* merge.c (struct sec_merge_hash_entry): Add u.entsize and u.suffix
[deliverable/binutils-gdb.git] / bfd / coff-mips.c
1 /* BFD back-end for MIPS Extended-Coff files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Original version by Per Bothner.
6 Full support added by Ian Lance Taylor, ian@cygnus.com.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "coff/internal.h"
29 #include "coff/sym.h"
30 #include "coff/symconst.h"
31 #include "coff/ecoff.h"
32 #include "coff/mips.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 \f
36 /* Prototypes for static functions. */
37
38 static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
39 static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
40 struct internal_reloc *));
41 static void mips_ecoff_swap_reloc_out PARAMS ((bfd *,
42 const struct internal_reloc *,
43 PTR));
44 static void mips_adjust_reloc_in PARAMS ((bfd *,
45 const struct internal_reloc *,
46 arelent *));
47 static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *,
48 struct internal_reloc *));
49 static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd,
50 arelent *reloc,
51 asymbol *symbol,
52 PTR data,
53 asection *section,
54 bfd *output_bfd,
55 char **error));
56 static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd,
57 arelent *reloc,
58 asymbol *symbol,
59 PTR data,
60 asection *section,
61 bfd *output_bfd,
62 char **error));
63 static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd,
64 arelent *reloc,
65 asymbol *symbol,
66 PTR data,
67 asection *section,
68 bfd *output_bfd,
69 char **error));
70 static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd,
71 arelent *reloc,
72 asymbol *symbol,
73 PTR data,
74 asection *section,
75 bfd *output_bfd,
76 char **error));
77 static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd,
78 arelent *reloc,
79 asymbol *symbol,
80 PTR data,
81 asection *section,
82 bfd *output_bfd,
83 char **error));
84 static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd,
85 arelent *reloc,
86 asymbol *symbol,
87 PTR data,
88 asection *section,
89 bfd *output_bfd,
90 char **error));
91 static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd,
92 arelent *reloc,
93 asymbol *symbol,
94 PTR data,
95 asection *section,
96 bfd *output_bfd,
97 char **error));
98 static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi,
99 struct internal_reloc *reflo,
100 bfd *input_bfd,
101 asection *input_section,
102 bfd_byte *contents,
103 size_t adjust,
104 bfd_vma relocation,
105 boolean pcrel));
106 static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
107 bfd *, asection *,
108 bfd_byte *, PTR));
109 static boolean mips_read_relocs PARAMS ((bfd *, asection *));
110 static boolean mips_relax_section PARAMS ((bfd *, asection *,
111 struct bfd_link_info *,
112 boolean *));
113 static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *,
114 asection *,
115 struct ecoff_link_hash_entry *,
116 bfd_byte *, bfd_vma));
117 static reloc_howto_type *mips_bfd_reloc_type_lookup
118 PARAMS ((bfd *, bfd_reloc_code_real_type));
119 \f
120 /* ECOFF has COFF sections, but the debugging information is stored in
121 a completely different format. ECOFF targets use some of the
122 swapping routines from coffswap.h, and some of the generic COFF
123 routines in coffgen.c, but, unlike the real COFF targets, do not
124 use coffcode.h itself.
125
126 Get the generic COFF swapping routines, except for the reloc,
127 symbol, and lineno ones. Give them ECOFF names. */
128 #define MIPSECOFF
129 #define NO_COFF_RELOCS
130 #define NO_COFF_SYMBOLS
131 #define NO_COFF_LINENOS
132 #define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
133 #define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
134 #define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
135 #define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
136 #define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
137 #define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
138 #include "coffswap.h"
139
140 /* Get the ECOFF swapping routines. */
141 #define ECOFF_32
142 #include "ecoffswap.h"
143 \f
144 /* How to process the various relocs types. */
145
146 static reloc_howto_type mips_howto_table[] =
147 {
148 /* Reloc type 0 is ignored. The reloc reading code ensures that
149 this is a reference to the .abs section, which will cause
150 bfd_perform_relocation to do nothing. */
151 HOWTO (MIPS_R_IGNORE, /* type */
152 0, /* rightshift */
153 0, /* size (0 = byte, 1 = short, 2 = long) */
154 8, /* bitsize */
155 false, /* pc_relative */
156 0, /* bitpos */
157 complain_overflow_dont, /* complain_on_overflow */
158 0, /* special_function */
159 "IGNORE", /* name */
160 false, /* partial_inplace */
161 0, /* src_mask */
162 0, /* dst_mask */
163 false), /* pcrel_offset */
164
165 /* A 16 bit reference to a symbol, normally from a data section. */
166 HOWTO (MIPS_R_REFHALF, /* type */
167 0, /* rightshift */
168 1, /* size (0 = byte, 1 = short, 2 = long) */
169 16, /* bitsize */
170 false, /* pc_relative */
171 0, /* bitpos */
172 complain_overflow_bitfield, /* complain_on_overflow */
173 mips_generic_reloc, /* special_function */
174 "REFHALF", /* name */
175 true, /* partial_inplace */
176 0xffff, /* src_mask */
177 0xffff, /* dst_mask */
178 false), /* pcrel_offset */
179
180 /* A 32 bit reference to a symbol, normally from a data section. */
181 HOWTO (MIPS_R_REFWORD, /* type */
182 0, /* rightshift */
183 2, /* size (0 = byte, 1 = short, 2 = long) */
184 32, /* bitsize */
185 false, /* pc_relative */
186 0, /* bitpos */
187 complain_overflow_bitfield, /* complain_on_overflow */
188 mips_generic_reloc, /* special_function */
189 "REFWORD", /* name */
190 true, /* partial_inplace */
191 0xffffffff, /* src_mask */
192 0xffffffff, /* dst_mask */
193 false), /* pcrel_offset */
194
195 /* A 26 bit absolute jump address. */
196 HOWTO (MIPS_R_JMPADDR, /* type */
197 2, /* rightshift */
198 2, /* size (0 = byte, 1 = short, 2 = long) */
199 26, /* bitsize */
200 false, /* pc_relative */
201 0, /* bitpos */
202 complain_overflow_dont, /* complain_on_overflow */
203 /* This needs complex overflow
204 detection, because the upper four
205 bits must match the PC. */
206 mips_generic_reloc, /* special_function */
207 "JMPADDR", /* name */
208 true, /* partial_inplace */
209 0x3ffffff, /* src_mask */
210 0x3ffffff, /* dst_mask */
211 false), /* pcrel_offset */
212
213 /* The high 16 bits of a symbol value. Handled by the function
214 mips_refhi_reloc. */
215 HOWTO (MIPS_R_REFHI, /* type */
216 16, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 16, /* bitsize */
219 false, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 mips_refhi_reloc, /* special_function */
223 "REFHI", /* name */
224 true, /* partial_inplace */
225 0xffff, /* src_mask */
226 0xffff, /* dst_mask */
227 false), /* pcrel_offset */
228
229 /* The low 16 bits of a symbol value. */
230 HOWTO (MIPS_R_REFLO, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 16, /* bitsize */
234 false, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 mips_reflo_reloc, /* special_function */
238 "REFLO", /* name */
239 true, /* partial_inplace */
240 0xffff, /* src_mask */
241 0xffff, /* dst_mask */
242 false), /* pcrel_offset */
243
244 /* A reference to an offset from the gp register. Handled by the
245 function mips_gprel_reloc. */
246 HOWTO (MIPS_R_GPREL, /* type */
247 0, /* rightshift */
248 2, /* size (0 = byte, 1 = short, 2 = long) */
249 16, /* bitsize */
250 false, /* pc_relative */
251 0, /* bitpos */
252 complain_overflow_signed, /* complain_on_overflow */
253 mips_gprel_reloc, /* special_function */
254 "GPREL", /* name */
255 true, /* partial_inplace */
256 0xffff, /* src_mask */
257 0xffff, /* dst_mask */
258 false), /* pcrel_offset */
259
260 /* A reference to a literal using an offset from the gp register.
261 Handled by the function mips_gprel_reloc. */
262 HOWTO (MIPS_R_LITERAL, /* type */
263 0, /* rightshift */
264 2, /* size (0 = byte, 1 = short, 2 = long) */
265 16, /* bitsize */
266 false, /* pc_relative */
267 0, /* bitpos */
268 complain_overflow_signed, /* complain_on_overflow */
269 mips_gprel_reloc, /* special_function */
270 "LITERAL", /* name */
271 true, /* partial_inplace */
272 0xffff, /* src_mask */
273 0xffff, /* dst_mask */
274 false), /* pcrel_offset */
275
276 EMPTY_HOWTO (8),
277 EMPTY_HOWTO (9),
278 EMPTY_HOWTO (10),
279 EMPTY_HOWTO (11),
280
281 /* This reloc is a Cygnus extension used when generating position
282 independent code for embedded systems. It represents a 16 bit PC
283 relative reloc rightshifted twice as used in the MIPS branch
284 instructions. */
285 HOWTO (MIPS_R_PCREL16, /* type */
286 2, /* rightshift */
287 2, /* size (0 = byte, 1 = short, 2 = long) */
288 16, /* bitsize */
289 true, /* pc_relative */
290 0, /* bitpos */
291 complain_overflow_signed, /* complain_on_overflow */
292 mips_generic_reloc, /* special_function */
293 "PCREL16", /* name */
294 true, /* partial_inplace */
295 0xffff, /* src_mask */
296 0xffff, /* dst_mask */
297 true), /* pcrel_offset */
298
299 /* This reloc is a Cygnus extension used when generating position
300 independent code for embedded systems. It represents the high 16
301 bits of a PC relative reloc. The next reloc must be
302 MIPS_R_RELLO, and the addend is formed from the addends of the
303 two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
304 final value is actually PC relative to the location of the
305 MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
306 HOWTO (MIPS_R_RELHI, /* type */
307 16, /* rightshift */
308 2, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 true, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_bitfield, /* complain_on_overflow */
313 mips_relhi_reloc, /* special_function */
314 "RELHI", /* name */
315 true, /* partial_inplace */
316 0xffff, /* src_mask */
317 0xffff, /* dst_mask */
318 true), /* pcrel_offset */
319
320 /* This reloc is a Cygnus extension used when generating position
321 independent code for embedded systems. It represents the low 16
322 bits of a PC relative reloc. */
323 HOWTO (MIPS_R_RELLO, /* type */
324 0, /* rightshift */
325 2, /* size (0 = byte, 1 = short, 2 = long) */
326 16, /* bitsize */
327 true, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_dont, /* complain_on_overflow */
330 mips_rello_reloc, /* special_function */
331 "RELLO", /* name */
332 true, /* partial_inplace */
333 0xffff, /* src_mask */
334 0xffff, /* dst_mask */
335 true), /* pcrel_offset */
336
337 EMPTY_HOWTO (15),
338 EMPTY_HOWTO (16),
339 EMPTY_HOWTO (17),
340 EMPTY_HOWTO (18),
341 EMPTY_HOWTO (19),
342 EMPTY_HOWTO (20),
343 EMPTY_HOWTO (21),
344
345 /* This reloc is a Cygnus extension used when generating position
346 independent code for embedded systems. It represents an entry in
347 a switch table, which is the difference between two symbols in
348 the .text section. The symndx is actually the offset from the
349 reloc address to the subtrahend. See include/coff/mips.h for
350 more details. */
351 HOWTO (MIPS_R_SWITCH, /* type */
352 0, /* rightshift */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
354 32, /* bitsize */
355 true, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_dont, /* complain_on_overflow */
358 mips_switch_reloc, /* special_function */
359 "SWITCH", /* name */
360 true, /* partial_inplace */
361 0xffffffff, /* src_mask */
362 0xffffffff, /* dst_mask */
363 true) /* pcrel_offset */
364 };
365
366 #define MIPS_HOWTO_COUNT \
367 (sizeof mips_howto_table / sizeof mips_howto_table[0])
368
369 /* When the linker is doing relaxing, it may change a external PCREL16
370 reloc. This typically represents an instruction like
371 bal foo
372 We change it to
373 .set noreorder
374 bal $L1
375 lui $at,%hi(foo - $L1)
376 $L1:
377 addiu $at,%lo(foo - $L1)
378 addu $at,$at,$31
379 jalr $at
380 PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
381 instruction by. */
382
383 #define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
384 \f
385 /* See whether the magic number matches. */
386
387 static boolean
388 mips_ecoff_bad_format_hook (abfd, filehdr)
389 bfd *abfd;
390 PTR filehdr;
391 {
392 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
393
394 switch (internal_f->f_magic)
395 {
396 case MIPS_MAGIC_1:
397 /* I don't know what endianness this implies. */
398 return true;
399
400 case MIPS_MAGIC_BIG:
401 case MIPS_MAGIC_BIG2:
402 case MIPS_MAGIC_BIG3:
403 return bfd_big_endian (abfd);
404
405 case MIPS_MAGIC_LITTLE:
406 case MIPS_MAGIC_LITTLE2:
407 case MIPS_MAGIC_LITTLE3:
408 return bfd_little_endian (abfd);
409
410 default:
411 return false;
412 }
413 }
414 \f
415 /* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
416 external form. They use a bit which indicates whether the symbol
417 is external. */
418
419 /* Swap a reloc in. */
420
421 static void
422 mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
423 bfd *abfd;
424 PTR ext_ptr;
425 struct internal_reloc *intern;
426 {
427 const RELOC *ext = (RELOC *) ext_ptr;
428
429 intern->r_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_vaddr);
430 if (bfd_header_big_endian (abfd))
431 {
432 intern->r_symndx = (((int) ext->r_bits[0]
433 << RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
434 | ((int) ext->r_bits[1]
435 << RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
436 | ((int) ext->r_bits[2]
437 << RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
438 intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
439 >> RELOC_BITS3_TYPE_SH_BIG);
440 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
441 }
442 else
443 {
444 intern->r_symndx = (((int) ext->r_bits[0]
445 << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
446 | ((int) ext->r_bits[1]
447 << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
448 | ((int) ext->r_bits[2]
449 << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
450 intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
451 >> RELOC_BITS3_TYPE_SH_LITTLE)
452 | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
453 << RELOC_BITS3_TYPEHI_SH_LITTLE));
454 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
455 }
456
457 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
458 MIPS_R_RELLO reloc, r_symndx is actually the offset from the
459 reloc address to the base of the difference (see
460 include/coff/mips.h for more details). We copy symndx into the
461 r_offset field so as not to confuse ecoff_slurp_reloc_table in
462 ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
463 addend. */
464 if (intern->r_type == MIPS_R_SWITCH
465 || (! intern->r_extern
466 && (intern->r_type == MIPS_R_RELLO
467 || intern->r_type == MIPS_R_RELHI)))
468 {
469 BFD_ASSERT (! intern->r_extern);
470 intern->r_offset = intern->r_symndx;
471 if (intern->r_offset & 0x800000)
472 intern->r_offset -= 0x1000000;
473 intern->r_symndx = RELOC_SECTION_TEXT;
474 }
475 }
476
477 /* Swap a reloc out. */
478
479 static void
480 mips_ecoff_swap_reloc_out (abfd, intern, dst)
481 bfd *abfd;
482 const struct internal_reloc *intern;
483 PTR dst;
484 {
485 RELOC *ext = (RELOC *) dst;
486 long r_symndx;
487
488 BFD_ASSERT (intern->r_extern
489 || (intern->r_symndx >= 0 && intern->r_symndx <= 12));
490
491 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
492 MIPS_R_RELHI reloc, we actually want to write the contents of
493 r_offset out as the symbol index. This undoes the change made by
494 mips_ecoff_swap_reloc_in. */
495 if (intern->r_type != MIPS_R_SWITCH
496 && (intern->r_extern
497 || (intern->r_type != MIPS_R_RELHI
498 && intern->r_type != MIPS_R_RELLO)))
499 r_symndx = intern->r_symndx;
500 else
501 {
502 BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
503 r_symndx = intern->r_offset & 0xffffff;
504 }
505
506 bfd_h_put_32 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr);
507 if (bfd_header_big_endian (abfd))
508 {
509 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
510 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
511 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
512 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
513 & RELOC_BITS3_TYPE_BIG)
514 | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
515 }
516 else
517 {
518 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
519 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
520 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
521 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
522 & RELOC_BITS3_TYPE_LITTLE)
523 | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
524 & RELOC_BITS3_TYPEHI_LITTLE))
525 | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
526 }
527 }
528
529 /* Finish canonicalizing a reloc. Part of this is generic to all
530 ECOFF targets, and that part is in ecoff.c. The rest is done in
531 this backend routine. It must fill in the howto field. */
532
533 static void
534 mips_adjust_reloc_in (abfd, intern, rptr)
535 bfd *abfd;
536 const struct internal_reloc *intern;
537 arelent *rptr;
538 {
539 if (intern->r_type > MIPS_R_SWITCH)
540 abort ();
541
542 if (! intern->r_extern
543 && (intern->r_type == MIPS_R_GPREL
544 || intern->r_type == MIPS_R_LITERAL))
545 rptr->addend += ecoff_data (abfd)->gp;
546
547 /* If the type is MIPS_R_IGNORE, make sure this is a reference to
548 the absolute section so that the reloc is ignored. */
549 if (intern->r_type == MIPS_R_IGNORE)
550 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
551
552 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
553 MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
554 hold the value which was originally in the symndx field of the
555 internal MIPS ECOFF reloc. This value was copied into
556 intern->r_offset by mips_swap_reloc_in, and here we copy it into
557 the addend field. */
558 if (intern->r_type == MIPS_R_SWITCH
559 || (! intern->r_extern
560 && (intern->r_type == MIPS_R_RELHI
561 || intern->r_type == MIPS_R_RELLO)))
562 rptr->addend = intern->r_offset;
563
564 rptr->howto = &mips_howto_table[intern->r_type];
565 }
566
567 /* Make any adjustments needed to a reloc before writing it out. None
568 are needed for MIPS. */
569
570 static void
571 mips_adjust_reloc_out (abfd, rel, intern)
572 bfd *abfd ATTRIBUTE_UNUSED;
573 const arelent *rel;
574 struct internal_reloc *intern;
575 {
576 /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
577 MIPS_R_RELLO reloc, we must copy rel->addend into
578 intern->r_offset. This will then be written out as the symbol
579 index by mips_ecoff_swap_reloc_out. This operation parallels the
580 action of mips_adjust_reloc_in. */
581 if (intern->r_type == MIPS_R_SWITCH
582 || (! intern->r_extern
583 && (intern->r_type == MIPS_R_RELHI
584 || intern->r_type == MIPS_R_RELLO)))
585 intern->r_offset = rel->addend;
586 }
587
588 /* ECOFF relocs are either against external symbols, or against
589 sections. If we are producing relocateable output, and the reloc
590 is against an external symbol, and nothing has given us any
591 additional addend, the resulting reloc will also be against the
592 same symbol. In such a case, we don't want to change anything
593 about the way the reloc is handled, since it will all be done at
594 final link time. Rather than put special case code into
595 bfd_perform_relocation, all the reloc types use this howto
596 function. It just short circuits the reloc if producing
597 relocateable output against an external symbol. */
598
599 static bfd_reloc_status_type
600 mips_generic_reloc (abfd,
601 reloc_entry,
602 symbol,
603 data,
604 input_section,
605 output_bfd,
606 error_message)
607 bfd *abfd ATTRIBUTE_UNUSED;
608 arelent *reloc_entry;
609 asymbol *symbol;
610 PTR data ATTRIBUTE_UNUSED;
611 asection *input_section;
612 bfd *output_bfd;
613 char **error_message ATTRIBUTE_UNUSED;
614 {
615 if (output_bfd != (bfd *) NULL
616 && (symbol->flags & BSF_SECTION_SYM) == 0
617 && reloc_entry->addend == 0)
618 {
619 reloc_entry->address += input_section->output_offset;
620 return bfd_reloc_ok;
621 }
622
623 return bfd_reloc_continue;
624 }
625
626 /* Do a REFHI relocation. This has to be done in combination with a
627 REFLO reloc, because there is a carry from the REFLO to the REFHI.
628 Here we just save the information we need; we do the actual
629 relocation when we see the REFLO. MIPS ECOFF requires that the
630 REFLO immediately follow the REFHI. As a GNU extension, we permit
631 an arbitrary number of HI relocs to be associated with a single LO
632 reloc. This extension permits gcc to output the HI and LO relocs
633 itself. */
634
635 struct mips_hi
636 {
637 struct mips_hi *next;
638 bfd_byte *addr;
639 bfd_vma addend;
640 };
641
642 /* FIXME: This should not be a static variable. */
643
644 static struct mips_hi *mips_refhi_list;
645
646 static bfd_reloc_status_type
647 mips_refhi_reloc (abfd,
648 reloc_entry,
649 symbol,
650 data,
651 input_section,
652 output_bfd,
653 error_message)
654 bfd *abfd ATTRIBUTE_UNUSED;
655 arelent *reloc_entry;
656 asymbol *symbol;
657 PTR data;
658 asection *input_section;
659 bfd *output_bfd;
660 char **error_message ATTRIBUTE_UNUSED;
661 {
662 bfd_reloc_status_type ret;
663 bfd_vma relocation;
664 struct mips_hi *n;
665
666 /* If we're relocating, and this an external symbol, we don't want
667 to change anything. */
668 if (output_bfd != (bfd *) NULL
669 && (symbol->flags & BSF_SECTION_SYM) == 0
670 && reloc_entry->addend == 0)
671 {
672 reloc_entry->address += input_section->output_offset;
673 return bfd_reloc_ok;
674 }
675
676 ret = bfd_reloc_ok;
677 if (bfd_is_und_section (symbol->section)
678 && output_bfd == (bfd *) NULL)
679 ret = bfd_reloc_undefined;
680
681 if (bfd_is_com_section (symbol->section))
682 relocation = 0;
683 else
684 relocation = symbol->value;
685
686 relocation += symbol->section->output_section->vma;
687 relocation += symbol->section->output_offset;
688 relocation += reloc_entry->addend;
689
690 if (reloc_entry->address > input_section->_cooked_size)
691 return bfd_reloc_outofrange;
692
693 /* Save the information, and let REFLO do the actual relocation. */
694 n = (struct mips_hi *) bfd_malloc (sizeof *n);
695 if (n == NULL)
696 return bfd_reloc_outofrange;
697 n->addr = (bfd_byte *) data + reloc_entry->address;
698 n->addend = relocation;
699 n->next = mips_refhi_list;
700 mips_refhi_list = n;
701
702 if (output_bfd != (bfd *) NULL)
703 reloc_entry->address += input_section->output_offset;
704
705 return ret;
706 }
707
708 /* Do a REFLO relocation. This is a straightforward 16 bit inplace
709 relocation; this function exists in order to do the REFHI
710 relocation described above. */
711
712 static bfd_reloc_status_type
713 mips_reflo_reloc (abfd,
714 reloc_entry,
715 symbol,
716 data,
717 input_section,
718 output_bfd,
719 error_message)
720 bfd *abfd;
721 arelent *reloc_entry;
722 asymbol *symbol;
723 PTR data;
724 asection *input_section;
725 bfd *output_bfd;
726 char **error_message;
727 {
728 if (mips_refhi_list != NULL)
729 {
730 struct mips_hi *l;
731
732 l = mips_refhi_list;
733 while (l != NULL)
734 {
735 unsigned long insn;
736 unsigned long val;
737 unsigned long vallo;
738 struct mips_hi *next;
739
740 /* Do the REFHI relocation. Note that we actually don't
741 need to know anything about the REFLO itself, except
742 where to find the low 16 bits of the addend needed by the
743 REFHI. */
744 insn = bfd_get_32 (abfd, l->addr);
745 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
746 & 0xffff);
747 val = ((insn & 0xffff) << 16) + vallo;
748 val += l->addend;
749
750 /* The low order 16 bits are always treated as a signed
751 value. Therefore, a negative value in the low order bits
752 requires an adjustment in the high order bits. We need
753 to make this adjustment in two ways: once for the bits we
754 took from the data, and once for the bits we are putting
755 back in to the data. */
756 if ((vallo & 0x8000) != 0)
757 val -= 0x10000;
758 if ((val & 0x8000) != 0)
759 val += 0x10000;
760
761 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
762 bfd_put_32 (abfd, insn, l->addr);
763
764 next = l->next;
765 free (l);
766 l = next;
767 }
768
769 mips_refhi_list = NULL;
770 }
771
772 /* Now do the REFLO reloc in the usual way. */
773 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
774 input_section, output_bfd, error_message);
775 }
776
777 /* Do a GPREL relocation. This is a 16 bit value which must become
778 the offset from the gp register. */
779
780 static bfd_reloc_status_type
781 mips_gprel_reloc (abfd,
782 reloc_entry,
783 symbol,
784 data,
785 input_section,
786 output_bfd,
787 error_message)
788 bfd *abfd;
789 arelent *reloc_entry;
790 asymbol *symbol;
791 PTR data;
792 asection *input_section;
793 bfd *output_bfd;
794 char **error_message;
795 {
796 boolean relocateable;
797 bfd_vma gp;
798 bfd_vma relocation;
799 unsigned long val;
800 unsigned long insn;
801
802 /* If we're relocating, and this is an external symbol with no
803 addend, we don't want to change anything. We will only have an
804 addend if this is a newly created reloc, not read from an ECOFF
805 file. */
806 if (output_bfd != (bfd *) NULL
807 && (symbol->flags & BSF_SECTION_SYM) == 0
808 && reloc_entry->addend == 0)
809 {
810 reloc_entry->address += input_section->output_offset;
811 return bfd_reloc_ok;
812 }
813
814 if (output_bfd != (bfd *) NULL)
815 relocateable = true;
816 else
817 {
818 relocateable = false;
819 output_bfd = symbol->section->output_section->owner;
820 }
821
822 if (bfd_is_und_section (symbol->section)
823 && relocateable == false)
824 return bfd_reloc_undefined;
825
826 /* We have to figure out the gp value, so that we can adjust the
827 symbol value correctly. We look up the symbol _gp in the output
828 BFD. If we can't find it, we're stuck. We cache it in the ECOFF
829 target data. We don't need to adjust the symbol value for an
830 external symbol if we are producing relocateable output. */
831 gp = _bfd_get_gp_value (output_bfd);
832 if (gp == 0
833 && (relocateable == false
834 || (symbol->flags & BSF_SECTION_SYM) != 0))
835 {
836 if (relocateable != false)
837 {
838 /* Make up a value. */
839 gp = symbol->section->output_section->vma + 0x4000;
840 _bfd_set_gp_value (output_bfd, gp);
841 }
842 else
843 {
844 unsigned int count;
845 asymbol **sym;
846 unsigned int i;
847
848 count = bfd_get_symcount (output_bfd);
849 sym = bfd_get_outsymbols (output_bfd);
850
851 if (sym == (asymbol **) NULL)
852 i = count;
853 else
854 {
855 for (i = 0; i < count; i++, sym++)
856 {
857 register CONST char *name;
858
859 name = bfd_asymbol_name (*sym);
860 if (*name == '_' && strcmp (name, "_gp") == 0)
861 {
862 gp = bfd_asymbol_value (*sym);
863 _bfd_set_gp_value (output_bfd, gp);
864 break;
865 }
866 }
867 }
868
869 if (i >= count)
870 {
871 /* Only get the error once. */
872 gp = 4;
873 _bfd_set_gp_value (output_bfd, gp);
874 *error_message =
875 (char *) _("GP relative relocation when _gp not defined");
876 return bfd_reloc_dangerous;
877 }
878 }
879 }
880
881 if (bfd_is_com_section (symbol->section))
882 relocation = 0;
883 else
884 relocation = symbol->value;
885
886 relocation += symbol->section->output_section->vma;
887 relocation += symbol->section->output_offset;
888
889 if (reloc_entry->address > input_section->_cooked_size)
890 return bfd_reloc_outofrange;
891
892 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
893
894 /* Set val to the offset into the section or symbol. */
895 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
896 if (val & 0x8000)
897 val -= 0x10000;
898
899 /* Adjust val for the final section location and GP value. If we
900 are producing relocateable output, we don't want to do this for
901 an external symbol. */
902 if (relocateable == false
903 || (symbol->flags & BSF_SECTION_SYM) != 0)
904 val += relocation - gp;
905
906 insn = (insn &~ 0xffff) | (val & 0xffff);
907 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
908
909 if (relocateable != false)
910 reloc_entry->address += input_section->output_offset;
911
912 /* Make sure it fit in 16 bits. */
913 if ((long) val >= 0x8000 || (long) val < -0x8000)
914 return bfd_reloc_overflow;
915
916 return bfd_reloc_ok;
917 }
918
919 /* Do a RELHI relocation. We do this in conjunction with a RELLO
920 reloc, just as REFHI and REFLO are done together. RELHI and RELLO
921 are Cygnus extensions used when generating position independent
922 code for embedded systems. */
923
924 /* FIXME: This should not be a static variable. */
925
926 static struct mips_hi *mips_relhi_list;
927
928 static bfd_reloc_status_type
929 mips_relhi_reloc (abfd,
930 reloc_entry,
931 symbol,
932 data,
933 input_section,
934 output_bfd,
935 error_message)
936 bfd *abfd ATTRIBUTE_UNUSED;
937 arelent *reloc_entry;
938 asymbol *symbol;
939 PTR data;
940 asection *input_section;
941 bfd *output_bfd;
942 char **error_message ATTRIBUTE_UNUSED;
943 {
944 bfd_reloc_status_type ret;
945 bfd_vma relocation;
946 struct mips_hi *n;
947
948 /* If this is a reloc against a section symbol, then it is correct
949 in the object file. The only time we want to change this case is
950 when we are relaxing, and that is handled entirely by
951 mips_relocate_section and never calls this function. */
952 if ((symbol->flags & BSF_SECTION_SYM) != 0)
953 {
954 if (output_bfd != (bfd *) NULL)
955 reloc_entry->address += input_section->output_offset;
956 return bfd_reloc_ok;
957 }
958
959 /* This is an external symbol. If we're relocating, we don't want
960 to change anything. */
961 if (output_bfd != (bfd *) NULL)
962 {
963 reloc_entry->address += input_section->output_offset;
964 return bfd_reloc_ok;
965 }
966
967 ret = bfd_reloc_ok;
968 if (bfd_is_und_section (symbol->section)
969 && output_bfd == (bfd *) NULL)
970 ret = bfd_reloc_undefined;
971
972 if (bfd_is_com_section (symbol->section))
973 relocation = 0;
974 else
975 relocation = symbol->value;
976
977 relocation += symbol->section->output_section->vma;
978 relocation += symbol->section->output_offset;
979 relocation += reloc_entry->addend;
980
981 if (reloc_entry->address > input_section->_cooked_size)
982 return bfd_reloc_outofrange;
983
984 /* Save the information, and let RELLO do the actual relocation. */
985 n = (struct mips_hi *) bfd_malloc (sizeof *n);
986 if (n == NULL)
987 return bfd_reloc_outofrange;
988 n->addr = (bfd_byte *) data + reloc_entry->address;
989 n->addend = relocation;
990 n->next = mips_relhi_list;
991 mips_relhi_list = n;
992
993 if (output_bfd != (bfd *) NULL)
994 reloc_entry->address += input_section->output_offset;
995
996 return ret;
997 }
998
999 /* Do a RELLO relocation. This is a straightforward 16 bit PC
1000 relative relocation; this function exists in order to do the RELHI
1001 relocation described above. */
1002
1003 static bfd_reloc_status_type
1004 mips_rello_reloc (abfd,
1005 reloc_entry,
1006 symbol,
1007 data,
1008 input_section,
1009 output_bfd,
1010 error_message)
1011 bfd *abfd;
1012 arelent *reloc_entry;
1013 asymbol *symbol;
1014 PTR data;
1015 asection *input_section;
1016 bfd *output_bfd;
1017 char **error_message;
1018 {
1019 if (mips_relhi_list != NULL)
1020 {
1021 struct mips_hi *l;
1022
1023 l = mips_relhi_list;
1024 while (l != NULL)
1025 {
1026 unsigned long insn;
1027 unsigned long val;
1028 unsigned long vallo;
1029 struct mips_hi *next;
1030
1031 /* Do the RELHI relocation. Note that we actually don't
1032 need to know anything about the RELLO itself, except
1033 where to find the low 16 bits of the addend needed by the
1034 RELHI. */
1035 insn = bfd_get_32 (abfd, l->addr);
1036 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1037 & 0xffff);
1038 val = ((insn & 0xffff) << 16) + vallo;
1039 val += l->addend;
1040
1041 /* If the symbol is defined, make val PC relative. If the
1042 symbol is not defined we don't want to do this, because
1043 we don't want the value in the object file to incorporate
1044 the address of the reloc. */
1045 if (! bfd_is_und_section (bfd_get_section (symbol))
1046 && ! bfd_is_com_section (bfd_get_section (symbol)))
1047 val -= (input_section->output_section->vma
1048 + input_section->output_offset
1049 + reloc_entry->address);
1050
1051 /* The low order 16 bits are always treated as a signed
1052 value. Therefore, a negative value in the low order bits
1053 requires an adjustment in the high order bits. We need
1054 to make this adjustment in two ways: once for the bits we
1055 took from the data, and once for the bits we are putting
1056 back in to the data. */
1057 if ((vallo & 0x8000) != 0)
1058 val -= 0x10000;
1059 if ((val & 0x8000) != 0)
1060 val += 0x10000;
1061
1062 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1063 bfd_put_32 (abfd, insn, l->addr);
1064
1065 next = l->next;
1066 free (l);
1067 l = next;
1068 }
1069
1070 mips_relhi_list = NULL;
1071 }
1072
1073 /* If this is a reloc against a section symbol, then it is correct
1074 in the object file. The only time we want to change this case is
1075 when we are relaxing, and that is handled entirely by
1076 mips_relocate_section and never calls this function. */
1077 if ((symbol->flags & BSF_SECTION_SYM) != 0)
1078 {
1079 if (output_bfd != (bfd *) NULL)
1080 reloc_entry->address += input_section->output_offset;
1081 return bfd_reloc_ok;
1082 }
1083
1084 /* bfd_perform_relocation does not handle pcrel_offset relocations
1085 correctly when generating a relocateable file, so handle them
1086 directly here. */
1087 if (output_bfd != (bfd *) NULL)
1088 {
1089 reloc_entry->address += input_section->output_offset;
1090 return bfd_reloc_ok;
1091 }
1092
1093 /* Now do the RELLO reloc in the usual way. */
1094 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
1095 input_section, output_bfd, error_message);
1096 }
1097
1098 /* This is the special function for the MIPS_R_SWITCH reloc. This
1099 special reloc is normally correct in the object file, and only
1100 requires special handling when relaxing. We don't want
1101 bfd_perform_relocation to tamper with it at all. */
1102
1103 static bfd_reloc_status_type
1104 mips_switch_reloc (abfd,
1105 reloc_entry,
1106 symbol,
1107 data,
1108 input_section,
1109 output_bfd,
1110 error_message)
1111 bfd *abfd ATTRIBUTE_UNUSED;
1112 arelent *reloc_entry ATTRIBUTE_UNUSED;
1113 asymbol *symbol ATTRIBUTE_UNUSED;
1114 PTR data ATTRIBUTE_UNUSED;
1115 asection *input_section ATTRIBUTE_UNUSED;
1116 bfd *output_bfd ATTRIBUTE_UNUSED;
1117 char **error_message ATTRIBUTE_UNUSED;
1118 {
1119 return bfd_reloc_ok;
1120 }
1121
1122 /* Get the howto structure for a generic reloc type. */
1123
1124 static reloc_howto_type *
1125 mips_bfd_reloc_type_lookup (abfd, code)
1126 bfd *abfd ATTRIBUTE_UNUSED;
1127 bfd_reloc_code_real_type code;
1128 {
1129 int mips_type;
1130
1131 switch (code)
1132 {
1133 case BFD_RELOC_16:
1134 mips_type = MIPS_R_REFHALF;
1135 break;
1136 case BFD_RELOC_32:
1137 case BFD_RELOC_CTOR:
1138 mips_type = MIPS_R_REFWORD;
1139 break;
1140 case BFD_RELOC_MIPS_JMP:
1141 mips_type = MIPS_R_JMPADDR;
1142 break;
1143 case BFD_RELOC_HI16_S:
1144 mips_type = MIPS_R_REFHI;
1145 break;
1146 case BFD_RELOC_LO16:
1147 mips_type = MIPS_R_REFLO;
1148 break;
1149 case BFD_RELOC_MIPS_GPREL:
1150 mips_type = MIPS_R_GPREL;
1151 break;
1152 case BFD_RELOC_MIPS_LITERAL:
1153 mips_type = MIPS_R_LITERAL;
1154 break;
1155 case BFD_RELOC_16_PCREL_S2:
1156 mips_type = MIPS_R_PCREL16;
1157 break;
1158 case BFD_RELOC_PCREL_HI16_S:
1159 mips_type = MIPS_R_RELHI;
1160 break;
1161 case BFD_RELOC_PCREL_LO16:
1162 mips_type = MIPS_R_RELLO;
1163 break;
1164 case BFD_RELOC_GPREL32:
1165 mips_type = MIPS_R_SWITCH;
1166 break;
1167 default:
1168 return (reloc_howto_type *) NULL;
1169 }
1170
1171 return &mips_howto_table[mips_type];
1172 }
1173 \f
1174 /* A helper routine for mips_relocate_section which handles the REFHI
1175 and RELHI relocations. The REFHI relocation must be followed by a
1176 REFLO relocation (and RELHI by a RELLO), and the addend used is
1177 formed from the addends of both instructions. */
1178
1179 static void
1180 mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
1181 relocation, pcrel)
1182 struct internal_reloc *refhi;
1183 struct internal_reloc *reflo;
1184 bfd *input_bfd;
1185 asection *input_section;
1186 bfd_byte *contents;
1187 size_t adjust;
1188 bfd_vma relocation;
1189 boolean pcrel;
1190 {
1191 unsigned long insn;
1192 unsigned long val;
1193 unsigned long vallo;
1194
1195 if (refhi == NULL)
1196 return;
1197
1198 insn = bfd_get_32 (input_bfd,
1199 contents + adjust + refhi->r_vaddr - input_section->vma);
1200 if (reflo == NULL)
1201 vallo = 0;
1202 else
1203 vallo = (bfd_get_32 (input_bfd,
1204 contents + adjust + reflo->r_vaddr - input_section->vma)
1205 & 0xffff);
1206
1207 val = ((insn & 0xffff) << 16) + vallo;
1208 val += relocation;
1209
1210 /* The low order 16 bits are always treated as a signed value.
1211 Therefore, a negative value in the low order bits requires an
1212 adjustment in the high order bits. We need to make this
1213 adjustment in two ways: once for the bits we took from the data,
1214 and once for the bits we are putting back in to the data. */
1215 if ((vallo & 0x8000) != 0)
1216 val -= 0x10000;
1217
1218 if (pcrel)
1219 val -= (input_section->output_section->vma
1220 + input_section->output_offset
1221 + (reflo->r_vaddr - input_section->vma + adjust));
1222
1223 if ((val & 0x8000) != 0)
1224 val += 0x10000;
1225
1226 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1227 bfd_put_32 (input_bfd, (bfd_vma) insn,
1228 contents + adjust + refhi->r_vaddr - input_section->vma);
1229 }
1230
1231 /* Relocate a section while linking a MIPS ECOFF file. */
1232
1233 static boolean
1234 mips_relocate_section (output_bfd, info, input_bfd, input_section,
1235 contents, external_relocs)
1236 bfd *output_bfd;
1237 struct bfd_link_info *info;
1238 bfd *input_bfd;
1239 asection *input_section;
1240 bfd_byte *contents;
1241 PTR external_relocs;
1242 {
1243 asection **symndx_to_section;
1244 struct ecoff_link_hash_entry **sym_hashes;
1245 bfd_vma gp;
1246 boolean gp_undefined;
1247 size_t adjust;
1248 long *offsets;
1249 struct external_reloc *ext_rel;
1250 struct external_reloc *ext_rel_end;
1251 unsigned int i;
1252 boolean got_lo;
1253 struct internal_reloc lo_int_rel;
1254
1255 BFD_ASSERT (input_bfd->xvec->byteorder
1256 == output_bfd->xvec->byteorder);
1257
1258 /* We keep a table mapping the symndx found in an internal reloc to
1259 the appropriate section. This is faster than looking up the
1260 section by name each time. */
1261 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1262 if (symndx_to_section == (asection **) NULL)
1263 {
1264 symndx_to_section = ((asection **)
1265 bfd_alloc (input_bfd,
1266 (NUM_RELOC_SECTIONS
1267 * sizeof (asection *))));
1268 if (!symndx_to_section)
1269 return false;
1270
1271 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1272 symndx_to_section[RELOC_SECTION_TEXT] =
1273 bfd_get_section_by_name (input_bfd, ".text");
1274 symndx_to_section[RELOC_SECTION_RDATA] =
1275 bfd_get_section_by_name (input_bfd, ".rdata");
1276 symndx_to_section[RELOC_SECTION_DATA] =
1277 bfd_get_section_by_name (input_bfd, ".data");
1278 symndx_to_section[RELOC_SECTION_SDATA] =
1279 bfd_get_section_by_name (input_bfd, ".sdata");
1280 symndx_to_section[RELOC_SECTION_SBSS] =
1281 bfd_get_section_by_name (input_bfd, ".sbss");
1282 symndx_to_section[RELOC_SECTION_BSS] =
1283 bfd_get_section_by_name (input_bfd, ".bss");
1284 symndx_to_section[RELOC_SECTION_INIT] =
1285 bfd_get_section_by_name (input_bfd, ".init");
1286 symndx_to_section[RELOC_SECTION_LIT8] =
1287 bfd_get_section_by_name (input_bfd, ".lit8");
1288 symndx_to_section[RELOC_SECTION_LIT4] =
1289 bfd_get_section_by_name (input_bfd, ".lit4");
1290 symndx_to_section[RELOC_SECTION_XDATA] = NULL;
1291 symndx_to_section[RELOC_SECTION_PDATA] = NULL;
1292 symndx_to_section[RELOC_SECTION_FINI] =
1293 bfd_get_section_by_name (input_bfd, ".fini");
1294 symndx_to_section[RELOC_SECTION_LITA] = NULL;
1295 symndx_to_section[RELOC_SECTION_ABS] = NULL;
1296
1297 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1298 }
1299
1300 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1301
1302 gp = _bfd_get_gp_value (output_bfd);
1303 if (gp == 0)
1304 gp_undefined = true;
1305 else
1306 gp_undefined = false;
1307
1308 got_lo = false;
1309
1310 adjust = 0;
1311
1312 if (ecoff_section_data (input_bfd, input_section) == NULL)
1313 offsets = NULL;
1314 else
1315 offsets = ecoff_section_data (input_bfd, input_section)->offsets;
1316
1317 ext_rel = (struct external_reloc *) external_relocs;
1318 ext_rel_end = ext_rel + input_section->reloc_count;
1319 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1320 {
1321 struct internal_reloc int_rel;
1322 boolean use_lo = false;
1323 bfd_vma addend;
1324 reloc_howto_type *howto;
1325 struct ecoff_link_hash_entry *h = NULL;
1326 asection *s = NULL;
1327 bfd_vma relocation;
1328 bfd_reloc_status_type r;
1329
1330 if (! got_lo)
1331 mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
1332 else
1333 {
1334 int_rel = lo_int_rel;
1335 got_lo = false;
1336 }
1337
1338 BFD_ASSERT (int_rel.r_type
1339 < sizeof mips_howto_table / sizeof mips_howto_table[0]);
1340
1341 /* The REFHI and RELHI relocs requires special handling. they
1342 must be followed by a REFLO or RELLO reloc, respectively, and
1343 the addend is formed from both relocs. */
1344 if (int_rel.r_type == MIPS_R_REFHI
1345 || int_rel.r_type == MIPS_R_RELHI)
1346 {
1347 struct external_reloc *lo_ext_rel;
1348
1349 /* As a GNU extension, permit an arbitrary number of REFHI
1350 or RELHI relocs before the REFLO or RELLO reloc. This
1351 permits gcc to emit the HI and LO relocs itself. */
1352 for (lo_ext_rel = ext_rel + 1;
1353 lo_ext_rel < ext_rel_end;
1354 lo_ext_rel++)
1355 {
1356 mips_ecoff_swap_reloc_in (input_bfd, (PTR) lo_ext_rel,
1357 &lo_int_rel);
1358 if (lo_int_rel.r_type != int_rel.r_type)
1359 break;
1360 }
1361
1362 if (lo_ext_rel < ext_rel_end
1363 && (lo_int_rel.r_type
1364 == (int_rel.r_type == MIPS_R_REFHI
1365 ? MIPS_R_REFLO
1366 : MIPS_R_RELLO))
1367 && int_rel.r_extern == lo_int_rel.r_extern
1368 && int_rel.r_symndx == lo_int_rel.r_symndx)
1369 {
1370 use_lo = true;
1371 if (lo_ext_rel == ext_rel + 1)
1372 got_lo = true;
1373 }
1374 }
1375
1376 howto = &mips_howto_table[int_rel.r_type];
1377
1378 /* The SWITCH reloc must be handled specially. This reloc is
1379 marks the location of a difference between two portions of an
1380 object file. The symbol index does not reference a symbol,
1381 but is actually the offset from the reloc to the subtrahend
1382 of the difference. This reloc is correct in the object file,
1383 and needs no further adjustment, unless we are relaxing. If
1384 we are relaxing, we may have to add in an offset. Since no
1385 symbols are involved in this reloc, we handle it completely
1386 here. */
1387 if (int_rel.r_type == MIPS_R_SWITCH)
1388 {
1389 if (offsets != NULL
1390 && offsets[i] != 0)
1391 {
1392 r = _bfd_relocate_contents (howto, input_bfd,
1393 (bfd_vma) offsets[i],
1394 (contents
1395 + adjust
1396 + int_rel.r_vaddr
1397 - input_section->vma));
1398 BFD_ASSERT (r == bfd_reloc_ok);
1399 }
1400
1401 continue;
1402 }
1403
1404 if (int_rel.r_extern)
1405 {
1406 h = sym_hashes[int_rel.r_symndx];
1407 /* If h is NULL, that means that there is a reloc against an
1408 external symbol which we thought was just a debugging
1409 symbol. This should not happen. */
1410 if (h == (struct ecoff_link_hash_entry *) NULL)
1411 abort ();
1412 }
1413 else
1414 {
1415 if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
1416 s = NULL;
1417 else
1418 s = symndx_to_section[int_rel.r_symndx];
1419
1420 if (s == (asection *) NULL)
1421 abort ();
1422 }
1423
1424 /* The GPREL reloc uses an addend: the difference in the GP
1425 values. */
1426 if (int_rel.r_type != MIPS_R_GPREL
1427 && int_rel.r_type != MIPS_R_LITERAL)
1428 addend = 0;
1429 else
1430 {
1431 if (gp_undefined)
1432 {
1433 if (! ((*info->callbacks->reloc_dangerous)
1434 (info, _("GP relative relocation when GP not defined"),
1435 input_bfd, input_section,
1436 int_rel.r_vaddr - input_section->vma)))
1437 return false;
1438 /* Only give the error once per link. */
1439 gp = 4;
1440 _bfd_set_gp_value (output_bfd, gp);
1441 gp_undefined = false;
1442 }
1443 if (! int_rel.r_extern)
1444 {
1445 /* This is a relocation against a section. The current
1446 addend in the instruction is the difference between
1447 INPUT_SECTION->vma and the GP value of INPUT_BFD. We
1448 must change this to be the difference between the
1449 final definition (which will end up in RELOCATION)
1450 and the GP value of OUTPUT_BFD (which is in GP). */
1451 addend = ecoff_data (input_bfd)->gp - gp;
1452 }
1453 else if (! info->relocateable
1454 || h->root.type == bfd_link_hash_defined
1455 || h->root.type == bfd_link_hash_defweak)
1456 {
1457 /* This is a relocation against a defined symbol. The
1458 current addend in the instruction is simply the
1459 desired offset into the symbol (normally zero). We
1460 are going to change this into a relocation against a
1461 defined symbol, so we want the instruction to hold
1462 the difference between the final definition of the
1463 symbol (which will end up in RELOCATION) and the GP
1464 value of OUTPUT_BFD (which is in GP). */
1465 addend = - gp;
1466 }
1467 else
1468 {
1469 /* This is a relocation against an undefined or common
1470 symbol. The current addend in the instruction is
1471 simply the desired offset into the symbol (normally
1472 zero). We are generating relocateable output, and we
1473 aren't going to define this symbol, so we just leave
1474 the instruction alone. */
1475 addend = 0;
1476 }
1477 }
1478
1479 /* If we are relaxing, mips_relax_section may have set
1480 offsets[i] to some value. A value of 1 means we must expand
1481 a PC relative branch into a multi-instruction of sequence,
1482 and any other value is an addend. */
1483 if (offsets != NULL
1484 && offsets[i] != 0)
1485 {
1486 BFD_ASSERT (! info->relocateable);
1487 BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
1488 || int_rel.r_type == MIPS_R_RELHI
1489 || int_rel.r_type == MIPS_R_RELLO);
1490 if (offsets[i] != 1)
1491 addend += offsets[i];
1492 else
1493 {
1494 bfd_byte *here;
1495
1496 BFD_ASSERT (int_rel.r_extern
1497 && int_rel.r_type == MIPS_R_PCREL16);
1498
1499 /* Move the rest of the instructions up. */
1500 here = (contents
1501 + adjust
1502 + int_rel.r_vaddr
1503 - input_section->vma);
1504 memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
1505 (size_t) (input_section->_raw_size
1506 - (int_rel.r_vaddr - input_section->vma)));
1507
1508 /* Generate the new instructions. */
1509 if (! mips_relax_pcrel16 (info, input_bfd, input_section,
1510 h, here,
1511 (input_section->output_section->vma
1512 + input_section->output_offset
1513 + (int_rel.r_vaddr
1514 - input_section->vma)
1515 + adjust)))
1516 return false;
1517
1518 /* We must adjust everything else up a notch. */
1519 adjust += PCREL16_EXPANSION_ADJUSTMENT;
1520
1521 /* mips_relax_pcrel16 handles all the details of this
1522 relocation. */
1523 continue;
1524 }
1525 }
1526
1527 /* If we are relaxing, and this is a reloc against the .text
1528 segment, we may need to adjust it if some branches have been
1529 expanded. The reloc types which are likely to occur in the
1530 .text section are handled efficiently by mips_relax_section,
1531 and thus do not need to be handled here. */
1532 if (ecoff_data (input_bfd)->debug_info.adjust != NULL
1533 && ! int_rel.r_extern
1534 && int_rel.r_symndx == RELOC_SECTION_TEXT
1535 && (strcmp (bfd_get_section_name (input_bfd, input_section),
1536 ".text") != 0
1537 || (int_rel.r_type != MIPS_R_PCREL16
1538 && int_rel.r_type != MIPS_R_SWITCH
1539 && int_rel.r_type != MIPS_R_RELHI
1540 && int_rel.r_type != MIPS_R_RELLO)))
1541 {
1542 bfd_vma adr;
1543 struct ecoff_value_adjust *a;
1544
1545 /* We need to get the addend so that we know whether we need
1546 to adjust the address. */
1547 BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD);
1548
1549 adr = bfd_get_32 (input_bfd,
1550 (contents
1551 + adjust
1552 + int_rel.r_vaddr
1553 - input_section->vma));
1554
1555 for (a = ecoff_data (input_bfd)->debug_info.adjust;
1556 a != (struct ecoff_value_adjust *) NULL;
1557 a = a->next)
1558 {
1559 if (adr >= a->start && adr < a->end)
1560 addend += a->adjust;
1561 }
1562 }
1563
1564 if (info->relocateable)
1565 {
1566 /* We are generating relocateable output, and must convert
1567 the existing reloc. */
1568 if (int_rel.r_extern)
1569 {
1570 if ((h->root.type == bfd_link_hash_defined
1571 || h->root.type == bfd_link_hash_defweak)
1572 && ! bfd_is_abs_section (h->root.u.def.section))
1573 {
1574 const char *name;
1575
1576 /* This symbol is defined in the output. Convert
1577 the reloc from being against the symbol to being
1578 against the section. */
1579
1580 /* Clear the r_extern bit. */
1581 int_rel.r_extern = 0;
1582
1583 /* Compute a new r_symndx value. */
1584 s = h->root.u.def.section;
1585 name = bfd_get_section_name (output_bfd,
1586 s->output_section);
1587
1588 int_rel.r_symndx = -1;
1589 switch (name[1])
1590 {
1591 case 'b':
1592 if (strcmp (name, ".bss") == 0)
1593 int_rel.r_symndx = RELOC_SECTION_BSS;
1594 break;
1595 case 'd':
1596 if (strcmp (name, ".data") == 0)
1597 int_rel.r_symndx = RELOC_SECTION_DATA;
1598 break;
1599 case 'f':
1600 if (strcmp (name, ".fini") == 0)
1601 int_rel.r_symndx = RELOC_SECTION_FINI;
1602 break;
1603 case 'i':
1604 if (strcmp (name, ".init") == 0)
1605 int_rel.r_symndx = RELOC_SECTION_INIT;
1606 break;
1607 case 'l':
1608 if (strcmp (name, ".lit8") == 0)
1609 int_rel.r_symndx = RELOC_SECTION_LIT8;
1610 else if (strcmp (name, ".lit4") == 0)
1611 int_rel.r_symndx = RELOC_SECTION_LIT4;
1612 break;
1613 case 'r':
1614 if (strcmp (name, ".rdata") == 0)
1615 int_rel.r_symndx = RELOC_SECTION_RDATA;
1616 break;
1617 case 's':
1618 if (strcmp (name, ".sdata") == 0)
1619 int_rel.r_symndx = RELOC_SECTION_SDATA;
1620 else if (strcmp (name, ".sbss") == 0)
1621 int_rel.r_symndx = RELOC_SECTION_SBSS;
1622 break;
1623 case 't':
1624 if (strcmp (name, ".text") == 0)
1625 int_rel.r_symndx = RELOC_SECTION_TEXT;
1626 break;
1627 }
1628
1629 if (int_rel.r_symndx == -1)
1630 abort ();
1631
1632 /* Add the section VMA and the symbol value. */
1633 relocation = (h->root.u.def.value
1634 + s->output_section->vma
1635 + s->output_offset);
1636
1637 /* For a PC relative relocation, the object file
1638 currently holds just the addend. We must adjust
1639 by the address to get the right value. */
1640 if (howto->pc_relative)
1641 {
1642 relocation -= int_rel.r_vaddr - input_section->vma;
1643
1644 /* If we are converting a RELHI or RELLO reloc
1645 from being against an external symbol to
1646 being against a section, we must put a
1647 special value into the r_offset field. This
1648 value is the old addend. The r_offset for
1649 both the RELHI and RELLO relocs are the same,
1650 and we set both when we see RELHI. */
1651 if (int_rel.r_type == MIPS_R_RELHI)
1652 {
1653 long addhi, addlo;
1654
1655 addhi = bfd_get_32 (input_bfd,
1656 (contents
1657 + adjust
1658 + int_rel.r_vaddr
1659 - input_section->vma));
1660 addhi &= 0xffff;
1661 if (addhi & 0x8000)
1662 addhi -= 0x10000;
1663 addhi <<= 16;
1664
1665 if (! use_lo)
1666 addlo = 0;
1667 else
1668 {
1669 addlo = bfd_get_32 (input_bfd,
1670 (contents
1671 + adjust
1672 + lo_int_rel.r_vaddr
1673 - input_section->vma));
1674 addlo &= 0xffff;
1675 if (addlo & 0x8000)
1676 addlo -= 0x10000;
1677
1678 lo_int_rel.r_offset = addhi + addlo;
1679 }
1680
1681 int_rel.r_offset = addhi + addlo;
1682 }
1683 }
1684
1685 h = NULL;
1686 }
1687 else
1688 {
1689 /* Change the symndx value to the right one for the
1690 output BFD. */
1691 int_rel.r_symndx = h->indx;
1692 if (int_rel.r_symndx == -1)
1693 {
1694 /* This symbol is not being written out. */
1695 if (! ((*info->callbacks->unattached_reloc)
1696 (info, h->root.root.string, input_bfd,
1697 input_section,
1698 int_rel.r_vaddr - input_section->vma)))
1699 return false;
1700 int_rel.r_symndx = 0;
1701 }
1702 relocation = 0;
1703 }
1704 }
1705 else
1706 {
1707 /* This is a relocation against a section. Adjust the
1708 value by the amount the section moved. */
1709 relocation = (s->output_section->vma
1710 + s->output_offset
1711 - s->vma);
1712 }
1713
1714 relocation += addend;
1715 addend = 0;
1716
1717 /* Adjust a PC relative relocation by removing the reference
1718 to the original address in the section and including the
1719 reference to the new address. However, external RELHI
1720 and RELLO relocs are PC relative, but don't include any
1721 reference to the address. The addend is merely an
1722 addend. */
1723 if (howto->pc_relative
1724 && (! int_rel.r_extern
1725 || (int_rel.r_type != MIPS_R_RELHI
1726 && int_rel.r_type != MIPS_R_RELLO)))
1727 relocation -= (input_section->output_section->vma
1728 + input_section->output_offset
1729 - input_section->vma);
1730
1731 /* Adjust the contents. */
1732 if (relocation == 0)
1733 r = bfd_reloc_ok;
1734 else
1735 {
1736 if (int_rel.r_type != MIPS_R_REFHI
1737 && int_rel.r_type != MIPS_R_RELHI)
1738 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1739 (contents
1740 + adjust
1741 + int_rel.r_vaddr
1742 - input_section->vma));
1743 else
1744 {
1745 mips_relocate_hi (&int_rel,
1746 use_lo ? &lo_int_rel : NULL,
1747 input_bfd, input_section, contents,
1748 adjust, relocation,
1749 int_rel.r_type == MIPS_R_RELHI);
1750 r = bfd_reloc_ok;
1751 }
1752 }
1753
1754 /* Adjust the reloc address. */
1755 int_rel.r_vaddr += (input_section->output_section->vma
1756 + input_section->output_offset
1757 - input_section->vma);
1758
1759 /* Save the changed reloc information. */
1760 mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
1761 }
1762 else
1763 {
1764 /* We are producing a final executable. */
1765 if (int_rel.r_extern)
1766 {
1767 /* This is a reloc against a symbol. */
1768 if (h->root.type == bfd_link_hash_defined
1769 || h->root.type == bfd_link_hash_defweak)
1770 {
1771 asection *hsec;
1772
1773 hsec = h->root.u.def.section;
1774 relocation = (h->root.u.def.value
1775 + hsec->output_section->vma
1776 + hsec->output_offset);
1777 }
1778 else
1779 {
1780 if (! ((*info->callbacks->undefined_symbol)
1781 (info, h->root.root.string, input_bfd,
1782 input_section,
1783 int_rel.r_vaddr - input_section->vma, true)))
1784 return false;
1785 relocation = 0;
1786 }
1787 }
1788 else
1789 {
1790 /* This is a reloc against a section. */
1791 relocation = (s->output_section->vma
1792 + s->output_offset
1793 - s->vma);
1794
1795 /* A PC relative reloc is already correct in the object
1796 file. Make it look like a pcrel_offset relocation by
1797 adding in the start address. */
1798 if (howto->pc_relative)
1799 {
1800 if (int_rel.r_type != MIPS_R_RELHI || ! use_lo)
1801 relocation += int_rel.r_vaddr + adjust;
1802 else
1803 relocation += lo_int_rel.r_vaddr + adjust;
1804 }
1805 }
1806
1807 if (int_rel.r_type != MIPS_R_REFHI
1808 && int_rel.r_type != MIPS_R_RELHI)
1809 r = _bfd_final_link_relocate (howto,
1810 input_bfd,
1811 input_section,
1812 contents,
1813 (int_rel.r_vaddr
1814 - input_section->vma
1815 + adjust),
1816 relocation,
1817 addend);
1818 else
1819 {
1820 mips_relocate_hi (&int_rel,
1821 use_lo ? &lo_int_rel : NULL,
1822 input_bfd, input_section, contents, adjust,
1823 relocation,
1824 int_rel.r_type == MIPS_R_RELHI);
1825 r = bfd_reloc_ok;
1826 }
1827 }
1828
1829 /* MIPS_R_JMPADDR requires peculiar overflow detection. The
1830 instruction provides a 28 bit address (the two lower bits are
1831 implicit zeroes) which is combined with the upper four bits
1832 of the instruction address. */
1833 if (r == bfd_reloc_ok
1834 && int_rel.r_type == MIPS_R_JMPADDR
1835 && (((relocation
1836 + addend
1837 + (int_rel.r_extern ? 0 : s->vma))
1838 & 0xf0000000)
1839 != ((input_section->output_section->vma
1840 + input_section->output_offset
1841 + (int_rel.r_vaddr - input_section->vma)
1842 + adjust)
1843 & 0xf0000000)))
1844 r = bfd_reloc_overflow;
1845
1846 if (r != bfd_reloc_ok)
1847 {
1848 switch (r)
1849 {
1850 default:
1851 case bfd_reloc_outofrange:
1852 abort ();
1853 case bfd_reloc_overflow:
1854 {
1855 const char *name;
1856
1857 if (int_rel.r_extern)
1858 name = h->root.root.string;
1859 else
1860 name = bfd_section_name (input_bfd, s);
1861 if (! ((*info->callbacks->reloc_overflow)
1862 (info, name, howto->name, (bfd_vma) 0,
1863 input_bfd, input_section,
1864 int_rel.r_vaddr - input_section->vma)))
1865 return false;
1866 }
1867 break;
1868 }
1869 }
1870 }
1871
1872 return true;
1873 }
1874 \f
1875 /* Read in the relocs for a section. */
1876
1877 static boolean
1878 mips_read_relocs (abfd, sec)
1879 bfd *abfd;
1880 asection *sec;
1881 {
1882 struct ecoff_section_tdata *section_tdata;
1883
1884 section_tdata = ecoff_section_data (abfd, sec);
1885 if (section_tdata == (struct ecoff_section_tdata *) NULL)
1886 {
1887 sec->used_by_bfd =
1888 (PTR) bfd_alloc (abfd, sizeof (struct ecoff_section_tdata));
1889 if (sec->used_by_bfd == NULL)
1890 return false;
1891
1892 section_tdata = ecoff_section_data (abfd, sec);
1893 section_tdata->external_relocs = NULL;
1894 section_tdata->contents = NULL;
1895 section_tdata->offsets = NULL;
1896 }
1897
1898 if (section_tdata->external_relocs == NULL)
1899 {
1900 bfd_size_type external_relocs_size;
1901
1902 external_relocs_size = (ecoff_backend (abfd)->external_reloc_size
1903 * sec->reloc_count);
1904
1905 section_tdata->external_relocs =
1906 (PTR) bfd_alloc (abfd, external_relocs_size);
1907 if (section_tdata->external_relocs == NULL && external_relocs_size != 0)
1908 return false;
1909
1910 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1911 || (bfd_read (section_tdata->external_relocs, 1,
1912 external_relocs_size, abfd)
1913 != external_relocs_size))
1914 return false;
1915 }
1916
1917 return true;
1918 }
1919
1920 /* Relax a section when linking a MIPS ECOFF file. This is used for
1921 embedded PIC code, which always uses PC relative branches which
1922 only have an 18 bit range on MIPS. If a branch is not in range, we
1923 generate a long instruction sequence to compensate. Each time we
1924 find a branch to expand, we have to check all the others again to
1925 make sure they are still in range. This is slow, but it only has
1926 to be done when -relax is passed to the linker.
1927
1928 This routine figures out which branches need to expand; the actual
1929 expansion is done in mips_relocate_section when the section
1930 contents are relocated. The information is stored in the offsets
1931 field of the ecoff_section_tdata structure. An offset of 1 means
1932 that the branch must be expanded into a multi-instruction PC
1933 relative branch (such an offset will only occur for a PC relative
1934 branch to an external symbol). Any other offset must be a multiple
1935 of four, and is the amount to change the branch by (such an offset
1936 will only occur for a PC relative branch within the same section).
1937
1938 We do not modify the section relocs or contents themselves so that
1939 if memory usage becomes an issue we can discard them and read them
1940 again. The only information we must save in memory between this
1941 routine and the mips_relocate_section routine is the table of
1942 offsets. */
1943
1944 static boolean
1945 mips_relax_section (abfd, sec, info, again)
1946 bfd *abfd;
1947 asection *sec;
1948 struct bfd_link_info *info;
1949 boolean *again;
1950 {
1951 struct ecoff_section_tdata *section_tdata;
1952 bfd_byte *contents = NULL;
1953 long *offsets;
1954 struct external_reloc *ext_rel;
1955 struct external_reloc *ext_rel_end;
1956 unsigned int i;
1957
1958 /* Assume we are not going to need another pass. */
1959 *again = false;
1960
1961 /* If we are not generating an ECOFF file, this is much too
1962 confusing to deal with. */
1963 if (info->hash->creator->flavour != bfd_get_flavour (abfd))
1964 return true;
1965
1966 /* If there are no relocs, there is nothing to do. */
1967 if (sec->reloc_count == 0)
1968 return true;
1969
1970 /* We are only interested in PC relative relocs, and why would there
1971 ever be one from anything but the .text section? */
1972 if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
1973 return true;
1974
1975 /* Read in the relocs, if we haven't already got them. */
1976 section_tdata = ecoff_section_data (abfd, sec);
1977 if (section_tdata == (struct ecoff_section_tdata *) NULL
1978 || section_tdata->external_relocs == NULL)
1979 {
1980 if (! mips_read_relocs (abfd, sec))
1981 goto error_return;
1982 section_tdata = ecoff_section_data (abfd, sec);
1983 }
1984
1985 if (sec->_cooked_size == 0)
1986 {
1987 /* We must initialize _cooked_size only the first time we are
1988 called. */
1989 sec->_cooked_size = sec->_raw_size;
1990 }
1991
1992 contents = section_tdata->contents;
1993 offsets = section_tdata->offsets;
1994
1995 /* Look for any external PC relative relocs. Internal PC relative
1996 relocs are already correct in the object file, so they certainly
1997 can not overflow. */
1998 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1999 ext_rel_end = ext_rel + sec->reloc_count;
2000 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
2001 {
2002 struct internal_reloc int_rel;
2003 struct ecoff_link_hash_entry *h;
2004 asection *hsec;
2005 bfd_signed_vma relocation;
2006 struct external_reloc *adj_ext_rel;
2007 unsigned int adj_i;
2008 unsigned long ext_count;
2009 struct ecoff_link_hash_entry **adj_h_ptr;
2010 struct ecoff_link_hash_entry **adj_h_ptr_end;
2011 struct ecoff_value_adjust *adjust;
2012
2013 /* If we have already expanded this reloc, we certainly don't
2014 need to do it again. */
2015 if (offsets != (long *) NULL && offsets[i] == 1)
2016 continue;
2017
2018 /* Quickly check that this reloc is external PCREL16. */
2019 if (bfd_header_big_endian (abfd))
2020 {
2021 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
2022 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
2023 >> RELOC_BITS3_TYPE_SH_BIG)
2024 != MIPS_R_PCREL16))
2025 continue;
2026 }
2027 else
2028 {
2029 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
2030 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
2031 >> RELOC_BITS3_TYPE_SH_LITTLE)
2032 != MIPS_R_PCREL16))
2033 continue;
2034 }
2035
2036 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2037
2038 h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
2039 if (h == (struct ecoff_link_hash_entry *) NULL)
2040 abort ();
2041
2042 if (h->root.type != bfd_link_hash_defined
2043 && h->root.type != bfd_link_hash_defweak)
2044 {
2045 /* Just ignore undefined symbols. These will presumably
2046 generate an error later in the link. */
2047 continue;
2048 }
2049
2050 /* Get the value of the symbol. */
2051 hsec = h->root.u.def.section;
2052 relocation = (h->root.u.def.value
2053 + hsec->output_section->vma
2054 + hsec->output_offset);
2055
2056 /* Subtract out the current address. */
2057 relocation -= (sec->output_section->vma
2058 + sec->output_offset
2059 + (int_rel.r_vaddr - sec->vma));
2060
2061 /* The addend is stored in the object file. In the normal case
2062 of ``bal symbol'', the addend will be -4. It will only be
2063 different in the case of ``bal symbol+constant''. To avoid
2064 always reading in the section contents, we don't check the
2065 addend in the object file (we could easily check the contents
2066 if we happen to have already read them in, but I fear that
2067 this could be confusing). This means we will screw up if
2068 there is a branch to a symbol that is in range, but added to
2069 a constant which puts it out of range; in such a case the
2070 link will fail with a reloc overflow error. Since the
2071 compiler will never generate such code, it should be easy
2072 enough to work around it by changing the assembly code in the
2073 source file. */
2074 relocation -= 4;
2075
2076 /* Now RELOCATION is the number we want to put in the object
2077 file. See whether it fits. */
2078 if (relocation >= -0x20000 && relocation < 0x20000)
2079 continue;
2080
2081 /* Now that we know this reloc needs work, which will rarely
2082 happen, go ahead and grab the section contents. */
2083 if (contents == (bfd_byte *) NULL)
2084 {
2085 if (info->keep_memory)
2086 contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
2087 else
2088 contents = (bfd_byte *) bfd_malloc ((size_t) sec->_raw_size);
2089 if (contents == (bfd_byte *) NULL)
2090 goto error_return;
2091 if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
2092 (file_ptr) 0, sec->_raw_size))
2093 goto error_return;
2094 if (info->keep_memory)
2095 section_tdata->contents = contents;
2096 }
2097
2098 /* We only support changing the bal instruction. It would be
2099 possible to handle other PC relative branches, but some of
2100 them (the conditional branches) would require a different
2101 length instruction sequence which would complicate both this
2102 routine and mips_relax_pcrel16. It could be written if
2103 somebody felt it were important. Ignoring this reloc will
2104 presumably cause a reloc overflow error later on. */
2105 if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
2106 != 0x0411ffff) /* bgezal $0,. == bal . */
2107 continue;
2108
2109 /* Bother. We need to expand this reloc, and we will need to
2110 make another relaxation pass since this change may put other
2111 relocs out of range. We need to examine the local branches
2112 and we need to allocate memory to hold the offsets we must
2113 add to them. We also need to adjust the values of all
2114 symbols in the object file following this location. */
2115
2116 sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
2117 *again = true;
2118
2119 if (offsets == (long *) NULL)
2120 {
2121 size_t size;
2122
2123 size = sec->reloc_count * sizeof (long);
2124 offsets = (long *) bfd_alloc (abfd, size);
2125 if (offsets == (long *) NULL)
2126 goto error_return;
2127 memset (offsets, 0, size);
2128 section_tdata->offsets = offsets;
2129 }
2130
2131 offsets[i] = 1;
2132
2133 /* Now look for all PC relative references that cross this reloc
2134 and adjust their offsets. */
2135 adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2136 for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
2137 {
2138 struct internal_reloc adj_int_rel;
2139 bfd_vma start, stop;
2140 int change;
2141
2142 mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
2143
2144 if (adj_int_rel.r_type == MIPS_R_PCREL16)
2145 {
2146 unsigned long insn;
2147
2148 /* We only care about local references. External ones
2149 will be relocated correctly anyhow. */
2150 if (adj_int_rel.r_extern)
2151 continue;
2152
2153 /* We are only interested in a PC relative reloc within
2154 this section. FIXME: Cross section PC relative
2155 relocs may not be handled correctly; does anybody
2156 care? */
2157 if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
2158 continue;
2159
2160 start = adj_int_rel.r_vaddr;
2161
2162 insn = bfd_get_32 (abfd,
2163 contents + adj_int_rel.r_vaddr - sec->vma);
2164
2165 stop = (insn & 0xffff) << 2;
2166 if ((stop & 0x20000) != 0)
2167 stop -= 0x40000;
2168 stop += adj_int_rel.r_vaddr + 4;
2169 }
2170 else if (adj_int_rel.r_type == MIPS_R_RELHI)
2171 {
2172 struct internal_reloc rello;
2173 long addhi, addlo;
2174
2175 /* The next reloc must be MIPS_R_RELLO, and we handle
2176 them together. */
2177 BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
2178
2179 mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
2180
2181 BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
2182
2183 addhi = bfd_get_32 (abfd,
2184 contents + adj_int_rel.r_vaddr - sec->vma);
2185 addhi &= 0xffff;
2186 if (addhi & 0x8000)
2187 addhi -= 0x10000;
2188 addhi <<= 16;
2189
2190 addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
2191 addlo &= 0xffff;
2192 if (addlo & 0x8000)
2193 addlo -= 0x10000;
2194
2195 if (adj_int_rel.r_extern)
2196 {
2197 /* The value we want here is
2198 sym - RELLOaddr + addend
2199 which we can express as
2200 sym - (RELLOaddr - addend)
2201 Therefore if we are expanding the area between
2202 RELLOaddr and RELLOaddr - addend we must adjust
2203 the addend. This is admittedly ambiguous, since
2204 we might mean (sym + addend) - RELLOaddr, but in
2205 practice we don't, and there is no way to handle
2206 that case correctly since at this point we have
2207 no idea whether any reloc is being expanded
2208 between sym and sym + addend. */
2209 start = rello.r_vaddr - (addhi + addlo);
2210 stop = rello.r_vaddr;
2211 }
2212 else
2213 {
2214 /* An internal RELHI/RELLO pair represents the
2215 difference between two addresses, $LC0 - foo.
2216 The symndx value is actually the difference
2217 between the reloc address and $LC0. This lets us
2218 compute $LC0, and, by considering the addend,
2219 foo. If the reloc we are expanding falls between
2220 those two relocs, we must adjust the addend. At
2221 this point, the symndx value is actually in the
2222 r_offset field, where it was put by
2223 mips_ecoff_swap_reloc_in. */
2224 start = rello.r_vaddr - adj_int_rel.r_offset;
2225 stop = start + addhi + addlo;
2226 }
2227 }
2228 else if (adj_int_rel.r_type == MIPS_R_SWITCH)
2229 {
2230 /* A MIPS_R_SWITCH reloc represents a word of the form
2231 .word $L3-$LS12
2232 The value in the object file is correct, assuming the
2233 original value of $L3. The symndx value is actually
2234 the difference between the reloc address and $LS12.
2235 This lets us compute the original value of $LS12 as
2236 vaddr - symndx
2237 and the original value of $L3 as
2238 vaddr - symndx + addend
2239 where addend is the value from the object file. At
2240 this point, the symndx value is actually found in the
2241 r_offset field, since it was moved by
2242 mips_ecoff_swap_reloc_in. */
2243 start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
2244 stop = start + bfd_get_32 (abfd,
2245 (contents
2246 + adj_int_rel.r_vaddr
2247 - sec->vma));
2248 }
2249 else
2250 continue;
2251
2252 /* If the range expressed by this reloc, which is the
2253 distance between START and STOP crosses the reloc we are
2254 expanding, we must adjust the offset. The sign of the
2255 adjustment depends upon the direction in which the range
2256 crosses the reloc being expanded. */
2257 if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
2258 change = PCREL16_EXPANSION_ADJUSTMENT;
2259 else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
2260 change = - PCREL16_EXPANSION_ADJUSTMENT;
2261 else
2262 change = 0;
2263
2264 offsets[adj_i] += change;
2265
2266 if (adj_int_rel.r_type == MIPS_R_RELHI)
2267 {
2268 adj_ext_rel++;
2269 adj_i++;
2270 offsets[adj_i] += change;
2271 }
2272 }
2273
2274 /* Find all symbols in this section defined by this object file
2275 and adjust their values. Note that we decide whether to
2276 adjust the value based on the value stored in the ECOFF EXTR
2277 structure, because the value stored in the hash table may
2278 have been changed by an earlier expanded reloc and thus may
2279 no longer correctly indicate whether the symbol is before or
2280 after the expanded reloc. */
2281 ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
2282 adj_h_ptr = ecoff_data (abfd)->sym_hashes;
2283 adj_h_ptr_end = adj_h_ptr + ext_count;
2284 for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
2285 {
2286 struct ecoff_link_hash_entry *adj_h;
2287
2288 adj_h = *adj_h_ptr;
2289 if (adj_h != (struct ecoff_link_hash_entry *) NULL
2290 && (adj_h->root.type == bfd_link_hash_defined
2291 || adj_h->root.type == bfd_link_hash_defweak)
2292 && adj_h->root.u.def.section == sec
2293 && adj_h->esym.asym.value > int_rel.r_vaddr)
2294 adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
2295 }
2296
2297 /* Add an entry to the symbol value adjust list. This is used
2298 by bfd_ecoff_debug_accumulate to adjust the values of
2299 internal symbols and FDR's. */
2300 adjust = ((struct ecoff_value_adjust *)
2301 bfd_alloc (abfd, sizeof (struct ecoff_value_adjust)));
2302 if (adjust == (struct ecoff_value_adjust *) NULL)
2303 goto error_return;
2304
2305 adjust->start = int_rel.r_vaddr;
2306 adjust->end = sec->vma + sec->_raw_size;
2307 adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
2308
2309 adjust->next = ecoff_data (abfd)->debug_info.adjust;
2310 ecoff_data (abfd)->debug_info.adjust = adjust;
2311 }
2312
2313 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2314 free (contents);
2315
2316 return true;
2317
2318 error_return:
2319 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2320 free (contents);
2321 return false;
2322 }
2323
2324 /* This routine is called from mips_relocate_section when a PC
2325 relative reloc must be expanded into the five instruction sequence.
2326 It handles all the details of the expansion, including resolving
2327 the reloc. */
2328
2329 static boolean
2330 mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
2331 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2332 bfd *input_bfd;
2333 asection *input_section ATTRIBUTE_UNUSED;
2334 struct ecoff_link_hash_entry *h;
2335 bfd_byte *location;
2336 bfd_vma address;
2337 {
2338 bfd_vma relocation;
2339
2340 /* 0x0411ffff is bgezal $0,. == bal . */
2341 BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
2342
2343 /* We need to compute the distance between the symbol and the
2344 current address plus eight. */
2345 relocation = (h->root.u.def.value
2346 + h->root.u.def.section->output_section->vma
2347 + h->root.u.def.section->output_offset);
2348 relocation -= address + 8;
2349
2350 /* If the lower half is negative, increment the upper 16 half. */
2351 if ((relocation & 0x8000) != 0)
2352 relocation += 0x10000;
2353
2354 bfd_put_32 (input_bfd, 0x04110001, location); /* bal .+8 */
2355 bfd_put_32 (input_bfd,
2356 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
2357 location + 4);
2358 bfd_put_32 (input_bfd,
2359 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
2360 location + 8);
2361 bfd_put_32 (input_bfd, 0x003f0821, location + 12); /* addu $at,$at,$ra */
2362 bfd_put_32 (input_bfd, 0x0020f809, location + 16); /* jalr $at */
2363
2364 return true;
2365 }
2366
2367 /* Given a .sdata section and a .rel.sdata in-memory section, store
2368 relocation information into the .rel.sdata section which can be
2369 used at runtime to relocate the section. This is called by the
2370 linker when the --embedded-relocs switch is used. This is called
2371 after the add_symbols entry point has been called for all the
2372 objects, and before the final_link entry point is called. This
2373 function presumes that the object was compiled using
2374 -membedded-pic. */
2375
2376 boolean
2377 bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2378 bfd *abfd;
2379 struct bfd_link_info *info;
2380 asection *datasec;
2381 asection *relsec;
2382 char **errmsg;
2383 {
2384 struct ecoff_link_hash_entry **sym_hashes;
2385 struct ecoff_section_tdata *section_tdata;
2386 struct external_reloc *ext_rel;
2387 struct external_reloc *ext_rel_end;
2388 bfd_byte *p;
2389
2390 BFD_ASSERT (! info->relocateable);
2391
2392 *errmsg = NULL;
2393
2394 if (datasec->reloc_count == 0)
2395 return true;
2396
2397 sym_hashes = ecoff_data (abfd)->sym_hashes;
2398
2399 if (! mips_read_relocs (abfd, datasec))
2400 return false;
2401
2402 relsec->contents = (bfd_byte *) bfd_alloc (abfd, datasec->reloc_count * 4);
2403 if (relsec->contents == NULL)
2404 return false;
2405
2406 p = relsec->contents;
2407
2408 section_tdata = ecoff_section_data (abfd, datasec);
2409 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2410 ext_rel_end = ext_rel + datasec->reloc_count;
2411 for (; ext_rel < ext_rel_end; ext_rel++, p += 4)
2412 {
2413 struct internal_reloc int_rel;
2414 boolean text_relative;
2415
2416 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2417
2418 /* We are going to write a four byte word into the runtime reloc
2419 section. The word will be the address in the data section
2420 which must be relocated. This must be on a word boundary,
2421 which means the lower two bits must be zero. We use the
2422 least significant bit to indicate how the value in the data
2423 section must be relocated. A 0 means that the value is
2424 relative to the text section, while a 1 indicates that the
2425 value is relative to the data section. Given that we are
2426 assuming the code was compiled using -membedded-pic, there
2427 should not be any other possibilities. */
2428
2429 /* We can only relocate REFWORD relocs at run time. */
2430 if (int_rel.r_type != MIPS_R_REFWORD)
2431 {
2432 *errmsg = _("unsupported reloc type");
2433 bfd_set_error (bfd_error_bad_value);
2434 return false;
2435 }
2436
2437 if (int_rel.r_extern)
2438 {
2439 struct ecoff_link_hash_entry *h;
2440
2441 h = sym_hashes[int_rel.r_symndx];
2442 /* If h is NULL, that means that there is a reloc against an
2443 external symbol which we thought was just a debugging
2444 symbol. This should not happen. */
2445 if (h == (struct ecoff_link_hash_entry *) NULL)
2446 abort ();
2447 if ((h->root.type == bfd_link_hash_defined
2448 || h->root.type == bfd_link_hash_defweak)
2449 && (h->root.u.def.section->flags & SEC_CODE) != 0)
2450 text_relative = true;
2451 else
2452 text_relative = false;
2453 }
2454 else
2455 {
2456 switch (int_rel.r_symndx)
2457 {
2458 case RELOC_SECTION_TEXT:
2459 text_relative = true;
2460 break;
2461 case RELOC_SECTION_SDATA:
2462 case RELOC_SECTION_SBSS:
2463 case RELOC_SECTION_LIT8:
2464 text_relative = false;
2465 break;
2466 default:
2467 /* No other sections should appear in -membedded-pic
2468 code. */
2469 *errmsg = _("reloc against unsupported section");
2470 bfd_set_error (bfd_error_bad_value);
2471 return false;
2472 }
2473 }
2474
2475 if ((int_rel.r_offset & 3) != 0)
2476 {
2477 *errmsg = _("reloc not properly aligned");
2478 bfd_set_error (bfd_error_bad_value);
2479 return false;
2480 }
2481
2482 bfd_put_32 (abfd,
2483 (int_rel.r_vaddr - datasec->vma + datasec->output_offset
2484 + (text_relative ? 0 : 1)),
2485 p);
2486 }
2487
2488 return true;
2489 }
2490 \f
2491 /* This is the ECOFF backend structure. The backend field of the
2492 target vector points to this. */
2493
2494 static const struct ecoff_backend_data mips_ecoff_backend_data =
2495 {
2496 /* COFF backend structure. */
2497 {
2498 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2499 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2500 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2501 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2502 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2503 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2504 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2505 mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
2506 mips_ecoff_swap_scnhdr_out,
2507 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, true, false, 4, false, 2,
2508 mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
2509 mips_ecoff_swap_scnhdr_in, NULL,
2510 mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2511 _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2512 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2513 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2514 NULL, NULL
2515 },
2516 /* Supported architecture. */
2517 bfd_arch_mips,
2518 /* Initial portion of armap string. */
2519 "__________",
2520 /* The page boundary used to align sections in a demand-paged
2521 executable file. E.g., 0x1000. */
2522 0x1000,
2523 /* True if the .rdata section is part of the text segment, as on the
2524 Alpha. False if .rdata is part of the data segment, as on the
2525 MIPS. */
2526 false,
2527 /* Bitsize of constructor entries. */
2528 32,
2529 /* Reloc to use for constructor entries. */
2530 &mips_howto_table[MIPS_R_REFWORD],
2531 {
2532 /* Symbol table magic number. */
2533 magicSym,
2534 /* Alignment of debugging information. E.g., 4. */
2535 4,
2536 /* Sizes of external symbolic information. */
2537 sizeof (struct hdr_ext),
2538 sizeof (struct dnr_ext),
2539 sizeof (struct pdr_ext),
2540 sizeof (struct sym_ext),
2541 sizeof (struct opt_ext),
2542 sizeof (struct fdr_ext),
2543 sizeof (struct rfd_ext),
2544 sizeof (struct ext_ext),
2545 /* Functions to swap in external symbolic data. */
2546 ecoff_swap_hdr_in,
2547 ecoff_swap_dnr_in,
2548 ecoff_swap_pdr_in,
2549 ecoff_swap_sym_in,
2550 ecoff_swap_opt_in,
2551 ecoff_swap_fdr_in,
2552 ecoff_swap_rfd_in,
2553 ecoff_swap_ext_in,
2554 _bfd_ecoff_swap_tir_in,
2555 _bfd_ecoff_swap_rndx_in,
2556 /* Functions to swap out external symbolic data. */
2557 ecoff_swap_hdr_out,
2558 ecoff_swap_dnr_out,
2559 ecoff_swap_pdr_out,
2560 ecoff_swap_sym_out,
2561 ecoff_swap_opt_out,
2562 ecoff_swap_fdr_out,
2563 ecoff_swap_rfd_out,
2564 ecoff_swap_ext_out,
2565 _bfd_ecoff_swap_tir_out,
2566 _bfd_ecoff_swap_rndx_out,
2567 /* Function to read in symbolic data. */
2568 _bfd_ecoff_slurp_symbolic_info
2569 },
2570 /* External reloc size. */
2571 RELSZ,
2572 /* Reloc swapping functions. */
2573 mips_ecoff_swap_reloc_in,
2574 mips_ecoff_swap_reloc_out,
2575 /* Backend reloc tweaking. */
2576 mips_adjust_reloc_in,
2577 mips_adjust_reloc_out,
2578 /* Relocate section contents while linking. */
2579 mips_relocate_section,
2580 /* Do final adjustments to filehdr and aouthdr. */
2581 NULL,
2582 /* Read an element from an archive at a given file position. */
2583 _bfd_get_elt_at_filepos
2584 };
2585
2586 /* Looking up a reloc type is MIPS specific. */
2587 #define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
2588
2589 /* Getting relocated section contents is generic. */
2590 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2591 bfd_generic_get_relocated_section_contents
2592
2593 /* Handling file windows is generic. */
2594 #define _bfd_ecoff_get_section_contents_in_window \
2595 _bfd_generic_get_section_contents_in_window
2596
2597 /* Relaxing sections is MIPS specific. */
2598 #define _bfd_ecoff_bfd_relax_section mips_relax_section
2599
2600 /* GC of sections is not done. */
2601 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2602
2603 /* Merging of sections is not done. */
2604 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2605
2606 extern const bfd_target ecoff_big_vec;
2607
2608 const bfd_target ecoff_little_vec =
2609 {
2610 "ecoff-littlemips", /* name */
2611 bfd_target_ecoff_flavour,
2612 BFD_ENDIAN_LITTLE, /* data byte order is little */
2613 BFD_ENDIAN_LITTLE, /* header byte order is little */
2614
2615 (HAS_RELOC | EXEC_P | /* object flags */
2616 HAS_LINENO | HAS_DEBUG |
2617 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2618
2619 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2620 0, /* leading underscore */
2621 ' ', /* ar_pad_char */
2622 15, /* ar_max_namelen */
2623 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2624 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2625 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2626 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2627 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2628 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2629
2630 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2631 _bfd_ecoff_archive_p, _bfd_dummy_target},
2632 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2633 _bfd_generic_mkarchive, bfd_false},
2634 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2635 _bfd_write_archive_contents, bfd_false},
2636
2637 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2638 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2639 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2640 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2641 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2642 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2643 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2644 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2645 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2646
2647 & ecoff_big_vec,
2648
2649 (PTR) &mips_ecoff_backend_data
2650 };
2651
2652 const bfd_target ecoff_big_vec =
2653 {
2654 "ecoff-bigmips", /* name */
2655 bfd_target_ecoff_flavour,
2656 BFD_ENDIAN_BIG, /* data byte order is big */
2657 BFD_ENDIAN_BIG, /* header byte order is big */
2658
2659 (HAS_RELOC | EXEC_P | /* object flags */
2660 HAS_LINENO | HAS_DEBUG |
2661 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2662
2663 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2664 0, /* leading underscore */
2665 ' ', /* ar_pad_char */
2666 15, /* ar_max_namelen */
2667 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2668 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2669 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2670 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2671 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2672 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2673 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2674 _bfd_ecoff_archive_p, _bfd_dummy_target},
2675 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2676 _bfd_generic_mkarchive, bfd_false},
2677 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2678 _bfd_write_archive_contents, bfd_false},
2679
2680 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2681 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2682 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2683 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2684 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2685 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2686 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2687 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2688 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2689
2690 & ecoff_little_vec,
2691
2692 (PTR) &mips_ecoff_backend_data
2693 };
2694
2695 const bfd_target ecoff_biglittle_vec =
2696 {
2697 "ecoff-biglittlemips", /* name */
2698 bfd_target_ecoff_flavour,
2699 BFD_ENDIAN_LITTLE, /* data byte order is little */
2700 BFD_ENDIAN_BIG, /* header byte order is big */
2701
2702 (HAS_RELOC | EXEC_P | /* object flags */
2703 HAS_LINENO | HAS_DEBUG |
2704 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2705
2706 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2707 0, /* leading underscore */
2708 ' ', /* ar_pad_char */
2709 15, /* ar_max_namelen */
2710 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2711 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2712 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2713 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2714 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2715 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
2716
2717 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2718 _bfd_ecoff_archive_p, _bfd_dummy_target},
2719 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2720 _bfd_generic_mkarchive, bfd_false},
2721 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2722 _bfd_write_archive_contents, bfd_false},
2723
2724 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2725 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2726 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2727 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2728 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2729 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2730 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2731 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2732 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2733
2734 NULL,
2735
2736 (PTR) &mips_ecoff_backend_data
2737 };
This page took 0.103517 seconds and 5 git commands to generate.