Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / arch / x86 / platform / efi / quirks.c
1 #define pr_fmt(fmt) "efi: " fmt
2
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14 #include <asm/efi.h>
15 #include <asm/uv/uv.h>
16
17 #define EFI_MIN_RESERVE 5120
18
19 #define EFI_DUMMY_GUID \
20 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
21
22 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
23
24 static bool efi_no_storage_paranoia;
25
26 /*
27 * Some firmware implementations refuse to boot if there's insufficient
28 * space in the variable store. The implementation of garbage collection
29 * in some FW versions causes stale (deleted) variables to take up space
30 * longer than intended and space is only freed once the store becomes
31 * almost completely full.
32 *
33 * Enabling this option disables the space checks in
34 * efi_query_variable_store() and forces garbage collection.
35 *
36 * Only enable this option if deleting EFI variables does not free up
37 * space in your variable store, e.g. if despite deleting variables
38 * you're unable to create new ones.
39 */
40 static int __init setup_storage_paranoia(char *arg)
41 {
42 efi_no_storage_paranoia = true;
43 return 0;
44 }
45 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
46
47 /*
48 * Deleting the dummy variable which kicks off garbage collection
49 */
50 void efi_delete_dummy_variable(void)
51 {
52 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
53 EFI_VARIABLE_NON_VOLATILE |
54 EFI_VARIABLE_BOOTSERVICE_ACCESS |
55 EFI_VARIABLE_RUNTIME_ACCESS,
56 0, NULL);
57 }
58
59 /*
60 * In the nonblocking case we do not attempt to perform garbage
61 * collection if we do not have enough free space. Rather, we do the
62 * bare minimum check and give up immediately if the available space
63 * is below EFI_MIN_RESERVE.
64 *
65 * This function is intended to be small and simple because it is
66 * invoked from crash handler paths.
67 */
68 static efi_status_t
69 query_variable_store_nonblocking(u32 attributes, unsigned long size)
70 {
71 efi_status_t status;
72 u64 storage_size, remaining_size, max_size;
73
74 status = efi.query_variable_info_nonblocking(attributes, &storage_size,
75 &remaining_size,
76 &max_size);
77 if (status != EFI_SUCCESS)
78 return status;
79
80 if (remaining_size - size < EFI_MIN_RESERVE)
81 return EFI_OUT_OF_RESOURCES;
82
83 return EFI_SUCCESS;
84 }
85
86 /*
87 * Some firmware implementations refuse to boot if there's insufficient space
88 * in the variable store. Ensure that we never use more than a safe limit.
89 *
90 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
91 * store.
92 */
93 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
94 bool nonblocking)
95 {
96 efi_status_t status;
97 u64 storage_size, remaining_size, max_size;
98
99 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
100 return 0;
101
102 if (nonblocking)
103 return query_variable_store_nonblocking(attributes, size);
104
105 status = efi.query_variable_info(attributes, &storage_size,
106 &remaining_size, &max_size);
107 if (status != EFI_SUCCESS)
108 return status;
109
110 /*
111 * We account for that by refusing the write if permitting it would
112 * reduce the available space to under 5KB. This figure was provided by
113 * Samsung, so should be safe.
114 */
115 if ((remaining_size - size < EFI_MIN_RESERVE) &&
116 !efi_no_storage_paranoia) {
117
118 /*
119 * Triggering garbage collection may require that the firmware
120 * generate a real EFI_OUT_OF_RESOURCES error. We can force
121 * that by attempting to use more space than is available.
122 */
123 unsigned long dummy_size = remaining_size + 1024;
124 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
125
126 if (!dummy)
127 return EFI_OUT_OF_RESOURCES;
128
129 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
130 EFI_VARIABLE_NON_VOLATILE |
131 EFI_VARIABLE_BOOTSERVICE_ACCESS |
132 EFI_VARIABLE_RUNTIME_ACCESS,
133 dummy_size, dummy);
134
135 if (status == EFI_SUCCESS) {
136 /*
137 * This should have failed, so if it didn't make sure
138 * that we delete it...
139 */
140 efi_delete_dummy_variable();
141 }
142
143 kfree(dummy);
144
145 /*
146 * The runtime code may now have triggered a garbage collection
147 * run, so check the variable info again
148 */
149 status = efi.query_variable_info(attributes, &storage_size,
150 &remaining_size, &max_size);
151
152 if (status != EFI_SUCCESS)
153 return status;
154
155 /*
156 * There still isn't enough room, so return an error
157 */
158 if (remaining_size - size < EFI_MIN_RESERVE)
159 return EFI_OUT_OF_RESOURCES;
160 }
161
162 return EFI_SUCCESS;
163 }
164 EXPORT_SYMBOL_GPL(efi_query_variable_store);
165
166 /*
167 * Helper function for efi_reserve_boot_services() to figure out if we
168 * can free regions in efi_free_boot_services().
169 *
170 * Use this function to ensure we do not free regions owned by somebody
171 * else. We must only reserve (and then free) regions:
172 *
173 * - Not within any part of the kernel
174 * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
175 */
176 static bool can_free_region(u64 start, u64 size)
177 {
178 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
179 return false;
180
181 if (!e820_all_mapped(start, start+size, E820_RAM))
182 return false;
183
184 return true;
185 }
186
187 /*
188 * The UEFI specification makes it clear that the operating system is free to do
189 * whatever it wants with boot services code after ExitBootServices() has been
190 * called. Ignoring this recommendation a significant bunch of EFI implementations
191 * continue calling into boot services code (SetVirtualAddressMap). In order to
192 * work around such buggy implementations we reserve boot services region during
193 * EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it
194 * is discarded.
195 */
196 void __init efi_reserve_boot_services(void)
197 {
198 efi_memory_desc_t *md;
199
200 for_each_efi_memory_desc(md) {
201 u64 start = md->phys_addr;
202 u64 size = md->num_pages << EFI_PAGE_SHIFT;
203 bool already_reserved;
204
205 if (md->type != EFI_BOOT_SERVICES_CODE &&
206 md->type != EFI_BOOT_SERVICES_DATA)
207 continue;
208
209 already_reserved = memblock_is_region_reserved(start, size);
210
211 /*
212 * Because the following memblock_reserve() is paired
213 * with free_bootmem_late() for this region in
214 * efi_free_boot_services(), we must be extremely
215 * careful not to reserve, and subsequently free,
216 * critical regions of memory (like the kernel image) or
217 * those regions that somebody else has already
218 * reserved.
219 *
220 * A good example of a critical region that must not be
221 * freed is page zero (first 4Kb of memory), which may
222 * contain boot services code/data but is marked
223 * E820_RESERVED by trim_bios_range().
224 */
225 if (!already_reserved) {
226 memblock_reserve(start, size);
227
228 /*
229 * If we are the first to reserve the region, no
230 * one else cares about it. We own it and can
231 * free it later.
232 */
233 if (can_free_region(start, size))
234 continue;
235 }
236
237 /*
238 * We don't own the region. We must not free it.
239 *
240 * Setting this bit for a boot services region really
241 * doesn't make sense as far as the firmware is
242 * concerned, but it does provide us with a way to tag
243 * those regions that must not be paired with
244 * free_bootmem_late().
245 */
246 md->attribute |= EFI_MEMORY_RUNTIME;
247 }
248 }
249
250 void __init efi_free_boot_services(void)
251 {
252 efi_memory_desc_t *md;
253
254 for_each_efi_memory_desc(md) {
255 unsigned long long start = md->phys_addr;
256 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
257 size_t rm_size;
258
259 if (md->type != EFI_BOOT_SERVICES_CODE &&
260 md->type != EFI_BOOT_SERVICES_DATA)
261 continue;
262
263 /* Do not free, someone else owns it: */
264 if (md->attribute & EFI_MEMORY_RUNTIME)
265 continue;
266
267 /*
268 * Nasty quirk: if all sub-1MB memory is used for boot
269 * services, we can get here without having allocated the
270 * real mode trampoline. It's too late to hand boot services
271 * memory back to the memblock allocator, so instead
272 * try to manually allocate the trampoline if needed.
273 *
274 * I've seen this on a Dell XPS 13 9350 with firmware
275 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
276 * grub2-efi on a hard disk. (And no, I don't know why
277 * this happened, but Linux should still try to boot rather
278 * panicing early.)
279 */
280 rm_size = real_mode_size_needed();
281 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
282 set_real_mode_mem(start, rm_size);
283 start += rm_size;
284 size -= rm_size;
285 }
286
287 free_bootmem_late(start, size);
288 }
289
290 efi_unmap_memmap();
291 }
292
293 /*
294 * A number of config table entries get remapped to virtual addresses
295 * after entering EFI virtual mode. However, the kexec kernel requires
296 * their physical addresses therefore we pass them via setup_data and
297 * correct those entries to their respective physical addresses here.
298 *
299 * Currently only handles smbios which is necessary for some firmware
300 * implementation.
301 */
302 int __init efi_reuse_config(u64 tables, int nr_tables)
303 {
304 int i, sz, ret = 0;
305 void *p, *tablep;
306 struct efi_setup_data *data;
307
308 if (!efi_setup)
309 return 0;
310
311 if (!efi_enabled(EFI_64BIT))
312 return 0;
313
314 data = early_memremap(efi_setup, sizeof(*data));
315 if (!data) {
316 ret = -ENOMEM;
317 goto out;
318 }
319
320 if (!data->smbios)
321 goto out_memremap;
322
323 sz = sizeof(efi_config_table_64_t);
324
325 p = tablep = early_memremap(tables, nr_tables * sz);
326 if (!p) {
327 pr_err("Could not map Configuration table!\n");
328 ret = -ENOMEM;
329 goto out_memremap;
330 }
331
332 for (i = 0; i < efi.systab->nr_tables; i++) {
333 efi_guid_t guid;
334
335 guid = ((efi_config_table_64_t *)p)->guid;
336
337 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
338 ((efi_config_table_64_t *)p)->table = data->smbios;
339 p += sz;
340 }
341 early_memunmap(tablep, nr_tables * sz);
342
343 out_memremap:
344 early_memunmap(data, sizeof(*data));
345 out:
346 return ret;
347 }
348
349 static const struct dmi_system_id sgi_uv1_dmi[] = {
350 { NULL, "SGI UV1",
351 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"),
352 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
353 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"),
354 }
355 },
356 { } /* NULL entry stops DMI scanning */
357 };
358
359 void __init efi_apply_memmap_quirks(void)
360 {
361 /*
362 * Once setup is done earlier, unmap the EFI memory map on mismatched
363 * firmware/kernel architectures since there is no support for runtime
364 * services.
365 */
366 if (!efi_runtime_supported()) {
367 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
368 efi_unmap_memmap();
369 }
370
371 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
372 if (dmi_check_system(sgi_uv1_dmi))
373 set_bit(EFI_OLD_MEMMAP, &efi.flags);
374 }
375
376 /*
377 * For most modern platforms the preferred method of powering off is via
378 * ACPI. However, there are some that are known to require the use of
379 * EFI runtime services and for which ACPI does not work at all.
380 *
381 * Using EFI is a last resort, to be used only if no other option
382 * exists.
383 */
384 bool efi_reboot_required(void)
385 {
386 if (!acpi_gbl_reduced_hardware)
387 return false;
388
389 efi_reboot_quirk_mode = EFI_RESET_WARM;
390 return true;
391 }
392
393 bool efi_poweroff_required(void)
394 {
395 return acpi_gbl_reduced_hardware || acpi_no_s5;
396 }
This page took 0.097089 seconds and 5 git commands to generate.