* coff-alpha.c (alpha_relocate_section): Unify warning message
[deliverable/binutils-gdb.git] / bfd / coff-alpha.c
1 /* BFD back-end for ALPHA Extended-Coff files.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
5 Ian Lance Taylor <ian@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "coff/internal.h"
28 #include "coff/sym.h"
29 #include "coff/symconst.h"
30 #include "coff/ecoff.h"
31 #include "coff/alpha.h"
32 #include "aout/ar.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 \f
36 /* Prototypes for static functions. */
37
38 static const bfd_target *alpha_ecoff_object_p PARAMS ((bfd *));
39 static boolean alpha_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
40 static PTR alpha_ecoff_mkobject_hook PARAMS ((bfd *, PTR filehdr, PTR aouthdr));
41 static void alpha_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
42 struct internal_reloc *));
43 static void alpha_ecoff_swap_reloc_out PARAMS ((bfd *,
44 const struct internal_reloc *,
45 PTR));
46 static void alpha_adjust_reloc_in PARAMS ((bfd *,
47 const struct internal_reloc *,
48 arelent *));
49 static void alpha_adjust_reloc_out PARAMS ((bfd *, const arelent *,
50 struct internal_reloc *));
51 static reloc_howto_type *alpha_bfd_reloc_type_lookup
52 PARAMS ((bfd *, bfd_reloc_code_real_type));
53 static bfd_byte *alpha_ecoff_get_relocated_section_contents
54 PARAMS ((bfd *abfd, struct bfd_link_info *, struct bfd_link_order *,
55 bfd_byte *data, boolean relocateable, asymbol **symbols));
56 static bfd_vma alpha_convert_external_reloc
57 PARAMS ((bfd *, struct bfd_link_info *, bfd *, struct external_reloc *,
58 struct ecoff_link_hash_entry *));
59 static boolean alpha_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
60 bfd *, asection *,
61 bfd_byte *, PTR));
62 static boolean alpha_adjust_headers
63 PARAMS ((bfd *, struct internal_filehdr *, struct internal_aouthdr *));
64 static PTR alpha_ecoff_read_ar_hdr PARAMS ((bfd *));
65 static bfd *alpha_ecoff_get_elt_at_filepos PARAMS ((bfd *, file_ptr));
66 static bfd *alpha_ecoff_openr_next_archived_file PARAMS ((bfd *, bfd *));
67 static bfd *alpha_ecoff_get_elt_at_index PARAMS ((bfd *, symindex));
68 \f
69 /* ECOFF has COFF sections, but the debugging information is stored in
70 a completely different format. ECOFF targets use some of the
71 swapping routines from coffswap.h, and some of the generic COFF
72 routines in coffgen.c, but, unlike the real COFF targets, do not
73 use coffcode.h itself.
74
75 Get the generic COFF swapping routines, except for the reloc,
76 symbol, and lineno ones. Give them ecoff names. Define some
77 accessor macros for the large sizes used for Alpha ECOFF. */
78
79 #define GET_FILEHDR_SYMPTR H_GET_64
80 #define PUT_FILEHDR_SYMPTR H_PUT_64
81 #define GET_AOUTHDR_TSIZE H_GET_64
82 #define PUT_AOUTHDR_TSIZE H_PUT_64
83 #define GET_AOUTHDR_DSIZE H_GET_64
84 #define PUT_AOUTHDR_DSIZE H_PUT_64
85 #define GET_AOUTHDR_BSIZE H_GET_64
86 #define PUT_AOUTHDR_BSIZE H_PUT_64
87 #define GET_AOUTHDR_ENTRY H_GET_64
88 #define PUT_AOUTHDR_ENTRY H_PUT_64
89 #define GET_AOUTHDR_TEXT_START H_GET_64
90 #define PUT_AOUTHDR_TEXT_START H_PUT_64
91 #define GET_AOUTHDR_DATA_START H_GET_64
92 #define PUT_AOUTHDR_DATA_START H_PUT_64
93 #define GET_SCNHDR_PADDR H_GET_64
94 #define PUT_SCNHDR_PADDR H_PUT_64
95 #define GET_SCNHDR_VADDR H_GET_64
96 #define PUT_SCNHDR_VADDR H_PUT_64
97 #define GET_SCNHDR_SIZE H_GET_64
98 #define PUT_SCNHDR_SIZE H_PUT_64
99 #define GET_SCNHDR_SCNPTR H_GET_64
100 #define PUT_SCNHDR_SCNPTR H_PUT_64
101 #define GET_SCNHDR_RELPTR H_GET_64
102 #define PUT_SCNHDR_RELPTR H_PUT_64
103 #define GET_SCNHDR_LNNOPTR H_GET_64
104 #define PUT_SCNHDR_LNNOPTR H_PUT_64
105
106 #define ALPHAECOFF
107
108 #define NO_COFF_RELOCS
109 #define NO_COFF_SYMBOLS
110 #define NO_COFF_LINENOS
111 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
112 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
113 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
114 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
115 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
116 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
117 #include "coffswap.h"
118
119 /* Get the ECOFF swapping routines. */
120 #define ECOFF_64
121 #include "ecoffswap.h"
122 \f
123 /* How to process the various reloc types. */
124
125 static bfd_reloc_status_type
126 reloc_nil PARAMS ((bfd *, arelent *, asymbol *, PTR,
127 asection *, bfd *, char **));
128
129 static bfd_reloc_status_type
130 reloc_nil (abfd, reloc, sym, data, sec, output_bfd, error_message)
131 bfd *abfd ATTRIBUTE_UNUSED;
132 arelent *reloc ATTRIBUTE_UNUSED;
133 asymbol *sym ATTRIBUTE_UNUSED;
134 PTR data ATTRIBUTE_UNUSED;
135 asection *sec ATTRIBUTE_UNUSED;
136 bfd *output_bfd ATTRIBUTE_UNUSED;
137 char **error_message ATTRIBUTE_UNUSED;
138 {
139 return bfd_reloc_ok;
140 }
141
142 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
143 from smaller values. Start with zero, widen, *then* decrement. */
144 #define MINUS_ONE (((bfd_vma)0) - 1)
145
146 static reloc_howto_type alpha_howto_table[] =
147 {
148 /* Reloc type 0 is ignored by itself. However, it appears after a
149 GPDISP reloc to identify the location where the low order 16 bits
150 of the gp register are loaded. */
151 HOWTO (ALPHA_R_IGNORE, /* type */
152 0, /* rightshift */
153 0, /* size (0 = byte, 1 = short, 2 = long) */
154 8, /* bitsize */
155 true, /* pc_relative */
156 0, /* bitpos */
157 complain_overflow_dont, /* complain_on_overflow */
158 reloc_nil, /* special_function */
159 "IGNORE", /* name */
160 true, /* partial_inplace */
161 0, /* src_mask */
162 0, /* dst_mask */
163 true), /* pcrel_offset */
164
165 /* A 32 bit reference to a symbol. */
166 HOWTO (ALPHA_R_REFLONG, /* type */
167 0, /* rightshift */
168 2, /* size (0 = byte, 1 = short, 2 = long) */
169 32, /* bitsize */
170 false, /* pc_relative */
171 0, /* bitpos */
172 complain_overflow_bitfield, /* complain_on_overflow */
173 0, /* special_function */
174 "REFLONG", /* name */
175 true, /* partial_inplace */
176 0xffffffff, /* src_mask */
177 0xffffffff, /* dst_mask */
178 false), /* pcrel_offset */
179
180 /* A 64 bit reference to a symbol. */
181 HOWTO (ALPHA_R_REFQUAD, /* type */
182 0, /* rightshift */
183 4, /* size (0 = byte, 1 = short, 2 = long) */
184 64, /* bitsize */
185 false, /* pc_relative */
186 0, /* bitpos */
187 complain_overflow_bitfield, /* complain_on_overflow */
188 0, /* special_function */
189 "REFQUAD", /* name */
190 true, /* partial_inplace */
191 MINUS_ONE, /* src_mask */
192 MINUS_ONE, /* dst_mask */
193 false), /* pcrel_offset */
194
195 /* A 32 bit GP relative offset. This is just like REFLONG except
196 that when the value is used the value of the gp register will be
197 added in. */
198 HOWTO (ALPHA_R_GPREL32, /* type */
199 0, /* rightshift */
200 2, /* size (0 = byte, 1 = short, 2 = long) */
201 32, /* bitsize */
202 false, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield, /* complain_on_overflow */
205 0, /* special_function */
206 "GPREL32", /* name */
207 true, /* partial_inplace */
208 0xffffffff, /* src_mask */
209 0xffffffff, /* dst_mask */
210 false), /* pcrel_offset */
211
212 /* Used for an instruction that refers to memory off the GP
213 register. The offset is 16 bits of the 32 bit instruction. This
214 reloc always seems to be against the .lita section. */
215 HOWTO (ALPHA_R_LITERAL, /* type */
216 0, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 16, /* bitsize */
219 false, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_signed, /* complain_on_overflow */
222 0, /* special_function */
223 "LITERAL", /* name */
224 true, /* partial_inplace */
225 0xffff, /* src_mask */
226 0xffff, /* dst_mask */
227 false), /* pcrel_offset */
228
229 /* This reloc only appears immediately following a LITERAL reloc.
230 It identifies a use of the literal. It seems that the linker can
231 use this to eliminate a portion of the .lita section. The symbol
232 index is special: 1 means the literal address is in the base
233 register of a memory format instruction; 2 means the literal
234 address is in the byte offset register of a byte-manipulation
235 instruction; 3 means the literal address is in the target
236 register of a jsr instruction. This does not actually do any
237 relocation. */
238 HOWTO (ALPHA_R_LITUSE, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 32, /* bitsize */
242 false, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_dont, /* complain_on_overflow */
245 reloc_nil, /* special_function */
246 "LITUSE", /* name */
247 false, /* partial_inplace */
248 0, /* src_mask */
249 0, /* dst_mask */
250 false), /* pcrel_offset */
251
252 /* Load the gp register. This is always used for a ldah instruction
253 which loads the upper 16 bits of the gp register. The next reloc
254 will be an IGNORE reloc which identifies the location of the lda
255 instruction which loads the lower 16 bits. The symbol index of
256 the GPDISP instruction appears to actually be the number of bytes
257 between the ldah and lda instructions. This gives two different
258 ways to determine where the lda instruction is; I don't know why
259 both are used. The value to use for the relocation is the
260 difference between the GP value and the current location; the
261 load will always be done against a register holding the current
262 address. */
263 HOWTO (ALPHA_R_GPDISP, /* type */
264 16, /* rightshift */
265 2, /* size (0 = byte, 1 = short, 2 = long) */
266 16, /* bitsize */
267 true, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_dont, /* complain_on_overflow */
270 reloc_nil, /* special_function */
271 "GPDISP", /* name */
272 true, /* partial_inplace */
273 0xffff, /* src_mask */
274 0xffff, /* dst_mask */
275 true), /* pcrel_offset */
276
277 /* A 21 bit branch. The native assembler generates these for
278 branches within the text segment, and also fills in the PC
279 relative offset in the instruction. */
280 HOWTO (ALPHA_R_BRADDR, /* type */
281 2, /* rightshift */
282 2, /* size (0 = byte, 1 = short, 2 = long) */
283 21, /* bitsize */
284 true, /* pc_relative */
285 0, /* bitpos */
286 complain_overflow_signed, /* complain_on_overflow */
287 0, /* special_function */
288 "BRADDR", /* name */
289 true, /* partial_inplace */
290 0x1fffff, /* src_mask */
291 0x1fffff, /* dst_mask */
292 false), /* pcrel_offset */
293
294 /* A hint for a jump to a register. */
295 HOWTO (ALPHA_R_HINT, /* type */
296 2, /* rightshift */
297 2, /* size (0 = byte, 1 = short, 2 = long) */
298 14, /* bitsize */
299 true, /* pc_relative */
300 0, /* bitpos */
301 complain_overflow_dont, /* complain_on_overflow */
302 0, /* special_function */
303 "HINT", /* name */
304 true, /* partial_inplace */
305 0x3fff, /* src_mask */
306 0x3fff, /* dst_mask */
307 false), /* pcrel_offset */
308
309 /* 16 bit PC relative offset. */
310 HOWTO (ALPHA_R_SREL16, /* type */
311 0, /* rightshift */
312 1, /* size (0 = byte, 1 = short, 2 = long) */
313 16, /* bitsize */
314 true, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_signed, /* complain_on_overflow */
317 0, /* special_function */
318 "SREL16", /* name */
319 true, /* partial_inplace */
320 0xffff, /* src_mask */
321 0xffff, /* dst_mask */
322 false), /* pcrel_offset */
323
324 /* 32 bit PC relative offset. */
325 HOWTO (ALPHA_R_SREL32, /* type */
326 0, /* rightshift */
327 2, /* size (0 = byte, 1 = short, 2 = long) */
328 32, /* bitsize */
329 true, /* pc_relative */
330 0, /* bitpos */
331 complain_overflow_signed, /* complain_on_overflow */
332 0, /* special_function */
333 "SREL32", /* name */
334 true, /* partial_inplace */
335 0xffffffff, /* src_mask */
336 0xffffffff, /* dst_mask */
337 false), /* pcrel_offset */
338
339 /* A 64 bit PC relative offset. */
340 HOWTO (ALPHA_R_SREL64, /* type */
341 0, /* rightshift */
342 4, /* size (0 = byte, 1 = short, 2 = long) */
343 64, /* bitsize */
344 true, /* pc_relative */
345 0, /* bitpos */
346 complain_overflow_signed, /* complain_on_overflow */
347 0, /* special_function */
348 "SREL64", /* name */
349 true, /* partial_inplace */
350 MINUS_ONE, /* src_mask */
351 MINUS_ONE, /* dst_mask */
352 false), /* pcrel_offset */
353
354 /* Push a value on the reloc evaluation stack. */
355 HOWTO (ALPHA_R_OP_PUSH, /* type */
356 0, /* rightshift */
357 0, /* size (0 = byte, 1 = short, 2 = long) */
358 0, /* bitsize */
359 false, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_dont, /* complain_on_overflow */
362 0, /* special_function */
363 "OP_PUSH", /* name */
364 false, /* partial_inplace */
365 0, /* src_mask */
366 0, /* dst_mask */
367 false), /* pcrel_offset */
368
369 /* Store the value from the stack at the given address. Store it in
370 a bitfield of size r_size starting at bit position r_offset. */
371 HOWTO (ALPHA_R_OP_STORE, /* type */
372 0, /* rightshift */
373 4, /* size (0 = byte, 1 = short, 2 = long) */
374 64, /* bitsize */
375 false, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_dont, /* complain_on_overflow */
378 0, /* special_function */
379 "OP_STORE", /* name */
380 false, /* partial_inplace */
381 0, /* src_mask */
382 MINUS_ONE, /* dst_mask */
383 false), /* pcrel_offset */
384
385 /* Subtract the reloc address from the value on the top of the
386 relocation stack. */
387 HOWTO (ALPHA_R_OP_PSUB, /* type */
388 0, /* rightshift */
389 0, /* size (0 = byte, 1 = short, 2 = long) */
390 0, /* bitsize */
391 false, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_dont, /* complain_on_overflow */
394 0, /* special_function */
395 "OP_PSUB", /* name */
396 false, /* partial_inplace */
397 0, /* src_mask */
398 0, /* dst_mask */
399 false), /* pcrel_offset */
400
401 /* Shift the value on the top of the relocation stack right by the
402 given value. */
403 HOWTO (ALPHA_R_OP_PRSHIFT, /* type */
404 0, /* rightshift */
405 0, /* size (0 = byte, 1 = short, 2 = long) */
406 0, /* bitsize */
407 false, /* pc_relative */
408 0, /* bitpos */
409 complain_overflow_dont, /* complain_on_overflow */
410 0, /* special_function */
411 "OP_PRSHIFT", /* name */
412 false, /* partial_inplace */
413 0, /* src_mask */
414 0, /* dst_mask */
415 false), /* pcrel_offset */
416
417 /* Adjust the GP value for a new range in the object file. */
418 HOWTO (ALPHA_R_GPVALUE, /* type */
419 0, /* rightshift */
420 0, /* size (0 = byte, 1 = short, 2 = long) */
421 0, /* bitsize */
422 false, /* pc_relative */
423 0, /* bitpos */
424 complain_overflow_dont, /* complain_on_overflow */
425 0, /* special_function */
426 "GPVALUE", /* name */
427 false, /* partial_inplace */
428 0, /* src_mask */
429 0, /* dst_mask */
430 false) /* pcrel_offset */
431 };
432 \f
433 /* Recognize an Alpha ECOFF file. */
434
435 static const bfd_target *
436 alpha_ecoff_object_p (abfd)
437 bfd *abfd;
438 {
439 static const bfd_target *ret;
440
441 ret = coff_object_p (abfd);
442
443 if (ret != NULL)
444 {
445 asection *sec;
446
447 /* Alpha ECOFF has a .pdata section. The lnnoptr field of the
448 .pdata section is the number of entries it contains. Each
449 entry takes up 8 bytes. The number of entries is required
450 since the section is aligned to a 16 byte boundary. When we
451 link .pdata sections together, we do not want to include the
452 alignment bytes. We handle this on input by faking the size
453 of the .pdata section to remove the unwanted alignment bytes.
454 On output we will set the lnnoptr field and force the
455 alignment. */
456 sec = bfd_get_section_by_name (abfd, _PDATA);
457 if (sec != (asection *) NULL)
458 {
459 bfd_size_type size;
460
461 size = sec->line_filepos * 8;
462 BFD_ASSERT (size == bfd_section_size (abfd, sec)
463 || size + 8 == bfd_section_size (abfd, sec));
464 if (! bfd_set_section_size (abfd, sec, size))
465 return NULL;
466 }
467 }
468
469 return ret;
470 }
471
472 /* See whether the magic number matches. */
473
474 static boolean
475 alpha_ecoff_bad_format_hook (abfd, filehdr)
476 bfd *abfd ATTRIBUTE_UNUSED;
477 PTR filehdr;
478 {
479 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
480
481 if (ALPHA_ECOFF_BADMAG (*internal_f))
482 return false;
483
484 return true;
485 }
486
487 /* This is a hook called by coff_real_object_p to create any backend
488 specific information. */
489
490 static PTR
491 alpha_ecoff_mkobject_hook (abfd, filehdr, aouthdr)
492 bfd *abfd;
493 PTR filehdr;
494 PTR aouthdr;
495 {
496 PTR ecoff;
497
498 ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
499
500 if (ecoff != NULL)
501 {
502 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
503
504 /* Set additional BFD flags according to the object type from the
505 machine specific file header flags. */
506 switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
507 {
508 case F_ALPHA_SHARABLE:
509 abfd->flags |= DYNAMIC;
510 break;
511 case F_ALPHA_CALL_SHARED:
512 /* Always executable if using shared libraries as the run time
513 loader might resolve undefined references. */
514 abfd->flags |= (DYNAMIC | EXEC_P);
515 break;
516 }
517 }
518 return ecoff;
519 }
520 \f
521 /* Reloc handling. */
522
523 /* Swap a reloc in. */
524
525 static void
526 alpha_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
527 bfd *abfd;
528 PTR ext_ptr;
529 struct internal_reloc *intern;
530 {
531 const RELOC *ext = (RELOC *) ext_ptr;
532
533 intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
534 intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
535
536 BFD_ASSERT (bfd_header_little_endian (abfd));
537
538 intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
539 >> RELOC_BITS0_TYPE_SH_LITTLE);
540 intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
541 intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
542 >> RELOC_BITS1_OFFSET_SH_LITTLE);
543 /* Ignored the reserved bits. */
544 intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
545 >> RELOC_BITS3_SIZE_SH_LITTLE);
546
547 if (intern->r_type == ALPHA_R_LITUSE
548 || intern->r_type == ALPHA_R_GPDISP)
549 {
550 /* Handle the LITUSE and GPDISP relocs specially. Its symndx
551 value is not actually a symbol index, but is instead a
552 special code. We put the code in the r_size field, and
553 clobber the symndx. */
554 if (intern->r_size != 0)
555 abort ();
556 intern->r_size = intern->r_symndx;
557 intern->r_symndx = RELOC_SECTION_NONE;
558 }
559 else if (intern->r_type == ALPHA_R_IGNORE)
560 {
561 /* The IGNORE reloc generally follows a GPDISP reloc, and is
562 against the .lita section. The section is irrelevant. */
563 if (! intern->r_extern &&
564 intern->r_symndx == RELOC_SECTION_ABS)
565 abort ();
566 if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
567 intern->r_symndx = RELOC_SECTION_ABS;
568 }
569 }
570
571 /* Swap a reloc out. */
572
573 static void
574 alpha_ecoff_swap_reloc_out (abfd, intern, dst)
575 bfd *abfd;
576 const struct internal_reloc *intern;
577 PTR dst;
578 {
579 RELOC *ext = (RELOC *) dst;
580 long symndx;
581 unsigned char size;
582
583 /* Undo the hackery done in swap_reloc_in. */
584 if (intern->r_type == ALPHA_R_LITUSE
585 || intern->r_type == ALPHA_R_GPDISP)
586 {
587 symndx = intern->r_size;
588 size = 0;
589 }
590 else if (intern->r_type == ALPHA_R_IGNORE
591 && ! intern->r_extern
592 && intern->r_symndx == RELOC_SECTION_ABS)
593 {
594 symndx = RELOC_SECTION_LITA;
595 size = intern->r_size;
596 }
597 else
598 {
599 symndx = intern->r_symndx;
600 size = intern->r_size;
601 }
602
603 BFD_ASSERT (intern->r_extern
604 || (intern->r_symndx >= 0 && intern->r_symndx <= 14));
605
606 H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
607 H_PUT_32 (abfd, symndx, ext->r_symndx);
608
609 BFD_ASSERT (bfd_header_little_endian (abfd));
610
611 ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
612 & RELOC_BITS0_TYPE_LITTLE);
613 ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
614 | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
615 & RELOC_BITS1_OFFSET_LITTLE));
616 ext->r_bits[2] = 0;
617 ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
618 & RELOC_BITS3_SIZE_LITTLE);
619 }
620
621 /* Finish canonicalizing a reloc. Part of this is generic to all
622 ECOFF targets, and that part is in ecoff.c. The rest is done in
623 this backend routine. It must fill in the howto field. */
624
625 static void
626 alpha_adjust_reloc_in (abfd, intern, rptr)
627 bfd *abfd;
628 const struct internal_reloc *intern;
629 arelent *rptr;
630 {
631 if (intern->r_type > ALPHA_R_GPVALUE)
632 abort ();
633
634 switch (intern->r_type)
635 {
636 case ALPHA_R_BRADDR:
637 case ALPHA_R_SREL16:
638 case ALPHA_R_SREL32:
639 case ALPHA_R_SREL64:
640 /* This relocs appear to be fully resolved when they are against
641 internal symbols. Against external symbols, BRADDR at least
642 appears to be resolved against the next instruction. */
643 if (! intern->r_extern)
644 rptr->addend = 0;
645 else
646 rptr->addend = - (intern->r_vaddr + 4);
647 break;
648
649 case ALPHA_R_GPREL32:
650 case ALPHA_R_LITERAL:
651 /* Copy the gp value for this object file into the addend, to
652 ensure that we are not confused by the linker. */
653 if (! intern->r_extern)
654 rptr->addend += ecoff_data (abfd)->gp;
655 break;
656
657 case ALPHA_R_LITUSE:
658 case ALPHA_R_GPDISP:
659 /* The LITUSE and GPDISP relocs do not use a symbol, or an
660 addend, but they do use a special code. Put this code in the
661 addend field. */
662 rptr->addend = intern->r_size;
663 break;
664
665 case ALPHA_R_OP_STORE:
666 /* The STORE reloc needs the size and offset fields. We store
667 them in the addend. */
668 BFD_ASSERT (intern->r_offset <= 256 && intern->r_size <= 256);
669 rptr->addend = (intern->r_offset << 8) + intern->r_size;
670 break;
671
672 case ALPHA_R_OP_PUSH:
673 case ALPHA_R_OP_PSUB:
674 case ALPHA_R_OP_PRSHIFT:
675 /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
676 address. I believe that the address supplied is really an
677 addend. */
678 rptr->addend = intern->r_vaddr;
679 break;
680
681 case ALPHA_R_GPVALUE:
682 /* Set the addend field to the new GP value. */
683 rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
684 break;
685
686 case ALPHA_R_IGNORE:
687 /* If the type is ALPHA_R_IGNORE, make sure this is a reference
688 to the absolute section so that the reloc is ignored. For
689 some reason the address of this reloc type is not adjusted by
690 the section vma. We record the gp value for this object file
691 here, for convenience when doing the GPDISP relocation. */
692 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
693 rptr->address = intern->r_vaddr;
694 rptr->addend = ecoff_data (abfd)->gp;
695 break;
696
697 default:
698 break;
699 }
700
701 rptr->howto = &alpha_howto_table[intern->r_type];
702 }
703
704 /* When writing out a reloc we need to pull some values back out of
705 the addend field into the reloc. This is roughly the reverse of
706 alpha_adjust_reloc_in, except that there are several changes we do
707 not need to undo. */
708
709 static void
710 alpha_adjust_reloc_out (abfd, rel, intern)
711 bfd *abfd ATTRIBUTE_UNUSED;
712 const arelent *rel;
713 struct internal_reloc *intern;
714 {
715 switch (intern->r_type)
716 {
717 case ALPHA_R_LITUSE:
718 case ALPHA_R_GPDISP:
719 intern->r_size = rel->addend;
720 break;
721
722 case ALPHA_R_OP_STORE:
723 intern->r_size = rel->addend & 0xff;
724 intern->r_offset = (rel->addend >> 8) & 0xff;
725 break;
726
727 case ALPHA_R_OP_PUSH:
728 case ALPHA_R_OP_PSUB:
729 case ALPHA_R_OP_PRSHIFT:
730 intern->r_vaddr = rel->addend;
731 break;
732
733 case ALPHA_R_IGNORE:
734 intern->r_vaddr = rel->address;
735 break;
736
737 default:
738 break;
739 }
740 }
741
742 /* The size of the stack for the relocation evaluator. */
743 #define RELOC_STACKSIZE (10)
744
745 /* Alpha ECOFF relocs have a built in expression evaluator as well as
746 other interdependencies. Rather than use a bunch of special
747 functions and global variables, we use a single routine to do all
748 the relocation for a section. I haven't yet worked out how the
749 assembler is going to handle this. */
750
751 static bfd_byte *
752 alpha_ecoff_get_relocated_section_contents (abfd, link_info, link_order,
753 data, relocateable, symbols)
754 bfd *abfd;
755 struct bfd_link_info *link_info;
756 struct bfd_link_order *link_order;
757 bfd_byte *data;
758 boolean relocateable;
759 asymbol **symbols;
760 {
761 bfd *input_bfd = link_order->u.indirect.section->owner;
762 asection *input_section = link_order->u.indirect.section;
763 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
764 arelent **reloc_vector = NULL;
765 long reloc_count;
766 bfd *output_bfd = relocateable ? abfd : (bfd *) NULL;
767 bfd_vma gp;
768 boolean gp_undefined;
769 bfd_vma stack[RELOC_STACKSIZE];
770 int tos = 0;
771
772 if (reloc_size < 0)
773 goto error_return;
774 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
775 if (reloc_vector == NULL && reloc_size != 0)
776 goto error_return;
777
778 if (! bfd_get_section_contents (input_bfd, input_section, data,
779 (file_ptr) 0, input_section->_raw_size))
780 goto error_return;
781
782 /* The section size is not going to change. */
783 input_section->_cooked_size = input_section->_raw_size;
784 input_section->reloc_done = true;
785
786 reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
787 reloc_vector, symbols);
788 if (reloc_count < 0)
789 goto error_return;
790 if (reloc_count == 0)
791 goto successful_return;
792
793 /* Get the GP value for the output BFD. */
794 gp_undefined = false;
795 gp = _bfd_get_gp_value (abfd);
796 if (gp == 0)
797 {
798 if (relocateable != false)
799 {
800 asection *sec;
801 bfd_vma lo;
802
803 /* Make up a value. */
804 lo = (bfd_vma) -1;
805 for (sec = abfd->sections; sec != NULL; sec = sec->next)
806 {
807 if (sec->vma < lo
808 && (strcmp (sec->name, ".sbss") == 0
809 || strcmp (sec->name, ".sdata") == 0
810 || strcmp (sec->name, ".lit4") == 0
811 || strcmp (sec->name, ".lit8") == 0
812 || strcmp (sec->name, ".lita") == 0))
813 lo = sec->vma;
814 }
815 gp = lo + 0x8000;
816 _bfd_set_gp_value (abfd, gp);
817 }
818 else
819 {
820 struct bfd_link_hash_entry *h;
821
822 h = bfd_link_hash_lookup (link_info->hash, "_gp", false, false,
823 true);
824 if (h == (struct bfd_link_hash_entry *) NULL
825 || h->type != bfd_link_hash_defined)
826 gp_undefined = true;
827 else
828 {
829 gp = (h->u.def.value
830 + h->u.def.section->output_section->vma
831 + h->u.def.section->output_offset);
832 _bfd_set_gp_value (abfd, gp);
833 }
834 }
835 }
836
837 for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
838 {
839 arelent *rel;
840 bfd_reloc_status_type r;
841 char *err;
842
843 rel = *reloc_vector;
844 r = bfd_reloc_ok;
845 switch (rel->howto->type)
846 {
847 case ALPHA_R_IGNORE:
848 rel->address += input_section->output_offset;
849 break;
850
851 case ALPHA_R_REFLONG:
852 case ALPHA_R_REFQUAD:
853 case ALPHA_R_BRADDR:
854 case ALPHA_R_HINT:
855 case ALPHA_R_SREL16:
856 case ALPHA_R_SREL32:
857 case ALPHA_R_SREL64:
858 if (relocateable
859 && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
860 {
861 rel->address += input_section->output_offset;
862 break;
863 }
864 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
865 output_bfd, &err);
866 break;
867
868 case ALPHA_R_GPREL32:
869 /* This relocation is used in a switch table. It is a 32
870 bit offset from the current GP value. We must adjust it
871 by the different between the original GP value and the
872 current GP value. The original GP value is stored in the
873 addend. We adjust the addend and let
874 bfd_perform_relocation finish the job. */
875 rel->addend -= gp;
876 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
877 output_bfd, &err);
878 if (r == bfd_reloc_ok && gp_undefined)
879 {
880 r = bfd_reloc_dangerous;
881 err = (char *) _("GP relative relocation used when GP not defined");
882 }
883 break;
884
885 case ALPHA_R_LITERAL:
886 /* This is a reference to a literal value, generally
887 (always?) in the .lita section. This is a 16 bit GP
888 relative relocation. Sometimes the subsequent reloc is a
889 LITUSE reloc, which indicates how this reloc is used.
890 This sometimes permits rewriting the two instructions
891 referred to by the LITERAL and the LITUSE into different
892 instructions which do not refer to .lita. This can save
893 a memory reference, and permits removing a value from
894 .lita thus saving GP relative space.
895
896 We do not these optimizations. To do them we would need
897 to arrange to link the .lita section first, so that by
898 the time we got here we would know the final values to
899 use. This would not be particularly difficult, but it is
900 not currently implemented. */
901
902 {
903 unsigned long insn;
904
905 /* I believe that the LITERAL reloc will only apply to a
906 ldq or ldl instruction, so check my assumption. */
907 insn = bfd_get_32 (input_bfd, data + rel->address);
908 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
909 || ((insn >> 26) & 0x3f) == 0x28);
910
911 rel->addend -= gp;
912 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
913 output_bfd, &err);
914 if (r == bfd_reloc_ok && gp_undefined)
915 {
916 r = bfd_reloc_dangerous;
917 err =
918 (char *) _("GP relative relocation used when GP not defined");
919 }
920 }
921 break;
922
923 case ALPHA_R_LITUSE:
924 /* See ALPHA_R_LITERAL above for the uses of this reloc. It
925 does not cause anything to happen, itself. */
926 rel->address += input_section->output_offset;
927 break;
928
929 case ALPHA_R_GPDISP:
930 /* This marks the ldah of an ldah/lda pair which loads the
931 gp register with the difference of the gp value and the
932 current location. The second of the pair is r_size bytes
933 ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
934 but that no longer happens in OSF/1 3.2. */
935 {
936 unsigned long insn1, insn2;
937 bfd_vma addend;
938
939 /* Get the two instructions. */
940 insn1 = bfd_get_32 (input_bfd, data + rel->address);
941 insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
942
943 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
944 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
945
946 /* Get the existing addend. We must account for the sign
947 extension done by lda and ldah. */
948 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
949 if (insn1 & 0x8000)
950 {
951 addend -= 0x80000000;
952 addend -= 0x80000000;
953 }
954 if (insn2 & 0x8000)
955 addend -= 0x10000;
956
957 /* The existing addend includes the different between the
958 gp of the input BFD and the address in the input BFD.
959 Subtract this out. */
960 addend -= (ecoff_data (input_bfd)->gp
961 - (input_section->vma + rel->address));
962
963 /* Now add in the final gp value, and subtract out the
964 final address. */
965 addend += (gp
966 - (input_section->output_section->vma
967 + input_section->output_offset
968 + rel->address));
969
970 /* Change the instructions, accounting for the sign
971 extension, and write them out. */
972 if (addend & 0x8000)
973 addend += 0x10000;
974 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
975 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
976
977 bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
978 bfd_put_32 (input_bfd, (bfd_vma) insn2,
979 data + rel->address + rel->addend);
980
981 rel->address += input_section->output_offset;
982 }
983 break;
984
985 case ALPHA_R_OP_PUSH:
986 /* Push a value on the reloc evaluation stack. */
987 {
988 asymbol *symbol;
989 bfd_vma relocation;
990
991 if (relocateable)
992 {
993 rel->address += input_section->output_offset;
994 break;
995 }
996
997 /* Figure out the relocation of this symbol. */
998 symbol = *rel->sym_ptr_ptr;
999
1000 if (bfd_is_und_section (symbol->section))
1001 r = bfd_reloc_undefined;
1002
1003 if (bfd_is_com_section (symbol->section))
1004 relocation = 0;
1005 else
1006 relocation = symbol->value;
1007 relocation += symbol->section->output_section->vma;
1008 relocation += symbol->section->output_offset;
1009 relocation += rel->addend;
1010
1011 if (tos >= RELOC_STACKSIZE)
1012 abort ();
1013
1014 stack[tos++] = relocation;
1015 }
1016 break;
1017
1018 case ALPHA_R_OP_STORE:
1019 /* Store a value from the reloc stack into a bitfield. */
1020 {
1021 bfd_vma val;
1022 int offset, size;
1023
1024 if (relocateable)
1025 {
1026 rel->address += input_section->output_offset;
1027 break;
1028 }
1029
1030 if (tos == 0)
1031 abort ();
1032
1033 /* The offset and size for this reloc are encoded into the
1034 addend field by alpha_adjust_reloc_in. */
1035 offset = (rel->addend >> 8) & 0xff;
1036 size = rel->addend & 0xff;
1037
1038 val = bfd_get_64 (abfd, data + rel->address);
1039 val &=~ (((1 << size) - 1) << offset);
1040 val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1041 bfd_put_64 (abfd, val, data + rel->address);
1042 }
1043 break;
1044
1045 case ALPHA_R_OP_PSUB:
1046 /* Subtract a value from the top of the stack. */
1047 {
1048 asymbol *symbol;
1049 bfd_vma relocation;
1050
1051 if (relocateable)
1052 {
1053 rel->address += input_section->output_offset;
1054 break;
1055 }
1056
1057 /* Figure out the relocation of this symbol. */
1058 symbol = *rel->sym_ptr_ptr;
1059
1060 if (bfd_is_und_section (symbol->section))
1061 r = bfd_reloc_undefined;
1062
1063 if (bfd_is_com_section (symbol->section))
1064 relocation = 0;
1065 else
1066 relocation = symbol->value;
1067 relocation += symbol->section->output_section->vma;
1068 relocation += symbol->section->output_offset;
1069 relocation += rel->addend;
1070
1071 if (tos == 0)
1072 abort ();
1073
1074 stack[tos - 1] -= relocation;
1075 }
1076 break;
1077
1078 case ALPHA_R_OP_PRSHIFT:
1079 /* Shift the value on the top of the stack. */
1080 {
1081 asymbol *symbol;
1082 bfd_vma relocation;
1083
1084 if (relocateable)
1085 {
1086 rel->address += input_section->output_offset;
1087 break;
1088 }
1089
1090 /* Figure out the relocation of this symbol. */
1091 symbol = *rel->sym_ptr_ptr;
1092
1093 if (bfd_is_und_section (symbol->section))
1094 r = bfd_reloc_undefined;
1095
1096 if (bfd_is_com_section (symbol->section))
1097 relocation = 0;
1098 else
1099 relocation = symbol->value;
1100 relocation += symbol->section->output_section->vma;
1101 relocation += symbol->section->output_offset;
1102 relocation += rel->addend;
1103
1104 if (tos == 0)
1105 abort ();
1106
1107 stack[tos - 1] >>= relocation;
1108 }
1109 break;
1110
1111 case ALPHA_R_GPVALUE:
1112 /* I really don't know if this does the right thing. */
1113 gp = rel->addend;
1114 gp_undefined = false;
1115 break;
1116
1117 default:
1118 abort ();
1119 }
1120
1121 if (relocateable)
1122 {
1123 asection *os = input_section->output_section;
1124
1125 /* A partial link, so keep the relocs. */
1126 os->orelocation[os->reloc_count] = rel;
1127 os->reloc_count++;
1128 }
1129
1130 if (r != bfd_reloc_ok)
1131 {
1132 switch (r)
1133 {
1134 case bfd_reloc_undefined:
1135 if (! ((*link_info->callbacks->undefined_symbol)
1136 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1137 input_bfd, input_section, rel->address, true)))
1138 goto error_return;
1139 break;
1140 case bfd_reloc_dangerous:
1141 if (! ((*link_info->callbacks->reloc_dangerous)
1142 (link_info, err, input_bfd, input_section,
1143 rel->address)))
1144 goto error_return;
1145 break;
1146 case bfd_reloc_overflow:
1147 if (! ((*link_info->callbacks->reloc_overflow)
1148 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1149 rel->howto->name, rel->addend, input_bfd,
1150 input_section, rel->address)))
1151 goto error_return;
1152 break;
1153 case bfd_reloc_outofrange:
1154 default:
1155 abort ();
1156 break;
1157 }
1158 }
1159 }
1160
1161 if (tos != 0)
1162 abort ();
1163
1164 successful_return:
1165 if (reloc_vector != NULL)
1166 free (reloc_vector);
1167 return data;
1168
1169 error_return:
1170 if (reloc_vector != NULL)
1171 free (reloc_vector);
1172 return NULL;
1173 }
1174
1175 /* Get the howto structure for a generic reloc type. */
1176
1177 static reloc_howto_type *
1178 alpha_bfd_reloc_type_lookup (abfd, code)
1179 bfd *abfd ATTRIBUTE_UNUSED;
1180 bfd_reloc_code_real_type code;
1181 {
1182 int alpha_type;
1183
1184 switch (code)
1185 {
1186 case BFD_RELOC_32:
1187 alpha_type = ALPHA_R_REFLONG;
1188 break;
1189 case BFD_RELOC_64:
1190 case BFD_RELOC_CTOR:
1191 alpha_type = ALPHA_R_REFQUAD;
1192 break;
1193 case BFD_RELOC_GPREL32:
1194 alpha_type = ALPHA_R_GPREL32;
1195 break;
1196 case BFD_RELOC_ALPHA_LITERAL:
1197 alpha_type = ALPHA_R_LITERAL;
1198 break;
1199 case BFD_RELOC_ALPHA_LITUSE:
1200 alpha_type = ALPHA_R_LITUSE;
1201 break;
1202 case BFD_RELOC_ALPHA_GPDISP_HI16:
1203 alpha_type = ALPHA_R_GPDISP;
1204 break;
1205 case BFD_RELOC_ALPHA_GPDISP_LO16:
1206 alpha_type = ALPHA_R_IGNORE;
1207 break;
1208 case BFD_RELOC_23_PCREL_S2:
1209 alpha_type = ALPHA_R_BRADDR;
1210 break;
1211 case BFD_RELOC_ALPHA_HINT:
1212 alpha_type = ALPHA_R_HINT;
1213 break;
1214 case BFD_RELOC_16_PCREL:
1215 alpha_type = ALPHA_R_SREL16;
1216 break;
1217 case BFD_RELOC_32_PCREL:
1218 alpha_type = ALPHA_R_SREL32;
1219 break;
1220 case BFD_RELOC_64_PCREL:
1221 alpha_type = ALPHA_R_SREL64;
1222 break;
1223 #if 0
1224 case ???:
1225 alpha_type = ALPHA_R_OP_PUSH;
1226 break;
1227 case ???:
1228 alpha_type = ALPHA_R_OP_STORE;
1229 break;
1230 case ???:
1231 alpha_type = ALPHA_R_OP_PSUB;
1232 break;
1233 case ???:
1234 alpha_type = ALPHA_R_OP_PRSHIFT;
1235 break;
1236 case ???:
1237 alpha_type = ALPHA_R_GPVALUE;
1238 break;
1239 #endif
1240 default:
1241 return (reloc_howto_type *) NULL;
1242 }
1243
1244 return &alpha_howto_table[alpha_type];
1245 }
1246 \f
1247 /* A helper routine for alpha_relocate_section which converts an
1248 external reloc when generating relocateable output. Returns the
1249 relocation amount. */
1250
1251 static bfd_vma
1252 alpha_convert_external_reloc (output_bfd, info, input_bfd, ext_rel, h)
1253 bfd *output_bfd ATTRIBUTE_UNUSED;
1254 struct bfd_link_info *info;
1255 bfd *input_bfd;
1256 struct external_reloc *ext_rel;
1257 struct ecoff_link_hash_entry *h;
1258 {
1259 unsigned long r_symndx;
1260 bfd_vma relocation;
1261
1262 BFD_ASSERT (info->relocateable);
1263
1264 if (h->root.type == bfd_link_hash_defined
1265 || h->root.type == bfd_link_hash_defweak)
1266 {
1267 asection *hsec;
1268 const char *name;
1269
1270 /* This symbol is defined in the output. Convert the reloc from
1271 being against the symbol to being against the section. */
1272
1273 /* Clear the r_extern bit. */
1274 ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1275
1276 /* Compute a new r_symndx value. */
1277 hsec = h->root.u.def.section;
1278 name = bfd_get_section_name (output_bfd, hsec->output_section);
1279
1280 r_symndx = (unsigned long) -1;
1281 switch (name[1])
1282 {
1283 case 'A':
1284 if (strcmp (name, "*ABS*") == 0)
1285 r_symndx = RELOC_SECTION_ABS;
1286 break;
1287 case 'b':
1288 if (strcmp (name, ".bss") == 0)
1289 r_symndx = RELOC_SECTION_BSS;
1290 break;
1291 case 'd':
1292 if (strcmp (name, ".data") == 0)
1293 r_symndx = RELOC_SECTION_DATA;
1294 break;
1295 case 'f':
1296 if (strcmp (name, ".fini") == 0)
1297 r_symndx = RELOC_SECTION_FINI;
1298 break;
1299 case 'i':
1300 if (strcmp (name, ".init") == 0)
1301 r_symndx = RELOC_SECTION_INIT;
1302 break;
1303 case 'l':
1304 if (strcmp (name, ".lita") == 0)
1305 r_symndx = RELOC_SECTION_LITA;
1306 else if (strcmp (name, ".lit8") == 0)
1307 r_symndx = RELOC_SECTION_LIT8;
1308 else if (strcmp (name, ".lit4") == 0)
1309 r_symndx = RELOC_SECTION_LIT4;
1310 break;
1311 case 'p':
1312 if (strcmp (name, ".pdata") == 0)
1313 r_symndx = RELOC_SECTION_PDATA;
1314 break;
1315 case 'r':
1316 if (strcmp (name, ".rdata") == 0)
1317 r_symndx = RELOC_SECTION_RDATA;
1318 else if (strcmp (name, ".rconst") == 0)
1319 r_symndx = RELOC_SECTION_RCONST;
1320 break;
1321 case 's':
1322 if (strcmp (name, ".sdata") == 0)
1323 r_symndx = RELOC_SECTION_SDATA;
1324 else if (strcmp (name, ".sbss") == 0)
1325 r_symndx = RELOC_SECTION_SBSS;
1326 break;
1327 case 't':
1328 if (strcmp (name, ".text") == 0)
1329 r_symndx = RELOC_SECTION_TEXT;
1330 break;
1331 case 'x':
1332 if (strcmp (name, ".xdata") == 0)
1333 r_symndx = RELOC_SECTION_XDATA;
1334 break;
1335 }
1336
1337 if (r_symndx == (unsigned long) -1)
1338 abort ();
1339
1340 /* Add the section VMA and the symbol value. */
1341 relocation = (h->root.u.def.value
1342 + hsec->output_section->vma
1343 + hsec->output_offset);
1344 }
1345 else
1346 {
1347 /* Change the symndx value to the right one for
1348 the output BFD. */
1349 r_symndx = h->indx;
1350 if (r_symndx == (unsigned long) -1)
1351 {
1352 /* Caller must give an error. */
1353 r_symndx = 0;
1354 }
1355 relocation = 0;
1356 }
1357
1358 /* Write out the new r_symndx value. */
1359 H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1360
1361 return relocation;
1362 }
1363
1364 /* Relocate a section while linking an Alpha ECOFF file. This is
1365 quite similar to get_relocated_section_contents. Perhaps they
1366 could be combined somehow. */
1367
1368 static boolean
1369 alpha_relocate_section (output_bfd, info, input_bfd, input_section,
1370 contents, external_relocs)
1371 bfd *output_bfd;
1372 struct bfd_link_info *info;
1373 bfd *input_bfd;
1374 asection *input_section;
1375 bfd_byte *contents;
1376 PTR external_relocs;
1377 {
1378 asection **symndx_to_section, *lita_sec;
1379 struct ecoff_link_hash_entry **sym_hashes;
1380 bfd_vma gp;
1381 boolean gp_undefined;
1382 bfd_vma stack[RELOC_STACKSIZE];
1383 int tos = 0;
1384 struct external_reloc *ext_rel;
1385 struct external_reloc *ext_rel_end;
1386 bfd_size_type amt;
1387
1388 /* We keep a table mapping the symndx found in an internal reloc to
1389 the appropriate section. This is faster than looking up the
1390 section by name each time. */
1391 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1392 if (symndx_to_section == (asection **) NULL)
1393 {
1394 amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1395 symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1396 if (!symndx_to_section)
1397 return false;
1398
1399 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1400 symndx_to_section[RELOC_SECTION_TEXT] =
1401 bfd_get_section_by_name (input_bfd, ".text");
1402 symndx_to_section[RELOC_SECTION_RDATA] =
1403 bfd_get_section_by_name (input_bfd, ".rdata");
1404 symndx_to_section[RELOC_SECTION_DATA] =
1405 bfd_get_section_by_name (input_bfd, ".data");
1406 symndx_to_section[RELOC_SECTION_SDATA] =
1407 bfd_get_section_by_name (input_bfd, ".sdata");
1408 symndx_to_section[RELOC_SECTION_SBSS] =
1409 bfd_get_section_by_name (input_bfd, ".sbss");
1410 symndx_to_section[RELOC_SECTION_BSS] =
1411 bfd_get_section_by_name (input_bfd, ".bss");
1412 symndx_to_section[RELOC_SECTION_INIT] =
1413 bfd_get_section_by_name (input_bfd, ".init");
1414 symndx_to_section[RELOC_SECTION_LIT8] =
1415 bfd_get_section_by_name (input_bfd, ".lit8");
1416 symndx_to_section[RELOC_SECTION_LIT4] =
1417 bfd_get_section_by_name (input_bfd, ".lit4");
1418 symndx_to_section[RELOC_SECTION_XDATA] =
1419 bfd_get_section_by_name (input_bfd, ".xdata");
1420 symndx_to_section[RELOC_SECTION_PDATA] =
1421 bfd_get_section_by_name (input_bfd, ".pdata");
1422 symndx_to_section[RELOC_SECTION_FINI] =
1423 bfd_get_section_by_name (input_bfd, ".fini");
1424 symndx_to_section[RELOC_SECTION_LITA] =
1425 bfd_get_section_by_name (input_bfd, ".lita");
1426 symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1427 symndx_to_section[RELOC_SECTION_RCONST] =
1428 bfd_get_section_by_name (input_bfd, ".rconst");
1429
1430 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1431 }
1432
1433 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1434
1435 /* On the Alpha, the .lita section must be addressable by the global
1436 pointer. To support large programs, we need to allow multiple
1437 global pointers. This works as long as each input .lita section
1438 is <64KB big. This implies that when producing relocatable
1439 output, the .lita section is limited to 64KB. . */
1440
1441 lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1442 gp = _bfd_get_gp_value (output_bfd);
1443 if (! info->relocateable && lita_sec != NULL)
1444 {
1445 struct ecoff_section_tdata *lita_sec_data;
1446
1447 /* Make sure we have a section data structure to which we can
1448 hang on to the gp value we pick for the section. */
1449 lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1450 if (lita_sec_data == NULL)
1451 {
1452 amt = sizeof (struct ecoff_section_tdata);
1453 lita_sec_data = ((struct ecoff_section_tdata *)
1454 bfd_zalloc (input_bfd, amt));
1455 ecoff_section_data (input_bfd, lita_sec) = lita_sec_data;
1456 }
1457
1458 if (lita_sec_data->gp != 0)
1459 {
1460 /* If we already assigned a gp to this section, we better
1461 stick with that value. */
1462 gp = lita_sec_data->gp;
1463 }
1464 else
1465 {
1466 bfd_vma lita_vma;
1467 bfd_size_type lita_size;
1468
1469 lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1470 lita_size = lita_sec->_cooked_size;
1471 if (lita_size == 0)
1472 lita_size = lita_sec->_raw_size;
1473
1474 if (gp == 0
1475 || lita_vma < gp - 0x8000
1476 || lita_vma + lita_size >= gp + 0x8000)
1477 {
1478 /* Either gp hasn't been set at all or the current gp
1479 cannot address this .lita section. In both cases we
1480 reset the gp to point into the "middle" of the
1481 current input .lita section. */
1482 if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1483 {
1484 (*info->callbacks->warning) (info,
1485 _("using multiple gp values"),
1486 (char *) NULL, output_bfd,
1487 (asection *) NULL, (bfd_vma) 0);
1488 ecoff_data (output_bfd)->issued_multiple_gp_warning = true;
1489 }
1490 if (lita_vma < gp - 0x8000)
1491 gp = lita_vma + lita_size - 0x8000;
1492 else
1493 gp = lita_vma + 0x8000;
1494
1495 }
1496
1497 lita_sec_data->gp = gp;
1498 }
1499
1500 _bfd_set_gp_value (output_bfd, gp);
1501 }
1502
1503 gp_undefined = (gp == 0);
1504
1505 BFD_ASSERT (bfd_header_little_endian (output_bfd));
1506 BFD_ASSERT (bfd_header_little_endian (input_bfd));
1507
1508 ext_rel = (struct external_reloc *) external_relocs;
1509 ext_rel_end = ext_rel + input_section->reloc_count;
1510 for (; ext_rel < ext_rel_end; ext_rel++)
1511 {
1512 bfd_vma r_vaddr;
1513 unsigned long r_symndx;
1514 int r_type;
1515 int r_extern;
1516 int r_offset;
1517 int r_size;
1518 boolean relocatep;
1519 boolean adjust_addrp;
1520 boolean gp_usedp;
1521 bfd_vma addend;
1522
1523 r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1524 r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1525
1526 r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1527 >> RELOC_BITS0_TYPE_SH_LITTLE);
1528 r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1529 r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1530 >> RELOC_BITS1_OFFSET_SH_LITTLE);
1531 /* Ignored the reserved bits. */
1532 r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1533 >> RELOC_BITS3_SIZE_SH_LITTLE);
1534
1535 relocatep = false;
1536 adjust_addrp = true;
1537 gp_usedp = false;
1538 addend = 0;
1539
1540 switch (r_type)
1541 {
1542 default:
1543 abort ();
1544
1545 case ALPHA_R_IGNORE:
1546 /* This reloc appears after a GPDISP reloc. On earlier
1547 versions of OSF/1, It marked the position of the second
1548 instruction to be altered by the GPDISP reloc, but it is
1549 not otherwise used for anything. For some reason, the
1550 address of the relocation does not appear to include the
1551 section VMA, unlike the other relocation types. */
1552 if (info->relocateable)
1553 H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1554 ext_rel->r_vaddr);
1555 adjust_addrp = false;
1556 break;
1557
1558 case ALPHA_R_REFLONG:
1559 case ALPHA_R_REFQUAD:
1560 case ALPHA_R_HINT:
1561 relocatep = true;
1562 break;
1563
1564 case ALPHA_R_BRADDR:
1565 case ALPHA_R_SREL16:
1566 case ALPHA_R_SREL32:
1567 case ALPHA_R_SREL64:
1568 if (r_extern)
1569 addend += - (r_vaddr + 4);
1570 relocatep = true;
1571 break;
1572
1573 case ALPHA_R_GPREL32:
1574 /* This relocation is used in a switch table. It is a 32
1575 bit offset from the current GP value. We must adjust it
1576 by the different between the original GP value and the
1577 current GP value. */
1578 relocatep = true;
1579 addend = ecoff_data (input_bfd)->gp - gp;
1580 gp_usedp = true;
1581 break;
1582
1583 case ALPHA_R_LITERAL:
1584 /* This is a reference to a literal value, generally
1585 (always?) in the .lita section. This is a 16 bit GP
1586 relative relocation. Sometimes the subsequent reloc is a
1587 LITUSE reloc, which indicates how this reloc is used.
1588 This sometimes permits rewriting the two instructions
1589 referred to by the LITERAL and the LITUSE into different
1590 instructions which do not refer to .lita. This can save
1591 a memory reference, and permits removing a value from
1592 .lita thus saving GP relative space.
1593
1594 We do not these optimizations. To do them we would need
1595 to arrange to link the .lita section first, so that by
1596 the time we got here we would know the final values to
1597 use. This would not be particularly difficult, but it is
1598 not currently implemented. */
1599
1600 /* I believe that the LITERAL reloc will only apply to a ldq
1601 or ldl instruction, so check my assumption. */
1602 {
1603 unsigned long insn;
1604
1605 insn = bfd_get_32 (input_bfd,
1606 contents + r_vaddr - input_section->vma);
1607 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1608 || ((insn >> 26) & 0x3f) == 0x28);
1609 }
1610
1611 relocatep = true;
1612 addend = ecoff_data (input_bfd)->gp - gp;
1613 gp_usedp = true;
1614 break;
1615
1616 case ALPHA_R_LITUSE:
1617 /* See ALPHA_R_LITERAL above for the uses of this reloc. It
1618 does not cause anything to happen, itself. */
1619 break;
1620
1621 case ALPHA_R_GPDISP:
1622 /* This marks the ldah of an ldah/lda pair which loads the
1623 gp register with the difference of the gp value and the
1624 current location. The second of the pair is r_symndx
1625 bytes ahead. It used to be marked with an ALPHA_R_IGNORE
1626 reloc, but OSF/1 3.2 no longer does that. */
1627 {
1628 unsigned long insn1, insn2;
1629
1630 /* Get the two instructions. */
1631 insn1 = bfd_get_32 (input_bfd,
1632 contents + r_vaddr - input_section->vma);
1633 insn2 = bfd_get_32 (input_bfd,
1634 (contents
1635 + r_vaddr
1636 - input_section->vma
1637 + r_symndx));
1638
1639 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1640 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1641
1642 /* Get the existing addend. We must account for the sign
1643 extension done by lda and ldah. */
1644 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1645 if (insn1 & 0x8000)
1646 {
1647 /* This is addend -= 0x100000000 without causing an
1648 integer overflow on a 32 bit host. */
1649 addend -= 0x80000000;
1650 addend -= 0x80000000;
1651 }
1652 if (insn2 & 0x8000)
1653 addend -= 0x10000;
1654
1655 /* The existing addend includes the difference between the
1656 gp of the input BFD and the address in the input BFD.
1657 We want to change this to the difference between the
1658 final GP and the final address. */
1659 addend += (gp
1660 - ecoff_data (input_bfd)->gp
1661 + input_section->vma
1662 - (input_section->output_section->vma
1663 + input_section->output_offset));
1664
1665 /* Change the instructions, accounting for the sign
1666 extension, and write them out. */
1667 if (addend & 0x8000)
1668 addend += 0x10000;
1669 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1670 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1671
1672 bfd_put_32 (input_bfd, (bfd_vma) insn1,
1673 contents + r_vaddr - input_section->vma);
1674 bfd_put_32 (input_bfd, (bfd_vma) insn2,
1675 contents + r_vaddr - input_section->vma + r_symndx);
1676
1677 gp_usedp = true;
1678 }
1679 break;
1680
1681 case ALPHA_R_OP_PUSH:
1682 case ALPHA_R_OP_PSUB:
1683 case ALPHA_R_OP_PRSHIFT:
1684 /* Manipulate values on the reloc evaluation stack. The
1685 r_vaddr field is not an address in input_section, it is
1686 the current value (including any addend) of the object
1687 being used. */
1688 if (! r_extern)
1689 {
1690 asection *s;
1691
1692 s = symndx_to_section[r_symndx];
1693 if (s == (asection *) NULL)
1694 abort ();
1695 addend = s->output_section->vma + s->output_offset - s->vma;
1696 }
1697 else
1698 {
1699 struct ecoff_link_hash_entry *h;
1700
1701 h = sym_hashes[r_symndx];
1702 if (h == (struct ecoff_link_hash_entry *) NULL)
1703 abort ();
1704
1705 if (! info->relocateable)
1706 {
1707 if (h->root.type == bfd_link_hash_defined
1708 || h->root.type == bfd_link_hash_defweak)
1709 addend = (h->root.u.def.value
1710 + h->root.u.def.section->output_section->vma
1711 + h->root.u.def.section->output_offset);
1712 else
1713 {
1714 /* Note that we pass the address as 0, since we
1715 do not have a meaningful number for the
1716 location within the section that is being
1717 relocated. */
1718 if (! ((*info->callbacks->undefined_symbol)
1719 (info, h->root.root.string, input_bfd,
1720 input_section, (bfd_vma) 0, true)))
1721 return false;
1722 addend = 0;
1723 }
1724 }
1725 else
1726 {
1727 if (h->root.type != bfd_link_hash_defined
1728 && h->root.type != bfd_link_hash_defweak
1729 && h->indx == -1)
1730 {
1731 /* This symbol is not being written out. Pass
1732 the address as 0, as with undefined_symbol,
1733 above. */
1734 if (! ((*info->callbacks->unattached_reloc)
1735 (info, h->root.root.string, input_bfd,
1736 input_section, (bfd_vma) 0)))
1737 return false;
1738 }
1739
1740 addend = alpha_convert_external_reloc (output_bfd, info,
1741 input_bfd,
1742 ext_rel, h);
1743 }
1744 }
1745
1746 addend += r_vaddr;
1747
1748 if (info->relocateable)
1749 {
1750 /* Adjust r_vaddr by the addend. */
1751 H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1752 }
1753 else
1754 {
1755 switch (r_type)
1756 {
1757 case ALPHA_R_OP_PUSH:
1758 if (tos >= RELOC_STACKSIZE)
1759 abort ();
1760 stack[tos++] = addend;
1761 break;
1762
1763 case ALPHA_R_OP_PSUB:
1764 if (tos == 0)
1765 abort ();
1766 stack[tos - 1] -= addend;
1767 break;
1768
1769 case ALPHA_R_OP_PRSHIFT:
1770 if (tos == 0)
1771 abort ();
1772 stack[tos - 1] >>= addend;
1773 break;
1774 }
1775 }
1776
1777 adjust_addrp = false;
1778 break;
1779
1780 case ALPHA_R_OP_STORE:
1781 /* Store a value from the reloc stack into a bitfield. If
1782 we are generating relocateable output, all we do is
1783 adjust the address of the reloc. */
1784 if (! info->relocateable)
1785 {
1786 bfd_vma mask;
1787 bfd_vma val;
1788
1789 if (tos == 0)
1790 abort ();
1791
1792 /* Get the relocation mask. The separate steps and the
1793 casts to bfd_vma are attempts to avoid a bug in the
1794 Alpha OSF 1.3 C compiler. See reloc.c for more
1795 details. */
1796 mask = 1;
1797 mask <<= (bfd_vma) r_size;
1798 mask -= 1;
1799
1800 /* FIXME: I don't know what kind of overflow checking,
1801 if any, should be done here. */
1802 val = bfd_get_64 (input_bfd,
1803 contents + r_vaddr - input_section->vma);
1804 val &=~ mask << (bfd_vma) r_offset;
1805 val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1806 bfd_put_64 (input_bfd, val,
1807 contents + r_vaddr - input_section->vma);
1808 }
1809 break;
1810
1811 case ALPHA_R_GPVALUE:
1812 /* I really don't know if this does the right thing. */
1813 gp = ecoff_data (input_bfd)->gp + r_symndx;
1814 gp_undefined = false;
1815 break;
1816 }
1817
1818 if (relocatep)
1819 {
1820 reloc_howto_type *howto;
1821 struct ecoff_link_hash_entry *h = NULL;
1822 asection *s = NULL;
1823 bfd_vma relocation;
1824 bfd_reloc_status_type r;
1825
1826 /* Perform a relocation. */
1827
1828 howto = &alpha_howto_table[r_type];
1829
1830 if (r_extern)
1831 {
1832 h = sym_hashes[r_symndx];
1833 /* If h is NULL, that means that there is a reloc
1834 against an external symbol which we thought was just
1835 a debugging symbol. This should not happen. */
1836 if (h == (struct ecoff_link_hash_entry *) NULL)
1837 abort ();
1838 }
1839 else
1840 {
1841 if (r_symndx >= NUM_RELOC_SECTIONS)
1842 s = NULL;
1843 else
1844 s = symndx_to_section[r_symndx];
1845
1846 if (s == (asection *) NULL)
1847 abort ();
1848 }
1849
1850 if (info->relocateable)
1851 {
1852 /* We are generating relocateable output, and must
1853 convert the existing reloc. */
1854 if (r_extern)
1855 {
1856 if (h->root.type != bfd_link_hash_defined
1857 && h->root.type != bfd_link_hash_defweak
1858 && h->indx == -1)
1859 {
1860 /* This symbol is not being written out. */
1861 if (! ((*info->callbacks->unattached_reloc)
1862 (info, h->root.root.string, input_bfd,
1863 input_section, r_vaddr - input_section->vma)))
1864 return false;
1865 }
1866
1867 relocation = alpha_convert_external_reloc (output_bfd,
1868 info,
1869 input_bfd,
1870 ext_rel,
1871 h);
1872 }
1873 else
1874 {
1875 /* This is a relocation against a section. Adjust
1876 the value by the amount the section moved. */
1877 relocation = (s->output_section->vma
1878 + s->output_offset
1879 - s->vma);
1880 }
1881
1882 /* If this is PC relative, the existing object file
1883 appears to already have the reloc worked out. We
1884 must subtract out the old value and add in the new
1885 one. */
1886 if (howto->pc_relative)
1887 relocation -= (input_section->output_section->vma
1888 + input_section->output_offset
1889 - input_section->vma);
1890
1891 /* Put in any addend. */
1892 relocation += addend;
1893
1894 /* Adjust the contents. */
1895 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1896 (contents
1897 + r_vaddr
1898 - input_section->vma));
1899 }
1900 else
1901 {
1902 /* We are producing a final executable. */
1903 if (r_extern)
1904 {
1905 /* This is a reloc against a symbol. */
1906 if (h->root.type == bfd_link_hash_defined
1907 || h->root.type == bfd_link_hash_defweak)
1908 {
1909 asection *hsec;
1910
1911 hsec = h->root.u.def.section;
1912 relocation = (h->root.u.def.value
1913 + hsec->output_section->vma
1914 + hsec->output_offset);
1915 }
1916 else
1917 {
1918 if (! ((*info->callbacks->undefined_symbol)
1919 (info, h->root.root.string, input_bfd,
1920 input_section,
1921 r_vaddr - input_section->vma, true)))
1922 return false;
1923 relocation = 0;
1924 }
1925 }
1926 else
1927 {
1928 /* This is a reloc against a section. */
1929 relocation = (s->output_section->vma
1930 + s->output_offset
1931 - s->vma);
1932
1933 /* Adjust a PC relative relocation by removing the
1934 reference to the original source section. */
1935 if (howto->pc_relative)
1936 relocation += input_section->vma;
1937 }
1938
1939 r = _bfd_final_link_relocate (howto,
1940 input_bfd,
1941 input_section,
1942 contents,
1943 r_vaddr - input_section->vma,
1944 relocation,
1945 addend);
1946 }
1947
1948 if (r != bfd_reloc_ok)
1949 {
1950 switch (r)
1951 {
1952 default:
1953 case bfd_reloc_outofrange:
1954 abort ();
1955 case bfd_reloc_overflow:
1956 {
1957 const char *name;
1958
1959 if (r_extern)
1960 name = sym_hashes[r_symndx]->root.root.string;
1961 else
1962 name = bfd_section_name (input_bfd,
1963 symndx_to_section[r_symndx]);
1964 if (! ((*info->callbacks->reloc_overflow)
1965 (info, name, alpha_howto_table[r_type].name,
1966 (bfd_vma) 0, input_bfd, input_section,
1967 r_vaddr - input_section->vma)))
1968 return false;
1969 }
1970 break;
1971 }
1972 }
1973 }
1974
1975 if (info->relocateable && adjust_addrp)
1976 {
1977 /* Change the address of the relocation. */
1978 H_PUT_64 (input_bfd,
1979 (input_section->output_section->vma
1980 + input_section->output_offset
1981 - input_section->vma
1982 + r_vaddr),
1983 ext_rel->r_vaddr);
1984 }
1985
1986 if (gp_usedp && gp_undefined)
1987 {
1988 if (! ((*info->callbacks->reloc_dangerous)
1989 (info, _("GP relative relocation used when GP not defined"),
1990 input_bfd, input_section, r_vaddr - input_section->vma)))
1991 return false;
1992 /* Only give the error once per link. */
1993 gp = 4;
1994 _bfd_set_gp_value (output_bfd, gp);
1995 gp_undefined = false;
1996 }
1997 }
1998
1999 if (tos != 0)
2000 abort ();
2001
2002 return true;
2003 }
2004 \f
2005 /* Do final adjustments to the filehdr and the aouthdr. This routine
2006 sets the dynamic bits in the file header. */
2007
2008 static boolean
2009 alpha_adjust_headers (abfd, fhdr, ahdr)
2010 bfd *abfd;
2011 struct internal_filehdr *fhdr;
2012 struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED;
2013 {
2014 if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
2015 fhdr->f_flags |= F_ALPHA_CALL_SHARED;
2016 else if ((abfd->flags & DYNAMIC) != 0)
2017 fhdr->f_flags |= F_ALPHA_SHARABLE;
2018 return true;
2019 }
2020 \f
2021 /* Archive handling. In OSF/1 (or Digital Unix) v3.2, Digital
2022 introduced archive packing, in which the elements in an archive are
2023 optionally compressed using a simple dictionary scheme. We know
2024 how to read such archives, but we don't write them. */
2025
2026 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
2027 #define alpha_ecoff_slurp_extended_name_table \
2028 _bfd_ecoff_slurp_extended_name_table
2029 #define alpha_ecoff_construct_extended_name_table \
2030 _bfd_ecoff_construct_extended_name_table
2031 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
2032 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2033 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2034 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2035
2036 /* A compressed file uses this instead of ARFMAG. */
2037
2038 #define ARFZMAG "Z\012"
2039
2040 /* Read an archive header. This is like the standard routine, but it
2041 also accepts ARFZMAG. */
2042
2043 static PTR
2044 alpha_ecoff_read_ar_hdr (abfd)
2045 bfd *abfd;
2046 {
2047 struct areltdata *ret;
2048 struct ar_hdr *h;
2049
2050 ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2051 if (ret == NULL)
2052 return NULL;
2053
2054 h = (struct ar_hdr *) ret->arch_header;
2055 if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2056 {
2057 bfd_byte ab[8];
2058
2059 /* This is a compressed file. We must set the size correctly.
2060 The size is the eight bytes after the dummy file header. */
2061 if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2062 || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2063 || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2064 return NULL;
2065
2066 ret->parsed_size = H_GET_64 (abfd, ab);
2067 }
2068
2069 return (PTR) ret;
2070 }
2071
2072 /* Get an archive element at a specified file position. This is where
2073 we uncompress the archive element if necessary. */
2074
2075 static bfd *
2076 alpha_ecoff_get_elt_at_filepos (archive, filepos)
2077 bfd *archive;
2078 file_ptr filepos;
2079 {
2080 bfd *nbfd = NULL;
2081 struct areltdata *tdata;
2082 struct ar_hdr *hdr;
2083 bfd_byte ab[8];
2084 bfd_size_type size;
2085 bfd_byte *buf, *p;
2086 struct bfd_in_memory *bim;
2087
2088 nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2089 if (nbfd == NULL)
2090 goto error_return;
2091
2092 if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2093 {
2094 /* We have already expanded this BFD. */
2095 return nbfd;
2096 }
2097
2098 tdata = (struct areltdata *) nbfd->arelt_data;
2099 hdr = (struct ar_hdr *) tdata->arch_header;
2100 if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2101 return nbfd;
2102
2103 /* We must uncompress this element. We do this by copying it into a
2104 memory buffer, and making bfd_bread and bfd_seek use that buffer.
2105 This can use a lot of memory, but it's simpler than getting a
2106 temporary file, making that work with the file descriptor caching
2107 code, and making sure that it is deleted at all appropriate
2108 times. It can be changed if it ever becomes important. */
2109
2110 /* The compressed file starts with a dummy ECOFF file header. */
2111 if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2112 goto error_return;
2113
2114 /* The next eight bytes are the real file size. */
2115 if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2116 goto error_return;
2117 size = H_GET_64 (nbfd, ab);
2118
2119 if (size == 0)
2120 buf = NULL;
2121 else
2122 {
2123 bfd_size_type left;
2124 bfd_byte dict[4096];
2125 unsigned int h;
2126 bfd_byte b;
2127
2128 buf = (bfd_byte *) bfd_alloc (nbfd, size);
2129 if (buf == NULL)
2130 goto error_return;
2131 p = buf;
2132
2133 left = size;
2134
2135 /* I don't know what the next eight bytes are for. */
2136 if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2137 goto error_return;
2138
2139 /* This is the uncompression algorithm. It's a simple
2140 dictionary based scheme in which each character is predicted
2141 by a hash of the previous three characters. A control byte
2142 indicates whether the character is predicted or whether it
2143 appears in the input stream; each control byte manages the
2144 next eight bytes in the output stream. */
2145 memset (dict, 0, sizeof dict);
2146 h = 0;
2147 while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2148 {
2149 unsigned int i;
2150
2151 for (i = 0; i < 8; i++, b >>= 1)
2152 {
2153 bfd_byte n;
2154
2155 if ((b & 1) == 0)
2156 n = dict[h];
2157 else
2158 {
2159 if (! bfd_bread (&n, (bfd_size_type) 1, nbfd))
2160 goto error_return;
2161 dict[h] = n;
2162 }
2163
2164 *p++ = n;
2165
2166 --left;
2167 if (left == 0)
2168 break;
2169
2170 h <<= 4;
2171 h ^= n;
2172 h &= sizeof dict - 1;
2173 }
2174
2175 if (left == 0)
2176 break;
2177 }
2178 }
2179
2180 /* Now the uncompressed file contents are in buf. */
2181 bim = ((struct bfd_in_memory *)
2182 bfd_alloc (nbfd, (bfd_size_type) sizeof (struct bfd_in_memory)));
2183 if (bim == NULL)
2184 goto error_return;
2185 bim->size = size;
2186 bim->buffer = buf;
2187
2188 nbfd->mtime_set = true;
2189 nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2190
2191 nbfd->flags |= BFD_IN_MEMORY;
2192 nbfd->iostream = (PTR) bim;
2193 BFD_ASSERT (! nbfd->cacheable);
2194
2195 return nbfd;
2196
2197 error_return:
2198 if (nbfd != NULL)
2199 bfd_close (nbfd);
2200 return NULL;
2201 }
2202
2203 /* Open the next archived file. */
2204
2205 static bfd *
2206 alpha_ecoff_openr_next_archived_file (archive, last_file)
2207 bfd *archive;
2208 bfd *last_file;
2209 {
2210 file_ptr filestart;
2211
2212 if (last_file == NULL)
2213 filestart = bfd_ardata (archive)->first_file_filepos;
2214 else
2215 {
2216 struct areltdata *t;
2217 struct ar_hdr *h;
2218 bfd_size_type size;
2219
2220 /* We can't use arelt_size here, because that uses parsed_size,
2221 which is the uncompressed size. We need the compressed size. */
2222 t = (struct areltdata *) last_file->arelt_data;
2223 h = (struct ar_hdr *) t->arch_header;
2224 size = strtol (h->ar_size, (char **) NULL, 10);
2225
2226 /* Pad to an even boundary...
2227 Note that last_file->origin can be odd in the case of
2228 BSD-4.4-style element with a long odd size. */
2229 filestart = last_file->origin + size;
2230 filestart += filestart % 2;
2231 }
2232
2233 return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2234 }
2235
2236 /* Open the archive file given an index into the armap. */
2237
2238 static bfd *
2239 alpha_ecoff_get_elt_at_index (abfd, index)
2240 bfd *abfd;
2241 symindex index;
2242 {
2243 carsym *entry;
2244
2245 entry = bfd_ardata (abfd)->symdefs + index;
2246 return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2247 }
2248 \f
2249 /* This is the ECOFF backend structure. The backend field of the
2250 target vector points to this. */
2251
2252 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2253 {
2254 /* COFF backend structure. */
2255 {
2256 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2257 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2258 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2259 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2260 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2261 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2262 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2263 alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2264 alpha_ecoff_swap_scnhdr_out,
2265 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, true, false, 4, false, 2,
2266 alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2267 alpha_ecoff_swap_scnhdr_in, NULL,
2268 alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2269 alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2270 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2271 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2272 NULL, NULL, NULL
2273 },
2274 /* Supported architecture. */
2275 bfd_arch_alpha,
2276 /* Initial portion of armap string. */
2277 "________64",
2278 /* The page boundary used to align sections in a demand-paged
2279 executable file. E.g., 0x1000. */
2280 0x2000,
2281 /* True if the .rdata section is part of the text segment, as on the
2282 Alpha. False if .rdata is part of the data segment, as on the
2283 MIPS. */
2284 true,
2285 /* Bitsize of constructor entries. */
2286 64,
2287 /* Reloc to use for constructor entries. */
2288 &alpha_howto_table[ALPHA_R_REFQUAD],
2289 {
2290 /* Symbol table magic number. */
2291 magicSym2,
2292 /* Alignment of debugging information. E.g., 4. */
2293 8,
2294 /* Sizes of external symbolic information. */
2295 sizeof (struct hdr_ext),
2296 sizeof (struct dnr_ext),
2297 sizeof (struct pdr_ext),
2298 sizeof (struct sym_ext),
2299 sizeof (struct opt_ext),
2300 sizeof (struct fdr_ext),
2301 sizeof (struct rfd_ext),
2302 sizeof (struct ext_ext),
2303 /* Functions to swap in external symbolic data. */
2304 ecoff_swap_hdr_in,
2305 ecoff_swap_dnr_in,
2306 ecoff_swap_pdr_in,
2307 ecoff_swap_sym_in,
2308 ecoff_swap_opt_in,
2309 ecoff_swap_fdr_in,
2310 ecoff_swap_rfd_in,
2311 ecoff_swap_ext_in,
2312 _bfd_ecoff_swap_tir_in,
2313 _bfd_ecoff_swap_rndx_in,
2314 /* Functions to swap out external symbolic data. */
2315 ecoff_swap_hdr_out,
2316 ecoff_swap_dnr_out,
2317 ecoff_swap_pdr_out,
2318 ecoff_swap_sym_out,
2319 ecoff_swap_opt_out,
2320 ecoff_swap_fdr_out,
2321 ecoff_swap_rfd_out,
2322 ecoff_swap_ext_out,
2323 _bfd_ecoff_swap_tir_out,
2324 _bfd_ecoff_swap_rndx_out,
2325 /* Function to read in symbolic data. */
2326 _bfd_ecoff_slurp_symbolic_info
2327 },
2328 /* External reloc size. */
2329 RELSZ,
2330 /* Reloc swapping functions. */
2331 alpha_ecoff_swap_reloc_in,
2332 alpha_ecoff_swap_reloc_out,
2333 /* Backend reloc tweaking. */
2334 alpha_adjust_reloc_in,
2335 alpha_adjust_reloc_out,
2336 /* Relocate section contents while linking. */
2337 alpha_relocate_section,
2338 /* Do final adjustments to filehdr and aouthdr. */
2339 alpha_adjust_headers,
2340 /* Read an element from an archive at a given file position. */
2341 alpha_ecoff_get_elt_at_filepos
2342 };
2343
2344 /* Looking up a reloc type is Alpha specific. */
2345 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2346
2347 /* So is getting relocated section contents. */
2348 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2349 alpha_ecoff_get_relocated_section_contents
2350
2351 /* Handling file windows is generic. */
2352 #define _bfd_ecoff_get_section_contents_in_window \
2353 _bfd_generic_get_section_contents_in_window
2354
2355 /* Relaxing sections is generic. */
2356 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2357 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2358 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2359
2360 const bfd_target ecoffalpha_little_vec =
2361 {
2362 "ecoff-littlealpha", /* name */
2363 bfd_target_ecoff_flavour,
2364 BFD_ENDIAN_LITTLE, /* data byte order is little */
2365 BFD_ENDIAN_LITTLE, /* header byte order is little */
2366
2367 (HAS_RELOC | EXEC_P | /* object flags */
2368 HAS_LINENO | HAS_DEBUG |
2369 HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2370
2371 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2372 0, /* leading underscore */
2373 ' ', /* ar_pad_char */
2374 15, /* ar_max_namelen */
2375 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2376 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2377 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2378 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2379 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2380 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2381
2382 {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */
2383 _bfd_ecoff_archive_p, _bfd_dummy_target},
2384 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2385 _bfd_generic_mkarchive, bfd_false},
2386 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2387 _bfd_write_archive_contents, bfd_false},
2388
2389 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2390 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2391 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2392 BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2393 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2394 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2395 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2396 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2397 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2398
2399 NULL,
2400
2401 (PTR) &alpha_ecoff_backend_data
2402 };
This page took 0.08494 seconds and 5 git commands to generate.