Merge branch 'keys-asym-keyctl' into keys-next
[deliverable/linux.git] / arch / xtensa / include / asm / pgtable.h
1 /*
2 * include/asm-xtensa/pgtable.h
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Copyright (C) 2001 - 2013 Tensilica Inc.
9 */
10
11 #ifndef _XTENSA_PGTABLE_H
12 #define _XTENSA_PGTABLE_H
13
14 #include <asm-generic/pgtable-nopmd.h>
15 #include <asm/page.h>
16
17 /*
18 * We only use two ring levels, user and kernel space.
19 */
20
21 #ifdef CONFIG_MMU
22 #define USER_RING 1 /* user ring level */
23 #else
24 #define USER_RING 0
25 #endif
26 #define KERNEL_RING 0 /* kernel ring level */
27
28 /*
29 * The Xtensa architecture port of Linux has a two-level page table system,
30 * i.e. the logical three-level Linux page table layout is folded.
31 * Each task has the following memory page tables:
32 *
33 * PGD table (page directory), ie. 3rd-level page table:
34 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
35 * (Architectures that don't have the PMD folded point to the PMD tables)
36 *
37 * The pointer to the PGD table for a given task can be retrieved from
38 * the task structure (struct task_struct*) t, e.g. current():
39 * (t->mm ? t->mm : t->active_mm)->pgd
40 *
41 * PMD tables (page middle-directory), ie. 2nd-level page tables:
42 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
43 *
44 * PTE tables (page table entry), ie. 1st-level page tables:
45 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
46 * invalid_pte_table for absent mappings.
47 *
48 * The individual pages are 4 kB big with special pages for the empty_zero_page.
49 */
50
51 #define PGDIR_SHIFT 22
52 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
53 #define PGDIR_MASK (~(PGDIR_SIZE-1))
54
55 /*
56 * Entries per page directory level: we use two-level, so
57 * we don't really have any PMD directory physically.
58 */
59 #define PTRS_PER_PTE 1024
60 #define PTRS_PER_PTE_SHIFT 10
61 #define PTRS_PER_PGD 1024
62 #define PGD_ORDER 0
63 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
64 #define FIRST_USER_ADDRESS 0UL
65 #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
66
67 /*
68 * Virtual memory area. We keep a distance to other memory regions to be
69 * on the safe side. We also use this area for cache aliasing.
70 */
71 #define VMALLOC_START 0xC0000000
72 #define VMALLOC_END 0xC7FEFFFF
73 #define TLBTEMP_BASE_1 0xC7FF0000
74 #define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
75 #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
76 #define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
77 #else
78 #define TLBTEMP_SIZE ICACHE_WAY_SIZE
79 #endif
80
81 /*
82 * For the Xtensa architecture, the PTE layout is as follows:
83 *
84 * 31------12 11 10-9 8-6 5-4 3-2 1-0
85 * +-----------------------------------------+
86 * | | Software | HARDWARE |
87 * | PPN | ADW | RI |Attribute|
88 * +-----------------------------------------+
89 * pte_none | MBZ | 01 | 11 | 00 |
90 * +-----------------------------------------+
91 * present | PPN | 0 | 00 | ADW | RI | CA | wx |
92 * +- - - - - - - - - - - - - - - - - - - - -+
93 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
94 * +-----------------------------------------+
95 * swap | index | type | 01 | 11 | 00 |
96 * +-----------------------------------------+
97 *
98 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
99 * +-----------------------------------------+
100 * present | PPN | 0 | 00 | ADW | RI | CA | w1 |
101 * +-----------------------------------------+
102 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
103 * +-----------------------------------------+
104 *
105 * Legend:
106 * PPN Physical Page Number
107 * ADW software: accessed (young) / dirty / writable
108 * RI ring (0=privileged, 1=user, 2 and 3 are unused)
109 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
110 * (11 is invalid and used to mark pages that are not present)
111 * w page is writable (hw)
112 * x page is executable (hw)
113 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
114 * (note that the index is always non-zero)
115 * type swap type (5 bits -> 32 types)
116 *
117 * Notes:
118 * - (PROT_NONE) is a special case of 'present' but causes an exception for
119 * any access (read, write, and execute).
120 * - 'multihit-exception' has the highest priority of all MMU exceptions,
121 * so the ring must be set to 'RING_USER' even for 'non-present' pages.
122 * - on older hardware, the exectuable flag was not supported and
123 * used as a 'valid' flag, so it needs to be always set.
124 * - we need to keep track of certain flags in software (dirty and young)
125 * to do this, we use write exceptions and have a separate software w-flag.
126 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
127 */
128
129 #define _PAGE_ATTRIB_MASK 0xf
130
131 #define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
132 #define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
133
134 #define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
135 #define _PAGE_CA_WB (1<<2) /* write-back */
136 #define _PAGE_CA_WT (2<<2) /* write-through */
137 #define _PAGE_CA_MASK (3<<2)
138 #define _PAGE_CA_INVALID (3<<2)
139
140 /* We use invalid attribute values to distinguish special pte entries */
141 #if XCHAL_HW_VERSION_MAJOR < 2000
142 #define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
143 #define _PAGE_NONE 0x04
144 #else
145 #define _PAGE_HW_VALID 0x00
146 #define _PAGE_NONE 0x0f
147 #endif
148
149 #define _PAGE_USER (1<<4) /* user access (ring=1) */
150
151 /* Software */
152 #define _PAGE_WRITABLE_BIT 6
153 #define _PAGE_WRITABLE (1<<6) /* software: page writable */
154 #define _PAGE_DIRTY (1<<7) /* software: page dirty */
155 #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
156
157 #ifdef CONFIG_MMU
158
159 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
160 #define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
161
162 #define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
163 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
164 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
165 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
166 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
167 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
168 #define PAGE_SHARED_EXEC \
169 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
170 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
171 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
172
173 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
174 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
175 #else
176 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
177 #endif
178
179 #else /* no mmu */
180
181 # define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
182 # define PAGE_NONE __pgprot(0)
183 # define PAGE_SHARED __pgprot(0)
184 # define PAGE_COPY __pgprot(0)
185 # define PAGE_READONLY __pgprot(0)
186 # define PAGE_KERNEL __pgprot(0)
187
188 #endif
189
190 /*
191 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
192 * the MMU can't do page protection for execute, and considers that the same as
193 * read. Also, write permissions may imply read permissions.
194 * What follows is the closest we can get by reasonable means..
195 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
196 */
197 #define __P000 PAGE_NONE /* private --- */
198 #define __P001 PAGE_READONLY /* private --r */
199 #define __P010 PAGE_COPY /* private -w- */
200 #define __P011 PAGE_COPY /* private -wr */
201 #define __P100 PAGE_READONLY_EXEC /* private x-- */
202 #define __P101 PAGE_READONLY_EXEC /* private x-r */
203 #define __P110 PAGE_COPY_EXEC /* private xw- */
204 #define __P111 PAGE_COPY_EXEC /* private xwr */
205
206 #define __S000 PAGE_NONE /* shared --- */
207 #define __S001 PAGE_READONLY /* shared --r */
208 #define __S010 PAGE_SHARED /* shared -w- */
209 #define __S011 PAGE_SHARED /* shared -wr */
210 #define __S100 PAGE_READONLY_EXEC /* shared x-- */
211 #define __S101 PAGE_READONLY_EXEC /* shared x-r */
212 #define __S110 PAGE_SHARED_EXEC /* shared xw- */
213 #define __S111 PAGE_SHARED_EXEC /* shared xwr */
214
215 #ifndef __ASSEMBLY__
216
217 #define pte_ERROR(e) \
218 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
219 #define pgd_ERROR(e) \
220 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
221
222 extern unsigned long empty_zero_page[1024];
223
224 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
225
226 #ifdef CONFIG_MMU
227 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
228 extern void paging_init(void);
229 #else
230 # define swapper_pg_dir NULL
231 static inline void paging_init(void) { }
232 #endif
233 static inline void pgtable_cache_init(void) { }
234
235 /*
236 * The pmd contains the kernel virtual address of the pte page.
237 */
238 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
239 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
240
241 /*
242 * pte status.
243 */
244 # define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
245 #if XCHAL_HW_VERSION_MAJOR < 2000
246 # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
247 #else
248 # define pte_present(pte) \
249 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
250 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
251 #endif
252 #define pte_clear(mm,addr,ptep) \
253 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
254
255 #define pmd_none(pmd) (!pmd_val(pmd))
256 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
257 #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
258 #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
259
260 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
261 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
262 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
263 static inline int pte_special(pte_t pte) { return 0; }
264
265 static inline pte_t pte_wrprotect(pte_t pte)
266 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
267 static inline pte_t pte_mkclean(pte_t pte)
268 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
269 static inline pte_t pte_mkold(pte_t pte)
270 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
271 static inline pte_t pte_mkdirty(pte_t pte)
272 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
273 static inline pte_t pte_mkyoung(pte_t pte)
274 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
275 static inline pte_t pte_mkwrite(pte_t pte)
276 { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
277 static inline pte_t pte_mkspecial(pte_t pte)
278 { return pte; }
279
280 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
281
282 /*
283 * Conversion functions: convert a page and protection to a page entry,
284 * and a page entry and page directory to the page they refer to.
285 */
286
287 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
288 #define pte_same(a,b) (pte_val(a) == pte_val(b))
289 #define pte_page(x) pfn_to_page(pte_pfn(x))
290 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
291 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
292
293 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
294 {
295 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
296 }
297
298 /*
299 * Certain architectures need to do special things when pte's
300 * within a page table are directly modified. Thus, the following
301 * hook is made available.
302 */
303 static inline void update_pte(pte_t *ptep, pte_t pteval)
304 {
305 *ptep = pteval;
306 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
307 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
308 #endif
309
310 }
311
312 struct mm_struct;
313
314 static inline void
315 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
316 {
317 update_pte(ptep, pteval);
318 }
319
320 static inline void set_pte(pte_t *ptep, pte_t pteval)
321 {
322 update_pte(ptep, pteval);
323 }
324
325 static inline void
326 set_pmd(pmd_t *pmdp, pmd_t pmdval)
327 {
328 *pmdp = pmdval;
329 }
330
331 struct vm_area_struct;
332
333 static inline int
334 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
335 pte_t *ptep)
336 {
337 pte_t pte = *ptep;
338 if (!pte_young(pte))
339 return 0;
340 update_pte(ptep, pte_mkold(pte));
341 return 1;
342 }
343
344 static inline pte_t
345 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
346 {
347 pte_t pte = *ptep;
348 pte_clear(mm, addr, ptep);
349 return pte;
350 }
351
352 static inline void
353 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
354 {
355 pte_t pte = *ptep;
356 update_pte(ptep, pte_wrprotect(pte));
357 }
358
359 /* to find an entry in a kernel page-table-directory */
360 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
361
362 /* to find an entry in a page-table-directory */
363 #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
364
365 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
366
367 /* Find an entry in the second-level page table.. */
368 #define pmd_offset(dir,address) ((pmd_t*)(dir))
369
370 /* Find an entry in the third-level page table.. */
371 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
372 #define pte_offset_kernel(dir,addr) \
373 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
374 #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
375 #define pte_unmap(pte) do { } while (0)
376
377
378 /*
379 * Encode and decode a swap and file entry.
380 */
381 #define SWP_TYPE_BITS 5
382 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
383
384 #define __swp_type(entry) (((entry).val >> 6) & 0x1f)
385 #define __swp_offset(entry) ((entry).val >> 11)
386 #define __swp_entry(type,offs) \
387 ((swp_entry_t){((type) << 6) | ((offs) << 11) | \
388 _PAGE_CA_INVALID | _PAGE_USER})
389 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
390 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
391
392 #endif /* !defined (__ASSEMBLY__) */
393
394
395 #ifdef __ASSEMBLY__
396
397 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
398 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
399 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
400 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
401 *
402 * Note: We require an additional temporary register which can be the same as
403 * the register that holds the address.
404 *
405 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
406 *
407 */
408 #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
409 #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
410
411 #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
412 _PGD_INDEX(tmp, adr); \
413 addx4 mm, tmp, mm
414
415 #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
416 srli pmd, pmd, PAGE_SHIFT; \
417 slli pmd, pmd, PAGE_SHIFT; \
418 addx4 pmd, tmp, pmd
419
420 #else
421
422 #define kern_addr_valid(addr) (1)
423
424 extern void update_mmu_cache(struct vm_area_struct * vma,
425 unsigned long address, pte_t *ptep);
426
427 typedef pte_t *pte_addr_t;
428
429 #endif /* !defined (__ASSEMBLY__) */
430
431 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
432 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
433 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
434 #define __HAVE_ARCH_PTEP_MKDIRTY
435 #define __HAVE_ARCH_PTE_SAME
436 /* We provide our own get_unmapped_area to cope with
437 * SHM area cache aliasing for userland.
438 */
439 #define HAVE_ARCH_UNMAPPED_AREA
440
441 #include <asm-generic/pgtable.h>
442
443 #endif /* _XTENSA_PGTABLE_H */
This page took 0.053376 seconds and 5 git commands to generate.