Touches most files in bfd/, so likely will be blamed for everything..
[deliverable/binutils-gdb.git] / bfd / coff-mips.c
1 /* BFD back-end for MIPS Extended-Coff files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Original version by Per Bothner.
6 Full support added by Ian Lance Taylor, ian@cygnus.com.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "coff/internal.h"
29 #include "coff/sym.h"
30 #include "coff/symconst.h"
31 #include "coff/ecoff.h"
32 #include "coff/mips.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 \f
36 /* Prototypes for static functions. */
37
38 static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
39 static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
40 struct internal_reloc *));
41 static void mips_ecoff_swap_reloc_out PARAMS ((bfd *,
42 const struct internal_reloc *,
43 PTR));
44 static void mips_adjust_reloc_in PARAMS ((bfd *,
45 const struct internal_reloc *,
46 arelent *));
47 static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *,
48 struct internal_reloc *));
49 static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd,
50 arelent *reloc,
51 asymbol *symbol,
52 PTR data,
53 asection *section,
54 bfd *output_bfd,
55 char **error));
56 static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd,
57 arelent *reloc,
58 asymbol *symbol,
59 PTR data,
60 asection *section,
61 bfd *output_bfd,
62 char **error));
63 static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd,
64 arelent *reloc,
65 asymbol *symbol,
66 PTR data,
67 asection *section,
68 bfd *output_bfd,
69 char **error));
70 static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd,
71 arelent *reloc,
72 asymbol *symbol,
73 PTR data,
74 asection *section,
75 bfd *output_bfd,
76 char **error));
77 static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd,
78 arelent *reloc,
79 asymbol *symbol,
80 PTR data,
81 asection *section,
82 bfd *output_bfd,
83 char **error));
84 static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd,
85 arelent *reloc,
86 asymbol *symbol,
87 PTR data,
88 asection *section,
89 bfd *output_bfd,
90 char **error));
91 static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd,
92 arelent *reloc,
93 asymbol *symbol,
94 PTR data,
95 asection *section,
96 bfd *output_bfd,
97 char **error));
98 static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi,
99 struct internal_reloc *reflo,
100 bfd *input_bfd,
101 asection *input_section,
102 bfd_byte *contents,
103 size_t adjust,
104 bfd_vma relocation,
105 boolean pcrel));
106 static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
107 bfd *, asection *,
108 bfd_byte *, PTR));
109 static boolean mips_read_relocs PARAMS ((bfd *, asection *));
110 static boolean mips_relax_section PARAMS ((bfd *, asection *,
111 struct bfd_link_info *,
112 boolean *));
113 static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *,
114 asection *,
115 struct ecoff_link_hash_entry *,
116 bfd_byte *, bfd_vma));
117 static reloc_howto_type *mips_bfd_reloc_type_lookup
118 PARAMS ((bfd *, bfd_reloc_code_real_type));
119 \f
120 /* ECOFF has COFF sections, but the debugging information is stored in
121 a completely different format. ECOFF targets use some of the
122 swapping routines from coffswap.h, and some of the generic COFF
123 routines in coffgen.c, but, unlike the real COFF targets, do not
124 use coffcode.h itself.
125
126 Get the generic COFF swapping routines, except for the reloc,
127 symbol, and lineno ones. Give them ECOFF names. */
128 #define MIPSECOFF
129 #define NO_COFF_RELOCS
130 #define NO_COFF_SYMBOLS
131 #define NO_COFF_LINENOS
132 #define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
133 #define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
134 #define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
135 #define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
136 #define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
137 #define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
138 #include "coffswap.h"
139
140 /* Get the ECOFF swapping routines. */
141 #define ECOFF_32
142 #include "ecoffswap.h"
143 \f
144 /* How to process the various relocs types. */
145
146 static reloc_howto_type mips_howto_table[] =
147 {
148 /* Reloc type 0 is ignored. The reloc reading code ensures that
149 this is a reference to the .abs section, which will cause
150 bfd_perform_relocation to do nothing. */
151 HOWTO (MIPS_R_IGNORE, /* type */
152 0, /* rightshift */
153 0, /* size (0 = byte, 1 = short, 2 = long) */
154 8, /* bitsize */
155 false, /* pc_relative */
156 0, /* bitpos */
157 complain_overflow_dont, /* complain_on_overflow */
158 0, /* special_function */
159 "IGNORE", /* name */
160 false, /* partial_inplace */
161 0, /* src_mask */
162 0, /* dst_mask */
163 false), /* pcrel_offset */
164
165 /* A 16 bit reference to a symbol, normally from a data section. */
166 HOWTO (MIPS_R_REFHALF, /* type */
167 0, /* rightshift */
168 1, /* size (0 = byte, 1 = short, 2 = long) */
169 16, /* bitsize */
170 false, /* pc_relative */
171 0, /* bitpos */
172 complain_overflow_bitfield, /* complain_on_overflow */
173 mips_generic_reloc, /* special_function */
174 "REFHALF", /* name */
175 true, /* partial_inplace */
176 0xffff, /* src_mask */
177 0xffff, /* dst_mask */
178 false), /* pcrel_offset */
179
180 /* A 32 bit reference to a symbol, normally from a data section. */
181 HOWTO (MIPS_R_REFWORD, /* type */
182 0, /* rightshift */
183 2, /* size (0 = byte, 1 = short, 2 = long) */
184 32, /* bitsize */
185 false, /* pc_relative */
186 0, /* bitpos */
187 complain_overflow_bitfield, /* complain_on_overflow */
188 mips_generic_reloc, /* special_function */
189 "REFWORD", /* name */
190 true, /* partial_inplace */
191 0xffffffff, /* src_mask */
192 0xffffffff, /* dst_mask */
193 false), /* pcrel_offset */
194
195 /* A 26 bit absolute jump address. */
196 HOWTO (MIPS_R_JMPADDR, /* type */
197 2, /* rightshift */
198 2, /* size (0 = byte, 1 = short, 2 = long) */
199 26, /* bitsize */
200 false, /* pc_relative */
201 0, /* bitpos */
202 complain_overflow_dont, /* complain_on_overflow */
203 /* This needs complex overflow
204 detection, because the upper four
205 bits must match the PC. */
206 mips_generic_reloc, /* special_function */
207 "JMPADDR", /* name */
208 true, /* partial_inplace */
209 0x3ffffff, /* src_mask */
210 0x3ffffff, /* dst_mask */
211 false), /* pcrel_offset */
212
213 /* The high 16 bits of a symbol value. Handled by the function
214 mips_refhi_reloc. */
215 HOWTO (MIPS_R_REFHI, /* type */
216 16, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 16, /* bitsize */
219 false, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 mips_refhi_reloc, /* special_function */
223 "REFHI", /* name */
224 true, /* partial_inplace */
225 0xffff, /* src_mask */
226 0xffff, /* dst_mask */
227 false), /* pcrel_offset */
228
229 /* The low 16 bits of a symbol value. */
230 HOWTO (MIPS_R_REFLO, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 16, /* bitsize */
234 false, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 mips_reflo_reloc, /* special_function */
238 "REFLO", /* name */
239 true, /* partial_inplace */
240 0xffff, /* src_mask */
241 0xffff, /* dst_mask */
242 false), /* pcrel_offset */
243
244 /* A reference to an offset from the gp register. Handled by the
245 function mips_gprel_reloc. */
246 HOWTO (MIPS_R_GPREL, /* type */
247 0, /* rightshift */
248 2, /* size (0 = byte, 1 = short, 2 = long) */
249 16, /* bitsize */
250 false, /* pc_relative */
251 0, /* bitpos */
252 complain_overflow_signed, /* complain_on_overflow */
253 mips_gprel_reloc, /* special_function */
254 "GPREL", /* name */
255 true, /* partial_inplace */
256 0xffff, /* src_mask */
257 0xffff, /* dst_mask */
258 false), /* pcrel_offset */
259
260 /* A reference to a literal using an offset from the gp register.
261 Handled by the function mips_gprel_reloc. */
262 HOWTO (MIPS_R_LITERAL, /* type */
263 0, /* rightshift */
264 2, /* size (0 = byte, 1 = short, 2 = long) */
265 16, /* bitsize */
266 false, /* pc_relative */
267 0, /* bitpos */
268 complain_overflow_signed, /* complain_on_overflow */
269 mips_gprel_reloc, /* special_function */
270 "LITERAL", /* name */
271 true, /* partial_inplace */
272 0xffff, /* src_mask */
273 0xffff, /* dst_mask */
274 false), /* pcrel_offset */
275
276 EMPTY_HOWTO (8),
277 EMPTY_HOWTO (9),
278 EMPTY_HOWTO (10),
279 EMPTY_HOWTO (11),
280
281 /* This reloc is a Cygnus extension used when generating position
282 independent code for embedded systems. It represents a 16 bit PC
283 relative reloc rightshifted twice as used in the MIPS branch
284 instructions. */
285 HOWTO (MIPS_R_PCREL16, /* type */
286 2, /* rightshift */
287 2, /* size (0 = byte, 1 = short, 2 = long) */
288 16, /* bitsize */
289 true, /* pc_relative */
290 0, /* bitpos */
291 complain_overflow_signed, /* complain_on_overflow */
292 mips_generic_reloc, /* special_function */
293 "PCREL16", /* name */
294 true, /* partial_inplace */
295 0xffff, /* src_mask */
296 0xffff, /* dst_mask */
297 true), /* pcrel_offset */
298
299 /* This reloc is a Cygnus extension used when generating position
300 independent code for embedded systems. It represents the high 16
301 bits of a PC relative reloc. The next reloc must be
302 MIPS_R_RELLO, and the addend is formed from the addends of the
303 two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
304 final value is actually PC relative to the location of the
305 MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
306 HOWTO (MIPS_R_RELHI, /* type */
307 16, /* rightshift */
308 2, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 true, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_bitfield, /* complain_on_overflow */
313 mips_relhi_reloc, /* special_function */
314 "RELHI", /* name */
315 true, /* partial_inplace */
316 0xffff, /* src_mask */
317 0xffff, /* dst_mask */
318 true), /* pcrel_offset */
319
320 /* This reloc is a Cygnus extension used when generating position
321 independent code for embedded systems. It represents the low 16
322 bits of a PC relative reloc. */
323 HOWTO (MIPS_R_RELLO, /* type */
324 0, /* rightshift */
325 2, /* size (0 = byte, 1 = short, 2 = long) */
326 16, /* bitsize */
327 true, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_dont, /* complain_on_overflow */
330 mips_rello_reloc, /* special_function */
331 "RELLO", /* name */
332 true, /* partial_inplace */
333 0xffff, /* src_mask */
334 0xffff, /* dst_mask */
335 true), /* pcrel_offset */
336
337 EMPTY_HOWTO (15),
338 EMPTY_HOWTO (16),
339 EMPTY_HOWTO (17),
340 EMPTY_HOWTO (18),
341 EMPTY_HOWTO (19),
342 EMPTY_HOWTO (20),
343 EMPTY_HOWTO (21),
344
345 /* This reloc is a Cygnus extension used when generating position
346 independent code for embedded systems. It represents an entry in
347 a switch table, which is the difference between two symbols in
348 the .text section. The symndx is actually the offset from the
349 reloc address to the subtrahend. See include/coff/mips.h for
350 more details. */
351 HOWTO (MIPS_R_SWITCH, /* type */
352 0, /* rightshift */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
354 32, /* bitsize */
355 true, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_dont, /* complain_on_overflow */
358 mips_switch_reloc, /* special_function */
359 "SWITCH", /* name */
360 true, /* partial_inplace */
361 0xffffffff, /* src_mask */
362 0xffffffff, /* dst_mask */
363 true) /* pcrel_offset */
364 };
365
366 #define MIPS_HOWTO_COUNT \
367 (sizeof mips_howto_table / sizeof mips_howto_table[0])
368
369 /* When the linker is doing relaxing, it may change a external PCREL16
370 reloc. This typically represents an instruction like
371 bal foo
372 We change it to
373 .set noreorder
374 bal $L1
375 lui $at,%hi(foo - $L1)
376 $L1:
377 addiu $at,%lo(foo - $L1)
378 addu $at,$at,$31
379 jalr $at
380 PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
381 instruction by. */
382
383 #define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
384 \f
385 /* See whether the magic number matches. */
386
387 static boolean
388 mips_ecoff_bad_format_hook (abfd, filehdr)
389 bfd *abfd;
390 PTR filehdr;
391 {
392 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
393
394 switch (internal_f->f_magic)
395 {
396 case MIPS_MAGIC_1:
397 /* I don't know what endianness this implies. */
398 return true;
399
400 case MIPS_MAGIC_BIG:
401 case MIPS_MAGIC_BIG2:
402 case MIPS_MAGIC_BIG3:
403 return bfd_big_endian (abfd);
404
405 case MIPS_MAGIC_LITTLE:
406 case MIPS_MAGIC_LITTLE2:
407 case MIPS_MAGIC_LITTLE3:
408 return bfd_little_endian (abfd);
409
410 default:
411 return false;
412 }
413 }
414 \f
415 /* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
416 external form. They use a bit which indicates whether the symbol
417 is external. */
418
419 /* Swap a reloc in. */
420
421 static void
422 mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
423 bfd *abfd;
424 PTR ext_ptr;
425 struct internal_reloc *intern;
426 {
427 const RELOC *ext = (RELOC *) ext_ptr;
428
429 intern->r_vaddr = H_GET_32 (abfd, ext->r_vaddr);
430 if (bfd_header_big_endian (abfd))
431 {
432 intern->r_symndx = (((int) ext->r_bits[0]
433 << RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
434 | ((int) ext->r_bits[1]
435 << RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
436 | ((int) ext->r_bits[2]
437 << RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
438 intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
439 >> RELOC_BITS3_TYPE_SH_BIG);
440 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
441 }
442 else
443 {
444 intern->r_symndx = (((int) ext->r_bits[0]
445 << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
446 | ((int) ext->r_bits[1]
447 << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
448 | ((int) ext->r_bits[2]
449 << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
450 intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
451 >> RELOC_BITS3_TYPE_SH_LITTLE)
452 | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
453 << RELOC_BITS3_TYPEHI_SH_LITTLE));
454 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
455 }
456
457 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
458 MIPS_R_RELLO reloc, r_symndx is actually the offset from the
459 reloc address to the base of the difference (see
460 include/coff/mips.h for more details). We copy symndx into the
461 r_offset field so as not to confuse ecoff_slurp_reloc_table in
462 ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
463 addend. */
464 if (intern->r_type == MIPS_R_SWITCH
465 || (! intern->r_extern
466 && (intern->r_type == MIPS_R_RELLO
467 || intern->r_type == MIPS_R_RELHI)))
468 {
469 BFD_ASSERT (! intern->r_extern);
470 intern->r_offset = intern->r_symndx;
471 if (intern->r_offset & 0x800000)
472 intern->r_offset -= 0x1000000;
473 intern->r_symndx = RELOC_SECTION_TEXT;
474 }
475 }
476
477 /* Swap a reloc out. */
478
479 static void
480 mips_ecoff_swap_reloc_out (abfd, intern, dst)
481 bfd *abfd;
482 const struct internal_reloc *intern;
483 PTR dst;
484 {
485 RELOC *ext = (RELOC *) dst;
486 long r_symndx;
487
488 BFD_ASSERT (intern->r_extern
489 || (intern->r_symndx >= 0 && intern->r_symndx <= 12));
490
491 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
492 MIPS_R_RELHI reloc, we actually want to write the contents of
493 r_offset out as the symbol index. This undoes the change made by
494 mips_ecoff_swap_reloc_in. */
495 if (intern->r_type != MIPS_R_SWITCH
496 && (intern->r_extern
497 || (intern->r_type != MIPS_R_RELHI
498 && intern->r_type != MIPS_R_RELLO)))
499 r_symndx = intern->r_symndx;
500 else
501 {
502 BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
503 r_symndx = intern->r_offset & 0xffffff;
504 }
505
506 H_PUT_32 (abfd, intern->r_vaddr, ext->r_vaddr);
507 if (bfd_header_big_endian (abfd))
508 {
509 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
510 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
511 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
512 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
513 & RELOC_BITS3_TYPE_BIG)
514 | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
515 }
516 else
517 {
518 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
519 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
520 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
521 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
522 & RELOC_BITS3_TYPE_LITTLE)
523 | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
524 & RELOC_BITS3_TYPEHI_LITTLE))
525 | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
526 }
527 }
528
529 /* Finish canonicalizing a reloc. Part of this is generic to all
530 ECOFF targets, and that part is in ecoff.c. The rest is done in
531 this backend routine. It must fill in the howto field. */
532
533 static void
534 mips_adjust_reloc_in (abfd, intern, rptr)
535 bfd *abfd;
536 const struct internal_reloc *intern;
537 arelent *rptr;
538 {
539 if (intern->r_type > MIPS_R_SWITCH)
540 abort ();
541
542 if (! intern->r_extern
543 && (intern->r_type == MIPS_R_GPREL
544 || intern->r_type == MIPS_R_LITERAL))
545 rptr->addend += ecoff_data (abfd)->gp;
546
547 /* If the type is MIPS_R_IGNORE, make sure this is a reference to
548 the absolute section so that the reloc is ignored. */
549 if (intern->r_type == MIPS_R_IGNORE)
550 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
551
552 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
553 MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
554 hold the value which was originally in the symndx field of the
555 internal MIPS ECOFF reloc. This value was copied into
556 intern->r_offset by mips_swap_reloc_in, and here we copy it into
557 the addend field. */
558 if (intern->r_type == MIPS_R_SWITCH
559 || (! intern->r_extern
560 && (intern->r_type == MIPS_R_RELHI
561 || intern->r_type == MIPS_R_RELLO)))
562 rptr->addend = intern->r_offset;
563
564 rptr->howto = &mips_howto_table[intern->r_type];
565 }
566
567 /* Make any adjustments needed to a reloc before writing it out. None
568 are needed for MIPS. */
569
570 static void
571 mips_adjust_reloc_out (abfd, rel, intern)
572 bfd *abfd ATTRIBUTE_UNUSED;
573 const arelent *rel;
574 struct internal_reloc *intern;
575 {
576 /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
577 MIPS_R_RELLO reloc, we must copy rel->addend into
578 intern->r_offset. This will then be written out as the symbol
579 index by mips_ecoff_swap_reloc_out. This operation parallels the
580 action of mips_adjust_reloc_in. */
581 if (intern->r_type == MIPS_R_SWITCH
582 || (! intern->r_extern
583 && (intern->r_type == MIPS_R_RELHI
584 || intern->r_type == MIPS_R_RELLO)))
585 intern->r_offset = rel->addend;
586 }
587
588 /* ECOFF relocs are either against external symbols, or against
589 sections. If we are producing relocateable output, and the reloc
590 is against an external symbol, and nothing has given us any
591 additional addend, the resulting reloc will also be against the
592 same symbol. In such a case, we don't want to change anything
593 about the way the reloc is handled, since it will all be done at
594 final link time. Rather than put special case code into
595 bfd_perform_relocation, all the reloc types use this howto
596 function. It just short circuits the reloc if producing
597 relocateable output against an external symbol. */
598
599 static bfd_reloc_status_type
600 mips_generic_reloc (abfd,
601 reloc_entry,
602 symbol,
603 data,
604 input_section,
605 output_bfd,
606 error_message)
607 bfd *abfd ATTRIBUTE_UNUSED;
608 arelent *reloc_entry;
609 asymbol *symbol;
610 PTR data ATTRIBUTE_UNUSED;
611 asection *input_section;
612 bfd *output_bfd;
613 char **error_message ATTRIBUTE_UNUSED;
614 {
615 if (output_bfd != (bfd *) NULL
616 && (symbol->flags & BSF_SECTION_SYM) == 0
617 && reloc_entry->addend == 0)
618 {
619 reloc_entry->address += input_section->output_offset;
620 return bfd_reloc_ok;
621 }
622
623 return bfd_reloc_continue;
624 }
625
626 /* Do a REFHI relocation. This has to be done in combination with a
627 REFLO reloc, because there is a carry from the REFLO to the REFHI.
628 Here we just save the information we need; we do the actual
629 relocation when we see the REFLO. MIPS ECOFF requires that the
630 REFLO immediately follow the REFHI. As a GNU extension, we permit
631 an arbitrary number of HI relocs to be associated with a single LO
632 reloc. This extension permits gcc to output the HI and LO relocs
633 itself. */
634
635 struct mips_hi
636 {
637 struct mips_hi *next;
638 bfd_byte *addr;
639 bfd_vma addend;
640 };
641
642 /* FIXME: This should not be a static variable. */
643
644 static struct mips_hi *mips_refhi_list;
645
646 static bfd_reloc_status_type
647 mips_refhi_reloc (abfd,
648 reloc_entry,
649 symbol,
650 data,
651 input_section,
652 output_bfd,
653 error_message)
654 bfd *abfd ATTRIBUTE_UNUSED;
655 arelent *reloc_entry;
656 asymbol *symbol;
657 PTR data;
658 asection *input_section;
659 bfd *output_bfd;
660 char **error_message ATTRIBUTE_UNUSED;
661 {
662 bfd_reloc_status_type ret;
663 bfd_vma relocation;
664 struct mips_hi *n;
665
666 /* If we're relocating, and this an external symbol, we don't want
667 to change anything. */
668 if (output_bfd != (bfd *) NULL
669 && (symbol->flags & BSF_SECTION_SYM) == 0
670 && reloc_entry->addend == 0)
671 {
672 reloc_entry->address += input_section->output_offset;
673 return bfd_reloc_ok;
674 }
675
676 ret = bfd_reloc_ok;
677 if (bfd_is_und_section (symbol->section)
678 && output_bfd == (bfd *) NULL)
679 ret = bfd_reloc_undefined;
680
681 if (bfd_is_com_section (symbol->section))
682 relocation = 0;
683 else
684 relocation = symbol->value;
685
686 relocation += symbol->section->output_section->vma;
687 relocation += symbol->section->output_offset;
688 relocation += reloc_entry->addend;
689
690 if (reloc_entry->address > input_section->_cooked_size)
691 return bfd_reloc_outofrange;
692
693 /* Save the information, and let REFLO do the actual relocation. */
694 n = (struct mips_hi *) bfd_malloc ((bfd_size_type) sizeof *n);
695 if (n == NULL)
696 return bfd_reloc_outofrange;
697 n->addr = (bfd_byte *) data + reloc_entry->address;
698 n->addend = relocation;
699 n->next = mips_refhi_list;
700 mips_refhi_list = n;
701
702 if (output_bfd != (bfd *) NULL)
703 reloc_entry->address += input_section->output_offset;
704
705 return ret;
706 }
707
708 /* Do a REFLO relocation. This is a straightforward 16 bit inplace
709 relocation; this function exists in order to do the REFHI
710 relocation described above. */
711
712 static bfd_reloc_status_type
713 mips_reflo_reloc (abfd,
714 reloc_entry,
715 symbol,
716 data,
717 input_section,
718 output_bfd,
719 error_message)
720 bfd *abfd;
721 arelent *reloc_entry;
722 asymbol *symbol;
723 PTR data;
724 asection *input_section;
725 bfd *output_bfd;
726 char **error_message;
727 {
728 if (mips_refhi_list != NULL)
729 {
730 struct mips_hi *l;
731
732 l = mips_refhi_list;
733 while (l != NULL)
734 {
735 unsigned long insn;
736 unsigned long val;
737 unsigned long vallo;
738 struct mips_hi *next;
739
740 /* Do the REFHI relocation. Note that we actually don't
741 need to know anything about the REFLO itself, except
742 where to find the low 16 bits of the addend needed by the
743 REFHI. */
744 insn = bfd_get_32 (abfd, l->addr);
745 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
746 & 0xffff);
747 val = ((insn & 0xffff) << 16) + vallo;
748 val += l->addend;
749
750 /* The low order 16 bits are always treated as a signed
751 value. Therefore, a negative value in the low order bits
752 requires an adjustment in the high order bits. We need
753 to make this adjustment in two ways: once for the bits we
754 took from the data, and once for the bits we are putting
755 back in to the data. */
756 if ((vallo & 0x8000) != 0)
757 val -= 0x10000;
758 if ((val & 0x8000) != 0)
759 val += 0x10000;
760
761 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
762 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
763
764 next = l->next;
765 free (l);
766 l = next;
767 }
768
769 mips_refhi_list = NULL;
770 }
771
772 /* Now do the REFLO reloc in the usual way. */
773 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
774 input_section, output_bfd, error_message);
775 }
776
777 /* Do a GPREL relocation. This is a 16 bit value which must become
778 the offset from the gp register. */
779
780 static bfd_reloc_status_type
781 mips_gprel_reloc (abfd,
782 reloc_entry,
783 symbol,
784 data,
785 input_section,
786 output_bfd,
787 error_message)
788 bfd *abfd;
789 arelent *reloc_entry;
790 asymbol *symbol;
791 PTR data;
792 asection *input_section;
793 bfd *output_bfd;
794 char **error_message;
795 {
796 boolean relocateable;
797 bfd_vma gp;
798 bfd_vma relocation;
799 unsigned long val;
800 unsigned long insn;
801
802 /* If we're relocating, and this is an external symbol with no
803 addend, we don't want to change anything. We will only have an
804 addend if this is a newly created reloc, not read from an ECOFF
805 file. */
806 if (output_bfd != (bfd *) NULL
807 && (symbol->flags & BSF_SECTION_SYM) == 0
808 && reloc_entry->addend == 0)
809 {
810 reloc_entry->address += input_section->output_offset;
811 return bfd_reloc_ok;
812 }
813
814 if (output_bfd != (bfd *) NULL)
815 relocateable = true;
816 else
817 {
818 relocateable = false;
819 output_bfd = symbol->section->output_section->owner;
820 }
821
822 if (bfd_is_und_section (symbol->section)
823 && relocateable == false)
824 return bfd_reloc_undefined;
825
826 /* We have to figure out the gp value, so that we can adjust the
827 symbol value correctly. We look up the symbol _gp in the output
828 BFD. If we can't find it, we're stuck. We cache it in the ECOFF
829 target data. We don't need to adjust the symbol value for an
830 external symbol if we are producing relocateable output. */
831 gp = _bfd_get_gp_value (output_bfd);
832 if (gp == 0
833 && (relocateable == false
834 || (symbol->flags & BSF_SECTION_SYM) != 0))
835 {
836 if (relocateable != false)
837 {
838 /* Make up a value. */
839 gp = symbol->section->output_section->vma + 0x4000;
840 _bfd_set_gp_value (output_bfd, gp);
841 }
842 else
843 {
844 unsigned int count;
845 asymbol **sym;
846 unsigned int i;
847
848 count = bfd_get_symcount (output_bfd);
849 sym = bfd_get_outsymbols (output_bfd);
850
851 if (sym == (asymbol **) NULL)
852 i = count;
853 else
854 {
855 for (i = 0; i < count; i++, sym++)
856 {
857 register const char *name;
858
859 name = bfd_asymbol_name (*sym);
860 if (*name == '_' && strcmp (name, "_gp") == 0)
861 {
862 gp = bfd_asymbol_value (*sym);
863 _bfd_set_gp_value (output_bfd, gp);
864 break;
865 }
866 }
867 }
868
869 if (i >= count)
870 {
871 /* Only get the error once. */
872 gp = 4;
873 _bfd_set_gp_value (output_bfd, gp);
874 *error_message =
875 (char *) _("GP relative relocation when _gp not defined");
876 return bfd_reloc_dangerous;
877 }
878 }
879 }
880
881 if (bfd_is_com_section (symbol->section))
882 relocation = 0;
883 else
884 relocation = symbol->value;
885
886 relocation += symbol->section->output_section->vma;
887 relocation += symbol->section->output_offset;
888
889 if (reloc_entry->address > input_section->_cooked_size)
890 return bfd_reloc_outofrange;
891
892 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
893
894 /* Set val to the offset into the section or symbol. */
895 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
896 if (val & 0x8000)
897 val -= 0x10000;
898
899 /* Adjust val for the final section location and GP value. If we
900 are producing relocateable output, we don't want to do this for
901 an external symbol. */
902 if (relocateable == false
903 || (symbol->flags & BSF_SECTION_SYM) != 0)
904 val += relocation - gp;
905
906 insn = (insn &~ (unsigned) 0xffff) | (val & 0xffff);
907 bfd_put_32 (abfd, (bfd_vma) insn, (bfd_byte *) data + reloc_entry->address);
908
909 if (relocateable != false)
910 reloc_entry->address += input_section->output_offset;
911
912 /* Make sure it fit in 16 bits. */
913 if ((long) val >= 0x8000 || (long) val < -0x8000)
914 return bfd_reloc_overflow;
915
916 return bfd_reloc_ok;
917 }
918
919 /* Do a RELHI relocation. We do this in conjunction with a RELLO
920 reloc, just as REFHI and REFLO are done together. RELHI and RELLO
921 are Cygnus extensions used when generating position independent
922 code for embedded systems. */
923
924 /* FIXME: This should not be a static variable. */
925
926 static struct mips_hi *mips_relhi_list;
927
928 static bfd_reloc_status_type
929 mips_relhi_reloc (abfd,
930 reloc_entry,
931 symbol,
932 data,
933 input_section,
934 output_bfd,
935 error_message)
936 bfd *abfd ATTRIBUTE_UNUSED;
937 arelent *reloc_entry;
938 asymbol *symbol;
939 PTR data;
940 asection *input_section;
941 bfd *output_bfd;
942 char **error_message ATTRIBUTE_UNUSED;
943 {
944 bfd_reloc_status_type ret;
945 bfd_vma relocation;
946 struct mips_hi *n;
947
948 /* If this is a reloc against a section symbol, then it is correct
949 in the object file. The only time we want to change this case is
950 when we are relaxing, and that is handled entirely by
951 mips_relocate_section and never calls this function. */
952 if ((symbol->flags & BSF_SECTION_SYM) != 0)
953 {
954 if (output_bfd != (bfd *) NULL)
955 reloc_entry->address += input_section->output_offset;
956 return bfd_reloc_ok;
957 }
958
959 /* This is an external symbol. If we're relocating, we don't want
960 to change anything. */
961 if (output_bfd != (bfd *) NULL)
962 {
963 reloc_entry->address += input_section->output_offset;
964 return bfd_reloc_ok;
965 }
966
967 ret = bfd_reloc_ok;
968 if (bfd_is_und_section (symbol->section)
969 && output_bfd == (bfd *) NULL)
970 ret = bfd_reloc_undefined;
971
972 if (bfd_is_com_section (symbol->section))
973 relocation = 0;
974 else
975 relocation = symbol->value;
976
977 relocation += symbol->section->output_section->vma;
978 relocation += symbol->section->output_offset;
979 relocation += reloc_entry->addend;
980
981 if (reloc_entry->address > input_section->_cooked_size)
982 return bfd_reloc_outofrange;
983
984 /* Save the information, and let RELLO do the actual relocation. */
985 n = (struct mips_hi *) bfd_malloc ((bfd_size_type) sizeof *n);
986 if (n == NULL)
987 return bfd_reloc_outofrange;
988 n->addr = (bfd_byte *) data + reloc_entry->address;
989 n->addend = relocation;
990 n->next = mips_relhi_list;
991 mips_relhi_list = n;
992
993 if (output_bfd != (bfd *) NULL)
994 reloc_entry->address += input_section->output_offset;
995
996 return ret;
997 }
998
999 /* Do a RELLO relocation. This is a straightforward 16 bit PC
1000 relative relocation; this function exists in order to do the RELHI
1001 relocation described above. */
1002
1003 static bfd_reloc_status_type
1004 mips_rello_reloc (abfd,
1005 reloc_entry,
1006 symbol,
1007 data,
1008 input_section,
1009 output_bfd,
1010 error_message)
1011 bfd *abfd;
1012 arelent *reloc_entry;
1013 asymbol *symbol;
1014 PTR data;
1015 asection *input_section;
1016 bfd *output_bfd;
1017 char **error_message;
1018 {
1019 if (mips_relhi_list != NULL)
1020 {
1021 struct mips_hi *l;
1022
1023 l = mips_relhi_list;
1024 while (l != NULL)
1025 {
1026 unsigned long insn;
1027 unsigned long val;
1028 unsigned long vallo;
1029 struct mips_hi *next;
1030
1031 /* Do the RELHI relocation. Note that we actually don't
1032 need to know anything about the RELLO itself, except
1033 where to find the low 16 bits of the addend needed by the
1034 RELHI. */
1035 insn = bfd_get_32 (abfd, l->addr);
1036 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1037 & 0xffff);
1038 val = ((insn & 0xffff) << 16) + vallo;
1039 val += l->addend;
1040
1041 /* If the symbol is defined, make val PC relative. If the
1042 symbol is not defined we don't want to do this, because
1043 we don't want the value in the object file to incorporate
1044 the address of the reloc. */
1045 if (! bfd_is_und_section (bfd_get_section (symbol))
1046 && ! bfd_is_com_section (bfd_get_section (symbol)))
1047 val -= (input_section->output_section->vma
1048 + input_section->output_offset
1049 + reloc_entry->address);
1050
1051 /* The low order 16 bits are always treated as a signed
1052 value. Therefore, a negative value in the low order bits
1053 requires an adjustment in the high order bits. We need
1054 to make this adjustment in two ways: once for the bits we
1055 took from the data, and once for the bits we are putting
1056 back in to the data. */
1057 if ((vallo & 0x8000) != 0)
1058 val -= 0x10000;
1059 if ((val & 0x8000) != 0)
1060 val += 0x10000;
1061
1062 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
1063 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
1064
1065 next = l->next;
1066 free (l);
1067 l = next;
1068 }
1069
1070 mips_relhi_list = NULL;
1071 }
1072
1073 /* If this is a reloc against a section symbol, then it is correct
1074 in the object file. The only time we want to change this case is
1075 when we are relaxing, and that is handled entirely by
1076 mips_relocate_section and never calls this function. */
1077 if ((symbol->flags & BSF_SECTION_SYM) != 0)
1078 {
1079 if (output_bfd != (bfd *) NULL)
1080 reloc_entry->address += input_section->output_offset;
1081 return bfd_reloc_ok;
1082 }
1083
1084 /* bfd_perform_relocation does not handle pcrel_offset relocations
1085 correctly when generating a relocateable file, so handle them
1086 directly here. */
1087 if (output_bfd != (bfd *) NULL)
1088 {
1089 reloc_entry->address += input_section->output_offset;
1090 return bfd_reloc_ok;
1091 }
1092
1093 /* Now do the RELLO reloc in the usual way. */
1094 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
1095 input_section, output_bfd, error_message);
1096 }
1097
1098 /* This is the special function for the MIPS_R_SWITCH reloc. This
1099 special reloc is normally correct in the object file, and only
1100 requires special handling when relaxing. We don't want
1101 bfd_perform_relocation to tamper with it at all. */
1102
1103 static bfd_reloc_status_type
1104 mips_switch_reloc (abfd,
1105 reloc_entry,
1106 symbol,
1107 data,
1108 input_section,
1109 output_bfd,
1110 error_message)
1111 bfd *abfd ATTRIBUTE_UNUSED;
1112 arelent *reloc_entry ATTRIBUTE_UNUSED;
1113 asymbol *symbol ATTRIBUTE_UNUSED;
1114 PTR data ATTRIBUTE_UNUSED;
1115 asection *input_section ATTRIBUTE_UNUSED;
1116 bfd *output_bfd ATTRIBUTE_UNUSED;
1117 char **error_message ATTRIBUTE_UNUSED;
1118 {
1119 return bfd_reloc_ok;
1120 }
1121
1122 /* Get the howto structure for a generic reloc type. */
1123
1124 static reloc_howto_type *
1125 mips_bfd_reloc_type_lookup (abfd, code)
1126 bfd *abfd ATTRIBUTE_UNUSED;
1127 bfd_reloc_code_real_type code;
1128 {
1129 int mips_type;
1130
1131 switch (code)
1132 {
1133 case BFD_RELOC_16:
1134 mips_type = MIPS_R_REFHALF;
1135 break;
1136 case BFD_RELOC_32:
1137 case BFD_RELOC_CTOR:
1138 mips_type = MIPS_R_REFWORD;
1139 break;
1140 case BFD_RELOC_MIPS_JMP:
1141 mips_type = MIPS_R_JMPADDR;
1142 break;
1143 case BFD_RELOC_HI16_S:
1144 mips_type = MIPS_R_REFHI;
1145 break;
1146 case BFD_RELOC_LO16:
1147 mips_type = MIPS_R_REFLO;
1148 break;
1149 case BFD_RELOC_MIPS_GPREL:
1150 mips_type = MIPS_R_GPREL;
1151 break;
1152 case BFD_RELOC_MIPS_LITERAL:
1153 mips_type = MIPS_R_LITERAL;
1154 break;
1155 case BFD_RELOC_16_PCREL_S2:
1156 mips_type = MIPS_R_PCREL16;
1157 break;
1158 case BFD_RELOC_PCREL_HI16_S:
1159 mips_type = MIPS_R_RELHI;
1160 break;
1161 case BFD_RELOC_PCREL_LO16:
1162 mips_type = MIPS_R_RELLO;
1163 break;
1164 case BFD_RELOC_GPREL32:
1165 mips_type = MIPS_R_SWITCH;
1166 break;
1167 default:
1168 return (reloc_howto_type *) NULL;
1169 }
1170
1171 return &mips_howto_table[mips_type];
1172 }
1173 \f
1174 /* A helper routine for mips_relocate_section which handles the REFHI
1175 and RELHI relocations. The REFHI relocation must be followed by a
1176 REFLO relocation (and RELHI by a RELLO), and the addend used is
1177 formed from the addends of both instructions. */
1178
1179 static void
1180 mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
1181 relocation, pcrel)
1182 struct internal_reloc *refhi;
1183 struct internal_reloc *reflo;
1184 bfd *input_bfd;
1185 asection *input_section;
1186 bfd_byte *contents;
1187 size_t adjust;
1188 bfd_vma relocation;
1189 boolean pcrel;
1190 {
1191 unsigned long insn;
1192 unsigned long val;
1193 unsigned long vallo;
1194
1195 if (refhi == NULL)
1196 return;
1197
1198 insn = bfd_get_32 (input_bfd,
1199 contents + adjust + refhi->r_vaddr - input_section->vma);
1200 if (reflo == NULL)
1201 vallo = 0;
1202 else
1203 vallo = (bfd_get_32 (input_bfd,
1204 contents + adjust + reflo->r_vaddr - input_section->vma)
1205 & 0xffff);
1206
1207 val = ((insn & 0xffff) << 16) + vallo;
1208 val += relocation;
1209
1210 /* The low order 16 bits are always treated as a signed value.
1211 Therefore, a negative value in the low order bits requires an
1212 adjustment in the high order bits. We need to make this
1213 adjustment in two ways: once for the bits we took from the data,
1214 and once for the bits we are putting back in to the data. */
1215 if ((vallo & 0x8000) != 0)
1216 val -= 0x10000;
1217
1218 if (pcrel)
1219 val -= (input_section->output_section->vma
1220 + input_section->output_offset
1221 + (reflo->r_vaddr - input_section->vma + adjust));
1222
1223 if ((val & 0x8000) != 0)
1224 val += 0x10000;
1225
1226 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
1227 bfd_put_32 (input_bfd, (bfd_vma) insn,
1228 contents + adjust + refhi->r_vaddr - input_section->vma);
1229 }
1230
1231 /* Relocate a section while linking a MIPS ECOFF file. */
1232
1233 static boolean
1234 mips_relocate_section (output_bfd, info, input_bfd, input_section,
1235 contents, external_relocs)
1236 bfd *output_bfd;
1237 struct bfd_link_info *info;
1238 bfd *input_bfd;
1239 asection *input_section;
1240 bfd_byte *contents;
1241 PTR external_relocs;
1242 {
1243 asection **symndx_to_section;
1244 struct ecoff_link_hash_entry **sym_hashes;
1245 bfd_vma gp;
1246 boolean gp_undefined;
1247 size_t adjust;
1248 long *offsets;
1249 struct external_reloc *ext_rel;
1250 struct external_reloc *ext_rel_end;
1251 unsigned int i;
1252 boolean got_lo;
1253 struct internal_reloc lo_int_rel;
1254 bfd_size_type amt;
1255
1256 BFD_ASSERT (input_bfd->xvec->byteorder
1257 == output_bfd->xvec->byteorder);
1258
1259 /* We keep a table mapping the symndx found in an internal reloc to
1260 the appropriate section. This is faster than looking up the
1261 section by name each time. */
1262 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1263 if (symndx_to_section == (asection **) NULL)
1264 {
1265 amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1266 symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1267 if (!symndx_to_section)
1268 return false;
1269
1270 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1271 symndx_to_section[RELOC_SECTION_TEXT] =
1272 bfd_get_section_by_name (input_bfd, ".text");
1273 symndx_to_section[RELOC_SECTION_RDATA] =
1274 bfd_get_section_by_name (input_bfd, ".rdata");
1275 symndx_to_section[RELOC_SECTION_DATA] =
1276 bfd_get_section_by_name (input_bfd, ".data");
1277 symndx_to_section[RELOC_SECTION_SDATA] =
1278 bfd_get_section_by_name (input_bfd, ".sdata");
1279 symndx_to_section[RELOC_SECTION_SBSS] =
1280 bfd_get_section_by_name (input_bfd, ".sbss");
1281 symndx_to_section[RELOC_SECTION_BSS] =
1282 bfd_get_section_by_name (input_bfd, ".bss");
1283 symndx_to_section[RELOC_SECTION_INIT] =
1284 bfd_get_section_by_name (input_bfd, ".init");
1285 symndx_to_section[RELOC_SECTION_LIT8] =
1286 bfd_get_section_by_name (input_bfd, ".lit8");
1287 symndx_to_section[RELOC_SECTION_LIT4] =
1288 bfd_get_section_by_name (input_bfd, ".lit4");
1289 symndx_to_section[RELOC_SECTION_XDATA] = NULL;
1290 symndx_to_section[RELOC_SECTION_PDATA] = NULL;
1291 symndx_to_section[RELOC_SECTION_FINI] =
1292 bfd_get_section_by_name (input_bfd, ".fini");
1293 symndx_to_section[RELOC_SECTION_LITA] = NULL;
1294 symndx_to_section[RELOC_SECTION_ABS] = NULL;
1295
1296 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1297 }
1298
1299 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1300
1301 gp = _bfd_get_gp_value (output_bfd);
1302 if (gp == 0)
1303 gp_undefined = true;
1304 else
1305 gp_undefined = false;
1306
1307 got_lo = false;
1308
1309 adjust = 0;
1310
1311 if (ecoff_section_data (input_bfd, input_section) == NULL)
1312 offsets = NULL;
1313 else
1314 offsets = ecoff_section_data (input_bfd, input_section)->offsets;
1315
1316 ext_rel = (struct external_reloc *) external_relocs;
1317 ext_rel_end = ext_rel + input_section->reloc_count;
1318 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1319 {
1320 struct internal_reloc int_rel;
1321 boolean use_lo = false;
1322 bfd_vma addend;
1323 reloc_howto_type *howto;
1324 struct ecoff_link_hash_entry *h = NULL;
1325 asection *s = NULL;
1326 bfd_vma relocation;
1327 bfd_reloc_status_type r;
1328
1329 if (! got_lo)
1330 mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
1331 else
1332 {
1333 int_rel = lo_int_rel;
1334 got_lo = false;
1335 }
1336
1337 BFD_ASSERT (int_rel.r_type
1338 < sizeof mips_howto_table / sizeof mips_howto_table[0]);
1339
1340 /* The REFHI and RELHI relocs requires special handling. they
1341 must be followed by a REFLO or RELLO reloc, respectively, and
1342 the addend is formed from both relocs. */
1343 if (int_rel.r_type == MIPS_R_REFHI
1344 || int_rel.r_type == MIPS_R_RELHI)
1345 {
1346 struct external_reloc *lo_ext_rel;
1347
1348 /* As a GNU extension, permit an arbitrary number of REFHI
1349 or RELHI relocs before the REFLO or RELLO reloc. This
1350 permits gcc to emit the HI and LO relocs itself. */
1351 for (lo_ext_rel = ext_rel + 1;
1352 lo_ext_rel < ext_rel_end;
1353 lo_ext_rel++)
1354 {
1355 mips_ecoff_swap_reloc_in (input_bfd, (PTR) lo_ext_rel,
1356 &lo_int_rel);
1357 if (lo_int_rel.r_type != int_rel.r_type)
1358 break;
1359 }
1360
1361 if (lo_ext_rel < ext_rel_end
1362 && (lo_int_rel.r_type
1363 == (int_rel.r_type == MIPS_R_REFHI
1364 ? MIPS_R_REFLO
1365 : MIPS_R_RELLO))
1366 && int_rel.r_extern == lo_int_rel.r_extern
1367 && int_rel.r_symndx == lo_int_rel.r_symndx)
1368 {
1369 use_lo = true;
1370 if (lo_ext_rel == ext_rel + 1)
1371 got_lo = true;
1372 }
1373 }
1374
1375 howto = &mips_howto_table[int_rel.r_type];
1376
1377 /* The SWITCH reloc must be handled specially. This reloc is
1378 marks the location of a difference between two portions of an
1379 object file. The symbol index does not reference a symbol,
1380 but is actually the offset from the reloc to the subtrahend
1381 of the difference. This reloc is correct in the object file,
1382 and needs no further adjustment, unless we are relaxing. If
1383 we are relaxing, we may have to add in an offset. Since no
1384 symbols are involved in this reloc, we handle it completely
1385 here. */
1386 if (int_rel.r_type == MIPS_R_SWITCH)
1387 {
1388 if (offsets != NULL
1389 && offsets[i] != 0)
1390 {
1391 r = _bfd_relocate_contents (howto, input_bfd,
1392 (bfd_vma) offsets[i],
1393 (contents
1394 + adjust
1395 + int_rel.r_vaddr
1396 - input_section->vma));
1397 BFD_ASSERT (r == bfd_reloc_ok);
1398 }
1399
1400 continue;
1401 }
1402
1403 if (int_rel.r_extern)
1404 {
1405 h = sym_hashes[int_rel.r_symndx];
1406 /* If h is NULL, that means that there is a reloc against an
1407 external symbol which we thought was just a debugging
1408 symbol. This should not happen. */
1409 if (h == (struct ecoff_link_hash_entry *) NULL)
1410 abort ();
1411 }
1412 else
1413 {
1414 if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
1415 s = NULL;
1416 else
1417 s = symndx_to_section[int_rel.r_symndx];
1418
1419 if (s == (asection *) NULL)
1420 abort ();
1421 }
1422
1423 /* The GPREL reloc uses an addend: the difference in the GP
1424 values. */
1425 if (int_rel.r_type != MIPS_R_GPREL
1426 && int_rel.r_type != MIPS_R_LITERAL)
1427 addend = 0;
1428 else
1429 {
1430 if (gp_undefined)
1431 {
1432 if (! ((*info->callbacks->reloc_dangerous)
1433 (info, _("GP relative relocation when GP not defined"),
1434 input_bfd, input_section,
1435 int_rel.r_vaddr - input_section->vma)))
1436 return false;
1437 /* Only give the error once per link. */
1438 gp = 4;
1439 _bfd_set_gp_value (output_bfd, gp);
1440 gp_undefined = false;
1441 }
1442 if (! int_rel.r_extern)
1443 {
1444 /* This is a relocation against a section. The current
1445 addend in the instruction is the difference between
1446 INPUT_SECTION->vma and the GP value of INPUT_BFD. We
1447 must change this to be the difference between the
1448 final definition (which will end up in RELOCATION)
1449 and the GP value of OUTPUT_BFD (which is in GP). */
1450 addend = ecoff_data (input_bfd)->gp - gp;
1451 }
1452 else if (! info->relocateable
1453 || h->root.type == bfd_link_hash_defined
1454 || h->root.type == bfd_link_hash_defweak)
1455 {
1456 /* This is a relocation against a defined symbol. The
1457 current addend in the instruction is simply the
1458 desired offset into the symbol (normally zero). We
1459 are going to change this into a relocation against a
1460 defined symbol, so we want the instruction to hold
1461 the difference between the final definition of the
1462 symbol (which will end up in RELOCATION) and the GP
1463 value of OUTPUT_BFD (which is in GP). */
1464 addend = - gp;
1465 }
1466 else
1467 {
1468 /* This is a relocation against an undefined or common
1469 symbol. The current addend in the instruction is
1470 simply the desired offset into the symbol (normally
1471 zero). We are generating relocateable output, and we
1472 aren't going to define this symbol, so we just leave
1473 the instruction alone. */
1474 addend = 0;
1475 }
1476 }
1477
1478 /* If we are relaxing, mips_relax_section may have set
1479 offsets[i] to some value. A value of 1 means we must expand
1480 a PC relative branch into a multi-instruction of sequence,
1481 and any other value is an addend. */
1482 if (offsets != NULL
1483 && offsets[i] != 0)
1484 {
1485 BFD_ASSERT (! info->relocateable);
1486 BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
1487 || int_rel.r_type == MIPS_R_RELHI
1488 || int_rel.r_type == MIPS_R_RELLO);
1489 if (offsets[i] != 1)
1490 addend += offsets[i];
1491 else
1492 {
1493 bfd_byte *here;
1494
1495 BFD_ASSERT (int_rel.r_extern
1496 && int_rel.r_type == MIPS_R_PCREL16);
1497
1498 /* Move the rest of the instructions up. */
1499 here = (contents
1500 + adjust
1501 + int_rel.r_vaddr
1502 - input_section->vma);
1503 memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
1504 (size_t) (input_section->_raw_size
1505 - (int_rel.r_vaddr - input_section->vma)));
1506
1507 /* Generate the new instructions. */
1508 if (! mips_relax_pcrel16 (info, input_bfd, input_section,
1509 h, here,
1510 (input_section->output_section->vma
1511 + input_section->output_offset
1512 + (int_rel.r_vaddr
1513 - input_section->vma)
1514 + adjust)))
1515 return false;
1516
1517 /* We must adjust everything else up a notch. */
1518 adjust += PCREL16_EXPANSION_ADJUSTMENT;
1519
1520 /* mips_relax_pcrel16 handles all the details of this
1521 relocation. */
1522 continue;
1523 }
1524 }
1525
1526 /* If we are relaxing, and this is a reloc against the .text
1527 segment, we may need to adjust it if some branches have been
1528 expanded. The reloc types which are likely to occur in the
1529 .text section are handled efficiently by mips_relax_section,
1530 and thus do not need to be handled here. */
1531 if (ecoff_data (input_bfd)->debug_info.adjust != NULL
1532 && ! int_rel.r_extern
1533 && int_rel.r_symndx == RELOC_SECTION_TEXT
1534 && (strcmp (bfd_get_section_name (input_bfd, input_section),
1535 ".text") != 0
1536 || (int_rel.r_type != MIPS_R_PCREL16
1537 && int_rel.r_type != MIPS_R_SWITCH
1538 && int_rel.r_type != MIPS_R_RELHI
1539 && int_rel.r_type != MIPS_R_RELLO)))
1540 {
1541 bfd_vma adr;
1542 struct ecoff_value_adjust *a;
1543
1544 /* We need to get the addend so that we know whether we need
1545 to adjust the address. */
1546 BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD);
1547
1548 adr = bfd_get_32 (input_bfd,
1549 (contents
1550 + adjust
1551 + int_rel.r_vaddr
1552 - input_section->vma));
1553
1554 for (a = ecoff_data (input_bfd)->debug_info.adjust;
1555 a != (struct ecoff_value_adjust *) NULL;
1556 a = a->next)
1557 {
1558 if (adr >= a->start && adr < a->end)
1559 addend += a->adjust;
1560 }
1561 }
1562
1563 if (info->relocateable)
1564 {
1565 /* We are generating relocateable output, and must convert
1566 the existing reloc. */
1567 if (int_rel.r_extern)
1568 {
1569 if ((h->root.type == bfd_link_hash_defined
1570 || h->root.type == bfd_link_hash_defweak)
1571 && ! bfd_is_abs_section (h->root.u.def.section))
1572 {
1573 const char *name;
1574
1575 /* This symbol is defined in the output. Convert
1576 the reloc from being against the symbol to being
1577 against the section. */
1578
1579 /* Clear the r_extern bit. */
1580 int_rel.r_extern = 0;
1581
1582 /* Compute a new r_symndx value. */
1583 s = h->root.u.def.section;
1584 name = bfd_get_section_name (output_bfd,
1585 s->output_section);
1586
1587 int_rel.r_symndx = -1;
1588 switch (name[1])
1589 {
1590 case 'b':
1591 if (strcmp (name, ".bss") == 0)
1592 int_rel.r_symndx = RELOC_SECTION_BSS;
1593 break;
1594 case 'd':
1595 if (strcmp (name, ".data") == 0)
1596 int_rel.r_symndx = RELOC_SECTION_DATA;
1597 break;
1598 case 'f':
1599 if (strcmp (name, ".fini") == 0)
1600 int_rel.r_symndx = RELOC_SECTION_FINI;
1601 break;
1602 case 'i':
1603 if (strcmp (name, ".init") == 0)
1604 int_rel.r_symndx = RELOC_SECTION_INIT;
1605 break;
1606 case 'l':
1607 if (strcmp (name, ".lit8") == 0)
1608 int_rel.r_symndx = RELOC_SECTION_LIT8;
1609 else if (strcmp (name, ".lit4") == 0)
1610 int_rel.r_symndx = RELOC_SECTION_LIT4;
1611 break;
1612 case 'r':
1613 if (strcmp (name, ".rdata") == 0)
1614 int_rel.r_symndx = RELOC_SECTION_RDATA;
1615 break;
1616 case 's':
1617 if (strcmp (name, ".sdata") == 0)
1618 int_rel.r_symndx = RELOC_SECTION_SDATA;
1619 else if (strcmp (name, ".sbss") == 0)
1620 int_rel.r_symndx = RELOC_SECTION_SBSS;
1621 break;
1622 case 't':
1623 if (strcmp (name, ".text") == 0)
1624 int_rel.r_symndx = RELOC_SECTION_TEXT;
1625 break;
1626 }
1627
1628 if (int_rel.r_symndx == -1)
1629 abort ();
1630
1631 /* Add the section VMA and the symbol value. */
1632 relocation = (h->root.u.def.value
1633 + s->output_section->vma
1634 + s->output_offset);
1635
1636 /* For a PC relative relocation, the object file
1637 currently holds just the addend. We must adjust
1638 by the address to get the right value. */
1639 if (howto->pc_relative)
1640 {
1641 relocation -= int_rel.r_vaddr - input_section->vma;
1642
1643 /* If we are converting a RELHI or RELLO reloc
1644 from being against an external symbol to
1645 being against a section, we must put a
1646 special value into the r_offset field. This
1647 value is the old addend. The r_offset for
1648 both the RELHI and RELLO relocs are the same,
1649 and we set both when we see RELHI. */
1650 if (int_rel.r_type == MIPS_R_RELHI)
1651 {
1652 long addhi, addlo;
1653
1654 addhi = bfd_get_32 (input_bfd,
1655 (contents
1656 + adjust
1657 + int_rel.r_vaddr
1658 - input_section->vma));
1659 addhi &= 0xffff;
1660 if (addhi & 0x8000)
1661 addhi -= 0x10000;
1662 addhi <<= 16;
1663
1664 if (! use_lo)
1665 addlo = 0;
1666 else
1667 {
1668 addlo = bfd_get_32 (input_bfd,
1669 (contents
1670 + adjust
1671 + lo_int_rel.r_vaddr
1672 - input_section->vma));
1673 addlo &= 0xffff;
1674 if (addlo & 0x8000)
1675 addlo -= 0x10000;
1676
1677 lo_int_rel.r_offset = addhi + addlo;
1678 }
1679
1680 int_rel.r_offset = addhi + addlo;
1681 }
1682 }
1683
1684 h = NULL;
1685 }
1686 else
1687 {
1688 /* Change the symndx value to the right one for the
1689 output BFD. */
1690 int_rel.r_symndx = h->indx;
1691 if (int_rel.r_symndx == -1)
1692 {
1693 /* This symbol is not being written out. */
1694 if (! ((*info->callbacks->unattached_reloc)
1695 (info, h->root.root.string, input_bfd,
1696 input_section,
1697 int_rel.r_vaddr - input_section->vma)))
1698 return false;
1699 int_rel.r_symndx = 0;
1700 }
1701 relocation = 0;
1702 }
1703 }
1704 else
1705 {
1706 /* This is a relocation against a section. Adjust the
1707 value by the amount the section moved. */
1708 relocation = (s->output_section->vma
1709 + s->output_offset
1710 - s->vma);
1711 }
1712
1713 relocation += addend;
1714 addend = 0;
1715
1716 /* Adjust a PC relative relocation by removing the reference
1717 to the original address in the section and including the
1718 reference to the new address. However, external RELHI
1719 and RELLO relocs are PC relative, but don't include any
1720 reference to the address. The addend is merely an
1721 addend. */
1722 if (howto->pc_relative
1723 && (! int_rel.r_extern
1724 || (int_rel.r_type != MIPS_R_RELHI
1725 && int_rel.r_type != MIPS_R_RELLO)))
1726 relocation -= (input_section->output_section->vma
1727 + input_section->output_offset
1728 - input_section->vma);
1729
1730 /* Adjust the contents. */
1731 if (relocation == 0)
1732 r = bfd_reloc_ok;
1733 else
1734 {
1735 if (int_rel.r_type != MIPS_R_REFHI
1736 && int_rel.r_type != MIPS_R_RELHI)
1737 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1738 (contents
1739 + adjust
1740 + int_rel.r_vaddr
1741 - input_section->vma));
1742 else
1743 {
1744 mips_relocate_hi (&int_rel,
1745 use_lo ? &lo_int_rel : NULL,
1746 input_bfd, input_section, contents,
1747 adjust, relocation,
1748 int_rel.r_type == MIPS_R_RELHI);
1749 r = bfd_reloc_ok;
1750 }
1751 }
1752
1753 /* Adjust the reloc address. */
1754 int_rel.r_vaddr += (input_section->output_section->vma
1755 + input_section->output_offset
1756 - input_section->vma);
1757
1758 /* Save the changed reloc information. */
1759 mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
1760 }
1761 else
1762 {
1763 /* We are producing a final executable. */
1764 if (int_rel.r_extern)
1765 {
1766 /* This is a reloc against a symbol. */
1767 if (h->root.type == bfd_link_hash_defined
1768 || h->root.type == bfd_link_hash_defweak)
1769 {
1770 asection *hsec;
1771
1772 hsec = h->root.u.def.section;
1773 relocation = (h->root.u.def.value
1774 + hsec->output_section->vma
1775 + hsec->output_offset);
1776 }
1777 else
1778 {
1779 if (! ((*info->callbacks->undefined_symbol)
1780 (info, h->root.root.string, input_bfd,
1781 input_section,
1782 int_rel.r_vaddr - input_section->vma, true)))
1783 return false;
1784 relocation = 0;
1785 }
1786 }
1787 else
1788 {
1789 /* This is a reloc against a section. */
1790 relocation = (s->output_section->vma
1791 + s->output_offset
1792 - s->vma);
1793
1794 /* A PC relative reloc is already correct in the object
1795 file. Make it look like a pcrel_offset relocation by
1796 adding in the start address. */
1797 if (howto->pc_relative)
1798 {
1799 if (int_rel.r_type != MIPS_R_RELHI || ! use_lo)
1800 relocation += int_rel.r_vaddr + adjust;
1801 else
1802 relocation += lo_int_rel.r_vaddr + adjust;
1803 }
1804 }
1805
1806 if (int_rel.r_type != MIPS_R_REFHI
1807 && int_rel.r_type != MIPS_R_RELHI)
1808 r = _bfd_final_link_relocate (howto,
1809 input_bfd,
1810 input_section,
1811 contents,
1812 (int_rel.r_vaddr
1813 - input_section->vma
1814 + adjust),
1815 relocation,
1816 addend);
1817 else
1818 {
1819 mips_relocate_hi (&int_rel,
1820 use_lo ? &lo_int_rel : NULL,
1821 input_bfd, input_section, contents, adjust,
1822 relocation,
1823 int_rel.r_type == MIPS_R_RELHI);
1824 r = bfd_reloc_ok;
1825 }
1826 }
1827
1828 /* MIPS_R_JMPADDR requires peculiar overflow detection. The
1829 instruction provides a 28 bit address (the two lower bits are
1830 implicit zeroes) which is combined with the upper four bits
1831 of the instruction address. */
1832 if (r == bfd_reloc_ok
1833 && int_rel.r_type == MIPS_R_JMPADDR
1834 && (((relocation
1835 + addend
1836 + (int_rel.r_extern ? 0 : s->vma))
1837 & 0xf0000000)
1838 != ((input_section->output_section->vma
1839 + input_section->output_offset
1840 + (int_rel.r_vaddr - input_section->vma)
1841 + adjust)
1842 & 0xf0000000)))
1843 r = bfd_reloc_overflow;
1844
1845 if (r != bfd_reloc_ok)
1846 {
1847 switch (r)
1848 {
1849 default:
1850 case bfd_reloc_outofrange:
1851 abort ();
1852 case bfd_reloc_overflow:
1853 {
1854 const char *name;
1855
1856 if (int_rel.r_extern)
1857 name = h->root.root.string;
1858 else
1859 name = bfd_section_name (input_bfd, s);
1860 if (! ((*info->callbacks->reloc_overflow)
1861 (info, name, howto->name, (bfd_vma) 0,
1862 input_bfd, input_section,
1863 int_rel.r_vaddr - input_section->vma)))
1864 return false;
1865 }
1866 break;
1867 }
1868 }
1869 }
1870
1871 return true;
1872 }
1873 \f
1874 /* Read in the relocs for a section. */
1875
1876 static boolean
1877 mips_read_relocs (abfd, sec)
1878 bfd *abfd;
1879 asection *sec;
1880 {
1881 struct ecoff_section_tdata *section_tdata;
1882 bfd_size_type amt;
1883
1884 section_tdata = ecoff_section_data (abfd, sec);
1885 if (section_tdata == (struct ecoff_section_tdata *) NULL)
1886 {
1887 amt = sizeof (struct ecoff_section_tdata);
1888 sec->used_by_bfd = (PTR) bfd_alloc (abfd, amt);
1889 if (sec->used_by_bfd == NULL)
1890 return false;
1891
1892 section_tdata = ecoff_section_data (abfd, sec);
1893 section_tdata->external_relocs = NULL;
1894 section_tdata->contents = NULL;
1895 section_tdata->offsets = NULL;
1896 }
1897
1898 if (section_tdata->external_relocs == NULL)
1899 {
1900 amt = ecoff_backend (abfd)->external_reloc_size;
1901 amt *= sec->reloc_count;
1902 section_tdata->external_relocs = (PTR) bfd_alloc (abfd, amt);
1903 if (section_tdata->external_relocs == NULL && amt != 0)
1904 return false;
1905
1906 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1907 || bfd_bread (section_tdata->external_relocs, amt, abfd) != amt)
1908 return false;
1909 }
1910
1911 return true;
1912 }
1913
1914 /* Relax a section when linking a MIPS ECOFF file. This is used for
1915 embedded PIC code, which always uses PC relative branches which
1916 only have an 18 bit range on MIPS. If a branch is not in range, we
1917 generate a long instruction sequence to compensate. Each time we
1918 find a branch to expand, we have to check all the others again to
1919 make sure they are still in range. This is slow, but it only has
1920 to be done when -relax is passed to the linker.
1921
1922 This routine figures out which branches need to expand; the actual
1923 expansion is done in mips_relocate_section when the section
1924 contents are relocated. The information is stored in the offsets
1925 field of the ecoff_section_tdata structure. An offset of 1 means
1926 that the branch must be expanded into a multi-instruction PC
1927 relative branch (such an offset will only occur for a PC relative
1928 branch to an external symbol). Any other offset must be a multiple
1929 of four, and is the amount to change the branch by (such an offset
1930 will only occur for a PC relative branch within the same section).
1931
1932 We do not modify the section relocs or contents themselves so that
1933 if memory usage becomes an issue we can discard them and read them
1934 again. The only information we must save in memory between this
1935 routine and the mips_relocate_section routine is the table of
1936 offsets. */
1937
1938 static boolean
1939 mips_relax_section (abfd, sec, info, again)
1940 bfd *abfd;
1941 asection *sec;
1942 struct bfd_link_info *info;
1943 boolean *again;
1944 {
1945 struct ecoff_section_tdata *section_tdata;
1946 bfd_byte *contents = NULL;
1947 long *offsets;
1948 struct external_reloc *ext_rel;
1949 struct external_reloc *ext_rel_end;
1950 unsigned int i;
1951
1952 /* Assume we are not going to need another pass. */
1953 *again = false;
1954
1955 /* If we are not generating an ECOFF file, this is much too
1956 confusing to deal with. */
1957 if (info->hash->creator->flavour != bfd_get_flavour (abfd))
1958 return true;
1959
1960 /* If there are no relocs, there is nothing to do. */
1961 if (sec->reloc_count == 0)
1962 return true;
1963
1964 /* We are only interested in PC relative relocs, and why would there
1965 ever be one from anything but the .text section? */
1966 if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
1967 return true;
1968
1969 /* Read in the relocs, if we haven't already got them. */
1970 section_tdata = ecoff_section_data (abfd, sec);
1971 if (section_tdata == (struct ecoff_section_tdata *) NULL
1972 || section_tdata->external_relocs == NULL)
1973 {
1974 if (! mips_read_relocs (abfd, sec))
1975 goto error_return;
1976 section_tdata = ecoff_section_data (abfd, sec);
1977 }
1978
1979 if (sec->_cooked_size == 0)
1980 {
1981 /* We must initialize _cooked_size only the first time we are
1982 called. */
1983 sec->_cooked_size = sec->_raw_size;
1984 }
1985
1986 contents = section_tdata->contents;
1987 offsets = section_tdata->offsets;
1988
1989 /* Look for any external PC relative relocs. Internal PC relative
1990 relocs are already correct in the object file, so they certainly
1991 can not overflow. */
1992 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1993 ext_rel_end = ext_rel + sec->reloc_count;
1994 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1995 {
1996 struct internal_reloc int_rel;
1997 struct ecoff_link_hash_entry *h;
1998 asection *hsec;
1999 bfd_signed_vma relocation;
2000 struct external_reloc *adj_ext_rel;
2001 unsigned int adj_i;
2002 unsigned long ext_count;
2003 struct ecoff_link_hash_entry **adj_h_ptr;
2004 struct ecoff_link_hash_entry **adj_h_ptr_end;
2005 struct ecoff_value_adjust *adjust;
2006 bfd_size_type amt;
2007
2008 /* If we have already expanded this reloc, we certainly don't
2009 need to do it again. */
2010 if (offsets != (long *) NULL && offsets[i] == 1)
2011 continue;
2012
2013 /* Quickly check that this reloc is external PCREL16. */
2014 if (bfd_header_big_endian (abfd))
2015 {
2016 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
2017 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
2018 >> RELOC_BITS3_TYPE_SH_BIG)
2019 != MIPS_R_PCREL16))
2020 continue;
2021 }
2022 else
2023 {
2024 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
2025 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
2026 >> RELOC_BITS3_TYPE_SH_LITTLE)
2027 != MIPS_R_PCREL16))
2028 continue;
2029 }
2030
2031 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2032
2033 h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
2034 if (h == (struct ecoff_link_hash_entry *) NULL)
2035 abort ();
2036
2037 if (h->root.type != bfd_link_hash_defined
2038 && h->root.type != bfd_link_hash_defweak)
2039 {
2040 /* Just ignore undefined symbols. These will presumably
2041 generate an error later in the link. */
2042 continue;
2043 }
2044
2045 /* Get the value of the symbol. */
2046 hsec = h->root.u.def.section;
2047 relocation = (h->root.u.def.value
2048 + hsec->output_section->vma
2049 + hsec->output_offset);
2050
2051 /* Subtract out the current address. */
2052 relocation -= (sec->output_section->vma
2053 + sec->output_offset
2054 + (int_rel.r_vaddr - sec->vma));
2055
2056 /* The addend is stored in the object file. In the normal case
2057 of ``bal symbol'', the addend will be -4. It will only be
2058 different in the case of ``bal symbol+constant''. To avoid
2059 always reading in the section contents, we don't check the
2060 addend in the object file (we could easily check the contents
2061 if we happen to have already read them in, but I fear that
2062 this could be confusing). This means we will screw up if
2063 there is a branch to a symbol that is in range, but added to
2064 a constant which puts it out of range; in such a case the
2065 link will fail with a reloc overflow error. Since the
2066 compiler will never generate such code, it should be easy
2067 enough to work around it by changing the assembly code in the
2068 source file. */
2069 relocation -= 4;
2070
2071 /* Now RELOCATION is the number we want to put in the object
2072 file. See whether it fits. */
2073 if (relocation >= -0x20000 && relocation < 0x20000)
2074 continue;
2075
2076 /* Now that we know this reloc needs work, which will rarely
2077 happen, go ahead and grab the section contents. */
2078 if (contents == (bfd_byte *) NULL)
2079 {
2080 if (info->keep_memory)
2081 contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
2082 else
2083 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
2084 if (contents == (bfd_byte *) NULL)
2085 goto error_return;
2086 if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
2087 (file_ptr) 0, sec->_raw_size))
2088 goto error_return;
2089 if (info->keep_memory)
2090 section_tdata->contents = contents;
2091 }
2092
2093 /* We only support changing the bal instruction. It would be
2094 possible to handle other PC relative branches, but some of
2095 them (the conditional branches) would require a different
2096 length instruction sequence which would complicate both this
2097 routine and mips_relax_pcrel16. It could be written if
2098 somebody felt it were important. Ignoring this reloc will
2099 presumably cause a reloc overflow error later on. */
2100 if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
2101 != 0x0411ffff) /* bgezal $0,. == bal . */
2102 continue;
2103
2104 /* Bother. We need to expand this reloc, and we will need to
2105 make another relaxation pass since this change may put other
2106 relocs out of range. We need to examine the local branches
2107 and we need to allocate memory to hold the offsets we must
2108 add to them. We also need to adjust the values of all
2109 symbols in the object file following this location. */
2110
2111 sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
2112 *again = true;
2113
2114 if (offsets == (long *) NULL)
2115 {
2116 bfd_size_type size;
2117
2118 size = (bfd_size_type) sec->reloc_count * sizeof (long);
2119 offsets = (long *) bfd_alloc (abfd, size);
2120 if (offsets == (long *) NULL)
2121 goto error_return;
2122 memset (offsets, 0, (size_t) size);
2123 section_tdata->offsets = offsets;
2124 }
2125
2126 offsets[i] = 1;
2127
2128 /* Now look for all PC relative references that cross this reloc
2129 and adjust their offsets. */
2130 adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2131 for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
2132 {
2133 struct internal_reloc adj_int_rel;
2134 bfd_vma start, stop;
2135 int change;
2136
2137 mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
2138
2139 if (adj_int_rel.r_type == MIPS_R_PCREL16)
2140 {
2141 unsigned long insn;
2142
2143 /* We only care about local references. External ones
2144 will be relocated correctly anyhow. */
2145 if (adj_int_rel.r_extern)
2146 continue;
2147
2148 /* We are only interested in a PC relative reloc within
2149 this section. FIXME: Cross section PC relative
2150 relocs may not be handled correctly; does anybody
2151 care? */
2152 if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
2153 continue;
2154
2155 start = adj_int_rel.r_vaddr;
2156
2157 insn = bfd_get_32 (abfd,
2158 contents + adj_int_rel.r_vaddr - sec->vma);
2159
2160 stop = (insn & 0xffff) << 2;
2161 if ((stop & 0x20000) != 0)
2162 stop -= 0x40000;
2163 stop += adj_int_rel.r_vaddr + 4;
2164 }
2165 else if (adj_int_rel.r_type == MIPS_R_RELHI)
2166 {
2167 struct internal_reloc rello;
2168 long addhi, addlo;
2169
2170 /* The next reloc must be MIPS_R_RELLO, and we handle
2171 them together. */
2172 BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
2173
2174 mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
2175
2176 BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
2177
2178 addhi = bfd_get_32 (abfd,
2179 contents + adj_int_rel.r_vaddr - sec->vma);
2180 addhi &= 0xffff;
2181 if (addhi & 0x8000)
2182 addhi -= 0x10000;
2183 addhi <<= 16;
2184
2185 addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
2186 addlo &= 0xffff;
2187 if (addlo & 0x8000)
2188 addlo -= 0x10000;
2189
2190 if (adj_int_rel.r_extern)
2191 {
2192 /* The value we want here is
2193 sym - RELLOaddr + addend
2194 which we can express as
2195 sym - (RELLOaddr - addend)
2196 Therefore if we are expanding the area between
2197 RELLOaddr and RELLOaddr - addend we must adjust
2198 the addend. This is admittedly ambiguous, since
2199 we might mean (sym + addend) - RELLOaddr, but in
2200 practice we don't, and there is no way to handle
2201 that case correctly since at this point we have
2202 no idea whether any reloc is being expanded
2203 between sym and sym + addend. */
2204 start = rello.r_vaddr - (addhi + addlo);
2205 stop = rello.r_vaddr;
2206 }
2207 else
2208 {
2209 /* An internal RELHI/RELLO pair represents the
2210 difference between two addresses, $LC0 - foo.
2211 The symndx value is actually the difference
2212 between the reloc address and $LC0. This lets us
2213 compute $LC0, and, by considering the addend,
2214 foo. If the reloc we are expanding falls between
2215 those two relocs, we must adjust the addend. At
2216 this point, the symndx value is actually in the
2217 r_offset field, where it was put by
2218 mips_ecoff_swap_reloc_in. */
2219 start = rello.r_vaddr - adj_int_rel.r_offset;
2220 stop = start + addhi + addlo;
2221 }
2222 }
2223 else if (adj_int_rel.r_type == MIPS_R_SWITCH)
2224 {
2225 /* A MIPS_R_SWITCH reloc represents a word of the form
2226 .word $L3-$LS12
2227 The value in the object file is correct, assuming the
2228 original value of $L3. The symndx value is actually
2229 the difference between the reloc address and $LS12.
2230 This lets us compute the original value of $LS12 as
2231 vaddr - symndx
2232 and the original value of $L3 as
2233 vaddr - symndx + addend
2234 where addend is the value from the object file. At
2235 this point, the symndx value is actually found in the
2236 r_offset field, since it was moved by
2237 mips_ecoff_swap_reloc_in. */
2238 start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
2239 stop = start + bfd_get_32 (abfd,
2240 (contents
2241 + adj_int_rel.r_vaddr
2242 - sec->vma));
2243 }
2244 else
2245 continue;
2246
2247 /* If the range expressed by this reloc, which is the
2248 distance between START and STOP crosses the reloc we are
2249 expanding, we must adjust the offset. The sign of the
2250 adjustment depends upon the direction in which the range
2251 crosses the reloc being expanded. */
2252 if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
2253 change = PCREL16_EXPANSION_ADJUSTMENT;
2254 else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
2255 change = - PCREL16_EXPANSION_ADJUSTMENT;
2256 else
2257 change = 0;
2258
2259 offsets[adj_i] += change;
2260
2261 if (adj_int_rel.r_type == MIPS_R_RELHI)
2262 {
2263 adj_ext_rel++;
2264 adj_i++;
2265 offsets[adj_i] += change;
2266 }
2267 }
2268
2269 /* Find all symbols in this section defined by this object file
2270 and adjust their values. Note that we decide whether to
2271 adjust the value based on the value stored in the ECOFF EXTR
2272 structure, because the value stored in the hash table may
2273 have been changed by an earlier expanded reloc and thus may
2274 no longer correctly indicate whether the symbol is before or
2275 after the expanded reloc. */
2276 ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
2277 adj_h_ptr = ecoff_data (abfd)->sym_hashes;
2278 adj_h_ptr_end = adj_h_ptr + ext_count;
2279 for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
2280 {
2281 struct ecoff_link_hash_entry *adj_h;
2282
2283 adj_h = *adj_h_ptr;
2284 if (adj_h != (struct ecoff_link_hash_entry *) NULL
2285 && (adj_h->root.type == bfd_link_hash_defined
2286 || adj_h->root.type == bfd_link_hash_defweak)
2287 && adj_h->root.u.def.section == sec
2288 && adj_h->esym.asym.value > int_rel.r_vaddr)
2289 adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
2290 }
2291
2292 /* Add an entry to the symbol value adjust list. This is used
2293 by bfd_ecoff_debug_accumulate to adjust the values of
2294 internal symbols and FDR's. */
2295 amt = sizeof (struct ecoff_value_adjust);
2296 adjust = (struct ecoff_value_adjust *) bfd_alloc (abfd, amt);
2297 if (adjust == (struct ecoff_value_adjust *) NULL)
2298 goto error_return;
2299
2300 adjust->start = int_rel.r_vaddr;
2301 adjust->end = sec->vma + sec->_raw_size;
2302 adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
2303
2304 adjust->next = ecoff_data (abfd)->debug_info.adjust;
2305 ecoff_data (abfd)->debug_info.adjust = adjust;
2306 }
2307
2308 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2309 free (contents);
2310
2311 return true;
2312
2313 error_return:
2314 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2315 free (contents);
2316 return false;
2317 }
2318
2319 /* This routine is called from mips_relocate_section when a PC
2320 relative reloc must be expanded into the five instruction sequence.
2321 It handles all the details of the expansion, including resolving
2322 the reloc. */
2323
2324 static boolean
2325 mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
2326 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2327 bfd *input_bfd;
2328 asection *input_section ATTRIBUTE_UNUSED;
2329 struct ecoff_link_hash_entry *h;
2330 bfd_byte *location;
2331 bfd_vma address;
2332 {
2333 bfd_vma relocation;
2334
2335 /* 0x0411ffff is bgezal $0,. == bal . */
2336 BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
2337
2338 /* We need to compute the distance between the symbol and the
2339 current address plus eight. */
2340 relocation = (h->root.u.def.value
2341 + h->root.u.def.section->output_section->vma
2342 + h->root.u.def.section->output_offset);
2343 relocation -= address + 8;
2344
2345 /* If the lower half is negative, increment the upper 16 half. */
2346 if ((relocation & 0x8000) != 0)
2347 relocation += 0x10000;
2348
2349 bfd_put_32 (input_bfd, (bfd_vma) 0x04110001, location); /* bal .+8 */
2350 bfd_put_32 (input_bfd,
2351 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
2352 location + 4);
2353 bfd_put_32 (input_bfd,
2354 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
2355 location + 8);
2356 bfd_put_32 (input_bfd,
2357 (bfd_vma) 0x003f0821, location + 12); /* addu $at,$at,$ra */
2358 bfd_put_32 (input_bfd,
2359 (bfd_vma) 0x0020f809, location + 16); /* jalr $at */
2360
2361 return true;
2362 }
2363
2364 /* Given a .sdata section and a .rel.sdata in-memory section, store
2365 relocation information into the .rel.sdata section which can be
2366 used at runtime to relocate the section. This is called by the
2367 linker when the --embedded-relocs switch is used. This is called
2368 after the add_symbols entry point has been called for all the
2369 objects, and before the final_link entry point is called. This
2370 function presumes that the object was compiled using
2371 -membedded-pic. */
2372
2373 boolean
2374 bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2375 bfd *abfd;
2376 struct bfd_link_info *info;
2377 asection *datasec;
2378 asection *relsec;
2379 char **errmsg;
2380 {
2381 struct ecoff_link_hash_entry **sym_hashes;
2382 struct ecoff_section_tdata *section_tdata;
2383 struct external_reloc *ext_rel;
2384 struct external_reloc *ext_rel_end;
2385 bfd_byte *p;
2386 bfd_size_type amt;
2387
2388 BFD_ASSERT (! info->relocateable);
2389
2390 *errmsg = NULL;
2391
2392 if (datasec->reloc_count == 0)
2393 return true;
2394
2395 sym_hashes = ecoff_data (abfd)->sym_hashes;
2396
2397 if (! mips_read_relocs (abfd, datasec))
2398 return false;
2399
2400 amt = (bfd_size_type) datasec->reloc_count * 4;
2401 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
2402 if (relsec->contents == NULL)
2403 return false;
2404
2405 p = relsec->contents;
2406
2407 section_tdata = ecoff_section_data (abfd, datasec);
2408 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2409 ext_rel_end = ext_rel + datasec->reloc_count;
2410 for (; ext_rel < ext_rel_end; ext_rel++, p += 4)
2411 {
2412 struct internal_reloc int_rel;
2413 boolean text_relative;
2414
2415 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2416
2417 /* We are going to write a four byte word into the runtime reloc
2418 section. The word will be the address in the data section
2419 which must be relocated. This must be on a word boundary,
2420 which means the lower two bits must be zero. We use the
2421 least significant bit to indicate how the value in the data
2422 section must be relocated. A 0 means that the value is
2423 relative to the text section, while a 1 indicates that the
2424 value is relative to the data section. Given that we are
2425 assuming the code was compiled using -membedded-pic, there
2426 should not be any other possibilities. */
2427
2428 /* We can only relocate REFWORD relocs at run time. */
2429 if (int_rel.r_type != MIPS_R_REFWORD)
2430 {
2431 *errmsg = _("unsupported reloc type");
2432 bfd_set_error (bfd_error_bad_value);
2433 return false;
2434 }
2435
2436 if (int_rel.r_extern)
2437 {
2438 struct ecoff_link_hash_entry *h;
2439
2440 h = sym_hashes[int_rel.r_symndx];
2441 /* If h is NULL, that means that there is a reloc against an
2442 external symbol which we thought was just a debugging
2443 symbol. This should not happen. */
2444 if (h == (struct ecoff_link_hash_entry *) NULL)
2445 abort ();
2446 if ((h->root.type == bfd_link_hash_defined
2447 || h->root.type == bfd_link_hash_defweak)
2448 && (h->root.u.def.section->flags & SEC_CODE) != 0)
2449 text_relative = true;
2450 else
2451 text_relative = false;
2452 }
2453 else
2454 {
2455 switch (int_rel.r_symndx)
2456 {
2457 case RELOC_SECTION_TEXT:
2458 text_relative = true;
2459 break;
2460 case RELOC_SECTION_SDATA:
2461 case RELOC_SECTION_SBSS:
2462 case RELOC_SECTION_LIT8:
2463 text_relative = false;
2464 break;
2465 default:
2466 /* No other sections should appear in -membedded-pic
2467 code. */
2468 *errmsg = _("reloc against unsupported section");
2469 bfd_set_error (bfd_error_bad_value);
2470 return false;
2471 }
2472 }
2473
2474 if ((int_rel.r_offset & 3) != 0)
2475 {
2476 *errmsg = _("reloc not properly aligned");
2477 bfd_set_error (bfd_error_bad_value);
2478 return false;
2479 }
2480
2481 bfd_put_32 (abfd,
2482 (int_rel.r_vaddr - datasec->vma + datasec->output_offset
2483 + (text_relative ? 0 : 1)),
2484 p);
2485 }
2486
2487 return true;
2488 }
2489 \f
2490 /* This is the ECOFF backend structure. The backend field of the
2491 target vector points to this. */
2492
2493 static const struct ecoff_backend_data mips_ecoff_backend_data =
2494 {
2495 /* COFF backend structure. */
2496 {
2497 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2498 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2499 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2500 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2501 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2502 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2503 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2504 mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
2505 mips_ecoff_swap_scnhdr_out,
2506 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, true, false, 4, false, 2,
2507 mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
2508 mips_ecoff_swap_scnhdr_in, NULL,
2509 mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2510 _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2511 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2512 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2513 NULL, NULL
2514 },
2515 /* Supported architecture. */
2516 bfd_arch_mips,
2517 /* Initial portion of armap string. */
2518 "__________",
2519 /* The page boundary used to align sections in a demand-paged
2520 executable file. E.g., 0x1000. */
2521 0x1000,
2522 /* True if the .rdata section is part of the text segment, as on the
2523 Alpha. False if .rdata is part of the data segment, as on the
2524 MIPS. */
2525 false,
2526 /* Bitsize of constructor entries. */
2527 32,
2528 /* Reloc to use for constructor entries. */
2529 &mips_howto_table[MIPS_R_REFWORD],
2530 {
2531 /* Symbol table magic number. */
2532 magicSym,
2533 /* Alignment of debugging information. E.g., 4. */
2534 4,
2535 /* Sizes of external symbolic information. */
2536 sizeof (struct hdr_ext),
2537 sizeof (struct dnr_ext),
2538 sizeof (struct pdr_ext),
2539 sizeof (struct sym_ext),
2540 sizeof (struct opt_ext),
2541 sizeof (struct fdr_ext),
2542 sizeof (struct rfd_ext),
2543 sizeof (struct ext_ext),
2544 /* Functions to swap in external symbolic data. */
2545 ecoff_swap_hdr_in,
2546 ecoff_swap_dnr_in,
2547 ecoff_swap_pdr_in,
2548 ecoff_swap_sym_in,
2549 ecoff_swap_opt_in,
2550 ecoff_swap_fdr_in,
2551 ecoff_swap_rfd_in,
2552 ecoff_swap_ext_in,
2553 _bfd_ecoff_swap_tir_in,
2554 _bfd_ecoff_swap_rndx_in,
2555 /* Functions to swap out external symbolic data. */
2556 ecoff_swap_hdr_out,
2557 ecoff_swap_dnr_out,
2558 ecoff_swap_pdr_out,
2559 ecoff_swap_sym_out,
2560 ecoff_swap_opt_out,
2561 ecoff_swap_fdr_out,
2562 ecoff_swap_rfd_out,
2563 ecoff_swap_ext_out,
2564 _bfd_ecoff_swap_tir_out,
2565 _bfd_ecoff_swap_rndx_out,
2566 /* Function to read in symbolic data. */
2567 _bfd_ecoff_slurp_symbolic_info
2568 },
2569 /* External reloc size. */
2570 RELSZ,
2571 /* Reloc swapping functions. */
2572 mips_ecoff_swap_reloc_in,
2573 mips_ecoff_swap_reloc_out,
2574 /* Backend reloc tweaking. */
2575 mips_adjust_reloc_in,
2576 mips_adjust_reloc_out,
2577 /* Relocate section contents while linking. */
2578 mips_relocate_section,
2579 /* Do final adjustments to filehdr and aouthdr. */
2580 NULL,
2581 /* Read an element from an archive at a given file position. */
2582 _bfd_get_elt_at_filepos
2583 };
2584
2585 /* Looking up a reloc type is MIPS specific. */
2586 #define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
2587
2588 /* Getting relocated section contents is generic. */
2589 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2590 bfd_generic_get_relocated_section_contents
2591
2592 /* Handling file windows is generic. */
2593 #define _bfd_ecoff_get_section_contents_in_window \
2594 _bfd_generic_get_section_contents_in_window
2595
2596 /* Relaxing sections is MIPS specific. */
2597 #define _bfd_ecoff_bfd_relax_section mips_relax_section
2598
2599 /* GC of sections is not done. */
2600 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2601
2602 /* Merging of sections is not done. */
2603 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2604
2605 extern const bfd_target ecoff_big_vec;
2606
2607 const bfd_target ecoff_little_vec =
2608 {
2609 "ecoff-littlemips", /* name */
2610 bfd_target_ecoff_flavour,
2611 BFD_ENDIAN_LITTLE, /* data byte order is little */
2612 BFD_ENDIAN_LITTLE, /* header byte order is little */
2613
2614 (HAS_RELOC | EXEC_P | /* object flags */
2615 HAS_LINENO | HAS_DEBUG |
2616 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2617
2618 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2619 0, /* leading underscore */
2620 ' ', /* ar_pad_char */
2621 15, /* ar_max_namelen */
2622 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2623 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2624 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2625 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2626 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2627 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2628
2629 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2630 _bfd_ecoff_archive_p, _bfd_dummy_target},
2631 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2632 _bfd_generic_mkarchive, bfd_false},
2633 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2634 _bfd_write_archive_contents, bfd_false},
2635
2636 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2637 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2638 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2639 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2640 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2641 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2642 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2643 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2644 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2645
2646 & ecoff_big_vec,
2647
2648 (PTR) &mips_ecoff_backend_data
2649 };
2650
2651 const bfd_target ecoff_big_vec =
2652 {
2653 "ecoff-bigmips", /* name */
2654 bfd_target_ecoff_flavour,
2655 BFD_ENDIAN_BIG, /* data byte order is big */
2656 BFD_ENDIAN_BIG, /* header byte order is big */
2657
2658 (HAS_RELOC | EXEC_P | /* object flags */
2659 HAS_LINENO | HAS_DEBUG |
2660 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2661
2662 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2663 0, /* leading underscore */
2664 ' ', /* ar_pad_char */
2665 15, /* ar_max_namelen */
2666 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2667 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2668 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2669 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2670 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2671 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2672 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2673 _bfd_ecoff_archive_p, _bfd_dummy_target},
2674 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2675 _bfd_generic_mkarchive, bfd_false},
2676 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2677 _bfd_write_archive_contents, bfd_false},
2678
2679 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2680 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2681 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2682 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2683 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2684 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2685 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2686 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2687 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2688
2689 & ecoff_little_vec,
2690
2691 (PTR) &mips_ecoff_backend_data
2692 };
2693
2694 const bfd_target ecoff_biglittle_vec =
2695 {
2696 "ecoff-biglittlemips", /* name */
2697 bfd_target_ecoff_flavour,
2698 BFD_ENDIAN_LITTLE, /* data byte order is little */
2699 BFD_ENDIAN_BIG, /* header byte order is big */
2700
2701 (HAS_RELOC | EXEC_P | /* object flags */
2702 HAS_LINENO | HAS_DEBUG |
2703 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2704
2705 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2706 0, /* leading underscore */
2707 ' ', /* ar_pad_char */
2708 15, /* ar_max_namelen */
2709 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2710 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2711 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2712 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2713 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2714 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
2715
2716 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2717 _bfd_ecoff_archive_p, _bfd_dummy_target},
2718 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2719 _bfd_generic_mkarchive, bfd_false},
2720 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2721 _bfd_write_archive_contents, bfd_false},
2722
2723 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2724 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2725 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2726 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2727 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2728 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2729 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2730 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2731 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2732
2733 NULL,
2734
2735 (PTR) &mips_ecoff_backend_data
2736 };
This page took 0.133311 seconds and 4 git commands to generate.