ACPI / util: cast data to u64 before shifting to fix sign extension
[deliverable/linux.git] / arch / x86 / platform / intel-quark / imr.c
1 /**
2 * imr.c
3 *
4 * Copyright(c) 2013 Intel Corporation.
5 * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
6 *
7 * IMR registers define an isolated region of memory that can
8 * be masked to prohibit certain system agents from accessing memory.
9 * When a device behind a masked port performs an access - snooped or
10 * not, an IMR may optionally prevent that transaction from changing
11 * the state of memory or from getting correct data in response to the
12 * operation.
13 *
14 * Write data will be dropped and reads will return 0xFFFFFFFF, the
15 * system will reset and system BIOS will print out an error message to
16 * inform the user that an IMR has been violated.
17 *
18 * This code is based on the Linux MTRR code and reference code from
19 * Intel's Quark BSP EFI, Linux and grub code.
20 *
21 * See quark-x1000-datasheet.pdf for register definitions.
22 * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
23 */
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <asm-generic/sections.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/imr.h>
30 #include <asm/iosf_mbi.h>
31 #include <linux/debugfs.h>
32 #include <linux/init.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/types.h>
36
37 struct imr_device {
38 struct dentry *file;
39 bool init;
40 struct mutex lock;
41 int max_imr;
42 int reg_base;
43 };
44
45 static struct imr_device imr_dev;
46
47 /*
48 * IMR read/write mask control registers.
49 * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
50 * bit definitions.
51 *
52 * addr_hi
53 * 31 Lock bit
54 * 30:24 Reserved
55 * 23:2 1 KiB aligned lo address
56 * 1:0 Reserved
57 *
58 * addr_hi
59 * 31:24 Reserved
60 * 23:2 1 KiB aligned hi address
61 * 1:0 Reserved
62 */
63 #define IMR_LOCK BIT(31)
64
65 struct imr_regs {
66 u32 addr_lo;
67 u32 addr_hi;
68 u32 rmask;
69 u32 wmask;
70 };
71
72 #define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32))
73 #define IMR_SHIFT 8
74 #define imr_to_phys(x) ((x) << IMR_SHIFT)
75 #define phys_to_imr(x) ((x) >> IMR_SHIFT)
76
77 /**
78 * imr_is_enabled - true if an IMR is enabled false otherwise.
79 *
80 * Determines if an IMR is enabled based on address range and read/write
81 * mask. An IMR set with an address range set to zero and a read/write
82 * access mask set to all is considered to be disabled. An IMR in any
83 * other state - for example set to zero but without read/write access
84 * all is considered to be enabled. This definition of disabled is how
85 * firmware switches off an IMR and is maintained in kernel for
86 * consistency.
87 *
88 * @imr: pointer to IMR descriptor.
89 * @return: true if IMR enabled false if disabled.
90 */
91 static inline int imr_is_enabled(struct imr_regs *imr)
92 {
93 return !(imr->rmask == IMR_READ_ACCESS_ALL &&
94 imr->wmask == IMR_WRITE_ACCESS_ALL &&
95 imr_to_phys(imr->addr_lo) == 0 &&
96 imr_to_phys(imr->addr_hi) == 0);
97 }
98
99 /**
100 * imr_read - read an IMR at a given index.
101 *
102 * Requires caller to hold imr mutex.
103 *
104 * @idev: pointer to imr_device structure.
105 * @imr_id: IMR entry to read.
106 * @imr: IMR structure representing address and access masks.
107 * @return: 0 on success or error code passed from mbi_iosf on failure.
108 */
109 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
110 {
111 u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
112 int ret;
113
114 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
115 if (ret)
116 return ret;
117
118 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
119 if (ret)
120 return ret;
121
122 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
123 if (ret)
124 return ret;
125
126 return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
127 }
128
129 /**
130 * imr_write - write an IMR at a given index.
131 *
132 * Requires caller to hold imr mutex.
133 * Note lock bits need to be written independently of address bits.
134 *
135 * @idev: pointer to imr_device structure.
136 * @imr_id: IMR entry to write.
137 * @imr: IMR structure representing address and access masks.
138 * @lock: indicates if the IMR lock bit should be applied.
139 * @return: 0 on success or error code passed from mbi_iosf on failure.
140 */
141 static int imr_write(struct imr_device *idev, u32 imr_id,
142 struct imr_regs *imr, bool lock)
143 {
144 unsigned long flags;
145 u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
146 int ret;
147
148 local_irq_save(flags);
149
150 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
151 if (ret)
152 goto failed;
153
154 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
155 if (ret)
156 goto failed;
157
158 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
159 if (ret)
160 goto failed;
161
162 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
163 if (ret)
164 goto failed;
165
166 /* Lock bit must be set separately to addr_lo address bits. */
167 if (lock) {
168 imr->addr_lo |= IMR_LOCK;
169 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE,
170 reg - IMR_NUM_REGS, imr->addr_lo);
171 if (ret)
172 goto failed;
173 }
174
175 local_irq_restore(flags);
176 return 0;
177 failed:
178 /*
179 * If writing to the IOSF failed then we're in an unknown state,
180 * likely a very bad state. An IMR in an invalid state will almost
181 * certainly lead to a memory access violation.
182 */
183 local_irq_restore(flags);
184 WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
185 imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
186
187 return ret;
188 }
189
190 /**
191 * imr_dbgfs_state_show - print state of IMR registers.
192 *
193 * @s: pointer to seq_file for output.
194 * @unused: unused parameter.
195 * @return: 0 on success or error code passed from mbi_iosf on failure.
196 */
197 static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
198 {
199 phys_addr_t base;
200 phys_addr_t end;
201 int i;
202 struct imr_device *idev = s->private;
203 struct imr_regs imr;
204 size_t size;
205 int ret = -ENODEV;
206
207 mutex_lock(&idev->lock);
208
209 for (i = 0; i < idev->max_imr; i++) {
210
211 ret = imr_read(idev, i, &imr);
212 if (ret)
213 break;
214
215 /*
216 * Remember to add IMR_ALIGN bytes to size to indicate the
217 * inherent IMR_ALIGN size bytes contained in the masked away
218 * lower ten bits.
219 */
220 if (imr_is_enabled(&imr)) {
221 base = imr_to_phys(imr.addr_lo);
222 end = imr_to_phys(imr.addr_hi) + IMR_MASK;
223 size = end - base + 1;
224 } else {
225 base = 0;
226 end = 0;
227 size = 0;
228 }
229 seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
230 "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
231 &base, &end, size, imr.rmask, imr.wmask,
232 imr_is_enabled(&imr) ? "enabled " : "disabled",
233 imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
234 }
235
236 mutex_unlock(&idev->lock);
237 return ret;
238 }
239
240 /**
241 * imr_state_open - debugfs open callback.
242 *
243 * @inode: pointer to struct inode.
244 * @file: pointer to struct file.
245 * @return: result of single open.
246 */
247 static int imr_state_open(struct inode *inode, struct file *file)
248 {
249 return single_open(file, imr_dbgfs_state_show, inode->i_private);
250 }
251
252 static const struct file_operations imr_state_ops = {
253 .open = imr_state_open,
254 .read = seq_read,
255 .llseek = seq_lseek,
256 .release = single_release,
257 };
258
259 /**
260 * imr_debugfs_register - register debugfs hooks.
261 *
262 * @idev: pointer to imr_device structure.
263 * @return: 0 on success - errno on failure.
264 */
265 static int imr_debugfs_register(struct imr_device *idev)
266 {
267 idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
268 idev, &imr_state_ops);
269 return PTR_ERR_OR_ZERO(idev->file);
270 }
271
272 /**
273 * imr_debugfs_unregister - unregister debugfs hooks.
274 *
275 * @idev: pointer to imr_device structure.
276 * @return:
277 */
278 static void imr_debugfs_unregister(struct imr_device *idev)
279 {
280 debugfs_remove(idev->file);
281 }
282
283 /**
284 * imr_check_params - check passed address range IMR alignment and non-zero size
285 *
286 * @base: base address of intended IMR.
287 * @size: size of intended IMR.
288 * @return: zero on valid range -EINVAL on unaligned base/size.
289 */
290 static int imr_check_params(phys_addr_t base, size_t size)
291 {
292 if ((base & IMR_MASK) || (size & IMR_MASK)) {
293 pr_err("base %pa size 0x%08zx must align to 1KiB\n",
294 &base, size);
295 return -EINVAL;
296 }
297 if (size == 0)
298 return -EINVAL;
299
300 return 0;
301 }
302
303 /**
304 * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
305 *
306 * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
307 * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
308 * as a result.
309 *
310 * @size: input size bytes.
311 * @return: reduced size.
312 */
313 static inline size_t imr_raw_size(size_t size)
314 {
315 return size - IMR_ALIGN;
316 }
317
318 /**
319 * imr_address_overlap - detects an address overlap.
320 *
321 * @addr: address to check against an existing IMR.
322 * @imr: imr being checked.
323 * @return: true for overlap false for no overlap.
324 */
325 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
326 {
327 return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
328 }
329
330 /**
331 * imr_add_range - add an Isolated Memory Region.
332 *
333 * @base: physical base address of region aligned to 1KiB.
334 * @size: physical size of region in bytes must be aligned to 1KiB.
335 * @read_mask: read access mask.
336 * @write_mask: write access mask.
337 * @lock: indicates whether or not to permanently lock this region.
338 * @return: zero on success or negative value indicating error.
339 */
340 int imr_add_range(phys_addr_t base, size_t size,
341 unsigned int rmask, unsigned int wmask, bool lock)
342 {
343 phys_addr_t end;
344 unsigned int i;
345 struct imr_device *idev = &imr_dev;
346 struct imr_regs imr;
347 size_t raw_size;
348 int reg;
349 int ret;
350
351 if (WARN_ONCE(idev->init == false, "driver not initialized"))
352 return -ENODEV;
353
354 ret = imr_check_params(base, size);
355 if (ret)
356 return ret;
357
358 /* Tweak the size value. */
359 raw_size = imr_raw_size(size);
360 end = base + raw_size;
361
362 /*
363 * Check for reserved IMR value common to firmware, kernel and grub
364 * indicating a disabled IMR.
365 */
366 imr.addr_lo = phys_to_imr(base);
367 imr.addr_hi = phys_to_imr(end);
368 imr.rmask = rmask;
369 imr.wmask = wmask;
370 if (!imr_is_enabled(&imr))
371 return -ENOTSUPP;
372
373 mutex_lock(&idev->lock);
374
375 /*
376 * Find a free IMR while checking for an existing overlapping range.
377 * Note there's no restriction in silicon to prevent IMR overlaps.
378 * For the sake of simplicity and ease in defining/debugging an IMR
379 * memory map we exclude IMR overlaps.
380 */
381 reg = -1;
382 for (i = 0; i < idev->max_imr; i++) {
383 ret = imr_read(idev, i, &imr);
384 if (ret)
385 goto failed;
386
387 /* Find overlap @ base or end of requested range. */
388 ret = -EINVAL;
389 if (imr_is_enabled(&imr)) {
390 if (imr_address_overlap(base, &imr))
391 goto failed;
392 if (imr_address_overlap(end, &imr))
393 goto failed;
394 } else {
395 reg = i;
396 }
397 }
398
399 /* Error out if we have no free IMR entries. */
400 if (reg == -1) {
401 ret = -ENOMEM;
402 goto failed;
403 }
404
405 pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
406 reg, &base, &end, raw_size, rmask, wmask);
407
408 /* Enable IMR at specified range and access mask. */
409 imr.addr_lo = phys_to_imr(base);
410 imr.addr_hi = phys_to_imr(end);
411 imr.rmask = rmask;
412 imr.wmask = wmask;
413
414 ret = imr_write(idev, reg, &imr, lock);
415 if (ret < 0) {
416 /*
417 * In the highly unlikely event iosf_mbi_write failed
418 * attempt to rollback the IMR setup skipping the trapping
419 * of further IOSF write failures.
420 */
421 imr.addr_lo = 0;
422 imr.addr_hi = 0;
423 imr.rmask = IMR_READ_ACCESS_ALL;
424 imr.wmask = IMR_WRITE_ACCESS_ALL;
425 imr_write(idev, reg, &imr, false);
426 }
427 failed:
428 mutex_unlock(&idev->lock);
429 return ret;
430 }
431 EXPORT_SYMBOL_GPL(imr_add_range);
432
433 /**
434 * __imr_remove_range - delete an Isolated Memory Region.
435 *
436 * This function allows you to delete an IMR by its index specified by reg or
437 * by address range specified by base and size respectively. If you specify an
438 * index on its own the base and size parameters are ignored.
439 * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
440 * imr_remove_range(-1, base, size); delete IMR from base to base+size.
441 *
442 * @reg: imr index to remove.
443 * @base: physical base address of region aligned to 1 KiB.
444 * @size: physical size of region in bytes aligned to 1 KiB.
445 * @return: -EINVAL on invalid range or out or range id
446 * -ENODEV if reg is valid but no IMR exists or is locked
447 * 0 on success.
448 */
449 static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
450 {
451 phys_addr_t end;
452 bool found = false;
453 unsigned int i;
454 struct imr_device *idev = &imr_dev;
455 struct imr_regs imr;
456 size_t raw_size;
457 int ret = 0;
458
459 if (WARN_ONCE(idev->init == false, "driver not initialized"))
460 return -ENODEV;
461
462 /*
463 * Validate address range if deleting by address, else we are
464 * deleting by index where base and size will be ignored.
465 */
466 if (reg == -1) {
467 ret = imr_check_params(base, size);
468 if (ret)
469 return ret;
470 }
471
472 /* Tweak the size value. */
473 raw_size = imr_raw_size(size);
474 end = base + raw_size;
475
476 mutex_lock(&idev->lock);
477
478 if (reg >= 0) {
479 /* If a specific IMR is given try to use it. */
480 ret = imr_read(idev, reg, &imr);
481 if (ret)
482 goto failed;
483
484 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
485 ret = -ENODEV;
486 goto failed;
487 }
488 found = true;
489 } else {
490 /* Search for match based on address range. */
491 for (i = 0; i < idev->max_imr; i++) {
492 ret = imr_read(idev, i, &imr);
493 if (ret)
494 goto failed;
495
496 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
497 continue;
498
499 if ((imr_to_phys(imr.addr_lo) == base) &&
500 (imr_to_phys(imr.addr_hi) == end)) {
501 found = true;
502 reg = i;
503 break;
504 }
505 }
506 }
507
508 if (!found) {
509 ret = -ENODEV;
510 goto failed;
511 }
512
513 pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
514
515 /* Tear down the IMR. */
516 imr.addr_lo = 0;
517 imr.addr_hi = 0;
518 imr.rmask = IMR_READ_ACCESS_ALL;
519 imr.wmask = IMR_WRITE_ACCESS_ALL;
520
521 ret = imr_write(idev, reg, &imr, false);
522
523 failed:
524 mutex_unlock(&idev->lock);
525 return ret;
526 }
527
528 /**
529 * imr_remove_range - delete an Isolated Memory Region by address
530 *
531 * This function allows you to delete an IMR by an address range specified
532 * by base and size respectively.
533 * imr_remove_range(base, size); delete IMR from base to base+size.
534 *
535 * @base: physical base address of region aligned to 1 KiB.
536 * @size: physical size of region in bytes aligned to 1 KiB.
537 * @return: -EINVAL on invalid range or out or range id
538 * -ENODEV if reg is valid but no IMR exists or is locked
539 * 0 on success.
540 */
541 int imr_remove_range(phys_addr_t base, size_t size)
542 {
543 return __imr_remove_range(-1, base, size);
544 }
545 EXPORT_SYMBOL_GPL(imr_remove_range);
546
547 /**
548 * imr_clear - delete an Isolated Memory Region by index
549 *
550 * This function allows you to delete an IMR by an address range specified
551 * by the index of the IMR. Useful for initial sanitization of the IMR
552 * address map.
553 * imr_ge(base, size); delete IMR from base to base+size.
554 *
555 * @reg: imr index to remove.
556 * @return: -EINVAL on invalid range or out or range id
557 * -ENODEV if reg is valid but no IMR exists or is locked
558 * 0 on success.
559 */
560 static inline int imr_clear(int reg)
561 {
562 return __imr_remove_range(reg, 0, 0);
563 }
564
565 /**
566 * imr_fixup_memmap - Tear down IMRs used during bootup.
567 *
568 * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
569 * that need to be removed before the kernel hands out one of the IMR
570 * encased addresses to a downstream DMA agent such as the SD or Ethernet.
571 * IMRs on Galileo are setup to immediately reset the system on violation.
572 * As a result if you're running a root filesystem from SD - you'll need
573 * the boot-time IMRs torn down or you'll find seemingly random resets when
574 * using your filesystem.
575 *
576 * @idev: pointer to imr_device structure.
577 * @return:
578 */
579 static void __init imr_fixup_memmap(struct imr_device *idev)
580 {
581 phys_addr_t base = virt_to_phys(&_text);
582 size_t size = virt_to_phys(&__end_rodata) - base;
583 unsigned long start, end;
584 int i;
585 int ret;
586
587 /* Tear down all existing unlocked IMRs. */
588 for (i = 0; i < idev->max_imr; i++)
589 imr_clear(i);
590
591 start = (unsigned long)_text;
592 end = (unsigned long)__end_rodata - 1;
593
594 /*
595 * Setup an unlocked IMR around the physical extent of the kernel
596 * from the beginning of the .text secton to the end of the
597 * .rodata section as one physically contiguous block.
598 *
599 * We don't round up @size since it is already PAGE_SIZE aligned.
600 * See vmlinux.lds.S for details.
601 */
602 ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, false);
603 if (ret < 0) {
604 pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
605 size / 1024, start, end);
606 } else {
607 pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
608 size / 1024, start, end);
609 }
610
611 }
612
613 static const struct x86_cpu_id imr_ids[] __initconst = {
614 { X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000. */
615 {}
616 };
617 MODULE_DEVICE_TABLE(x86cpu, imr_ids);
618
619 /**
620 * imr_init - entry point for IMR driver.
621 *
622 * return: -ENODEV for no IMR support 0 if good to go.
623 */
624 static int __init imr_init(void)
625 {
626 struct imr_device *idev = &imr_dev;
627 int ret;
628
629 if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
630 return -ENODEV;
631
632 idev->max_imr = QUARK_X1000_IMR_MAX;
633 idev->reg_base = QUARK_X1000_IMR_REGBASE;
634 idev->init = true;
635
636 mutex_init(&idev->lock);
637 ret = imr_debugfs_register(idev);
638 if (ret != 0)
639 pr_warn("debugfs register failed!\n");
640 imr_fixup_memmap(idev);
641 return 0;
642 }
643
644 /**
645 * imr_exit - exit point for IMR code.
646 *
647 * Deregisters debugfs, leave IMR state as-is.
648 *
649 * return:
650 */
651 static void __exit imr_exit(void)
652 {
653 imr_debugfs_unregister(&imr_dev);
654 }
655
656 module_init(imr_init);
657 module_exit(imr_exit);
658
659 MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
660 MODULE_DESCRIPTION("Intel Isolated Memory Region driver");
661 MODULE_LICENSE("Dual BSD/GPL");
This page took 0.051224 seconds and 5 git commands to generate.