everything for us. However, we cannot
2091 * check whether it is case #1 or case #2 here
2092 * (maybe, not needed), so we also clear sn here,
2093 * I think it is not a big deal.
2095 if (pi_desc
->nv
!= POSTED_INTR_WAKEUP_VECTOR
) {
2096 if (vcpu
->cpu
!= cpu
) {
2097 dest
= cpu_physical_id(cpu
);
2099 if (x2apic_enabled())
2102 new.ndst
= (dest
<< 8) & 0xFF00;
2105 /* set 'NV' to 'notification vector' */
2106 new.nv
= POSTED_INTR_VECTOR
;
2109 /* Allow posting non-urgent interrupts */
2111 } while (cmpxchg(&pi_desc
->control
, old
.control
,
2112 new.control
) != old
.control
);
2116 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2117 * vcpu mutex is already taken.
2119 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2121 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2122 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2125 kvm_cpu_vmxon(phys_addr
);
2126 else if (vmx
->loaded_vmcs
->cpu
!= cpu
)
2127 loaded_vmcs_clear(vmx
->loaded_vmcs
);
2129 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
2130 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
2131 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
2134 if (vmx
->loaded_vmcs
->cpu
!= cpu
) {
2135 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
2136 unsigned long sysenter_esp
;
2138 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2139 local_irq_disable();
2140 crash_disable_local_vmclear(cpu
);
2143 * Read loaded_vmcs->cpu should be before fetching
2144 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2145 * See the comments in __loaded_vmcs_clear().
2149 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
2150 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
2151 crash_enable_local_vmclear(cpu
);
2155 * Linux uses per-cpu TSS and GDT, so set these when switching
2158 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
2159 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
2161 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
2162 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
2164 vmx
->loaded_vmcs
->cpu
= cpu
;
2167 /* Setup TSC multiplier */
2168 if (kvm_has_tsc_control
&&
2169 vmx
->current_tsc_ratio
!= vcpu
->arch
.tsc_scaling_ratio
) {
2170 vmx
->current_tsc_ratio
= vcpu
->arch
.tsc_scaling_ratio
;
2171 vmcs_write64(TSC_MULTIPLIER
, vmx
->current_tsc_ratio
);
2174 vmx_vcpu_pi_load(vcpu
, cpu
);
2175 vmx
->host_pkru
= read_pkru();
2178 static void vmx_vcpu_pi_put(struct kvm_vcpu
*vcpu
)
2180 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2182 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
2183 !irq_remapping_cap(IRQ_POSTING_CAP
))
2186 /* Set SN when the vCPU is preempted */
2187 if (vcpu
->preempted
)
2191 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
2193 vmx_vcpu_pi_put(vcpu
);
2195 __vmx_load_host_state(to_vmx(vcpu
));
2196 if (!vmm_exclusive
) {
2197 __loaded_vmcs_clear(to_vmx(vcpu
)->loaded_vmcs
);
2203 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
2207 if (vcpu
->fpu_active
)
2209 vcpu
->fpu_active
= 1;
2210 cr0
= vmcs_readl(GUEST_CR0
);
2211 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
2212 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
2213 vmcs_writel(GUEST_CR0
, cr0
);
2214 update_exception_bitmap(vcpu
);
2215 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
2216 if (is_guest_mode(vcpu
))
2217 vcpu
->arch
.cr0_guest_owned_bits
&=
2218 ~get_vmcs12(vcpu
)->cr0_guest_host_mask
;
2219 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
2222 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
2225 * Return the cr0 value that a nested guest would read. This is a combination
2226 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2227 * its hypervisor (cr0_read_shadow).
2229 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
2231 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
2232 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
2234 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
2236 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
2237 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
2240 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
2242 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2243 * set this *before* calling this function.
2245 vmx_decache_cr0_guest_bits(vcpu
);
2246 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
2247 update_exception_bitmap(vcpu
);
2248 vcpu
->arch
.cr0_guest_owned_bits
= 0;
2249 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
2250 if (is_guest_mode(vcpu
)) {
2252 * L1's specified read shadow might not contain the TS bit,
2253 * so now that we turned on shadowing of this bit, we need to
2254 * set this bit of the shadow. Like in nested_vmx_run we need
2255 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2256 * up-to-date here because we just decached cr0.TS (and we'll
2257 * only update vmcs12->guest_cr0 on nested exit).
2259 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2260 vmcs12
->guest_cr0
= (vmcs12
->guest_cr0
& ~X86_CR0_TS
) |
2261 (vcpu
->arch
.cr0
& X86_CR0_TS
);
2262 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
2264 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2267 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
2269 unsigned long rflags
, save_rflags
;
2271 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
2272 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2273 rflags
= vmcs_readl(GUEST_RFLAGS
);
2274 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2275 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
2276 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
2277 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
2279 to_vmx(vcpu
)->rflags
= rflags
;
2281 return to_vmx(vcpu
)->rflags
;
2284 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
2286 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2287 to_vmx(vcpu
)->rflags
= rflags
;
2288 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2289 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
2290 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
2292 vmcs_writel(GUEST_RFLAGS
, rflags
);
2295 static u32
vmx_get_pkru(struct kvm_vcpu
*vcpu
)
2297 return to_vmx(vcpu
)->guest_pkru
;
2300 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
2302 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2305 if (interruptibility
& GUEST_INTR_STATE_STI
)
2306 ret
|= KVM_X86_SHADOW_INT_STI
;
2307 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
2308 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
2313 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
2315 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2316 u32 interruptibility
= interruptibility_old
;
2318 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
2320 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
2321 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
2322 else if (mask
& KVM_X86_SHADOW_INT_STI
)
2323 interruptibility
|= GUEST_INTR_STATE_STI
;
2325 if ((interruptibility
!= interruptibility_old
))
2326 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
2329 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
2333 rip
= kvm_rip_read(vcpu
);
2334 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
2335 kvm_rip_write(vcpu
, rip
);
2337 /* skipping an emulated instruction also counts */
2338 vmx_set_interrupt_shadow(vcpu
, 0);
2342 * KVM wants to inject page-faults which it got to the guest. This function
2343 * checks whether in a nested guest, we need to inject them to L1 or L2.
2345 static int nested_vmx_check_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
2347 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2349 if (!(vmcs12
->exception_bitmap
& (1u << nr
)))
2352 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
2353 vmcs_read32(VM_EXIT_INTR_INFO
),
2354 vmcs_readl(EXIT_QUALIFICATION
));
2358 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
2359 bool has_error_code
, u32 error_code
,
2362 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2363 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2365 if (!reinject
&& is_guest_mode(vcpu
) &&
2366 nested_vmx_check_exception(vcpu
, nr
))
2369 if (has_error_code
) {
2370 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
2371 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2374 if (vmx
->rmode
.vm86_active
) {
2376 if (kvm_exception_is_soft(nr
))
2377 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
2378 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
2379 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2383 if (kvm_exception_is_soft(nr
)) {
2384 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2385 vmx
->vcpu
.arch
.event_exit_inst_len
);
2386 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2388 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
2393 static bool vmx_rdtscp_supported(void)
2395 return cpu_has_vmx_rdtscp();
2398 static bool vmx_invpcid_supported(void)
2400 return cpu_has_vmx_invpcid() && enable_ept
;
2404 * Swap MSR entry in host/guest MSR entry array.
2406 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
2408 struct shared_msr_entry tmp
;
2410 tmp
= vmx
->guest_msrs
[to
];
2411 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
2412 vmx
->guest_msrs
[from
] = tmp
;
2415 static void vmx_set_msr_bitmap(struct kvm_vcpu
*vcpu
)
2417 unsigned long *msr_bitmap
;
2419 if (is_guest_mode(vcpu
))
2420 msr_bitmap
= vmx_msr_bitmap_nested
;
2421 else if (vcpu
->arch
.apic_base
& X2APIC_ENABLE
) {
2422 if (is_long_mode(vcpu
))
2423 msr_bitmap
= vmx_msr_bitmap_longmode_x2apic
;
2425 msr_bitmap
= vmx_msr_bitmap_legacy_x2apic
;
2427 if (is_long_mode(vcpu
))
2428 msr_bitmap
= vmx_msr_bitmap_longmode
;
2430 msr_bitmap
= vmx_msr_bitmap_legacy
;
2433 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
2437 * Set up the vmcs to automatically save and restore system
2438 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2439 * mode, as fiddling with msrs is very expensive.
2441 static void setup_msrs(struct vcpu_vmx
*vmx
)
2443 int save_nmsrs
, index
;
2446 #ifdef CONFIG_X86_64
2447 if (is_long_mode(&vmx
->vcpu
)) {
2448 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
2450 move_msr_up(vmx
, index
, save_nmsrs
++);
2451 index
= __find_msr_index(vmx
, MSR_LSTAR
);
2453 move_msr_up(vmx
, index
, save_nmsrs
++);
2454 index
= __find_msr_index(vmx
, MSR_CSTAR
);
2456 move_msr_up(vmx
, index
, save_nmsrs
++);
2457 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
2458 if (index
>= 0 && guest_cpuid_has_rdtscp(&vmx
->vcpu
))
2459 move_msr_up(vmx
, index
, save_nmsrs
++);
2461 * MSR_STAR is only needed on long mode guests, and only
2462 * if efer.sce is enabled.
2464 index
= __find_msr_index(vmx
, MSR_STAR
);
2465 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
2466 move_msr_up(vmx
, index
, save_nmsrs
++);
2469 index
= __find_msr_index(vmx
, MSR_EFER
);
2470 if (index
>= 0 && update_transition_efer(vmx
, index
))
2471 move_msr_up(vmx
, index
, save_nmsrs
++);
2473 vmx
->save_nmsrs
= save_nmsrs
;
2475 if (cpu_has_vmx_msr_bitmap())
2476 vmx_set_msr_bitmap(&vmx
->vcpu
);
2480 * reads and returns guest's timestamp counter "register"
2481 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2482 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2484 static u64
guest_read_tsc(struct kvm_vcpu
*vcpu
)
2486 u64 host_tsc
, tsc_offset
;
2489 tsc_offset
= vmcs_read64(TSC_OFFSET
);
2490 return kvm_scale_tsc(vcpu
, host_tsc
) + tsc_offset
;
2494 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2495 * counter, even if a nested guest (L2) is currently running.
2497 static u64
vmx_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
2501 tsc_offset
= is_guest_mode(vcpu
) ?
2502 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
:
2503 vmcs_read64(TSC_OFFSET
);
2504 return host_tsc
+ tsc_offset
;
2507 static u64
vmx_read_tsc_offset(struct kvm_vcpu
*vcpu
)
2509 return vmcs_read64(TSC_OFFSET
);
2513 * writes 'offset' into guest's timestamp counter offset register
2515 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
2517 if (is_guest_mode(vcpu
)) {
2519 * We're here if L1 chose not to trap WRMSR to TSC. According
2520 * to the spec, this should set L1's TSC; The offset that L1
2521 * set for L2 remains unchanged, and still needs to be added
2522 * to the newly set TSC to get L2's TSC.
2524 struct vmcs12
*vmcs12
;
2525 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
= offset
;
2526 /* recalculate vmcs02.TSC_OFFSET: */
2527 vmcs12
= get_vmcs12(vcpu
);
2528 vmcs_write64(TSC_OFFSET
, offset
+
2529 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
2530 vmcs12
->tsc_offset
: 0));
2532 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2533 vmcs_read64(TSC_OFFSET
), offset
);
2534 vmcs_write64(TSC_OFFSET
, offset
);
2538 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
, s64 adjustment
)
2540 u64 offset
= vmcs_read64(TSC_OFFSET
);
2542 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
2543 if (is_guest_mode(vcpu
)) {
2544 /* Even when running L2, the adjustment needs to apply to L1 */
2545 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
+= adjustment
;
2547 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
, offset
,
2548 offset
+ adjustment
);
2551 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
2553 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
2554 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
2558 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2559 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2560 * all guests if the "nested" module option is off, and can also be disabled
2561 * for a single guest by disabling its VMX cpuid bit.
2563 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
2565 return nested
&& guest_cpuid_has_vmx(vcpu
);
2569 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2570 * returned for the various VMX controls MSRs when nested VMX is enabled.
2571 * The same values should also be used to verify that vmcs12 control fields are
2572 * valid during nested entry from L1 to L2.
2573 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2574 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2575 * bit in the high half is on if the corresponding bit in the control field
2576 * may be on. See also vmx_control_verify().
2578 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx
*vmx
)
2581 * Note that as a general rule, the high half of the MSRs (bits in
2582 * the control fields which may be 1) should be initialized by the
2583 * intersection of the underlying hardware's MSR (i.e., features which
2584 * can be supported) and the list of features we want to expose -
2585 * because they are known to be properly supported in our code.
2586 * Also, usually, the low half of the MSRs (bits which must be 1) can
2587 * be set to 0, meaning that L1 may turn off any of these bits. The
2588 * reason is that if one of these bits is necessary, it will appear
2589 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2590 * fields of vmcs01 and vmcs02, will turn these bits off - and
2591 * nested_vmx_exit_handled() will not pass related exits to L1.
2592 * These rules have exceptions below.
2595 /* pin-based controls */
2596 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
2597 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
2598 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
2599 vmx
->nested
.nested_vmx_pinbased_ctls_low
|=
2600 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2601 vmx
->nested
.nested_vmx_pinbased_ctls_high
&=
2602 PIN_BASED_EXT_INTR_MASK
|
2603 PIN_BASED_NMI_EXITING
|
2604 PIN_BASED_VIRTUAL_NMIS
;
2605 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2606 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2607 PIN_BASED_VMX_PREEMPTION_TIMER
;
2608 if (kvm_vcpu_apicv_active(&vmx
->vcpu
))
2609 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2610 PIN_BASED_POSTED_INTR
;
2613 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
2614 vmx
->nested
.nested_vmx_exit_ctls_low
,
2615 vmx
->nested
.nested_vmx_exit_ctls_high
);
2616 vmx
->nested
.nested_vmx_exit_ctls_low
=
2617 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
2619 vmx
->nested
.nested_vmx_exit_ctls_high
&=
2620 #ifdef CONFIG_X86_64
2621 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
2623 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
2624 vmx
->nested
.nested_vmx_exit_ctls_high
|=
2625 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
2626 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
2627 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
;
2629 if (kvm_mpx_supported())
2630 vmx
->nested
.nested_vmx_exit_ctls_high
|= VM_EXIT_CLEAR_BNDCFGS
;
2632 /* We support free control of debug control saving. */
2633 vmx
->nested
.nested_vmx_true_exit_ctls_low
=
2634 vmx
->nested
.nested_vmx_exit_ctls_low
&
2635 ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
2637 /* entry controls */
2638 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2639 vmx
->nested
.nested_vmx_entry_ctls_low
,
2640 vmx
->nested
.nested_vmx_entry_ctls_high
);
2641 vmx
->nested
.nested_vmx_entry_ctls_low
=
2642 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
2643 vmx
->nested
.nested_vmx_entry_ctls_high
&=
2644 #ifdef CONFIG_X86_64
2645 VM_ENTRY_IA32E_MODE
|
2647 VM_ENTRY_LOAD_IA32_PAT
;
2648 vmx
->nested
.nested_vmx_entry_ctls_high
|=
2649 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
| VM_ENTRY_LOAD_IA32_EFER
);
2650 if (kvm_mpx_supported())
2651 vmx
->nested
.nested_vmx_entry_ctls_high
|= VM_ENTRY_LOAD_BNDCFGS
;
2653 /* We support free control of debug control loading. */
2654 vmx
->nested
.nested_vmx_true_entry_ctls_low
=
2655 vmx
->nested
.nested_vmx_entry_ctls_low
&
2656 ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2658 /* cpu-based controls */
2659 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2660 vmx
->nested
.nested_vmx_procbased_ctls_low
,
2661 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2662 vmx
->nested
.nested_vmx_procbased_ctls_low
=
2663 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2664 vmx
->nested
.nested_vmx_procbased_ctls_high
&=
2665 CPU_BASED_VIRTUAL_INTR_PENDING
|
2666 CPU_BASED_VIRTUAL_NMI_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2667 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2668 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2669 CPU_BASED_CR3_STORE_EXITING
|
2670 #ifdef CONFIG_X86_64
2671 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2673 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2674 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_TRAP_FLAG
|
2675 CPU_BASED_MONITOR_EXITING
| CPU_BASED_RDPMC_EXITING
|
2676 CPU_BASED_RDTSC_EXITING
| CPU_BASED_PAUSE_EXITING
|
2677 CPU_BASED_TPR_SHADOW
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2679 * We can allow some features even when not supported by the
2680 * hardware. For example, L1 can specify an MSR bitmap - and we
2681 * can use it to avoid exits to L1 - even when L0 runs L2
2682 * without MSR bitmaps.
2684 vmx
->nested
.nested_vmx_procbased_ctls_high
|=
2685 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2686 CPU_BASED_USE_MSR_BITMAPS
;
2688 /* We support free control of CR3 access interception. */
2689 vmx
->nested
.nested_vmx_true_procbased_ctls_low
=
2690 vmx
->nested
.nested_vmx_procbased_ctls_low
&
2691 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
2693 /* secondary cpu-based controls */
2694 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2695 vmx
->nested
.nested_vmx_secondary_ctls_low
,
2696 vmx
->nested
.nested_vmx_secondary_ctls_high
);
2697 vmx
->nested
.nested_vmx_secondary_ctls_low
= 0;
2698 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
2699 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2700 SECONDARY_EXEC_RDTSCP
|
2701 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2702 SECONDARY_EXEC_ENABLE_VPID
|
2703 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2704 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2705 SECONDARY_EXEC_WBINVD_EXITING
|
2706 SECONDARY_EXEC_XSAVES
|
2707 SECONDARY_EXEC_PCOMMIT
;
2710 /* nested EPT: emulate EPT also to L1 */
2711 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2712 SECONDARY_EXEC_ENABLE_EPT
;
2713 vmx
->nested
.nested_vmx_ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
2714 VMX_EPTP_WB_BIT
| VMX_EPT_2MB_PAGE_BIT
|
2716 vmx
->nested
.nested_vmx_ept_caps
&= vmx_capability
.ept
;
2718 * For nested guests, we don't do anything specific
2719 * for single context invalidation. Hence, only advertise
2720 * support for global context invalidation.
2722 vmx
->nested
.nested_vmx_ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
;
2724 vmx
->nested
.nested_vmx_ept_caps
= 0;
2727 * Old versions of KVM use the single-context version without
2728 * checking for support, so declare that it is supported even
2729 * though it is treated as global context. The alternative is
2730 * not failing the single-context invvpid, and it is worse.
2733 vmx
->nested
.nested_vmx_vpid_caps
= VMX_VPID_INVVPID_BIT
|
2734 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
|
2735 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
2737 vmx
->nested
.nested_vmx_vpid_caps
= 0;
2739 if (enable_unrestricted_guest
)
2740 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2741 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2743 /* miscellaneous data */
2744 rdmsr(MSR_IA32_VMX_MISC
,
2745 vmx
->nested
.nested_vmx_misc_low
,
2746 vmx
->nested
.nested_vmx_misc_high
);
2747 vmx
->nested
.nested_vmx_misc_low
&= VMX_MISC_SAVE_EFER_LMA
;
2748 vmx
->nested
.nested_vmx_misc_low
|=
2749 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
2750 VMX_MISC_ACTIVITY_HLT
;
2751 vmx
->nested
.nested_vmx_misc_high
= 0;
2754 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2757 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2759 return ((control
& high
) | low
) == control
;
2762 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2764 return low
| ((u64
)high
<< 32);
2767 /* Returns 0 on success, non-0 otherwise. */
2768 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2770 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2772 switch (msr_index
) {
2773 case MSR_IA32_VMX_BASIC
:
2775 * This MSR reports some information about VMX support. We
2776 * should return information about the VMX we emulate for the
2777 * guest, and the VMCS structure we give it - not about the
2778 * VMX support of the underlying hardware.
2780 *pdata
= VMCS12_REVISION
| VMX_BASIC_TRUE_CTLS
|
2781 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2782 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2784 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2785 case MSR_IA32_VMX_PINBASED_CTLS
:
2786 *pdata
= vmx_control_msr(
2787 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
2788 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
2790 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2791 *pdata
= vmx_control_msr(
2792 vmx
->nested
.nested_vmx_true_procbased_ctls_low
,
2793 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2795 case MSR_IA32_VMX_PROCBASED_CTLS
:
2796 *pdata
= vmx_control_msr(
2797 vmx
->nested
.nested_vmx_procbased_ctls_low
,
2798 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2800 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2801 *pdata
= vmx_control_msr(
2802 vmx
->nested
.nested_vmx_true_exit_ctls_low
,
2803 vmx
->nested
.nested_vmx_exit_ctls_high
);
2805 case MSR_IA32_VMX_EXIT_CTLS
:
2806 *pdata
= vmx_control_msr(
2807 vmx
->nested
.nested_vmx_exit_ctls_low
,
2808 vmx
->nested
.nested_vmx_exit_ctls_high
);
2810 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2811 *pdata
= vmx_control_msr(
2812 vmx
->nested
.nested_vmx_true_entry_ctls_low
,
2813 vmx
->nested
.nested_vmx_entry_ctls_high
);
2815 case MSR_IA32_VMX_ENTRY_CTLS
:
2816 *pdata
= vmx_control_msr(
2817 vmx
->nested
.nested_vmx_entry_ctls_low
,
2818 vmx
->nested
.nested_vmx_entry_ctls_high
);
2820 case MSR_IA32_VMX_MISC
:
2821 *pdata
= vmx_control_msr(
2822 vmx
->nested
.nested_vmx_misc_low
,
2823 vmx
->nested
.nested_vmx_misc_high
);
2826 * These MSRs specify bits which the guest must keep fixed (on or off)
2827 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2828 * We picked the standard core2 setting.
2830 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2831 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2832 case MSR_IA32_VMX_CR0_FIXED0
:
2833 *pdata
= VMXON_CR0_ALWAYSON
;
2835 case MSR_IA32_VMX_CR0_FIXED1
:
2838 case MSR_IA32_VMX_CR4_FIXED0
:
2839 *pdata
= VMXON_CR4_ALWAYSON
;
2841 case MSR_IA32_VMX_CR4_FIXED1
:
2844 case MSR_IA32_VMX_VMCS_ENUM
:
2845 *pdata
= 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2847 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2848 *pdata
= vmx_control_msr(
2849 vmx
->nested
.nested_vmx_secondary_ctls_low
,
2850 vmx
->nested
.nested_vmx_secondary_ctls_high
);
2852 case MSR_IA32_VMX_EPT_VPID_CAP
:
2853 /* Currently, no nested vpid support */
2854 *pdata
= vmx
->nested
.nested_vmx_ept_caps
|
2855 ((u64
)vmx
->nested
.nested_vmx_vpid_caps
<< 32);
2865 * Reads an msr value (of 'msr_index') into 'pdata'.
2866 * Returns 0 on success, non-0 otherwise.
2867 * Assumes vcpu_load() was already called.
2869 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2871 struct shared_msr_entry
*msr
;
2873 switch (msr_info
->index
) {
2874 #ifdef CONFIG_X86_64
2876 msr_info
->data
= vmcs_readl(GUEST_FS_BASE
);
2879 msr_info
->data
= vmcs_readl(GUEST_GS_BASE
);
2881 case MSR_KERNEL_GS_BASE
:
2882 vmx_load_host_state(to_vmx(vcpu
));
2883 msr_info
->data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
2887 return kvm_get_msr_common(vcpu
, msr_info
);
2889 msr_info
->data
= guest_read_tsc(vcpu
);
2891 case MSR_IA32_SYSENTER_CS
:
2892 msr_info
->data
= vmcs_read32(GUEST_SYSENTER_CS
);
2894 case MSR_IA32_SYSENTER_EIP
:
2895 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2897 case MSR_IA32_SYSENTER_ESP
:
2898 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2900 case MSR_IA32_BNDCFGS
:
2901 if (!kvm_mpx_supported())
2903 msr_info
->data
= vmcs_read64(GUEST_BNDCFGS
);
2905 case MSR_IA32_FEATURE_CONTROL
:
2906 if (!nested_vmx_allowed(vcpu
))
2908 msr_info
->data
= to_vmx(vcpu
)->nested
.msr_ia32_feature_control
;
2910 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
2911 if (!nested_vmx_allowed(vcpu
))
2913 return vmx_get_vmx_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2915 if (!vmx_xsaves_supported())
2917 msr_info
->data
= vcpu
->arch
.ia32_xss
;
2920 if (!guest_cpuid_has_rdtscp(vcpu
) && !msr_info
->host_initiated
)
2922 /* Otherwise falls through */
2924 msr
= find_msr_entry(to_vmx(vcpu
), msr_info
->index
);
2926 msr_info
->data
= msr
->data
;
2929 return kvm_get_msr_common(vcpu
, msr_info
);
2935 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
);
2938 * Writes msr value into into the appropriate "register".
2939 * Returns 0 on success, non-0 otherwise.
2940 * Assumes vcpu_load() was already called.
2942 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2944 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2945 struct shared_msr_entry
*msr
;
2947 u32 msr_index
= msr_info
->index
;
2948 u64 data
= msr_info
->data
;
2950 switch (msr_index
) {
2952 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2954 #ifdef CONFIG_X86_64
2956 vmx_segment_cache_clear(vmx
);
2957 vmcs_writel(GUEST_FS_BASE
, data
);
2960 vmx_segment_cache_clear(vmx
);
2961 vmcs_writel(GUEST_GS_BASE
, data
);
2963 case MSR_KERNEL_GS_BASE
:
2964 vmx_load_host_state(vmx
);
2965 vmx
->msr_guest_kernel_gs_base
= data
;
2968 case MSR_IA32_SYSENTER_CS
:
2969 vmcs_write32(GUEST_SYSENTER_CS
, data
);
2971 case MSR_IA32_SYSENTER_EIP
:
2972 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
2974 case MSR_IA32_SYSENTER_ESP
:
2975 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
2977 case MSR_IA32_BNDCFGS
:
2978 if (!kvm_mpx_supported())
2980 vmcs_write64(GUEST_BNDCFGS
, data
);
2983 kvm_write_tsc(vcpu
, msr_info
);
2985 case MSR_IA32_CR_PAT
:
2986 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2987 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
2989 vmcs_write64(GUEST_IA32_PAT
, data
);
2990 vcpu
->arch
.pat
= data
;
2993 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2995 case MSR_IA32_TSC_ADJUST
:
2996 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2998 case MSR_IA32_FEATURE_CONTROL
:
2999 if (!nested_vmx_allowed(vcpu
) ||
3000 (to_vmx(vcpu
)->nested
.msr_ia32_feature_control
&
3001 FEATURE_CONTROL_LOCKED
&& !msr_info
->host_initiated
))
3003 vmx
->nested
.msr_ia32_feature_control
= data
;
3004 if (msr_info
->host_initiated
&& data
== 0)
3005 vmx_leave_nested(vcpu
);
3007 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
3008 return 1; /* they are read-only */
3010 if (!vmx_xsaves_supported())
3013 * The only supported bit as of Skylake is bit 8, but
3014 * it is not supported on KVM.
3018 vcpu
->arch
.ia32_xss
= data
;
3019 if (vcpu
->arch
.ia32_xss
!= host_xss
)
3020 add_atomic_switch_msr(vmx
, MSR_IA32_XSS
,
3021 vcpu
->arch
.ia32_xss
, host_xss
);
3023 clear_atomic_switch_msr(vmx
, MSR_IA32_XSS
);
3026 if (!guest_cpuid_has_rdtscp(vcpu
) && !msr_info
->host_initiated
)
3028 /* Check reserved bit, higher 32 bits should be zero */
3029 if ((data
>> 32) != 0)
3031 /* Otherwise falls through */
3033 msr
= find_msr_entry(vmx
, msr_index
);
3035 u64 old_msr_data
= msr
->data
;
3037 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
3039 ret
= kvm_set_shared_msr(msr
->index
, msr
->data
,
3043 msr
->data
= old_msr_data
;
3047 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3053 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
3055 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
3058 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
3061 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
3063 case VCPU_EXREG_PDPTR
:
3065 ept_save_pdptrs(vcpu
);
3072 static __init
int cpu_has_kvm_support(void)
3074 return cpu_has_vmx();
3077 static __init
int vmx_disabled_by_bios(void)
3081 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
3082 if (msr
& FEATURE_CONTROL_LOCKED
) {
3083 /* launched w/ TXT and VMX disabled */
3084 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
3087 /* launched w/o TXT and VMX only enabled w/ TXT */
3088 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
3089 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
3090 && !tboot_enabled()) {
3091 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
3092 "activate TXT before enabling KVM\n");
3095 /* launched w/o TXT and VMX disabled */
3096 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
3097 && !tboot_enabled())
3104 static void kvm_cpu_vmxon(u64 addr
)
3106 asm volatile (ASM_VMX_VMXON_RAX
3107 : : "a"(&addr
), "m"(addr
)
3111 static int hardware_enable(void)
3113 int cpu
= raw_smp_processor_id();
3114 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
3117 if (cr4_read_shadow() & X86_CR4_VMXE
)
3120 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
3121 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu
, cpu
));
3122 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
3125 * Now we can enable the vmclear operation in kdump
3126 * since the loaded_vmcss_on_cpu list on this cpu
3127 * has been initialized.
3129 * Though the cpu is not in VMX operation now, there
3130 * is no problem to enable the vmclear operation
3131 * for the loaded_vmcss_on_cpu list is empty!
3133 crash_enable_local_vmclear(cpu
);
3135 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
3137 test_bits
= FEATURE_CONTROL_LOCKED
;
3138 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
3139 if (tboot_enabled())
3140 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
3142 if ((old
& test_bits
) != test_bits
) {
3143 /* enable and lock */
3144 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
3146 cr4_set_bits(X86_CR4_VMXE
);
3148 if (vmm_exclusive
) {
3149 kvm_cpu_vmxon(phys_addr
);
3153 native_store_gdt(this_cpu_ptr(&host_gdt
));
3158 static void vmclear_local_loaded_vmcss(void)
3160 int cpu
= raw_smp_processor_id();
3161 struct loaded_vmcs
*v
, *n
;
3163 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
3164 loaded_vmcss_on_cpu_link
)
3165 __loaded_vmcs_clear(v
);
3169 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3172 static void kvm_cpu_vmxoff(void)
3174 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
3177 static void hardware_disable(void)
3179 if (vmm_exclusive
) {
3180 vmclear_local_loaded_vmcss();
3183 cr4_clear_bits(X86_CR4_VMXE
);
3186 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
3187 u32 msr
, u32
*result
)
3189 u32 vmx_msr_low
, vmx_msr_high
;
3190 u32 ctl
= ctl_min
| ctl_opt
;
3192 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3194 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
3195 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
3197 /* Ensure minimum (required) set of control bits are supported. */
3205 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
3207 u32 vmx_msr_low
, vmx_msr_high
;
3209 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3210 return vmx_msr_high
& ctl
;
3213 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
3215 u32 vmx_msr_low
, vmx_msr_high
;
3216 u32 min
, opt
, min2
, opt2
;
3217 u32 _pin_based_exec_control
= 0;
3218 u32 _cpu_based_exec_control
= 0;
3219 u32 _cpu_based_2nd_exec_control
= 0;
3220 u32 _vmexit_control
= 0;
3221 u32 _vmentry_control
= 0;
3223 min
= CPU_BASED_HLT_EXITING
|
3224 #ifdef CONFIG_X86_64
3225 CPU_BASED_CR8_LOAD_EXITING
|
3226 CPU_BASED_CR8_STORE_EXITING
|
3228 CPU_BASED_CR3_LOAD_EXITING
|
3229 CPU_BASED_CR3_STORE_EXITING
|
3230 CPU_BASED_USE_IO_BITMAPS
|
3231 CPU_BASED_MOV_DR_EXITING
|
3232 CPU_BASED_USE_TSC_OFFSETING
|
3233 CPU_BASED_MWAIT_EXITING
|
3234 CPU_BASED_MONITOR_EXITING
|
3235 CPU_BASED_INVLPG_EXITING
|
3236 CPU_BASED_RDPMC_EXITING
;
3238 opt
= CPU_BASED_TPR_SHADOW
|
3239 CPU_BASED_USE_MSR_BITMAPS
|
3240 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
3241 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
3242 &_cpu_based_exec_control
) < 0)
3244 #ifdef CONFIG_X86_64
3245 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3246 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
3247 ~CPU_BASED_CR8_STORE_EXITING
;
3249 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
3251 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
3252 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3253 SECONDARY_EXEC_WBINVD_EXITING
|
3254 SECONDARY_EXEC_ENABLE_VPID
|
3255 SECONDARY_EXEC_ENABLE_EPT
|
3256 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
3257 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
3258 SECONDARY_EXEC_RDTSCP
|
3259 SECONDARY_EXEC_ENABLE_INVPCID
|
3260 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3261 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
3262 SECONDARY_EXEC_SHADOW_VMCS
|
3263 SECONDARY_EXEC_XSAVES
|
3264 SECONDARY_EXEC_ENABLE_PML
|
3265 SECONDARY_EXEC_PCOMMIT
|
3266 SECONDARY_EXEC_TSC_SCALING
;
3267 if (adjust_vmx_controls(min2
, opt2
,
3268 MSR_IA32_VMX_PROCBASED_CTLS2
,
3269 &_cpu_based_2nd_exec_control
) < 0)
3272 #ifndef CONFIG_X86_64
3273 if (!(_cpu_based_2nd_exec_control
&
3274 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
3275 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
3278 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3279 _cpu_based_2nd_exec_control
&= ~(
3280 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3281 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3282 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
3284 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
3285 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3287 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
3288 CPU_BASED_CR3_STORE_EXITING
|
3289 CPU_BASED_INVLPG_EXITING
);
3290 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
3291 vmx_capability
.ept
, vmx_capability
.vpid
);
3294 min
= VM_EXIT_SAVE_DEBUG_CONTROLS
;
3295 #ifdef CONFIG_X86_64
3296 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
3298 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
3299 VM_EXIT_ACK_INTR_ON_EXIT
| VM_EXIT_CLEAR_BNDCFGS
;
3300 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
3301 &_vmexit_control
) < 0)
3304 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
3305 opt
= PIN_BASED_VIRTUAL_NMIS
| PIN_BASED_POSTED_INTR
;
3306 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
3307 &_pin_based_exec_control
) < 0)
3310 if (!(_cpu_based_2nd_exec_control
&
3311 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) ||
3312 !(_vmexit_control
& VM_EXIT_ACK_INTR_ON_EXIT
))
3313 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
3315 min
= VM_ENTRY_LOAD_DEBUG_CONTROLS
;
3316 opt
= VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
3317 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
3318 &_vmentry_control
) < 0)
3321 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
3323 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3324 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
3327 #ifdef CONFIG_X86_64
3328 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3329 if (vmx_msr_high
& (1u<<16))
3333 /* Require Write-Back (WB) memory type for VMCS accesses. */
3334 if (((vmx_msr_high
>> 18) & 15) != 6)
3337 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
3338 vmcs_conf
->order
= get_order(vmcs_config
.size
);
3339 vmcs_conf
->revision_id
= vmx_msr_low
;
3341 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
3342 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
3343 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
3344 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
3345 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
3347 cpu_has_load_ia32_efer
=
3348 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3349 VM_ENTRY_LOAD_IA32_EFER
)
3350 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3351 VM_EXIT_LOAD_IA32_EFER
);
3353 cpu_has_load_perf_global_ctrl
=
3354 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3355 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
3356 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3357 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
3360 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3361 * but due to arrata below it can't be used. Workaround is to use
3362 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3364 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3369 * BC86,AAY89,BD102 (model 44)
3373 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
3374 switch (boot_cpu_data
.x86_model
) {
3380 cpu_has_load_perf_global_ctrl
= false;
3381 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3382 "does not work properly. Using workaround\n");
3390 rdmsrl(MSR_IA32_XSS
, host_xss
);
3395 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
3397 int node
= cpu_to_node(cpu
);
3401 pages
= __alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
3404 vmcs
= page_address(pages
);
3405 memset(vmcs
, 0, vmcs_config
.size
);
3406 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
3410 static struct vmcs
*alloc_vmcs(void)
3412 return alloc_vmcs_cpu(raw_smp_processor_id());
3415 static void free_vmcs(struct vmcs
*vmcs
)
3417 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
3421 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3423 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
3425 if (!loaded_vmcs
->vmcs
)
3427 loaded_vmcs_clear(loaded_vmcs
);
3428 free_vmcs(loaded_vmcs
->vmcs
);
3429 loaded_vmcs
->vmcs
= NULL
;
3432 static void free_kvm_area(void)
3436 for_each_possible_cpu(cpu
) {
3437 free_vmcs(per_cpu(vmxarea
, cpu
));
3438 per_cpu(vmxarea
, cpu
) = NULL
;
3442 static void init_vmcs_shadow_fields(void)
3446 /* No checks for read only fields yet */
3448 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
3449 switch (shadow_read_write_fields
[i
]) {
3451 if (!kvm_mpx_supported())
3459 shadow_read_write_fields
[j
] =
3460 shadow_read_write_fields
[i
];
3463 max_shadow_read_write_fields
= j
;
3465 /* shadowed fields guest access without vmexit */
3466 for (i
= 0; i
< max_shadow_read_write_fields
; i
++) {
3467 clear_bit(shadow_read_write_fields
[i
],
3468 vmx_vmwrite_bitmap
);
3469 clear_bit(shadow_read_write_fields
[i
],
3472 for (i
= 0; i
< max_shadow_read_only_fields
; i
++)
3473 clear_bit(shadow_read_only_fields
[i
],
3477 static __init
int alloc_kvm_area(void)
3481 for_each_possible_cpu(cpu
) {
3484 vmcs
= alloc_vmcs_cpu(cpu
);
3490 per_cpu(vmxarea
, cpu
) = vmcs
;
3495 static bool emulation_required(struct kvm_vcpu
*vcpu
)
3497 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
3500 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
3501 struct kvm_segment
*save
)
3503 if (!emulate_invalid_guest_state
) {
3505 * CS and SS RPL should be equal during guest entry according
3506 * to VMX spec, but in reality it is not always so. Since vcpu
3507 * is in the middle of the transition from real mode to
3508 * protected mode it is safe to assume that RPL 0 is a good
3511 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
3512 save
->selector
&= ~SEGMENT_RPL_MASK
;
3513 save
->dpl
= save
->selector
& SEGMENT_RPL_MASK
;
3516 vmx_set_segment(vcpu
, save
, seg
);
3519 static void enter_pmode(struct kvm_vcpu
*vcpu
)
3521 unsigned long flags
;
3522 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3525 * Update real mode segment cache. It may be not up-to-date if sement
3526 * register was written while vcpu was in a guest mode.
3528 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3529 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3530 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3531 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3532 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3533 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3535 vmx
->rmode
.vm86_active
= 0;
3537 vmx_segment_cache_clear(vmx
);
3539 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3541 flags
= vmcs_readl(GUEST_RFLAGS
);
3542 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3543 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3544 vmcs_writel(GUEST_RFLAGS
, flags
);
3546 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
3547 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
3549 update_exception_bitmap(vcpu
);
3551 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3552 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3553 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3554 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3555 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3556 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3559 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
3561 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3562 struct kvm_segment var
= *save
;
3565 if (seg
== VCPU_SREG_CS
)
3568 if (!emulate_invalid_guest_state
) {
3569 var
.selector
= var
.base
>> 4;
3570 var
.base
= var
.base
& 0xffff0;
3580 if (save
->base
& 0xf)
3581 printk_once(KERN_WARNING
"kvm: segment base is not "
3582 "paragraph aligned when entering "
3583 "protected mode (seg=%d)", seg
);
3586 vmcs_write16(sf
->selector
, var
.selector
);
3587 vmcs_write32(sf
->base
, var
.base
);
3588 vmcs_write32(sf
->limit
, var
.limit
);
3589 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
3592 static void enter_rmode(struct kvm_vcpu
*vcpu
)
3594 unsigned long flags
;
3595 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3597 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3598 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3599 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3600 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3601 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3602 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3603 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3605 vmx
->rmode
.vm86_active
= 1;
3608 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3609 * vcpu. Warn the user that an update is overdue.
3611 if (!vcpu
->kvm
->arch
.tss_addr
)
3612 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
3613 "called before entering vcpu\n");
3615 vmx_segment_cache_clear(vmx
);
3617 vmcs_writel(GUEST_TR_BASE
, vcpu
->kvm
->arch
.tss_addr
);
3618 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
3619 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
3621 flags
= vmcs_readl(GUEST_RFLAGS
);
3622 vmx
->rmode
.save_rflags
= flags
;
3624 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
3626 vmcs_writel(GUEST_RFLAGS
, flags
);
3627 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
3628 update_exception_bitmap(vcpu
);
3630 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3631 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3632 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3633 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3634 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3635 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3637 kvm_mmu_reset_context(vcpu
);
3640 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
3642 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3643 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
3649 * Force kernel_gs_base reloading before EFER changes, as control
3650 * of this msr depends on is_long_mode().
3652 vmx_load_host_state(to_vmx(vcpu
));
3653 vcpu
->arch
.efer
= efer
;
3654 if (efer
& EFER_LMA
) {
3655 vm_entry_controls_setbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3658 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3660 msr
->data
= efer
& ~EFER_LME
;
3665 #ifdef CONFIG_X86_64
3667 static void enter_lmode(struct kvm_vcpu
*vcpu
)
3671 vmx_segment_cache_clear(to_vmx(vcpu
));
3673 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
3674 if ((guest_tr_ar
& VMX_AR_TYPE_MASK
) != VMX_AR_TYPE_BUSY_64_TSS
) {
3675 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3677 vmcs_write32(GUEST_TR_AR_BYTES
,
3678 (guest_tr_ar
& ~VMX_AR_TYPE_MASK
)
3679 | VMX_AR_TYPE_BUSY_64_TSS
);
3681 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
3684 static void exit_lmode(struct kvm_vcpu
*vcpu
)
3686 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3687 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
3692 static inline void __vmx_flush_tlb(struct kvm_vcpu
*vcpu
, int vpid
)
3694 vpid_sync_context(vpid
);
3696 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3698 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
3702 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
3704 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->vpid
);
3707 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
3709 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
3711 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
3712 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
3715 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
3717 if (enable_ept
&& is_paging(vcpu
))
3718 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3719 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
3722 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
3724 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
3726 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
3727 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
3730 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
3732 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3734 if (!test_bit(VCPU_EXREG_PDPTR
,
3735 (unsigned long *)&vcpu
->arch
.regs_dirty
))
3738 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3739 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
3740 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
3741 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
3742 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
3746 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
3748 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3750 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3751 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
3752 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
3753 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
3754 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
3757 __set_bit(VCPU_EXREG_PDPTR
,
3758 (unsigned long *)&vcpu
->arch
.regs_avail
);
3759 __set_bit(VCPU_EXREG_PDPTR
,
3760 (unsigned long *)&vcpu
->arch
.regs_dirty
);
3763 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
3765 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
3767 struct kvm_vcpu
*vcpu
)
3769 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
3770 vmx_decache_cr3(vcpu
);
3771 if (!(cr0
& X86_CR0_PG
)) {
3772 /* From paging/starting to nonpaging */
3773 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3774 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
3775 (CPU_BASED_CR3_LOAD_EXITING
|
3776 CPU_BASED_CR3_STORE_EXITING
));
3777 vcpu
->arch
.cr0
= cr0
;
3778 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3779 } else if (!is_paging(vcpu
)) {
3780 /* From nonpaging to paging */
3781 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3782 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
3783 ~(CPU_BASED_CR3_LOAD_EXITING
|
3784 CPU_BASED_CR3_STORE_EXITING
));
3785 vcpu
->arch
.cr0
= cr0
;
3786 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3789 if (!(cr0
& X86_CR0_WP
))
3790 *hw_cr0
&= ~X86_CR0_WP
;
3793 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3795 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3796 unsigned long hw_cr0
;
3798 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
3799 if (enable_unrestricted_guest
)
3800 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
3802 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
3804 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
3807 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
3811 #ifdef CONFIG_X86_64
3812 if (vcpu
->arch
.efer
& EFER_LME
) {
3813 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
3815 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
3821 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
3823 if (!vcpu
->fpu_active
)
3824 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
3826 vmcs_writel(CR0_READ_SHADOW
, cr0
);
3827 vmcs_writel(GUEST_CR0
, hw_cr0
);
3828 vcpu
->arch
.cr0
= cr0
;
3830 /* depends on vcpu->arch.cr0 to be set to a new value */
3831 vmx
->emulation_required
= emulation_required(vcpu
);
3834 static u64
construct_eptp(unsigned long root_hpa
)
3838 /* TODO write the value reading from MSR */
3839 eptp
= VMX_EPT_DEFAULT_MT
|
3840 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
3841 if (enable_ept_ad_bits
)
3842 eptp
|= VMX_EPT_AD_ENABLE_BIT
;
3843 eptp
|= (root_hpa
& PAGE_MASK
);
3848 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
3850 unsigned long guest_cr3
;
3855 eptp
= construct_eptp(cr3
);
3856 vmcs_write64(EPT_POINTER
, eptp
);
3857 if (is_paging(vcpu
) || is_guest_mode(vcpu
))
3858 guest_cr3
= kvm_read_cr3(vcpu
);
3860 guest_cr3
= vcpu
->kvm
->arch
.ept_identity_map_addr
;
3861 ept_load_pdptrs(vcpu
);
3864 vmx_flush_tlb(vcpu
);
3865 vmcs_writel(GUEST_CR3
, guest_cr3
);
3868 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3871 * Pass through host's Machine Check Enable value to hw_cr4, which
3872 * is in force while we are in guest mode. Do not let guests control
3873 * this bit, even if host CR4.MCE == 0.
3875 unsigned long hw_cr4
=
3876 (cr4_read_shadow() & X86_CR4_MCE
) |
3877 (cr4
& ~X86_CR4_MCE
) |
3878 (to_vmx(vcpu
)->rmode
.vm86_active
?
3879 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
3881 if (cr4
& X86_CR4_VMXE
) {
3883 * To use VMXON (and later other VMX instructions), a guest
3884 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3885 * So basically the check on whether to allow nested VMX
3888 if (!nested_vmx_allowed(vcpu
))
3891 if (to_vmx(vcpu
)->nested
.vmxon
&&
3892 ((cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
))
3895 vcpu
->arch
.cr4
= cr4
;
3897 if (!is_paging(vcpu
)) {
3898 hw_cr4
&= ~X86_CR4_PAE
;
3899 hw_cr4
|= X86_CR4_PSE
;
3900 } else if (!(cr4
& X86_CR4_PAE
)) {
3901 hw_cr4
&= ~X86_CR4_PAE
;
3905 if (!enable_unrestricted_guest
&& !is_paging(vcpu
))
3907 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3908 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3909 * to be manually disabled when guest switches to non-paging
3912 * If !enable_unrestricted_guest, the CPU is always running
3913 * with CR0.PG=1 and CR4 needs to be modified.
3914 * If enable_unrestricted_guest, the CPU automatically
3915 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3917 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
);
3919 vmcs_writel(CR4_READ_SHADOW
, cr4
);
3920 vmcs_writel(GUEST_CR4
, hw_cr4
);
3924 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
3925 struct kvm_segment
*var
, int seg
)
3927 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3930 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3931 *var
= vmx
->rmode
.segs
[seg
];
3932 if (seg
== VCPU_SREG_TR
3933 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
3935 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3936 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3939 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3940 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
3941 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3942 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
3943 var
->unusable
= (ar
>> 16) & 1;
3944 var
->type
= ar
& 15;
3945 var
->s
= (ar
>> 4) & 1;
3946 var
->dpl
= (ar
>> 5) & 3;
3948 * Some userspaces do not preserve unusable property. Since usable
3949 * segment has to be present according to VMX spec we can use present
3950 * property to amend userspace bug by making unusable segment always
3951 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3952 * segment as unusable.
3954 var
->present
= !var
->unusable
;
3955 var
->avl
= (ar
>> 12) & 1;
3956 var
->l
= (ar
>> 13) & 1;
3957 var
->db
= (ar
>> 14) & 1;
3958 var
->g
= (ar
>> 15) & 1;
3961 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3963 struct kvm_segment s
;
3965 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3966 vmx_get_segment(vcpu
, &s
, seg
);
3969 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
3972 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3974 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3976 if (unlikely(vmx
->rmode
.vm86_active
))
3979 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
3980 return VMX_AR_DPL(ar
);
3984 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
3988 if (var
->unusable
|| !var
->present
)
3991 ar
= var
->type
& 15;
3992 ar
|= (var
->s
& 1) << 4;
3993 ar
|= (var
->dpl
& 3) << 5;
3994 ar
|= (var
->present
& 1) << 7;
3995 ar
|= (var
->avl
& 1) << 12;
3996 ar
|= (var
->l
& 1) << 13;
3997 ar
|= (var
->db
& 1) << 14;
3998 ar
|= (var
->g
& 1) << 15;
4004 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
4005 struct kvm_segment
*var
, int seg
)
4007 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4008 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4010 vmx_segment_cache_clear(vmx
);
4012 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
4013 vmx
->rmode
.segs
[seg
] = *var
;
4014 if (seg
== VCPU_SREG_TR
)
4015 vmcs_write16(sf
->selector
, var
->selector
);
4017 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
4021 vmcs_writel(sf
->base
, var
->base
);
4022 vmcs_write32(sf
->limit
, var
->limit
);
4023 vmcs_write16(sf
->selector
, var
->selector
);
4026 * Fix the "Accessed" bit in AR field of segment registers for older
4028 * IA32 arch specifies that at the time of processor reset the
4029 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4030 * is setting it to 0 in the userland code. This causes invalid guest
4031 * state vmexit when "unrestricted guest" mode is turned on.
4032 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4033 * tree. Newer qemu binaries with that qemu fix would not need this
4036 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
4037 var
->type
|= 0x1; /* Accessed */
4039 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
4042 vmx
->emulation_required
= emulation_required(vcpu
);
4045 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
4047 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
4049 *db
= (ar
>> 14) & 1;
4050 *l
= (ar
>> 13) & 1;
4053 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4055 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
4056 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
4059 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4061 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
4062 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
4065 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4067 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
4068 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
4071 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4073 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
4074 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
4077 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4079 struct kvm_segment var
;
4082 vmx_get_segment(vcpu
, &var
, seg
);
4084 if (seg
== VCPU_SREG_CS
)
4086 ar
= vmx_segment_access_rights(&var
);
4088 if (var
.base
!= (var
.selector
<< 4))
4090 if (var
.limit
!= 0xffff)
4098 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
4100 struct kvm_segment cs
;
4101 unsigned int cs_rpl
;
4103 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4104 cs_rpl
= cs
.selector
& SEGMENT_RPL_MASK
;
4108 if (~cs
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_ACCESSES_MASK
))
4112 if (cs
.type
& VMX_AR_TYPE_WRITEABLE_MASK
) {
4113 if (cs
.dpl
> cs_rpl
)
4116 if (cs
.dpl
!= cs_rpl
)
4122 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4126 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
4128 struct kvm_segment ss
;
4129 unsigned int ss_rpl
;
4131 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4132 ss_rpl
= ss
.selector
& SEGMENT_RPL_MASK
;
4136 if (ss
.type
!= 3 && ss
.type
!= 7)
4140 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
4148 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4150 struct kvm_segment var
;
4153 vmx_get_segment(vcpu
, &var
, seg
);
4154 rpl
= var
.selector
& SEGMENT_RPL_MASK
;
4162 if (~var
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_WRITEABLE_MASK
)) {
4163 if (var
.dpl
< rpl
) /* DPL < RPL */
4167 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4173 static bool tr_valid(struct kvm_vcpu
*vcpu
)
4175 struct kvm_segment tr
;
4177 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
4181 if (tr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4183 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
4191 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
4193 struct kvm_segment ldtr
;
4195 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
4199 if (ldtr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4209 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
4211 struct kvm_segment cs
, ss
;
4213 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4214 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4216 return ((cs
.selector
& SEGMENT_RPL_MASK
) ==
4217 (ss
.selector
& SEGMENT_RPL_MASK
));
4221 * Check if guest state is valid. Returns true if valid, false if
4223 * We assume that registers are always usable
4225 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
4227 if (enable_unrestricted_guest
)
4230 /* real mode guest state checks */
4231 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
4232 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
4234 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
4236 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
4238 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
4240 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
4242 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
4245 /* protected mode guest state checks */
4246 if (!cs_ss_rpl_check(vcpu
))
4248 if (!code_segment_valid(vcpu
))
4250 if (!stack_segment_valid(vcpu
))
4252 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
4254 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
4256 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
4258 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
4260 if (!tr_valid(vcpu
))
4262 if (!ldtr_valid(vcpu
))
4266 * - Add checks on RIP
4267 * - Add checks on RFLAGS
4273 static int init_rmode_tss(struct kvm
*kvm
)
4279 idx
= srcu_read_lock(&kvm
->srcu
);
4280 fn
= kvm
->arch
.tss_addr
>> PAGE_SHIFT
;
4281 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4284 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
4285 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
4286 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
4289 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
4292 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4296 r
= kvm_write_guest_page(kvm
, fn
, &data
,
4297 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
4300 srcu_read_unlock(&kvm
->srcu
, idx
);
4304 static int init_rmode_identity_map(struct kvm
*kvm
)
4307 kvm_pfn_t identity_map_pfn
;
4313 /* Protect kvm->arch.ept_identity_pagetable_done. */
4314 mutex_lock(&kvm
->slots_lock
);
4316 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
4319 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
4321 r
= alloc_identity_pagetable(kvm
);
4325 idx
= srcu_read_lock(&kvm
->srcu
);
4326 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
4329 /* Set up identity-mapping pagetable for EPT in real mode */
4330 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
4331 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
4332 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
4333 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
4334 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
4338 kvm
->arch
.ept_identity_pagetable_done
= true;
4341 srcu_read_unlock(&kvm
->srcu
, idx
);
4344 mutex_unlock(&kvm
->slots_lock
);
4348 static void seg_setup(int seg
)
4350 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4353 vmcs_write16(sf
->selector
, 0);
4354 vmcs_writel(sf
->base
, 0);
4355 vmcs_write32(sf
->limit
, 0xffff);
4357 if (seg
== VCPU_SREG_CS
)
4358 ar
|= 0x08; /* code segment */
4360 vmcs_write32(sf
->ar_bytes
, ar
);
4363 static int alloc_apic_access_page(struct kvm
*kvm
)
4368 mutex_lock(&kvm
->slots_lock
);
4369 if (kvm
->arch
.apic_access_page_done
)
4371 r
= __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
4372 APIC_DEFAULT_PHYS_BASE
, PAGE_SIZE
);
4376 page
= gfn_to_page(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
4377 if (is_error_page(page
)) {
4383 * Do not pin the page in memory, so that memory hot-unplug
4384 * is able to migrate it.
4387 kvm
->arch
.apic_access_page_done
= true;
4389 mutex_unlock(&kvm
->slots_lock
);
4393 static int alloc_identity_pagetable(struct kvm
*kvm
)
4395 /* Called with kvm->slots_lock held. */
4399 BUG_ON(kvm
->arch
.ept_identity_pagetable_done
);
4401 r
= __x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
4402 kvm
->arch
.ept_identity_map_addr
, PAGE_SIZE
);
4407 static int allocate_vpid(void)
4413 spin_lock(&vmx_vpid_lock
);
4414 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
4415 if (vpid
< VMX_NR_VPIDS
)
4416 __set_bit(vpid
, vmx_vpid_bitmap
);
4419 spin_unlock(&vmx_vpid_lock
);
4423 static void free_vpid(int vpid
)
4425 if (!enable_vpid
|| vpid
== 0)
4427 spin_lock(&vmx_vpid_lock
);
4428 __clear_bit(vpid
, vmx_vpid_bitmap
);
4429 spin_unlock(&vmx_vpid_lock
);
4432 #define MSR_TYPE_R 1
4433 #define MSR_TYPE_W 2
4434 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
4437 int f
= sizeof(unsigned long);
4439 if (!cpu_has_vmx_msr_bitmap())
4443 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4444 * have the write-low and read-high bitmap offsets the wrong way round.
4445 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4447 if (msr
<= 0x1fff) {
4448 if (type
& MSR_TYPE_R
)
4450 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
4452 if (type
& MSR_TYPE_W
)
4454 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
4456 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4458 if (type
& MSR_TYPE_R
)
4460 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
4462 if (type
& MSR_TYPE_W
)
4464 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4469 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap
,
4472 int f
= sizeof(unsigned long);
4474 if (!cpu_has_vmx_msr_bitmap())
4478 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4479 * have the write-low and read-high bitmap offsets the wrong way round.
4480 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4482 if (msr
<= 0x1fff) {
4483 if (type
& MSR_TYPE_R
)
4485 __set_bit(msr
, msr_bitmap
+ 0x000 / f
);
4487 if (type
& MSR_TYPE_W
)
4489 __set_bit(msr
, msr_bitmap
+ 0x800 / f
);
4491 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4493 if (type
& MSR_TYPE_R
)
4495 __set_bit(msr
, msr_bitmap
+ 0x400 / f
);
4497 if (type
& MSR_TYPE_W
)
4499 __set_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4505 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4506 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4508 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1
,
4509 unsigned long *msr_bitmap_nested
,
4512 int f
= sizeof(unsigned long);
4514 if (!cpu_has_vmx_msr_bitmap()) {
4520 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4521 * have the write-low and read-high bitmap offsets the wrong way round.
4522 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4524 if (msr
<= 0x1fff) {
4525 if (type
& MSR_TYPE_R
&&
4526 !test_bit(msr
, msr_bitmap_l1
+ 0x000 / f
))
4528 __clear_bit(msr
, msr_bitmap_nested
+ 0x000 / f
);
4530 if (type
& MSR_TYPE_W
&&
4531 !test_bit(msr
, msr_bitmap_l1
+ 0x800 / f
))
4533 __clear_bit(msr
, msr_bitmap_nested
+ 0x800 / f
);
4535 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4537 if (type
& MSR_TYPE_R
&&
4538 !test_bit(msr
, msr_bitmap_l1
+ 0x400 / f
))
4540 __clear_bit(msr
, msr_bitmap_nested
+ 0x400 / f
);
4542 if (type
& MSR_TYPE_W
&&
4543 !test_bit(msr
, msr_bitmap_l1
+ 0xc00 / f
))
4545 __clear_bit(msr
, msr_bitmap_nested
+ 0xc00 / f
);
4550 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
4553 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
,
4554 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4555 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
,
4556 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4559 static void vmx_enable_intercept_msr_read_x2apic(u32 msr
)
4561 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4563 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4567 static void vmx_disable_intercept_msr_read_x2apic(u32 msr
)
4569 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4571 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4575 static void vmx_disable_intercept_msr_write_x2apic(u32 msr
)
4577 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4579 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4583 static bool vmx_get_enable_apicv(void)
4585 return enable_apicv
;
4588 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu
*vcpu
)
4590 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4595 if (vmx
->nested
.pi_desc
&&
4596 vmx
->nested
.pi_pending
) {
4597 vmx
->nested
.pi_pending
= false;
4598 if (!pi_test_and_clear_on(vmx
->nested
.pi_desc
))
4601 max_irr
= find_last_bit(
4602 (unsigned long *)vmx
->nested
.pi_desc
->pir
, 256);
4607 vapic_page
= kmap(vmx
->nested
.virtual_apic_page
);
4612 __kvm_apic_update_irr(vmx
->nested
.pi_desc
->pir
, vapic_page
);
4613 kunmap(vmx
->nested
.virtual_apic_page
);
4615 status
= vmcs_read16(GUEST_INTR_STATUS
);
4616 if ((u8
)max_irr
> ((u8
)status
& 0xff)) {
4618 status
|= (u8
)max_irr
;
4619 vmcs_write16(GUEST_INTR_STATUS
, status
);
4625 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu
*vcpu
)
4628 if (vcpu
->mode
== IN_GUEST_MODE
) {
4629 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4632 * Currently, we don't support urgent interrupt,
4633 * all interrupts are recognized as non-urgent
4634 * interrupt, so we cannot post interrupts when
4637 * If the vcpu is in guest mode, it means it is
4638 * running instead of being scheduled out and
4639 * waiting in the run queue, and that's the only
4640 * case when 'SN' is set currently, warning if
4643 WARN_ON_ONCE(pi_test_sn(&vmx
->pi_desc
));
4645 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
),
4646 POSTED_INTR_VECTOR
);
4653 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu
*vcpu
,
4656 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4658 if (is_guest_mode(vcpu
) &&
4659 vector
== vmx
->nested
.posted_intr_nv
) {
4660 /* the PIR and ON have been set by L1. */
4661 kvm_vcpu_trigger_posted_interrupt(vcpu
);
4663 * If a posted intr is not recognized by hardware,
4664 * we will accomplish it in the next vmentry.
4666 vmx
->nested
.pi_pending
= true;
4667 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4673 * Send interrupt to vcpu via posted interrupt way.
4674 * 1. If target vcpu is running(non-root mode), send posted interrupt
4675 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4676 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4677 * interrupt from PIR in next vmentry.
4679 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
4681 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4684 r
= vmx_deliver_nested_posted_interrupt(vcpu
, vector
);
4688 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
4691 r
= pi_test_and_set_on(&vmx
->pi_desc
);
4692 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4693 if (r
|| !kvm_vcpu_trigger_posted_interrupt(vcpu
))
4694 kvm_vcpu_kick(vcpu
);
4697 static void vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
4699 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4701 if (!pi_test_and_clear_on(&vmx
->pi_desc
))
4704 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
);
4708 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4709 * will not change in the lifetime of the guest.
4710 * Note that host-state that does change is set elsewhere. E.g., host-state
4711 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4713 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
4720 vmcs_writel(HOST_CR0
, read_cr0() & ~X86_CR0_TS
); /* 22.2.3 */
4721 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4723 /* Save the most likely value for this task's CR4 in the VMCS. */
4724 cr4
= cr4_read_shadow();
4725 vmcs_writel(HOST_CR4
, cr4
); /* 22.2.3, 22.2.5 */
4726 vmx
->host_state
.vmcs_host_cr4
= cr4
;
4728 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
4729 #ifdef CONFIG_X86_64
4731 * Load null selectors, so we can avoid reloading them in
4732 * __vmx_load_host_state(), in case userspace uses the null selectors
4733 * too (the expected case).
4735 vmcs_write16(HOST_DS_SELECTOR
, 0);
4736 vmcs_write16(HOST_ES_SELECTOR
, 0);
4738 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4739 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4741 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4742 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
4744 native_store_idt(&dt
);
4745 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
4746 vmx
->host_idt_base
= dt
.address
;
4748 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
4750 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
4751 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
4752 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
4753 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
4755 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
4756 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
4757 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
4761 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
4763 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
4765 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
4766 if (is_guest_mode(&vmx
->vcpu
))
4767 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
4768 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
4769 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
4772 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
4774 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
4776 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
4777 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
4778 return pin_based_exec_ctrl
;
4781 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
4783 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4785 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
4788 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
4790 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
4792 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
4793 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
4795 if (!cpu_need_tpr_shadow(&vmx
->vcpu
)) {
4796 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
4797 #ifdef CONFIG_X86_64
4798 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
4799 CPU_BASED_CR8_LOAD_EXITING
;
4803 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
4804 CPU_BASED_CR3_LOAD_EXITING
|
4805 CPU_BASED_INVLPG_EXITING
;
4806 return exec_control
;
4809 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
4811 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
4812 if (!cpu_need_virtualize_apic_accesses(&vmx
->vcpu
))
4813 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
4815 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
4817 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
4818 enable_unrestricted_guest
= 0;
4819 /* Enable INVPCID for non-ept guests may cause performance regression. */
4820 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
4822 if (!enable_unrestricted_guest
)
4823 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
4825 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
4826 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
4827 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4828 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4829 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
4830 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4832 We can NOT enable shadow_vmcs here because we don't have yet
4835 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
4838 exec_control
&= ~SECONDARY_EXEC_ENABLE_PML
;
4840 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4841 exec_control
&= ~SECONDARY_EXEC_PCOMMIT
;
4843 return exec_control
;
4846 static void ept_set_mmio_spte_mask(void)
4849 * EPT Misconfigurations can be generated if the value of bits 2:0
4850 * of an EPT paging-structure entry is 110b (write/execute).
4851 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4854 kvm_mmu_set_mmio_spte_mask((0x3ull
<< 62) | 0x6ull
);
4857 #define VMX_XSS_EXIT_BITMAP 0
4859 * Sets up the vmcs for emulated real mode.
4861 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
4863 #ifdef CONFIG_X86_64
4869 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
4870 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
4872 if (enable_shadow_vmcs
) {
4873 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
4874 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
4876 if (cpu_has_vmx_msr_bitmap())
4877 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
4879 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
4882 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
4884 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
4886 if (cpu_has_secondary_exec_ctrls())
4887 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
4888 vmx_secondary_exec_control(vmx
));
4890 if (kvm_vcpu_apicv_active(&vmx
->vcpu
)) {
4891 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
4892 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
4893 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
4894 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
4896 vmcs_write16(GUEST_INTR_STATUS
, 0);
4898 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
4899 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
4903 vmcs_write32(PLE_GAP
, ple_gap
);
4904 vmx
->ple_window
= ple_window
;
4905 vmx
->ple_window_dirty
= true;
4908 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
4909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
4910 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
4912 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
4913 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
4914 vmx_set_constant_host_state(vmx
);
4915 #ifdef CONFIG_X86_64
4916 rdmsrl(MSR_FS_BASE
, a
);
4917 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
4918 rdmsrl(MSR_GS_BASE
, a
);
4919 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
4921 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
4922 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
4925 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
4926 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
4927 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
4928 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
4929 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
4931 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
4932 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
4934 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
) {
4935 u32 index
= vmx_msr_index
[i
];
4936 u32 data_low
, data_high
;
4939 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
4941 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
4943 vmx
->guest_msrs
[j
].index
= i
;
4944 vmx
->guest_msrs
[j
].data
= 0;
4945 vmx
->guest_msrs
[j
].mask
= -1ull;
4950 vm_exit_controls_init(vmx
, vmcs_config
.vmexit_ctrl
);
4952 /* 22.2.1, 20.8.1 */
4953 vm_entry_controls_init(vmx
, vmcs_config
.vmentry_ctrl
);
4955 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
4956 set_cr4_guest_host_mask(vmx
);
4958 if (vmx_xsaves_supported())
4959 vmcs_write64(XSS_EXIT_BITMAP
, VMX_XSS_EXIT_BITMAP
);
4964 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
4966 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4967 struct msr_data apic_base_msr
;
4970 vmx
->rmode
.vm86_active
= 0;
4972 vmx
->soft_vnmi_blocked
= 0;
4974 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
4975 kvm_set_cr8(vcpu
, 0);
4978 apic_base_msr
.data
= APIC_DEFAULT_PHYS_BASE
|
4979 MSR_IA32_APICBASE_ENABLE
;
4980 if (kvm_vcpu_is_reset_bsp(vcpu
))
4981 apic_base_msr
.data
|= MSR_IA32_APICBASE_BSP
;
4982 apic_base_msr
.host_initiated
= true;
4983 kvm_set_apic_base(vcpu
, &apic_base_msr
);
4986 vmx_segment_cache_clear(vmx
);
4988 seg_setup(VCPU_SREG_CS
);
4989 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
4990 vmcs_writel(GUEST_CS_BASE
, 0xffff0000ul
);
4992 seg_setup(VCPU_SREG_DS
);
4993 seg_setup(VCPU_SREG_ES
);
4994 seg_setup(VCPU_SREG_FS
);
4995 seg_setup(VCPU_SREG_GS
);
4996 seg_setup(VCPU_SREG_SS
);
4998 vmcs_write16(GUEST_TR_SELECTOR
, 0);
4999 vmcs_writel(GUEST_TR_BASE
, 0);
5000 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
5001 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
5003 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
5004 vmcs_writel(GUEST_LDTR_BASE
, 0);
5005 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
5006 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
5009 vmcs_write32(GUEST_SYSENTER_CS
, 0);
5010 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
5011 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
5012 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
5015 vmcs_writel(GUEST_RFLAGS
, 0x02);
5016 kvm_rip_write(vcpu
, 0xfff0);
5018 vmcs_writel(GUEST_GDTR_BASE
, 0);
5019 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
5021 vmcs_writel(GUEST_IDTR_BASE
, 0);
5022 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
5024 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
5025 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
5026 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
5030 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
5032 if (cpu_has_vmx_tpr_shadow() && !init_event
) {
5033 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
5034 if (cpu_need_tpr_shadow(vcpu
))
5035 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
5036 __pa(vcpu
->arch
.apic
->regs
));
5037 vmcs_write32(TPR_THRESHOLD
, 0);
5040 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
5042 if (kvm_vcpu_apicv_active(vcpu
))
5043 memset(&vmx
->pi_desc
, 0, sizeof(struct pi_desc
));
5046 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
5048 cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
5049 vmx_set_cr0(vcpu
, cr0
); /* enter rmode */
5050 vmx
->vcpu
.arch
.cr0
= cr0
;
5051 vmx_set_cr4(vcpu
, 0);
5052 vmx_set_efer(vcpu
, 0);
5053 vmx_fpu_activate(vcpu
);
5054 update_exception_bitmap(vcpu
);
5056 vpid_sync_context(vmx
->vpid
);
5060 * In nested virtualization, check if L1 asked to exit on external interrupts.
5061 * For most existing hypervisors, this will always return true.
5063 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
5065 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
5066 PIN_BASED_EXT_INTR_MASK
;
5070 * In nested virtualization, check if L1 has set
5071 * VM_EXIT_ACK_INTR_ON_EXIT
5073 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
5075 return get_vmcs12(vcpu
)->vm_exit_controls
&
5076 VM_EXIT_ACK_INTR_ON_EXIT
;
5079 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
5081 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
5082 PIN_BASED_NMI_EXITING
;
5085 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
5087 u32 cpu_based_vm_exec_control
;
5089 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5090 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
5091 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5094 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
5096 u32 cpu_based_vm_exec_control
;
5098 if (!cpu_has_virtual_nmis() ||
5099 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
5100 enable_irq_window(vcpu
);
5104 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5105 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
5106 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5109 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
5111 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5113 int irq
= vcpu
->arch
.interrupt
.nr
;
5115 trace_kvm_inj_virq(irq
);
5117 ++vcpu
->stat
.irq_injections
;
5118 if (vmx
->rmode
.vm86_active
) {
5120 if (vcpu
->arch
.interrupt
.soft
)
5121 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
5122 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
5123 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5126 intr
= irq
| INTR_INFO_VALID_MASK
;
5127 if (vcpu
->arch
.interrupt
.soft
) {
5128 intr
|= INTR_TYPE_SOFT_INTR
;
5129 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
5130 vmx
->vcpu
.arch
.event_exit_inst_len
);
5132 intr
|= INTR_TYPE_EXT_INTR
;
5133 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
5136 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
5138 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5140 if (is_guest_mode(vcpu
))
5143 if (!cpu_has_virtual_nmis()) {
5145 * Tracking the NMI-blocked state in software is built upon
5146 * finding the next open IRQ window. This, in turn, depends on
5147 * well-behaving guests: They have to keep IRQs disabled at
5148 * least as long as the NMI handler runs. Otherwise we may
5149 * cause NMI nesting, maybe breaking the guest. But as this is
5150 * highly unlikely, we can live with the residual risk.
5152 vmx
->soft_vnmi_blocked
= 1;
5153 vmx
->vnmi_blocked_time
= 0;
5156 ++vcpu
->stat
.nmi_injections
;
5157 vmx
->nmi_known_unmasked
= false;
5158 if (vmx
->rmode
.vm86_active
) {
5159 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
5160 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5163 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
5164 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
5167 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
5169 if (!cpu_has_virtual_nmis())
5170 return to_vmx(vcpu
)->soft_vnmi_blocked
;
5171 if (to_vmx(vcpu
)->nmi_known_unmasked
)
5173 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
5176 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
5178 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5180 if (!cpu_has_virtual_nmis()) {
5181 if (vmx
->soft_vnmi_blocked
!= masked
) {
5182 vmx
->soft_vnmi_blocked
= masked
;
5183 vmx
->vnmi_blocked_time
= 0;
5186 vmx
->nmi_known_unmasked
= !masked
;
5188 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
5189 GUEST_INTR_STATE_NMI
);
5191 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
5192 GUEST_INTR_STATE_NMI
);
5196 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
5198 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
5201 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
5204 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5205 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
5206 | GUEST_INTR_STATE_NMI
));
5209 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
5211 return (!to_vmx(vcpu
)->nested
.nested_run_pending
&&
5212 vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
5213 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5214 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
5217 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
5221 ret
= x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, addr
,
5225 kvm
->arch
.tss_addr
= addr
;
5226 return init_rmode_tss(kvm
);
5229 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
5234 * Update instruction length as we may reinject the exception
5235 * from user space while in guest debugging mode.
5237 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
5238 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5239 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
5243 if (vcpu
->guest_debug
&
5244 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
5261 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
5262 int vec
, u32 err_code
)
5265 * Instruction with address size override prefix opcode 0x67
5266 * Cause the #SS fault with 0 error code in VM86 mode.
5268 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
5269 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
5270 if (vcpu
->arch
.halt_request
) {
5271 vcpu
->arch
.halt_request
= 0;
5272 return kvm_vcpu_halt(vcpu
);
5280 * Forward all other exceptions that are valid in real mode.
5281 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5282 * the required debugging infrastructure rework.
5284 kvm_queue_exception(vcpu
, vec
);
5289 * Trigger machine check on the host. We assume all the MSRs are already set up
5290 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5291 * We pass a fake environment to the machine check handler because we want
5292 * the guest to be always treated like user space, no matter what context
5293 * it used internally.
5295 static void kvm_machine_check(void)
5297 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5298 struct pt_regs regs
= {
5299 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
5300 .flags
= X86_EFLAGS_IF
,
5303 do_machine_check(®s
, 0);
5307 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
5309 /* already handled by vcpu_run */
5313 static int handle_exception(struct kvm_vcpu
*vcpu
)
5315 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5316 struct kvm_run
*kvm_run
= vcpu
->run
;
5317 u32 intr_info
, ex_no
, error_code
;
5318 unsigned long cr2
, rip
, dr6
;
5320 enum emulation_result er
;
5322 vect_info
= vmx
->idt_vectoring_info
;
5323 intr_info
= vmx
->exit_intr_info
;
5325 if (is_machine_check(intr_info
))
5326 return handle_machine_check(vcpu
);
5328 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
5329 return 1; /* already handled by vmx_vcpu_run() */
5331 if (is_no_device(intr_info
)) {
5332 vmx_fpu_activate(vcpu
);
5336 if (is_invalid_opcode(intr_info
)) {
5337 if (is_guest_mode(vcpu
)) {
5338 kvm_queue_exception(vcpu
, UD_VECTOR
);
5341 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
5342 if (er
!= EMULATE_DONE
)
5343 kvm_queue_exception(vcpu
, UD_VECTOR
);
5348 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
5349 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
5352 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5353 * MMIO, it is better to report an internal error.
5354 * See the comments in vmx_handle_exit.
5356 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
5357 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
5358 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5359 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
5360 vcpu
->run
->internal
.ndata
= 3;
5361 vcpu
->run
->internal
.data
[0] = vect_info
;
5362 vcpu
->run
->internal
.data
[1] = intr_info
;
5363 vcpu
->run
->internal
.data
[2] = error_code
;
5367 if (is_page_fault(intr_info
)) {
5368 /* EPT won't cause page fault directly */
5370 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
5371 trace_kvm_page_fault(cr2
, error_code
);
5373 if (kvm_event_needs_reinjection(vcpu
))
5374 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
5375 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
5378 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
5380 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
5381 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
5385 kvm_queue_exception_e(vcpu
, AC_VECTOR
, error_code
);
5388 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
5389 if (!(vcpu
->guest_debug
&
5390 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
5391 vcpu
->arch
.dr6
&= ~15;
5392 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5393 if (!(dr6
& ~DR6_RESERVED
)) /* icebp */
5394 skip_emulated_instruction(vcpu
);
5396 kvm_queue_exception(vcpu
, DB_VECTOR
);
5399 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
5400 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
5404 * Update instruction length as we may reinject #BP from
5405 * user space while in guest debugging mode. Reading it for
5406 * #DB as well causes no harm, it is not used in that case.
5408 vmx
->vcpu
.arch
.event_exit_inst_len
=
5409 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5410 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5411 rip
= kvm_rip_read(vcpu
);
5412 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
5413 kvm_run
->debug
.arch
.exception
= ex_no
;
5416 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
5417 kvm_run
->ex
.exception
= ex_no
;
5418 kvm_run
->ex
.error_code
= error_code
;
5424 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
5426 ++vcpu
->stat
.irq_exits
;
5430 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
5432 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5436 static int handle_io(struct kvm_vcpu
*vcpu
)
5438 unsigned long exit_qualification
;
5439 int size
, in
, string
;
5442 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5443 string
= (exit_qualification
& 16) != 0;
5444 in
= (exit_qualification
& 8) != 0;
5446 ++vcpu
->stat
.io_exits
;
5449 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5451 port
= exit_qualification
>> 16;
5452 size
= (exit_qualification
& 7) + 1;
5453 skip_emulated_instruction(vcpu
);
5455 return kvm_fast_pio_out(vcpu
, size
, port
);
5459 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
5462 * Patch in the VMCALL instruction:
5464 hypercall
[0] = 0x0f;
5465 hypercall
[1] = 0x01;
5466 hypercall
[2] = 0xc1;
5469 static bool nested_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
5471 unsigned long always_on
= VMXON_CR0_ALWAYSON
;
5472 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5474 if (to_vmx(vcpu
)->nested
.nested_vmx_secondary_ctls_high
&
5475 SECONDARY_EXEC_UNRESTRICTED_GUEST
&&
5476 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
5477 always_on
&= ~(X86_CR0_PE
| X86_CR0_PG
);
5478 return (val
& always_on
) == always_on
;
5481 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5482 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
5484 if (is_guest_mode(vcpu
)) {
5485 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5486 unsigned long orig_val
= val
;
5489 * We get here when L2 changed cr0 in a way that did not change
5490 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5491 * but did change L0 shadowed bits. So we first calculate the
5492 * effective cr0 value that L1 would like to write into the
5493 * hardware. It consists of the L2-owned bits from the new
5494 * value combined with the L1-owned bits from L1's guest_cr0.
5496 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
5497 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
5499 if (!nested_cr0_valid(vcpu
, val
))
5502 if (kvm_set_cr0(vcpu
, val
))
5504 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
5507 if (to_vmx(vcpu
)->nested
.vmxon
&&
5508 ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
))
5510 return kvm_set_cr0(vcpu
, val
);
5514 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
5516 if (is_guest_mode(vcpu
)) {
5517 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5518 unsigned long orig_val
= val
;
5520 /* analogously to handle_set_cr0 */
5521 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
5522 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
5523 if (kvm_set_cr4(vcpu
, val
))
5525 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
5528 return kvm_set_cr4(vcpu
, val
);
5531 /* called to set cr0 as appropriate for clts instruction exit. */
5532 static void handle_clts(struct kvm_vcpu
*vcpu
)
5534 if (is_guest_mode(vcpu
)) {
5536 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5537 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5538 * just pretend it's off (also in arch.cr0 for fpu_activate).
5540 vmcs_writel(CR0_READ_SHADOW
,
5541 vmcs_readl(CR0_READ_SHADOW
) & ~X86_CR0_TS
);
5542 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
5544 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
5547 static int handle_cr(struct kvm_vcpu
*vcpu
)
5549 unsigned long exit_qualification
, val
;
5554 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5555 cr
= exit_qualification
& 15;
5556 reg
= (exit_qualification
>> 8) & 15;
5557 switch ((exit_qualification
>> 4) & 3) {
5558 case 0: /* mov to cr */
5559 val
= kvm_register_readl(vcpu
, reg
);
5560 trace_kvm_cr_write(cr
, val
);
5563 err
= handle_set_cr0(vcpu
, val
);
5564 kvm_complete_insn_gp(vcpu
, err
);
5567 err
= kvm_set_cr3(vcpu
, val
);
5568 kvm_complete_insn_gp(vcpu
, err
);
5571 err
= handle_set_cr4(vcpu
, val
);
5572 kvm_complete_insn_gp(vcpu
, err
);
5575 u8 cr8_prev
= kvm_get_cr8(vcpu
);
5577 err
= kvm_set_cr8(vcpu
, cr8
);
5578 kvm_complete_insn_gp(vcpu
, err
);
5579 if (lapic_in_kernel(vcpu
))
5581 if (cr8_prev
<= cr8
)
5583 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
5590 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
5591 skip_emulated_instruction(vcpu
);
5592 vmx_fpu_activate(vcpu
);
5594 case 1: /*mov from cr*/
5597 val
= kvm_read_cr3(vcpu
);
5598 kvm_register_write(vcpu
, reg
, val
);
5599 trace_kvm_cr_read(cr
, val
);
5600 skip_emulated_instruction(vcpu
);
5603 val
= kvm_get_cr8(vcpu
);
5604 kvm_register_write(vcpu
, reg
, val
);
5605 trace_kvm_cr_read(cr
, val
);
5606 skip_emulated_instruction(vcpu
);
5611 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
5612 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
5613 kvm_lmsw(vcpu
, val
);
5615 skip_emulated_instruction(vcpu
);
5620 vcpu
->run
->exit_reason
= 0;
5621 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
5622 (int)(exit_qualification
>> 4) & 3, cr
);
5626 static int handle_dr(struct kvm_vcpu
*vcpu
)
5628 unsigned long exit_qualification
;
5631 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5632 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
5634 /* First, if DR does not exist, trigger UD */
5635 if (!kvm_require_dr(vcpu
, dr
))
5638 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5639 if (!kvm_require_cpl(vcpu
, 0))
5641 dr7
= vmcs_readl(GUEST_DR7
);
5644 * As the vm-exit takes precedence over the debug trap, we
5645 * need to emulate the latter, either for the host or the
5646 * guest debugging itself.
5648 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5649 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
5650 vcpu
->run
->debug
.arch
.dr7
= dr7
;
5651 vcpu
->run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
5652 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
5653 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
5656 vcpu
->arch
.dr6
&= ~15;
5657 vcpu
->arch
.dr6
|= DR6_BD
| DR6_RTM
;
5658 kvm_queue_exception(vcpu
, DB_VECTOR
);
5663 if (vcpu
->guest_debug
== 0) {
5664 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
5665 CPU_BASED_MOV_DR_EXITING
);
5668 * No more DR vmexits; force a reload of the debug registers
5669 * and reenter on this instruction. The next vmexit will
5670 * retrieve the full state of the debug registers.
5672 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
5676 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
5677 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
5680 if (kvm_get_dr(vcpu
, dr
, &val
))
5682 kvm_register_write(vcpu
, reg
, val
);
5684 if (kvm_set_dr(vcpu
, dr
, kvm_register_readl(vcpu
, reg
)))
5687 skip_emulated_instruction(vcpu
);
5691 static u64
vmx_get_dr6(struct kvm_vcpu
*vcpu
)
5693 return vcpu
->arch
.dr6
;
5696 static void vmx_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long val
)
5700 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
5702 get_debugreg(vcpu
->arch
.db
[0], 0);
5703 get_debugreg(vcpu
->arch
.db
[1], 1);
5704 get_debugreg(vcpu
->arch
.db
[2], 2);
5705 get_debugreg(vcpu
->arch
.db
[3], 3);
5706 get_debugreg(vcpu
->arch
.dr6
, 6);
5707 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
5709 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
5710 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
, CPU_BASED_MOV_DR_EXITING
);
5713 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
5715 vmcs_writel(GUEST_DR7
, val
);
5718 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
5720 kvm_emulate_cpuid(vcpu
);
5724 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
5726 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5727 struct msr_data msr_info
;
5729 msr_info
.index
= ecx
;
5730 msr_info
.host_initiated
= false;
5731 if (vmx_get_msr(vcpu
, &msr_info
)) {
5732 trace_kvm_msr_read_ex(ecx
);
5733 kvm_inject_gp(vcpu
, 0);
5737 trace_kvm_msr_read(ecx
, msr_info
.data
);
5739 /* FIXME: handling of bits 32:63 of rax, rdx */
5740 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = msr_info
.data
& -1u;
5741 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (msr_info
.data
>> 32) & -1u;
5742 skip_emulated_instruction(vcpu
);
5746 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
5748 struct msr_data msr
;
5749 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5750 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
5751 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
5755 msr
.host_initiated
= false;
5756 if (kvm_set_msr(vcpu
, &msr
) != 0) {
5757 trace_kvm_msr_write_ex(ecx
, data
);
5758 kvm_inject_gp(vcpu
, 0);
5762 trace_kvm_msr_write(ecx
, data
);
5763 skip_emulated_instruction(vcpu
);
5767 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
5769 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5773 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
5775 u32 cpu_based_vm_exec_control
;
5777 /* clear pending irq */
5778 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5779 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
5780 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5782 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5784 ++vcpu
->stat
.irq_window_exits
;
5788 static int handle_halt(struct kvm_vcpu
*vcpu
)
5790 return kvm_emulate_halt(vcpu
);
5793 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
5795 return kvm_emulate_hypercall(vcpu
);
5798 static int handle_invd(struct kvm_vcpu
*vcpu
)
5800 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5803 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
5805 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5807 kvm_mmu_invlpg(vcpu
, exit_qualification
);
5808 skip_emulated_instruction(vcpu
);
5812 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
5816 err
= kvm_rdpmc(vcpu
);
5817 kvm_complete_insn_gp(vcpu
, err
);
5822 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
5824 kvm_emulate_wbinvd(vcpu
);
5828 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
5830 u64 new_bv
= kvm_read_edx_eax(vcpu
);
5831 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5833 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
5834 skip_emulated_instruction(vcpu
);
5838 static int handle_xsaves(struct kvm_vcpu
*vcpu
)
5840 skip_emulated_instruction(vcpu
);
5841 WARN(1, "this should never happen\n");
5845 static int handle_xrstors(struct kvm_vcpu
*vcpu
)
5847 skip_emulated_instruction(vcpu
);
5848 WARN(1, "this should never happen\n");
5852 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
5854 if (likely(fasteoi
)) {
5855 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5856 int access_type
, offset
;
5858 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
5859 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
5861 * Sane guest uses MOV to write EOI, with written value
5862 * not cared. So make a short-circuit here by avoiding
5863 * heavy instruction emulation.
5865 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
5866 (offset
== APIC_EOI
)) {
5867 kvm_lapic_set_eoi(vcpu
);
5868 skip_emulated_instruction(vcpu
);
5872 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5875 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
5877 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5878 int vector
= exit_qualification
& 0xff;
5880 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5881 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
5885 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
5887 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5888 u32 offset
= exit_qualification
& 0xfff;
5890 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5891 kvm_apic_write_nodecode(vcpu
, offset
);
5895 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
5897 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5898 unsigned long exit_qualification
;
5899 bool has_error_code
= false;
5902 int reason
, type
, idt_v
, idt_index
;
5904 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
5905 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
5906 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
5908 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5910 reason
= (u32
)exit_qualification
>> 30;
5911 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
5913 case INTR_TYPE_NMI_INTR
:
5914 vcpu
->arch
.nmi_injected
= false;
5915 vmx_set_nmi_mask(vcpu
, true);
5917 case INTR_TYPE_EXT_INTR
:
5918 case INTR_TYPE_SOFT_INTR
:
5919 kvm_clear_interrupt_queue(vcpu
);
5921 case INTR_TYPE_HARD_EXCEPTION
:
5922 if (vmx
->idt_vectoring_info
&
5923 VECTORING_INFO_DELIVER_CODE_MASK
) {
5924 has_error_code
= true;
5926 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
5929 case INTR_TYPE_SOFT_EXCEPTION
:
5930 kvm_clear_exception_queue(vcpu
);
5936 tss_selector
= exit_qualification
;
5938 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
5939 type
!= INTR_TYPE_EXT_INTR
&&
5940 type
!= INTR_TYPE_NMI_INTR
))
5941 skip_emulated_instruction(vcpu
);
5943 if (kvm_task_switch(vcpu
, tss_selector
,
5944 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
5945 has_error_code
, error_code
) == EMULATE_FAIL
) {
5946 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5947 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5948 vcpu
->run
->internal
.ndata
= 0;
5953 * TODO: What about debug traps on tss switch?
5954 * Are we supposed to inject them and update dr6?
5960 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
5962 unsigned long exit_qualification
;
5967 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5969 gla_validity
= (exit_qualification
>> 7) & 0x3;
5970 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
5971 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
5972 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5973 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
5974 vmcs_readl(GUEST_LINEAR_ADDRESS
));
5975 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
5976 (long unsigned int)exit_qualification
);
5977 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5978 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
5983 * EPT violation happened while executing iret from NMI,
5984 * "blocked by NMI" bit has to be set before next VM entry.
5985 * There are errata that may cause this bit to not be set:
5988 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
5989 cpu_has_virtual_nmis() &&
5990 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
5991 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
5993 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5994 trace_kvm_page_fault(gpa
, exit_qualification
);
5996 /* It is a write fault? */
5997 error_code
= exit_qualification
& PFERR_WRITE_MASK
;
5998 /* It is a fetch fault? */
5999 error_code
|= (exit_qualification
<< 2) & PFERR_FETCH_MASK
;
6000 /* ept page table is present? */
6001 error_code
|= (exit_qualification
>> 3) & PFERR_PRESENT_MASK
;
6003 vcpu
->arch
.exit_qualification
= exit_qualification
;
6005 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
6008 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
6013 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
6014 if (!kvm_io_bus_write(vcpu
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
6015 skip_emulated_instruction(vcpu
);
6016 trace_kvm_fast_mmio(gpa
);
6020 ret
= handle_mmio_page_fault(vcpu
, gpa
, true);
6021 if (likely(ret
== RET_MMIO_PF_EMULATE
))
6022 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
6025 if (unlikely(ret
== RET_MMIO_PF_INVALID
))
6026 return kvm_mmu_page_fault(vcpu
, gpa
, 0, NULL
, 0);
6028 if (unlikely(ret
== RET_MMIO_PF_RETRY
))
6031 /* It is the real ept misconfig */
6034 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
6035 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
6040 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
6042 u32 cpu_based_vm_exec_control
;
6044 /* clear pending NMI */
6045 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
6046 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
6047 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
6048 ++vcpu
->stat
.nmi_window_exits
;
6049 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6054 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
6056 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6057 enum emulation_result err
= EMULATE_DONE
;
6060 bool intr_window_requested
;
6061 unsigned count
= 130;
6063 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
6064 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
6066 while (vmx
->emulation_required
&& count
-- != 0) {
6067 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
6068 return handle_interrupt_window(&vmx
->vcpu
);
6070 if (test_bit(KVM_REQ_EVENT
, &vcpu
->requests
))
6073 err
= emulate_instruction(vcpu
, EMULTYPE_NO_REEXECUTE
);
6075 if (err
== EMULATE_USER_EXIT
) {
6076 ++vcpu
->stat
.mmio_exits
;
6081 if (err
!= EMULATE_DONE
) {
6082 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6083 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6084 vcpu
->run
->internal
.ndata
= 0;
6088 if (vcpu
->arch
.halt_request
) {
6089 vcpu
->arch
.halt_request
= 0;
6090 ret
= kvm_vcpu_halt(vcpu
);
6094 if (signal_pending(current
))
6104 static int __grow_ple_window(int val
)
6106 if (ple_window_grow
< 1)
6109 val
= min(val
, ple_window_actual_max
);
6111 if (ple_window_grow
< ple_window
)
6112 val
*= ple_window_grow
;
6114 val
+= ple_window_grow
;
6119 static int __shrink_ple_window(int val
, int modifier
, int minimum
)
6124 if (modifier
< ple_window
)
6129 return max(val
, minimum
);
6132 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
6134 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6135 int old
= vmx
->ple_window
;
6137 vmx
->ple_window
= __grow_ple_window(old
);
6139 if (vmx
->ple_window
!= old
)
6140 vmx
->ple_window_dirty
= true;
6142 trace_kvm_ple_window_grow(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6145 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
6147 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6148 int old
= vmx
->ple_window
;
6150 vmx
->ple_window
= __shrink_ple_window(old
,
6151 ple_window_shrink
, ple_window
);
6153 if (vmx
->ple_window
!= old
)
6154 vmx
->ple_window_dirty
= true;
6156 trace_kvm_ple_window_shrink(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6160 * ple_window_actual_max is computed to be one grow_ple_window() below
6161 * ple_window_max. (See __grow_ple_window for the reason.)
6162 * This prevents overflows, because ple_window_max is int.
6163 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6165 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6167 static void update_ple_window_actual_max(void)
6169 ple_window_actual_max
=
6170 __shrink_ple_window(max(ple_window_max
, ple_window
),
6171 ple_window_grow
, INT_MIN
);
6175 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6177 static void wakeup_handler(void)
6179 struct kvm_vcpu
*vcpu
;
6180 int cpu
= smp_processor_id();
6182 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6183 list_for_each_entry(vcpu
, &per_cpu(blocked_vcpu_on_cpu
, cpu
),
6184 blocked_vcpu_list
) {
6185 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
6187 if (pi_test_on(pi_desc
) == 1)
6188 kvm_vcpu_kick(vcpu
);
6190 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6193 static __init
int hardware_setup(void)
6195 int r
= -ENOMEM
, i
, msr
;
6197 rdmsrl_safe(MSR_EFER
, &host_efer
);
6199 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
)
6200 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
6202 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6203 if (!vmx_io_bitmap_a
)
6206 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6207 if (!vmx_io_bitmap_b
)
6210 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6211 if (!vmx_msr_bitmap_legacy
)
6214 vmx_msr_bitmap_legacy_x2apic
=
6215 (unsigned long *)__get_free_page(GFP_KERNEL
);
6216 if (!vmx_msr_bitmap_legacy_x2apic
)
6219 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6220 if (!vmx_msr_bitmap_longmode
)
6223 vmx_msr_bitmap_longmode_x2apic
=
6224 (unsigned long *)__get_free_page(GFP_KERNEL
);
6225 if (!vmx_msr_bitmap_longmode_x2apic
)
6229 vmx_msr_bitmap_nested
=
6230 (unsigned long *)__get_free_page(GFP_KERNEL
);
6231 if (!vmx_msr_bitmap_nested
)
6235 vmx_vmread_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6236 if (!vmx_vmread_bitmap
)
6239 vmx_vmwrite_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6240 if (!vmx_vmwrite_bitmap
)
6243 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
6244 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
6247 * Allow direct access to the PC debug port (it is often used for I/O
6248 * delays, but the vmexits simply slow things down).
6250 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
6251 clear_bit(0x80, vmx_io_bitmap_a
);
6253 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
6255 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
6256 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
6258 memset(vmx_msr_bitmap_nested
, 0xff, PAGE_SIZE
);
6260 if (setup_vmcs_config(&vmcs_config
) < 0) {
6265 if (boot_cpu_has(X86_FEATURE_NX
))
6266 kvm_enable_efer_bits(EFER_NX
);
6268 if (!cpu_has_vmx_vpid())
6270 if (!cpu_has_vmx_shadow_vmcs())
6271 enable_shadow_vmcs
= 0;
6272 if (enable_shadow_vmcs
)
6273 init_vmcs_shadow_fields();
6275 if (!cpu_has_vmx_ept() ||
6276 !cpu_has_vmx_ept_4levels()) {
6278 enable_unrestricted_guest
= 0;
6279 enable_ept_ad_bits
= 0;
6282 if (!cpu_has_vmx_ept_ad_bits())
6283 enable_ept_ad_bits
= 0;
6285 if (!cpu_has_vmx_unrestricted_guest())
6286 enable_unrestricted_guest
= 0;
6288 if (!cpu_has_vmx_flexpriority())
6289 flexpriority_enabled
= 0;
6292 * set_apic_access_page_addr() is used to reload apic access
6293 * page upon invalidation. No need to do anything if not
6294 * using the APIC_ACCESS_ADDR VMCS field.
6296 if (!flexpriority_enabled
)
6297 kvm_x86_ops
->set_apic_access_page_addr
= NULL
;
6299 if (!cpu_has_vmx_tpr_shadow())
6300 kvm_x86_ops
->update_cr8_intercept
= NULL
;
6302 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
6303 kvm_disable_largepages();
6305 if (!cpu_has_vmx_ple())
6308 if (!cpu_has_vmx_apicv())
6311 if (cpu_has_vmx_tsc_scaling()) {
6312 kvm_has_tsc_control
= true;
6313 kvm_max_tsc_scaling_ratio
= KVM_VMX_TSC_MULTIPLIER_MAX
;
6314 kvm_tsc_scaling_ratio_frac_bits
= 48;
6317 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
6318 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
6319 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
6320 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
6321 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
6322 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
6323 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS
, true);
6325 memcpy(vmx_msr_bitmap_legacy_x2apic
,
6326 vmx_msr_bitmap_legacy
, PAGE_SIZE
);
6327 memcpy(vmx_msr_bitmap_longmode_x2apic
,
6328 vmx_msr_bitmap_longmode
, PAGE_SIZE
);
6330 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
6333 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
6334 vmx_disable_intercept_msr_read_x2apic(msr
);
6336 /* According SDM, in x2apic mode, the whole id reg is used.
6337 * But in KVM, it only use the highest eight bits. Need to
6339 vmx_enable_intercept_msr_read_x2apic(0x802);
6341 vmx_enable_intercept_msr_read_x2apic(0x839);
6343 vmx_disable_intercept_msr_write_x2apic(0x808);
6345 vmx_disable_intercept_msr_write_x2apic(0x80b);
6347 vmx_disable_intercept_msr_write_x2apic(0x83f);
6351 kvm_mmu_set_mask_ptes(0ull,
6352 (enable_ept_ad_bits
) ? VMX_EPT_ACCESS_BIT
: 0ull,
6353 (enable_ept_ad_bits
) ? VMX_EPT_DIRTY_BIT
: 0ull,
6354 0ull, VMX_EPT_EXECUTABLE_MASK
);
6355 ept_set_mmio_spte_mask();
6360 update_ple_window_actual_max();
6363 * Only enable PML when hardware supports PML feature, and both EPT
6364 * and EPT A/D bit features are enabled -- PML depends on them to work.
6366 if (!enable_ept
|| !enable_ept_ad_bits
|| !cpu_has_vmx_pml())
6370 kvm_x86_ops
->slot_enable_log_dirty
= NULL
;
6371 kvm_x86_ops
->slot_disable_log_dirty
= NULL
;
6372 kvm_x86_ops
->flush_log_dirty
= NULL
;
6373 kvm_x86_ops
->enable_log_dirty_pt_masked
= NULL
;
6376 kvm_set_posted_intr_wakeup_handler(wakeup_handler
);
6378 return alloc_kvm_area();
6381 free_page((unsigned long)vmx_vmwrite_bitmap
);
6383 free_page((unsigned long)vmx_vmread_bitmap
);
6386 free_page((unsigned long)vmx_msr_bitmap_nested
);
6388 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
6390 free_page((unsigned long)vmx_msr_bitmap_longmode
);
6392 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
6394 free_page((unsigned long)vmx_msr_bitmap_legacy
);
6396 free_page((unsigned long)vmx_io_bitmap_b
);
6398 free_page((unsigned long)vmx_io_bitmap_a
);
6403 static __exit
void hardware_unsetup(void)
6405 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
6406 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
6407 free_page((unsigned long)vmx_msr_bitmap_legacy
);
6408 free_page((unsigned long)vmx_msr_bitmap_longmode
);
6409 free_page((unsigned long)vmx_io_bitmap_b
);
6410 free_page((unsigned long)vmx_io_bitmap_a
);
6411 free_page((unsigned long)vmx_vmwrite_bitmap
);
6412 free_page((unsigned long)vmx_vmread_bitmap
);
6414 free_page((unsigned long)vmx_msr_bitmap_nested
);
6420 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6421 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6423 static int handle_pause(struct kvm_vcpu
*vcpu
)
6426 grow_ple_window(vcpu
);
6428 skip_emulated_instruction(vcpu
);
6429 kvm_vcpu_on_spin(vcpu
);
6434 static int handle_nop(struct kvm_vcpu
*vcpu
)
6436 skip_emulated_instruction(vcpu
);
6440 static int handle_mwait(struct kvm_vcpu
*vcpu
)
6442 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
6443 return handle_nop(vcpu
);
6446 static int handle_monitor_trap(struct kvm_vcpu
*vcpu
)
6451 static int handle_monitor(struct kvm_vcpu
*vcpu
)
6453 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
6454 return handle_nop(vcpu
);
6458 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6459 * We could reuse a single VMCS for all the L2 guests, but we also want the
6460 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6461 * allows keeping them loaded on the processor, and in the future will allow
6462 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6463 * every entry if they never change.
6464 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6465 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6467 * The following functions allocate and free a vmcs02 in this pool.
6470 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6471 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
6473 struct vmcs02_list
*item
;
6474 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6475 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
6476 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6477 return &item
->vmcs02
;
6480 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
6481 /* Recycle the least recently used VMCS. */
6482 item
= list_last_entry(&vmx
->nested
.vmcs02_pool
,
6483 struct vmcs02_list
, list
);
6484 item
->vmptr
= vmx
->nested
.current_vmptr
;
6485 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6486 return &item
->vmcs02
;
6489 /* Create a new VMCS */
6490 item
= kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
6493 item
->vmcs02
.vmcs
= alloc_vmcs();
6494 if (!item
->vmcs02
.vmcs
) {
6498 loaded_vmcs_init(&item
->vmcs02
);
6499 item
->vmptr
= vmx
->nested
.current_vmptr
;
6500 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
6501 vmx
->nested
.vmcs02_num
++;
6502 return &item
->vmcs02
;
6505 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6506 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
6508 struct vmcs02_list
*item
;
6509 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6510 if (item
->vmptr
== vmptr
) {
6511 free_loaded_vmcs(&item
->vmcs02
);
6512 list_del(&item
->list
);
6514 vmx
->nested
.vmcs02_num
--;
6520 * Free all VMCSs saved for this vcpu, except the one pointed by
6521 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6522 * must be &vmx->vmcs01.
6524 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
6526 struct vmcs02_list
*item
, *n
;
6528 WARN_ON(vmx
->loaded_vmcs
!= &vmx
->vmcs01
);
6529 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
6531 * Something will leak if the above WARN triggers. Better than
6534 if (vmx
->loaded_vmcs
== &item
->vmcs02
)
6537 free_loaded_vmcs(&item
->vmcs02
);
6538 list_del(&item
->list
);
6540 vmx
->nested
.vmcs02_num
--;
6545 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6546 * set the success or error code of an emulated VMX instruction, as specified
6547 * by Vol 2B, VMX Instruction Reference, "Conventions".
6549 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
6551 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
6552 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6553 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
6556 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
6558 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6559 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
6560 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6564 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
6565 u32 vm_instruction_error
)
6567 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
6569 * failValid writes the error number to the current VMCS, which
6570 * can't be done there isn't a current VMCS.
6572 nested_vmx_failInvalid(vcpu
);
6575 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6576 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6577 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6579 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
6581 * We don't need to force a shadow sync because
6582 * VM_INSTRUCTION_ERROR is not shadowed
6586 static void nested_vmx_abort(struct kvm_vcpu
*vcpu
, u32 indicator
)
6588 /* TODO: not to reset guest simply here. */
6589 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6590 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator
);
6593 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
6595 struct vcpu_vmx
*vmx
=
6596 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
6598 vmx
->nested
.preemption_timer_expired
= true;
6599 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
6600 kvm_vcpu_kick(&vmx
->vcpu
);
6602 return HRTIMER_NORESTART
;
6606 * Decode the memory-address operand of a vmx instruction, as recorded on an
6607 * exit caused by such an instruction (run by a guest hypervisor).
6608 * On success, returns 0. When the operand is invalid, returns 1 and throws
6611 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
6612 unsigned long exit_qualification
,
6613 u32 vmx_instruction_info
, bool wr
, gva_t
*ret
)
6617 struct kvm_segment s
;
6620 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6621 * Execution", on an exit, vmx_instruction_info holds most of the
6622 * addressing components of the operand. Only the displacement part
6623 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6624 * For how an actual address is calculated from all these components,
6625 * refer to Vol. 1, "Operand Addressing".
6627 int scaling
= vmx_instruction_info
& 3;
6628 int addr_size
= (vmx_instruction_info
>> 7) & 7;
6629 bool is_reg
= vmx_instruction_info
& (1u << 10);
6630 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
6631 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
6632 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
6633 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
6634 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
6637 kvm_queue_exception(vcpu
, UD_VECTOR
);
6641 /* Addr = segment_base + offset */
6642 /* offset = base + [index * scale] + displacement */
6643 off
= exit_qualification
; /* holds the displacement */
6645 off
+= kvm_register_read(vcpu
, base_reg
);
6647 off
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
6648 vmx_get_segment(vcpu
, &s
, seg_reg
);
6649 *ret
= s
.base
+ off
;
6651 if (addr_size
== 1) /* 32 bit */
6654 /* Checks for #GP/#SS exceptions. */
6656 if (is_protmode(vcpu
)) {
6657 /* Protected mode: apply checks for segment validity in the
6659 * - segment type check (#GP(0) may be thrown)
6660 * - usability check (#GP(0)/#SS(0))
6661 * - limit check (#GP(0)/#SS(0))
6664 /* #GP(0) if the destination operand is located in a
6665 * read-only data segment or any code segment.
6667 exn
= ((s
.type
& 0xa) == 0 || (s
.type
& 8));
6669 /* #GP(0) if the source operand is located in an
6670 * execute-only code segment
6672 exn
= ((s
.type
& 0xa) == 8);
6675 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
6678 if (is_long_mode(vcpu
)) {
6679 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6680 * non-canonical form. This is an only check for long mode.
6682 exn
= is_noncanonical_address(*ret
);
6683 } else if (is_protmode(vcpu
)) {
6684 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6686 exn
= (s
.unusable
!= 0);
6687 /* Protected mode: #GP(0)/#SS(0) if the memory
6688 * operand is outside the segment limit.
6690 exn
= exn
|| (off
+ sizeof(u64
) > s
.limit
);
6693 kvm_queue_exception_e(vcpu
,
6694 seg_reg
== VCPU_SREG_SS
?
6695 SS_VECTOR
: GP_VECTOR
,
6704 * This function performs the various checks including
6705 * - if it's 4KB aligned
6706 * - No bits beyond the physical address width are set
6707 * - Returns 0 on success or else 1
6708 * (Intel SDM Section 30.3)
6710 static int nested_vmx_check_vmptr(struct kvm_vcpu
*vcpu
, int exit_reason
,
6715 struct x86_exception e
;
6717 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6718 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
6720 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
6721 vmcs_read32(VMX_INSTRUCTION_INFO
), false, &gva
))
6724 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
6725 sizeof(vmptr
), &e
)) {
6726 kvm_inject_page_fault(vcpu
, &e
);
6730 switch (exit_reason
) {
6731 case EXIT_REASON_VMON
:
6734 * The first 4 bytes of VMXON region contain the supported
6735 * VMCS revision identifier
6737 * Note - IA32_VMX_BASIC[48] will never be 1
6738 * for the nested case;
6739 * which replaces physical address width with 32
6742 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6743 nested_vmx_failInvalid(vcpu
);
6744 skip_emulated_instruction(vcpu
);
6748 page
= nested_get_page(vcpu
, vmptr
);
6750 *(u32
*)kmap(page
) != VMCS12_REVISION
) {
6751 nested_vmx_failInvalid(vcpu
);
6753 skip_emulated_instruction(vcpu
);
6757 vmx
->nested
.vmxon_ptr
= vmptr
;
6759 case EXIT_REASON_VMCLEAR
:
6760 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6761 nested_vmx_failValid(vcpu
,
6762 VMXERR_VMCLEAR_INVALID_ADDRESS
);
6763 skip_emulated_instruction(vcpu
);
6767 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
6768 nested_vmx_failValid(vcpu
,
6769 VMXERR_VMCLEAR_VMXON_POINTER
);
6770 skip_emulated_instruction(vcpu
);
6774 case EXIT_REASON_VMPTRLD
:
6775 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6776 nested_vmx_failValid(vcpu
,
6777 VMXERR_VMPTRLD_INVALID_ADDRESS
);
6778 skip_emulated_instruction(vcpu
);
6782 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
6783 nested_vmx_failValid(vcpu
,
6784 VMXERR_VMCLEAR_VMXON_POINTER
);
6785 skip_emulated_instruction(vcpu
);
6790 return 1; /* shouldn't happen */
6799 * Emulate the VMXON instruction.
6800 * Currently, we just remember that VMX is active, and do not save or even
6801 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6802 * do not currently need to store anything in that guest-allocated memory
6803 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6804 * argument is different from the VMXON pointer (which the spec says they do).
6806 static int handle_vmon(struct kvm_vcpu
*vcpu
)
6808 struct kvm_segment cs
;
6809 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6810 struct vmcs
*shadow_vmcs
;
6811 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
6812 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
6814 /* The Intel VMX Instruction Reference lists a bunch of bits that
6815 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6816 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6817 * Otherwise, we should fail with #UD. We test these now:
6819 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
) ||
6820 !kvm_read_cr0_bits(vcpu
, X86_CR0_PE
) ||
6821 (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
6822 kvm_queue_exception(vcpu
, UD_VECTOR
);
6826 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6827 if (is_long_mode(vcpu
) && !cs
.l
) {
6828 kvm_queue_exception(vcpu
, UD_VECTOR
);
6832 if (vmx_get_cpl(vcpu
)) {
6833 kvm_inject_gp(vcpu
, 0);
6837 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMON
, NULL
))
6840 if (vmx
->nested
.vmxon
) {
6841 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
6842 skip_emulated_instruction(vcpu
);
6846 if ((vmx
->nested
.msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
6847 != VMXON_NEEDED_FEATURES
) {
6848 kvm_inject_gp(vcpu
, 0);
6852 if (enable_shadow_vmcs
) {
6853 shadow_vmcs
= alloc_vmcs();
6856 /* mark vmcs as shadow */
6857 shadow_vmcs
->revision_id
|= (1u << 31);
6858 /* init shadow vmcs */
6859 vmcs_clear(shadow_vmcs
);
6860 vmx
->nested
.current_shadow_vmcs
= shadow_vmcs
;
6863 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
6864 vmx
->nested
.vmcs02_num
= 0;
6866 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
6868 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
6870 vmx
->nested
.vmxon
= true;
6872 skip_emulated_instruction(vcpu
);
6873 nested_vmx_succeed(vcpu
);
6878 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6879 * for running VMX instructions (except VMXON, whose prerequisites are
6880 * slightly different). It also specifies what exception to inject otherwise.
6882 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
6884 struct kvm_segment cs
;
6885 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6887 if (!vmx
->nested
.vmxon
) {
6888 kvm_queue_exception(vcpu
, UD_VECTOR
);
6892 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6893 if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) ||
6894 (is_long_mode(vcpu
) && !cs
.l
)) {
6895 kvm_queue_exception(vcpu
, UD_VECTOR
);
6899 if (vmx_get_cpl(vcpu
)) {
6900 kvm_inject_gp(vcpu
, 0);
6907 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
6909 if (vmx
->nested
.current_vmptr
== -1ull)
6912 /* current_vmptr and current_vmcs12 are always set/reset together */
6913 if (WARN_ON(vmx
->nested
.current_vmcs12
== NULL
))
6916 if (enable_shadow_vmcs
) {
6917 /* copy to memory all shadowed fields in case
6918 they were modified */
6919 copy_shadow_to_vmcs12(vmx
);
6920 vmx
->nested
.sync_shadow_vmcs
= false;
6921 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
6922 SECONDARY_EXEC_SHADOW_VMCS
);
6923 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
6925 vmx
->nested
.posted_intr_nv
= -1;
6926 kunmap(vmx
->nested
.current_vmcs12_page
);
6927 nested_release_page(vmx
->nested
.current_vmcs12_page
);
6928 vmx
->nested
.current_vmptr
= -1ull;
6929 vmx
->nested
.current_vmcs12
= NULL
;
6933 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6934 * just stops using VMX.
6936 static void free_nested(struct vcpu_vmx
*vmx
)
6938 if (!vmx
->nested
.vmxon
)
6941 vmx
->nested
.vmxon
= false;
6942 free_vpid(vmx
->nested
.vpid02
);
6943 nested_release_vmcs12(vmx
);
6944 if (enable_shadow_vmcs
)
6945 free_vmcs(vmx
->nested
.current_shadow_vmcs
);
6946 /* Unpin physical memory we referred to in current vmcs02 */
6947 if (vmx
->nested
.apic_access_page
) {
6948 nested_release_page(vmx
->nested
.apic_access_page
);
6949 vmx
->nested
.apic_access_page
= NULL
;
6951 if (vmx
->nested
.virtual_apic_page
) {
6952 nested_release_page(vmx
->nested
.virtual_apic_page
);
6953 vmx
->nested
.virtual_apic_page
= NULL
;
6955 if (vmx
->nested
.pi_desc_page
) {
6956 kunmap(vmx
->nested
.pi_desc_page
);
6957 nested_release_page(vmx
->nested
.pi_desc_page
);
6958 vmx
->nested
.pi_desc_page
= NULL
;
6959 vmx
->nested
.pi_desc
= NULL
;
6962 nested_free_all_saved_vmcss(vmx
);
6965 /* Emulate the VMXOFF instruction */
6966 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
6968 if (!nested_vmx_check_permission(vcpu
))
6970 free_nested(to_vmx(vcpu
));
6971 skip_emulated_instruction(vcpu
);
6972 nested_vmx_succeed(vcpu
);
6976 /* Emulate the VMCLEAR instruction */
6977 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
6979 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6981 struct vmcs12
*vmcs12
;
6984 if (!nested_vmx_check_permission(vcpu
))
6987 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMCLEAR
, &vmptr
))
6990 if (vmptr
== vmx
->nested
.current_vmptr
)
6991 nested_release_vmcs12(vmx
);
6993 page
= nested_get_page(vcpu
, vmptr
);
6996 * For accurate processor emulation, VMCLEAR beyond available
6997 * physical memory should do nothing at all. However, it is
6998 * possible that a nested vmx bug, not a guest hypervisor bug,
6999 * resulted in this case, so let's shut down before doing any
7002 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
7005 vmcs12
= kmap(page
);
7006 vmcs12
->launch_state
= 0;
7008 nested_release_page(page
);
7010 nested_free_vmcs02(vmx
, vmptr
);
7012 skip_emulated_instruction(vcpu
);
7013 nested_vmx_succeed(vcpu
);
7017 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
7019 /* Emulate the VMLAUNCH instruction */
7020 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
7022 return nested_vmx_run(vcpu
, true);
7025 /* Emulate the VMRESUME instruction */
7026 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
7029 return nested_vmx_run(vcpu
, false);
7032 enum vmcs_field_type
{
7033 VMCS_FIELD_TYPE_U16
= 0,
7034 VMCS_FIELD_TYPE_U64
= 1,
7035 VMCS_FIELD_TYPE_U32
= 2,
7036 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
7039 static inline int vmcs_field_type(unsigned long field
)
7041 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
7042 return VMCS_FIELD_TYPE_U32
;
7043 return (field
>> 13) & 0x3 ;
7046 static inline int vmcs_field_readonly(unsigned long field
)
7048 return (((field
>> 10) & 0x3) == 1);
7052 * Read a vmcs12 field. Since these can have varying lengths and we return
7053 * one type, we chose the biggest type (u64) and zero-extend the return value
7054 * to that size. Note that the caller, handle_vmread, might need to use only
7055 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7056 * 64-bit fields are to be returned).
7058 static inline int vmcs12_read_any(struct kvm_vcpu
*vcpu
,
7059 unsigned long field
, u64
*ret
)
7061 short offset
= vmcs_field_to_offset(field
);
7067 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
7069 switch (vmcs_field_type(field
)) {
7070 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7071 *ret
= *((natural_width
*)p
);
7073 case VMCS_FIELD_TYPE_U16
:
7076 case VMCS_FIELD_TYPE_U32
:
7079 case VMCS_FIELD_TYPE_U64
:
7089 static inline int vmcs12_write_any(struct kvm_vcpu
*vcpu
,
7090 unsigned long field
, u64 field_value
){
7091 short offset
= vmcs_field_to_offset(field
);
7092 char *p
= ((char *) get_vmcs12(vcpu
)) + offset
;
7096 switch (vmcs_field_type(field
)) {
7097 case VMCS_FIELD_TYPE_U16
:
7098 *(u16
*)p
= field_value
;
7100 case VMCS_FIELD_TYPE_U32
:
7101 *(u32
*)p
= field_value
;
7103 case VMCS_FIELD_TYPE_U64
:
7104 *(u64
*)p
= field_value
;
7106 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7107 *(natural_width
*)p
= field_value
;
7116 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
7119 unsigned long field
;
7121 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
7122 const unsigned long *fields
= shadow_read_write_fields
;
7123 const int num_fields
= max_shadow_read_write_fields
;
7127 vmcs_load(shadow_vmcs
);
7129 for (i
= 0; i
< num_fields
; i
++) {
7131 switch (vmcs_field_type(field
)) {
7132 case VMCS_FIELD_TYPE_U16
:
7133 field_value
= vmcs_read16(field
);
7135 case VMCS_FIELD_TYPE_U32
:
7136 field_value
= vmcs_read32(field
);
7138 case VMCS_FIELD_TYPE_U64
:
7139 field_value
= vmcs_read64(field
);
7141 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7142 field_value
= vmcs_readl(field
);
7148 vmcs12_write_any(&vmx
->vcpu
, field
, field_value
);
7151 vmcs_clear(shadow_vmcs
);
7152 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7157 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
7159 const unsigned long *fields
[] = {
7160 shadow_read_write_fields
,
7161 shadow_read_only_fields
7163 const int max_fields
[] = {
7164 max_shadow_read_write_fields
,
7165 max_shadow_read_only_fields
7168 unsigned long field
;
7169 u64 field_value
= 0;
7170 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
7172 vmcs_load(shadow_vmcs
);
7174 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
7175 for (i
= 0; i
< max_fields
[q
]; i
++) {
7176 field
= fields
[q
][i
];
7177 vmcs12_read_any(&vmx
->vcpu
, field
, &field_value
);
7179 switch (vmcs_field_type(field
)) {
7180 case VMCS_FIELD_TYPE_U16
:
7181 vmcs_write16(field
, (u16
)field_value
);
7183 case VMCS_FIELD_TYPE_U32
:
7184 vmcs_write32(field
, (u32
)field_value
);
7186 case VMCS_FIELD_TYPE_U64
:
7187 vmcs_write64(field
, (u64
)field_value
);
7189 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7190 vmcs_writel(field
, (long)field_value
);
7199 vmcs_clear(shadow_vmcs
);
7200 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7204 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7205 * used before) all generate the same failure when it is missing.
7207 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
7209 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7210 if (vmx
->nested
.current_vmptr
== -1ull) {
7211 nested_vmx_failInvalid(vcpu
);
7212 skip_emulated_instruction(vcpu
);
7218 static int handle_vmread(struct kvm_vcpu
*vcpu
)
7220 unsigned long field
;
7222 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7223 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7226 if (!nested_vmx_check_permission(vcpu
) ||
7227 !nested_vmx_check_vmcs12(vcpu
))
7230 /* Decode instruction info and find the field to read */
7231 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7232 /* Read the field, zero-extended to a u64 field_value */
7233 if (vmcs12_read_any(vcpu
, field
, &field_value
) < 0) {
7234 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7235 skip_emulated_instruction(vcpu
);
7239 * Now copy part of this value to register or memory, as requested.
7240 * Note that the number of bits actually copied is 32 or 64 depending
7241 * on the guest's mode (32 or 64 bit), not on the given field's length.
7243 if (vmx_instruction_info
& (1u << 10)) {
7244 kvm_register_writel(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
7247 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7248 vmx_instruction_info
, true, &gva
))
7250 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7251 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
7252 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
7255 nested_vmx_succeed(vcpu
);
7256 skip_emulated_instruction(vcpu
);
7261 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
7263 unsigned long field
;
7265 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7266 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7267 /* The value to write might be 32 or 64 bits, depending on L1's long
7268 * mode, and eventually we need to write that into a field of several
7269 * possible lengths. The code below first zero-extends the value to 64
7270 * bit (field_value), and then copies only the appropriate number of
7271 * bits into the vmcs12 field.
7273 u64 field_value
= 0;
7274 struct x86_exception e
;
7276 if (!nested_vmx_check_permission(vcpu
) ||
7277 !nested_vmx_check_vmcs12(vcpu
))
7280 if (vmx_instruction_info
& (1u << 10))
7281 field_value
= kvm_register_readl(vcpu
,
7282 (((vmx_instruction_info
) >> 3) & 0xf));
7284 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7285 vmx_instruction_info
, false, &gva
))
7287 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
7288 &field_value
, (is_64_bit_mode(vcpu
) ? 8 : 4), &e
)) {
7289 kvm_inject_page_fault(vcpu
, &e
);
7295 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7296 if (vmcs_field_readonly(field
)) {
7297 nested_vmx_failValid(vcpu
,
7298 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
7299 skip_emulated_instruction(vcpu
);
7303 if (vmcs12_write_any(vcpu
, field
, field_value
) < 0) {
7304 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7305 skip_emulated_instruction(vcpu
);
7309 nested_vmx_succeed(vcpu
);
7310 skip_emulated_instruction(vcpu
);
7314 /* Emulate the VMPTRLD instruction */
7315 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
7317 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7320 if (!nested_vmx_check_permission(vcpu
))
7323 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMPTRLD
, &vmptr
))
7326 if (vmx
->nested
.current_vmptr
!= vmptr
) {
7327 struct vmcs12
*new_vmcs12
;
7329 page
= nested_get_page(vcpu
, vmptr
);
7331 nested_vmx_failInvalid(vcpu
);
7332 skip_emulated_instruction(vcpu
);
7335 new_vmcs12
= kmap(page
);
7336 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
7338 nested_release_page_clean(page
);
7339 nested_vmx_failValid(vcpu
,
7340 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
7341 skip_emulated_instruction(vcpu
);
7345 nested_release_vmcs12(vmx
);
7346 vmx
->nested
.current_vmptr
= vmptr
;
7347 vmx
->nested
.current_vmcs12
= new_vmcs12
;
7348 vmx
->nested
.current_vmcs12_page
= page
;
7349 if (enable_shadow_vmcs
) {
7350 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
7351 SECONDARY_EXEC_SHADOW_VMCS
);
7352 vmcs_write64(VMCS_LINK_POINTER
,
7353 __pa(vmx
->nested
.current_shadow_vmcs
));
7354 vmx
->nested
.sync_shadow_vmcs
= true;
7358 nested_vmx_succeed(vcpu
);
7359 skip_emulated_instruction(vcpu
);
7363 /* Emulate the VMPTRST instruction */
7364 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
7366 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7367 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7369 struct x86_exception e
;
7371 if (!nested_vmx_check_permission(vcpu
))
7374 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7375 vmx_instruction_info
, true, &vmcs_gva
))
7377 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7378 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
7379 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
7381 kvm_inject_page_fault(vcpu
, &e
);
7384 nested_vmx_succeed(vcpu
);
7385 skip_emulated_instruction(vcpu
);
7389 /* Emulate the INVEPT instruction */
7390 static int handle_invept(struct kvm_vcpu
*vcpu
)
7392 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7393 u32 vmx_instruction_info
, types
;
7396 struct x86_exception e
;
7401 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7402 SECONDARY_EXEC_ENABLE_EPT
) ||
7403 !(vmx
->nested
.nested_vmx_ept_caps
& VMX_EPT_INVEPT_BIT
)) {
7404 kvm_queue_exception(vcpu
, UD_VECTOR
);
7408 if (!nested_vmx_check_permission(vcpu
))
7411 if (!kvm_read_cr0_bits(vcpu
, X86_CR0_PE
)) {
7412 kvm_queue_exception(vcpu
, UD_VECTOR
);
7416 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7417 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7419 types
= (vmx
->nested
.nested_vmx_ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
7421 if (!(types
& (1UL << type
))) {
7422 nested_vmx_failValid(vcpu
,
7423 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7424 skip_emulated_instruction(vcpu
);
7428 /* According to the Intel VMX instruction reference, the memory
7429 * operand is read even if it isn't needed (e.g., for type==global)
7431 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7432 vmx_instruction_info
, false, &gva
))
7434 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
7435 sizeof(operand
), &e
)) {
7436 kvm_inject_page_fault(vcpu
, &e
);
7441 case VMX_EPT_EXTENT_GLOBAL
:
7442 kvm_mmu_sync_roots(vcpu
);
7443 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
7444 nested_vmx_succeed(vcpu
);
7447 /* Trap single context invalidation invept calls */
7452 skip_emulated_instruction(vcpu
);
7456 static int handle_invvpid(struct kvm_vcpu
*vcpu
)
7458 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7459 u32 vmx_instruction_info
;
7460 unsigned long type
, types
;
7462 struct x86_exception e
;
7465 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7466 SECONDARY_EXEC_ENABLE_VPID
) ||
7467 !(vmx
->nested
.nested_vmx_vpid_caps
& VMX_VPID_INVVPID_BIT
)) {
7468 kvm_queue_exception(vcpu
, UD_VECTOR
);
7472 if (!nested_vmx_check_permission(vcpu
))
7475 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7476 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7478 types
= (vmx
->nested
.nested_vmx_vpid_caps
>> 8) & 0x7;
7480 if (!(types
& (1UL << type
))) {
7481 nested_vmx_failValid(vcpu
,
7482 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7483 skip_emulated_instruction(vcpu
);
7487 /* according to the intel vmx instruction reference, the memory
7488 * operand is read even if it isn't needed (e.g., for type==global)
7490 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7491 vmx_instruction_info
, false, &gva
))
7493 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vpid
,
7495 kvm_inject_page_fault(vcpu
, &e
);
7500 case VMX_VPID_EXTENT_SINGLE_CONTEXT
:
7502 * Old versions of KVM use the single-context version so we
7503 * have to support it; just treat it the same as all-context.
7505 case VMX_VPID_EXTENT_ALL_CONTEXT
:
7506 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->nested
.vpid02
);
7507 nested_vmx_succeed(vcpu
);
7510 /* Trap individual address invalidation invvpid calls */
7515 skip_emulated_instruction(vcpu
);
7519 static int handle_pml_full(struct kvm_vcpu
*vcpu
)
7521 unsigned long exit_qualification
;
7523 trace_kvm_pml_full(vcpu
->vcpu_id
);
7525 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7528 * PML buffer FULL happened while executing iret from NMI,
7529 * "blocked by NMI" bit has to be set before next VM entry.
7531 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
7532 cpu_has_virtual_nmis() &&
7533 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
7534 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
7535 GUEST_INTR_STATE_NMI
);
7538 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7539 * here.., and there's no userspace involvement needed for PML.
7544 static int handle_pcommit(struct kvm_vcpu
*vcpu
)
7546 /* we never catch pcommit instruct for L1 guest. */
7552 * The exit handlers return 1 if the exit was handled fully and guest execution
7553 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7554 * to be done to userspace and return 0.
7556 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
7557 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
7558 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
7559 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
7560 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
7561 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
7562 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
7563 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
7564 [EXIT_REASON_CPUID
] = handle_cpuid
,
7565 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
7566 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
7567 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
7568 [EXIT_REASON_HLT
] = handle_halt
,
7569 [EXIT_REASON_INVD
] = handle_invd
,
7570 [EXIT_REASON_INVLPG
] = handle_invlpg
,
7571 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
7572 [EXIT_REASON_VMCALL
] = handle_vmcall
,
7573 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
7574 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
7575 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
7576 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
7577 [EXIT_REASON_VMREAD
] = handle_vmread
,
7578 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
7579 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
7580 [EXIT_REASON_VMOFF
] = handle_vmoff
,
7581 [EXIT_REASON_VMON
] = handle_vmon
,
7582 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
7583 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
7584 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
7585 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
7586 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
7587 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
7588 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
7589 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
7590 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
7591 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
7592 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
7593 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_mwait
,
7594 [EXIT_REASON_MONITOR_TRAP_FLAG
] = handle_monitor_trap
,
7595 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_monitor
,
7596 [EXIT_REASON_INVEPT
] = handle_invept
,
7597 [EXIT_REASON_INVVPID
] = handle_invvpid
,
7598 [EXIT_REASON_XSAVES
] = handle_xsaves
,
7599 [EXIT_REASON_XRSTORS
] = handle_xrstors
,
7600 [EXIT_REASON_PML_FULL
] = handle_pml_full
,
7601 [EXIT_REASON_PCOMMIT
] = handle_pcommit
,
7604 static const int kvm_vmx_max_exit_handlers
=
7605 ARRAY_SIZE(kvm_vmx_exit_handlers
);
7607 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
7608 struct vmcs12
*vmcs12
)
7610 unsigned long exit_qualification
;
7611 gpa_t bitmap
, last_bitmap
;
7616 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
7617 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
7619 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7621 port
= exit_qualification
>> 16;
7622 size
= (exit_qualification
& 7) + 1;
7624 last_bitmap
= (gpa_t
)-1;
7629 bitmap
= vmcs12
->io_bitmap_a
;
7630 else if (port
< 0x10000)
7631 bitmap
= vmcs12
->io_bitmap_b
;
7634 bitmap
+= (port
& 0x7fff) / 8;
7636 if (last_bitmap
!= bitmap
)
7637 if (kvm_vcpu_read_guest(vcpu
, bitmap
, &b
, 1))
7639 if (b
& (1 << (port
& 7)))
7644 last_bitmap
= bitmap
;
7651 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7652 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7653 * disinterest in the current event (read or write a specific MSR) by using an
7654 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7656 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
7657 struct vmcs12
*vmcs12
, u32 exit_reason
)
7659 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
7662 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
7666 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7667 * for the four combinations of read/write and low/high MSR numbers.
7668 * First we need to figure out which of the four to use:
7670 bitmap
= vmcs12
->msr_bitmap
;
7671 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
7673 if (msr_index
>= 0xc0000000) {
7674 msr_index
-= 0xc0000000;
7678 /* Then read the msr_index'th bit from this bitmap: */
7679 if (msr_index
< 1024*8) {
7681 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ msr_index
/8, &b
, 1))
7683 return 1 & (b
>> (msr_index
& 7));
7685 return true; /* let L1 handle the wrong parameter */
7689 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7690 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7691 * intercept (via guest_host_mask etc.) the current event.
7693 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
7694 struct vmcs12
*vmcs12
)
7696 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7697 int cr
= exit_qualification
& 15;
7698 int reg
= (exit_qualification
>> 8) & 15;
7699 unsigned long val
= kvm_register_readl(vcpu
, reg
);
7701 switch ((exit_qualification
>> 4) & 3) {
7702 case 0: /* mov to cr */
7705 if (vmcs12
->cr0_guest_host_mask
&
7706 (val
^ vmcs12
->cr0_read_shadow
))
7710 if ((vmcs12
->cr3_target_count
>= 1 &&
7711 vmcs12
->cr3_target_value0
== val
) ||
7712 (vmcs12
->cr3_target_count
>= 2 &&
7713 vmcs12
->cr3_target_value1
== val
) ||
7714 (vmcs12
->cr3_target_count
>= 3 &&
7715 vmcs12
->cr3_target_value2
== val
) ||
7716 (vmcs12
->cr3_target_count
>= 4 &&
7717 vmcs12
->cr3_target_value3
== val
))
7719 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
7723 if (vmcs12
->cr4_guest_host_mask
&
7724 (vmcs12
->cr4_read_shadow
^ val
))
7728 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
7734 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
7735 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
7738 case 1: /* mov from cr */
7741 if (vmcs12
->cpu_based_vm_exec_control
&
7742 CPU_BASED_CR3_STORE_EXITING
)
7746 if (vmcs12
->cpu_based_vm_exec_control
&
7747 CPU_BASED_CR8_STORE_EXITING
)
7754 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7755 * cr0. Other attempted changes are ignored, with no exit.
7757 if (vmcs12
->cr0_guest_host_mask
& 0xe &
7758 (val
^ vmcs12
->cr0_read_shadow
))
7760 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
7761 !(vmcs12
->cr0_read_shadow
& 0x1) &&
7770 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7771 * should handle it ourselves in L0 (and then continue L2). Only call this
7772 * when in is_guest_mode (L2).
7774 static bool nested_vmx_exit_handled(struct kvm_vcpu
*vcpu
)
7776 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7777 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7778 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7779 u32 exit_reason
= vmx
->exit_reason
;
7781 trace_kvm_nested_vmexit(kvm_rip_read(vcpu
), exit_reason
,
7782 vmcs_readl(EXIT_QUALIFICATION
),
7783 vmx
->idt_vectoring_info
,
7785 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
7788 if (vmx
->nested
.nested_run_pending
)
7791 if (unlikely(vmx
->fail
)) {
7792 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
7793 vmcs_read32(VM_INSTRUCTION_ERROR
));
7797 switch (exit_reason
) {
7798 case EXIT_REASON_EXCEPTION_NMI
:
7799 if (!is_exception(intr_info
))
7801 else if (is_page_fault(intr_info
))
7803 else if (is_no_device(intr_info
) &&
7804 !(vmcs12
->guest_cr0
& X86_CR0_TS
))
7806 else if (is_debug(intr_info
) &&
7808 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
7810 else if (is_breakpoint(intr_info
) &&
7811 vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
7813 return vmcs12
->exception_bitmap
&
7814 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
7815 case EXIT_REASON_EXTERNAL_INTERRUPT
:
7817 case EXIT_REASON_TRIPLE_FAULT
:
7819 case EXIT_REASON_PENDING_INTERRUPT
:
7820 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
7821 case EXIT_REASON_NMI_WINDOW
:
7822 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
7823 case EXIT_REASON_TASK_SWITCH
:
7825 case EXIT_REASON_CPUID
:
7826 if (kvm_register_read(vcpu
, VCPU_REGS_RAX
) == 0xa)
7829 case EXIT_REASON_HLT
:
7830 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
7831 case EXIT_REASON_INVD
:
7833 case EXIT_REASON_INVLPG
:
7834 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
7835 case EXIT_REASON_RDPMC
:
7836 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
7837 case EXIT_REASON_RDTSC
: case EXIT_REASON_RDTSCP
:
7838 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
7839 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
7840 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
7841 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
7842 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
7843 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
7844 case EXIT_REASON_INVEPT
: case EXIT_REASON_INVVPID
:
7846 * VMX instructions trap unconditionally. This allows L1 to
7847 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7850 case EXIT_REASON_CR_ACCESS
:
7851 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
7852 case EXIT_REASON_DR_ACCESS
:
7853 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
7854 case EXIT_REASON_IO_INSTRUCTION
:
7855 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
7856 case EXIT_REASON_MSR_READ
:
7857 case EXIT_REASON_MSR_WRITE
:
7858 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
7859 case EXIT_REASON_INVALID_STATE
:
7861 case EXIT_REASON_MWAIT_INSTRUCTION
:
7862 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
7863 case EXIT_REASON_MONITOR_TRAP_FLAG
:
7864 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_TRAP_FLAG
);
7865 case EXIT_REASON_MONITOR_INSTRUCTION
:
7866 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
7867 case EXIT_REASON_PAUSE_INSTRUCTION
:
7868 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
7869 nested_cpu_has2(vmcs12
,
7870 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
7871 case EXIT_REASON_MCE_DURING_VMENTRY
:
7873 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
7874 return nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
);
7875 case EXIT_REASON_APIC_ACCESS
:
7876 return nested_cpu_has2(vmcs12
,
7877 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
7878 case EXIT_REASON_APIC_WRITE
:
7879 case EXIT_REASON_EOI_INDUCED
:
7880 /* apic_write and eoi_induced should exit unconditionally. */
7882 case EXIT_REASON_EPT_VIOLATION
:
7884 * L0 always deals with the EPT violation. If nested EPT is
7885 * used, and the nested mmu code discovers that the address is
7886 * missing in the guest EPT table (EPT12), the EPT violation
7887 * will be injected with nested_ept_inject_page_fault()
7890 case EXIT_REASON_EPT_MISCONFIG
:
7892 * L2 never uses directly L1's EPT, but rather L0's own EPT
7893 * table (shadow on EPT) or a merged EPT table that L0 built
7894 * (EPT on EPT). So any problems with the structure of the
7895 * table is L0's fault.
7898 case EXIT_REASON_WBINVD
:
7899 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
7900 case EXIT_REASON_XSETBV
:
7902 case EXIT_REASON_XSAVES
: case EXIT_REASON_XRSTORS
:
7904 * This should never happen, since it is not possible to
7905 * set XSS to a non-zero value---neither in L1 nor in L2.
7906 * If if it were, XSS would have to be checked against
7907 * the XSS exit bitmap in vmcs12.
7909 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
7910 case EXIT_REASON_PCOMMIT
:
7911 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_PCOMMIT
);
7917 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
7919 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
7920 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
7923 static int vmx_create_pml_buffer(struct vcpu_vmx
*vmx
)
7925 struct page
*pml_pg
;
7927 pml_pg
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7931 vmx
->pml_pg
= pml_pg
;
7933 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
7934 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
7939 static void vmx_destroy_pml_buffer(struct vcpu_vmx
*vmx
)
7942 __free_page(vmx
->pml_pg
);
7947 static void vmx_flush_pml_buffer(struct kvm_vcpu
*vcpu
)
7949 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7953 pml_idx
= vmcs_read16(GUEST_PML_INDEX
);
7955 /* Do nothing if PML buffer is empty */
7956 if (pml_idx
== (PML_ENTITY_NUM
- 1))
7959 /* PML index always points to next available PML buffer entity */
7960 if (pml_idx
>= PML_ENTITY_NUM
)
7965 pml_buf
= page_address(vmx
->pml_pg
);
7966 for (; pml_idx
< PML_ENTITY_NUM
; pml_idx
++) {
7969 gpa
= pml_buf
[pml_idx
];
7970 WARN_ON(gpa
& (PAGE_SIZE
- 1));
7971 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
7974 /* reset PML index */
7975 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
7979 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7980 * Called before reporting dirty_bitmap to userspace.
7982 static void kvm_flush_pml_buffers(struct kvm
*kvm
)
7985 struct kvm_vcpu
*vcpu
;
7987 * We only need to kick vcpu out of guest mode here, as PML buffer
7988 * is flushed at beginning of all VMEXITs, and it's obvious that only
7989 * vcpus running in guest are possible to have unflushed GPAs in PML
7992 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7993 kvm_vcpu_kick(vcpu
);
7996 static void vmx_dump_sel(char *name
, uint32_t sel
)
7998 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7999 name
, vmcs_read32(sel
),
8000 vmcs_read32(sel
+ GUEST_ES_AR_BYTES
- GUEST_ES_SELECTOR
),
8001 vmcs_read32(sel
+ GUEST_ES_LIMIT
- GUEST_ES_SELECTOR
),
8002 vmcs_readl(sel
+ GUEST_ES_BASE
- GUEST_ES_SELECTOR
));
8005 static void vmx_dump_dtsel(char *name
, uint32_t limit
)
8007 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8008 name
, vmcs_read32(limit
),
8009 vmcs_readl(limit
+ GUEST_GDTR_BASE
- GUEST_GDTR_LIMIT
));
8012 static void dump_vmcs(void)
8014 u32 vmentry_ctl
= vmcs_read32(VM_ENTRY_CONTROLS
);
8015 u32 vmexit_ctl
= vmcs_read32(VM_EXIT_CONTROLS
);
8016 u32 cpu_based_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
8017 u32 pin_based_exec_ctrl
= vmcs_read32(PIN_BASED_VM_EXEC_CONTROL
);
8018 u32 secondary_exec_control
= 0;
8019 unsigned long cr4
= vmcs_readl(GUEST_CR4
);
8020 u64 efer
= vmcs_read64(GUEST_IA32_EFER
);
8023 if (cpu_has_secondary_exec_ctrls())
8024 secondary_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8026 pr_err("*** Guest State ***\n");
8027 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8028 vmcs_readl(GUEST_CR0
), vmcs_readl(CR0_READ_SHADOW
),
8029 vmcs_readl(CR0_GUEST_HOST_MASK
));
8030 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8031 cr4
, vmcs_readl(CR4_READ_SHADOW
), vmcs_readl(CR4_GUEST_HOST_MASK
));
8032 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3
));
8033 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) &&
8034 (cr4
& X86_CR4_PAE
) && !(efer
& EFER_LMA
))
8036 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8037 vmcs_read64(GUEST_PDPTR0
), vmcs_read64(GUEST_PDPTR1
));
8038 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8039 vmcs_read64(GUEST_PDPTR2
), vmcs_read64(GUEST_PDPTR3
));
8041 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8042 vmcs_readl(GUEST_RSP
), vmcs_readl(GUEST_RIP
));
8043 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8044 vmcs_readl(GUEST_RFLAGS
), vmcs_readl(GUEST_DR7
));
8045 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8046 vmcs_readl(GUEST_SYSENTER_ESP
),
8047 vmcs_read32(GUEST_SYSENTER_CS
), vmcs_readl(GUEST_SYSENTER_EIP
));
8048 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR
);
8049 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR
);
8050 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR
);
8051 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR
);
8052 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR
);
8053 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR
);
8054 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT
);
8055 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR
);
8056 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT
);
8057 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR
);
8058 if ((vmexit_ctl
& (VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_SAVE_IA32_EFER
)) ||
8059 (vmentry_ctl
& (VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_IA32_EFER
)))
8060 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8061 efer
, vmcs_read64(GUEST_IA32_PAT
));
8062 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8063 vmcs_read64(GUEST_IA32_DEBUGCTL
),
8064 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
));
8065 if (vmentry_ctl
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
8066 pr_err("PerfGlobCtl = 0x%016llx\n",
8067 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL
));
8068 if (vmentry_ctl
& VM_ENTRY_LOAD_BNDCFGS
)
8069 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS
));
8070 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8071 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
),
8072 vmcs_read32(GUEST_ACTIVITY_STATE
));
8073 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
8074 pr_err("InterruptStatus = %04x\n",
8075 vmcs_read16(GUEST_INTR_STATUS
));
8077 pr_err("*** Host State ***\n");
8078 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8079 vmcs_readl(HOST_RIP
), vmcs_readl(HOST_RSP
));
8080 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8081 vmcs_read16(HOST_CS_SELECTOR
), vmcs_read16(HOST_SS_SELECTOR
),
8082 vmcs_read16(HOST_DS_SELECTOR
), vmcs_read16(HOST_ES_SELECTOR
),
8083 vmcs_read16(HOST_FS_SELECTOR
), vmcs_read16(HOST_GS_SELECTOR
),
8084 vmcs_read16(HOST_TR_SELECTOR
));
8085 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8086 vmcs_readl(HOST_FS_BASE
), vmcs_readl(HOST_GS_BASE
),
8087 vmcs_readl(HOST_TR_BASE
));
8088 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8089 vmcs_readl(HOST_GDTR_BASE
), vmcs_readl(HOST_IDTR_BASE
));
8090 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8091 vmcs_readl(HOST_CR0
), vmcs_readl(HOST_CR3
),
8092 vmcs_readl(HOST_CR4
));
8093 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8094 vmcs_readl(HOST_IA32_SYSENTER_ESP
),
8095 vmcs_read32(HOST_IA32_SYSENTER_CS
),
8096 vmcs_readl(HOST_IA32_SYSENTER_EIP
));
8097 if (vmexit_ctl
& (VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_LOAD_IA32_EFER
))
8098 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8099 vmcs_read64(HOST_IA32_EFER
),
8100 vmcs_read64(HOST_IA32_PAT
));
8101 if (vmexit_ctl
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
8102 pr_err("PerfGlobCtl = 0x%016llx\n",
8103 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL
));
8105 pr_err("*** Control State ***\n");
8106 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8107 pin_based_exec_ctrl
, cpu_based_exec_ctrl
, secondary_exec_control
);
8108 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl
, vmexit_ctl
);
8109 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8110 vmcs_read32(EXCEPTION_BITMAP
),
8111 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK
),
8112 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH
));
8113 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8114 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
8115 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE
),
8116 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN
));
8117 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8118 vmcs_read32(VM_EXIT_INTR_INFO
),
8119 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
8120 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
8121 pr_err(" reason=%08x qualification=%016lx\n",
8122 vmcs_read32(VM_EXIT_REASON
), vmcs_readl(EXIT_QUALIFICATION
));
8123 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8124 vmcs_read32(IDT_VECTORING_INFO_FIELD
),
8125 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
8126 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET
));
8127 if (secondary_exec_control
& SECONDARY_EXEC_TSC_SCALING
)
8128 pr_err("TSC Multiplier = 0x%016llx\n",
8129 vmcs_read64(TSC_MULTIPLIER
));
8130 if (cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
)
8131 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD
));
8132 if (pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
)
8133 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV
));
8134 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
))
8135 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER
));
8136 n
= vmcs_read32(CR3_TARGET_COUNT
);
8137 for (i
= 0; i
+ 1 < n
; i
+= 4)
8138 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8139 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2),
8140 i
+ 1, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2 + 2));
8142 pr_err("CR3 target%u=%016lx\n",
8143 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2));
8144 if (secondary_exec_control
& SECONDARY_EXEC_PAUSE_LOOP_EXITING
)
8145 pr_err("PLE Gap=%08x Window=%08x\n",
8146 vmcs_read32(PLE_GAP
), vmcs_read32(PLE_WINDOW
));
8147 if (secondary_exec_control
& SECONDARY_EXEC_ENABLE_VPID
)
8148 pr_err("Virtual processor ID = 0x%04x\n",
8149 vmcs_read16(VIRTUAL_PROCESSOR_ID
));
8153 * The guest has exited. See if we can fix it or if we need userspace
8156 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
8158 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8159 u32 exit_reason
= vmx
->exit_reason
;
8160 u32 vectoring_info
= vmx
->idt_vectoring_info
;
8162 trace_kvm_exit(exit_reason
, vcpu
, KVM_ISA_VMX
);
8165 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8166 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8167 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8168 * mode as if vcpus is in root mode, the PML buffer must has been
8172 vmx_flush_pml_buffer(vcpu
);
8174 /* If guest state is invalid, start emulating */
8175 if (vmx
->emulation_required
)
8176 return handle_invalid_guest_state(vcpu
);
8178 if (is_guest_mode(vcpu
) && nested_vmx_exit_handled(vcpu
)) {
8179 nested_vmx_vmexit(vcpu
, exit_reason
,
8180 vmcs_read32(VM_EXIT_INTR_INFO
),
8181 vmcs_readl(EXIT_QUALIFICATION
));
8185 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
8187 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8188 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8193 if (unlikely(vmx
->fail
)) {
8194 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8195 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8196 = vmcs_read32(VM_INSTRUCTION_ERROR
);
8202 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8203 * delivery event since it indicates guest is accessing MMIO.
8204 * The vm-exit can be triggered again after return to guest that
8205 * will cause infinite loop.
8207 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
8208 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
8209 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
8210 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
8211 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
8212 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
8213 vcpu
->run
->internal
.ndata
= 2;
8214 vcpu
->run
->internal
.data
[0] = vectoring_info
;
8215 vcpu
->run
->internal
.data
[1] = exit_reason
;
8219 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
&&
8220 !(is_guest_mode(vcpu
) && nested_cpu_has_virtual_nmis(
8221 get_vmcs12(vcpu
))))) {
8222 if (vmx_interrupt_allowed(vcpu
)) {
8223 vmx
->soft_vnmi_blocked
= 0;
8224 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
8225 vcpu
->arch
.nmi_pending
) {
8227 * This CPU don't support us in finding the end of an
8228 * NMI-blocked window if the guest runs with IRQs
8229 * disabled. So we pull the trigger after 1 s of
8230 * futile waiting, but inform the user about this.
8232 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
8233 "state on VCPU %d after 1 s timeout\n",
8234 __func__
, vcpu
->vcpu_id
);
8235 vmx
->soft_vnmi_blocked
= 0;
8239 if (exit_reason
< kvm_vmx_max_exit_handlers
8240 && kvm_vmx_exit_handlers
[exit_reason
])
8241 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
8243 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason
);
8244 kvm_queue_exception(vcpu
, UD_VECTOR
);
8249 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
8251 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8253 if (is_guest_mode(vcpu
) &&
8254 nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
8257 if (irr
== -1 || tpr
< irr
) {
8258 vmcs_write32(TPR_THRESHOLD
, 0);
8262 vmcs_write32(TPR_THRESHOLD
, irr
);
8265 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
8267 u32 sec_exec_control
;
8270 * There is not point to enable virtualize x2apic without enable
8273 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8274 !kvm_vcpu_apicv_active(vcpu
))
8277 if (!cpu_need_tpr_shadow(vcpu
))
8280 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8283 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8284 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
8286 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
8287 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8289 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
8291 vmx_set_msr_bitmap(vcpu
);
8294 static void vmx_set_apic_access_page_addr(struct kvm_vcpu
*vcpu
, hpa_t hpa
)
8296 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8299 * Currently we do not handle the nested case where L2 has an
8300 * APIC access page of its own; that page is still pinned.
8301 * Hence, we skip the case where the VCPU is in guest mode _and_
8302 * L1 prepared an APIC access page for L2.
8304 * For the case where L1 and L2 share the same APIC access page
8305 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8306 * in the vmcs12), this function will only update either the vmcs01
8307 * or the vmcs02. If the former, the vmcs02 will be updated by
8308 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8309 * the next L2->L1 exit.
8311 if (!is_guest_mode(vcpu
) ||
8312 !nested_cpu_has2(vmx
->nested
.current_vmcs12
,
8313 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
8314 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
8317 static void vmx_hwapic_isr_update(struct kvm
*kvm
, int isr
)
8325 status
= vmcs_read16(GUEST_INTR_STATUS
);
8330 vmcs_write16(GUEST_INTR_STATUS
, status
);
8334 static void vmx_set_rvi(int vector
)
8342 status
= vmcs_read16(GUEST_INTR_STATUS
);
8343 old
= (u8
)status
& 0xff;
8344 if ((u8
)vector
!= old
) {
8346 status
|= (u8
)vector
;
8347 vmcs_write16(GUEST_INTR_STATUS
, status
);
8351 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
8353 if (!is_guest_mode(vcpu
)) {
8354 vmx_set_rvi(max_irr
);
8362 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8365 if (nested_exit_on_intr(vcpu
))
8369 * Else, fall back to pre-APICv interrupt injection since L2
8370 * is run without virtual interrupt delivery.
8372 if (!kvm_event_needs_reinjection(vcpu
) &&
8373 vmx_interrupt_allowed(vcpu
)) {
8374 kvm_queue_interrupt(vcpu
, max_irr
, false);
8375 vmx_inject_irq(vcpu
);
8379 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
8381 if (!kvm_vcpu_apicv_active(vcpu
))
8384 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
8385 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
8386 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
8387 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
8390 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
8394 if (!(vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
8395 || vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
8398 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8399 exit_intr_info
= vmx
->exit_intr_info
;
8401 /* Handle machine checks before interrupts are enabled */
8402 if (is_machine_check(exit_intr_info
))
8403 kvm_machine_check();
8405 /* We need to handle NMIs before interrupts are enabled */
8406 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
8407 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
8408 kvm_before_handle_nmi(&vmx
->vcpu
);
8410 kvm_after_handle_nmi(&vmx
->vcpu
);
8414 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
8416 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8417 register void *__sp
asm(_ASM_SP
);
8420 * If external interrupt exists, IF bit is set in rflags/eflags on the
8421 * interrupt stack frame, and interrupt will be enabled on a return
8422 * from interrupt handler.
8424 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
8425 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
8426 unsigned int vector
;
8427 unsigned long entry
;
8429 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8430 #ifdef CONFIG_X86_64
8434 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
8435 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
8436 entry
= gate_offset(*desc
);
8438 #ifdef CONFIG_X86_64
8439 "mov %%" _ASM_SP
", %[sp]\n\t"
8440 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
8445 "orl $0x200, (%%" _ASM_SP
")\n\t"
8446 __ASM_SIZE(push
) " $%c[cs]\n\t"
8447 "call *%[entry]\n\t"
8449 #ifdef CONFIG_X86_64
8455 [ss
]"i"(__KERNEL_DS
),
8456 [cs
]"i"(__KERNEL_CS
)
8462 static bool vmx_has_high_real_mode_segbase(void)
8464 return enable_unrestricted_guest
|| emulate_invalid_guest_state
;
8467 static bool vmx_mpx_supported(void)
8469 return (vmcs_config
.vmexit_ctrl
& VM_EXIT_CLEAR_BNDCFGS
) &&
8470 (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_BNDCFGS
);
8473 static bool vmx_xsaves_supported(void)
8475 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
8476 SECONDARY_EXEC_XSAVES
;
8479 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
8484 bool idtv_info_valid
;
8486 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
8488 if (cpu_has_virtual_nmis()) {
8489 if (vmx
->nmi_known_unmasked
)
8492 * Can't use vmx->exit_intr_info since we're not sure what
8493 * the exit reason is.
8495 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8496 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
8497 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
8499 * SDM 3: 27.7.1.2 (September 2008)
8500 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8501 * a guest IRET fault.
8502 * SDM 3: 23.2.2 (September 2008)
8503 * Bit 12 is undefined in any of the following cases:
8504 * If the VM exit sets the valid bit in the IDT-vectoring
8505 * information field.
8506 * If the VM exit is due to a double fault.
8508 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
8509 vector
!= DF_VECTOR
&& !idtv_info_valid
)
8510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
8511 GUEST_INTR_STATE_NMI
);
8513 vmx
->nmi_known_unmasked
=
8514 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
8515 & GUEST_INTR_STATE_NMI
);
8516 } else if (unlikely(vmx
->soft_vnmi_blocked
))
8517 vmx
->vnmi_blocked_time
+=
8518 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
8521 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
8522 u32 idt_vectoring_info
,
8523 int instr_len_field
,
8524 int error_code_field
)
8528 bool idtv_info_valid
;
8530 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
8532 vcpu
->arch
.nmi_injected
= false;
8533 kvm_clear_exception_queue(vcpu
);
8534 kvm_clear_interrupt_queue(vcpu
);
8536 if (!idtv_info_valid
)
8539 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8541 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
8542 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
8545 case INTR_TYPE_NMI_INTR
:
8546 vcpu
->arch
.nmi_injected
= true;
8548 * SDM 3: 27.7.1.2 (September 2008)
8549 * Clear bit "block by NMI" before VM entry if a NMI
8552 vmx_set_nmi_mask(vcpu
, false);
8554 case INTR_TYPE_SOFT_EXCEPTION
:
8555 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
8557 case INTR_TYPE_HARD_EXCEPTION
:
8558 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
8559 u32 err
= vmcs_read32(error_code_field
);
8560 kvm_requeue_exception_e(vcpu
, vector
, err
);
8562 kvm_requeue_exception(vcpu
, vector
);
8564 case INTR_TYPE_SOFT_INTR
:
8565 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
8567 case INTR_TYPE_EXT_INTR
:
8568 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
8575 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
8577 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
8578 VM_EXIT_INSTRUCTION_LEN
,
8579 IDT_VECTORING_ERROR_CODE
);
8582 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
8584 __vmx_complete_interrupts(vcpu
,
8585 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
8586 VM_ENTRY_INSTRUCTION_LEN
,
8587 VM_ENTRY_EXCEPTION_ERROR_CODE
);
8589 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
8592 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
8595 struct perf_guest_switch_msr
*msrs
;
8597 msrs
= perf_guest_get_msrs(&nr_msrs
);
8602 for (i
= 0; i
< nr_msrs
; i
++)
8603 if (msrs
[i
].host
== msrs
[i
].guest
)
8604 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
8606 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
8610 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
8612 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8613 unsigned long debugctlmsr
, cr4
;
8615 /* Record the guest's net vcpu time for enforced NMI injections. */
8616 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
8617 vmx
->entry_time
= ktime_get();
8619 /* Don't enter VMX if guest state is invalid, let the exit handler
8620 start emulation until we arrive back to a valid state */
8621 if (vmx
->emulation_required
)
8624 if (vmx
->ple_window_dirty
) {
8625 vmx
->ple_window_dirty
= false;
8626 vmcs_write32(PLE_WINDOW
, vmx
->ple_window
);
8629 if (vmx
->nested
.sync_shadow_vmcs
) {
8630 copy_vmcs12_to_shadow(vmx
);
8631 vmx
->nested
.sync_shadow_vmcs
= false;
8634 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
8635 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
8636 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
8637 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
8639 cr4
= cr4_read_shadow();
8640 if (unlikely(cr4
!= vmx
->host_state
.vmcs_host_cr4
)) {
8641 vmcs_writel(HOST_CR4
, cr4
);
8642 vmx
->host_state
.vmcs_host_cr4
= cr4
;
8645 /* When single-stepping over STI and MOV SS, we must clear the
8646 * corresponding interruptibility bits in the guest state. Otherwise
8647 * vmentry fails as it then expects bit 14 (BS) in pending debug
8648 * exceptions being set, but that's not correct for the guest debugging
8650 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8651 vmx_set_interrupt_shadow(vcpu
, 0);
8653 if (vmx
->guest_pkru_valid
)
8654 __write_pkru(vmx
->guest_pkru
);
8656 atomic_switch_perf_msrs(vmx
);
8657 debugctlmsr
= get_debugctlmsr();
8659 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
8661 /* Store host registers */
8662 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
8663 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
8664 "push %%" _ASM_CX
" \n\t"
8665 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
8667 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
8668 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
8670 /* Reload cr2 if changed */
8671 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
8672 "mov %%cr2, %%" _ASM_DX
" \n\t"
8673 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
8675 "mov %%" _ASM_AX
", %%cr2 \n\t"
8677 /* Check if vmlaunch of vmresume is needed */
8678 "cmpl $0, %c[launched](%0) \n\t"
8679 /* Load guest registers. Don't clobber flags. */
8680 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
8681 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
8682 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
8683 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
8684 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
8685 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
8686 #ifdef CONFIG_X86_64
8687 "mov %c[r8](%0), %%r8 \n\t"
8688 "mov %c[r9](%0), %%r9 \n\t"
8689 "mov %c[r10](%0), %%r10 \n\t"
8690 "mov %c[r11](%0), %%r11 \n\t"
8691 "mov %c[r12](%0), %%r12 \n\t"
8692 "mov %c[r13](%0), %%r13 \n\t"
8693 "mov %c[r14](%0), %%r14 \n\t"
8694 "mov %c[r15](%0), %%r15 \n\t"
8696 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
8698 /* Enter guest mode */
8700 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
8702 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
8704 /* Save guest registers, load host registers, keep flags */
8705 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
8707 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
8708 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
8709 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
8710 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
8711 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
8712 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
8713 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
8714 #ifdef CONFIG_X86_64
8715 "mov %%r8, %c[r8](%0) \n\t"
8716 "mov %%r9, %c[r9](%0) \n\t"
8717 "mov %%r10, %c[r10](%0) \n\t"
8718 "mov %%r11, %c[r11](%0) \n\t"
8719 "mov %%r12, %c[r12](%0) \n\t"
8720 "mov %%r13, %c[r13](%0) \n\t"
8721 "mov %%r14, %c[r14](%0) \n\t"
8722 "mov %%r15, %c[r15](%0) \n\t"
8724 "mov %%cr2, %%" _ASM_AX
" \n\t"
8725 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
8727 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
8728 "setbe %c[fail](%0) \n\t"
8729 ".pushsection .rodata \n\t"
8730 ".global vmx_return \n\t"
8731 "vmx_return: " _ASM_PTR
" 2b \n\t"
8733 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
8734 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
8735 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
8736 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
8737 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
8738 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
8739 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
8740 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
8741 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
8742 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
8743 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
8744 #ifdef CONFIG_X86_64
8745 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
8746 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
8747 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
8748 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
8749 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
8750 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
8751 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
8752 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
8754 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
8755 [wordsize
]"i"(sizeof(ulong
))
8757 #ifdef CONFIG_X86_64
8758 , "rax", "rbx", "rdi", "rsi"
8759 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8761 , "eax", "ebx", "edi", "esi"
8765 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8767 update_debugctlmsr(debugctlmsr
);
8769 #ifndef CONFIG_X86_64
8771 * The sysexit path does not restore ds/es, so we must set them to
8772 * a reasonable value ourselves.
8774 * We can't defer this to vmx_load_host_state() since that function
8775 * may be executed in interrupt context, which saves and restore segments
8776 * around it, nullifying its effect.
8778 loadsegment(ds
, __USER_DS
);
8779 loadsegment(es
, __USER_DS
);
8782 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
8783 | (1 << VCPU_EXREG_RFLAGS
)
8784 | (1 << VCPU_EXREG_PDPTR
)
8785 | (1 << VCPU_EXREG_SEGMENTS
)
8786 | (1 << VCPU_EXREG_CR3
));
8787 vcpu
->arch
.regs_dirty
= 0;
8789 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
8791 vmx
->loaded_vmcs
->launched
= 1;
8793 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
8796 * eager fpu is enabled if PKEY is supported and CR4 is switched
8797 * back on host, so it is safe to read guest PKRU from current
8800 if (boot_cpu_has(X86_FEATURE_OSPKE
)) {
8801 vmx
->guest_pkru
= __read_pkru();
8802 if (vmx
->guest_pkru
!= vmx
->host_pkru
) {
8803 vmx
->guest_pkru_valid
= true;
8804 __write_pkru(vmx
->host_pkru
);
8806 vmx
->guest_pkru_valid
= false;
8810 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8811 * we did not inject a still-pending event to L1 now because of
8812 * nested_run_pending, we need to re-enable this bit.
8814 if (vmx
->nested
.nested_run_pending
)
8815 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8817 vmx
->nested
.nested_run_pending
= 0;
8819 vmx_complete_atomic_exit(vmx
);
8820 vmx_recover_nmi_blocking(vmx
);
8821 vmx_complete_interrupts(vmx
);
8824 static void vmx_load_vmcs01(struct kvm_vcpu
*vcpu
)
8826 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8829 if (vmx
->loaded_vmcs
== &vmx
->vmcs01
)
8833 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
8835 vmx_vcpu_load(vcpu
, cpu
);
8840 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
8842 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8845 vmx_destroy_pml_buffer(vmx
);
8846 free_vpid(vmx
->vpid
);
8847 leave_guest_mode(vcpu
);
8848 vmx_load_vmcs01(vcpu
);
8850 free_loaded_vmcs(vmx
->loaded_vmcs
);
8851 kfree(vmx
->guest_msrs
);
8852 kvm_vcpu_uninit(vcpu
);
8853 kmem_cache_free(kvm_vcpu_cache
, vmx
);
8856 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
8859 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
8863 return ERR_PTR(-ENOMEM
);
8865 vmx
->vpid
= allocate_vpid();
8867 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
8871 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
8872 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index
) * sizeof(vmx
->guest_msrs
[0])
8876 if (!vmx
->guest_msrs
) {
8880 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
8881 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
8882 if (!vmx
->loaded_vmcs
->vmcs
)
8885 kvm_cpu_vmxon(__pa(per_cpu(vmxarea
, raw_smp_processor_id())));
8886 loaded_vmcs_init(vmx
->loaded_vmcs
);
8891 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
8892 vmx
->vcpu
.cpu
= cpu
;
8893 err
= vmx_vcpu_setup(vmx
);
8894 vmx_vcpu_put(&vmx
->vcpu
);
8898 if (cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
8899 err
= alloc_apic_access_page(kvm
);
8905 if (!kvm
->arch
.ept_identity_map_addr
)
8906 kvm
->arch
.ept_identity_map_addr
=
8907 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
8908 err
= init_rmode_identity_map(kvm
);
8914 nested_vmx_setup_ctls_msrs(vmx
);
8915 vmx
->nested
.vpid02
= allocate_vpid();
8918 vmx
->nested
.posted_intr_nv
= -1;
8919 vmx
->nested
.current_vmptr
= -1ull;
8920 vmx
->nested
.current_vmcs12
= NULL
;
8923 * If PML is turned on, failure on enabling PML just results in failure
8924 * of creating the vcpu, therefore we can simplify PML logic (by
8925 * avoiding dealing with cases, such as enabling PML partially on vcpus
8926 * for the guest, etc.
8929 err
= vmx_create_pml_buffer(vmx
);
8937 free_vpid(vmx
->nested
.vpid02
);
8938 free_loaded_vmcs(vmx
->loaded_vmcs
);
8940 kfree(vmx
->guest_msrs
);
8942 kvm_vcpu_uninit(&vmx
->vcpu
);
8944 free_vpid(vmx
->vpid
);
8945 kmem_cache_free(kvm_vcpu_cache
, vmx
);
8946 return ERR_PTR(err
);
8949 static void __init
vmx_check_processor_compat(void *rtn
)
8951 struct vmcs_config vmcs_conf
;
8954 if (setup_vmcs_config(&vmcs_conf
) < 0)
8956 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
8957 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
8958 smp_processor_id());
8963 static int get_ept_level(void)
8965 return VMX_EPT_DEFAULT_GAW
+ 1;
8968 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
8973 /* For VT-d and EPT combination
8974 * 1. MMIO: always map as UC
8976 * a. VT-d without snooping control feature: can't guarantee the
8977 * result, try to trust guest.
8978 * b. VT-d with snooping control feature: snooping control feature of
8979 * VT-d engine can guarantee the cache correctness. Just set it
8980 * to WB to keep consistent with host. So the same as item 3.
8981 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8982 * consistent with host MTRR
8985 cache
= MTRR_TYPE_UNCACHABLE
;
8989 if (!kvm_arch_has_noncoherent_dma(vcpu
->kvm
)) {
8990 ipat
= VMX_EPT_IPAT_BIT
;
8991 cache
= MTRR_TYPE_WRBACK
;
8995 if (kvm_read_cr0(vcpu
) & X86_CR0_CD
) {
8996 ipat
= VMX_EPT_IPAT_BIT
;
8997 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
8998 cache
= MTRR_TYPE_WRBACK
;
9000 cache
= MTRR_TYPE_UNCACHABLE
;
9004 cache
= kvm_mtrr_get_guest_memory_type(vcpu
, gfn
);
9007 return (cache
<< VMX_EPT_MT_EPTE_SHIFT
) | ipat
;
9010 static int vmx_get_lpage_level(void)
9012 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
9013 return PT_DIRECTORY_LEVEL
;
9015 /* For shadow and EPT supported 1GB page */
9016 return PT_PDPE_LEVEL
;
9019 static void vmcs_set_secondary_exec_control(u32 new_ctl
)
9022 * These bits in the secondary execution controls field
9023 * are dynamic, the others are mostly based on the hypervisor
9024 * architecture and the guest's CPUID. Do not touch the
9028 SECONDARY_EXEC_SHADOW_VMCS
|
9029 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
9030 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9032 u32 cur_ctl
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
9034 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
9035 (new_ctl
& ~mask
) | (cur_ctl
& mask
));
9038 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
9040 struct kvm_cpuid_entry2
*best
;
9041 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9042 u32 secondary_exec_ctl
= vmx_secondary_exec_control(vmx
);
9044 if (vmx_rdtscp_supported()) {
9045 bool rdtscp_enabled
= guest_cpuid_has_rdtscp(vcpu
);
9046 if (!rdtscp_enabled
)
9047 secondary_exec_ctl
&= ~SECONDARY_EXEC_RDTSCP
;
9051 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
9052 SECONDARY_EXEC_RDTSCP
;
9054 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
9055 ~SECONDARY_EXEC_RDTSCP
;
9059 /* Exposing INVPCID only when PCID is exposed */
9060 best
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
9061 if (vmx_invpcid_supported() &&
9062 (!best
|| !(best
->ebx
& bit(X86_FEATURE_INVPCID
)) ||
9063 !guest_cpuid_has_pcid(vcpu
))) {
9064 secondary_exec_ctl
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
9067 best
->ebx
&= ~bit(X86_FEATURE_INVPCID
);
9070 if (cpu_has_secondary_exec_ctrls())
9071 vmcs_set_secondary_exec_control(secondary_exec_ctl
);
9073 if (static_cpu_has(X86_FEATURE_PCOMMIT
) && nested
) {
9074 if (guest_cpuid_has_pcommit(vcpu
))
9075 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
9076 SECONDARY_EXEC_PCOMMIT
;
9078 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
9079 ~SECONDARY_EXEC_PCOMMIT
;
9083 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
9085 if (func
== 1 && nested
)
9086 entry
->ecx
|= bit(X86_FEATURE_VMX
);
9089 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
9090 struct x86_exception
*fault
)
9092 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9095 if (fault
->error_code
& PFERR_RSVD_MASK
)
9096 exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
9098 exit_reason
= EXIT_REASON_EPT_VIOLATION
;
9099 nested_vmx_vmexit(vcpu
, exit_reason
, 0, vcpu
->arch
.exit_qualification
);
9100 vmcs12
->guest_physical_address
= fault
->address
;
9103 /* Callbacks for nested_ept_init_mmu_context: */
9105 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
9107 /* return the page table to be shadowed - in our case, EPT12 */
9108 return get_vmcs12(vcpu
)->ept_pointer
;
9111 static void nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
9113 WARN_ON(mmu_is_nested(vcpu
));
9114 kvm_init_shadow_ept_mmu(vcpu
,
9115 to_vmx(vcpu
)->nested
.nested_vmx_ept_caps
&
9116 VMX_EPT_EXECUTE_ONLY_BIT
);
9117 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
9118 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
9119 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
9121 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
9124 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
9126 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
9129 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
9132 bool inequality
, bit
;
9134 bit
= (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)) != 0;
9136 (error_code
& vmcs12
->page_fault_error_code_mask
) !=
9137 vmcs12
->page_fault_error_code_match
;
9138 return inequality
^ bit
;
9141 static void vmx_inject_page_fault_nested(struct kvm_vcpu
*vcpu
,
9142 struct x86_exception
*fault
)
9144 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9146 WARN_ON(!is_guest_mode(vcpu
));
9148 if (nested_vmx_is_page_fault_vmexit(vmcs12
, fault
->error_code
))
9149 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
9150 vmcs_read32(VM_EXIT_INTR_INFO
),
9151 vmcs_readl(EXIT_QUALIFICATION
));
9153 kvm_inject_page_fault(vcpu
, fault
);
9156 static bool nested_get_vmcs12_pages(struct kvm_vcpu
*vcpu
,
9157 struct vmcs12
*vmcs12
)
9159 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9160 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9162 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
9163 if (!PAGE_ALIGNED(vmcs12
->apic_access_addr
) ||
9164 vmcs12
->apic_access_addr
>> maxphyaddr
)
9168 * Translate L1 physical address to host physical
9169 * address for vmcs02. Keep the page pinned, so this
9170 * physical address remains valid. We keep a reference
9171 * to it so we can release it later.
9173 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
9174 nested_release_page(vmx
->nested
.apic_access_page
);
9175 vmx
->nested
.apic_access_page
=
9176 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
9179 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
9180 if (!PAGE_ALIGNED(vmcs12
->virtual_apic_page_addr
) ||
9181 vmcs12
->virtual_apic_page_addr
>> maxphyaddr
)
9184 if (vmx
->nested
.virtual_apic_page
) /* shouldn't happen */
9185 nested_release_page(vmx
->nested
.virtual_apic_page
);
9186 vmx
->nested
.virtual_apic_page
=
9187 nested_get_page(vcpu
, vmcs12
->virtual_apic_page_addr
);
9190 * Failing the vm entry is _not_ what the processor does
9191 * but it's basically the only possibility we have.
9192 * We could still enter the guest if CR8 load exits are
9193 * enabled, CR8 store exits are enabled, and virtualize APIC
9194 * access is disabled; in this case the processor would never
9195 * use the TPR shadow and we could simply clear the bit from
9196 * the execution control. But such a configuration is useless,
9197 * so let's keep the code simple.
9199 if (!vmx
->nested
.virtual_apic_page
)
9203 if (nested_cpu_has_posted_intr(vmcs12
)) {
9204 if (!IS_ALIGNED(vmcs12
->posted_intr_desc_addr
, 64) ||
9205 vmcs12
->posted_intr_desc_addr
>> maxphyaddr
)
9208 if (vmx
->nested
.pi_desc_page
) { /* shouldn't happen */
9209 kunmap(vmx
->nested
.pi_desc_page
);
9210 nested_release_page(vmx
->nested
.pi_desc_page
);
9212 vmx
->nested
.pi_desc_page
=
9213 nested_get_page(vcpu
, vmcs12
->posted_intr_desc_addr
);
9214 if (!vmx
->nested
.pi_desc_page
)
9217 vmx
->nested
.pi_desc
=
9218 (struct pi_desc
*)kmap(vmx
->nested
.pi_desc_page
);
9219 if (!vmx
->nested
.pi_desc
) {
9220 nested_release_page_clean(vmx
->nested
.pi_desc_page
);
9223 vmx
->nested
.pi_desc
=
9224 (struct pi_desc
*)((void *)vmx
->nested
.pi_desc
+
9225 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
9232 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
)
9234 u64 preemption_timeout
= get_vmcs12(vcpu
)->vmx_preemption_timer_value
;
9235 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9237 if (vcpu
->arch
.virtual_tsc_khz
== 0)
9240 /* Make sure short timeouts reliably trigger an immediate vmexit.
9241 * hrtimer_start does not guarantee this. */
9242 if (preemption_timeout
<= 1) {
9243 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
9247 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
9248 preemption_timeout
*= 1000000;
9249 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
9250 hrtimer_start(&vmx
->nested
.preemption_timer
,
9251 ns_to_ktime(preemption_timeout
), HRTIMER_MODE_REL
);
9254 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu
*vcpu
,
9255 struct vmcs12
*vmcs12
)
9260 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
9263 if (vmcs12_read_any(vcpu
, MSR_BITMAP
, &addr
)) {
9267 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9269 if (!PAGE_ALIGNED(vmcs12
->msr_bitmap
) ||
9270 ((addr
+ PAGE_SIZE
) >> maxphyaddr
))
9277 * Merge L0's and L1's MSR bitmap, return false to indicate that
9278 * we do not use the hardware.
9280 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu
*vcpu
,
9281 struct vmcs12
*vmcs12
)
9285 unsigned long *msr_bitmap
;
9287 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
))
9290 page
= nested_get_page(vcpu
, vmcs12
->msr_bitmap
);
9295 msr_bitmap
= (unsigned long *)kmap(page
);
9297 nested_release_page_clean(page
);
9302 if (nested_cpu_has_virt_x2apic_mode(vmcs12
)) {
9303 if (nested_cpu_has_apic_reg_virt(vmcs12
))
9304 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
9305 nested_vmx_disable_intercept_for_msr(
9307 vmx_msr_bitmap_nested
,
9309 /* TPR is allowed */
9310 nested_vmx_disable_intercept_for_msr(msr_bitmap
,
9311 vmx_msr_bitmap_nested
,
9312 APIC_BASE_MSR
+ (APIC_TASKPRI
>> 4),
9313 MSR_TYPE_R
| MSR_TYPE_W
);
9314 if (nested_cpu_has_vid(vmcs12
)) {
9315 /* EOI and self-IPI are allowed */
9316 nested_vmx_disable_intercept_for_msr(
9318 vmx_msr_bitmap_nested
,
9319 APIC_BASE_MSR
+ (APIC_EOI
>> 4),
9321 nested_vmx_disable_intercept_for_msr(
9323 vmx_msr_bitmap_nested
,
9324 APIC_BASE_MSR
+ (APIC_SELF_IPI
>> 4),
9329 * Enable reading intercept of all the x2apic
9330 * MSRs. We should not rely on vmcs12 to do any
9331 * optimizations here, it may have been modified
9334 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
9335 __vmx_enable_intercept_for_msr(
9336 vmx_msr_bitmap_nested
,
9340 __vmx_enable_intercept_for_msr(
9341 vmx_msr_bitmap_nested
,
9342 APIC_BASE_MSR
+ (APIC_TASKPRI
>> 4),
9344 __vmx_enable_intercept_for_msr(
9345 vmx_msr_bitmap_nested
,
9346 APIC_BASE_MSR
+ (APIC_EOI
>> 4),
9348 __vmx_enable_intercept_for_msr(
9349 vmx_msr_bitmap_nested
,
9350 APIC_BASE_MSR
+ (APIC_SELF_IPI
>> 4),
9354 nested_release_page_clean(page
);
9359 static int nested_vmx_check_apicv_controls(struct kvm_vcpu
*vcpu
,
9360 struct vmcs12
*vmcs12
)
9362 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
9363 !nested_cpu_has_apic_reg_virt(vmcs12
) &&
9364 !nested_cpu_has_vid(vmcs12
) &&
9365 !nested_cpu_has_posted_intr(vmcs12
))
9369 * If virtualize x2apic mode is enabled,
9370 * virtualize apic access must be disabled.
9372 if (nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
9373 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
9377 * If virtual interrupt delivery is enabled,
9378 * we must exit on external interrupts.
9380 if (nested_cpu_has_vid(vmcs12
) &&
9381 !nested_exit_on_intr(vcpu
))
9385 * bits 15:8 should be zero in posted_intr_nv,
9386 * the descriptor address has been already checked
9387 * in nested_get_vmcs12_pages.
9389 if (nested_cpu_has_posted_intr(vmcs12
) &&
9390 (!nested_cpu_has_vid(vmcs12
) ||
9391 !nested_exit_intr_ack_set(vcpu
) ||
9392 vmcs12
->posted_intr_nv
& 0xff00))
9395 /* tpr shadow is needed by all apicv features. */
9396 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
9402 static int nested_vmx_check_msr_switch(struct kvm_vcpu
*vcpu
,
9403 unsigned long count_field
,
9404 unsigned long addr_field
)
9409 if (vmcs12_read_any(vcpu
, count_field
, &count
) ||
9410 vmcs12_read_any(vcpu
, addr_field
, &addr
)) {
9416 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9417 if (!IS_ALIGNED(addr
, 16) || addr
>> maxphyaddr
||
9418 (addr
+ count
* sizeof(struct vmx_msr_entry
) - 1) >> maxphyaddr
) {
9419 pr_warn_ratelimited(
9420 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9421 addr_field
, maxphyaddr
, count
, addr
);
9427 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu
*vcpu
,
9428 struct vmcs12
*vmcs12
)
9430 if (vmcs12
->vm_exit_msr_load_count
== 0 &&
9431 vmcs12
->vm_exit_msr_store_count
== 0 &&
9432 vmcs12
->vm_entry_msr_load_count
== 0)
9433 return 0; /* Fast path */
9434 if (nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_LOAD_COUNT
,
9435 VM_EXIT_MSR_LOAD_ADDR
) ||
9436 nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_STORE_COUNT
,
9437 VM_EXIT_MSR_STORE_ADDR
) ||
9438 nested_vmx_check_msr_switch(vcpu
, VM_ENTRY_MSR_LOAD_COUNT
,
9439 VM_ENTRY_MSR_LOAD_ADDR
))
9444 static int nested_vmx_msr_check_common(struct kvm_vcpu
*vcpu
,
9445 struct vmx_msr_entry
*e
)
9447 /* x2APIC MSR accesses are not allowed */
9448 if (vcpu
->arch
.apic_base
& X2APIC_ENABLE
&& e
->index
>> 8 == 0x8)
9450 if (e
->index
== MSR_IA32_UCODE_WRITE
|| /* SDM Table 35-2 */
9451 e
->index
== MSR_IA32_UCODE_REV
)
9453 if (e
->reserved
!= 0)
9458 static int nested_vmx_load_msr_check(struct kvm_vcpu
*vcpu
,
9459 struct vmx_msr_entry
*e
)
9461 if (e
->index
== MSR_FS_BASE
||
9462 e
->index
== MSR_GS_BASE
||
9463 e
->index
== MSR_IA32_SMM_MONITOR_CTL
|| /* SMM is not supported */
9464 nested_vmx_msr_check_common(vcpu
, e
))
9469 static int nested_vmx_store_msr_check(struct kvm_vcpu
*vcpu
,
9470 struct vmx_msr_entry
*e
)
9472 if (e
->index
== MSR_IA32_SMBASE
|| /* SMM is not supported */
9473 nested_vmx_msr_check_common(vcpu
, e
))
9479 * Load guest's/host's msr at nested entry/exit.
9480 * return 0 for success, entry index for failure.
9482 static u32
nested_vmx_load_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
9485 struct vmx_msr_entry e
;
9486 struct msr_data msr
;
9488 msr
.host_initiated
= false;
9489 for (i
= 0; i
< count
; i
++) {
9490 if (kvm_vcpu_read_guest(vcpu
, gpa
+ i
* sizeof(e
),
9492 pr_warn_ratelimited(
9493 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9494 __func__
, i
, gpa
+ i
* sizeof(e
));
9497 if (nested_vmx_load_msr_check(vcpu
, &e
)) {
9498 pr_warn_ratelimited(
9499 "%s check failed (%u, 0x%x, 0x%x)\n",
9500 __func__
, i
, e
.index
, e
.reserved
);
9503 msr
.index
= e
.index
;
9505 if (kvm_set_msr(vcpu
, &msr
)) {
9506 pr_warn_ratelimited(
9507 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9508 __func__
, i
, e
.index
, e
.value
);
9517 static int nested_vmx_store_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
9520 struct vmx_msr_entry e
;
9522 for (i
= 0; i
< count
; i
++) {
9523 struct msr_data msr_info
;
9524 if (kvm_vcpu_read_guest(vcpu
,
9525 gpa
+ i
* sizeof(e
),
9526 &e
, 2 * sizeof(u32
))) {
9527 pr_warn_ratelimited(
9528 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9529 __func__
, i
, gpa
+ i
* sizeof(e
));
9532 if (nested_vmx_store_msr_check(vcpu
, &e
)) {
9533 pr_warn_ratelimited(
9534 "%s check failed (%u, 0x%x, 0x%x)\n",
9535 __func__
, i
, e
.index
, e
.reserved
);
9538 msr_info
.host_initiated
= false;
9539 msr_info
.index
= e
.index
;
9540 if (kvm_get_msr(vcpu
, &msr_info
)) {
9541 pr_warn_ratelimited(
9542 "%s cannot read MSR (%u, 0x%x)\n",
9543 __func__
, i
, e
.index
);
9546 if (kvm_vcpu_write_guest(vcpu
,
9547 gpa
+ i
* sizeof(e
) +
9548 offsetof(struct vmx_msr_entry
, value
),
9549 &msr_info
.data
, sizeof(msr_info
.data
))) {
9550 pr_warn_ratelimited(
9551 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9552 __func__
, i
, e
.index
, msr_info
.data
);
9560 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9561 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9562 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9563 * guest in a way that will both be appropriate to L1's requests, and our
9564 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9565 * function also has additional necessary side-effects, like setting various
9566 * vcpu->arch fields.
9568 static void prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
9570 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9573 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
9574 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
9575 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
9576 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
9577 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
9578 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
9579 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
9580 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
9581 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
9582 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
9583 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
9584 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
9585 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
9586 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
9587 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
9588 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
9589 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
9590 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
9591 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
9592 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
9593 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
9594 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
9595 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
9596 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
9597 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
9598 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
9599 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
9600 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
9601 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
9602 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
9603 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
9604 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
9605 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
9606 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
9607 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
9608 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
9610 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
) {
9611 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
9612 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
9614 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
9615 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.vmcs01_debugctl
);
9617 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
9618 vmcs12
->vm_entry_intr_info_field
);
9619 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
9620 vmcs12
->vm_entry_exception_error_code
);
9621 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
9622 vmcs12
->vm_entry_instruction_len
);
9623 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
9624 vmcs12
->guest_interruptibility_info
);
9625 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
9626 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
9627 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
9628 vmcs12
->guest_pending_dbg_exceptions
);
9629 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
9630 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
9632 if (nested_cpu_has_xsaves(vmcs12
))
9633 vmcs_write64(XSS_EXIT_BITMAP
, vmcs12
->xss_exit_bitmap
);
9634 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
9636 exec_control
= vmcs12
->pin_based_vm_exec_control
;
9637 exec_control
|= vmcs_config
.pin_based_exec_ctrl
;
9638 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
9640 if (nested_cpu_has_posted_intr(vmcs12
)) {
9642 * Note that we use L0's vector here and in
9643 * vmx_deliver_nested_posted_interrupt.
9645 vmx
->nested
.posted_intr_nv
= vmcs12
->posted_intr_nv
;
9646 vmx
->nested
.pi_pending
= false;
9647 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
9648 vmcs_write64(POSTED_INTR_DESC_ADDR
,
9649 page_to_phys(vmx
->nested
.pi_desc_page
) +
9650 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
9653 exec_control
&= ~PIN_BASED_POSTED_INTR
;
9655 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, exec_control
);
9657 vmx
->nested
.preemption_timer_expired
= false;
9658 if (nested_cpu_has_preemption_timer(vmcs12
))
9659 vmx_start_preemption_timer(vcpu
);
9662 * Whether page-faults are trapped is determined by a combination of
9663 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9664 * If enable_ept, L0 doesn't care about page faults and we should
9665 * set all of these to L1's desires. However, if !enable_ept, L0 does
9666 * care about (at least some) page faults, and because it is not easy
9667 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9668 * to exit on each and every L2 page fault. This is done by setting
9669 * MASK=MATCH=0 and (see below) EB.PF=1.
9670 * Note that below we don't need special code to set EB.PF beyond the
9671 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9672 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9673 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9675 * A problem with this approach (when !enable_ept) is that L1 may be
9676 * injected with more page faults than it asked for. This could have
9677 * caused problems, but in practice existing hypervisors don't care.
9678 * To fix this, we will need to emulate the PFEC checking (on the L1
9679 * page tables), using walk_addr(), when injecting PFs to L1.
9681 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
9682 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
9683 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
9684 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
9686 if (cpu_has_secondary_exec_ctrls()) {
9687 exec_control
= vmx_secondary_exec_control(vmx
);
9689 /* Take the following fields only from vmcs12 */
9690 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
9691 SECONDARY_EXEC_RDTSCP
|
9692 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
9693 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
9694 SECONDARY_EXEC_PCOMMIT
);
9695 if (nested_cpu_has(vmcs12
,
9696 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
9697 exec_control
|= vmcs12
->secondary_vm_exec_control
;
9699 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) {
9701 * If translation failed, no matter: This feature asks
9702 * to exit when accessing the given address, and if it
9703 * can never be accessed, this feature won't do
9706 if (!vmx
->nested
.apic_access_page
)
9708 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9710 vmcs_write64(APIC_ACCESS_ADDR
,
9711 page_to_phys(vmx
->nested
.apic_access_page
));
9712 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12
)) &&
9713 cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
9715 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9716 kvm_vcpu_reload_apic_access_page(vcpu
);
9719 if (exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) {
9720 vmcs_write64(EOI_EXIT_BITMAP0
,
9721 vmcs12
->eoi_exit_bitmap0
);
9722 vmcs_write64(EOI_EXIT_BITMAP1
,
9723 vmcs12
->eoi_exit_bitmap1
);
9724 vmcs_write64(EOI_EXIT_BITMAP2
,
9725 vmcs12
->eoi_exit_bitmap2
);
9726 vmcs_write64(EOI_EXIT_BITMAP3
,
9727 vmcs12
->eoi_exit_bitmap3
);
9728 vmcs_write16(GUEST_INTR_STATUS
,
9729 vmcs12
->guest_intr_status
);
9732 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
9737 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9738 * Some constant fields are set here by vmx_set_constant_host_state().
9739 * Other fields are different per CPU, and will be set later when
9740 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9742 vmx_set_constant_host_state(vmx
);
9745 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9746 * entry, but only if the current (host) sp changed from the value
9747 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9748 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9749 * here we just force the write to happen on entry.
9753 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
9754 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
9755 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
9756 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
9757 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
9759 if (exec_control
& CPU_BASED_TPR_SHADOW
) {
9760 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
9761 page_to_phys(vmx
->nested
.virtual_apic_page
));
9762 vmcs_write32(TPR_THRESHOLD
, vmcs12
->tpr_threshold
);
9765 if (cpu_has_vmx_msr_bitmap() &&
9766 exec_control
& CPU_BASED_USE_MSR_BITMAPS
) {
9767 nested_vmx_merge_msr_bitmap(vcpu
, vmcs12
);
9768 /* MSR_BITMAP will be set by following vmx_set_efer. */
9770 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
9773 * Merging of IO bitmap not currently supported.
9774 * Rather, exit every time.
9776 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
9777 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
9779 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
9781 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9782 * bitwise-or of what L1 wants to trap for L2, and what we want to
9783 * trap. Note that CR0.TS also needs updating - we do this later.
9785 update_exception_bitmap(vcpu
);
9786 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
9787 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
9789 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9790 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9791 * bits are further modified by vmx_set_efer() below.
9793 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
9795 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9796 * emulated by vmx_set_efer(), below.
9798 vm_entry_controls_init(vmx
,
9799 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
9800 ~VM_ENTRY_IA32E_MODE
) |
9801 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
9803 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
) {
9804 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
9805 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
9806 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
9807 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
9810 set_cr4_guest_host_mask(vmx
);
9812 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
)
9813 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
9815 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
9816 vmcs_write64(TSC_OFFSET
,
9817 vmx
->nested
.vmcs01_tsc_offset
+ vmcs12
->tsc_offset
);
9819 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
9823 * There is no direct mapping between vpid02 and vpid12, the
9824 * vpid02 is per-vCPU for L0 and reused while the value of
9825 * vpid12 is changed w/ one invvpid during nested vmentry.
9826 * The vpid12 is allocated by L1 for L2, so it will not
9827 * influence global bitmap(for vpid01 and vpid02 allocation)
9828 * even if spawn a lot of nested vCPUs.
9830 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
) {
9831 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->nested
.vpid02
);
9832 if (vmcs12
->virtual_processor_id
!= vmx
->nested
.last_vpid
) {
9833 vmx
->nested
.last_vpid
= vmcs12
->virtual_processor_id
;
9834 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->nested
.vpid02
);
9837 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
9838 vmx_flush_tlb(vcpu
);
9843 if (nested_cpu_has_ept(vmcs12
)) {
9844 kvm_mmu_unload(vcpu
);
9845 nested_ept_init_mmu_context(vcpu
);
9848 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)
9849 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
9850 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
9851 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
9853 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
9854 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9855 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
9858 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9859 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9860 * The CR0_READ_SHADOW is what L2 should have expected to read given
9861 * the specifications by L1; It's not enough to take
9862 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9863 * have more bits than L1 expected.
9865 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
9866 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
9868 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
9869 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
9871 /* shadow page tables on either EPT or shadow page tables */
9872 kvm_set_cr3(vcpu
, vmcs12
->guest_cr3
);
9873 kvm_mmu_reset_context(vcpu
);
9876 vcpu
->arch
.walk_mmu
->inject_page_fault
= vmx_inject_page_fault_nested
;
9879 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9882 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
9883 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
9884 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
9885 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
9888 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
9889 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
9893 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9894 * for running an L2 nested guest.
9896 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
9898 struct vmcs12
*vmcs12
;
9899 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9901 struct loaded_vmcs
*vmcs02
;
9905 if (!nested_vmx_check_permission(vcpu
) ||
9906 !nested_vmx_check_vmcs12(vcpu
))
9909 skip_emulated_instruction(vcpu
);
9910 vmcs12
= get_vmcs12(vcpu
);
9912 if (enable_shadow_vmcs
)
9913 copy_shadow_to_vmcs12(vmx
);
9916 * The nested entry process starts with enforcing various prerequisites
9917 * on vmcs12 as required by the Intel SDM, and act appropriately when
9918 * they fail: As the SDM explains, some conditions should cause the
9919 * instruction to fail, while others will cause the instruction to seem
9920 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9921 * To speed up the normal (success) code path, we should avoid checking
9922 * for misconfigurations which will anyway be caught by the processor
9923 * when using the merged vmcs02.
9925 if (vmcs12
->launch_state
== launch
) {
9926 nested_vmx_failValid(vcpu
,
9927 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9928 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
9932 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
9933 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
) {
9934 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9938 if (!nested_get_vmcs12_pages(vcpu
, vmcs12
)) {
9939 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9943 if (nested_vmx_check_msr_bitmap_controls(vcpu
, vmcs12
)) {
9944 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9948 if (nested_vmx_check_apicv_controls(vcpu
, vmcs12
)) {
9949 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9953 if (nested_vmx_check_msr_switch_controls(vcpu
, vmcs12
)) {
9954 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9958 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
9959 vmx
->nested
.nested_vmx_true_procbased_ctls_low
,
9960 vmx
->nested
.nested_vmx_procbased_ctls_high
) ||
9961 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
9962 vmx
->nested
.nested_vmx_secondary_ctls_low
,
9963 vmx
->nested
.nested_vmx_secondary_ctls_high
) ||
9964 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
9965 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
9966 vmx
->nested
.nested_vmx_pinbased_ctls_high
) ||
9967 !vmx_control_verify(vmcs12
->vm_exit_controls
,
9968 vmx
->nested
.nested_vmx_true_exit_ctls_low
,
9969 vmx
->nested
.nested_vmx_exit_ctls_high
) ||
9970 !vmx_control_verify(vmcs12
->vm_entry_controls
,
9971 vmx
->nested
.nested_vmx_true_entry_ctls_low
,
9972 vmx
->nested
.nested_vmx_entry_ctls_high
))
9974 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
9978 if (((vmcs12
->host_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
9979 ((vmcs12
->host_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
9980 nested_vmx_failValid(vcpu
,
9981 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
9985 if (!nested_cr0_valid(vcpu
, vmcs12
->guest_cr0
) ||
9986 ((vmcs12
->guest_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
9987 nested_vmx_entry_failure(vcpu
, vmcs12
,
9988 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
9991 if (vmcs12
->vmcs_link_pointer
!= -1ull) {
9992 nested_vmx_entry_failure(vcpu
, vmcs12
,
9993 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_VMCS_LINK_PTR
);
9998 * If the load IA32_EFER VM-entry control is 1, the following checks
9999 * are performed on the field for the IA32_EFER MSR:
10000 * - Bits reserved in the IA32_EFER MSR must be 0.
10001 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10002 * the IA-32e mode guest VM-exit control. It must also be identical
10003 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10006 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
) {
10007 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
10008 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
10009 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
10010 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
10011 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
))) {
10012 nested_vmx_entry_failure(vcpu
, vmcs12
,
10013 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
10019 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10020 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10021 * the values of the LMA and LME bits in the field must each be that of
10022 * the host address-space size VM-exit control.
10024 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
10025 ia32e
= (vmcs12
->vm_exit_controls
&
10026 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
10027 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
10028 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
10029 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
)) {
10030 nested_vmx_entry_failure(vcpu
, vmcs12
,
10031 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
10037 * We're finally done with prerequisite checking, and can start with
10038 * the nested entry.
10041 vmcs02
= nested_get_current_vmcs02(vmx
);
10045 enter_guest_mode(vcpu
);
10047 vmx
->nested
.vmcs01_tsc_offset
= vmcs_read64(TSC_OFFSET
);
10049 if (!(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
10050 vmx
->nested
.vmcs01_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
10053 vmx
->loaded_vmcs
= vmcs02
;
10054 vmx_vcpu_put(vcpu
);
10055 vmx_vcpu_load(vcpu
, cpu
);
10059 vmx_segment_cache_clear(vmx
);
10061 prepare_vmcs02(vcpu
, vmcs12
);
10063 msr_entry_idx
= nested_vmx_load_msr(vcpu
,
10064 vmcs12
->vm_entry_msr_load_addr
,
10065 vmcs12
->vm_entry_msr_load_count
);
10066 if (msr_entry_idx
) {
10067 leave_guest_mode(vcpu
);
10068 vmx_load_vmcs01(vcpu
);
10069 nested_vmx_entry_failure(vcpu
, vmcs12
,
10070 EXIT_REASON_MSR_LOAD_FAIL
, msr_entry_idx
);
10074 vmcs12
->launch_state
= 1;
10076 if (vmcs12
->guest_activity_state
== GUEST_ACTIVITY_HLT
)
10077 return kvm_vcpu_halt(vcpu
);
10079 vmx
->nested
.nested_run_pending
= 1;
10082 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10083 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10084 * returned as far as L1 is concerned. It will only return (and set
10085 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10091 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10092 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10093 * This function returns the new value we should put in vmcs12.guest_cr0.
10094 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10095 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10096 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10097 * didn't trap the bit, because if L1 did, so would L0).
10098 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10099 * been modified by L2, and L1 knows it. So just leave the old value of
10100 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10101 * isn't relevant, because if L0 traps this bit it can set it to anything.
10102 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10103 * changed these bits, and therefore they need to be updated, but L0
10104 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10105 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10107 static inline unsigned long
10108 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10111 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
10112 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
10113 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
10114 vcpu
->arch
.cr0_guest_owned_bits
));
10117 static inline unsigned long
10118 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10121 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
10122 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
10123 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
10124 vcpu
->arch
.cr4_guest_owned_bits
));
10127 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
10128 struct vmcs12
*vmcs12
)
10133 if (vcpu
->arch
.exception
.pending
&& vcpu
->arch
.exception
.reinject
) {
10134 nr
= vcpu
->arch
.exception
.nr
;
10135 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
10137 if (kvm_exception_is_soft(nr
)) {
10138 vmcs12
->vm_exit_instruction_len
=
10139 vcpu
->arch
.event_exit_inst_len
;
10140 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
10142 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
10144 if (vcpu
->arch
.exception
.has_error_code
) {
10145 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
10146 vmcs12
->idt_vectoring_error_code
=
10147 vcpu
->arch
.exception
.error_code
;
10150 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
10151 } else if (vcpu
->arch
.nmi_injected
) {
10152 vmcs12
->idt_vectoring_info_field
=
10153 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
10154 } else if (vcpu
->arch
.interrupt
.pending
) {
10155 nr
= vcpu
->arch
.interrupt
.nr
;
10156 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
10158 if (vcpu
->arch
.interrupt
.soft
) {
10159 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
10160 vmcs12
->vm_entry_instruction_len
=
10161 vcpu
->arch
.event_exit_inst_len
;
10163 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
10165 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
10169 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
, bool external_intr
)
10171 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10173 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
10174 vmx
->nested
.preemption_timer_expired
) {
10175 if (vmx
->nested
.nested_run_pending
)
10177 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
10181 if (vcpu
->arch
.nmi_pending
&& nested_exit_on_nmi(vcpu
)) {
10182 if (vmx
->nested
.nested_run_pending
||
10183 vcpu
->arch
.interrupt
.pending
)
10185 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
10186 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
10187 INTR_INFO_VALID_MASK
, 0);
10189 * The NMI-triggered VM exit counts as injection:
10190 * clear this one and block further NMIs.
10192 vcpu
->arch
.nmi_pending
= 0;
10193 vmx_set_nmi_mask(vcpu
, true);
10197 if ((kvm_cpu_has_interrupt(vcpu
) || external_intr
) &&
10198 nested_exit_on_intr(vcpu
)) {
10199 if (vmx
->nested
.nested_run_pending
)
10201 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
10205 return vmx_complete_nested_posted_interrupt(vcpu
);
10208 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
10210 ktime_t remaining
=
10211 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
10214 if (ktime_to_ns(remaining
) <= 0)
10217 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
10218 do_div(value
, 1000000);
10219 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
10223 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10224 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10225 * and this function updates it to reflect the changes to the guest state while
10226 * L2 was running (and perhaps made some exits which were handled directly by L0
10227 * without going back to L1), and to reflect the exit reason.
10228 * Note that we do not have to copy here all VMCS fields, just those that
10229 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10230 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10231 * which already writes to vmcs12 directly.
10233 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
10234 u32 exit_reason
, u32 exit_intr_info
,
10235 unsigned long exit_qualification
)
10237 /* update guest state fields: */
10238 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
10239 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
10241 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
10242 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
10243 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
10245 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
10246 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
10247 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
10248 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
10249 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
10250 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
10251 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
10252 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
10253 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
10254 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
10255 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
10256 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
10257 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
10258 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
10259 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
10260 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
10261 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
10262 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
10263 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
10264 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
10265 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
10266 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
10267 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
10268 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
10269 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
10270 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
10271 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
10272 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
10273 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
10274 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
10275 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
10276 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
10277 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
10278 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
10279 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
10280 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
10282 vmcs12
->guest_interruptibility_info
=
10283 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
10284 vmcs12
->guest_pending_dbg_exceptions
=
10285 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
10286 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
10287 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
10289 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
10291 if (nested_cpu_has_preemption_timer(vmcs12
)) {
10292 if (vmcs12
->vm_exit_controls
&
10293 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
)
10294 vmcs12
->vmx_preemption_timer_value
=
10295 vmx_get_preemption_timer_value(vcpu
);
10296 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
10300 * In some cases (usually, nested EPT), L2 is allowed to change its
10301 * own CR3 without exiting. If it has changed it, we must keep it.
10302 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10303 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10305 * Additionally, restore L2's PDPTR to vmcs12.
10308 vmcs12
->guest_cr3
= vmcs_readl(GUEST_CR3
);
10309 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
10310 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
10311 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
10312 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
10315 if (nested_cpu_has_vid(vmcs12
))
10316 vmcs12
->guest_intr_status
= vmcs_read16(GUEST_INTR_STATUS
);
10318 vmcs12
->vm_entry_controls
=
10319 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
10320 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
10322 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
) {
10323 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
10324 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
10327 /* TODO: These cannot have changed unless we have MSR bitmaps and
10328 * the relevant bit asks not to trap the change */
10329 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
10330 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
10331 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
10332 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
10333 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
10334 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
10335 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
10336 if (kvm_mpx_supported())
10337 vmcs12
->guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
10338 if (nested_cpu_has_xsaves(vmcs12
))
10339 vmcs12
->xss_exit_bitmap
= vmcs_read64(XSS_EXIT_BITMAP
);
10341 /* update exit information fields: */
10343 vmcs12
->vm_exit_reason
= exit_reason
;
10344 vmcs12
->exit_qualification
= exit_qualification
;
10346 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
10347 if ((vmcs12
->vm_exit_intr_info
&
10348 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
10349 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
))
10350 vmcs12
->vm_exit_intr_error_code
=
10351 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
10352 vmcs12
->idt_vectoring_info_field
= 0;
10353 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
10354 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
10356 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
10357 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10358 * instead of reading the real value. */
10359 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
10362 * Transfer the event that L0 or L1 may wanted to inject into
10363 * L2 to IDT_VECTORING_INFO_FIELD.
10365 vmcs12_save_pending_event(vcpu
, vmcs12
);
10369 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10370 * preserved above and would only end up incorrectly in L1.
10372 vcpu
->arch
.nmi_injected
= false;
10373 kvm_clear_exception_queue(vcpu
);
10374 kvm_clear_interrupt_queue(vcpu
);
10378 * A part of what we need to when the nested L2 guest exits and we want to
10379 * run its L1 parent, is to reset L1's guest state to the host state specified
10381 * This function is to be called not only on normal nested exit, but also on
10382 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10383 * Failures During or After Loading Guest State").
10384 * This function should be called when the active VMCS is L1's (vmcs01).
10386 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
10387 struct vmcs12
*vmcs12
)
10389 struct kvm_segment seg
;
10391 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
10392 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
10393 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
10394 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
10396 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
10397 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
10399 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
10400 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
10401 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
10403 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10404 * actually changed, because it depends on the current state of
10405 * fpu_active (which may have changed).
10406 * Note that vmx_set_cr0 refers to efer set above.
10408 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
10410 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10411 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10412 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10414 update_exception_bitmap(vcpu
);
10415 vcpu
->arch
.cr0_guest_owned_bits
= (vcpu
->fpu_active
? X86_CR0_TS
: 0);
10416 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
10419 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10420 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10422 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
10423 kvm_set_cr4(vcpu
, vmcs12
->host_cr4
);
10425 nested_ept_uninit_mmu_context(vcpu
);
10427 kvm_set_cr3(vcpu
, vmcs12
->host_cr3
);
10428 kvm_mmu_reset_context(vcpu
);
10431 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
10435 * Trivially support vpid by letting L2s share their parent
10436 * L1's vpid. TODO: move to a more elaborate solution, giving
10437 * each L2 its own vpid and exposing the vpid feature to L1.
10439 vmx_flush_tlb(vcpu
);
10443 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
10444 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
10445 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
10446 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
10447 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
10449 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10450 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
10451 vmcs_write64(GUEST_BNDCFGS
, 0);
10453 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
10454 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
10455 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
10457 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
10458 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
10459 vmcs12
->host_ia32_perf_global_ctrl
);
10461 /* Set L1 segment info according to Intel SDM
10462 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10463 seg
= (struct kvm_segment
) {
10465 .limit
= 0xFFFFFFFF,
10466 .selector
= vmcs12
->host_cs_selector
,
10472 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
10476 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
10477 seg
= (struct kvm_segment
) {
10479 .limit
= 0xFFFFFFFF,
10486 seg
.selector
= vmcs12
->host_ds_selector
;
10487 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
10488 seg
.selector
= vmcs12
->host_es_selector
;
10489 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
10490 seg
.selector
= vmcs12
->host_ss_selector
;
10491 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
10492 seg
.selector
= vmcs12
->host_fs_selector
;
10493 seg
.base
= vmcs12
->host_fs_base
;
10494 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
10495 seg
.selector
= vmcs12
->host_gs_selector
;
10496 seg
.base
= vmcs12
->host_gs_base
;
10497 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
10498 seg
= (struct kvm_segment
) {
10499 .base
= vmcs12
->host_tr_base
,
10501 .selector
= vmcs12
->host_tr_selector
,
10505 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
10507 kvm_set_dr(vcpu
, 7, 0x400);
10508 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
10510 if (cpu_has_vmx_msr_bitmap())
10511 vmx_set_msr_bitmap(vcpu
);
10513 if (nested_vmx_load_msr(vcpu
, vmcs12
->vm_exit_msr_load_addr
,
10514 vmcs12
->vm_exit_msr_load_count
))
10515 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
10519 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10520 * and modify vmcs12 to make it see what it would expect to see there if
10521 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10523 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
10524 u32 exit_intr_info
,
10525 unsigned long exit_qualification
)
10527 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10528 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
10530 /* trying to cancel vmlaunch/vmresume is a bug */
10531 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
10533 leave_guest_mode(vcpu
);
10534 prepare_vmcs12(vcpu
, vmcs12
, exit_reason
, exit_intr_info
,
10535 exit_qualification
);
10537 if (nested_vmx_store_msr(vcpu
, vmcs12
->vm_exit_msr_store_addr
,
10538 vmcs12
->vm_exit_msr_store_count
))
10539 nested_vmx_abort(vcpu
, VMX_ABORT_SAVE_GUEST_MSR_FAIL
);
10541 vmx_load_vmcs01(vcpu
);
10543 if ((exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
)
10544 && nested_exit_intr_ack_set(vcpu
)) {
10545 int irq
= kvm_cpu_get_interrupt(vcpu
);
10547 vmcs12
->vm_exit_intr_info
= irq
|
10548 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
;
10551 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
10552 vmcs12
->exit_qualification
,
10553 vmcs12
->idt_vectoring_info_field
,
10554 vmcs12
->vm_exit_intr_info
,
10555 vmcs12
->vm_exit_intr_error_code
,
10558 vm_entry_controls_init(vmx
, vmcs_read32(VM_ENTRY_CONTROLS
));
10559 vm_exit_controls_init(vmx
, vmcs_read32(VM_EXIT_CONTROLS
));
10560 vmx_segment_cache_clear(vmx
);
10562 /* if no vmcs02 cache requested, remove the one we used */
10563 if (VMCS02_POOL_SIZE
== 0)
10564 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
10566 load_vmcs12_host_state(vcpu
, vmcs12
);
10568 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10569 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
10571 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10574 /* Unpin physical memory we referred to in vmcs02 */
10575 if (vmx
->nested
.apic_access_page
) {
10576 nested_release_page(vmx
->nested
.apic_access_page
);
10577 vmx
->nested
.apic_access_page
= NULL
;
10579 if (vmx
->nested
.virtual_apic_page
) {
10580 nested_release_page(vmx
->nested
.virtual_apic_page
);
10581 vmx
->nested
.virtual_apic_page
= NULL
;
10583 if (vmx
->nested
.pi_desc_page
) {
10584 kunmap(vmx
->nested
.pi_desc_page
);
10585 nested_release_page(vmx
->nested
.pi_desc_page
);
10586 vmx
->nested
.pi_desc_page
= NULL
;
10587 vmx
->nested
.pi_desc
= NULL
;
10591 * We are now running in L2, mmu_notifier will force to reload the
10592 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10594 kvm_vcpu_reload_apic_access_page(vcpu
);
10597 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10598 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10599 * success or failure flag accordingly.
10601 if (unlikely(vmx
->fail
)) {
10603 nested_vmx_failValid(vcpu
, vmcs_read32(VM_INSTRUCTION_ERROR
));
10605 nested_vmx_succeed(vcpu
);
10606 if (enable_shadow_vmcs
)
10607 vmx
->nested
.sync_shadow_vmcs
= true;
10609 /* in case we halted in L2 */
10610 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
10614 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10616 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
10618 if (is_guest_mode(vcpu
))
10619 nested_vmx_vmexit(vcpu
, -1, 0, 0);
10620 free_nested(to_vmx(vcpu
));
10624 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10625 * 23.7 "VM-entry failures during or after loading guest state" (this also
10626 * lists the acceptable exit-reason and exit-qualification parameters).
10627 * It should only be called before L2 actually succeeded to run, and when
10628 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10630 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
10631 struct vmcs12
*vmcs12
,
10632 u32 reason
, unsigned long qualification
)
10634 load_vmcs12_host_state(vcpu
, vmcs12
);
10635 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
10636 vmcs12
->exit_qualification
= qualification
;
10637 nested_vmx_succeed(vcpu
);
10638 if (enable_shadow_vmcs
)
10639 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
10642 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
10643 struct x86_instruction_info
*info
,
10644 enum x86_intercept_stage stage
)
10646 return X86EMUL_CONTINUE
;
10649 static void vmx_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
10652 shrink_ple_window(vcpu
);
10655 static void vmx_slot_enable_log_dirty(struct kvm
*kvm
,
10656 struct kvm_memory_slot
*slot
)
10658 kvm_mmu_slot_leaf_clear_dirty(kvm
, slot
);
10659 kvm_mmu_slot_largepage_remove_write_access(kvm
, slot
);
10662 static void vmx_slot_disable_log_dirty(struct kvm
*kvm
,
10663 struct kvm_memory_slot
*slot
)
10665 kvm_mmu_slot_set_dirty(kvm
, slot
);
10668 static void vmx_flush_log_dirty(struct kvm
*kvm
)
10670 kvm_flush_pml_buffers(kvm
);
10673 static void vmx_enable_log_dirty_pt_masked(struct kvm
*kvm
,
10674 struct kvm_memory_slot
*memslot
,
10675 gfn_t offset
, unsigned long mask
)
10677 kvm_mmu_clear_dirty_pt_masked(kvm
, memslot
, offset
, mask
);
10681 * This routine does the following things for vCPU which is going
10682 * to be blocked if VT-d PI is enabled.
10683 * - Store the vCPU to the wakeup list, so when interrupts happen
10684 * we can find the right vCPU to wake up.
10685 * - Change the Posted-interrupt descriptor as below:
10686 * 'NDST' <-- vcpu->pre_pcpu
10687 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10688 * - If 'ON' is set during this process, which means at least one
10689 * interrupt is posted for this vCPU, we cannot block it, in
10690 * this case, return 1, otherwise, return 0.
10693 static int vmx_pre_block(struct kvm_vcpu
*vcpu
)
10695 unsigned long flags
;
10697 struct pi_desc old
, new;
10698 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
10700 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
10701 !irq_remapping_cap(IRQ_POSTING_CAP
))
10704 vcpu
->pre_pcpu
= vcpu
->cpu
;
10705 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock
,
10706 vcpu
->pre_pcpu
), flags
);
10707 list_add_tail(&vcpu
->blocked_vcpu_list
,
10708 &per_cpu(blocked_vcpu_on_cpu
,
10710 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock
,
10711 vcpu
->pre_pcpu
), flags
);
10714 old
.control
= new.control
= pi_desc
->control
;
10717 * We should not block the vCPU if
10718 * an interrupt is posted for it.
10720 if (pi_test_on(pi_desc
) == 1) {
10721 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock
,
10722 vcpu
->pre_pcpu
), flags
);
10723 list_del(&vcpu
->blocked_vcpu_list
);
10724 spin_unlock_irqrestore(
10725 &per_cpu(blocked_vcpu_on_cpu_lock
,
10726 vcpu
->pre_pcpu
), flags
);
10727 vcpu
->pre_pcpu
= -1;
10732 WARN((pi_desc
->sn
== 1),
10733 "Warning: SN field of posted-interrupts "
10734 "is set before blocking\n");
10737 * Since vCPU can be preempted during this process,
10738 * vcpu->cpu could be different with pre_pcpu, we
10739 * need to set pre_pcpu as the destination of wakeup
10740 * notification event, then we can find the right vCPU
10741 * to wakeup in wakeup handler if interrupts happen
10742 * when the vCPU is in blocked state.
10744 dest
= cpu_physical_id(vcpu
->pre_pcpu
);
10746 if (x2apic_enabled())
10749 new.ndst
= (dest
<< 8) & 0xFF00;
10751 /* set 'NV' to 'wakeup vector' */
10752 new.nv
= POSTED_INTR_WAKEUP_VECTOR
;
10753 } while (cmpxchg(&pi_desc
->control
, old
.control
,
10754 new.control
) != old
.control
);
10759 static void vmx_post_block(struct kvm_vcpu
*vcpu
)
10761 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
10762 struct pi_desc old
, new;
10764 unsigned long flags
;
10766 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
10767 !irq_remapping_cap(IRQ_POSTING_CAP
))
10771 old
.control
= new.control
= pi_desc
->control
;
10773 dest
= cpu_physical_id(vcpu
->cpu
);
10775 if (x2apic_enabled())
10778 new.ndst
= (dest
<< 8) & 0xFF00;
10780 /* Allow posting non-urgent interrupts */
10783 /* set 'NV' to 'notification vector' */
10784 new.nv
= POSTED_INTR_VECTOR
;
10785 } while (cmpxchg(&pi_desc
->control
, old
.control
,
10786 new.control
) != old
.control
);
10788 if(vcpu
->pre_pcpu
!= -1) {
10790 &per_cpu(blocked_vcpu_on_cpu_lock
,
10791 vcpu
->pre_pcpu
), flags
);
10792 list_del(&vcpu
->blocked_vcpu_list
);
10793 spin_unlock_irqrestore(
10794 &per_cpu(blocked_vcpu_on_cpu_lock
,
10795 vcpu
->pre_pcpu
), flags
);
10796 vcpu
->pre_pcpu
= -1;
10801 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10804 * @host_irq: host irq of the interrupt
10805 * @guest_irq: gsi of the interrupt
10806 * @set: set or unset PI
10807 * returns 0 on success, < 0 on failure
10809 static int vmx_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
10810 uint32_t guest_irq
, bool set
)
10812 struct kvm_kernel_irq_routing_entry
*e
;
10813 struct kvm_irq_routing_table
*irq_rt
;
10814 struct kvm_lapic_irq irq
;
10815 struct kvm_vcpu
*vcpu
;
10816 struct vcpu_data vcpu_info
;
10817 int idx
, ret
= -EINVAL
;
10819 if (!kvm_arch_has_assigned_device(kvm
) ||
10820 !irq_remapping_cap(IRQ_POSTING_CAP
))
10823 idx
= srcu_read_lock(&kvm
->irq_srcu
);
10824 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
10825 BUG_ON(guest_irq
>= irq_rt
->nr_rt_entries
);
10827 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
10828 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
10831 * VT-d PI cannot support posting multicast/broadcast
10832 * interrupts to a vCPU, we still use interrupt remapping
10833 * for these kind of interrupts.
10835 * For lowest-priority interrupts, we only support
10836 * those with single CPU as the destination, e.g. user
10837 * configures the interrupts via /proc/irq or uses
10838 * irqbalance to make the interrupts single-CPU.
10840 * We will support full lowest-priority interrupt later.
10843 kvm_set_msi_irq(e
, &irq
);
10844 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
)) {
10846 * Make sure the IRTE is in remapped mode if
10847 * we don't handle it in posted mode.
10849 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
10852 "failed to back to remapped mode, irq: %u\n",
10860 vcpu_info
.pi_desc_addr
= __pa(vcpu_to_pi_desc(vcpu
));
10861 vcpu_info
.vector
= irq
.vector
;
10863 trace_kvm_pi_irte_update(vcpu
->vcpu_id
, host_irq
, e
->gsi
,
10864 vcpu_info
.vector
, vcpu_info
.pi_desc_addr
, set
);
10867 ret
= irq_set_vcpu_affinity(host_irq
, &vcpu_info
);
10869 /* suppress notification event before unposting */
10870 pi_set_sn(vcpu_to_pi_desc(vcpu
));
10871 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
10872 pi_clear_sn(vcpu_to_pi_desc(vcpu
));
10876 printk(KERN_INFO
"%s: failed to update PI IRTE\n",
10884 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
10888 static struct kvm_x86_ops vmx_x86_ops
= {
10889 .cpu_has_kvm_support
= cpu_has_kvm_support
,
10890 .disabled_by_bios
= vmx_disabled_by_bios
,
10891 .hardware_setup
= hardware_setup
,
10892 .hardware_unsetup
= hardware_unsetup
,
10893 .check_processor_compatibility
= vmx_check_processor_compat
,
10894 .hardware_enable
= hardware_enable
,
10895 .hardware_disable
= hardware_disable
,
10896 .cpu_has_accelerated_tpr
= report_flexpriority
,
10897 .cpu_has_high_real_mode_segbase
= vmx_has_high_real_mode_segbase
,
10899 .vcpu_create
= vmx_create_vcpu
,
10900 .vcpu_free
= vmx_free_vcpu
,
10901 .vcpu_reset
= vmx_vcpu_reset
,
10903 .prepare_guest_switch
= vmx_save_host_state
,
10904 .vcpu_load
= vmx_vcpu_load
,
10905 .vcpu_put
= vmx_vcpu_put
,
10907 .update_bp_intercept
= update_exception_bitmap
,
10908 .get_msr
= vmx_get_msr
,
10909 .set_msr
= vmx_set_msr
,
10910 .get_segment_base
= vmx_get_segment_base
,
10911 .get_segment
= vmx_get_segment
,
10912 .set_segment
= vmx_set_segment
,
10913 .get_cpl
= vmx_get_cpl
,
10914 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
10915 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
10916 .decache_cr3
= vmx_decache_cr3
,
10917 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
10918 .set_cr0
= vmx_set_cr0
,
10919 .set_cr3
= vmx_set_cr3
,
10920 .set_cr4
= vmx_set_cr4
,
10921 .set_efer
= vmx_set_efer
,
10922 .get_idt
= vmx_get_idt
,
10923 .set_idt
= vmx_set_idt
,
10924 .get_gdt
= vmx_get_gdt
,
10925 .set_gdt
= vmx_set_gdt
,
10926 .get_dr6
= vmx_get_dr6
,
10927 .set_dr6
= vmx_set_dr6
,
10928 .set_dr7
= vmx_set_dr7
,
10929 .sync_dirty_debug_regs
= vmx_sync_dirty_debug_regs
,
10930 .cache_reg
= vmx_cache_reg
,
10931 .get_rflags
= vmx_get_rflags
,
10932 .set_rflags
= vmx_set_rflags
,
10934 .get_pkru
= vmx_get_pkru
,
10936 .fpu_activate
= vmx_fpu_activate
,
10937 .fpu_deactivate
= vmx_fpu_deactivate
,
10939 .tlb_flush
= vmx_flush_tlb
,
10941 .run
= vmx_vcpu_run
,
10942 .handle_exit
= vmx_handle_exit
,
10943 .skip_emulated_instruction
= skip_emulated_instruction
,
10944 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
10945 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
10946 .patch_hypercall
= vmx_patch_hypercall
,
10947 .set_irq
= vmx_inject_irq
,
10948 .set_nmi
= vmx_inject_nmi
,
10949 .queue_exception
= vmx_queue_exception
,
10950 .cancel_injection
= vmx_cancel_injection
,
10951 .interrupt_allowed
= vmx_interrupt_allowed
,
10952 .nmi_allowed
= vmx_nmi_allowed
,
10953 .get_nmi_mask
= vmx_get_nmi_mask
,
10954 .set_nmi_mask
= vmx_set_nmi_mask
,
10955 .enable_nmi_window
= enable_nmi_window
,
10956 .enable_irq_window
= enable_irq_window
,
10957 .update_cr8_intercept
= update_cr8_intercept
,
10958 .set_virtual_x2apic_mode
= vmx_set_virtual_x2apic_mode
,
10959 .set_apic_access_page_addr
= vmx_set_apic_access_page_addr
,
10960 .get_enable_apicv
= vmx_get_enable_apicv
,
10961 .refresh_apicv_exec_ctrl
= vmx_refresh_apicv_exec_ctrl
,
10962 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
10963 .hwapic_irr_update
= vmx_hwapic_irr_update
,
10964 .hwapic_isr_update
= vmx_hwapic_isr_update
,
10965 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
10966 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
10968 .set_tss_addr
= vmx_set_tss_addr
,
10969 .get_tdp_level
= get_ept_level
,
10970 .get_mt_mask
= vmx_get_mt_mask
,
10972 .get_exit_info
= vmx_get_exit_info
,
10974 .get_lpage_level
= vmx_get_lpage_level
,
10976 .cpuid_update
= vmx_cpuid_update
,
10978 .rdtscp_supported
= vmx_rdtscp_supported
,
10979 .invpcid_supported
= vmx_invpcid_supported
,
10981 .set_supported_cpuid
= vmx_set_supported_cpuid
,
10983 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
10985 .read_tsc_offset
= vmx_read_tsc_offset
,
10986 .write_tsc_offset
= vmx_write_tsc_offset
,
10987 .adjust_tsc_offset_guest
= vmx_adjust_tsc_offset_guest
,
10988 .read_l1_tsc
= vmx_read_l1_tsc
,
10990 .set_tdp_cr3
= vmx_set_cr3
,
10992 .check_intercept
= vmx_check_intercept
,
10993 .handle_external_intr
= vmx_handle_external_intr
,
10994 .mpx_supported
= vmx_mpx_supported
,
10995 .xsaves_supported
= vmx_xsaves_supported
,
10997 .check_nested_events
= vmx_check_nested_events
,
10999 .sched_in
= vmx_sched_in
,
11001 .slot_enable_log_dirty
= vmx_slot_enable_log_dirty
,
11002 .slot_disable_log_dirty
= vmx_slot_disable_log_dirty
,
11003 .flush_log_dirty
= vmx_flush_log_dirty
,
11004 .enable_log_dirty_pt_masked
= vmx_enable_log_dirty_pt_masked
,
11006 .pre_block
= vmx_pre_block
,
11007 .post_block
= vmx_post_block
,
11009 .pmu_ops
= &intel_pmu_ops
,
11011 .update_pi_irte
= vmx_update_pi_irte
,
11014 static int __init
vmx_init(void)
11016 int r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
11017 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
11021 #ifdef CONFIG_KEXEC_CORE
11022 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
11023 crash_vmclear_local_loaded_vmcss
);
11029 static void __exit
vmx_exit(void)
11031 #ifdef CONFIG_KEXEC_CORE
11032 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss
, NULL
);
11039 module_init(vmx_init
)
11040 module_exit(vmx_exit
)