Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / arch / x86 / pci / vmd.c
1 /*
2 * Volume Management Device driver
3 * Copyright (c) 2015, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24
25 #include <asm/irqdomain.h>
26 #include <asm/device.h>
27 #include <asm/msi.h>
28 #include <asm/msidef.h>
29
30 #define VMD_CFGBAR 0
31 #define VMD_MEMBAR1 2
32 #define VMD_MEMBAR2 4
33
34 /*
35 * Lock for manipulating VMD IRQ lists.
36 */
37 static DEFINE_RAW_SPINLOCK(list_lock);
38
39 /**
40 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
41 * @node: list item for parent traversal.
42 * @rcu: RCU callback item for freeing.
43 * @irq: back pointer to parent.
44 * @enabled: true if driver enabled IRQ
45 * @virq: the virtual IRQ value provided to the requesting driver.
46 *
47 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
48 * a VMD IRQ using this structure.
49 */
50 struct vmd_irq {
51 struct list_head node;
52 struct rcu_head rcu;
53 struct vmd_irq_list *irq;
54 bool enabled;
55 unsigned int virq;
56 };
57
58 /**
59 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
60 * @irq_list: the list of irq's the VMD one demuxes to.
61 * @vmd_vector: the h/w IRQ assigned to the VMD.
62 * @index: index into the VMD MSI-X table; used for message routing.
63 * @count: number of child IRQs assigned to this vector; used to track
64 * sharing.
65 */
66 struct vmd_irq_list {
67 struct list_head irq_list;
68 struct vmd_dev *vmd;
69 unsigned int vmd_vector;
70 unsigned int index;
71 unsigned int count;
72 };
73
74 struct vmd_dev {
75 struct pci_dev *dev;
76
77 spinlock_t cfg_lock;
78 char __iomem *cfgbar;
79
80 int msix_count;
81 struct msix_entry *msix_entries;
82 struct vmd_irq_list *irqs;
83
84 struct pci_sysdata sysdata;
85 struct resource resources[3];
86 struct irq_domain *irq_domain;
87 struct pci_bus *bus;
88
89 #ifdef CONFIG_X86_DEV_DMA_OPS
90 struct dma_map_ops dma_ops;
91 struct dma_domain dma_domain;
92 #endif
93 };
94
95 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
96 {
97 return container_of(bus->sysdata, struct vmd_dev, sysdata);
98 }
99
100 /*
101 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
102 * but the MSI entry for the hardware it's driving will be programmed with a
103 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
104 * domain into one of its own, and the VMD driver de-muxes these for the
105 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
106 * and irq_chip to set this up.
107 */
108 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
109 {
110 struct vmd_irq *vmdirq = data->chip_data;
111 struct vmd_irq_list *irq = vmdirq->irq;
112
113 msg->address_hi = MSI_ADDR_BASE_HI;
114 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_DEST_ID(irq->index);
115 msg->data = 0;
116 }
117
118 /*
119 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
120 */
121 static void vmd_irq_enable(struct irq_data *data)
122 {
123 struct vmd_irq *vmdirq = data->chip_data;
124 unsigned long flags;
125
126 raw_spin_lock_irqsave(&list_lock, flags);
127 WARN_ON(vmdirq->enabled);
128 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
129 vmdirq->enabled = true;
130 raw_spin_unlock_irqrestore(&list_lock, flags);
131
132 data->chip->irq_unmask(data);
133 }
134
135 static void vmd_irq_disable(struct irq_data *data)
136 {
137 struct vmd_irq *vmdirq = data->chip_data;
138 unsigned long flags;
139
140 data->chip->irq_mask(data);
141
142 raw_spin_lock_irqsave(&list_lock, flags);
143 if (vmdirq->enabled) {
144 list_del_rcu(&vmdirq->node);
145 vmdirq->enabled = false;
146 }
147 raw_spin_unlock_irqrestore(&list_lock, flags);
148 }
149
150 /*
151 * XXX: Stubbed until we develop acceptable way to not create conflicts with
152 * other devices sharing the same vector.
153 */
154 static int vmd_irq_set_affinity(struct irq_data *data,
155 const struct cpumask *dest, bool force)
156 {
157 return -EINVAL;
158 }
159
160 static struct irq_chip vmd_msi_controller = {
161 .name = "VMD-MSI",
162 .irq_enable = vmd_irq_enable,
163 .irq_disable = vmd_irq_disable,
164 .irq_compose_msi_msg = vmd_compose_msi_msg,
165 .irq_set_affinity = vmd_irq_set_affinity,
166 };
167
168 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
169 msi_alloc_info_t *arg)
170 {
171 return 0;
172 }
173
174 /*
175 * XXX: We can be even smarter selecting the best IRQ once we solve the
176 * affinity problem.
177 */
178 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
179 {
180 int i, best = 1;
181 unsigned long flags;
182
183 if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
184 return &vmd->irqs[0];
185
186 raw_spin_lock_irqsave(&list_lock, flags);
187 for (i = 1; i < vmd->msix_count; i++)
188 if (vmd->irqs[i].count < vmd->irqs[best].count)
189 best = i;
190 vmd->irqs[best].count++;
191 raw_spin_unlock_irqrestore(&list_lock, flags);
192
193 return &vmd->irqs[best];
194 }
195
196 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
197 unsigned int virq, irq_hw_number_t hwirq,
198 msi_alloc_info_t *arg)
199 {
200 struct msi_desc *desc = arg->desc;
201 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
202 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
203
204 if (!vmdirq)
205 return -ENOMEM;
206
207 INIT_LIST_HEAD(&vmdirq->node);
208 vmdirq->irq = vmd_next_irq(vmd, desc);
209 vmdirq->virq = virq;
210
211 irq_domain_set_info(domain, virq, vmdirq->irq->vmd_vector, info->chip,
212 vmdirq, handle_untracked_irq, vmd, NULL);
213 return 0;
214 }
215
216 static void vmd_msi_free(struct irq_domain *domain,
217 struct msi_domain_info *info, unsigned int virq)
218 {
219 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
220 unsigned long flags;
221
222 /* XXX: Potential optimization to rebalance */
223 raw_spin_lock_irqsave(&list_lock, flags);
224 vmdirq->irq->count--;
225 raw_spin_unlock_irqrestore(&list_lock, flags);
226
227 kfree_rcu(vmdirq, rcu);
228 }
229
230 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
231 int nvec, msi_alloc_info_t *arg)
232 {
233 struct pci_dev *pdev = to_pci_dev(dev);
234 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
235
236 if (nvec > vmd->msix_count)
237 return vmd->msix_count;
238
239 memset(arg, 0, sizeof(*arg));
240 return 0;
241 }
242
243 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
244 {
245 arg->desc = desc;
246 }
247
248 static struct msi_domain_ops vmd_msi_domain_ops = {
249 .get_hwirq = vmd_get_hwirq,
250 .msi_init = vmd_msi_init,
251 .msi_free = vmd_msi_free,
252 .msi_prepare = vmd_msi_prepare,
253 .set_desc = vmd_set_desc,
254 };
255
256 static struct msi_domain_info vmd_msi_domain_info = {
257 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
258 MSI_FLAG_PCI_MSIX,
259 .ops = &vmd_msi_domain_ops,
260 .chip = &vmd_msi_controller,
261 };
262
263 #ifdef CONFIG_X86_DEV_DMA_OPS
264 /*
265 * VMD replaces the requester ID with its own. DMA mappings for devices in a
266 * VMD domain need to be mapped for the VMD, not the device requiring
267 * the mapping.
268 */
269 static struct device *to_vmd_dev(struct device *dev)
270 {
271 struct pci_dev *pdev = to_pci_dev(dev);
272 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
273
274 return &vmd->dev->dev;
275 }
276
277 static struct dma_map_ops *vmd_dma_ops(struct device *dev)
278 {
279 return get_dma_ops(to_vmd_dev(dev));
280 }
281
282 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
283 gfp_t flag, unsigned long attrs)
284 {
285 return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
286 attrs);
287 }
288
289 static void vmd_free(struct device *dev, size_t size, void *vaddr,
290 dma_addr_t addr, unsigned long attrs)
291 {
292 return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
293 attrs);
294 }
295
296 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
297 void *cpu_addr, dma_addr_t addr, size_t size,
298 unsigned long attrs)
299 {
300 return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
301 size, attrs);
302 }
303
304 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
305 void *cpu_addr, dma_addr_t addr, size_t size,
306 unsigned long attrs)
307 {
308 return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
309 addr, size, attrs);
310 }
311
312 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
313 unsigned long offset, size_t size,
314 enum dma_data_direction dir,
315 unsigned long attrs)
316 {
317 return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
318 dir, attrs);
319 }
320
321 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
322 enum dma_data_direction dir, unsigned long attrs)
323 {
324 vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
325 }
326
327 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328 enum dma_data_direction dir, unsigned long attrs)
329 {
330 return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
331 }
332
333 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
334 enum dma_data_direction dir, unsigned long attrs)
335 {
336 vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
337 }
338
339 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
340 size_t size, enum dma_data_direction dir)
341 {
342 vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
343 }
344
345 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
346 size_t size, enum dma_data_direction dir)
347 {
348 vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
349 dir);
350 }
351
352 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
353 int nents, enum dma_data_direction dir)
354 {
355 vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
356 }
357
358 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
359 int nents, enum dma_data_direction dir)
360 {
361 vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
362 }
363
364 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
365 {
366 return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
367 }
368
369 static int vmd_dma_supported(struct device *dev, u64 mask)
370 {
371 return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
372 }
373
374 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
375 static u64 vmd_get_required_mask(struct device *dev)
376 {
377 return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
378 }
379 #endif
380
381 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
382 {
383 struct dma_domain *domain = &vmd->dma_domain;
384
385 if (get_dma_ops(&vmd->dev->dev))
386 del_dma_domain(domain);
387 }
388
389 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
390 do { \
391 if (source->fn) \
392 dest->fn = vmd_##fn; \
393 } while (0)
394
395 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
396 {
397 const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
398 struct dma_map_ops *dest = &vmd->dma_ops;
399 struct dma_domain *domain = &vmd->dma_domain;
400
401 domain->domain_nr = vmd->sysdata.domain;
402 domain->dma_ops = dest;
403
404 if (!source)
405 return;
406 ASSIGN_VMD_DMA_OPS(source, dest, alloc);
407 ASSIGN_VMD_DMA_OPS(source, dest, free);
408 ASSIGN_VMD_DMA_OPS(source, dest, mmap);
409 ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
410 ASSIGN_VMD_DMA_OPS(source, dest, map_page);
411 ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
412 ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
413 ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
414 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
415 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
416 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
417 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
418 ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
419 ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
420 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
421 ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
422 #endif
423 add_dma_domain(domain);
424 }
425 #undef ASSIGN_VMD_DMA_OPS
426 #else
427 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
428 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
429 #endif
430
431 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
432 unsigned int devfn, int reg, int len)
433 {
434 char __iomem *addr = vmd->cfgbar +
435 (bus->number << 20) + (devfn << 12) + reg;
436
437 if ((addr - vmd->cfgbar) + len >=
438 resource_size(&vmd->dev->resource[VMD_CFGBAR]))
439 return NULL;
440
441 return addr;
442 }
443
444 /*
445 * CPU may deadlock if config space is not serialized on some versions of this
446 * hardware, so all config space access is done under a spinlock.
447 */
448 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
449 int len, u32 *value)
450 {
451 struct vmd_dev *vmd = vmd_from_bus(bus);
452 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
453 unsigned long flags;
454 int ret = 0;
455
456 if (!addr)
457 return -EFAULT;
458
459 spin_lock_irqsave(&vmd->cfg_lock, flags);
460 switch (len) {
461 case 1:
462 *value = readb(addr);
463 break;
464 case 2:
465 *value = readw(addr);
466 break;
467 case 4:
468 *value = readl(addr);
469 break;
470 default:
471 ret = -EINVAL;
472 break;
473 }
474 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
475 return ret;
476 }
477
478 /*
479 * VMD h/w converts non-posted config writes to posted memory writes. The
480 * read-back in this function forces the completion so it returns only after
481 * the config space was written, as expected.
482 */
483 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
484 int len, u32 value)
485 {
486 struct vmd_dev *vmd = vmd_from_bus(bus);
487 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
488 unsigned long flags;
489 int ret = 0;
490
491 if (!addr)
492 return -EFAULT;
493
494 spin_lock_irqsave(&vmd->cfg_lock, flags);
495 switch (len) {
496 case 1:
497 writeb(value, addr);
498 readb(addr);
499 break;
500 case 2:
501 writew(value, addr);
502 readw(addr);
503 break;
504 case 4:
505 writel(value, addr);
506 readl(addr);
507 break;
508 default:
509 ret = -EINVAL;
510 break;
511 }
512 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
513 return ret;
514 }
515
516 static struct pci_ops vmd_ops = {
517 .read = vmd_pci_read,
518 .write = vmd_pci_write,
519 };
520
521 static void vmd_attach_resources(struct vmd_dev *vmd)
522 {
523 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
524 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
525 }
526
527 static void vmd_detach_resources(struct vmd_dev *vmd)
528 {
529 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
530 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
531 }
532
533 /*
534 * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
535 */
536 static int vmd_find_free_domain(void)
537 {
538 int domain = 0xffff;
539 struct pci_bus *bus = NULL;
540
541 while ((bus = pci_find_next_bus(bus)) != NULL)
542 domain = max_t(int, domain, pci_domain_nr(bus));
543 return domain + 1;
544 }
545
546 static int vmd_enable_domain(struct vmd_dev *vmd)
547 {
548 struct pci_sysdata *sd = &vmd->sysdata;
549 struct resource *res;
550 u32 upper_bits;
551 unsigned long flags;
552 LIST_HEAD(resources);
553
554 res = &vmd->dev->resource[VMD_CFGBAR];
555 vmd->resources[0] = (struct resource) {
556 .name = "VMD CFGBAR",
557 .start = 0,
558 .end = (resource_size(res) >> 20) - 1,
559 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
560 };
561
562 /*
563 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
564 * put 32-bit resources in the window.
565 *
566 * There's no hardware reason why a 64-bit window *couldn't*
567 * contain a 32-bit resource, but pbus_size_mem() computes the
568 * bridge window size assuming a 64-bit window will contain no
569 * 32-bit resources. __pci_assign_resource() enforces that
570 * artificial restriction to make sure everything will fit.
571 *
572 * The only way we could use a 64-bit non-prefechable MEMBAR is
573 * if its address is <4GB so that we can convert it to a 32-bit
574 * resource. To be visible to the host OS, all VMD endpoints must
575 * be initially configured by platform BIOS, which includes setting
576 * up these resources. We can assume the device is configured
577 * according to the platform needs.
578 */
579 res = &vmd->dev->resource[VMD_MEMBAR1];
580 upper_bits = upper_32_bits(res->end);
581 flags = res->flags & ~IORESOURCE_SIZEALIGN;
582 if (!upper_bits)
583 flags &= ~IORESOURCE_MEM_64;
584 vmd->resources[1] = (struct resource) {
585 .name = "VMD MEMBAR1",
586 .start = res->start,
587 .end = res->end,
588 .flags = flags,
589 .parent = res,
590 };
591
592 res = &vmd->dev->resource[VMD_MEMBAR2];
593 upper_bits = upper_32_bits(res->end);
594 flags = res->flags & ~IORESOURCE_SIZEALIGN;
595 if (!upper_bits)
596 flags &= ~IORESOURCE_MEM_64;
597 vmd->resources[2] = (struct resource) {
598 .name = "VMD MEMBAR2",
599 .start = res->start + 0x2000,
600 .end = res->end,
601 .flags = flags,
602 .parent = res,
603 };
604
605 sd->domain = vmd_find_free_domain();
606 if (sd->domain < 0)
607 return sd->domain;
608
609 sd->node = pcibus_to_node(vmd->dev->bus);
610
611 vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
612 x86_vector_domain);
613 if (!vmd->irq_domain)
614 return -ENODEV;
615
616 pci_add_resource(&resources, &vmd->resources[0]);
617 pci_add_resource(&resources, &vmd->resources[1]);
618 pci_add_resource(&resources, &vmd->resources[2]);
619 vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
620 &resources);
621 if (!vmd->bus) {
622 pci_free_resource_list(&resources);
623 irq_domain_remove(vmd->irq_domain);
624 return -ENODEV;
625 }
626
627 vmd_attach_resources(vmd);
628 vmd_setup_dma_ops(vmd);
629 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
630 pci_rescan_bus(vmd->bus);
631
632 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
633 "domain"), "Can't create symlink to domain\n");
634 return 0;
635 }
636
637 static irqreturn_t vmd_irq(int irq, void *data)
638 {
639 struct vmd_irq_list *irqs = data;
640 struct vmd_irq *vmdirq;
641
642 rcu_read_lock();
643 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
644 generic_handle_irq(vmdirq->virq);
645 rcu_read_unlock();
646
647 return IRQ_HANDLED;
648 }
649
650 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
651 {
652 struct vmd_dev *vmd;
653 int i, err;
654
655 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
656 return -ENOMEM;
657
658 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
659 if (!vmd)
660 return -ENOMEM;
661
662 vmd->dev = dev;
663 err = pcim_enable_device(dev);
664 if (err < 0)
665 return err;
666
667 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
668 if (!vmd->cfgbar)
669 return -ENOMEM;
670
671 pci_set_master(dev);
672 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
673 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
674 return -ENODEV;
675
676 vmd->msix_count = pci_msix_vec_count(dev);
677 if (vmd->msix_count < 0)
678 return -ENODEV;
679
680 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
681 GFP_KERNEL);
682 if (!vmd->irqs)
683 return -ENOMEM;
684
685 vmd->msix_entries = devm_kcalloc(&dev->dev, vmd->msix_count,
686 sizeof(*vmd->msix_entries),
687 GFP_KERNEL);
688 if (!vmd->msix_entries)
689 return -ENOMEM;
690 for (i = 0; i < vmd->msix_count; i++)
691 vmd->msix_entries[i].entry = i;
692
693 vmd->msix_count = pci_enable_msix_range(vmd->dev, vmd->msix_entries, 1,
694 vmd->msix_count);
695 if (vmd->msix_count < 0)
696 return vmd->msix_count;
697
698 for (i = 0; i < vmd->msix_count; i++) {
699 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
700 vmd->irqs[i].vmd_vector = vmd->msix_entries[i].vector;
701 vmd->irqs[i].index = i;
702
703 err = devm_request_irq(&dev->dev, vmd->irqs[i].vmd_vector,
704 vmd_irq, 0, "vmd", &vmd->irqs[i]);
705 if (err)
706 return err;
707 }
708
709 spin_lock_init(&vmd->cfg_lock);
710 pci_set_drvdata(dev, vmd);
711 err = vmd_enable_domain(vmd);
712 if (err)
713 return err;
714
715 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
716 vmd->sysdata.domain);
717 return 0;
718 }
719
720 static void vmd_remove(struct pci_dev *dev)
721 {
722 struct vmd_dev *vmd = pci_get_drvdata(dev);
723
724 vmd_detach_resources(vmd);
725 pci_set_drvdata(dev, NULL);
726 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
727 pci_stop_root_bus(vmd->bus);
728 pci_remove_root_bus(vmd->bus);
729 vmd_teardown_dma_ops(vmd);
730 irq_domain_remove(vmd->irq_domain);
731 }
732
733 #ifdef CONFIG_PM
734 static int vmd_suspend(struct device *dev)
735 {
736 struct pci_dev *pdev = to_pci_dev(dev);
737
738 pci_save_state(pdev);
739 return 0;
740 }
741
742 static int vmd_resume(struct device *dev)
743 {
744 struct pci_dev *pdev = to_pci_dev(dev);
745
746 pci_restore_state(pdev);
747 return 0;
748 }
749 #endif
750 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
751
752 static const struct pci_device_id vmd_ids[] = {
753 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
754 {0,}
755 };
756 MODULE_DEVICE_TABLE(pci, vmd_ids);
757
758 static struct pci_driver vmd_drv = {
759 .name = "vmd",
760 .id_table = vmd_ids,
761 .probe = vmd_probe,
762 .remove = vmd_remove,
763 .driver = {
764 .pm = &vmd_dev_pm_ops,
765 },
766 };
767 module_pci_driver(vmd_drv);
768
769 MODULE_AUTHOR("Intel Corporation");
770 MODULE_LICENSE("GPL v2");
771 MODULE_VERSION("0.6");
This page took 0.052536 seconds and 5 git commands to generate.