selinux: fix overflow and 0 length allocations
[deliverable/linux.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/pfn_t.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/x86_init.h>
24 #include <asm/pgtable.h>
25 #include <asm/fcntl.h>
26 #include <asm/e820.h>
27 #include <asm/mtrr.h>
28 #include <asm/page.h>
29 #include <asm/msr.h>
30 #include <asm/pat.h>
31 #include <asm/io.h>
32
33 #include "pat_internal.h"
34 #include "mm_internal.h"
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "" fmt
38
39 static bool boot_cpu_done;
40
41 static int __read_mostly __pat_enabled = IS_ENABLED(CONFIG_X86_PAT);
42 static void init_cache_modes(void);
43
44 void pat_disable(const char *reason)
45 {
46 if (!__pat_enabled)
47 return;
48
49 if (boot_cpu_done) {
50 WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
51 return;
52 }
53
54 __pat_enabled = 0;
55 pr_info("x86/PAT: %s\n", reason);
56
57 init_cache_modes();
58 }
59
60 static int __init nopat(char *str)
61 {
62 pat_disable("PAT support disabled.");
63 return 0;
64 }
65 early_param("nopat", nopat);
66
67 bool pat_enabled(void)
68 {
69 return !!__pat_enabled;
70 }
71 EXPORT_SYMBOL_GPL(pat_enabled);
72
73 int pat_debug_enable;
74
75 static int __init pat_debug_setup(char *str)
76 {
77 pat_debug_enable = 1;
78 return 0;
79 }
80 __setup("debugpat", pat_debug_setup);
81
82 #ifdef CONFIG_X86_PAT
83 /*
84 * X86 PAT uses page flags arch_1 and uncached together to keep track of
85 * memory type of pages that have backing page struct.
86 *
87 * X86 PAT supports 4 different memory types:
88 * - _PAGE_CACHE_MODE_WB
89 * - _PAGE_CACHE_MODE_WC
90 * - _PAGE_CACHE_MODE_UC_MINUS
91 * - _PAGE_CACHE_MODE_WT
92 *
93 * _PAGE_CACHE_MODE_WB is the default type.
94 */
95
96 #define _PGMT_WB 0
97 #define _PGMT_WC (1UL << PG_arch_1)
98 #define _PGMT_UC_MINUS (1UL << PG_uncached)
99 #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
100 #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
101 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
102
103 static inline enum page_cache_mode get_page_memtype(struct page *pg)
104 {
105 unsigned long pg_flags = pg->flags & _PGMT_MASK;
106
107 if (pg_flags == _PGMT_WB)
108 return _PAGE_CACHE_MODE_WB;
109 else if (pg_flags == _PGMT_WC)
110 return _PAGE_CACHE_MODE_WC;
111 else if (pg_flags == _PGMT_UC_MINUS)
112 return _PAGE_CACHE_MODE_UC_MINUS;
113 else
114 return _PAGE_CACHE_MODE_WT;
115 }
116
117 static inline void set_page_memtype(struct page *pg,
118 enum page_cache_mode memtype)
119 {
120 unsigned long memtype_flags;
121 unsigned long old_flags;
122 unsigned long new_flags;
123
124 switch (memtype) {
125 case _PAGE_CACHE_MODE_WC:
126 memtype_flags = _PGMT_WC;
127 break;
128 case _PAGE_CACHE_MODE_UC_MINUS:
129 memtype_flags = _PGMT_UC_MINUS;
130 break;
131 case _PAGE_CACHE_MODE_WT:
132 memtype_flags = _PGMT_WT;
133 break;
134 case _PAGE_CACHE_MODE_WB:
135 default:
136 memtype_flags = _PGMT_WB;
137 break;
138 }
139
140 do {
141 old_flags = pg->flags;
142 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
143 } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
144 }
145 #else
146 static inline enum page_cache_mode get_page_memtype(struct page *pg)
147 {
148 return -1;
149 }
150 static inline void set_page_memtype(struct page *pg,
151 enum page_cache_mode memtype)
152 {
153 }
154 #endif
155
156 enum {
157 PAT_UC = 0, /* uncached */
158 PAT_WC = 1, /* Write combining */
159 PAT_WT = 4, /* Write Through */
160 PAT_WP = 5, /* Write Protected */
161 PAT_WB = 6, /* Write Back (default) */
162 PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */
163 };
164
165 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
166
167 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
168 {
169 enum page_cache_mode cache;
170 char *cache_mode;
171
172 switch (pat_val) {
173 case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
174 case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
175 case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
176 case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
177 case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
178 case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
179 default: cache = CM(WB); cache_mode = "WB "; break;
180 }
181
182 memcpy(msg, cache_mode, 4);
183
184 return cache;
185 }
186
187 #undef CM
188
189 /*
190 * Update the cache mode to pgprot translation tables according to PAT
191 * configuration.
192 * Using lower indices is preferred, so we start with highest index.
193 */
194 static void __init_cache_modes(u64 pat)
195 {
196 enum page_cache_mode cache;
197 char pat_msg[33];
198 int i;
199
200 pat_msg[32] = 0;
201 for (i = 7; i >= 0; i--) {
202 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
203 pat_msg + 4 * i);
204 update_cache_mode_entry(i, cache);
205 }
206 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
207 }
208
209 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
210
211 static void pat_bsp_init(u64 pat)
212 {
213 u64 tmp_pat;
214
215 if (!boot_cpu_has(X86_FEATURE_PAT)) {
216 pat_disable("PAT not supported by CPU.");
217 return;
218 }
219
220 rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
221 if (!tmp_pat) {
222 pat_disable("PAT MSR is 0, disabled.");
223 return;
224 }
225
226 wrmsrl(MSR_IA32_CR_PAT, pat);
227
228 __init_cache_modes(pat);
229 }
230
231 static void pat_ap_init(u64 pat)
232 {
233 if (!boot_cpu_has(X86_FEATURE_PAT)) {
234 /*
235 * If this happens we are on a secondary CPU, but switched to
236 * PAT on the boot CPU. We have no way to undo PAT.
237 */
238 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
239 }
240
241 wrmsrl(MSR_IA32_CR_PAT, pat);
242 }
243
244 static void init_cache_modes(void)
245 {
246 u64 pat = 0;
247 static int init_cm_done;
248
249 if (init_cm_done)
250 return;
251
252 if (boot_cpu_has(X86_FEATURE_PAT)) {
253 /*
254 * CPU supports PAT. Set PAT table to be consistent with
255 * PAT MSR. This case supports "nopat" boot option, and
256 * virtual machine environments which support PAT without
257 * MTRRs. In specific, Xen has unique setup to PAT MSR.
258 *
259 * If PAT MSR returns 0, it is considered invalid and emulates
260 * as No PAT.
261 */
262 rdmsrl(MSR_IA32_CR_PAT, pat);
263 }
264
265 if (!pat) {
266 /*
267 * No PAT. Emulate the PAT table that corresponds to the two
268 * cache bits, PWT (Write Through) and PCD (Cache Disable).
269 * This setup is also the same as the BIOS default setup.
270 *
271 * PTE encoding:
272 *
273 * PCD
274 * |PWT PAT
275 * || slot
276 * 00 0 WB : _PAGE_CACHE_MODE_WB
277 * 01 1 WT : _PAGE_CACHE_MODE_WT
278 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
279 * 11 3 UC : _PAGE_CACHE_MODE_UC
280 *
281 * NOTE: When WC or WP is used, it is redirected to UC- per
282 * the default setup in __cachemode2pte_tbl[].
283 */
284 pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
285 PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
286 }
287
288 __init_cache_modes(pat);
289
290 init_cm_done = 1;
291 }
292
293 /**
294 * pat_init - Initialize PAT MSR and PAT table
295 *
296 * This function initializes PAT MSR and PAT table with an OS-defined value
297 * to enable additional cache attributes, WC and WT.
298 *
299 * This function must be called on all CPUs using the specific sequence of
300 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
301 * procedure for PAT.
302 */
303 void pat_init(void)
304 {
305 u64 pat;
306 struct cpuinfo_x86 *c = &boot_cpu_data;
307
308 if (!pat_enabled()) {
309 init_cache_modes();
310 return;
311 }
312
313 if ((c->x86_vendor == X86_VENDOR_INTEL) &&
314 (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
315 ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
316 /*
317 * PAT support with the lower four entries. Intel Pentium 2,
318 * 3, M, and 4 are affected by PAT errata, which makes the
319 * upper four entries unusable. To be on the safe side, we don't
320 * use those.
321 *
322 * PTE encoding:
323 * PAT
324 * |PCD
325 * ||PWT PAT
326 * ||| slot
327 * 000 0 WB : _PAGE_CACHE_MODE_WB
328 * 001 1 WC : _PAGE_CACHE_MODE_WC
329 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
330 * 011 3 UC : _PAGE_CACHE_MODE_UC
331 * PAT bit unused
332 *
333 * NOTE: When WT or WP is used, it is redirected to UC- per
334 * the default setup in __cachemode2pte_tbl[].
335 */
336 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
337 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
338 } else {
339 /*
340 * Full PAT support. We put WT in slot 7 to improve
341 * robustness in the presence of errata that might cause
342 * the high PAT bit to be ignored. This way, a buggy slot 7
343 * access will hit slot 3, and slot 3 is UC, so at worst
344 * we lose performance without causing a correctness issue.
345 * Pentium 4 erratum N46 is an example for such an erratum,
346 * although we try not to use PAT at all on affected CPUs.
347 *
348 * PTE encoding:
349 * PAT
350 * |PCD
351 * ||PWT PAT
352 * ||| slot
353 * 000 0 WB : _PAGE_CACHE_MODE_WB
354 * 001 1 WC : _PAGE_CACHE_MODE_WC
355 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
356 * 011 3 UC : _PAGE_CACHE_MODE_UC
357 * 100 4 WB : Reserved
358 * 101 5 WC : Reserved
359 * 110 6 UC-: Reserved
360 * 111 7 WT : _PAGE_CACHE_MODE_WT
361 *
362 * The reserved slots are unused, but mapped to their
363 * corresponding types in the presence of PAT errata.
364 */
365 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
366 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, WT);
367 }
368
369 if (!boot_cpu_done) {
370 pat_bsp_init(pat);
371 boot_cpu_done = true;
372 } else {
373 pat_ap_init(pat);
374 }
375 }
376
377 #undef PAT
378
379 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
380
381 /*
382 * Does intersection of PAT memory type and MTRR memory type and returns
383 * the resulting memory type as PAT understands it.
384 * (Type in pat and mtrr will not have same value)
385 * The intersection is based on "Effective Memory Type" tables in IA-32
386 * SDM vol 3a
387 */
388 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
389 enum page_cache_mode req_type)
390 {
391 /*
392 * Look for MTRR hint to get the effective type in case where PAT
393 * request is for WB.
394 */
395 if (req_type == _PAGE_CACHE_MODE_WB) {
396 u8 mtrr_type, uniform;
397
398 mtrr_type = mtrr_type_lookup(start, end, &uniform);
399 if (mtrr_type != MTRR_TYPE_WRBACK)
400 return _PAGE_CACHE_MODE_UC_MINUS;
401
402 return _PAGE_CACHE_MODE_WB;
403 }
404
405 return req_type;
406 }
407
408 struct pagerange_state {
409 unsigned long cur_pfn;
410 int ram;
411 int not_ram;
412 };
413
414 static int
415 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
416 {
417 struct pagerange_state *state = arg;
418
419 state->not_ram |= initial_pfn > state->cur_pfn;
420 state->ram |= total_nr_pages > 0;
421 state->cur_pfn = initial_pfn + total_nr_pages;
422
423 return state->ram && state->not_ram;
424 }
425
426 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
427 {
428 int ret = 0;
429 unsigned long start_pfn = start >> PAGE_SHIFT;
430 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
431 struct pagerange_state state = {start_pfn, 0, 0};
432
433 /*
434 * For legacy reasons, physical address range in the legacy ISA
435 * region is tracked as non-RAM. This will allow users of
436 * /dev/mem to map portions of legacy ISA region, even when
437 * some of those portions are listed(or not even listed) with
438 * different e820 types(RAM/reserved/..)
439 */
440 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
441 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
442
443 if (start_pfn < end_pfn) {
444 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
445 &state, pagerange_is_ram_callback);
446 }
447
448 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
449 }
450
451 /*
452 * For RAM pages, we use page flags to mark the pages with appropriate type.
453 * The page flags are limited to four types, WB (default), WC, WT and UC-.
454 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
455 * a new memory type is only allowed for a page mapped with the default WB
456 * type.
457 *
458 * Here we do two passes:
459 * - Find the memtype of all the pages in the range, look for any conflicts.
460 * - In case of no conflicts, set the new memtype for pages in the range.
461 */
462 static int reserve_ram_pages_type(u64 start, u64 end,
463 enum page_cache_mode req_type,
464 enum page_cache_mode *new_type)
465 {
466 struct page *page;
467 u64 pfn;
468
469 if (req_type == _PAGE_CACHE_MODE_WP) {
470 if (new_type)
471 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
472 return -EINVAL;
473 }
474
475 if (req_type == _PAGE_CACHE_MODE_UC) {
476 /* We do not support strong UC */
477 WARN_ON_ONCE(1);
478 req_type = _PAGE_CACHE_MODE_UC_MINUS;
479 }
480
481 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
482 enum page_cache_mode type;
483
484 page = pfn_to_page(pfn);
485 type = get_page_memtype(page);
486 if (type != _PAGE_CACHE_MODE_WB) {
487 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
488 start, end - 1, type, req_type);
489 if (new_type)
490 *new_type = type;
491
492 return -EBUSY;
493 }
494 }
495
496 if (new_type)
497 *new_type = req_type;
498
499 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
500 page = pfn_to_page(pfn);
501 set_page_memtype(page, req_type);
502 }
503 return 0;
504 }
505
506 static int free_ram_pages_type(u64 start, u64 end)
507 {
508 struct page *page;
509 u64 pfn;
510
511 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
512 page = pfn_to_page(pfn);
513 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
514 }
515 return 0;
516 }
517
518 /*
519 * req_type typically has one of the:
520 * - _PAGE_CACHE_MODE_WB
521 * - _PAGE_CACHE_MODE_WC
522 * - _PAGE_CACHE_MODE_UC_MINUS
523 * - _PAGE_CACHE_MODE_UC
524 * - _PAGE_CACHE_MODE_WT
525 *
526 * If new_type is NULL, function will return an error if it cannot reserve the
527 * region with req_type. If new_type is non-NULL, function will return
528 * available type in new_type in case of no error. In case of any error
529 * it will return a negative return value.
530 */
531 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
532 enum page_cache_mode *new_type)
533 {
534 struct memtype *new;
535 enum page_cache_mode actual_type;
536 int is_range_ram;
537 int err = 0;
538
539 BUG_ON(start >= end); /* end is exclusive */
540
541 if (!pat_enabled()) {
542 /* This is identical to page table setting without PAT */
543 if (new_type)
544 *new_type = req_type;
545 return 0;
546 }
547
548 /* Low ISA region is always mapped WB in page table. No need to track */
549 if (x86_platform.is_untracked_pat_range(start, end)) {
550 if (new_type)
551 *new_type = _PAGE_CACHE_MODE_WB;
552 return 0;
553 }
554
555 /*
556 * Call mtrr_lookup to get the type hint. This is an
557 * optimization for /dev/mem mmap'ers into WB memory (BIOS
558 * tools and ACPI tools). Use WB request for WB memory and use
559 * UC_MINUS otherwise.
560 */
561 actual_type = pat_x_mtrr_type(start, end, req_type);
562
563 if (new_type)
564 *new_type = actual_type;
565
566 is_range_ram = pat_pagerange_is_ram(start, end);
567 if (is_range_ram == 1) {
568
569 err = reserve_ram_pages_type(start, end, req_type, new_type);
570
571 return err;
572 } else if (is_range_ram < 0) {
573 return -EINVAL;
574 }
575
576 new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
577 if (!new)
578 return -ENOMEM;
579
580 new->start = start;
581 new->end = end;
582 new->type = actual_type;
583
584 spin_lock(&memtype_lock);
585
586 err = rbt_memtype_check_insert(new, new_type);
587 if (err) {
588 pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
589 start, end - 1,
590 cattr_name(new->type), cattr_name(req_type));
591 kfree(new);
592 spin_unlock(&memtype_lock);
593
594 return err;
595 }
596
597 spin_unlock(&memtype_lock);
598
599 dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
600 start, end - 1, cattr_name(new->type), cattr_name(req_type),
601 new_type ? cattr_name(*new_type) : "-");
602
603 return err;
604 }
605
606 int free_memtype(u64 start, u64 end)
607 {
608 int err = -EINVAL;
609 int is_range_ram;
610 struct memtype *entry;
611
612 if (!pat_enabled())
613 return 0;
614
615 /* Low ISA region is always mapped WB. No need to track */
616 if (x86_platform.is_untracked_pat_range(start, end))
617 return 0;
618
619 is_range_ram = pat_pagerange_is_ram(start, end);
620 if (is_range_ram == 1) {
621
622 err = free_ram_pages_type(start, end);
623
624 return err;
625 } else if (is_range_ram < 0) {
626 return -EINVAL;
627 }
628
629 spin_lock(&memtype_lock);
630 entry = rbt_memtype_erase(start, end);
631 spin_unlock(&memtype_lock);
632
633 if (IS_ERR(entry)) {
634 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
635 current->comm, current->pid, start, end - 1);
636 return -EINVAL;
637 }
638
639 kfree(entry);
640
641 dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
642
643 return 0;
644 }
645
646
647 /**
648 * lookup_memtype - Looksup the memory type for a physical address
649 * @paddr: physical address of which memory type needs to be looked up
650 *
651 * Only to be called when PAT is enabled
652 *
653 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
654 * or _PAGE_CACHE_MODE_WT.
655 */
656 static enum page_cache_mode lookup_memtype(u64 paddr)
657 {
658 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
659 struct memtype *entry;
660
661 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
662 return rettype;
663
664 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
665 struct page *page;
666
667 page = pfn_to_page(paddr >> PAGE_SHIFT);
668 return get_page_memtype(page);
669 }
670
671 spin_lock(&memtype_lock);
672
673 entry = rbt_memtype_lookup(paddr);
674 if (entry != NULL)
675 rettype = entry->type;
676 else
677 rettype = _PAGE_CACHE_MODE_UC_MINUS;
678
679 spin_unlock(&memtype_lock);
680 return rettype;
681 }
682
683 /**
684 * io_reserve_memtype - Request a memory type mapping for a region of memory
685 * @start: start (physical address) of the region
686 * @end: end (physical address) of the region
687 * @type: A pointer to memtype, with requested type. On success, requested
688 * or any other compatible type that was available for the region is returned
689 *
690 * On success, returns 0
691 * On failure, returns non-zero
692 */
693 int io_reserve_memtype(resource_size_t start, resource_size_t end,
694 enum page_cache_mode *type)
695 {
696 resource_size_t size = end - start;
697 enum page_cache_mode req_type = *type;
698 enum page_cache_mode new_type;
699 int ret;
700
701 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
702
703 ret = reserve_memtype(start, end, req_type, &new_type);
704 if (ret)
705 goto out_err;
706
707 if (!is_new_memtype_allowed(start, size, req_type, new_type))
708 goto out_free;
709
710 if (kernel_map_sync_memtype(start, size, new_type) < 0)
711 goto out_free;
712
713 *type = new_type;
714 return 0;
715
716 out_free:
717 free_memtype(start, end);
718 ret = -EBUSY;
719 out_err:
720 return ret;
721 }
722
723 /**
724 * io_free_memtype - Release a memory type mapping for a region of memory
725 * @start: start (physical address) of the region
726 * @end: end (physical address) of the region
727 */
728 void io_free_memtype(resource_size_t start, resource_size_t end)
729 {
730 free_memtype(start, end);
731 }
732
733 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
734 unsigned long size, pgprot_t vma_prot)
735 {
736 return vma_prot;
737 }
738
739 #ifdef CONFIG_STRICT_DEVMEM
740 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
741 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
742 {
743 return 1;
744 }
745 #else
746 /* This check is needed to avoid cache aliasing when PAT is enabled */
747 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
748 {
749 u64 from = ((u64)pfn) << PAGE_SHIFT;
750 u64 to = from + size;
751 u64 cursor = from;
752
753 if (!pat_enabled())
754 return 1;
755
756 while (cursor < to) {
757 if (!devmem_is_allowed(pfn))
758 return 0;
759 cursor += PAGE_SIZE;
760 pfn++;
761 }
762 return 1;
763 }
764 #endif /* CONFIG_STRICT_DEVMEM */
765
766 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
767 unsigned long size, pgprot_t *vma_prot)
768 {
769 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
770
771 if (!range_is_allowed(pfn, size))
772 return 0;
773
774 if (file->f_flags & O_DSYNC)
775 pcm = _PAGE_CACHE_MODE_UC_MINUS;
776
777 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
778 cachemode2protval(pcm));
779 return 1;
780 }
781
782 /*
783 * Change the memory type for the physial address range in kernel identity
784 * mapping space if that range is a part of identity map.
785 */
786 int kernel_map_sync_memtype(u64 base, unsigned long size,
787 enum page_cache_mode pcm)
788 {
789 unsigned long id_sz;
790
791 if (base > __pa(high_memory-1))
792 return 0;
793
794 /*
795 * some areas in the middle of the kernel identity range
796 * are not mapped, like the PCI space.
797 */
798 if (!page_is_ram(base >> PAGE_SHIFT))
799 return 0;
800
801 id_sz = (__pa(high_memory-1) <= base + size) ?
802 __pa(high_memory) - base :
803 size;
804
805 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
806 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
807 current->comm, current->pid,
808 cattr_name(pcm),
809 base, (unsigned long long)(base + size-1));
810 return -EINVAL;
811 }
812 return 0;
813 }
814
815 /*
816 * Internal interface to reserve a range of physical memory with prot.
817 * Reserved non RAM regions only and after successful reserve_memtype,
818 * this func also keeps identity mapping (if any) in sync with this new prot.
819 */
820 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
821 int strict_prot)
822 {
823 int is_ram = 0;
824 int ret;
825 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
826 enum page_cache_mode pcm = want_pcm;
827
828 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
829
830 /*
831 * reserve_pfn_range() for RAM pages. We do not refcount to keep
832 * track of number of mappings of RAM pages. We can assert that
833 * the type requested matches the type of first page in the range.
834 */
835 if (is_ram) {
836 if (!pat_enabled())
837 return 0;
838
839 pcm = lookup_memtype(paddr);
840 if (want_pcm != pcm) {
841 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
842 current->comm, current->pid,
843 cattr_name(want_pcm),
844 (unsigned long long)paddr,
845 (unsigned long long)(paddr + size - 1),
846 cattr_name(pcm));
847 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
848 (~_PAGE_CACHE_MASK)) |
849 cachemode2protval(pcm));
850 }
851 return 0;
852 }
853
854 ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
855 if (ret)
856 return ret;
857
858 if (pcm != want_pcm) {
859 if (strict_prot ||
860 !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
861 free_memtype(paddr, paddr + size);
862 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
863 current->comm, current->pid,
864 cattr_name(want_pcm),
865 (unsigned long long)paddr,
866 (unsigned long long)(paddr + size - 1),
867 cattr_name(pcm));
868 return -EINVAL;
869 }
870 /*
871 * We allow returning different type than the one requested in
872 * non strict case.
873 */
874 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
875 (~_PAGE_CACHE_MASK)) |
876 cachemode2protval(pcm));
877 }
878
879 if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
880 free_memtype(paddr, paddr + size);
881 return -EINVAL;
882 }
883 return 0;
884 }
885
886 /*
887 * Internal interface to free a range of physical memory.
888 * Frees non RAM regions only.
889 */
890 static void free_pfn_range(u64 paddr, unsigned long size)
891 {
892 int is_ram;
893
894 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
895 if (is_ram == 0)
896 free_memtype(paddr, paddr + size);
897 }
898
899 /*
900 * track_pfn_copy is called when vma that is covering the pfnmap gets
901 * copied through copy_page_range().
902 *
903 * If the vma has a linear pfn mapping for the entire range, we get the prot
904 * from pte and reserve the entire vma range with single reserve_pfn_range call.
905 */
906 int track_pfn_copy(struct vm_area_struct *vma)
907 {
908 resource_size_t paddr;
909 unsigned long prot;
910 unsigned long vma_size = vma->vm_end - vma->vm_start;
911 pgprot_t pgprot;
912
913 if (vma->vm_flags & VM_PAT) {
914 /*
915 * reserve the whole chunk covered by vma. We need the
916 * starting address and protection from pte.
917 */
918 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
919 WARN_ON_ONCE(1);
920 return -EINVAL;
921 }
922 pgprot = __pgprot(prot);
923 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
924 }
925
926 return 0;
927 }
928
929 /*
930 * prot is passed in as a parameter for the new mapping. If the vma has a
931 * linear pfn mapping for the entire range reserve the entire vma range with
932 * single reserve_pfn_range call.
933 */
934 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
935 unsigned long pfn, unsigned long addr, unsigned long size)
936 {
937 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
938 enum page_cache_mode pcm;
939
940 /* reserve the whole chunk starting from paddr */
941 if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
942 int ret;
943
944 ret = reserve_pfn_range(paddr, size, prot, 0);
945 if (!ret)
946 vma->vm_flags |= VM_PAT;
947 return ret;
948 }
949
950 if (!pat_enabled())
951 return 0;
952
953 /*
954 * For anything smaller than the vma size we set prot based on the
955 * lookup.
956 */
957 pcm = lookup_memtype(paddr);
958
959 /* Check memtype for the remaining pages */
960 while (size > PAGE_SIZE) {
961 size -= PAGE_SIZE;
962 paddr += PAGE_SIZE;
963 if (pcm != lookup_memtype(paddr))
964 return -EINVAL;
965 }
966
967 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
968 cachemode2protval(pcm));
969
970 return 0;
971 }
972
973 int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
974 pfn_t pfn)
975 {
976 enum page_cache_mode pcm;
977
978 if (!pat_enabled())
979 return 0;
980
981 /* Set prot based on lookup */
982 pcm = lookup_memtype(pfn_t_to_phys(pfn));
983 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
984 cachemode2protval(pcm));
985
986 return 0;
987 }
988
989 /*
990 * untrack_pfn is called while unmapping a pfnmap for a region.
991 * untrack can be called for a specific region indicated by pfn and size or
992 * can be for the entire vma (in which case pfn, size are zero).
993 */
994 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
995 unsigned long size)
996 {
997 resource_size_t paddr;
998 unsigned long prot;
999
1000 if (!(vma->vm_flags & VM_PAT))
1001 return;
1002
1003 /* free the chunk starting from pfn or the whole chunk */
1004 paddr = (resource_size_t)pfn << PAGE_SHIFT;
1005 if (!paddr && !size) {
1006 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1007 WARN_ON_ONCE(1);
1008 return;
1009 }
1010
1011 size = vma->vm_end - vma->vm_start;
1012 }
1013 free_pfn_range(paddr, size);
1014 vma->vm_flags &= ~VM_PAT;
1015 }
1016
1017 /*
1018 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1019 * with the old vma after its pfnmap page table has been removed. The new
1020 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1021 */
1022 void untrack_pfn_moved(struct vm_area_struct *vma)
1023 {
1024 vma->vm_flags &= ~VM_PAT;
1025 }
1026
1027 pgprot_t pgprot_writecombine(pgprot_t prot)
1028 {
1029 return __pgprot(pgprot_val(prot) |
1030 cachemode2protval(_PAGE_CACHE_MODE_WC));
1031 }
1032 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1033
1034 pgprot_t pgprot_writethrough(pgprot_t prot)
1035 {
1036 return __pgprot(pgprot_val(prot) |
1037 cachemode2protval(_PAGE_CACHE_MODE_WT));
1038 }
1039 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1040
1041 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1042
1043 static struct memtype *memtype_get_idx(loff_t pos)
1044 {
1045 struct memtype *print_entry;
1046 int ret;
1047
1048 print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1049 if (!print_entry)
1050 return NULL;
1051
1052 spin_lock(&memtype_lock);
1053 ret = rbt_memtype_copy_nth_element(print_entry, pos);
1054 spin_unlock(&memtype_lock);
1055
1056 if (!ret) {
1057 return print_entry;
1058 } else {
1059 kfree(print_entry);
1060 return NULL;
1061 }
1062 }
1063
1064 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1065 {
1066 if (*pos == 0) {
1067 ++*pos;
1068 seq_puts(seq, "PAT memtype list:\n");
1069 }
1070
1071 return memtype_get_idx(*pos);
1072 }
1073
1074 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1075 {
1076 ++*pos;
1077 return memtype_get_idx(*pos);
1078 }
1079
1080 static void memtype_seq_stop(struct seq_file *seq, void *v)
1081 {
1082 }
1083
1084 static int memtype_seq_show(struct seq_file *seq, void *v)
1085 {
1086 struct memtype *print_entry = (struct memtype *)v;
1087
1088 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1089 print_entry->start, print_entry->end);
1090 kfree(print_entry);
1091
1092 return 0;
1093 }
1094
1095 static const struct seq_operations memtype_seq_ops = {
1096 .start = memtype_seq_start,
1097 .next = memtype_seq_next,
1098 .stop = memtype_seq_stop,
1099 .show = memtype_seq_show,
1100 };
1101
1102 static int memtype_seq_open(struct inode *inode, struct file *file)
1103 {
1104 return seq_open(file, &memtype_seq_ops);
1105 }
1106
1107 static const struct file_operations memtype_fops = {
1108 .open = memtype_seq_open,
1109 .read = seq_read,
1110 .llseek = seq_lseek,
1111 .release = seq_release,
1112 };
1113
1114 static int __init pat_memtype_list_init(void)
1115 {
1116 if (pat_enabled()) {
1117 debugfs_create_file("pat_memtype_list", S_IRUSR,
1118 arch_debugfs_dir, NULL, &memtype_fops);
1119 }
1120 return 0;
1121 }
1122
1123 late_initcall(pat_memtype_list_init);
1124
1125 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
This page took 0.074657 seconds and 5 git commands to generate.