PR25882, .gnu.attributes are not checked for shared libraries
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2020 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38 #include "hashtab.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug_file
86 {
87 /* The actual bfd from which debug info was loaded. Might be
88 different to orig_bfd because of gnu_debuglink sections. */
89 bfd *bfd_ptr;
90
91 /* Pointer to the symbol table. */
92 asymbol **syms;
93
94 /* The current info pointer for the .debug_info section being parsed. */
95 bfd_byte *info_ptr;
96
97 /* A pointer to the memory block allocated for .debug_info sections. */
98 bfd_byte *dwarf_info_buffer;
99
100 /* Length of the loaded .debug_info sections. */
101 bfd_size_type dwarf_info_size;
102
103 /* Pointer to the .debug_abbrev section loaded into memory. */
104 bfd_byte *dwarf_abbrev_buffer;
105
106 /* Length of the loaded .debug_abbrev section. */
107 bfd_size_type dwarf_abbrev_size;
108
109 /* Buffer for decode_line_info. */
110 bfd_byte *dwarf_line_buffer;
111
112 /* Length of the loaded .debug_line section. */
113 bfd_size_type dwarf_line_size;
114
115 /* Pointer to the .debug_str section loaded into memory. */
116 bfd_byte *dwarf_str_buffer;
117
118 /* Length of the loaded .debug_str section. */
119 bfd_size_type dwarf_str_size;
120
121 /* Pointer to the .debug_line_str section loaded into memory. */
122 bfd_byte *dwarf_line_str_buffer;
123
124 /* Length of the loaded .debug_line_str section. */
125 bfd_size_type dwarf_line_str_size;
126
127 /* Pointer to the .debug_ranges section loaded into memory. */
128 bfd_byte *dwarf_ranges_buffer;
129
130 /* Length of the loaded .debug_ranges section. */
131 bfd_size_type dwarf_ranges_size;
132
133 /* A list of all previously read comp_units. */
134 struct comp_unit *all_comp_units;
135
136 /* Last comp unit in list above. */
137 struct comp_unit *last_comp_unit;
138
139 /* Line table at line_offset zero. */
140 struct line_info_table *line_table;
141
142 /* Hash table to map offsets to decoded abbrevs. */
143 htab_t abbrev_offsets;
144 };
145
146 struct dwarf2_debug
147 {
148 /* Names of the debug sections. */
149 const struct dwarf_debug_section *debug_sections;
150
151 /* Per-file stuff. */
152 struct dwarf2_debug_file f, alt;
153
154 /* Pointer to the original bfd for which debug was loaded. This is what
155 we use to compare and so check that the cached debug data is still
156 valid - it saves having to possibly dereference the gnu_debuglink each
157 time. */
158 bfd *orig_bfd;
159
160 /* If the most recent call to bfd_find_nearest_line was given an
161 address in an inlined function, preserve a pointer into the
162 calling chain for subsequent calls to bfd_find_inliner_info to
163 use. */
164 struct funcinfo *inliner_chain;
165
166 /* Section VMAs at the time the stash was built. */
167 bfd_vma *sec_vma;
168 /* Number of sections in the SEC_VMA table. */
169 unsigned int sec_vma_count;
170
171 /* Number of sections whose VMA we must adjust. */
172 int adjusted_section_count;
173
174 /* Array of sections with adjusted VMA. */
175 struct adjusted_section *adjusted_sections;
176
177 /* Number of times find_line is called. This is used in
178 the heuristic for enabling the info hash tables. */
179 int info_hash_count;
180
181 #define STASH_INFO_HASH_TRIGGER 100
182
183 /* Hash table mapping symbol names to function infos. */
184 struct info_hash_table *funcinfo_hash_table;
185
186 /* Hash table mapping symbol names to variable infos. */
187 struct info_hash_table *varinfo_hash_table;
188
189 /* Head of comp_unit list in the last hash table update. */
190 struct comp_unit *hash_units_head;
191
192 /* Status of info hash. */
193 int info_hash_status;
194 #define STASH_INFO_HASH_OFF 0
195 #define STASH_INFO_HASH_ON 1
196 #define STASH_INFO_HASH_DISABLED 2
197
198 /* True if we opened bfd_ptr. */
199 bfd_boolean close_on_cleanup;
200 };
201
202 struct arange
203 {
204 struct arange *next;
205 bfd_vma low;
206 bfd_vma high;
207 };
208
209 /* A minimal decoding of DWARF2 compilation units. We only decode
210 what's needed to get to the line number information. */
211
212 struct comp_unit
213 {
214 /* Chain the previously read compilation units. */
215 struct comp_unit *next_unit;
216
217 /* Likewise, chain the compilation unit read after this one.
218 The comp units are stored in reversed reading order. */
219 struct comp_unit *prev_unit;
220
221 /* Keep the bfd convenient (for memory allocation). */
222 bfd *abfd;
223
224 /* The lowest and highest addresses contained in this compilation
225 unit as specified in the compilation unit header. */
226 struct arange arange;
227
228 /* The DW_AT_name attribute (for error messages). */
229 char *name;
230
231 /* The abbrev hash table. */
232 struct abbrev_info **abbrevs;
233
234 /* DW_AT_language. */
235 int lang;
236
237 /* Note that an error was found by comp_unit_find_nearest_line. */
238 int error;
239
240 /* The DW_AT_comp_dir attribute. */
241 char *comp_dir;
242
243 /* TRUE if there is a line number table associated with this comp. unit. */
244 int stmtlist;
245
246 /* Pointer to the current comp_unit so that we can find a given entry
247 by its reference. */
248 bfd_byte *info_ptr_unit;
249
250 /* The offset into .debug_line of the line number table. */
251 unsigned long line_offset;
252
253 /* Pointer to the first child die for the comp unit. */
254 bfd_byte *first_child_die_ptr;
255
256 /* The end of the comp unit. */
257 bfd_byte *end_ptr;
258
259 /* The decoded line number, NULL if not yet decoded. */
260 struct line_info_table *line_table;
261
262 /* A list of the functions found in this comp. unit. */
263 struct funcinfo *function_table;
264
265 /* A table of function information references searchable by address. */
266 struct lookup_funcinfo *lookup_funcinfo_table;
267
268 /* Number of functions in the function_table and sorted_function_table. */
269 bfd_size_type number_of_functions;
270
271 /* A list of the variables found in this comp. unit. */
272 struct varinfo *variable_table;
273
274 /* Pointers to dwarf2_debug structures. */
275 struct dwarf2_debug *stash;
276 struct dwarf2_debug_file *file;
277
278 /* DWARF format version for this unit - from unit header. */
279 int version;
280
281 /* Address size for this unit - from unit header. */
282 unsigned char addr_size;
283
284 /* Offset size for this unit - from unit header. */
285 unsigned char offset_size;
286
287 /* Base address for this unit - from DW_AT_low_pc attribute of
288 DW_TAG_compile_unit DIE */
289 bfd_vma base_address;
290
291 /* TRUE if symbols are cached in hash table for faster lookup by name. */
292 bfd_boolean cached;
293 };
294
295 /* This data structure holds the information of an abbrev. */
296 struct abbrev_info
297 {
298 unsigned int number; /* Number identifying abbrev. */
299 enum dwarf_tag tag; /* DWARF tag. */
300 bfd_boolean has_children; /* TRUE if the abbrev has children. */
301 unsigned int num_attrs; /* Number of attributes. */
302 struct attr_abbrev * attrs; /* An array of attribute descriptions. */
303 struct abbrev_info * next; /* Next in chain. */
304 };
305
306 struct attr_abbrev
307 {
308 enum dwarf_attribute name;
309 enum dwarf_form form;
310 bfd_vma implicit_const;
311 };
312
313 /* Map of uncompressed DWARF debug section name to compressed one. It
314 is terminated by NULL uncompressed_name. */
315
316 const struct dwarf_debug_section dwarf_debug_sections[] =
317 {
318 { ".debug_abbrev", ".zdebug_abbrev" },
319 { ".debug_aranges", ".zdebug_aranges" },
320 { ".debug_frame", ".zdebug_frame" },
321 { ".debug_info", ".zdebug_info" },
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_line", ".zdebug_line" },
324 { ".debug_loc", ".zdebug_loc" },
325 { ".debug_macinfo", ".zdebug_macinfo" },
326 { ".debug_macro", ".zdebug_macro" },
327 { ".debug_pubnames", ".zdebug_pubnames" },
328 { ".debug_pubtypes", ".zdebug_pubtypes" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_static_func", ".zdebug_static_func" },
331 { ".debug_static_vars", ".zdebug_static_vars" },
332 { ".debug_str", ".zdebug_str", },
333 { ".debug_str", ".zdebug_str", },
334 { ".debug_line_str", ".zdebug_line_str", },
335 { ".debug_types", ".zdebug_types" },
336 /* GNU DWARF 1 extensions */
337 { ".debug_sfnames", ".zdebug_sfnames" },
338 { ".debug_srcinfo", ".zebug_srcinfo" },
339 /* SGI/MIPS DWARF 2 extensions */
340 { ".debug_funcnames", ".zdebug_funcnames" },
341 { ".debug_typenames", ".zdebug_typenames" },
342 { ".debug_varnames", ".zdebug_varnames" },
343 { ".debug_weaknames", ".zdebug_weaknames" },
344 { NULL, NULL },
345 };
346
347 /* NB/ Numbers in this enum must match up with indices
348 into the dwarf_debug_sections[] array above. */
349 enum dwarf_debug_section_enum
350 {
351 debug_abbrev = 0,
352 debug_aranges,
353 debug_frame,
354 debug_info,
355 debug_info_alt,
356 debug_line,
357 debug_loc,
358 debug_macinfo,
359 debug_macro,
360 debug_pubnames,
361 debug_pubtypes,
362 debug_ranges,
363 debug_static_func,
364 debug_static_vars,
365 debug_str,
366 debug_str_alt,
367 debug_line_str,
368 debug_types,
369 debug_sfnames,
370 debug_srcinfo,
371 debug_funcnames,
372 debug_typenames,
373 debug_varnames,
374 debug_weaknames,
375 debug_max
376 };
377
378 /* A static assertion. */
379 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
380 == debug_max + 1 ? 1 : -1];
381
382 #ifndef ABBREV_HASH_SIZE
383 #define ABBREV_HASH_SIZE 121
384 #endif
385 #ifndef ATTR_ALLOC_CHUNK
386 #define ATTR_ALLOC_CHUNK 4
387 #endif
388
389 /* Variable and function hash tables. This is used to speed up look-up
390 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
391 In order to share code between variable and function infos, we use
392 a list of untyped pointer for all variable/function info associated with
393 a symbol. We waste a bit of memory for list with one node but that
394 simplifies the code. */
395
396 struct info_list_node
397 {
398 struct info_list_node *next;
399 void *info;
400 };
401
402 /* Info hash entry. */
403 struct info_hash_entry
404 {
405 struct bfd_hash_entry root;
406 struct info_list_node *head;
407 };
408
409 struct info_hash_table
410 {
411 struct bfd_hash_table base;
412 };
413
414 /* Function to create a new entry in info hash table. */
415
416 static struct bfd_hash_entry *
417 info_hash_table_newfunc (struct bfd_hash_entry *entry,
418 struct bfd_hash_table *table,
419 const char *string)
420 {
421 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
422
423 /* Allocate the structure if it has not already been allocated by a
424 derived class. */
425 if (ret == NULL)
426 {
427 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
428 sizeof (* ret));
429 if (ret == NULL)
430 return NULL;
431 }
432
433 /* Call the allocation method of the base class. */
434 ret = ((struct info_hash_entry *)
435 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
436
437 /* Initialize the local fields here. */
438 if (ret)
439 ret->head = NULL;
440
441 return (struct bfd_hash_entry *) ret;
442 }
443
444 /* Function to create a new info hash table. It returns a pointer to the
445 newly created table or NULL if there is any error. We need abfd
446 solely for memory allocation. */
447
448 static struct info_hash_table *
449 create_info_hash_table (bfd *abfd)
450 {
451 struct info_hash_table *hash_table;
452
453 hash_table = ((struct info_hash_table *)
454 bfd_alloc (abfd, sizeof (struct info_hash_table)));
455 if (!hash_table)
456 return hash_table;
457
458 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
459 sizeof (struct info_hash_entry)))
460 {
461 bfd_release (abfd, hash_table);
462 return NULL;
463 }
464
465 return hash_table;
466 }
467
468 /* Insert an info entry into an info hash table. We do not check of
469 duplicate entries. Also, the caller need to guarantee that the
470 right type of info in inserted as info is passed as a void* pointer.
471 This function returns true if there is no error. */
472
473 static bfd_boolean
474 insert_info_hash_table (struct info_hash_table *hash_table,
475 const char *key,
476 void *info,
477 bfd_boolean copy_p)
478 {
479 struct info_hash_entry *entry;
480 struct info_list_node *node;
481
482 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
483 key, TRUE, copy_p);
484 if (!entry)
485 return FALSE;
486
487 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
488 sizeof (*node));
489 if (!node)
490 return FALSE;
491
492 node->info = info;
493 node->next = entry->head;
494 entry->head = node;
495
496 return TRUE;
497 }
498
499 /* Look up an info entry list from an info hash table. Return NULL
500 if there is none. */
501
502 static struct info_list_node *
503 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
504 {
505 struct info_hash_entry *entry;
506
507 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
508 FALSE, FALSE);
509 return entry ? entry->head : NULL;
510 }
511
512 /* Read a section into its appropriate place in the dwarf2_debug
513 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
514 not NULL, use bfd_simple_get_relocated_section_contents to read the
515 section contents, otherwise use bfd_get_section_contents. Fail if
516 the located section does not contain at least OFFSET bytes. */
517
518 static bfd_boolean
519 read_section (bfd * abfd,
520 const struct dwarf_debug_section *sec,
521 asymbol ** syms,
522 bfd_uint64_t offset,
523 bfd_byte ** section_buffer,
524 bfd_size_type * section_size)
525 {
526 asection *msec;
527 const char *section_name = sec->uncompressed_name;
528 bfd_byte *contents = *section_buffer;
529 bfd_size_type amt;
530
531 /* The section may have already been read. */
532 if (contents == NULL)
533 {
534 msec = bfd_get_section_by_name (abfd, section_name);
535 if (! msec)
536 {
537 section_name = sec->compressed_name;
538 if (section_name != NULL)
539 msec = bfd_get_section_by_name (abfd, section_name);
540 }
541 if (! msec)
542 {
543 _bfd_error_handler (_("DWARF error: can't find %s section."),
544 sec->uncompressed_name);
545 bfd_set_error (bfd_error_bad_value);
546 return FALSE;
547 }
548
549 *section_size = msec->rawsize ? msec->rawsize : msec->size;
550 /* Paranoia - alloc one extra so that we can make sure a string
551 section is NUL terminated. */
552 amt = *section_size + 1;
553 if (amt == 0)
554 {
555 bfd_set_error (bfd_error_no_memory);
556 return FALSE;
557 }
558 contents = (bfd_byte *) bfd_malloc (amt);
559 if (contents == NULL)
560 return FALSE;
561 if (syms
562 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
563 syms)
564 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
565 {
566 free (contents);
567 return FALSE;
568 }
569 contents[*section_size] = 0;
570 *section_buffer = contents;
571 }
572
573 /* It is possible to get a bad value for the offset into the section
574 that the client wants. Validate it here to avoid trouble later. */
575 if (offset != 0 && offset >= *section_size)
576 {
577 /* xgettext: c-format */
578 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
579 " greater than or equal to %s size (%" PRIu64 ")"),
580 (uint64_t) offset, section_name,
581 (uint64_t) *section_size);
582 bfd_set_error (bfd_error_bad_value);
583 return FALSE;
584 }
585
586 return TRUE;
587 }
588
589 /* Read dwarf information from a buffer. */
590
591 static unsigned int
592 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
593 {
594 if (buf + 1 > end)
595 return 0;
596 return bfd_get_8 (abfd, buf);
597 }
598
599 static int
600 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
601 {
602 if (buf + 1 > end)
603 return 0;
604 return bfd_get_signed_8 (abfd, buf);
605 }
606
607 static unsigned int
608 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
609 {
610 if (buf + 2 > end)
611 return 0;
612 return bfd_get_16 (abfd, buf);
613 }
614
615 static unsigned int
616 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
617 {
618 if (buf + 4 > end)
619 return 0;
620 return bfd_get_32 (abfd, buf);
621 }
622
623 static bfd_uint64_t
624 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
625 {
626 if (buf + 8 > end)
627 return 0;
628 return bfd_get_64 (abfd, buf);
629 }
630
631 static bfd_byte *
632 read_n_bytes (bfd_byte * buf,
633 bfd_byte * end,
634 struct dwarf_block * block)
635 {
636 unsigned int size = block->size;
637 bfd_byte * block_end = buf + size;
638
639 if (block_end > end || block_end < buf)
640 {
641 block->data = NULL;
642 block->size = 0;
643 return end;
644 }
645 else
646 {
647 block->data = buf;
648 return block_end;
649 }
650 }
651
652 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
653 Returns the number of characters in the string, *including* the NUL byte,
654 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
655 at or beyond BUF_END will not be read. Returns NULL if there was a
656 problem, or if the string is empty. */
657
658 static char *
659 read_string (bfd * abfd ATTRIBUTE_UNUSED,
660 bfd_byte * buf,
661 bfd_byte * buf_end,
662 unsigned int * bytes_read_ptr)
663 {
664 bfd_byte *str = buf;
665
666 if (buf >= buf_end)
667 {
668 * bytes_read_ptr = 0;
669 return NULL;
670 }
671
672 if (*str == '\0')
673 {
674 * bytes_read_ptr = 1;
675 return NULL;
676 }
677
678 while (buf < buf_end)
679 if (* buf ++ == 0)
680 {
681 * bytes_read_ptr = buf - str;
682 return (char *) str;
683 }
684
685 * bytes_read_ptr = buf - str;
686 return NULL;
687 }
688
689 /* Reads an offset from BUF and then locates the string at this offset
690 inside the debug string section. Returns a pointer to the string.
691 Returns the number of bytes read from BUF, *not* the length of the string,
692 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
693 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
694 a problem, or if the string is empty. Does not check for NUL termination
695 of the string. */
696
697 static char *
698 read_indirect_string (struct comp_unit * unit,
699 bfd_byte * buf,
700 bfd_byte * buf_end,
701 unsigned int * bytes_read_ptr)
702 {
703 bfd_uint64_t offset;
704 struct dwarf2_debug *stash = unit->stash;
705 struct dwarf2_debug_file *file = unit->file;
706 char *str;
707
708 if (buf + unit->offset_size > buf_end)
709 {
710 * bytes_read_ptr = 0;
711 return NULL;
712 }
713
714 if (unit->offset_size == 4)
715 offset = read_4_bytes (unit->abfd, buf, buf_end);
716 else
717 offset = read_8_bytes (unit->abfd, buf, buf_end);
718
719 *bytes_read_ptr = unit->offset_size;
720
721 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
722 file->syms, offset,
723 &file->dwarf_str_buffer, &file->dwarf_str_size))
724 return NULL;
725
726 str = (char *) file->dwarf_str_buffer + offset;
727 if (*str == '\0')
728 return NULL;
729 return str;
730 }
731
732 /* Like read_indirect_string but from .debug_line_str section. */
733
734 static char *
735 read_indirect_line_string (struct comp_unit * unit,
736 bfd_byte * buf,
737 bfd_byte * buf_end,
738 unsigned int * bytes_read_ptr)
739 {
740 bfd_uint64_t offset;
741 struct dwarf2_debug *stash = unit->stash;
742 struct dwarf2_debug_file *file = unit->file;
743 char *str;
744
745 if (buf + unit->offset_size > buf_end)
746 {
747 * bytes_read_ptr = 0;
748 return NULL;
749 }
750
751 if (unit->offset_size == 4)
752 offset = read_4_bytes (unit->abfd, buf, buf_end);
753 else
754 offset = read_8_bytes (unit->abfd, buf, buf_end);
755
756 *bytes_read_ptr = unit->offset_size;
757
758 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
759 file->syms, offset,
760 &file->dwarf_line_str_buffer,
761 &file->dwarf_line_str_size))
762 return NULL;
763
764 str = (char *) file->dwarf_line_str_buffer + offset;
765 if (*str == '\0')
766 return NULL;
767 return str;
768 }
769
770 /* Like read_indirect_string but uses a .debug_str located in
771 an alternate file pointed to by the .gnu_debugaltlink section.
772 Used to impement DW_FORM_GNU_strp_alt. */
773
774 static char *
775 read_alt_indirect_string (struct comp_unit * unit,
776 bfd_byte * buf,
777 bfd_byte * buf_end,
778 unsigned int * bytes_read_ptr)
779 {
780 bfd_uint64_t offset;
781 struct dwarf2_debug *stash = unit->stash;
782 char *str;
783
784 if (buf + unit->offset_size > buf_end)
785 {
786 * bytes_read_ptr = 0;
787 return NULL;
788 }
789
790 if (unit->offset_size == 4)
791 offset = read_4_bytes (unit->abfd, buf, buf_end);
792 else
793 offset = read_8_bytes (unit->abfd, buf, buf_end);
794
795 *bytes_read_ptr = unit->offset_size;
796
797 if (stash->alt.bfd_ptr == NULL)
798 {
799 bfd *debug_bfd;
800 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
801
802 if (debug_filename == NULL)
803 return NULL;
804
805 debug_bfd = bfd_openr (debug_filename, NULL);
806 free (debug_filename);
807 if (debug_bfd == NULL)
808 /* FIXME: Should we report our failure to follow the debuglink ? */
809 return NULL;
810
811 if (!bfd_check_format (debug_bfd, bfd_object))
812 {
813 bfd_close (debug_bfd);
814 return NULL;
815 }
816 stash->alt.bfd_ptr = debug_bfd;
817 }
818
819 if (! read_section (unit->stash->alt.bfd_ptr,
820 stash->debug_sections + debug_str_alt,
821 stash->alt.syms, offset,
822 &stash->alt.dwarf_str_buffer,
823 &stash->alt.dwarf_str_size))
824 return NULL;
825
826 str = (char *) stash->alt.dwarf_str_buffer + offset;
827 if (*str == '\0')
828 return NULL;
829
830 return str;
831 }
832
833 /* Resolve an alternate reference from UNIT at OFFSET.
834 Returns a pointer into the loaded alternate CU upon success
835 or NULL upon failure. */
836
837 static bfd_byte *
838 read_alt_indirect_ref (struct comp_unit * unit,
839 bfd_uint64_t offset)
840 {
841 struct dwarf2_debug *stash = unit->stash;
842
843 if (stash->alt.bfd_ptr == NULL)
844 {
845 bfd *debug_bfd;
846 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
847
848 if (debug_filename == NULL)
849 return NULL;
850
851 debug_bfd = bfd_openr (debug_filename, NULL);
852 free (debug_filename);
853 if (debug_bfd == NULL)
854 /* FIXME: Should we report our failure to follow the debuglink ? */
855 return NULL;
856
857 if (!bfd_check_format (debug_bfd, bfd_object))
858 {
859 bfd_close (debug_bfd);
860 return NULL;
861 }
862 stash->alt.bfd_ptr = debug_bfd;
863 }
864
865 if (! read_section (unit->stash->alt.bfd_ptr,
866 stash->debug_sections + debug_info_alt,
867 stash->alt.syms, offset,
868 &stash->alt.dwarf_info_buffer,
869 &stash->alt.dwarf_info_size))
870 return NULL;
871
872 return stash->alt.dwarf_info_buffer + offset;
873 }
874
875 static bfd_uint64_t
876 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
877 {
878 int signed_vma = 0;
879
880 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
881 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
882
883 if (buf + unit->addr_size > buf_end)
884 return 0;
885
886 if (signed_vma)
887 {
888 switch (unit->addr_size)
889 {
890 case 8:
891 return bfd_get_signed_64 (unit->abfd, buf);
892 case 4:
893 return bfd_get_signed_32 (unit->abfd, buf);
894 case 2:
895 return bfd_get_signed_16 (unit->abfd, buf);
896 default:
897 abort ();
898 }
899 }
900 else
901 {
902 switch (unit->addr_size)
903 {
904 case 8:
905 return bfd_get_64 (unit->abfd, buf);
906 case 4:
907 return bfd_get_32 (unit->abfd, buf);
908 case 2:
909 return bfd_get_16 (unit->abfd, buf);
910 default:
911 abort ();
912 }
913 }
914 }
915
916 /* Lookup an abbrev_info structure in the abbrev hash table. */
917
918 static struct abbrev_info *
919 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
920 {
921 unsigned int hash_number;
922 struct abbrev_info *abbrev;
923
924 hash_number = number % ABBREV_HASH_SIZE;
925 abbrev = abbrevs[hash_number];
926
927 while (abbrev)
928 {
929 if (abbrev->number == number)
930 return abbrev;
931 else
932 abbrev = abbrev->next;
933 }
934
935 return NULL;
936 }
937
938 /* We keep a hash table to map .debug_abbrev section offsets to the
939 array of abbrevs, so that compilation units using the same set of
940 abbrevs do not waste memory. */
941
942 struct abbrev_offset_entry
943 {
944 size_t offset;
945 struct abbrev_info **abbrevs;
946 };
947
948 static hashval_t
949 hash_abbrev (const void *p)
950 {
951 const struct abbrev_offset_entry *ent = p;
952 return htab_hash_pointer ((void *) ent->offset);
953 }
954
955 static int
956 eq_abbrev (const void *pa, const void *pb)
957 {
958 const struct abbrev_offset_entry *a = pa;
959 const struct abbrev_offset_entry *b = pb;
960 return a->offset == b->offset;
961 }
962
963 static void
964 del_abbrev (void *p)
965 {
966 struct abbrev_offset_entry *ent = p;
967 struct abbrev_info **abbrevs = ent->abbrevs;
968 size_t i;
969
970 for (i = 0; i < ABBREV_HASH_SIZE; i++)
971 {
972 struct abbrev_info *abbrev = abbrevs[i];
973
974 while (abbrev)
975 {
976 free (abbrev->attrs);
977 abbrev = abbrev->next;
978 }
979 }
980 free (ent);
981 }
982
983 /* In DWARF version 2, the description of the debugging information is
984 stored in a separate .debug_abbrev section. Before we read any
985 dies from a section we read in all abbreviations and install them
986 in a hash table. */
987
988 static struct abbrev_info**
989 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash,
990 struct dwarf2_debug_file *file)
991 {
992 struct abbrev_info **abbrevs;
993 bfd_byte *abbrev_ptr;
994 bfd_byte *abbrev_end;
995 struct abbrev_info *cur_abbrev;
996 unsigned int abbrev_number, bytes_read, abbrev_name;
997 unsigned int abbrev_form, hash_number;
998 size_t amt;
999 void **slot;
1000 struct abbrev_offset_entry ent = { offset, NULL };
1001
1002 if (ent.offset != offset)
1003 return NULL;
1004
1005 slot = htab_find_slot (file->abbrev_offsets, &ent, INSERT);
1006 if (slot == NULL)
1007 return NULL;
1008 if (*slot != NULL)
1009 return ((struct abbrev_offset_entry *) (*slot))->abbrevs;
1010
1011 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
1012 file->syms, offset,
1013 &file->dwarf_abbrev_buffer,
1014 &file->dwarf_abbrev_size))
1015 return NULL;
1016
1017 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
1018 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
1019 if (abbrevs == NULL)
1020 return NULL;
1021
1022 abbrev_ptr = file->dwarf_abbrev_buffer + offset;
1023 abbrev_end = file->dwarf_abbrev_buffer + file->dwarf_abbrev_size;
1024 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1025 FALSE, abbrev_end);
1026 abbrev_ptr += bytes_read;
1027
1028 /* Loop until we reach an abbrev number of 0. */
1029 while (abbrev_number)
1030 {
1031 amt = sizeof (struct abbrev_info);
1032 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
1033 if (cur_abbrev == NULL)
1034 goto fail;
1035
1036 /* Read in abbrev header. */
1037 cur_abbrev->number = abbrev_number;
1038 cur_abbrev->tag = (enum dwarf_tag)
1039 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1040 FALSE, abbrev_end);
1041 abbrev_ptr += bytes_read;
1042 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1043 abbrev_ptr += 1;
1044
1045 /* Now read in declarations. */
1046 for (;;)
1047 {
1048 /* Initialize it just to avoid a GCC false warning. */
1049 bfd_vma implicit_const = -1;
1050
1051 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1052 FALSE, abbrev_end);
1053 abbrev_ptr += bytes_read;
1054 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1055 FALSE, abbrev_end);
1056 abbrev_ptr += bytes_read;
1057 if (abbrev_form == DW_FORM_implicit_const)
1058 {
1059 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1060 &bytes_read, TRUE,
1061 abbrev_end);
1062 abbrev_ptr += bytes_read;
1063 }
1064
1065 if (abbrev_name == 0)
1066 break;
1067
1068 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1069 {
1070 struct attr_abbrev *tmp;
1071
1072 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1073 amt *= sizeof (struct attr_abbrev);
1074 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1075 if (tmp == NULL)
1076 goto fail;
1077 cur_abbrev->attrs = tmp;
1078 }
1079
1080 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1081 = (enum dwarf_attribute) abbrev_name;
1082 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1083 = (enum dwarf_form) abbrev_form;
1084 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1085 = implicit_const;
1086 ++cur_abbrev->num_attrs;
1087 }
1088
1089 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1090 cur_abbrev->next = abbrevs[hash_number];
1091 abbrevs[hash_number] = cur_abbrev;
1092
1093 /* Get next abbreviation.
1094 Under Irix6 the abbreviations for a compilation unit are not
1095 always properly terminated with an abbrev number of 0.
1096 Exit loop if we encounter an abbreviation which we have
1097 already read (which means we are about to read the abbreviations
1098 for the next compile unit) or if the end of the abbreviation
1099 table is reached. */
1100 if ((size_t) (abbrev_ptr - file->dwarf_abbrev_buffer)
1101 >= file->dwarf_abbrev_size)
1102 break;
1103 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1104 &bytes_read, FALSE, abbrev_end);
1105 abbrev_ptr += bytes_read;
1106 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1107 break;
1108 }
1109
1110 *slot = bfd_malloc (sizeof ent);
1111 if (!*slot)
1112 goto fail;
1113 ent.abbrevs = abbrevs;
1114 memcpy (*slot, &ent, sizeof ent);
1115 return abbrevs;
1116
1117 fail:
1118 if (abbrevs != NULL)
1119 {
1120 size_t i;
1121
1122 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1123 {
1124 struct abbrev_info *abbrev = abbrevs[i];
1125
1126 while (abbrev)
1127 {
1128 free (abbrev->attrs);
1129 abbrev = abbrev->next;
1130 }
1131 }
1132 free (abbrevs);
1133 }
1134 return NULL;
1135 }
1136
1137 /* Returns true if the form is one which has a string value. */
1138
1139 static inline bfd_boolean
1140 is_str_attr (enum dwarf_form form)
1141 {
1142 return (form == DW_FORM_string || form == DW_FORM_strp
1143 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1144 }
1145
1146 /* Read and fill in the value of attribute ATTR as described by FORM.
1147 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1148 Returns an updated INFO_PTR taking into account the amount of data read. */
1149
1150 static bfd_byte *
1151 read_attribute_value (struct attribute * attr,
1152 unsigned form,
1153 bfd_vma implicit_const,
1154 struct comp_unit * unit,
1155 bfd_byte * info_ptr,
1156 bfd_byte * info_ptr_end)
1157 {
1158 bfd *abfd = unit->abfd;
1159 unsigned int bytes_read;
1160 struct dwarf_block *blk;
1161 size_t amt;
1162
1163 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1164 {
1165 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1166 bfd_set_error (bfd_error_bad_value);
1167 return info_ptr;
1168 }
1169
1170 attr->form = (enum dwarf_form) form;
1171
1172 switch (form)
1173 {
1174 case DW_FORM_ref_addr:
1175 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1176 DWARF3. */
1177 if (unit->version == 3 || unit->version == 4)
1178 {
1179 if (unit->offset_size == 4)
1180 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1181 else
1182 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1183 info_ptr += unit->offset_size;
1184 break;
1185 }
1186 /* FALLTHROUGH */
1187 case DW_FORM_addr:
1188 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1189 info_ptr += unit->addr_size;
1190 break;
1191 case DW_FORM_GNU_ref_alt:
1192 case DW_FORM_sec_offset:
1193 if (unit->offset_size == 4)
1194 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1195 else
1196 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1197 info_ptr += unit->offset_size;
1198 break;
1199 case DW_FORM_block2:
1200 amt = sizeof (struct dwarf_block);
1201 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1202 if (blk == NULL)
1203 return NULL;
1204 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1205 info_ptr += 2;
1206 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1207 attr->u.blk = blk;
1208 break;
1209 case DW_FORM_block4:
1210 amt = sizeof (struct dwarf_block);
1211 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1212 if (blk == NULL)
1213 return NULL;
1214 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1215 info_ptr += 4;
1216 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1217 attr->u.blk = blk;
1218 break;
1219 case DW_FORM_data2:
1220 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1221 info_ptr += 2;
1222 break;
1223 case DW_FORM_data4:
1224 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1225 info_ptr += 4;
1226 break;
1227 case DW_FORM_data8:
1228 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1229 info_ptr += 8;
1230 break;
1231 case DW_FORM_string:
1232 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1233 info_ptr += bytes_read;
1234 break;
1235 case DW_FORM_strp:
1236 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1237 info_ptr += bytes_read;
1238 break;
1239 case DW_FORM_line_strp:
1240 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1241 info_ptr += bytes_read;
1242 break;
1243 case DW_FORM_GNU_strp_alt:
1244 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1245 info_ptr += bytes_read;
1246 break;
1247 case DW_FORM_exprloc:
1248 case DW_FORM_block:
1249 amt = sizeof (struct dwarf_block);
1250 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1251 if (blk == NULL)
1252 return NULL;
1253 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1254 FALSE, info_ptr_end);
1255 info_ptr += bytes_read;
1256 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1257 attr->u.blk = blk;
1258 break;
1259 case DW_FORM_block1:
1260 amt = sizeof (struct dwarf_block);
1261 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1262 if (blk == NULL)
1263 return NULL;
1264 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1265 info_ptr += 1;
1266 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1267 attr->u.blk = blk;
1268 break;
1269 case DW_FORM_data1:
1270 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1271 info_ptr += 1;
1272 break;
1273 case DW_FORM_flag:
1274 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1275 info_ptr += 1;
1276 break;
1277 case DW_FORM_flag_present:
1278 attr->u.val = 1;
1279 break;
1280 case DW_FORM_sdata:
1281 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1282 TRUE, info_ptr_end);
1283 info_ptr += bytes_read;
1284 break;
1285 case DW_FORM_udata:
1286 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1287 FALSE, info_ptr_end);
1288 info_ptr += bytes_read;
1289 break;
1290 case DW_FORM_ref1:
1291 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1292 info_ptr += 1;
1293 break;
1294 case DW_FORM_ref2:
1295 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1296 info_ptr += 2;
1297 break;
1298 case DW_FORM_ref4:
1299 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1300 info_ptr += 4;
1301 break;
1302 case DW_FORM_ref8:
1303 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1304 info_ptr += 8;
1305 break;
1306 case DW_FORM_ref_sig8:
1307 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1308 info_ptr += 8;
1309 break;
1310 case DW_FORM_ref_udata:
1311 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1312 FALSE, info_ptr_end);
1313 info_ptr += bytes_read;
1314 break;
1315 case DW_FORM_indirect:
1316 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1317 FALSE, info_ptr_end);
1318 info_ptr += bytes_read;
1319 if (form == DW_FORM_implicit_const)
1320 {
1321 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1322 TRUE, info_ptr_end);
1323 info_ptr += bytes_read;
1324 }
1325 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1326 info_ptr, info_ptr_end);
1327 break;
1328 case DW_FORM_implicit_const:
1329 attr->form = DW_FORM_sdata;
1330 attr->u.sval = implicit_const;
1331 break;
1332 default:
1333 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1334 form);
1335 bfd_set_error (bfd_error_bad_value);
1336 return NULL;
1337 }
1338 return info_ptr;
1339 }
1340
1341 /* Read an attribute described by an abbreviated attribute. */
1342
1343 static bfd_byte *
1344 read_attribute (struct attribute * attr,
1345 struct attr_abbrev * abbrev,
1346 struct comp_unit * unit,
1347 bfd_byte * info_ptr,
1348 bfd_byte * info_ptr_end)
1349 {
1350 attr->name = abbrev->name;
1351 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1352 unit, info_ptr, info_ptr_end);
1353 return info_ptr;
1354 }
1355
1356 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1357 for a function. */
1358
1359 static bfd_boolean
1360 non_mangled (int lang)
1361 {
1362 switch (lang)
1363 {
1364 default:
1365 return FALSE;
1366
1367 case DW_LANG_C89:
1368 case DW_LANG_C:
1369 case DW_LANG_Ada83:
1370 case DW_LANG_Cobol74:
1371 case DW_LANG_Cobol85:
1372 case DW_LANG_Fortran77:
1373 case DW_LANG_Pascal83:
1374 case DW_LANG_C99:
1375 case DW_LANG_Ada95:
1376 case DW_LANG_PLI:
1377 case DW_LANG_UPC:
1378 case DW_LANG_C11:
1379 return TRUE;
1380 }
1381 }
1382
1383 /* Source line information table routines. */
1384
1385 #define FILE_ALLOC_CHUNK 5
1386 #define DIR_ALLOC_CHUNK 5
1387
1388 struct line_info
1389 {
1390 struct line_info * prev_line;
1391 bfd_vma address;
1392 char * filename;
1393 unsigned int line;
1394 unsigned int column;
1395 unsigned int discriminator;
1396 unsigned char op_index;
1397 unsigned char end_sequence; /* End of (sequential) code sequence. */
1398 };
1399
1400 struct fileinfo
1401 {
1402 char * name;
1403 unsigned int dir;
1404 unsigned int time;
1405 unsigned int size;
1406 };
1407
1408 struct line_sequence
1409 {
1410 bfd_vma low_pc;
1411 struct line_sequence* prev_sequence;
1412 struct line_info* last_line; /* Largest VMA. */
1413 struct line_info** line_info_lookup;
1414 bfd_size_type num_lines;
1415 };
1416
1417 struct line_info_table
1418 {
1419 bfd * abfd;
1420 unsigned int num_files;
1421 unsigned int num_dirs;
1422 unsigned int num_sequences;
1423 char * comp_dir;
1424 char ** dirs;
1425 struct fileinfo* files;
1426 struct line_sequence* sequences;
1427 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1428 };
1429
1430 /* Remember some information about each function. If the function is
1431 inlined (DW_TAG_inlined_subroutine) it may have two additional
1432 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1433 source code location where this function was inlined. */
1434
1435 struct funcinfo
1436 {
1437 /* Pointer to previous function in list of all functions. */
1438 struct funcinfo * prev_func;
1439 /* Pointer to function one scope higher. */
1440 struct funcinfo * caller_func;
1441 /* Source location file name where caller_func inlines this func. */
1442 char * caller_file;
1443 /* Source location file name. */
1444 char * file;
1445 /* Source location line number where caller_func inlines this func. */
1446 int caller_line;
1447 /* Source location line number. */
1448 int line;
1449 int tag;
1450 bfd_boolean is_linkage;
1451 const char * name;
1452 struct arange arange;
1453 /* Where the symbol is defined. */
1454 asection * sec;
1455 };
1456
1457 struct lookup_funcinfo
1458 {
1459 /* Function information corresponding to this lookup table entry. */
1460 struct funcinfo * funcinfo;
1461
1462 /* The lowest address for this specific function. */
1463 bfd_vma low_addr;
1464
1465 /* The highest address of this function before the lookup table is sorted.
1466 The highest address of all prior functions after the lookup table is
1467 sorted, which is used for binary search. */
1468 bfd_vma high_addr;
1469 /* Index of this function, used to ensure qsort is stable. */
1470 unsigned int idx;
1471 };
1472
1473 struct varinfo
1474 {
1475 /* Pointer to previous variable in list of all variables. */
1476 struct varinfo *prev_var;
1477 /* The offset of the varinfo from the start of the unit. */
1478 bfd_uint64_t unit_offset;
1479 /* Source location file name. */
1480 char *file;
1481 /* Source location line number. */
1482 int line;
1483 /* The type of this variable. */
1484 int tag;
1485 /* The name of the variable, if it has one. */
1486 char *name;
1487 /* The address of the variable. */
1488 bfd_vma addr;
1489 /* Where the symbol is defined. */
1490 asection *sec;
1491 /* Is this a stack variable? */
1492 bfd_boolean stack;
1493 };
1494
1495 /* Return TRUE if NEW_LINE should sort after LINE. */
1496
1497 static inline bfd_boolean
1498 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1499 {
1500 return (new_line->address > line->address
1501 || (new_line->address == line->address
1502 && new_line->op_index > line->op_index));
1503 }
1504
1505
1506 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1507 that the list is sorted. Note that the line_info list is sorted from
1508 highest to lowest VMA (with possible duplicates); that is,
1509 line_info->prev_line always accesses an equal or smaller VMA. */
1510
1511 static bfd_boolean
1512 add_line_info (struct line_info_table *table,
1513 bfd_vma address,
1514 unsigned char op_index,
1515 char *filename,
1516 unsigned int line,
1517 unsigned int column,
1518 unsigned int discriminator,
1519 int end_sequence)
1520 {
1521 size_t amt = sizeof (struct line_info);
1522 struct line_sequence* seq = table->sequences;
1523 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1524
1525 if (info == NULL)
1526 return FALSE;
1527
1528 /* Set member data of 'info'. */
1529 info->prev_line = NULL;
1530 info->address = address;
1531 info->op_index = op_index;
1532 info->line = line;
1533 info->column = column;
1534 info->discriminator = discriminator;
1535 info->end_sequence = end_sequence;
1536
1537 if (filename && filename[0])
1538 {
1539 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1540 if (info->filename == NULL)
1541 return FALSE;
1542 strcpy (info->filename, filename);
1543 }
1544 else
1545 info->filename = NULL;
1546
1547 /* Find the correct location for 'info'. Normally we will receive
1548 new line_info data 1) in order and 2) with increasing VMAs.
1549 However some compilers break the rules (cf. decode_line_info) and
1550 so we include some heuristics for quickly finding the correct
1551 location for 'info'. In particular, these heuristics optimize for
1552 the common case in which the VMA sequence that we receive is a
1553 list of locally sorted VMAs such as
1554 p...z a...j (where a < j < p < z)
1555
1556 Note: table->lcl_head is used to head an *actual* or *possible*
1557 sub-sequence within the list (such as a...j) that is not directly
1558 headed by table->last_line
1559
1560 Note: we may receive duplicate entries from 'decode_line_info'. */
1561
1562 if (seq
1563 && seq->last_line->address == address
1564 && seq->last_line->op_index == op_index
1565 && seq->last_line->end_sequence == end_sequence)
1566 {
1567 /* We only keep the last entry with the same address and end
1568 sequence. See PR ld/4986. */
1569 if (table->lcl_head == seq->last_line)
1570 table->lcl_head = info;
1571 info->prev_line = seq->last_line->prev_line;
1572 seq->last_line = info;
1573 }
1574 else if (!seq || seq->last_line->end_sequence)
1575 {
1576 /* Start a new line sequence. */
1577 amt = sizeof (struct line_sequence);
1578 seq = (struct line_sequence *) bfd_malloc (amt);
1579 if (seq == NULL)
1580 return FALSE;
1581 seq->low_pc = address;
1582 seq->prev_sequence = table->sequences;
1583 seq->last_line = info;
1584 table->lcl_head = info;
1585 table->sequences = seq;
1586 table->num_sequences++;
1587 }
1588 else if (info->end_sequence
1589 || new_line_sorts_after (info, seq->last_line))
1590 {
1591 /* Normal case: add 'info' to the beginning of the current sequence. */
1592 info->prev_line = seq->last_line;
1593 seq->last_line = info;
1594
1595 /* lcl_head: initialize to head a *possible* sequence at the end. */
1596 if (!table->lcl_head)
1597 table->lcl_head = info;
1598 }
1599 else if (!new_line_sorts_after (info, table->lcl_head)
1600 && (!table->lcl_head->prev_line
1601 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1602 {
1603 /* Abnormal but easy: lcl_head is the head of 'info'. */
1604 info->prev_line = table->lcl_head->prev_line;
1605 table->lcl_head->prev_line = info;
1606 }
1607 else
1608 {
1609 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1610 are valid heads for 'info'. Reset 'lcl_head'. */
1611 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1612 struct line_info* li1 = li2->prev_line;
1613
1614 while (li1)
1615 {
1616 if (!new_line_sorts_after (info, li2)
1617 && new_line_sorts_after (info, li1))
1618 break;
1619
1620 li2 = li1; /* always non-NULL */
1621 li1 = li1->prev_line;
1622 }
1623 table->lcl_head = li2;
1624 info->prev_line = table->lcl_head->prev_line;
1625 table->lcl_head->prev_line = info;
1626 if (address < seq->low_pc)
1627 seq->low_pc = address;
1628 }
1629 return TRUE;
1630 }
1631
1632 /* Extract a fully qualified filename from a line info table.
1633 The returned string has been malloc'ed and it is the caller's
1634 responsibility to free it. */
1635
1636 static char *
1637 concat_filename (struct line_info_table *table, unsigned int file)
1638 {
1639 char *filename;
1640
1641 if (table == NULL || file - 1 >= table->num_files)
1642 {
1643 /* FILE == 0 means unknown. */
1644 if (file)
1645 _bfd_error_handler
1646 (_("DWARF error: mangled line number section (bad file number)"));
1647 return strdup ("<unknown>");
1648 }
1649
1650 filename = table->files[file - 1].name;
1651 if (filename == NULL)
1652 return strdup ("<unknown>");
1653
1654 if (!IS_ABSOLUTE_PATH (filename))
1655 {
1656 char *dir_name = NULL;
1657 char *subdir_name = NULL;
1658 char *name;
1659 size_t len;
1660
1661 if (table->files[file - 1].dir
1662 /* PR 17512: file: 0317e960. */
1663 && table->files[file - 1].dir <= table->num_dirs
1664 /* PR 17512: file: 7f3d2e4b. */
1665 && table->dirs != NULL)
1666 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1667
1668 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1669 dir_name = table->comp_dir;
1670
1671 if (!dir_name)
1672 {
1673 dir_name = subdir_name;
1674 subdir_name = NULL;
1675 }
1676
1677 if (!dir_name)
1678 return strdup (filename);
1679
1680 len = strlen (dir_name) + strlen (filename) + 2;
1681
1682 if (subdir_name)
1683 {
1684 len += strlen (subdir_name) + 1;
1685 name = (char *) bfd_malloc (len);
1686 if (name)
1687 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1688 }
1689 else
1690 {
1691 name = (char *) bfd_malloc (len);
1692 if (name)
1693 sprintf (name, "%s/%s", dir_name, filename);
1694 }
1695
1696 return name;
1697 }
1698
1699 return strdup (filename);
1700 }
1701
1702 static bfd_boolean
1703 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1704 bfd_vma low_pc, bfd_vma high_pc)
1705 {
1706 struct arange *arange;
1707
1708 /* Ignore empty ranges. */
1709 if (low_pc == high_pc)
1710 return TRUE;
1711
1712 /* If the first arange is empty, use it. */
1713 if (first_arange->high == 0)
1714 {
1715 first_arange->low = low_pc;
1716 first_arange->high = high_pc;
1717 return TRUE;
1718 }
1719
1720 /* Next see if we can cheaply extend an existing range. */
1721 arange = first_arange;
1722 do
1723 {
1724 if (low_pc == arange->high)
1725 {
1726 arange->high = high_pc;
1727 return TRUE;
1728 }
1729 if (high_pc == arange->low)
1730 {
1731 arange->low = low_pc;
1732 return TRUE;
1733 }
1734 arange = arange->next;
1735 }
1736 while (arange);
1737
1738 /* Need to allocate a new arange and insert it into the arange list.
1739 Order isn't significant, so just insert after the first arange. */
1740 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1741 if (arange == NULL)
1742 return FALSE;
1743 arange->low = low_pc;
1744 arange->high = high_pc;
1745 arange->next = first_arange->next;
1746 first_arange->next = arange;
1747 return TRUE;
1748 }
1749
1750 /* Compare function for line sequences. */
1751
1752 static int
1753 compare_sequences (const void* a, const void* b)
1754 {
1755 const struct line_sequence* seq1 = a;
1756 const struct line_sequence* seq2 = b;
1757
1758 /* Sort by low_pc as the primary key. */
1759 if (seq1->low_pc < seq2->low_pc)
1760 return -1;
1761 if (seq1->low_pc > seq2->low_pc)
1762 return 1;
1763
1764 /* If low_pc values are equal, sort in reverse order of
1765 high_pc, so that the largest region comes first. */
1766 if (seq1->last_line->address < seq2->last_line->address)
1767 return 1;
1768 if (seq1->last_line->address > seq2->last_line->address)
1769 return -1;
1770
1771 if (seq1->last_line->op_index < seq2->last_line->op_index)
1772 return 1;
1773 if (seq1->last_line->op_index > seq2->last_line->op_index)
1774 return -1;
1775
1776 /* num_lines is initially an index, to make the sort stable. */
1777 if (seq1->num_lines < seq2->num_lines)
1778 return -1;
1779 if (seq1->num_lines > seq2->num_lines)
1780 return 1;
1781 return 0;
1782 }
1783
1784 /* Construct the line information table for quick lookup. */
1785
1786 static bfd_boolean
1787 build_line_info_table (struct line_info_table * table,
1788 struct line_sequence * seq)
1789 {
1790 size_t amt;
1791 struct line_info **line_info_lookup;
1792 struct line_info *each_line;
1793 unsigned int num_lines;
1794 unsigned int line_index;
1795
1796 if (seq->line_info_lookup != NULL)
1797 return TRUE;
1798
1799 /* Count the number of line information entries. We could do this while
1800 scanning the debug information, but some entries may be added via
1801 lcl_head without having a sequence handy to increment the number of
1802 lines. */
1803 num_lines = 0;
1804 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1805 num_lines++;
1806
1807 seq->num_lines = num_lines;
1808 if (num_lines == 0)
1809 return TRUE;
1810
1811 /* Allocate space for the line information lookup table. */
1812 amt = sizeof (struct line_info*) * num_lines;
1813 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1814 seq->line_info_lookup = line_info_lookup;
1815 if (line_info_lookup == NULL)
1816 return FALSE;
1817
1818 /* Create the line information lookup table. */
1819 line_index = num_lines;
1820 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1821 line_info_lookup[--line_index] = each_line;
1822
1823 BFD_ASSERT (line_index == 0);
1824 return TRUE;
1825 }
1826
1827 /* Sort the line sequences for quick lookup. */
1828
1829 static bfd_boolean
1830 sort_line_sequences (struct line_info_table* table)
1831 {
1832 size_t amt;
1833 struct line_sequence *sequences;
1834 struct line_sequence *seq;
1835 unsigned int n = 0;
1836 unsigned int num_sequences = table->num_sequences;
1837 bfd_vma last_high_pc;
1838
1839 if (num_sequences == 0)
1840 return TRUE;
1841
1842 /* Allocate space for an array of sequences. */
1843 amt = sizeof (struct line_sequence) * num_sequences;
1844 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1845 if (sequences == NULL)
1846 return FALSE;
1847
1848 /* Copy the linked list into the array, freeing the original nodes. */
1849 seq = table->sequences;
1850 for (n = 0; n < num_sequences; n++)
1851 {
1852 struct line_sequence* last_seq = seq;
1853
1854 BFD_ASSERT (seq);
1855 sequences[n].low_pc = seq->low_pc;
1856 sequences[n].prev_sequence = NULL;
1857 sequences[n].last_line = seq->last_line;
1858 sequences[n].line_info_lookup = NULL;
1859 sequences[n].num_lines = n;
1860 seq = seq->prev_sequence;
1861 free (last_seq);
1862 }
1863 BFD_ASSERT (seq == NULL);
1864
1865 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1866
1867 /* Make the list binary-searchable by trimming overlapping entries
1868 and removing nested entries. */
1869 num_sequences = 1;
1870 last_high_pc = sequences[0].last_line->address;
1871 for (n = 1; n < table->num_sequences; n++)
1872 {
1873 if (sequences[n].low_pc < last_high_pc)
1874 {
1875 if (sequences[n].last_line->address <= last_high_pc)
1876 /* Skip nested entries. */
1877 continue;
1878
1879 /* Trim overlapping entries. */
1880 sequences[n].low_pc = last_high_pc;
1881 }
1882 last_high_pc = sequences[n].last_line->address;
1883 if (n > num_sequences)
1884 {
1885 /* Close up the gap. */
1886 sequences[num_sequences].low_pc = sequences[n].low_pc;
1887 sequences[num_sequences].last_line = sequences[n].last_line;
1888 }
1889 num_sequences++;
1890 }
1891
1892 table->sequences = sequences;
1893 table->num_sequences = num_sequences;
1894 return TRUE;
1895 }
1896
1897 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1898
1899 static bfd_boolean
1900 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1901 {
1902 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1903 {
1904 char **tmp;
1905 size_t amt;
1906
1907 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1908 amt *= sizeof (char *);
1909
1910 tmp = (char **) bfd_realloc (table->dirs, amt);
1911 if (tmp == NULL)
1912 return FALSE;
1913 table->dirs = tmp;
1914 }
1915
1916 table->dirs[table->num_dirs++] = cur_dir;
1917 return TRUE;
1918 }
1919
1920 static bfd_boolean
1921 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1922 unsigned int dir ATTRIBUTE_UNUSED,
1923 unsigned int xtime ATTRIBUTE_UNUSED,
1924 unsigned int size ATTRIBUTE_UNUSED)
1925 {
1926 return line_info_add_include_dir (table, cur_dir);
1927 }
1928
1929 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1930
1931 static bfd_boolean
1932 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1933 unsigned int dir, unsigned int xtime,
1934 unsigned int size)
1935 {
1936 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1937 {
1938 struct fileinfo *tmp;
1939 size_t amt;
1940
1941 amt = table->num_files + FILE_ALLOC_CHUNK;
1942 amt *= sizeof (struct fileinfo);
1943
1944 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1945 if (tmp == NULL)
1946 return FALSE;
1947 table->files = tmp;
1948 }
1949
1950 table->files[table->num_files].name = cur_file;
1951 table->files[table->num_files].dir = dir;
1952 table->files[table->num_files].time = xtime;
1953 table->files[table->num_files].size = size;
1954 table->num_files++;
1955 return TRUE;
1956 }
1957
1958 /* Read directory or file name entry format, starting with byte of
1959 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1960 entries count and the entries themselves in the described entry
1961 format. */
1962
1963 static bfd_boolean
1964 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1965 bfd_byte *buf_end, struct line_info_table *table,
1966 bfd_boolean (*callback) (struct line_info_table *table,
1967 char *cur_file,
1968 unsigned int dir,
1969 unsigned int time,
1970 unsigned int size))
1971 {
1972 bfd *abfd = unit->abfd;
1973 bfd_byte format_count, formati;
1974 bfd_vma data_count, datai;
1975 bfd_byte *buf = *bufp;
1976 bfd_byte *format_header_data;
1977 unsigned int bytes_read;
1978
1979 format_count = read_1_byte (abfd, buf, buf_end);
1980 buf += 1;
1981 format_header_data = buf;
1982 for (formati = 0; formati < format_count; formati++)
1983 {
1984 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1985 buf += bytes_read;
1986 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1987 buf += bytes_read;
1988 }
1989
1990 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1991 buf += bytes_read;
1992 if (format_count == 0 && data_count != 0)
1993 {
1994 _bfd_error_handler (_("DWARF error: zero format count"));
1995 bfd_set_error (bfd_error_bad_value);
1996 return FALSE;
1997 }
1998
1999 /* PR 22210. Paranoia check. Don't bother running the loop
2000 if we know that we are going to run out of buffer. */
2001 if (data_count > (bfd_vma) (buf_end - buf))
2002 {
2003 _bfd_error_handler
2004 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
2005 (uint64_t) data_count);
2006 bfd_set_error (bfd_error_bad_value);
2007 return FALSE;
2008 }
2009
2010 for (datai = 0; datai < data_count; datai++)
2011 {
2012 bfd_byte *format = format_header_data;
2013 struct fileinfo fe;
2014
2015 memset (&fe, 0, sizeof fe);
2016 for (formati = 0; formati < format_count; formati++)
2017 {
2018 bfd_vma content_type, form;
2019 char *string_trash;
2020 char **stringp = &string_trash;
2021 unsigned int uint_trash, *uintp = &uint_trash;
2022 struct attribute attr;
2023
2024 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
2025 FALSE, buf_end);
2026 format += bytes_read;
2027 switch (content_type)
2028 {
2029 case DW_LNCT_path:
2030 stringp = &fe.name;
2031 break;
2032 case DW_LNCT_directory_index:
2033 uintp = &fe.dir;
2034 break;
2035 case DW_LNCT_timestamp:
2036 uintp = &fe.time;
2037 break;
2038 case DW_LNCT_size:
2039 uintp = &fe.size;
2040 break;
2041 case DW_LNCT_MD5:
2042 break;
2043 default:
2044 _bfd_error_handler
2045 (_("DWARF error: unknown format content type %" PRIu64),
2046 (uint64_t) content_type);
2047 bfd_set_error (bfd_error_bad_value);
2048 return FALSE;
2049 }
2050
2051 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
2052 buf_end);
2053 format += bytes_read;
2054
2055 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
2056 if (buf == NULL)
2057 return FALSE;
2058 switch (form)
2059 {
2060 case DW_FORM_string:
2061 case DW_FORM_line_strp:
2062 *stringp = attr.u.str;
2063 break;
2064
2065 case DW_FORM_data1:
2066 case DW_FORM_data2:
2067 case DW_FORM_data4:
2068 case DW_FORM_data8:
2069 case DW_FORM_udata:
2070 *uintp = attr.u.val;
2071 break;
2072 }
2073 }
2074
2075 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2076 return FALSE;
2077 }
2078
2079 *bufp = buf;
2080 return TRUE;
2081 }
2082
2083 /* Decode the line number information for UNIT. */
2084
2085 static struct line_info_table*
2086 decode_line_info (struct comp_unit *unit)
2087 {
2088 bfd *abfd = unit->abfd;
2089 struct dwarf2_debug *stash = unit->stash;
2090 struct dwarf2_debug_file *file = unit->file;
2091 struct line_info_table* table;
2092 bfd_byte *line_ptr;
2093 bfd_byte *line_end;
2094 struct line_head lh;
2095 unsigned int i, bytes_read, offset_size;
2096 char *cur_file, *cur_dir;
2097 unsigned char op_code, extended_op, adj_opcode;
2098 unsigned int exop_len;
2099 size_t amt;
2100
2101 if (unit->line_offset == 0 && file->line_table)
2102 return file->line_table;
2103
2104 if (! read_section (abfd, &stash->debug_sections[debug_line],
2105 file->syms, unit->line_offset,
2106 &file->dwarf_line_buffer, &file->dwarf_line_size))
2107 return NULL;
2108
2109 if (file->dwarf_line_size < 16)
2110 {
2111 _bfd_error_handler
2112 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2113 (int64_t) file->dwarf_line_size);
2114 bfd_set_error (bfd_error_bad_value);
2115 return NULL;
2116 }
2117 line_ptr = file->dwarf_line_buffer + unit->line_offset;
2118 line_end = file->dwarf_line_buffer + file->dwarf_line_size;
2119
2120 /* Read in the prologue. */
2121 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2122 line_ptr += 4;
2123 offset_size = 4;
2124 if (lh.total_length == 0xffffffff)
2125 {
2126 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2127 line_ptr += 8;
2128 offset_size = 8;
2129 }
2130 else if (lh.total_length == 0 && unit->addr_size == 8)
2131 {
2132 /* Handle (non-standard) 64-bit DWARF2 formats. */
2133 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2134 line_ptr += 4;
2135 offset_size = 8;
2136 }
2137
2138 if (lh.total_length > (size_t) (line_end - line_ptr))
2139 {
2140 _bfd_error_handler
2141 /* xgettext: c-format */
2142 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2143 " than the space remaining in the section (%#lx)"),
2144 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2145 bfd_set_error (bfd_error_bad_value);
2146 return NULL;
2147 }
2148
2149 line_end = line_ptr + lh.total_length;
2150
2151 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2152 if (lh.version < 2 || lh.version > 5)
2153 {
2154 _bfd_error_handler
2155 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2156 bfd_set_error (bfd_error_bad_value);
2157 return NULL;
2158 }
2159 line_ptr += 2;
2160
2161 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2162 >= line_end)
2163 {
2164 _bfd_error_handler
2165 (_("DWARF error: ran out of room reading prologue"));
2166 bfd_set_error (bfd_error_bad_value);
2167 return NULL;
2168 }
2169
2170 if (lh.version >= 5)
2171 {
2172 unsigned int segment_selector_size;
2173
2174 /* Skip address size. */
2175 read_1_byte (abfd, line_ptr, line_end);
2176 line_ptr += 1;
2177
2178 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2179 line_ptr += 1;
2180 if (segment_selector_size != 0)
2181 {
2182 _bfd_error_handler
2183 (_("DWARF error: line info unsupported segment selector size %u"),
2184 segment_selector_size);
2185 bfd_set_error (bfd_error_bad_value);
2186 return NULL;
2187 }
2188 }
2189
2190 if (offset_size == 4)
2191 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2192 else
2193 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2194 line_ptr += offset_size;
2195
2196 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2197 line_ptr += 1;
2198
2199 if (lh.version >= 4)
2200 {
2201 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2202 line_ptr += 1;
2203 }
2204 else
2205 lh.maximum_ops_per_insn = 1;
2206
2207 if (lh.maximum_ops_per_insn == 0)
2208 {
2209 _bfd_error_handler
2210 (_("DWARF error: invalid maximum operations per instruction"));
2211 bfd_set_error (bfd_error_bad_value);
2212 return NULL;
2213 }
2214
2215 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2216 line_ptr += 1;
2217
2218 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2219 line_ptr += 1;
2220
2221 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2222 line_ptr += 1;
2223
2224 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2225 line_ptr += 1;
2226
2227 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2228 {
2229 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2230 bfd_set_error (bfd_error_bad_value);
2231 return NULL;
2232 }
2233
2234 amt = lh.opcode_base * sizeof (unsigned char);
2235 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2236
2237 lh.standard_opcode_lengths[0] = 1;
2238
2239 for (i = 1; i < lh.opcode_base; ++i)
2240 {
2241 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2242 line_ptr += 1;
2243 }
2244
2245 amt = sizeof (struct line_info_table);
2246 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2247 if (table == NULL)
2248 return NULL;
2249 table->abfd = abfd;
2250 table->comp_dir = unit->comp_dir;
2251
2252 table->num_files = 0;
2253 table->files = NULL;
2254
2255 table->num_dirs = 0;
2256 table->dirs = NULL;
2257
2258 table->num_sequences = 0;
2259 table->sequences = NULL;
2260
2261 table->lcl_head = NULL;
2262
2263 if (lh.version >= 5)
2264 {
2265 /* Read directory table. */
2266 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2267 line_info_add_include_dir_stub))
2268 goto fail;
2269
2270 /* Read file name table. */
2271 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2272 line_info_add_file_name))
2273 goto fail;
2274 }
2275 else
2276 {
2277 /* Read directory table. */
2278 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2279 {
2280 line_ptr += bytes_read;
2281
2282 if (!line_info_add_include_dir (table, cur_dir))
2283 goto fail;
2284 }
2285
2286 line_ptr += bytes_read;
2287
2288 /* Read file name table. */
2289 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2290 {
2291 unsigned int dir, xtime, size;
2292
2293 line_ptr += bytes_read;
2294
2295 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2296 line_ptr += bytes_read;
2297 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2298 line_ptr += bytes_read;
2299 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2300 line_ptr += bytes_read;
2301
2302 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2303 goto fail;
2304 }
2305
2306 line_ptr += bytes_read;
2307 }
2308
2309 /* Read the statement sequences until there's nothing left. */
2310 while (line_ptr < line_end)
2311 {
2312 /* State machine registers. */
2313 bfd_vma address = 0;
2314 unsigned char op_index = 0;
2315 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2316 unsigned int line = 1;
2317 unsigned int column = 0;
2318 unsigned int discriminator = 0;
2319 int is_stmt = lh.default_is_stmt;
2320 int end_sequence = 0;
2321 unsigned int dir, xtime, size;
2322 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2323 compilers generate address sequences that are wildly out of
2324 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2325 for ia64-Linux). Thus, to determine the low and high
2326 address, we must compare on every DW_LNS_copy, etc. */
2327 bfd_vma low_pc = (bfd_vma) -1;
2328 bfd_vma high_pc = 0;
2329
2330 /* Decode the table. */
2331 while (!end_sequence && line_ptr < line_end)
2332 {
2333 op_code = read_1_byte (abfd, line_ptr, line_end);
2334 line_ptr += 1;
2335
2336 if (op_code >= lh.opcode_base)
2337 {
2338 /* Special operand. */
2339 adj_opcode = op_code - lh.opcode_base;
2340 if (lh.line_range == 0)
2341 goto line_fail;
2342 if (lh.maximum_ops_per_insn == 1)
2343 address += (adj_opcode / lh.line_range
2344 * lh.minimum_instruction_length);
2345 else
2346 {
2347 address += ((op_index + adj_opcode / lh.line_range)
2348 / lh.maximum_ops_per_insn
2349 * lh.minimum_instruction_length);
2350 op_index = ((op_index + adj_opcode / lh.line_range)
2351 % lh.maximum_ops_per_insn);
2352 }
2353 line += lh.line_base + (adj_opcode % lh.line_range);
2354 /* Append row to matrix using current values. */
2355 if (!add_line_info (table, address, op_index, filename,
2356 line, column, discriminator, 0))
2357 goto line_fail;
2358 discriminator = 0;
2359 if (address < low_pc)
2360 low_pc = address;
2361 if (address > high_pc)
2362 high_pc = address;
2363 }
2364 else switch (op_code)
2365 {
2366 case DW_LNS_extended_op:
2367 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2368 FALSE, line_end);
2369 line_ptr += bytes_read;
2370 extended_op = read_1_byte (abfd, line_ptr, line_end);
2371 line_ptr += 1;
2372
2373 switch (extended_op)
2374 {
2375 case DW_LNE_end_sequence:
2376 end_sequence = 1;
2377 if (!add_line_info (table, address, op_index, filename, line,
2378 column, discriminator, end_sequence))
2379 goto line_fail;
2380 discriminator = 0;
2381 if (address < low_pc)
2382 low_pc = address;
2383 if (address > high_pc)
2384 high_pc = address;
2385 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2386 goto line_fail;
2387 break;
2388 case DW_LNE_set_address:
2389 address = read_address (unit, line_ptr, line_end);
2390 op_index = 0;
2391 line_ptr += unit->addr_size;
2392 break;
2393 case DW_LNE_define_file:
2394 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2395 line_ptr += bytes_read;
2396 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2397 FALSE, line_end);
2398 line_ptr += bytes_read;
2399 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2400 FALSE, line_end);
2401 line_ptr += bytes_read;
2402 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2403 FALSE, line_end);
2404 line_ptr += bytes_read;
2405 if (!line_info_add_file_name (table, cur_file, dir,
2406 xtime, size))
2407 goto line_fail;
2408 break;
2409 case DW_LNE_set_discriminator:
2410 discriminator =
2411 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2412 FALSE, line_end);
2413 line_ptr += bytes_read;
2414 break;
2415 case DW_LNE_HP_source_file_correlation:
2416 line_ptr += exop_len - 1;
2417 break;
2418 default:
2419 _bfd_error_handler
2420 (_("DWARF error: mangled line number section"));
2421 bfd_set_error (bfd_error_bad_value);
2422 line_fail:
2423 if (filename != NULL)
2424 free (filename);
2425 goto fail;
2426 }
2427 break;
2428 case DW_LNS_copy:
2429 if (!add_line_info (table, address, op_index,
2430 filename, line, column, discriminator, 0))
2431 goto line_fail;
2432 discriminator = 0;
2433 if (address < low_pc)
2434 low_pc = address;
2435 if (address > high_pc)
2436 high_pc = address;
2437 break;
2438 case DW_LNS_advance_pc:
2439 if (lh.maximum_ops_per_insn == 1)
2440 address += (lh.minimum_instruction_length
2441 * _bfd_safe_read_leb128 (abfd, line_ptr,
2442 &bytes_read,
2443 FALSE, line_end));
2444 else
2445 {
2446 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2447 &bytes_read,
2448 FALSE, line_end);
2449 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2450 * lh.minimum_instruction_length);
2451 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2452 }
2453 line_ptr += bytes_read;
2454 break;
2455 case DW_LNS_advance_line:
2456 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2457 TRUE, line_end);
2458 line_ptr += bytes_read;
2459 break;
2460 case DW_LNS_set_file:
2461 {
2462 unsigned int filenum;
2463
2464 /* The file and directory tables are 0
2465 based, the references are 1 based. */
2466 filenum = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2467 FALSE, line_end);
2468 line_ptr += bytes_read;
2469 if (filename)
2470 free (filename);
2471 filename = concat_filename (table, filenum);
2472 break;
2473 }
2474 case DW_LNS_set_column:
2475 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2476 FALSE, line_end);
2477 line_ptr += bytes_read;
2478 break;
2479 case DW_LNS_negate_stmt:
2480 is_stmt = (!is_stmt);
2481 break;
2482 case DW_LNS_set_basic_block:
2483 break;
2484 case DW_LNS_const_add_pc:
2485 if (lh.line_range == 0)
2486 goto line_fail;
2487 if (lh.maximum_ops_per_insn == 1)
2488 address += (lh.minimum_instruction_length
2489 * ((255 - lh.opcode_base) / lh.line_range));
2490 else
2491 {
2492 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2493 address += (lh.minimum_instruction_length
2494 * ((op_index + adjust)
2495 / lh.maximum_ops_per_insn));
2496 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2497 }
2498 break;
2499 case DW_LNS_fixed_advance_pc:
2500 address += read_2_bytes (abfd, line_ptr, line_end);
2501 op_index = 0;
2502 line_ptr += 2;
2503 break;
2504 default:
2505 /* Unknown standard opcode, ignore it. */
2506 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2507 {
2508 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2509 FALSE, line_end);
2510 line_ptr += bytes_read;
2511 }
2512 break;
2513 }
2514 }
2515
2516 if (filename)
2517 free (filename);
2518 }
2519
2520 if (unit->line_offset == 0)
2521 file->line_table = table;
2522 if (sort_line_sequences (table))
2523 return table;
2524
2525 fail:
2526 while (table->sequences != NULL)
2527 {
2528 struct line_sequence* seq = table->sequences;
2529 table->sequences = table->sequences->prev_sequence;
2530 free (seq);
2531 }
2532 if (table->files != NULL)
2533 free (table->files);
2534 if (table->dirs != NULL)
2535 free (table->dirs);
2536 return NULL;
2537 }
2538
2539 /* If ADDR is within TABLE set the output parameters and return the
2540 range of addresses covered by the entry used to fill them out.
2541 Otherwise set * FILENAME_PTR to NULL and return 0.
2542 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2543 are pointers to the objects to be filled in. */
2544
2545 static bfd_vma
2546 lookup_address_in_line_info_table (struct line_info_table *table,
2547 bfd_vma addr,
2548 const char **filename_ptr,
2549 unsigned int *linenumber_ptr,
2550 unsigned int *discriminator_ptr)
2551 {
2552 struct line_sequence *seq = NULL;
2553 struct line_info *info;
2554 int low, high, mid;
2555
2556 /* Binary search the array of sequences. */
2557 low = 0;
2558 high = table->num_sequences;
2559 while (low < high)
2560 {
2561 mid = (low + high) / 2;
2562 seq = &table->sequences[mid];
2563 if (addr < seq->low_pc)
2564 high = mid;
2565 else if (addr >= seq->last_line->address)
2566 low = mid + 1;
2567 else
2568 break;
2569 }
2570
2571 /* Check for a valid sequence. */
2572 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2573 goto fail;
2574
2575 if (!build_line_info_table (table, seq))
2576 goto fail;
2577
2578 /* Binary search the array of line information. */
2579 low = 0;
2580 high = seq->num_lines;
2581 info = NULL;
2582 while (low < high)
2583 {
2584 mid = (low + high) / 2;
2585 info = seq->line_info_lookup[mid];
2586 if (addr < info->address)
2587 high = mid;
2588 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2589 low = mid + 1;
2590 else
2591 break;
2592 }
2593
2594 /* Check for a valid line information entry. */
2595 if (info
2596 && addr >= info->address
2597 && addr < seq->line_info_lookup[mid + 1]->address
2598 && !(info->end_sequence || info == seq->last_line))
2599 {
2600 *filename_ptr = info->filename;
2601 *linenumber_ptr = info->line;
2602 if (discriminator_ptr)
2603 *discriminator_ptr = info->discriminator;
2604 return seq->last_line->address - seq->low_pc;
2605 }
2606
2607 fail:
2608 *filename_ptr = NULL;
2609 return 0;
2610 }
2611
2612 /* Read in the .debug_ranges section for future reference. */
2613
2614 static bfd_boolean
2615 read_debug_ranges (struct comp_unit * unit)
2616 {
2617 struct dwarf2_debug *stash = unit->stash;
2618 struct dwarf2_debug_file *file = unit->file;
2619
2620 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2621 file->syms, 0,
2622 &file->dwarf_ranges_buffer, &file->dwarf_ranges_size);
2623 }
2624
2625 /* Function table functions. */
2626
2627 static int
2628 compare_lookup_funcinfos (const void * a, const void * b)
2629 {
2630 const struct lookup_funcinfo * lookup1 = a;
2631 const struct lookup_funcinfo * lookup2 = b;
2632
2633 if (lookup1->low_addr < lookup2->low_addr)
2634 return -1;
2635 if (lookup1->low_addr > lookup2->low_addr)
2636 return 1;
2637 if (lookup1->high_addr < lookup2->high_addr)
2638 return -1;
2639 if (lookup1->high_addr > lookup2->high_addr)
2640 return 1;
2641
2642 if (lookup1->idx < lookup2->idx)
2643 return -1;
2644 if (lookup1->idx > lookup2->idx)
2645 return 1;
2646 return 0;
2647 }
2648
2649 static bfd_boolean
2650 build_lookup_funcinfo_table (struct comp_unit * unit)
2651 {
2652 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2653 unsigned int number_of_functions = unit->number_of_functions;
2654 struct funcinfo *each;
2655 struct lookup_funcinfo *entry;
2656 size_t func_index;
2657 struct arange *range;
2658 bfd_vma low_addr, high_addr;
2659
2660 if (lookup_funcinfo_table || number_of_functions == 0)
2661 return TRUE;
2662
2663 /* Create the function info lookup table. */
2664 lookup_funcinfo_table = (struct lookup_funcinfo *)
2665 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2666 if (lookup_funcinfo_table == NULL)
2667 return FALSE;
2668
2669 /* Populate the function info lookup table. */
2670 func_index = number_of_functions;
2671 for (each = unit->function_table; each; each = each->prev_func)
2672 {
2673 entry = &lookup_funcinfo_table[--func_index];
2674 entry->funcinfo = each;
2675 entry->idx = func_index;
2676
2677 /* Calculate the lowest and highest address for this function entry. */
2678 low_addr = entry->funcinfo->arange.low;
2679 high_addr = entry->funcinfo->arange.high;
2680
2681 for (range = entry->funcinfo->arange.next; range; range = range->next)
2682 {
2683 if (range->low < low_addr)
2684 low_addr = range->low;
2685 if (range->high > high_addr)
2686 high_addr = range->high;
2687 }
2688
2689 entry->low_addr = low_addr;
2690 entry->high_addr = high_addr;
2691 }
2692
2693 BFD_ASSERT (func_index == 0);
2694
2695 /* Sort the function by address. */
2696 qsort (lookup_funcinfo_table,
2697 number_of_functions,
2698 sizeof (struct lookup_funcinfo),
2699 compare_lookup_funcinfos);
2700
2701 /* Calculate the high watermark for each function in the lookup table. */
2702 high_addr = lookup_funcinfo_table[0].high_addr;
2703 for (func_index = 1; func_index < number_of_functions; func_index++)
2704 {
2705 entry = &lookup_funcinfo_table[func_index];
2706 if (entry->high_addr > high_addr)
2707 high_addr = entry->high_addr;
2708 else
2709 entry->high_addr = high_addr;
2710 }
2711
2712 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2713 return TRUE;
2714 }
2715
2716 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2717 TRUE. Note that we need to find the function that has the smallest range
2718 that contains ADDR, to handle inlined functions without depending upon
2719 them being ordered in TABLE by increasing range. */
2720
2721 static bfd_boolean
2722 lookup_address_in_function_table (struct comp_unit *unit,
2723 bfd_vma addr,
2724 struct funcinfo **function_ptr)
2725 {
2726 unsigned int number_of_functions = unit->number_of_functions;
2727 struct lookup_funcinfo* lookup_funcinfo = NULL;
2728 struct funcinfo* funcinfo = NULL;
2729 struct funcinfo* best_fit = NULL;
2730 bfd_vma best_fit_len = 0;
2731 bfd_size_type low, high, mid, first;
2732 struct arange *arange;
2733
2734 if (number_of_functions == 0)
2735 return FALSE;
2736
2737 if (!build_lookup_funcinfo_table (unit))
2738 return FALSE;
2739
2740 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2741 return FALSE;
2742
2743 /* Find the first function in the lookup table which may contain the
2744 specified address. */
2745 low = 0;
2746 high = number_of_functions;
2747 first = high;
2748 while (low < high)
2749 {
2750 mid = (low + high) / 2;
2751 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2752 if (addr < lookup_funcinfo->low_addr)
2753 high = mid;
2754 else if (addr >= lookup_funcinfo->high_addr)
2755 low = mid + 1;
2756 else
2757 high = first = mid;
2758 }
2759
2760 /* Find the 'best' match for the address. The prior algorithm defined the
2761 best match as the function with the smallest address range containing
2762 the specified address. This definition should probably be changed to the
2763 innermost inline routine containing the address, but right now we want
2764 to get the same results we did before. */
2765 while (first < number_of_functions)
2766 {
2767 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2768 break;
2769 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2770
2771 for (arange = &funcinfo->arange; arange; arange = arange->next)
2772 {
2773 if (addr < arange->low || addr >= arange->high)
2774 continue;
2775
2776 if (!best_fit
2777 || arange->high - arange->low < best_fit_len
2778 /* The following comparison is designed to return the same
2779 match as the previous algorithm for routines which have the
2780 same best fit length. */
2781 || (arange->high - arange->low == best_fit_len
2782 && funcinfo > best_fit))
2783 {
2784 best_fit = funcinfo;
2785 best_fit_len = arange->high - arange->low;
2786 }
2787 }
2788
2789 first++;
2790 }
2791
2792 if (!best_fit)
2793 return FALSE;
2794
2795 *function_ptr = best_fit;
2796 return TRUE;
2797 }
2798
2799 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2800 and LINENUMBER_PTR, and return TRUE. */
2801
2802 static bfd_boolean
2803 lookup_symbol_in_function_table (struct comp_unit *unit,
2804 asymbol *sym,
2805 bfd_vma addr,
2806 const char **filename_ptr,
2807 unsigned int *linenumber_ptr)
2808 {
2809 struct funcinfo* each_func;
2810 struct funcinfo* best_fit = NULL;
2811 bfd_vma best_fit_len = 0;
2812 struct arange *arange;
2813 const char *name = bfd_asymbol_name (sym);
2814 asection *sec = bfd_asymbol_section (sym);
2815
2816 for (each_func = unit->function_table;
2817 each_func;
2818 each_func = each_func->prev_func)
2819 {
2820 for (arange = &each_func->arange;
2821 arange;
2822 arange = arange->next)
2823 {
2824 if ((!each_func->sec || each_func->sec == sec)
2825 && addr >= arange->low
2826 && addr < arange->high
2827 && each_func->name
2828 && strcmp (name, each_func->name) == 0
2829 && (!best_fit
2830 || arange->high - arange->low < best_fit_len))
2831 {
2832 best_fit = each_func;
2833 best_fit_len = arange->high - arange->low;
2834 }
2835 }
2836 }
2837
2838 if (best_fit)
2839 {
2840 best_fit->sec = sec;
2841 *filename_ptr = best_fit->file;
2842 *linenumber_ptr = best_fit->line;
2843 return TRUE;
2844 }
2845 else
2846 return FALSE;
2847 }
2848
2849 /* Variable table functions. */
2850
2851 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2852 LINENUMBER_PTR, and return TRUE. */
2853
2854 static bfd_boolean
2855 lookup_symbol_in_variable_table (struct comp_unit *unit,
2856 asymbol *sym,
2857 bfd_vma addr,
2858 const char **filename_ptr,
2859 unsigned int *linenumber_ptr)
2860 {
2861 const char *name = bfd_asymbol_name (sym);
2862 asection *sec = bfd_asymbol_section (sym);
2863 struct varinfo* each;
2864
2865 for (each = unit->variable_table; each; each = each->prev_var)
2866 if (! each->stack
2867 && each->file != NULL
2868 && each->name != NULL
2869 && each->addr == addr
2870 && (!each->sec || each->sec == sec)
2871 && strcmp (name, each->name) == 0)
2872 break;
2873
2874 if (each)
2875 {
2876 each->sec = sec;
2877 *filename_ptr = each->file;
2878 *linenumber_ptr = each->line;
2879 return TRUE;
2880 }
2881
2882 return FALSE;
2883 }
2884
2885 static struct comp_unit *stash_comp_unit (struct dwarf2_debug *,
2886 struct dwarf2_debug_file *);
2887 static bfd_boolean comp_unit_maybe_decode_line_info (struct comp_unit *);
2888
2889 static bfd_boolean
2890 find_abstract_instance (struct comp_unit *unit,
2891 struct attribute *attr_ptr,
2892 unsigned int recur_count,
2893 const char **pname,
2894 bfd_boolean *is_linkage,
2895 char **filename_ptr,
2896 int *linenumber_ptr)
2897 {
2898 bfd *abfd = unit->abfd;
2899 bfd_byte *info_ptr = NULL;
2900 bfd_byte *info_ptr_end;
2901 unsigned int abbrev_number, bytes_read, i;
2902 struct abbrev_info *abbrev;
2903 bfd_uint64_t die_ref = attr_ptr->u.val;
2904 struct attribute attr;
2905 const char *name = NULL;
2906
2907 if (recur_count == 100)
2908 {
2909 _bfd_error_handler
2910 (_("DWARF error: abstract instance recursion detected"));
2911 bfd_set_error (bfd_error_bad_value);
2912 return FALSE;
2913 }
2914
2915 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2916 is an offset from the .debug_info section, not the current CU. */
2917 if (attr_ptr->form == DW_FORM_ref_addr)
2918 {
2919 /* We only support DW_FORM_ref_addr within the same file, so
2920 any relocations should be resolved already. Check this by
2921 testing for a zero die_ref; There can't be a valid reference
2922 to the header of a .debug_info section.
2923 DW_FORM_ref_addr is an offset relative to .debug_info.
2924 Normally when using the GNU linker this is accomplished by
2925 emitting a symbolic reference to a label, because .debug_info
2926 sections are linked at zero. When there are multiple section
2927 groups containing .debug_info, as there might be in a
2928 relocatable object file, it would be reasonable to assume that
2929 a symbolic reference to a label in any .debug_info section
2930 might be used. Since we lay out multiple .debug_info
2931 sections at non-zero VMAs (see place_sections), and read
2932 them contiguously into dwarf_info_buffer, that means the
2933 reference is relative to dwarf_info_buffer. */
2934 size_t total;
2935
2936 info_ptr = unit->file->dwarf_info_buffer;
2937 info_ptr_end = info_ptr + unit->file->dwarf_info_size;
2938 total = info_ptr_end - info_ptr;
2939 if (!die_ref)
2940 return TRUE;
2941 else if (die_ref >= total)
2942 {
2943 _bfd_error_handler
2944 (_("DWARF error: invalid abstract instance DIE ref"));
2945 bfd_set_error (bfd_error_bad_value);
2946 return FALSE;
2947 }
2948 info_ptr += die_ref;
2949 }
2950 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2951 {
2952 bfd_boolean first_time = unit->stash->alt.dwarf_info_buffer == NULL;
2953
2954 info_ptr = read_alt_indirect_ref (unit, die_ref);
2955 if (first_time)
2956 unit->stash->alt.info_ptr = unit->stash->alt.dwarf_info_buffer;
2957 if (info_ptr == NULL)
2958 {
2959 _bfd_error_handler
2960 (_("DWARF error: unable to read alt ref %" PRIu64),
2961 (uint64_t) die_ref);
2962 bfd_set_error (bfd_error_bad_value);
2963 return FALSE;
2964 }
2965 info_ptr_end = (unit->stash->alt.dwarf_info_buffer
2966 + unit->stash->alt.dwarf_info_size);
2967 if (unit->stash->alt.all_comp_units)
2968 unit = unit->stash->alt.all_comp_units;
2969 }
2970
2971 if (attr_ptr->form == DW_FORM_ref_addr
2972 || attr_ptr->form == DW_FORM_GNU_ref_alt)
2973 {
2974 /* Now find the CU containing this pointer. */
2975 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2976 info_ptr_end = unit->end_ptr;
2977 else
2978 {
2979 /* Check other CUs to see if they contain the abbrev. */
2980 struct comp_unit *u;
2981
2982 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2983 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2984 break;
2985
2986 if (u == NULL)
2987 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2988 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2989 break;
2990
2991 if (attr_ptr->form == DW_FORM_ref_addr)
2992 while (u == NULL)
2993 {
2994 u = stash_comp_unit (unit->stash, &unit->stash->f);
2995 if (u == NULL)
2996 break;
2997 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2998 break;
2999 u = NULL;
3000 }
3001
3002 if (attr_ptr->form == DW_FORM_GNU_ref_alt)
3003 while (u == NULL)
3004 {
3005 u = stash_comp_unit (unit->stash, &unit->stash->alt);
3006 if (u == NULL)
3007 break;
3008 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3009 break;
3010 u = NULL;
3011 }
3012
3013 if (u == NULL)
3014 {
3015 _bfd_error_handler
3016 (_("DWARF error: unable to locate abstract instance DIE ref %"
3017 PRIu64), (uint64_t) die_ref);
3018 bfd_set_error (bfd_error_bad_value);
3019 return FALSE;
3020 }
3021 unit = u;
3022 info_ptr_end = unit->end_ptr;
3023 }
3024 }
3025 else
3026 {
3027 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
3028 DW_FORM_ref_udata. These are all references relative to the
3029 start of the current CU. */
3030 size_t total;
3031
3032 info_ptr = unit->info_ptr_unit;
3033 info_ptr_end = unit->end_ptr;
3034 total = info_ptr_end - info_ptr;
3035 if (!die_ref || die_ref >= total)
3036 {
3037 _bfd_error_handler
3038 (_("DWARF error: invalid abstract instance DIE ref"));
3039 bfd_set_error (bfd_error_bad_value);
3040 return FALSE;
3041 }
3042 info_ptr += die_ref;
3043 }
3044
3045 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3046 FALSE, info_ptr_end);
3047 info_ptr += bytes_read;
3048
3049 if (abbrev_number)
3050 {
3051 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3052 if (! abbrev)
3053 {
3054 _bfd_error_handler
3055 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
3056 bfd_set_error (bfd_error_bad_value);
3057 return FALSE;
3058 }
3059 else
3060 {
3061 for (i = 0; i < abbrev->num_attrs; ++i)
3062 {
3063 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
3064 info_ptr, info_ptr_end);
3065 if (info_ptr == NULL)
3066 break;
3067 switch (attr.name)
3068 {
3069 case DW_AT_name:
3070 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3071 over DW_AT_name. */
3072 if (name == NULL && is_str_attr (attr.form))
3073 {
3074 name = attr.u.str;
3075 if (non_mangled (unit->lang))
3076 *is_linkage = TRUE;
3077 }
3078 break;
3079 case DW_AT_specification:
3080 if (!find_abstract_instance (unit, &attr, recur_count + 1,
3081 &name, is_linkage,
3082 filename_ptr, linenumber_ptr))
3083 return FALSE;
3084 break;
3085 case DW_AT_linkage_name:
3086 case DW_AT_MIPS_linkage_name:
3087 /* PR 16949: Corrupt debug info can place
3088 non-string forms into these attributes. */
3089 if (is_str_attr (attr.form))
3090 {
3091 name = attr.u.str;
3092 *is_linkage = TRUE;
3093 }
3094 break;
3095 case DW_AT_decl_file:
3096 if (!comp_unit_maybe_decode_line_info (unit))
3097 return FALSE;
3098 *filename_ptr = concat_filename (unit->line_table,
3099 attr.u.val);
3100 break;
3101 case DW_AT_decl_line:
3102 *linenumber_ptr = attr.u.val;
3103 break;
3104 default:
3105 break;
3106 }
3107 }
3108 }
3109 }
3110 *pname = name;
3111 return TRUE;
3112 }
3113
3114 static bfd_boolean
3115 read_rangelist (struct comp_unit *unit, struct arange *arange,
3116 bfd_uint64_t offset)
3117 {
3118 bfd_byte *ranges_ptr;
3119 bfd_byte *ranges_end;
3120 bfd_vma base_address = unit->base_address;
3121
3122 if (! unit->file->dwarf_ranges_buffer)
3123 {
3124 if (! read_debug_ranges (unit))
3125 return FALSE;
3126 }
3127
3128 ranges_ptr = unit->file->dwarf_ranges_buffer + offset;
3129 if (ranges_ptr < unit->file->dwarf_ranges_buffer)
3130 return FALSE;
3131 ranges_end = unit->file->dwarf_ranges_buffer + unit->file->dwarf_ranges_size;
3132
3133 for (;;)
3134 {
3135 bfd_vma low_pc;
3136 bfd_vma high_pc;
3137
3138 /* PR 17512: file: 62cada7d. */
3139 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3140 return FALSE;
3141
3142 low_pc = read_address (unit, ranges_ptr, ranges_end);
3143 ranges_ptr += unit->addr_size;
3144 high_pc = read_address (unit, ranges_ptr, ranges_end);
3145 ranges_ptr += unit->addr_size;
3146
3147 if (low_pc == 0 && high_pc == 0)
3148 break;
3149 if (low_pc == -1UL && high_pc != -1UL)
3150 base_address = high_pc;
3151 else
3152 {
3153 if (!arange_add (unit, arange,
3154 base_address + low_pc, base_address + high_pc))
3155 return FALSE;
3156 }
3157 }
3158 return TRUE;
3159 }
3160
3161 static struct varinfo *
3162 lookup_var_by_offset (bfd_uint64_t offset, struct varinfo * table)
3163 {
3164 while (table)
3165 {
3166 if (table->unit_offset == offset)
3167 return table;
3168 table = table->prev_var;
3169 }
3170
3171 return NULL;
3172 }
3173
3174
3175 /* DWARF2 Compilation unit functions. */
3176
3177 /* Scan over each die in a comp. unit looking for functions to add
3178 to the function table and variables to the variable table. */
3179
3180 static bfd_boolean
3181 scan_unit_for_symbols (struct comp_unit *unit)
3182 {
3183 bfd *abfd = unit->abfd;
3184 bfd_byte *info_ptr = unit->first_child_die_ptr;
3185 bfd_byte *info_ptr_end = unit->end_ptr;
3186 int nesting_level = 0;
3187 struct nest_funcinfo {
3188 struct funcinfo *func;
3189 } *nested_funcs;
3190 int nested_funcs_size;
3191
3192 /* Maintain a stack of in-scope functions and inlined functions, which we
3193 can use to set the caller_func field. */
3194 nested_funcs_size = 32;
3195 nested_funcs = (struct nest_funcinfo *)
3196 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3197 if (nested_funcs == NULL)
3198 return FALSE;
3199 nested_funcs[nesting_level].func = 0;
3200
3201 while (nesting_level >= 0)
3202 {
3203 unsigned int abbrev_number, bytes_read, i;
3204 struct abbrev_info *abbrev;
3205 struct attribute attr;
3206 struct funcinfo *func;
3207 struct varinfo *var;
3208 bfd_vma low_pc = 0;
3209 bfd_vma high_pc = 0;
3210 bfd_boolean high_pc_relative = FALSE;
3211 bfd_uint64_t current_offset;
3212
3213 /* PR 17512: file: 9f405d9d. */
3214 if (info_ptr >= info_ptr_end)
3215 goto fail;
3216
3217 current_offset = info_ptr - unit->info_ptr_unit;
3218 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3219 FALSE, info_ptr_end);
3220 info_ptr += bytes_read;
3221
3222 if (! abbrev_number)
3223 {
3224 nesting_level--;
3225 continue;
3226 }
3227
3228 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3229 if (! abbrev)
3230 {
3231 static unsigned int previous_failed_abbrev = -1U;
3232
3233 /* Avoid multiple reports of the same missing abbrev. */
3234 if (abbrev_number != previous_failed_abbrev)
3235 {
3236 _bfd_error_handler
3237 (_("DWARF error: could not find abbrev number %u"),
3238 abbrev_number);
3239 previous_failed_abbrev = abbrev_number;
3240 }
3241 bfd_set_error (bfd_error_bad_value);
3242 goto fail;
3243 }
3244
3245 if (abbrev->tag == DW_TAG_subprogram
3246 || abbrev->tag == DW_TAG_entry_point
3247 || abbrev->tag == DW_TAG_inlined_subroutine)
3248 {
3249 size_t amt = sizeof (struct funcinfo);
3250
3251 var = NULL;
3252 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3253 if (func == NULL)
3254 goto fail;
3255 func->tag = abbrev->tag;
3256 func->prev_func = unit->function_table;
3257 unit->function_table = func;
3258 unit->number_of_functions++;
3259 BFD_ASSERT (!unit->cached);
3260
3261 if (func->tag == DW_TAG_inlined_subroutine)
3262 for (i = nesting_level; i-- != 0; )
3263 if (nested_funcs[i].func)
3264 {
3265 func->caller_func = nested_funcs[i].func;
3266 break;
3267 }
3268 nested_funcs[nesting_level].func = func;
3269 }
3270 else
3271 {
3272 func = NULL;
3273 if (abbrev->tag == DW_TAG_variable)
3274 {
3275 size_t amt = sizeof (struct varinfo);
3276 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3277 if (var == NULL)
3278 goto fail;
3279 var->tag = abbrev->tag;
3280 var->stack = TRUE;
3281 var->prev_var = unit->variable_table;
3282 unit->variable_table = var;
3283 var->unit_offset = current_offset;
3284 /* PR 18205: Missing debug information can cause this
3285 var to be attached to an already cached unit. */
3286 }
3287 else
3288 var = NULL;
3289
3290 /* No inline function in scope at this nesting level. */
3291 nested_funcs[nesting_level].func = 0;
3292 }
3293
3294 for (i = 0; i < abbrev->num_attrs; ++i)
3295 {
3296 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3297 unit, info_ptr, info_ptr_end);
3298 if (info_ptr == NULL)
3299 goto fail;
3300
3301 if (func)
3302 {
3303 switch (attr.name)
3304 {
3305 case DW_AT_call_file:
3306 func->caller_file = concat_filename (unit->line_table,
3307 attr.u.val);
3308 break;
3309
3310 case DW_AT_call_line:
3311 func->caller_line = attr.u.val;
3312 break;
3313
3314 case DW_AT_abstract_origin:
3315 case DW_AT_specification:
3316 if (!find_abstract_instance (unit, &attr, 0,
3317 &func->name,
3318 &func->is_linkage,
3319 &func->file,
3320 &func->line))
3321 goto fail;
3322 break;
3323
3324 case DW_AT_name:
3325 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3326 over DW_AT_name. */
3327 if (func->name == NULL && is_str_attr (attr.form))
3328 {
3329 func->name = attr.u.str;
3330 if (non_mangled (unit->lang))
3331 func->is_linkage = TRUE;
3332 }
3333 break;
3334
3335 case DW_AT_linkage_name:
3336 case DW_AT_MIPS_linkage_name:
3337 /* PR 16949: Corrupt debug info can place
3338 non-string forms into these attributes. */
3339 if (is_str_attr (attr.form))
3340 {
3341 func->name = attr.u.str;
3342 func->is_linkage = TRUE;
3343 }
3344 break;
3345
3346 case DW_AT_low_pc:
3347 low_pc = attr.u.val;
3348 break;
3349
3350 case DW_AT_high_pc:
3351 high_pc = attr.u.val;
3352 high_pc_relative = attr.form != DW_FORM_addr;
3353 break;
3354
3355 case DW_AT_ranges:
3356 if (!read_rangelist (unit, &func->arange, attr.u.val))
3357 goto fail;
3358 break;
3359
3360 case DW_AT_decl_file:
3361 func->file = concat_filename (unit->line_table,
3362 attr.u.val);
3363 break;
3364
3365 case DW_AT_decl_line:
3366 func->line = attr.u.val;
3367 break;
3368
3369 default:
3370 break;
3371 }
3372 }
3373 else if (var)
3374 {
3375 switch (attr.name)
3376 {
3377 case DW_AT_specification:
3378 if (attr.u.val)
3379 {
3380 struct varinfo * spec_var;
3381
3382 spec_var = lookup_var_by_offset (attr.u.val,
3383 unit->variable_table);
3384 if (spec_var == NULL)
3385 {
3386 _bfd_error_handler (_("DWARF error: could not find "
3387 "variable specification "
3388 "at offset %lx"),
3389 (unsigned long) attr.u.val);
3390 break;
3391 }
3392
3393 if (var->name == NULL)
3394 var->name = spec_var->name;
3395 if (var->file == NULL && spec_var->file != NULL)
3396 var->file = strdup (spec_var->file);
3397 if (var->line == 0)
3398 var->line = spec_var->line;
3399 if (var->sec == NULL)
3400 var->sec = spec_var->sec;
3401 }
3402 break;
3403
3404 case DW_AT_name:
3405 if (is_str_attr (attr.form))
3406 var->name = attr.u.str;
3407 break;
3408
3409 case DW_AT_decl_file:
3410 var->file = concat_filename (unit->line_table,
3411 attr.u.val);
3412 break;
3413
3414 case DW_AT_decl_line:
3415 var->line = attr.u.val;
3416 break;
3417
3418 case DW_AT_external:
3419 if (attr.u.val != 0)
3420 var->stack = FALSE;
3421 break;
3422
3423 case DW_AT_location:
3424 switch (attr.form)
3425 {
3426 case DW_FORM_block:
3427 case DW_FORM_block1:
3428 case DW_FORM_block2:
3429 case DW_FORM_block4:
3430 case DW_FORM_exprloc:
3431 if (attr.u.blk->data != NULL
3432 && *attr.u.blk->data == DW_OP_addr)
3433 {
3434 var->stack = FALSE;
3435
3436 /* Verify that DW_OP_addr is the only opcode in the
3437 location, in which case the block size will be 1
3438 plus the address size. */
3439 /* ??? For TLS variables, gcc can emit
3440 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3441 which we don't handle here yet. */
3442 if (attr.u.blk->size == unit->addr_size + 1U)
3443 var->addr = bfd_get (unit->addr_size * 8,
3444 unit->abfd,
3445 attr.u.blk->data + 1);
3446 }
3447 break;
3448
3449 default:
3450 break;
3451 }
3452 break;
3453
3454 default:
3455 break;
3456 }
3457 }
3458 }
3459
3460 if (high_pc_relative)
3461 high_pc += low_pc;
3462
3463 if (func && high_pc != 0)
3464 {
3465 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3466 goto fail;
3467 }
3468
3469 if (abbrev->has_children)
3470 {
3471 nesting_level++;
3472
3473 if (nesting_level >= nested_funcs_size)
3474 {
3475 struct nest_funcinfo *tmp;
3476
3477 nested_funcs_size *= 2;
3478 tmp = (struct nest_funcinfo *)
3479 bfd_realloc (nested_funcs,
3480 nested_funcs_size * sizeof (*nested_funcs));
3481 if (tmp == NULL)
3482 goto fail;
3483 nested_funcs = tmp;
3484 }
3485 nested_funcs[nesting_level].func = 0;
3486 }
3487 }
3488
3489 free (nested_funcs);
3490 return TRUE;
3491
3492 fail:
3493 free (nested_funcs);
3494 return FALSE;
3495 }
3496
3497 /* Parse a DWARF2 compilation unit starting at INFO_PTR. UNIT_LENGTH
3498 includes the compilation unit header that proceeds the DIE's, but
3499 does not include the length field that precedes each compilation
3500 unit header. END_PTR points one past the end of this comp unit.
3501 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3502
3503 This routine does not read the whole compilation unit; only enough
3504 to get to the line number information for the compilation unit. */
3505
3506 static struct comp_unit *
3507 parse_comp_unit (struct dwarf2_debug *stash,
3508 struct dwarf2_debug_file *file,
3509 bfd_byte *info_ptr,
3510 bfd_vma unit_length,
3511 bfd_byte *info_ptr_unit,
3512 unsigned int offset_size)
3513 {
3514 struct comp_unit* unit;
3515 unsigned int version;
3516 bfd_uint64_t abbrev_offset = 0;
3517 /* Initialize it just to avoid a GCC false warning. */
3518 unsigned int addr_size = -1;
3519 struct abbrev_info** abbrevs;
3520 unsigned int abbrev_number, bytes_read, i;
3521 struct abbrev_info *abbrev;
3522 struct attribute attr;
3523 bfd_byte *end_ptr = info_ptr + unit_length;
3524 size_t amt;
3525 bfd_vma low_pc = 0;
3526 bfd_vma high_pc = 0;
3527 bfd *abfd = file->bfd_ptr;
3528 bfd_boolean high_pc_relative = FALSE;
3529 enum dwarf_unit_type unit_type;
3530
3531 version = read_2_bytes (abfd, info_ptr, end_ptr);
3532 info_ptr += 2;
3533 if (version < 2 || version > 5)
3534 {
3535 /* PR 19872: A version number of 0 probably means that there is padding
3536 at the end of the .debug_info section. Gold puts it there when
3537 performing an incremental link, for example. So do not generate
3538 an error, just return a NULL. */
3539 if (version)
3540 {
3541 _bfd_error_handler
3542 (_("DWARF error: found dwarf version '%u', this reader"
3543 " only handles version 2, 3, 4 and 5 information"), version);
3544 bfd_set_error (bfd_error_bad_value);
3545 }
3546 return NULL;
3547 }
3548
3549 if (version < 5)
3550 unit_type = DW_UT_compile;
3551 else
3552 {
3553 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3554 info_ptr += 1;
3555
3556 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3557 info_ptr += 1;
3558 }
3559
3560 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3561 if (offset_size == 4)
3562 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3563 else
3564 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3565 info_ptr += offset_size;
3566
3567 if (version < 5)
3568 {
3569 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3570 info_ptr += 1;
3571 }
3572
3573 if (unit_type == DW_UT_type)
3574 {
3575 /* Skip type signature. */
3576 info_ptr += 8;
3577
3578 /* Skip type offset. */
3579 info_ptr += offset_size;
3580 }
3581
3582 if (addr_size > sizeof (bfd_vma))
3583 {
3584 _bfd_error_handler
3585 /* xgettext: c-format */
3586 (_("DWARF error: found address size '%u', this reader"
3587 " can not handle sizes greater than '%u'"),
3588 addr_size,
3589 (unsigned int) sizeof (bfd_vma));
3590 bfd_set_error (bfd_error_bad_value);
3591 return NULL;
3592 }
3593
3594 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3595 {
3596 _bfd_error_handler
3597 ("DWARF error: found address size '%u', this reader"
3598 " can only handle address sizes '2', '4' and '8'", addr_size);
3599 bfd_set_error (bfd_error_bad_value);
3600 return NULL;
3601 }
3602
3603 /* Read the abbrevs for this compilation unit into a table. */
3604 abbrevs = read_abbrevs (abfd, abbrev_offset, stash, file);
3605 if (! abbrevs)
3606 return NULL;
3607
3608 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3609 FALSE, end_ptr);
3610 info_ptr += bytes_read;
3611 if (! abbrev_number)
3612 {
3613 /* PR 19872: An abbrev number of 0 probably means that there is padding
3614 at the end of the .debug_abbrev section. Gold puts it there when
3615 performing an incremental link, for example. So do not generate
3616 an error, just return a NULL. */
3617 return NULL;
3618 }
3619
3620 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3621 if (! abbrev)
3622 {
3623 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3624 abbrev_number);
3625 bfd_set_error (bfd_error_bad_value);
3626 return NULL;
3627 }
3628
3629 amt = sizeof (struct comp_unit);
3630 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3631 if (unit == NULL)
3632 return NULL;
3633 unit->abfd = abfd;
3634 unit->version = version;
3635 unit->addr_size = addr_size;
3636 unit->offset_size = offset_size;
3637 unit->abbrevs = abbrevs;
3638 unit->end_ptr = end_ptr;
3639 unit->stash = stash;
3640 unit->file = file;
3641 unit->info_ptr_unit = info_ptr_unit;
3642
3643 for (i = 0; i < abbrev->num_attrs; ++i)
3644 {
3645 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3646 if (info_ptr == NULL)
3647 return NULL;
3648
3649 /* Store the data if it is of an attribute we want to keep in a
3650 partial symbol table. */
3651 switch (attr.name)
3652 {
3653 case DW_AT_stmt_list:
3654 unit->stmtlist = 1;
3655 unit->line_offset = attr.u.val;
3656 break;
3657
3658 case DW_AT_name:
3659 if (is_str_attr (attr.form))
3660 unit->name = attr.u.str;
3661 break;
3662
3663 case DW_AT_low_pc:
3664 low_pc = attr.u.val;
3665 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3666 this is the base address to use when reading location
3667 lists or range lists. */
3668 if (abbrev->tag == DW_TAG_compile_unit)
3669 unit->base_address = low_pc;
3670 break;
3671
3672 case DW_AT_high_pc:
3673 high_pc = attr.u.val;
3674 high_pc_relative = attr.form != DW_FORM_addr;
3675 break;
3676
3677 case DW_AT_ranges:
3678 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3679 return NULL;
3680 break;
3681
3682 case DW_AT_comp_dir:
3683 {
3684 char *comp_dir = attr.u.str;
3685
3686 /* PR 17512: file: 1fe726be. */
3687 if (! is_str_attr (attr.form))
3688 {
3689 _bfd_error_handler
3690 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3691 comp_dir = NULL;
3692 }
3693
3694 if (comp_dir)
3695 {
3696 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3697 directory, get rid of it. */
3698 char *cp = strchr (comp_dir, ':');
3699
3700 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3701 comp_dir = cp + 1;
3702 }
3703 unit->comp_dir = comp_dir;
3704 break;
3705 }
3706
3707 case DW_AT_language:
3708 unit->lang = attr.u.val;
3709 break;
3710
3711 default:
3712 break;
3713 }
3714 }
3715 if (high_pc_relative)
3716 high_pc += low_pc;
3717 if (high_pc != 0)
3718 {
3719 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3720 return NULL;
3721 }
3722
3723 unit->first_child_die_ptr = info_ptr;
3724 return unit;
3725 }
3726
3727 /* Return TRUE if UNIT may contain the address given by ADDR. When
3728 there are functions written entirely with inline asm statements, the
3729 range info in the compilation unit header may not be correct. We
3730 need to consult the line info table to see if a compilation unit
3731 really contains the given address. */
3732
3733 static bfd_boolean
3734 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3735 {
3736 struct arange *arange;
3737
3738 if (unit->error)
3739 return FALSE;
3740
3741 arange = &unit->arange;
3742 do
3743 {
3744 if (addr >= arange->low && addr < arange->high)
3745 return TRUE;
3746 arange = arange->next;
3747 }
3748 while (arange);
3749
3750 return FALSE;
3751 }
3752
3753 /* If UNIT contains ADDR, set the output parameters to the values for
3754 the line containing ADDR. The output parameters, FILENAME_PTR,
3755 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3756 to be filled in.
3757
3758 Returns the range of addresses covered by the entry that was used
3759 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3760
3761 static bfd_vma
3762 comp_unit_find_nearest_line (struct comp_unit *unit,
3763 bfd_vma addr,
3764 const char **filename_ptr,
3765 struct funcinfo **function_ptr,
3766 unsigned int *linenumber_ptr,
3767 unsigned int *discriminator_ptr)
3768 {
3769 bfd_boolean func_p;
3770
3771 if (!comp_unit_maybe_decode_line_info (unit))
3772 return FALSE;
3773
3774 *function_ptr = NULL;
3775 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3776 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3777 unit->stash->inliner_chain = *function_ptr;
3778
3779 return lookup_address_in_line_info_table (unit->line_table, addr,
3780 filename_ptr,
3781 linenumber_ptr,
3782 discriminator_ptr);
3783 }
3784
3785 /* Check to see if line info is already decoded in a comp_unit.
3786 If not, decode it. Returns TRUE if no errors were encountered;
3787 FALSE otherwise. */
3788
3789 static bfd_boolean
3790 comp_unit_maybe_decode_line_info (struct comp_unit *unit)
3791 {
3792 if (unit->error)
3793 return FALSE;
3794
3795 if (! unit->line_table)
3796 {
3797 if (! unit->stmtlist)
3798 {
3799 unit->error = 1;
3800 return FALSE;
3801 }
3802
3803 unit->line_table = decode_line_info (unit);
3804
3805 if (! unit->line_table)
3806 {
3807 unit->error = 1;
3808 return FALSE;
3809 }
3810
3811 if (unit->first_child_die_ptr < unit->end_ptr
3812 && ! scan_unit_for_symbols (unit))
3813 {
3814 unit->error = 1;
3815 return FALSE;
3816 }
3817 }
3818
3819 return TRUE;
3820 }
3821
3822 /* If UNIT contains SYM at ADDR, set the output parameters to the
3823 values for the line containing SYM. The output parameters,
3824 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3825 filled in.
3826
3827 Return TRUE if UNIT contains SYM, and no errors were encountered;
3828 FALSE otherwise. */
3829
3830 static bfd_boolean
3831 comp_unit_find_line (struct comp_unit *unit,
3832 asymbol *sym,
3833 bfd_vma addr,
3834 const char **filename_ptr,
3835 unsigned int *linenumber_ptr)
3836 {
3837 if (!comp_unit_maybe_decode_line_info (unit))
3838 return FALSE;
3839
3840 if (sym->flags & BSF_FUNCTION)
3841 return lookup_symbol_in_function_table (unit, sym, addr,
3842 filename_ptr,
3843 linenumber_ptr);
3844
3845 return lookup_symbol_in_variable_table (unit, sym, addr,
3846 filename_ptr,
3847 linenumber_ptr);
3848 }
3849
3850 static struct funcinfo *
3851 reverse_funcinfo_list (struct funcinfo *head)
3852 {
3853 struct funcinfo *rhead;
3854 struct funcinfo *temp;
3855
3856 for (rhead = NULL; head; head = temp)
3857 {
3858 temp = head->prev_func;
3859 head->prev_func = rhead;
3860 rhead = head;
3861 }
3862 return rhead;
3863 }
3864
3865 static struct varinfo *
3866 reverse_varinfo_list (struct varinfo *head)
3867 {
3868 struct varinfo *rhead;
3869 struct varinfo *temp;
3870
3871 for (rhead = NULL; head; head = temp)
3872 {
3873 temp = head->prev_var;
3874 head->prev_var = rhead;
3875 rhead = head;
3876 }
3877 return rhead;
3878 }
3879
3880 /* Extract all interesting funcinfos and varinfos of a compilation
3881 unit into hash tables for faster lookup. Returns TRUE if no
3882 errors were enountered; FALSE otherwise. */
3883
3884 static bfd_boolean
3885 comp_unit_hash_info (struct dwarf2_debug *stash,
3886 struct comp_unit *unit,
3887 struct info_hash_table *funcinfo_hash_table,
3888 struct info_hash_table *varinfo_hash_table)
3889 {
3890 struct funcinfo* each_func;
3891 struct varinfo* each_var;
3892 bfd_boolean okay = TRUE;
3893
3894 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3895
3896 if (!comp_unit_maybe_decode_line_info (unit))
3897 return FALSE;
3898
3899 BFD_ASSERT (!unit->cached);
3900
3901 /* To preserve the original search order, we went to visit the function
3902 infos in the reversed order of the list. However, making the list
3903 bi-directional use quite a bit of extra memory. So we reverse
3904 the list first, traverse the list in the now reversed order and
3905 finally reverse the list again to get back the original order. */
3906 unit->function_table = reverse_funcinfo_list (unit->function_table);
3907 for (each_func = unit->function_table;
3908 each_func && okay;
3909 each_func = each_func->prev_func)
3910 {
3911 /* Skip nameless functions. */
3912 if (each_func->name)
3913 /* There is no need to copy name string into hash table as
3914 name string is either in the dwarf string buffer or
3915 info in the stash. */
3916 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3917 (void*) each_func, FALSE);
3918 }
3919 unit->function_table = reverse_funcinfo_list (unit->function_table);
3920 if (!okay)
3921 return FALSE;
3922
3923 /* We do the same for variable infos. */
3924 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3925 for (each_var = unit->variable_table;
3926 each_var && okay;
3927 each_var = each_var->prev_var)
3928 {
3929 /* Skip stack vars and vars with no files or names. */
3930 if (! each_var->stack
3931 && each_var->file != NULL
3932 && each_var->name != NULL)
3933 /* There is no need to copy name string into hash table as
3934 name string is either in the dwarf string buffer or
3935 info in the stash. */
3936 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3937 (void*) each_var, FALSE);
3938 }
3939
3940 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3941 unit->cached = TRUE;
3942 return okay;
3943 }
3944
3945 /* Locate a section in a BFD containing debugging info. The search starts
3946 from the section after AFTER_SEC, or from the first section in the BFD if
3947 AFTER_SEC is NULL. The search works by examining the names of the
3948 sections. There are three permissiable names. The first two are given
3949 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3950 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3951 This is a variation on the .debug_info section which has a checksum
3952 describing the contents appended onto the name. This allows the linker to
3953 identify and discard duplicate debugging sections for different
3954 compilation units. */
3955 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3956
3957 static asection *
3958 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3959 asection *after_sec)
3960 {
3961 asection *msec;
3962 const char *look;
3963
3964 if (after_sec == NULL)
3965 {
3966 look = debug_sections[debug_info].uncompressed_name;
3967 msec = bfd_get_section_by_name (abfd, look);
3968 if (msec != NULL)
3969 return msec;
3970
3971 look = debug_sections[debug_info].compressed_name;
3972 if (look != NULL)
3973 {
3974 msec = bfd_get_section_by_name (abfd, look);
3975 if (msec != NULL)
3976 return msec;
3977 }
3978
3979 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3980 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3981 return msec;
3982
3983 return NULL;
3984 }
3985
3986 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3987 {
3988 look = debug_sections[debug_info].uncompressed_name;
3989 if (strcmp (msec->name, look) == 0)
3990 return msec;
3991
3992 look = debug_sections[debug_info].compressed_name;
3993 if (look != NULL && strcmp (msec->name, look) == 0)
3994 return msec;
3995
3996 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3997 return msec;
3998 }
3999
4000 return NULL;
4001 }
4002
4003 /* Transfer VMAs from object file to separate debug file. */
4004
4005 static void
4006 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
4007 {
4008 asection *s, *d;
4009
4010 for (s = orig_bfd->sections, d = debug_bfd->sections;
4011 s != NULL && d != NULL;
4012 s = s->next, d = d->next)
4013 {
4014 if ((d->flags & SEC_DEBUGGING) != 0)
4015 break;
4016 /* ??? Assumes 1-1 correspondence between sections in the
4017 two files. */
4018 if (strcmp (s->name, d->name) == 0)
4019 {
4020 d->output_section = s->output_section;
4021 d->output_offset = s->output_offset;
4022 d->vma = s->vma;
4023 }
4024 }
4025 }
4026
4027 /* If the dwarf2 info was found in a separate debug file, return the
4028 debug file section corresponding to the section in the original file
4029 and the debug file symbols. */
4030
4031 static void
4032 _bfd_dwarf2_stash_syms (struct dwarf2_debug *stash, bfd *abfd,
4033 asection **sec, asymbol ***syms)
4034 {
4035 if (stash->f.bfd_ptr != abfd)
4036 {
4037 asection *s, *d;
4038
4039 if (*sec == NULL)
4040 {
4041 *syms = stash->f.syms;
4042 return;
4043 }
4044
4045 for (s = abfd->sections, d = stash->f.bfd_ptr->sections;
4046 s != NULL && d != NULL;
4047 s = s->next, d = d->next)
4048 {
4049 if ((d->flags & SEC_DEBUGGING) != 0)
4050 break;
4051 if (s == *sec
4052 && strcmp (s->name, d->name) == 0)
4053 {
4054 *sec = d;
4055 *syms = stash->f.syms;
4056 break;
4057 }
4058 }
4059 }
4060 }
4061
4062 /* Unset vmas for adjusted sections in STASH. */
4063
4064 static void
4065 unset_sections (struct dwarf2_debug *stash)
4066 {
4067 int i;
4068 struct adjusted_section *p;
4069
4070 i = stash->adjusted_section_count;
4071 p = stash->adjusted_sections;
4072 for (; i > 0; i--, p++)
4073 p->section->vma = 0;
4074 }
4075
4076 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
4077 relocatable object file. VMAs are normally all zero in relocatable
4078 object files, so if we want to distinguish locations in sections by
4079 address we need to set VMAs so the sections do not overlap. We
4080 also set VMA on .debug_info so that when we have multiple
4081 .debug_info sections (or the linkonce variant) they also do not
4082 overlap. The multiple .debug_info sections make up a single
4083 logical section. ??? We should probably do the same for other
4084 debug sections. */
4085
4086 static bfd_boolean
4087 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
4088 {
4089 bfd *abfd;
4090 struct adjusted_section *p;
4091 int i;
4092 const char *debug_info_name;
4093
4094 if (stash->adjusted_section_count != 0)
4095 {
4096 i = stash->adjusted_section_count;
4097 p = stash->adjusted_sections;
4098 for (; i > 0; i--, p++)
4099 p->section->vma = p->adj_vma;
4100 return TRUE;
4101 }
4102
4103 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
4104 i = 0;
4105 abfd = orig_bfd;
4106 while (1)
4107 {
4108 asection *sect;
4109
4110 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4111 {
4112 int is_debug_info;
4113
4114 if ((sect->output_section != NULL
4115 && sect->output_section != sect
4116 && (sect->flags & SEC_DEBUGGING) == 0)
4117 || sect->vma != 0)
4118 continue;
4119
4120 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4121 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4122
4123 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4124 && !is_debug_info)
4125 continue;
4126
4127 i++;
4128 }
4129 if (abfd == stash->f.bfd_ptr)
4130 break;
4131 abfd = stash->f.bfd_ptr;
4132 }
4133
4134 if (i <= 1)
4135 stash->adjusted_section_count = -1;
4136 else
4137 {
4138 bfd_vma last_vma = 0, last_dwarf = 0;
4139 size_t amt = i * sizeof (struct adjusted_section);
4140
4141 p = (struct adjusted_section *) bfd_malloc (amt);
4142 if (p == NULL)
4143 return FALSE;
4144
4145 stash->adjusted_sections = p;
4146 stash->adjusted_section_count = i;
4147
4148 abfd = orig_bfd;
4149 while (1)
4150 {
4151 asection *sect;
4152
4153 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4154 {
4155 bfd_size_type sz;
4156 int is_debug_info;
4157
4158 if ((sect->output_section != NULL
4159 && sect->output_section != sect
4160 && (sect->flags & SEC_DEBUGGING) == 0)
4161 || sect->vma != 0)
4162 continue;
4163
4164 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4165 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4166
4167 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4168 && !is_debug_info)
4169 continue;
4170
4171 sz = sect->rawsize ? sect->rawsize : sect->size;
4172
4173 if (is_debug_info)
4174 {
4175 BFD_ASSERT (sect->alignment_power == 0);
4176 sect->vma = last_dwarf;
4177 last_dwarf += sz;
4178 }
4179 else
4180 {
4181 /* Align the new address to the current section
4182 alignment. */
4183 last_vma = ((last_vma
4184 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4185 & (-((bfd_vma) 1 << sect->alignment_power)));
4186 sect->vma = last_vma;
4187 last_vma += sz;
4188 }
4189
4190 p->section = sect;
4191 p->adj_vma = sect->vma;
4192 p++;
4193 }
4194 if (abfd == stash->f.bfd_ptr)
4195 break;
4196 abfd = stash->f.bfd_ptr;
4197 }
4198 }
4199
4200 if (orig_bfd != stash->f.bfd_ptr)
4201 set_debug_vma (orig_bfd, stash->f.bfd_ptr);
4202
4203 return TRUE;
4204 }
4205
4206 /* Look up a funcinfo by name using the given info hash table. If found,
4207 also update the locations pointed to by filename_ptr and linenumber_ptr.
4208
4209 This function returns TRUE if a funcinfo that matches the given symbol
4210 and address is found with any error; otherwise it returns FALSE. */
4211
4212 static bfd_boolean
4213 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4214 asymbol *sym,
4215 bfd_vma addr,
4216 const char **filename_ptr,
4217 unsigned int *linenumber_ptr)
4218 {
4219 struct funcinfo* each_func;
4220 struct funcinfo* best_fit = NULL;
4221 bfd_vma best_fit_len = 0;
4222 struct info_list_node *node;
4223 struct arange *arange;
4224 const char *name = bfd_asymbol_name (sym);
4225 asection *sec = bfd_asymbol_section (sym);
4226
4227 for (node = lookup_info_hash_table (hash_table, name);
4228 node;
4229 node = node->next)
4230 {
4231 each_func = (struct funcinfo *) node->info;
4232 for (arange = &each_func->arange;
4233 arange;
4234 arange = arange->next)
4235 {
4236 if ((!each_func->sec || each_func->sec == sec)
4237 && addr >= arange->low
4238 && addr < arange->high
4239 && (!best_fit
4240 || arange->high - arange->low < best_fit_len))
4241 {
4242 best_fit = each_func;
4243 best_fit_len = arange->high - arange->low;
4244 }
4245 }
4246 }
4247
4248 if (best_fit)
4249 {
4250 best_fit->sec = sec;
4251 *filename_ptr = best_fit->file;
4252 *linenumber_ptr = best_fit->line;
4253 return TRUE;
4254 }
4255
4256 return FALSE;
4257 }
4258
4259 /* Look up a varinfo by name using the given info hash table. If found,
4260 also update the locations pointed to by filename_ptr and linenumber_ptr.
4261
4262 This function returns TRUE if a varinfo that matches the given symbol
4263 and address is found with any error; otherwise it returns FALSE. */
4264
4265 static bfd_boolean
4266 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4267 asymbol *sym,
4268 bfd_vma addr,
4269 const char **filename_ptr,
4270 unsigned int *linenumber_ptr)
4271 {
4272 const char *name = bfd_asymbol_name (sym);
4273 asection *sec = bfd_asymbol_section (sym);
4274 struct varinfo* each;
4275 struct info_list_node *node;
4276
4277 for (node = lookup_info_hash_table (hash_table, name);
4278 node;
4279 node = node->next)
4280 {
4281 each = (struct varinfo *) node->info;
4282 if (each->addr == addr
4283 && (!each->sec || each->sec == sec))
4284 {
4285 each->sec = sec;
4286 *filename_ptr = each->file;
4287 *linenumber_ptr = each->line;
4288 return TRUE;
4289 }
4290 }
4291
4292 return FALSE;
4293 }
4294
4295 /* Update the funcinfo and varinfo info hash tables if they are
4296 not up to date. Returns TRUE if there is no error; otherwise
4297 returns FALSE and disable the info hash tables. */
4298
4299 static bfd_boolean
4300 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4301 {
4302 struct comp_unit *each;
4303
4304 /* Exit if hash tables are up-to-date. */
4305 if (stash->f.all_comp_units == stash->hash_units_head)
4306 return TRUE;
4307
4308 if (stash->hash_units_head)
4309 each = stash->hash_units_head->prev_unit;
4310 else
4311 each = stash->f.last_comp_unit;
4312
4313 while (each)
4314 {
4315 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4316 stash->varinfo_hash_table))
4317 {
4318 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4319 return FALSE;
4320 }
4321 each = each->prev_unit;
4322 }
4323
4324 stash->hash_units_head = stash->f.all_comp_units;
4325 return TRUE;
4326 }
4327
4328 /* Check consistency of info hash tables. This is for debugging only. */
4329
4330 static void ATTRIBUTE_UNUSED
4331 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4332 {
4333 struct comp_unit *each_unit;
4334 struct funcinfo *each_func;
4335 struct varinfo *each_var;
4336 struct info_list_node *node;
4337 bfd_boolean found;
4338
4339 for (each_unit = stash->f.all_comp_units;
4340 each_unit;
4341 each_unit = each_unit->next_unit)
4342 {
4343 for (each_func = each_unit->function_table;
4344 each_func;
4345 each_func = each_func->prev_func)
4346 {
4347 if (!each_func->name)
4348 continue;
4349 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4350 each_func->name);
4351 BFD_ASSERT (node);
4352 found = FALSE;
4353 while (node && !found)
4354 {
4355 found = node->info == each_func;
4356 node = node->next;
4357 }
4358 BFD_ASSERT (found);
4359 }
4360
4361 for (each_var = each_unit->variable_table;
4362 each_var;
4363 each_var = each_var->prev_var)
4364 {
4365 if (!each_var->name || !each_var->file || each_var->stack)
4366 continue;
4367 node = lookup_info_hash_table (stash->varinfo_hash_table,
4368 each_var->name);
4369 BFD_ASSERT (node);
4370 found = FALSE;
4371 while (node && !found)
4372 {
4373 found = node->info == each_var;
4374 node = node->next;
4375 }
4376 BFD_ASSERT (found);
4377 }
4378 }
4379 }
4380
4381 /* Check to see if we want to enable the info hash tables, which consume
4382 quite a bit of memory. Currently we only check the number times
4383 bfd_dwarf2_find_line is called. In the future, we may also want to
4384 take the number of symbols into account. */
4385
4386 static void
4387 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4388 {
4389 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4390
4391 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4392 return;
4393
4394 /* FIXME: Maybe we should check the reduce_memory_overheads
4395 and optimize fields in the bfd_link_info structure ? */
4396
4397 /* Create hash tables. */
4398 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4399 stash->varinfo_hash_table = create_info_hash_table (abfd);
4400 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4401 {
4402 /* Turn off info hashes if any allocation above fails. */
4403 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4404 return;
4405 }
4406 /* We need a forced update so that the info hash tables will
4407 be created even though there is no compilation unit. That
4408 happens if STASH_INFO_HASH_TRIGGER is 0. */
4409 if (stash_maybe_update_info_hash_tables (stash))
4410 stash->info_hash_status = STASH_INFO_HASH_ON;
4411 }
4412
4413 /* Find the file and line associated with a symbol and address using the
4414 info hash tables of a stash. If there is a match, the function returns
4415 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4416 otherwise it returns FALSE. */
4417
4418 static bfd_boolean
4419 stash_find_line_fast (struct dwarf2_debug *stash,
4420 asymbol *sym,
4421 bfd_vma addr,
4422 const char **filename_ptr,
4423 unsigned int *linenumber_ptr)
4424 {
4425 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4426
4427 if (sym->flags & BSF_FUNCTION)
4428 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4429 filename_ptr, linenumber_ptr);
4430 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4431 filename_ptr, linenumber_ptr);
4432 }
4433
4434 /* Save current section VMAs. */
4435
4436 static bfd_boolean
4437 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4438 {
4439 asection *s;
4440 unsigned int i;
4441
4442 if (abfd->section_count == 0)
4443 return TRUE;
4444 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4445 if (stash->sec_vma == NULL)
4446 return FALSE;
4447 stash->sec_vma_count = abfd->section_count;
4448 for (i = 0, s = abfd->sections;
4449 s != NULL && i < abfd->section_count;
4450 i++, s = s->next)
4451 {
4452 if (s->output_section != NULL)
4453 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4454 else
4455 stash->sec_vma[i] = s->vma;
4456 }
4457 return TRUE;
4458 }
4459
4460 /* Compare current section VMAs against those at the time the stash
4461 was created. If find_nearest_line is used in linker warnings or
4462 errors early in the link process, the debug info stash will be
4463 invalid for later calls. This is because we relocate debug info
4464 sections, so the stashed section contents depend on symbol values,
4465 which in turn depend on section VMAs. */
4466
4467 static bfd_boolean
4468 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4469 {
4470 asection *s;
4471 unsigned int i;
4472
4473 /* PR 24334: If the number of sections in ABFD has changed between
4474 when the stash was created and now, then we cannot trust the
4475 stashed vma information. */
4476 if (abfd->section_count != stash->sec_vma_count)
4477 return FALSE;
4478
4479 for (i = 0, s = abfd->sections;
4480 s != NULL && i < abfd->section_count;
4481 i++, s = s->next)
4482 {
4483 bfd_vma vma;
4484
4485 if (s->output_section != NULL)
4486 vma = s->output_section->vma + s->output_offset;
4487 else
4488 vma = s->vma;
4489 if (vma != stash->sec_vma[i])
4490 return FALSE;
4491 }
4492 return TRUE;
4493 }
4494
4495 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4496 If DEBUG_BFD is not specified, we read debug information from ABFD
4497 or its gnu_debuglink. The results will be stored in PINFO.
4498 The function returns TRUE iff debug information is ready. */
4499
4500 bfd_boolean
4501 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4502 const struct dwarf_debug_section *debug_sections,
4503 asymbol **symbols,
4504 void **pinfo,
4505 bfd_boolean do_place)
4506 {
4507 size_t amt = sizeof (struct dwarf2_debug);
4508 bfd_size_type total_size;
4509 asection *msec;
4510 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4511
4512 if (stash != NULL)
4513 {
4514 if (stash->orig_bfd == abfd
4515 && section_vma_same (abfd, stash))
4516 {
4517 /* Check that we did previously find some debug information
4518 before attempting to make use of it. */
4519 if (stash->f.bfd_ptr != NULL)
4520 {
4521 if (do_place && !place_sections (abfd, stash))
4522 return FALSE;
4523 return TRUE;
4524 }
4525
4526 return FALSE;
4527 }
4528 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4529 memset (stash, 0, amt);
4530 }
4531 else
4532 {
4533 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4534 if (! stash)
4535 return FALSE;
4536 }
4537 stash->orig_bfd = abfd;
4538 stash->debug_sections = debug_sections;
4539 stash->f.syms = symbols;
4540 if (!save_section_vma (abfd, stash))
4541 return FALSE;
4542
4543 stash->f.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4544 del_abbrev, calloc, free);
4545 if (!stash->f.abbrev_offsets)
4546 return FALSE;
4547
4548 stash->alt.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4549 del_abbrev, calloc, free);
4550 if (!stash->alt.abbrev_offsets)
4551 return FALSE;
4552
4553 *pinfo = stash;
4554
4555 if (debug_bfd == NULL)
4556 debug_bfd = abfd;
4557
4558 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4559 if (msec == NULL && abfd == debug_bfd)
4560 {
4561 char * debug_filename;
4562
4563 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4564 if (debug_filename == NULL)
4565 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4566
4567 if (debug_filename == NULL)
4568 /* No dwarf2 info, and no gnu_debuglink to follow.
4569 Note that at this point the stash has been allocated, but
4570 contains zeros. This lets future calls to this function
4571 fail more quickly. */
4572 return FALSE;
4573
4574 debug_bfd = bfd_openr (debug_filename, NULL);
4575 free (debug_filename);
4576 if (debug_bfd == NULL)
4577 /* FIXME: Should we report our failure to follow the debuglink ? */
4578 return FALSE;
4579
4580 /* Set BFD_DECOMPRESS to decompress debug sections. */
4581 debug_bfd->flags |= BFD_DECOMPRESS;
4582 if (!bfd_check_format (debug_bfd, bfd_object)
4583 || (msec = find_debug_info (debug_bfd,
4584 debug_sections, NULL)) == NULL
4585 || !bfd_generic_link_read_symbols (debug_bfd))
4586 {
4587 bfd_close (debug_bfd);
4588 return FALSE;
4589 }
4590
4591 symbols = bfd_get_outsymbols (debug_bfd);
4592 stash->f.syms = symbols;
4593 stash->close_on_cleanup = TRUE;
4594 }
4595 stash->f.bfd_ptr = debug_bfd;
4596
4597 if (do_place
4598 && !place_sections (abfd, stash))
4599 return FALSE;
4600
4601 /* There can be more than one DWARF2 info section in a BFD these
4602 days. First handle the easy case when there's only one. If
4603 there's more than one, try case two: none of the sections is
4604 compressed. In that case, read them all in and produce one
4605 large stash. We do this in two passes - in the first pass we
4606 just accumulate the section sizes, and in the second pass we
4607 read in the section's contents. (The allows us to avoid
4608 reallocing the data as we add sections to the stash.) If
4609 some or all sections are compressed, then do things the slow
4610 way, with a bunch of reallocs. */
4611
4612 if (! find_debug_info (debug_bfd, debug_sections, msec))
4613 {
4614 /* Case 1: only one info section. */
4615 total_size = msec->size;
4616 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4617 symbols, 0,
4618 &stash->f.dwarf_info_buffer, &total_size))
4619 return FALSE;
4620 }
4621 else
4622 {
4623 /* Case 2: multiple sections. */
4624 for (total_size = 0;
4625 msec;
4626 msec = find_debug_info (debug_bfd, debug_sections, msec))
4627 {
4628 /* Catch PR25070 testcase overflowing size calculation here. */
4629 if (total_size + msec->size < total_size
4630 || total_size + msec->size < msec->size)
4631 {
4632 bfd_set_error (bfd_error_no_memory);
4633 return FALSE;
4634 }
4635 total_size += msec->size;
4636 }
4637
4638 stash->f.dwarf_info_buffer = (bfd_byte *) bfd_malloc (total_size);
4639 if (stash->f.dwarf_info_buffer == NULL)
4640 return FALSE;
4641
4642 total_size = 0;
4643 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4644 msec;
4645 msec = find_debug_info (debug_bfd, debug_sections, msec))
4646 {
4647 bfd_size_type size;
4648
4649 size = msec->size;
4650 if (size == 0)
4651 continue;
4652
4653 if (!(bfd_simple_get_relocated_section_contents
4654 (debug_bfd, msec, stash->f.dwarf_info_buffer + total_size,
4655 symbols)))
4656 return FALSE;
4657
4658 total_size += size;
4659 }
4660 }
4661
4662 stash->f.info_ptr = stash->f.dwarf_info_buffer;
4663 stash->f.dwarf_info_size = total_size;
4664 return TRUE;
4665 }
4666
4667 /* Parse the next DWARF2 compilation unit at FILE->INFO_PTR. */
4668
4669 static struct comp_unit *
4670 stash_comp_unit (struct dwarf2_debug *stash, struct dwarf2_debug_file *file)
4671 {
4672 bfd_size_type length;
4673 unsigned int offset_size;
4674 bfd_byte *info_ptr_unit = file->info_ptr;
4675 bfd_byte *info_ptr_end = file->dwarf_info_buffer + file->dwarf_info_size;
4676
4677 if (file->info_ptr >= info_ptr_end)
4678 return NULL;
4679
4680 length = read_4_bytes (file->bfd_ptr, file->info_ptr, info_ptr_end);
4681 /* A 0xffffff length is the DWARF3 way of indicating
4682 we use 64-bit offsets, instead of 32-bit offsets. */
4683 if (length == 0xffffffff)
4684 {
4685 offset_size = 8;
4686 length = read_8_bytes (file->bfd_ptr, file->info_ptr + 4,
4687 info_ptr_end);
4688 file->info_ptr += 12;
4689 }
4690 /* A zero length is the IRIX way of indicating 64-bit offsets,
4691 mostly because the 64-bit length will generally fit in 32
4692 bits, and the endianness helps. */
4693 else if (length == 0)
4694 {
4695 offset_size = 8;
4696 length = read_4_bytes (file->bfd_ptr, file->info_ptr + 4,
4697 info_ptr_end);
4698 file->info_ptr += 8;
4699 }
4700 /* In the absence of the hints above, we assume 32-bit DWARF2
4701 offsets even for targets with 64-bit addresses, because:
4702 a) most of the time these targets will not have generated
4703 more than 2Gb of debug info and so will not need 64-bit
4704 offsets,
4705 and
4706 b) if they do use 64-bit offsets but they are not using
4707 the size hints that are tested for above then they are
4708 not conforming to the DWARF3 standard anyway. */
4709 else
4710 {
4711 offset_size = 4;
4712 file->info_ptr += 4;
4713 }
4714
4715 if (length != 0
4716 && file->info_ptr + length <= info_ptr_end
4717 && file->info_ptr + length > file->info_ptr)
4718 {
4719 struct comp_unit *each = parse_comp_unit (stash, file,
4720 file->info_ptr, length,
4721 info_ptr_unit, offset_size);
4722 if (each)
4723 {
4724 if (file->all_comp_units)
4725 file->all_comp_units->prev_unit = each;
4726 else
4727 file->last_comp_unit = each;
4728
4729 each->next_unit = file->all_comp_units;
4730 file->all_comp_units = each;
4731
4732 file->info_ptr += length;
4733 return each;
4734 }
4735 }
4736
4737 /* Don't trust any of the DWARF info after a corrupted length or
4738 parse error. */
4739 file->info_ptr = info_ptr_end;
4740 return NULL;
4741 }
4742
4743 /* Hash function for an asymbol. */
4744
4745 static hashval_t
4746 hash_asymbol (const void *sym)
4747 {
4748 const asymbol *asym = sym;
4749 return htab_hash_string (asym->name);
4750 }
4751
4752 /* Equality function for asymbols. */
4753
4754 static int
4755 eq_asymbol (const void *a, const void *b)
4756 {
4757 const asymbol *sa = a;
4758 const asymbol *sb = b;
4759 return strcmp (sa->name, sb->name) == 0;
4760 }
4761
4762 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4763 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4764 symbol in SYMBOLS and return the difference between the low_pc and
4765 the symbol's address. Returns 0 if no suitable symbol could be found. */
4766
4767 bfd_signed_vma
4768 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4769 {
4770 struct dwarf2_debug *stash;
4771 struct comp_unit * unit;
4772 htab_t sym_hash;
4773 bfd_signed_vma result = 0;
4774 asymbol ** psym;
4775
4776 stash = (struct dwarf2_debug *) *pinfo;
4777
4778 if (stash == NULL || symbols == NULL)
4779 return 0;
4780
4781 sym_hash = htab_create_alloc (10, hash_asymbol, eq_asymbol,
4782 NULL, xcalloc, free);
4783 for (psym = symbols; * psym != NULL; psym++)
4784 {
4785 asymbol * sym = * psym;
4786
4787 if (sym->flags & BSF_FUNCTION && sym->section != NULL)
4788 {
4789 void **slot = htab_find_slot (sym_hash, sym, INSERT);
4790 *slot = sym;
4791 }
4792 }
4793
4794 for (unit = stash->f.all_comp_units; unit; unit = unit->next_unit)
4795 {
4796 struct funcinfo * func;
4797
4798 comp_unit_maybe_decode_line_info (unit);
4799
4800 for (func = unit->function_table; func != NULL; func = func->prev_func)
4801 if (func->name && func->arange.low)
4802 {
4803 asymbol search, *sym;
4804
4805 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4806
4807 search.name = func->name;
4808 sym = htab_find (sym_hash, &search);
4809 if (sym != NULL)
4810 {
4811 result = ((bfd_signed_vma) func->arange.low) -
4812 ((bfd_signed_vma) (sym->value + sym->section->vma));
4813 goto done;
4814 }
4815 }
4816 }
4817
4818 done:
4819 htab_delete (sym_hash);
4820 return result;
4821 }
4822
4823 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4824 then find the nearest source code location corresponding to
4825 the address SECTION + OFFSET.
4826 Returns 1 if the line is found without error and fills in
4827 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4828 NULL the FUNCTIONNAME_PTR is also filled in.
4829 Returns 2 if partial information from _bfd_elf_find_function is
4830 returned (function and maybe file) by looking at symbols. DWARF2
4831 info is present but not regarding the requested code location.
4832 Returns 0 otherwise.
4833 SYMBOLS contains the symbol table for ABFD.
4834 DEBUG_SECTIONS contains the name of the dwarf debug sections. */
4835
4836 int
4837 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4838 asymbol **symbols,
4839 asymbol *symbol,
4840 asection *section,
4841 bfd_vma offset,
4842 const char **filename_ptr,
4843 const char **functionname_ptr,
4844 unsigned int *linenumber_ptr,
4845 unsigned int *discriminator_ptr,
4846 const struct dwarf_debug_section *debug_sections,
4847 void **pinfo)
4848 {
4849 /* Read each compilation unit from the section .debug_info, and check
4850 to see if it contains the address we are searching for. If yes,
4851 lookup the address, and return the line number info. If no, go
4852 on to the next compilation unit.
4853
4854 We keep a list of all the previously read compilation units, and
4855 a pointer to the next un-read compilation unit. Check the
4856 previously read units before reading more. */
4857 struct dwarf2_debug *stash;
4858 /* What address are we looking for? */
4859 bfd_vma addr;
4860 struct comp_unit* each;
4861 struct funcinfo *function = NULL;
4862 int found = FALSE;
4863 bfd_boolean do_line;
4864
4865 *filename_ptr = NULL;
4866 if (functionname_ptr != NULL)
4867 *functionname_ptr = NULL;
4868 *linenumber_ptr = 0;
4869 if (discriminator_ptr)
4870 *discriminator_ptr = 0;
4871
4872 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4873 symbols, pinfo,
4874 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4875 return FALSE;
4876
4877 stash = (struct dwarf2_debug *) *pinfo;
4878
4879 do_line = symbol != NULL;
4880 if (do_line)
4881 {
4882 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4883 section = bfd_asymbol_section (symbol);
4884 addr = symbol->value;
4885 }
4886 else
4887 {
4888 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4889 addr = offset;
4890
4891 /* If we have no SYMBOL but the section we're looking at is not a
4892 code section, then take a look through the list of symbols to see
4893 if we have a symbol at the address we're looking for. If we do
4894 then use this to look up line information. This will allow us to
4895 give file and line results for data symbols. We exclude code
4896 symbols here, if we look up a function symbol and then look up the
4897 line information we'll actually return the line number for the
4898 opening '{' rather than the function definition line. This is
4899 because looking up by symbol uses the line table, in which the
4900 first line for a function is usually the opening '{', while
4901 looking up the function by section + offset uses the
4902 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4903 which will be the line of the function name. */
4904 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4905 {
4906 asymbol **tmp;
4907
4908 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4909 if ((*tmp)->the_bfd == abfd
4910 && (*tmp)->section == section
4911 && (*tmp)->value == offset
4912 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4913 {
4914 symbol = *tmp;
4915 do_line = TRUE;
4916 /* For local symbols, keep going in the hope we find a
4917 global. */
4918 if ((symbol->flags & BSF_GLOBAL) != 0)
4919 break;
4920 }
4921 }
4922 }
4923
4924 if (section->output_section)
4925 addr += section->output_section->vma + section->output_offset;
4926 else
4927 addr += section->vma;
4928
4929 /* A null info_ptr indicates that there is no dwarf2 info
4930 (or that an error occured while setting up the stash). */
4931 if (! stash->f.info_ptr)
4932 return FALSE;
4933
4934 stash->inliner_chain = NULL;
4935
4936 /* Check the previously read comp. units first. */
4937 if (do_line)
4938 {
4939 /* The info hash tables use quite a bit of memory. We may not want to
4940 always use them. We use some heuristics to decide if and when to
4941 turn it on. */
4942 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4943 stash_maybe_enable_info_hash_tables (abfd, stash);
4944
4945 /* Keep info hash table up to date if they are available. Note that we
4946 may disable the hash tables if there is any error duing update. */
4947 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4948 stash_maybe_update_info_hash_tables (stash);
4949
4950 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4951 {
4952 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4953 linenumber_ptr);
4954 if (found)
4955 goto done;
4956 }
4957 else
4958 {
4959 /* Check the previously read comp. units first. */
4960 for (each = stash->f.all_comp_units; each; each = each->next_unit)
4961 if ((symbol->flags & BSF_FUNCTION) == 0
4962 || each->arange.high == 0
4963 || comp_unit_contains_address (each, addr))
4964 {
4965 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4966 linenumber_ptr);
4967 if (found)
4968 goto done;
4969 }
4970 }
4971 }
4972 else
4973 {
4974 bfd_vma min_range = (bfd_vma) -1;
4975 const char * local_filename = NULL;
4976 struct funcinfo *local_function = NULL;
4977 unsigned int local_linenumber = 0;
4978 unsigned int local_discriminator = 0;
4979
4980 for (each = stash->f.all_comp_units; each; each = each->next_unit)
4981 {
4982 bfd_vma range = (bfd_vma) -1;
4983
4984 found = ((each->arange.high == 0
4985 || comp_unit_contains_address (each, addr))
4986 && (range = (comp_unit_find_nearest_line
4987 (each, addr, &local_filename,
4988 &local_function, &local_linenumber,
4989 &local_discriminator))) != 0);
4990 if (found)
4991 {
4992 /* PRs 15935 15994: Bogus debug information may have provided us
4993 with an erroneous match. We attempt to counter this by
4994 selecting the match that has the smallest address range
4995 associated with it. (We are assuming that corrupt debug info
4996 will tend to result in extra large address ranges rather than
4997 extra small ranges).
4998
4999 This does mean that we scan through all of the CUs associated
5000 with the bfd each time this function is called. But this does
5001 have the benefit of producing consistent results every time the
5002 function is called. */
5003 if (range <= min_range)
5004 {
5005 if (filename_ptr && local_filename)
5006 * filename_ptr = local_filename;
5007 if (local_function)
5008 function = local_function;
5009 if (discriminator_ptr && local_discriminator)
5010 * discriminator_ptr = local_discriminator;
5011 if (local_linenumber)
5012 * linenumber_ptr = local_linenumber;
5013 min_range = range;
5014 }
5015 }
5016 }
5017
5018 if (* linenumber_ptr)
5019 {
5020 found = TRUE;
5021 goto done;
5022 }
5023 }
5024
5025 /* Read each remaining comp. units checking each as they are read. */
5026 while ((each = stash_comp_unit (stash, &stash->f)) != NULL)
5027 {
5028 /* DW_AT_low_pc and DW_AT_high_pc are optional for
5029 compilation units. If we don't have them (i.e.,
5030 unit->high == 0), we need to consult the line info table
5031 to see if a compilation unit contains the given
5032 address. */
5033 if (do_line)
5034 found = (((symbol->flags & BSF_FUNCTION) == 0
5035 || each->arange.high == 0
5036 || comp_unit_contains_address (each, addr))
5037 && comp_unit_find_line (each, symbol, addr,
5038 filename_ptr, linenumber_ptr));
5039 else
5040 found = ((each->arange.high == 0
5041 || comp_unit_contains_address (each, addr))
5042 && comp_unit_find_nearest_line (each, addr,
5043 filename_ptr,
5044 &function,
5045 linenumber_ptr,
5046 discriminator_ptr) != 0);
5047
5048 if (found)
5049 break;
5050 }
5051
5052 done:
5053 if (functionname_ptr && function && function->is_linkage)
5054 *functionname_ptr = function->name;
5055 else if (functionname_ptr
5056 && (!*functionname_ptr
5057 || (function && !function->is_linkage)))
5058 {
5059 asymbol *fun;
5060 asymbol **syms = symbols;
5061 asection *sec = section;
5062
5063 _bfd_dwarf2_stash_syms (stash, abfd, &sec, &syms);
5064 fun = _bfd_elf_find_function (abfd, syms, sec, offset,
5065 *filename_ptr ? NULL : filename_ptr,
5066 functionname_ptr);
5067
5068 if (!found && fun != NULL)
5069 found = 2;
5070
5071 if (function && !function->is_linkage)
5072 {
5073 bfd_vma sec_vma;
5074
5075 sec_vma = section->vma;
5076 if (section->output_section != NULL)
5077 sec_vma = section->output_section->vma + section->output_offset;
5078 if (fun != NULL
5079 && fun->value + sec_vma == function->arange.low)
5080 function->name = *functionname_ptr;
5081 /* Even if we didn't find a linkage name, say that we have
5082 to stop a repeated search of symbols. */
5083 function->is_linkage = TRUE;
5084 }
5085 }
5086
5087 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
5088 unset_sections (stash);
5089
5090 return found;
5091 }
5092
5093 bfd_boolean
5094 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
5095 const char **filename_ptr,
5096 const char **functionname_ptr,
5097 unsigned int *linenumber_ptr,
5098 void **pinfo)
5099 {
5100 struct dwarf2_debug *stash;
5101
5102 stash = (struct dwarf2_debug *) *pinfo;
5103 if (stash)
5104 {
5105 struct funcinfo *func = stash->inliner_chain;
5106
5107 if (func && func->caller_func)
5108 {
5109 *filename_ptr = func->caller_file;
5110 *functionname_ptr = func->caller_func->name;
5111 *linenumber_ptr = func->caller_line;
5112 stash->inliner_chain = func->caller_func;
5113 return TRUE;
5114 }
5115 }
5116
5117 return FALSE;
5118 }
5119
5120 void
5121 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
5122 {
5123 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
5124 struct comp_unit *each;
5125 struct dwarf2_debug_file *file;
5126
5127 if (abfd == NULL || stash == NULL)
5128 return;
5129
5130 if (stash->varinfo_hash_table)
5131 bfd_hash_table_free (&stash->varinfo_hash_table->base);
5132 if (stash->funcinfo_hash_table)
5133 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
5134
5135 file = &stash->f;
5136 while (1)
5137 {
5138 for (each = file->all_comp_units; each; each = each->next_unit)
5139 {
5140 struct funcinfo *function_table = each->function_table;
5141 struct varinfo *variable_table = each->variable_table;
5142
5143 if (each->line_table && each->line_table != file->line_table)
5144 {
5145 free (each->line_table->files);
5146 free (each->line_table->dirs);
5147 }
5148
5149 if (each->lookup_funcinfo_table)
5150 {
5151 free (each->lookup_funcinfo_table);
5152 each->lookup_funcinfo_table = NULL;
5153 }
5154
5155 while (function_table)
5156 {
5157 if (function_table->file)
5158 {
5159 free (function_table->file);
5160 function_table->file = NULL;
5161 }
5162 if (function_table->caller_file)
5163 {
5164 free (function_table->caller_file);
5165 function_table->caller_file = NULL;
5166 }
5167 function_table = function_table->prev_func;
5168 }
5169
5170 while (variable_table)
5171 {
5172 if (variable_table->file)
5173 {
5174 free (variable_table->file);
5175 variable_table->file = NULL;
5176 }
5177 variable_table = variable_table->prev_var;
5178 }
5179 }
5180
5181 if (file->line_table)
5182 {
5183 free (file->line_table->files);
5184 free (file->line_table->dirs);
5185 }
5186 htab_delete (file->abbrev_offsets);
5187
5188 free (file->dwarf_line_str_buffer);
5189 free (file->dwarf_str_buffer);
5190 free (file->dwarf_ranges_buffer);
5191 free (file->dwarf_line_buffer);
5192 free (file->dwarf_abbrev_buffer);
5193 free (file->dwarf_info_buffer);
5194 if (file == &stash->alt)
5195 break;
5196 file = &stash->alt;
5197 }
5198 free (stash->sec_vma);
5199 free (stash->adjusted_sections);
5200 if (stash->close_on_cleanup)
5201 bfd_close (stash->f.bfd_ptr);
5202 if (stash->alt.bfd_ptr)
5203 bfd_close (stash->alt.bfd_ptr);
5204 }
5205
5206 /* Find the function to a particular section and offset,
5207 for error reporting. */
5208
5209 asymbol *
5210 _bfd_elf_find_function (bfd *abfd,
5211 asymbol **symbols,
5212 asection *section,
5213 bfd_vma offset,
5214 const char **filename_ptr,
5215 const char **functionname_ptr)
5216 {
5217 struct elf_find_function_cache
5218 {
5219 asection *last_section;
5220 asymbol *func;
5221 const char *filename;
5222 bfd_size_type func_size;
5223 } *cache;
5224
5225 if (symbols == NULL)
5226 return NULL;
5227
5228 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5229 return NULL;
5230
5231 cache = elf_tdata (abfd)->elf_find_function_cache;
5232 if (cache == NULL)
5233 {
5234 cache = bfd_zalloc (abfd, sizeof (*cache));
5235 elf_tdata (abfd)->elf_find_function_cache = cache;
5236 if (cache == NULL)
5237 return NULL;
5238 }
5239 if (cache->last_section != section
5240 || cache->func == NULL
5241 || offset < cache->func->value
5242 || offset >= cache->func->value + cache->func_size)
5243 {
5244 asymbol *file;
5245 bfd_vma low_func;
5246 asymbol **p;
5247 /* ??? Given multiple file symbols, it is impossible to reliably
5248 choose the right file name for global symbols. File symbols are
5249 local symbols, and thus all file symbols must sort before any
5250 global symbols. The ELF spec may be interpreted to say that a
5251 file symbol must sort before other local symbols, but currently
5252 ld -r doesn't do this. So, for ld -r output, it is possible to
5253 make a better choice of file name for local symbols by ignoring
5254 file symbols appearing after a given local symbol. */
5255 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5256 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5257
5258 file = NULL;
5259 low_func = 0;
5260 state = nothing_seen;
5261 cache->filename = NULL;
5262 cache->func = NULL;
5263 cache->func_size = 0;
5264 cache->last_section = section;
5265
5266 for (p = symbols; *p != NULL; p++)
5267 {
5268 asymbol *sym = *p;
5269 bfd_vma code_off;
5270 bfd_size_type size;
5271
5272 if ((sym->flags & BSF_FILE) != 0)
5273 {
5274 file = sym;
5275 if (state == symbol_seen)
5276 state = file_after_symbol_seen;
5277 continue;
5278 }
5279
5280 size = bed->maybe_function_sym (sym, section, &code_off);
5281 if (size != 0
5282 && code_off <= offset
5283 && (code_off > low_func
5284 || (code_off == low_func
5285 && size > cache->func_size)))
5286 {
5287 cache->func = sym;
5288 cache->func_size = size;
5289 cache->filename = NULL;
5290 low_func = code_off;
5291 if (file != NULL
5292 && ((sym->flags & BSF_LOCAL) != 0
5293 || state != file_after_symbol_seen))
5294 cache->filename = bfd_asymbol_name (file);
5295 }
5296 if (state == nothing_seen)
5297 state = symbol_seen;
5298 }
5299 }
5300
5301 if (cache->func == NULL)
5302 return NULL;
5303
5304 if (filename_ptr)
5305 *filename_ptr = cache->filename;
5306 if (functionname_ptr)
5307 *functionname_ptr = bfd_asymbol_name (cache->func);
5308
5309 return cache->func;
5310 }
This page took 0.160648 seconds and 4 git commands to generate.