b0ae85f90f10acecc2898e7d19d06ddb6196db57
[deliverable/linux.git] / arch / x86 / mm / mpx.c
1 /*
2 * mpx.c - Memory Protection eXtensions
3 *
4 * Copyright (c) 2014, Intel Corporation.
5 * Qiaowei Ren <qiaowei.ren@intel.com>
6 * Dave Hansen <dave.hansen@intel.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/syscalls.h>
11 #include <linux/sched/sysctl.h>
12
13 #include <asm/insn.h>
14 #include <asm/mman.h>
15 #include <asm/mmu_context.h>
16 #include <asm/mpx.h>
17 #include <asm/processor.h>
18 #include <asm/fpu/internal.h>
19
20 #define CREATE_TRACE_POINTS
21 #include <asm/trace/mpx.h>
22
23 static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
24 {
25 if (is_64bit_mm(mm))
26 return MPX_BD_SIZE_BYTES_64;
27 else
28 return MPX_BD_SIZE_BYTES_32;
29 }
30
31 static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
32 {
33 if (is_64bit_mm(mm))
34 return MPX_BT_SIZE_BYTES_64;
35 else
36 return MPX_BT_SIZE_BYTES_32;
37 }
38
39 /*
40 * This is really a simplified "vm_mmap". it only handles MPX
41 * bounds tables (the bounds directory is user-allocated).
42 */
43 static unsigned long mpx_mmap(unsigned long len)
44 {
45 struct mm_struct *mm = current->mm;
46 unsigned long addr, populate;
47
48 /* Only bounds table can be allocated here */
49 if (len != mpx_bt_size_bytes(mm))
50 return -EINVAL;
51
52 down_write(&mm->mmap_sem);
53 addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
54 MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate);
55 up_write(&mm->mmap_sem);
56 if (populate)
57 mm_populate(addr, populate);
58
59 return addr;
60 }
61
62 enum reg_type {
63 REG_TYPE_RM = 0,
64 REG_TYPE_INDEX,
65 REG_TYPE_BASE,
66 };
67
68 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
69 enum reg_type type)
70 {
71 int regno = 0;
72
73 static const int regoff[] = {
74 offsetof(struct pt_regs, ax),
75 offsetof(struct pt_regs, cx),
76 offsetof(struct pt_regs, dx),
77 offsetof(struct pt_regs, bx),
78 offsetof(struct pt_regs, sp),
79 offsetof(struct pt_regs, bp),
80 offsetof(struct pt_regs, si),
81 offsetof(struct pt_regs, di),
82 #ifdef CONFIG_X86_64
83 offsetof(struct pt_regs, r8),
84 offsetof(struct pt_regs, r9),
85 offsetof(struct pt_regs, r10),
86 offsetof(struct pt_regs, r11),
87 offsetof(struct pt_regs, r12),
88 offsetof(struct pt_regs, r13),
89 offsetof(struct pt_regs, r14),
90 offsetof(struct pt_regs, r15),
91 #endif
92 };
93 int nr_registers = ARRAY_SIZE(regoff);
94 /*
95 * Don't possibly decode a 32-bit instructions as
96 * reading a 64-bit-only register.
97 */
98 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
99 nr_registers -= 8;
100
101 switch (type) {
102 case REG_TYPE_RM:
103 regno = X86_MODRM_RM(insn->modrm.value);
104 if (X86_REX_B(insn->rex_prefix.value) == 1)
105 regno += 8;
106 break;
107
108 case REG_TYPE_INDEX:
109 regno = X86_SIB_INDEX(insn->sib.value);
110 if (X86_REX_X(insn->rex_prefix.value) == 1)
111 regno += 8;
112 break;
113
114 case REG_TYPE_BASE:
115 regno = X86_SIB_BASE(insn->sib.value);
116 if (X86_REX_B(insn->rex_prefix.value) == 1)
117 regno += 8;
118 break;
119
120 default:
121 pr_err("invalid register type");
122 BUG();
123 break;
124 }
125
126 if (regno > nr_registers) {
127 WARN_ONCE(1, "decoded an instruction with an invalid register");
128 return -EINVAL;
129 }
130 return regoff[regno];
131 }
132
133 /*
134 * return the address being referenced be instruction
135 * for rm=3 returning the content of the rm reg
136 * for rm!=3 calculates the address using SIB and Disp
137 */
138 static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
139 {
140 unsigned long addr, base, indx;
141 int addr_offset, base_offset, indx_offset;
142 insn_byte_t sib;
143
144 insn_get_modrm(insn);
145 insn_get_sib(insn);
146 sib = insn->sib.value;
147
148 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
149 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
150 if (addr_offset < 0)
151 goto out_err;
152 addr = regs_get_register(regs, addr_offset);
153 } else {
154 if (insn->sib.nbytes) {
155 base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
156 if (base_offset < 0)
157 goto out_err;
158
159 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
160 if (indx_offset < 0)
161 goto out_err;
162
163 base = regs_get_register(regs, base_offset);
164 indx = regs_get_register(regs, indx_offset);
165 addr = base + indx * (1 << X86_SIB_SCALE(sib));
166 } else {
167 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
168 if (addr_offset < 0)
169 goto out_err;
170 addr = regs_get_register(regs, addr_offset);
171 }
172 addr += insn->displacement.value;
173 }
174 return (void __user *)addr;
175 out_err:
176 return (void __user *)-1;
177 }
178
179 static int mpx_insn_decode(struct insn *insn,
180 struct pt_regs *regs)
181 {
182 unsigned char buf[MAX_INSN_SIZE];
183 int x86_64 = !test_thread_flag(TIF_IA32);
184 int not_copied;
185 int nr_copied;
186
187 not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
188 nr_copied = sizeof(buf) - not_copied;
189 /*
190 * The decoder _should_ fail nicely if we pass it a short buffer.
191 * But, let's not depend on that implementation detail. If we
192 * did not get anything, just error out now.
193 */
194 if (!nr_copied)
195 return -EFAULT;
196 insn_init(insn, buf, nr_copied, x86_64);
197 insn_get_length(insn);
198 /*
199 * copy_from_user() tries to get as many bytes as we could see in
200 * the largest possible instruction. If the instruction we are
201 * after is shorter than that _and_ we attempt to copy from
202 * something unreadable, we might get a short read. This is OK
203 * as long as the read did not stop in the middle of the
204 * instruction. Check to see if we got a partial instruction.
205 */
206 if (nr_copied < insn->length)
207 return -EFAULT;
208
209 insn_get_opcode(insn);
210 /*
211 * We only _really_ need to decode bndcl/bndcn/bndcu
212 * Error out on anything else.
213 */
214 if (insn->opcode.bytes[0] != 0x0f)
215 goto bad_opcode;
216 if ((insn->opcode.bytes[1] != 0x1a) &&
217 (insn->opcode.bytes[1] != 0x1b))
218 goto bad_opcode;
219
220 return 0;
221 bad_opcode:
222 return -EINVAL;
223 }
224
225 /*
226 * If a bounds overflow occurs then a #BR is generated. This
227 * function decodes MPX instructions to get violation address
228 * and set this address into extended struct siginfo.
229 *
230 * Note that this is not a super precise way of doing this.
231 * Userspace could have, by the time we get here, written
232 * anything it wants in to the instructions. We can not
233 * trust anything about it. They might not be valid
234 * instructions or might encode invalid registers, etc...
235 *
236 * The caller is expected to kfree() the returned siginfo_t.
237 */
238 siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
239 {
240 const struct mpx_bndreg_state *bndregs;
241 const struct mpx_bndreg *bndreg;
242 siginfo_t *info = NULL;
243 struct insn insn;
244 uint8_t bndregno;
245 int err;
246
247 err = mpx_insn_decode(&insn, regs);
248 if (err)
249 goto err_out;
250
251 /*
252 * We know at this point that we are only dealing with
253 * MPX instructions.
254 */
255 insn_get_modrm(&insn);
256 bndregno = X86_MODRM_REG(insn.modrm.value);
257 if (bndregno > 3) {
258 err = -EINVAL;
259 goto err_out;
260 }
261 /* get bndregs field from current task's xsave area */
262 bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
263 if (!bndregs) {
264 err = -EINVAL;
265 goto err_out;
266 }
267 /* now go select the individual register in the set of 4 */
268 bndreg = &bndregs->bndreg[bndregno];
269
270 info = kzalloc(sizeof(*info), GFP_KERNEL);
271 if (!info) {
272 err = -ENOMEM;
273 goto err_out;
274 }
275 /*
276 * The registers are always 64-bit, but the upper 32
277 * bits are ignored in 32-bit mode. Also, note that the
278 * upper bounds are architecturally represented in 1's
279 * complement form.
280 *
281 * The 'unsigned long' cast is because the compiler
282 * complains when casting from integers to different-size
283 * pointers.
284 */
285 info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
286 info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
287 info->si_addr_lsb = 0;
288 info->si_signo = SIGSEGV;
289 info->si_errno = 0;
290 info->si_code = SEGV_BNDERR;
291 info->si_addr = mpx_get_addr_ref(&insn, regs);
292 /*
293 * We were not able to extract an address from the instruction,
294 * probably because there was something invalid in it.
295 */
296 if (info->si_addr == (void *)-1) {
297 err = -EINVAL;
298 goto err_out;
299 }
300 trace_mpx_bounds_register_exception(info->si_addr, bndreg);
301 return info;
302 err_out:
303 /* info might be NULL, but kfree() handles that */
304 kfree(info);
305 return ERR_PTR(err);
306 }
307
308 static __user void *mpx_get_bounds_dir(void)
309 {
310 const struct mpx_bndcsr *bndcsr;
311
312 if (!cpu_feature_enabled(X86_FEATURE_MPX))
313 return MPX_INVALID_BOUNDS_DIR;
314
315 /*
316 * The bounds directory pointer is stored in a register
317 * only accessible if we first do an xsave.
318 */
319 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
320 if (!bndcsr)
321 return MPX_INVALID_BOUNDS_DIR;
322
323 /*
324 * Make sure the register looks valid by checking the
325 * enable bit.
326 */
327 if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
328 return MPX_INVALID_BOUNDS_DIR;
329
330 /*
331 * Lastly, mask off the low bits used for configuration
332 * flags, and return the address of the bounds table.
333 */
334 return (void __user *)(unsigned long)
335 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
336 }
337
338 int mpx_enable_management(void)
339 {
340 void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
341 struct mm_struct *mm = current->mm;
342 int ret = 0;
343
344 /*
345 * runtime in the userspace will be responsible for allocation of
346 * the bounds directory. Then, it will save the base of the bounds
347 * directory into XSAVE/XRSTOR Save Area and enable MPX through
348 * XRSTOR instruction.
349 *
350 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
351 * expected to be relatively expensive. Storing the bounds
352 * directory here means that we do not have to do xsave in the
353 * unmap path; we can just use mm->bd_addr instead.
354 */
355 bd_base = mpx_get_bounds_dir();
356 down_write(&mm->mmap_sem);
357 mm->bd_addr = bd_base;
358 if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
359 ret = -ENXIO;
360
361 up_write(&mm->mmap_sem);
362 return ret;
363 }
364
365 int mpx_disable_management(void)
366 {
367 struct mm_struct *mm = current->mm;
368
369 if (!cpu_feature_enabled(X86_FEATURE_MPX))
370 return -ENXIO;
371
372 down_write(&mm->mmap_sem);
373 mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
374 up_write(&mm->mmap_sem);
375 return 0;
376 }
377
378 static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
379 unsigned long *curval,
380 unsigned long __user *addr,
381 unsigned long old_val, unsigned long new_val)
382 {
383 int ret;
384 /*
385 * user_atomic_cmpxchg_inatomic() actually uses sizeof()
386 * the pointer that we pass to it to figure out how much
387 * data to cmpxchg. We have to be careful here not to
388 * pass a pointer to a 64-bit data type when we only want
389 * a 32-bit copy.
390 */
391 if (is_64bit_mm(mm)) {
392 ret = user_atomic_cmpxchg_inatomic(curval,
393 addr, old_val, new_val);
394 } else {
395 u32 uninitialized_var(curval_32);
396 u32 old_val_32 = old_val;
397 u32 new_val_32 = new_val;
398 u32 __user *addr_32 = (u32 __user *)addr;
399
400 ret = user_atomic_cmpxchg_inatomic(&curval_32,
401 addr_32, old_val_32, new_val_32);
402 *curval = curval_32;
403 }
404 return ret;
405 }
406
407 /*
408 * With 32-bit mode, a bounds directory is 4MB, and the size of each
409 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
410 * and the size of each bounds table is 4MB.
411 */
412 static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
413 {
414 unsigned long expected_old_val = 0;
415 unsigned long actual_old_val = 0;
416 unsigned long bt_addr;
417 unsigned long bd_new_entry;
418 int ret = 0;
419
420 /*
421 * Carve the virtual space out of userspace for the new
422 * bounds table:
423 */
424 bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
425 if (IS_ERR((void *)bt_addr))
426 return PTR_ERR((void *)bt_addr);
427 /*
428 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
429 */
430 bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
431
432 /*
433 * Go poke the address of the new bounds table in to the
434 * bounds directory entry out in userspace memory. Note:
435 * we may race with another CPU instantiating the same table.
436 * In that case the cmpxchg will see an unexpected
437 * 'actual_old_val'.
438 *
439 * This can fault, but that's OK because we do not hold
440 * mmap_sem at this point, unlike some of the other part
441 * of the MPX code that have to pagefault_disable().
442 */
443 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
444 expected_old_val, bd_new_entry);
445 if (ret)
446 goto out_unmap;
447
448 /*
449 * The user_atomic_cmpxchg_inatomic() will only return nonzero
450 * for faults, *not* if the cmpxchg itself fails. Now we must
451 * verify that the cmpxchg itself completed successfully.
452 */
453 /*
454 * We expected an empty 'expected_old_val', but instead found
455 * an apparently valid entry. Assume we raced with another
456 * thread to instantiate this table and desclare succecss.
457 */
458 if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
459 ret = 0;
460 goto out_unmap;
461 }
462 /*
463 * We found a non-empty bd_entry but it did not have the
464 * VALID_FLAG set. Return an error which will result in
465 * a SEGV since this probably means that somebody scribbled
466 * some invalid data in to a bounds table.
467 */
468 if (expected_old_val != actual_old_val) {
469 ret = -EINVAL;
470 goto out_unmap;
471 }
472 trace_mpx_new_bounds_table(bt_addr);
473 return 0;
474 out_unmap:
475 vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
476 return ret;
477 }
478
479 /*
480 * When a BNDSTX instruction attempts to save bounds to a bounds
481 * table, it will first attempt to look up the table in the
482 * first-level bounds directory. If it does not find a table in
483 * the directory, a #BR is generated and we get here in order to
484 * allocate a new table.
485 *
486 * With 32-bit mode, the size of BD is 4MB, and the size of each
487 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
488 * and the size of each bound table is 4MB.
489 */
490 static int do_mpx_bt_fault(void)
491 {
492 unsigned long bd_entry, bd_base;
493 const struct mpx_bndcsr *bndcsr;
494 struct mm_struct *mm = current->mm;
495
496 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
497 if (!bndcsr)
498 return -EINVAL;
499 /*
500 * Mask off the preserve and enable bits
501 */
502 bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
503 /*
504 * The hardware provides the address of the missing or invalid
505 * entry via BNDSTATUS, so we don't have to go look it up.
506 */
507 bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
508 /*
509 * Make sure the directory entry is within where we think
510 * the directory is.
511 */
512 if ((bd_entry < bd_base) ||
513 (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
514 return -EINVAL;
515
516 return allocate_bt(mm, (long __user *)bd_entry);
517 }
518
519 int mpx_handle_bd_fault(void)
520 {
521 /*
522 * Userspace never asked us to manage the bounds tables,
523 * so refuse to help.
524 */
525 if (!kernel_managing_mpx_tables(current->mm))
526 return -EINVAL;
527
528 if (do_mpx_bt_fault()) {
529 force_sig(SIGSEGV, current);
530 /*
531 * The force_sig() is essentially "handling" this
532 * exception, so we do not pass up the error
533 * from do_mpx_bt_fault().
534 */
535 }
536 return 0;
537 }
538
539 /*
540 * A thin wrapper around get_user_pages(). Returns 0 if the
541 * fault was resolved or -errno if not.
542 */
543 static int mpx_resolve_fault(long __user *addr, int write)
544 {
545 long gup_ret;
546 int nr_pages = 1;
547 int force = 0;
548
549 gup_ret = get_user_pages(current, current->mm, (unsigned long)addr,
550 nr_pages, write, force, NULL, NULL);
551 /*
552 * get_user_pages() returns number of pages gotten.
553 * 0 means we failed to fault in and get anything,
554 * probably because 'addr' is bad.
555 */
556 if (!gup_ret)
557 return -EFAULT;
558 /* Other error, return it */
559 if (gup_ret < 0)
560 return gup_ret;
561 /* must have gup'd a page and gup_ret>0, success */
562 return 0;
563 }
564
565 static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
566 unsigned long bd_entry)
567 {
568 unsigned long bt_addr = bd_entry;
569 int align_to_bytes;
570 /*
571 * Bit 0 in a bt_entry is always the valid bit.
572 */
573 bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
574 /*
575 * Tables are naturally aligned at 8-byte boundaries
576 * on 64-bit and 4-byte boundaries on 32-bit. The
577 * documentation makes it appear that the low bits
578 * are ignored by the hardware, so we do the same.
579 */
580 if (is_64bit_mm(mm))
581 align_to_bytes = 8;
582 else
583 align_to_bytes = 4;
584 bt_addr &= ~(align_to_bytes-1);
585 return bt_addr;
586 }
587
588 /*
589 * Get the base of bounds tables pointed by specific bounds
590 * directory entry.
591 */
592 static int get_bt_addr(struct mm_struct *mm,
593 long __user *bd_entry_ptr,
594 unsigned long *bt_addr_result)
595 {
596 int ret;
597 int valid_bit;
598 unsigned long bd_entry;
599 unsigned long bt_addr;
600
601 if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
602 return -EFAULT;
603
604 while (1) {
605 int need_write = 0;
606
607 pagefault_disable();
608 ret = get_user(bd_entry, bd_entry_ptr);
609 pagefault_enable();
610 if (!ret)
611 break;
612 if (ret == -EFAULT)
613 ret = mpx_resolve_fault(bd_entry_ptr, need_write);
614 /*
615 * If we could not resolve the fault, consider it
616 * userspace's fault and error out.
617 */
618 if (ret)
619 return ret;
620 }
621
622 valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
623 bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
624
625 /*
626 * When the kernel is managing bounds tables, a bounds directory
627 * entry will either have a valid address (plus the valid bit)
628 * *OR* be completely empty. If we see a !valid entry *and* some
629 * data in the address field, we know something is wrong. This
630 * -EINVAL return will cause a SIGSEGV.
631 */
632 if (!valid_bit && bt_addr)
633 return -EINVAL;
634 /*
635 * Do we have an completely zeroed bt entry? That is OK. It
636 * just means there was no bounds table for this memory. Make
637 * sure to distinguish this from -EINVAL, which will cause
638 * a SEGV.
639 */
640 if (!valid_bit)
641 return -ENOENT;
642
643 *bt_addr_result = bt_addr;
644 return 0;
645 }
646
647 static inline int bt_entry_size_bytes(struct mm_struct *mm)
648 {
649 if (is_64bit_mm(mm))
650 return MPX_BT_ENTRY_BYTES_64;
651 else
652 return MPX_BT_ENTRY_BYTES_32;
653 }
654
655 /*
656 * Take a virtual address and turns it in to the offset in bytes
657 * inside of the bounds table where the bounds table entry
658 * controlling 'addr' can be found.
659 */
660 static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
661 unsigned long addr)
662 {
663 unsigned long bt_table_nr_entries;
664 unsigned long offset = addr;
665
666 if (is_64bit_mm(mm)) {
667 /* Bottom 3 bits are ignored on 64-bit */
668 offset >>= 3;
669 bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
670 } else {
671 /* Bottom 2 bits are ignored on 32-bit */
672 offset >>= 2;
673 bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
674 }
675 /*
676 * We know the size of the table in to which we are
677 * indexing, and we have eliminated all the low bits
678 * which are ignored for indexing.
679 *
680 * Mask out all the high bits which we do not need
681 * to index in to the table. Note that the tables
682 * are always powers of two so this gives us a proper
683 * mask.
684 */
685 offset &= (bt_table_nr_entries-1);
686 /*
687 * We now have an entry offset in terms of *entries* in
688 * the table. We need to scale it back up to bytes.
689 */
690 offset *= bt_entry_size_bytes(mm);
691 return offset;
692 }
693
694 /*
695 * How much virtual address space does a single bounds
696 * directory entry cover?
697 *
698 * Note, we need a long long because 4GB doesn't fit in
699 * to a long on 32-bit.
700 */
701 static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
702 {
703 unsigned long long virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
704 if (is_64bit_mm(mm))
705 return virt_space / MPX_BD_NR_ENTRIES_64;
706 else
707 return virt_space / MPX_BD_NR_ENTRIES_32;
708 }
709
710 /*
711 * Free the backing physical pages of bounds table 'bt_addr'.
712 * Assume start...end is within that bounds table.
713 */
714 static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
715 unsigned long bt_addr,
716 unsigned long start_mapping, unsigned long end_mapping)
717 {
718 struct vm_area_struct *vma;
719 unsigned long addr, len;
720 unsigned long start;
721 unsigned long end;
722
723 /*
724 * if we 'end' on a boundary, the offset will be 0 which
725 * is not what we want. Back it up a byte to get the
726 * last bt entry. Then once we have the entry itself,
727 * move 'end' back up by the table entry size.
728 */
729 start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
730 end = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
731 /*
732 * Move end back up by one entry. Among other things
733 * this ensures that it remains page-aligned and does
734 * not screw up zap_page_range()
735 */
736 end += bt_entry_size_bytes(mm);
737
738 /*
739 * Find the first overlapping vma. If vma->vm_start > start, there
740 * will be a hole in the bounds table. This -EINVAL return will
741 * cause a SIGSEGV.
742 */
743 vma = find_vma(mm, start);
744 if (!vma || vma->vm_start > start)
745 return -EINVAL;
746
747 /*
748 * A NUMA policy on a VM_MPX VMA could cause this bounds table to
749 * be split. So we need to look across the entire 'start -> end'
750 * range of this bounds table, find all of the VM_MPX VMAs, and
751 * zap only those.
752 */
753 addr = start;
754 while (vma && vma->vm_start < end) {
755 /*
756 * We followed a bounds directory entry down
757 * here. If we find a non-MPX VMA, that's bad,
758 * so stop immediately and return an error. This
759 * probably results in a SIGSEGV.
760 */
761 if (!(vma->vm_flags & VM_MPX))
762 return -EINVAL;
763
764 len = min(vma->vm_end, end) - addr;
765 zap_page_range(vma, addr, len, NULL);
766 trace_mpx_unmap_zap(addr, addr+len);
767
768 vma = vma->vm_next;
769 addr = vma->vm_start;
770 }
771 return 0;
772 }
773
774 static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
775 unsigned long addr)
776 {
777 /*
778 * There are several ways to derive the bd offsets. We
779 * use the following approach here:
780 * 1. We know the size of the virtual address space
781 * 2. We know the number of entries in a bounds table
782 * 3. We know that each entry covers a fixed amount of
783 * virtual address space.
784 * So, we can just divide the virtual address by the
785 * virtual space used by one entry to determine which
786 * entry "controls" the given virtual address.
787 */
788 if (is_64bit_mm(mm)) {
789 int bd_entry_size = 8; /* 64-bit pointer */
790 /*
791 * Take the 64-bit addressing hole in to account.
792 */
793 addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
794 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
795 } else {
796 int bd_entry_size = 4; /* 32-bit pointer */
797 /*
798 * 32-bit has no hole so this case needs no mask
799 */
800 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
801 }
802 /*
803 * The two return calls above are exact copies. If we
804 * pull out a single copy and put it in here, gcc won't
805 * realize that we're doing a power-of-2 divide and use
806 * shifts. It uses a real divide. If we put them up
807 * there, it manages to figure it out (gcc 4.8.3).
808 */
809 }
810
811 static int unmap_entire_bt(struct mm_struct *mm,
812 long __user *bd_entry, unsigned long bt_addr)
813 {
814 unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
815 unsigned long uninitialized_var(actual_old_val);
816 int ret;
817
818 while (1) {
819 int need_write = 1;
820 unsigned long cleared_bd_entry = 0;
821
822 pagefault_disable();
823 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
824 bd_entry, expected_old_val, cleared_bd_entry);
825 pagefault_enable();
826 if (!ret)
827 break;
828 if (ret == -EFAULT)
829 ret = mpx_resolve_fault(bd_entry, need_write);
830 /*
831 * If we could not resolve the fault, consider it
832 * userspace's fault and error out.
833 */
834 if (ret)
835 return ret;
836 }
837 /*
838 * The cmpxchg was performed, check the results.
839 */
840 if (actual_old_val != expected_old_val) {
841 /*
842 * Someone else raced with us to unmap the table.
843 * That is OK, since we were both trying to do
844 * the same thing. Declare success.
845 */
846 if (!actual_old_val)
847 return 0;
848 /*
849 * Something messed with the bounds directory
850 * entry. We hold mmap_sem for read or write
851 * here, so it could not be a _new_ bounds table
852 * that someone just allocated. Something is
853 * wrong, so pass up the error and SIGSEGV.
854 */
855 return -EINVAL;
856 }
857 /*
858 * Note, we are likely being called under do_munmap() already. To
859 * avoid recursion, do_munmap() will check whether it comes
860 * from one bounds table through VM_MPX flag.
861 */
862 return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm));
863 }
864
865 static int try_unmap_single_bt(struct mm_struct *mm,
866 unsigned long start, unsigned long end)
867 {
868 struct vm_area_struct *next;
869 struct vm_area_struct *prev;
870 /*
871 * "bta" == Bounds Table Area: the area controlled by the
872 * bounds table that we are unmapping.
873 */
874 unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
875 unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
876 unsigned long uninitialized_var(bt_addr);
877 void __user *bde_vaddr;
878 int ret;
879 /*
880 * We already unlinked the VMAs from the mm's rbtree so 'start'
881 * is guaranteed to be in a hole. This gets us the first VMA
882 * before the hole in to 'prev' and the next VMA after the hole
883 * in to 'next'.
884 */
885 next = find_vma_prev(mm, start, &prev);
886 /*
887 * Do not count other MPX bounds table VMAs as neighbors.
888 * Although theoretically possible, we do not allow bounds
889 * tables for bounds tables so our heads do not explode.
890 * If we count them as neighbors here, we may end up with
891 * lots of tables even though we have no actual table
892 * entries in use.
893 */
894 while (next && (next->vm_flags & VM_MPX))
895 next = next->vm_next;
896 while (prev && (prev->vm_flags & VM_MPX))
897 prev = prev->vm_prev;
898 /*
899 * We know 'start' and 'end' lie within an area controlled
900 * by a single bounds table. See if there are any other
901 * VMAs controlled by that bounds table. If there are not
902 * then we can "expand" the are we are unmapping to possibly
903 * cover the entire table.
904 */
905 next = find_vma_prev(mm, start, &prev);
906 if ((!prev || prev->vm_end <= bta_start_vaddr) &&
907 (!next || next->vm_start >= bta_end_vaddr)) {
908 /*
909 * No neighbor VMAs controlled by same bounds
910 * table. Try to unmap the whole thing
911 */
912 start = bta_start_vaddr;
913 end = bta_end_vaddr;
914 }
915
916 bde_vaddr = mm->bd_addr + mpx_get_bd_entry_offset(mm, start);
917 ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
918 /*
919 * No bounds table there, so nothing to unmap.
920 */
921 if (ret == -ENOENT) {
922 ret = 0;
923 return 0;
924 }
925 if (ret)
926 return ret;
927 /*
928 * We are unmapping an entire table. Either because the
929 * unmap that started this whole process was large enough
930 * to cover an entire table, or that the unmap was small
931 * but was the area covered by a bounds table.
932 */
933 if ((start == bta_start_vaddr) &&
934 (end == bta_end_vaddr))
935 return unmap_entire_bt(mm, bde_vaddr, bt_addr);
936 return zap_bt_entries_mapping(mm, bt_addr, start, end);
937 }
938
939 static int mpx_unmap_tables(struct mm_struct *mm,
940 unsigned long start, unsigned long end)
941 {
942 unsigned long one_unmap_start;
943 trace_mpx_unmap_search(start, end);
944
945 one_unmap_start = start;
946 while (one_unmap_start < end) {
947 int ret;
948 unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
949 bd_entry_virt_space(mm));
950 unsigned long one_unmap_end = end;
951 /*
952 * if the end is beyond the current bounds table,
953 * move it back so we only deal with a single one
954 * at a time
955 */
956 if (one_unmap_end > next_unmap_start)
957 one_unmap_end = next_unmap_start;
958 ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
959 if (ret)
960 return ret;
961
962 one_unmap_start = next_unmap_start;
963 }
964 return 0;
965 }
966
967 /*
968 * Free unused bounds tables covered in a virtual address region being
969 * munmap()ed. Assume end > start.
970 *
971 * This function will be called by do_munmap(), and the VMAs covering
972 * the virtual address region start...end have already been split if
973 * necessary, and the 'vma' is the first vma in this range (start -> end).
974 */
975 void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
976 unsigned long start, unsigned long end)
977 {
978 int ret;
979
980 /*
981 * Refuse to do anything unless userspace has asked
982 * the kernel to help manage the bounds tables,
983 */
984 if (!kernel_managing_mpx_tables(current->mm))
985 return;
986 /*
987 * This will look across the entire 'start -> end' range,
988 * and find all of the non-VM_MPX VMAs.
989 *
990 * To avoid recursion, if a VM_MPX vma is found in the range
991 * (start->end), we will not continue follow-up work. This
992 * recursion represents having bounds tables for bounds tables,
993 * which should not occur normally. Being strict about it here
994 * helps ensure that we do not have an exploitable stack overflow.
995 */
996 do {
997 if (vma->vm_flags & VM_MPX)
998 return;
999 vma = vma->vm_next;
1000 } while (vma && vma->vm_start < end);
1001
1002 ret = mpx_unmap_tables(mm, start, end);
1003 if (ret)
1004 force_sig(SIGSEGV, current);
1005 }
This page took 0.057475 seconds and 4 git commands to generate.