Re: Memory leak in dwarf2.c
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38 #include "hashtab.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug
86 {
87 /* A list of all previously read comp_units. */
88 struct comp_unit *all_comp_units;
89
90 /* Last comp unit in list above. */
91 struct comp_unit *last_comp_unit;
92
93 /* Names of the debug sections. */
94 const struct dwarf_debug_section *debug_sections;
95
96 /* The next unread compilation unit within the .debug_info section.
97 Zero indicates that the .debug_info section has not been loaded
98 into a buffer yet. */
99 bfd_byte *info_ptr;
100
101 /* Pointer to the end of the .debug_info section memory buffer. */
102 bfd_byte *info_ptr_end;
103
104 /* Pointer to the original bfd for which debug was loaded. This is what
105 we use to compare and so check that the cached debug data is still
106 valid - it saves having to possibly dereference the gnu_debuglink each
107 time. */
108 bfd *orig_bfd;
109
110 /* Pointer to the bfd, section and address of the beginning of the
111 section. The bfd might be different than expected because of
112 gnu_debuglink sections. */
113 bfd *bfd_ptr;
114 asection *sec;
115 bfd_byte *sec_info_ptr;
116
117 /* Support for alternate debug info sections created by the DWZ utility:
118 This includes a pointer to an alternate bfd which contains *extra*,
119 possibly duplicate debug sections, and pointers to the loaded
120 .debug_str and .debug_info sections from this bfd. */
121 bfd * alt_bfd_ptr;
122 bfd_byte * alt_dwarf_str_buffer;
123 bfd_size_type alt_dwarf_str_size;
124 bfd_byte * alt_dwarf_info_buffer;
125 bfd_size_type alt_dwarf_info_size;
126
127 /* A pointer to the memory block allocated for info_ptr. Neither
128 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
129 beginning of the malloc block. */
130 bfd_byte *info_ptr_memory;
131
132 /* Pointer to the symbol table. */
133 asymbol **syms;
134
135 /* Pointer to the .debug_abbrev section loaded into memory. */
136 bfd_byte *dwarf_abbrev_buffer;
137
138 /* Length of the loaded .debug_abbrev section. */
139 bfd_size_type dwarf_abbrev_size;
140
141 /* Buffer for decode_line_info. */
142 bfd_byte *dwarf_line_buffer;
143
144 /* Length of the loaded .debug_line section. */
145 bfd_size_type dwarf_line_size;
146
147 /* Pointer to the .debug_str section loaded into memory. */
148 bfd_byte *dwarf_str_buffer;
149
150 /* Length of the loaded .debug_str section. */
151 bfd_size_type dwarf_str_size;
152
153 /* Pointer to the .debug_line_str section loaded into memory. */
154 bfd_byte *dwarf_line_str_buffer;
155
156 /* Length of the loaded .debug_line_str section. */
157 bfd_size_type dwarf_line_str_size;
158
159 /* Pointer to the .debug_ranges section loaded into memory. */
160 bfd_byte *dwarf_ranges_buffer;
161
162 /* Length of the loaded .debug_ranges section. */
163 bfd_size_type dwarf_ranges_size;
164
165 /* If the most recent call to bfd_find_nearest_line was given an
166 address in an inlined function, preserve a pointer into the
167 calling chain for subsequent calls to bfd_find_inliner_info to
168 use. */
169 struct funcinfo *inliner_chain;
170
171 /* Section VMAs at the time the stash was built. */
172 bfd_vma *sec_vma;
173 /* Number of sections in the SEC_VMA table. */
174 unsigned int sec_vma_count;
175
176 /* Number of sections whose VMA we must adjust. */
177 int adjusted_section_count;
178
179 /* Array of sections with adjusted VMA. */
180 struct adjusted_section *adjusted_sections;
181
182 /* Number of times find_line is called. This is used in
183 the heuristic for enabling the info hash tables. */
184 int info_hash_count;
185
186 #define STASH_INFO_HASH_TRIGGER 100
187
188 /* Hash table mapping symbol names to function infos. */
189 struct info_hash_table *funcinfo_hash_table;
190
191 /* Hash table mapping symbol names to variable infos. */
192 struct info_hash_table *varinfo_hash_table;
193
194 /* Head of comp_unit list in the last hash table update. */
195 struct comp_unit *hash_units_head;
196
197 /* Status of info hash. */
198 int info_hash_status;
199 #define STASH_INFO_HASH_OFF 0
200 #define STASH_INFO_HASH_ON 1
201 #define STASH_INFO_HASH_DISABLED 2
202
203 /* True if we opened bfd_ptr. */
204 bfd_boolean close_on_cleanup;
205 };
206
207 struct arange
208 {
209 struct arange *next;
210 bfd_vma low;
211 bfd_vma high;
212 };
213
214 /* A minimal decoding of DWARF2 compilation units. We only decode
215 what's needed to get to the line number information. */
216
217 struct comp_unit
218 {
219 /* Chain the previously read compilation units. */
220 struct comp_unit *next_unit;
221
222 /* Likewise, chain the compilation unit read after this one.
223 The comp units are stored in reversed reading order. */
224 struct comp_unit *prev_unit;
225
226 /* Keep the bfd convenient (for memory allocation). */
227 bfd *abfd;
228
229 /* The lowest and highest addresses contained in this compilation
230 unit as specified in the compilation unit header. */
231 struct arange arange;
232
233 /* The DW_AT_name attribute (for error messages). */
234 char *name;
235
236 /* The abbrev hash table. */
237 struct abbrev_info **abbrevs;
238
239 /* DW_AT_language. */
240 int lang;
241
242 /* Note that an error was found by comp_unit_find_nearest_line. */
243 int error;
244
245 /* The DW_AT_comp_dir attribute. */
246 char *comp_dir;
247
248 /* TRUE if there is a line number table associated with this comp. unit. */
249 int stmtlist;
250
251 /* Pointer to the current comp_unit so that we can find a given entry
252 by its reference. */
253 bfd_byte *info_ptr_unit;
254
255 /* The offset into .debug_line of the line number table. */
256 unsigned long line_offset;
257
258 /* Pointer to the first child die for the comp unit. */
259 bfd_byte *first_child_die_ptr;
260
261 /* The end of the comp unit. */
262 bfd_byte *end_ptr;
263
264 /* The decoded line number, NULL if not yet decoded. */
265 struct line_info_table *line_table;
266
267 /* A list of the functions found in this comp. unit. */
268 struct funcinfo *function_table;
269
270 /* A table of function information references searchable by address. */
271 struct lookup_funcinfo *lookup_funcinfo_table;
272
273 /* Number of functions in the function_table and sorted_function_table. */
274 bfd_size_type number_of_functions;
275
276 /* A list of the variables found in this comp. unit. */
277 struct varinfo *variable_table;
278
279 /* Pointer to dwarf2_debug structure. */
280 struct dwarf2_debug *stash;
281
282 /* DWARF format version for this unit - from unit header. */
283 int version;
284
285 /* Address size for this unit - from unit header. */
286 unsigned char addr_size;
287
288 /* Offset size for this unit - from unit header. */
289 unsigned char offset_size;
290
291 /* Base address for this unit - from DW_AT_low_pc attribute of
292 DW_TAG_compile_unit DIE */
293 bfd_vma base_address;
294
295 /* TRUE if symbols are cached in hash table for faster lookup by name. */
296 bfd_boolean cached;
297 };
298
299 /* This data structure holds the information of an abbrev. */
300 struct abbrev_info
301 {
302 unsigned int number; /* Number identifying abbrev. */
303 enum dwarf_tag tag; /* DWARF tag. */
304 int has_children; /* Boolean. */
305 unsigned int num_attrs; /* Number of attributes. */
306 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
307 struct abbrev_info *next; /* Next in chain. */
308 };
309
310 struct attr_abbrev
311 {
312 enum dwarf_attribute name;
313 enum dwarf_form form;
314 bfd_vma implicit_const;
315 };
316
317 /* Map of uncompressed DWARF debug section name to compressed one. It
318 is terminated by NULL uncompressed_name. */
319
320 const struct dwarf_debug_section dwarf_debug_sections[] =
321 {
322 { ".debug_abbrev", ".zdebug_abbrev" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 { ".debug_frame", ".zdebug_frame" },
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_info", ".zdebug_info" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_pubnames", ".zdebug_pubnames" },
332 { ".debug_pubtypes", ".zdebug_pubtypes" },
333 { ".debug_ranges", ".zdebug_ranges" },
334 { ".debug_static_func", ".zdebug_static_func" },
335 { ".debug_static_vars", ".zdebug_static_vars" },
336 { ".debug_str", ".zdebug_str", },
337 { ".debug_str", ".zdebug_str", },
338 { ".debug_line_str", ".zdebug_line_str", },
339 { ".debug_types", ".zdebug_types" },
340 /* GNU DWARF 1 extensions */
341 { ".debug_sfnames", ".zdebug_sfnames" },
342 { ".debug_srcinfo", ".zebug_srcinfo" },
343 /* SGI/MIPS DWARF 2 extensions */
344 { ".debug_funcnames", ".zdebug_funcnames" },
345 { ".debug_typenames", ".zdebug_typenames" },
346 { ".debug_varnames", ".zdebug_varnames" },
347 { ".debug_weaknames", ".zdebug_weaknames" },
348 { NULL, NULL },
349 };
350
351 /* NB/ Numbers in this enum must match up with indices
352 into the dwarf_debug_sections[] array above. */
353 enum dwarf_debug_section_enum
354 {
355 debug_abbrev = 0,
356 debug_aranges,
357 debug_frame,
358 debug_info,
359 debug_info_alt,
360 debug_line,
361 debug_loc,
362 debug_macinfo,
363 debug_macro,
364 debug_pubnames,
365 debug_pubtypes,
366 debug_ranges,
367 debug_static_func,
368 debug_static_vars,
369 debug_str,
370 debug_str_alt,
371 debug_line_str,
372 debug_types,
373 debug_sfnames,
374 debug_srcinfo,
375 debug_funcnames,
376 debug_typenames,
377 debug_varnames,
378 debug_weaknames,
379 debug_max
380 };
381
382 /* A static assertion. */
383 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
384 == debug_max + 1 ? 1 : -1];
385
386 #ifndef ABBREV_HASH_SIZE
387 #define ABBREV_HASH_SIZE 121
388 #endif
389 #ifndef ATTR_ALLOC_CHUNK
390 #define ATTR_ALLOC_CHUNK 4
391 #endif
392
393 /* Variable and function hash tables. This is used to speed up look-up
394 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
395 In order to share code between variable and function infos, we use
396 a list of untyped pointer for all variable/function info associated with
397 a symbol. We waste a bit of memory for list with one node but that
398 simplifies the code. */
399
400 struct info_list_node
401 {
402 struct info_list_node *next;
403 void *info;
404 };
405
406 /* Info hash entry. */
407 struct info_hash_entry
408 {
409 struct bfd_hash_entry root;
410 struct info_list_node *head;
411 };
412
413 struct info_hash_table
414 {
415 struct bfd_hash_table base;
416 };
417
418 /* Function to create a new entry in info hash table. */
419
420 static struct bfd_hash_entry *
421 info_hash_table_newfunc (struct bfd_hash_entry *entry,
422 struct bfd_hash_table *table,
423 const char *string)
424 {
425 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
426
427 /* Allocate the structure if it has not already been allocated by a
428 derived class. */
429 if (ret == NULL)
430 {
431 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
432 sizeof (* ret));
433 if (ret == NULL)
434 return NULL;
435 }
436
437 /* Call the allocation method of the base class. */
438 ret = ((struct info_hash_entry *)
439 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
440
441 /* Initialize the local fields here. */
442 if (ret)
443 ret->head = NULL;
444
445 return (struct bfd_hash_entry *) ret;
446 }
447
448 /* Function to create a new info hash table. It returns a pointer to the
449 newly created table or NULL if there is any error. We need abfd
450 solely for memory allocation. */
451
452 static struct info_hash_table *
453 create_info_hash_table (bfd *abfd)
454 {
455 struct info_hash_table *hash_table;
456
457 hash_table = ((struct info_hash_table *)
458 bfd_alloc (abfd, sizeof (struct info_hash_table)));
459 if (!hash_table)
460 return hash_table;
461
462 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
463 sizeof (struct info_hash_entry)))
464 {
465 bfd_release (abfd, hash_table);
466 return NULL;
467 }
468
469 return hash_table;
470 }
471
472 /* Insert an info entry into an info hash table. We do not check of
473 duplicate entries. Also, the caller need to guarantee that the
474 right type of info in inserted as info is passed as a void* pointer.
475 This function returns true if there is no error. */
476
477 static bfd_boolean
478 insert_info_hash_table (struct info_hash_table *hash_table,
479 const char *key,
480 void *info,
481 bfd_boolean copy_p)
482 {
483 struct info_hash_entry *entry;
484 struct info_list_node *node;
485
486 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
487 key, TRUE, copy_p);
488 if (!entry)
489 return FALSE;
490
491 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
492 sizeof (*node));
493 if (!node)
494 return FALSE;
495
496 node->info = info;
497 node->next = entry->head;
498 entry->head = node;
499
500 return TRUE;
501 }
502
503 /* Look up an info entry list from an info hash table. Return NULL
504 if there is none. */
505
506 static struct info_list_node *
507 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
508 {
509 struct info_hash_entry *entry;
510
511 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
512 FALSE, FALSE);
513 return entry ? entry->head : NULL;
514 }
515
516 /* Read a section into its appropriate place in the dwarf2_debug
517 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
518 not NULL, use bfd_simple_get_relocated_section_contents to read the
519 section contents, otherwise use bfd_get_section_contents. Fail if
520 the located section does not contain at least OFFSET bytes. */
521
522 static bfd_boolean
523 read_section (bfd * abfd,
524 const struct dwarf_debug_section *sec,
525 asymbol ** syms,
526 bfd_uint64_t offset,
527 bfd_byte ** section_buffer,
528 bfd_size_type * section_size)
529 {
530 asection *msec;
531 const char *section_name = sec->uncompressed_name;
532 bfd_byte *contents = *section_buffer;
533 bfd_size_type amt;
534
535 /* The section may have already been read. */
536 if (contents == NULL)
537 {
538 msec = bfd_get_section_by_name (abfd, section_name);
539 if (! msec)
540 {
541 section_name = sec->compressed_name;
542 if (section_name != NULL)
543 msec = bfd_get_section_by_name (abfd, section_name);
544 }
545 if (! msec)
546 {
547 _bfd_error_handler (_("DWARF error: can't find %s section."),
548 sec->uncompressed_name);
549 bfd_set_error (bfd_error_bad_value);
550 return FALSE;
551 }
552
553 *section_size = msec->rawsize ? msec->rawsize : msec->size;
554 /* Paranoia - alloc one extra so that we can make sure a string
555 section is NUL terminated. */
556 amt = *section_size + 1;
557 if (amt == 0)
558 {
559 bfd_set_error (bfd_error_no_memory);
560 return FALSE;
561 }
562 contents = (bfd_byte *) bfd_malloc (amt);
563 if (contents == NULL)
564 return FALSE;
565 if (syms
566 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
567 syms)
568 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
569 {
570 free (contents);
571 return FALSE;
572 }
573 contents[*section_size] = 0;
574 *section_buffer = contents;
575 }
576
577 /* It is possible to get a bad value for the offset into the section
578 that the client wants. Validate it here to avoid trouble later. */
579 if (offset != 0 && offset >= *section_size)
580 {
581 /* xgettext: c-format */
582 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
583 " greater than or equal to %s size (%" PRIu64 ")"),
584 (uint64_t) offset, section_name,
585 (uint64_t) *section_size);
586 bfd_set_error (bfd_error_bad_value);
587 return FALSE;
588 }
589
590 return TRUE;
591 }
592
593 /* Read dwarf information from a buffer. */
594
595 static unsigned int
596 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
597 {
598 if (buf + 1 > end)
599 return 0;
600 return bfd_get_8 (abfd, buf);
601 }
602
603 static int
604 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
605 {
606 if (buf + 1 > end)
607 return 0;
608 return bfd_get_signed_8 (abfd, buf);
609 }
610
611 static unsigned int
612 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
613 {
614 if (buf + 2 > end)
615 return 0;
616 return bfd_get_16 (abfd, buf);
617 }
618
619 static unsigned int
620 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
621 {
622 if (buf + 4 > end)
623 return 0;
624 return bfd_get_32 (abfd, buf);
625 }
626
627 static bfd_uint64_t
628 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
629 {
630 if (buf + 8 > end)
631 return 0;
632 return bfd_get_64 (abfd, buf);
633 }
634
635 static bfd_byte *
636 read_n_bytes (bfd_byte * buf,
637 bfd_byte * end,
638 struct dwarf_block * block)
639 {
640 unsigned int size = block->size;
641 bfd_byte * block_end = buf + size;
642
643 if (block_end > end || block_end < buf)
644 {
645 block->data = NULL;
646 block->size = 0;
647 return end;
648 }
649 else
650 {
651 block->data = buf;
652 return block_end;
653 }
654 }
655
656 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
657 Returns the number of characters in the string, *including* the NUL byte,
658 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
659 at or beyond BUF_END will not be read. Returns NULL if there was a
660 problem, or if the string is empty. */
661
662 static char *
663 read_string (bfd * abfd ATTRIBUTE_UNUSED,
664 bfd_byte * buf,
665 bfd_byte * buf_end,
666 unsigned int * bytes_read_ptr)
667 {
668 bfd_byte *str = buf;
669
670 if (buf >= buf_end)
671 {
672 * bytes_read_ptr = 0;
673 return NULL;
674 }
675
676 if (*str == '\0')
677 {
678 * bytes_read_ptr = 1;
679 return NULL;
680 }
681
682 while (buf < buf_end)
683 if (* buf ++ == 0)
684 {
685 * bytes_read_ptr = buf - str;
686 return (char *) str;
687 }
688
689 * bytes_read_ptr = buf - str;
690 return NULL;
691 }
692
693 /* Reads an offset from BUF and then locates the string at this offset
694 inside the debug string section. Returns a pointer to the string.
695 Returns the number of bytes read from BUF, *not* the length of the string,
696 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
697 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
698 a problem, or if the string is empty. Does not check for NUL termination
699 of the string. */
700
701 static char *
702 read_indirect_string (struct comp_unit * unit,
703 bfd_byte * buf,
704 bfd_byte * buf_end,
705 unsigned int * bytes_read_ptr)
706 {
707 bfd_uint64_t offset;
708 struct dwarf2_debug *stash = unit->stash;
709 char *str;
710
711 if (buf + unit->offset_size > buf_end)
712 {
713 * bytes_read_ptr = 0;
714 return NULL;
715 }
716
717 if (unit->offset_size == 4)
718 offset = read_4_bytes (unit->abfd, buf, buf_end);
719 else
720 offset = read_8_bytes (unit->abfd, buf, buf_end);
721
722 *bytes_read_ptr = unit->offset_size;
723
724 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
725 stash->syms, offset,
726 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
727 return NULL;
728
729 if (offset >= stash->dwarf_str_size)
730 return NULL;
731 str = (char *) stash->dwarf_str_buffer + offset;
732 if (*str == '\0')
733 return NULL;
734 return str;
735 }
736
737 /* Like read_indirect_string but from .debug_line_str section. */
738
739 static char *
740 read_indirect_line_string (struct comp_unit * unit,
741 bfd_byte * buf,
742 bfd_byte * buf_end,
743 unsigned int * bytes_read_ptr)
744 {
745 bfd_uint64_t offset;
746 struct dwarf2_debug *stash = unit->stash;
747 char *str;
748
749 if (buf + unit->offset_size > buf_end)
750 {
751 * bytes_read_ptr = 0;
752 return NULL;
753 }
754
755 if (unit->offset_size == 4)
756 offset = read_4_bytes (unit->abfd, buf, buf_end);
757 else
758 offset = read_8_bytes (unit->abfd, buf, buf_end);
759
760 *bytes_read_ptr = unit->offset_size;
761
762 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
763 stash->syms, offset,
764 &stash->dwarf_line_str_buffer,
765 &stash->dwarf_line_str_size))
766 return NULL;
767
768 if (offset >= stash->dwarf_line_str_size)
769 return NULL;
770 str = (char *) stash->dwarf_line_str_buffer + offset;
771 if (*str == '\0')
772 return NULL;
773 return str;
774 }
775
776 /* Like read_indirect_string but uses a .debug_str located in
777 an alternate file pointed to by the .gnu_debugaltlink section.
778 Used to impement DW_FORM_GNU_strp_alt. */
779
780 static char *
781 read_alt_indirect_string (struct comp_unit * unit,
782 bfd_byte * buf,
783 bfd_byte * buf_end,
784 unsigned int * bytes_read_ptr)
785 {
786 bfd_uint64_t offset;
787 struct dwarf2_debug *stash = unit->stash;
788 char *str;
789
790 if (buf + unit->offset_size > buf_end)
791 {
792 * bytes_read_ptr = 0;
793 return NULL;
794 }
795
796 if (unit->offset_size == 4)
797 offset = read_4_bytes (unit->abfd, buf, buf_end);
798 else
799 offset = read_8_bytes (unit->abfd, buf, buf_end);
800
801 *bytes_read_ptr = unit->offset_size;
802
803 if (stash->alt_bfd_ptr == NULL)
804 {
805 bfd *debug_bfd;
806 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
807
808 if (debug_filename == NULL)
809 return NULL;
810
811 debug_bfd = bfd_openr (debug_filename, NULL);
812 free (debug_filename);
813 if (debug_bfd == NULL)
814 /* FIXME: Should we report our failure to follow the debuglink ? */
815 return NULL;
816
817 if (!bfd_check_format (debug_bfd, bfd_object))
818 {
819 bfd_close (debug_bfd);
820 return NULL;
821 }
822 stash->alt_bfd_ptr = debug_bfd;
823 }
824
825 if (! read_section (unit->stash->alt_bfd_ptr,
826 stash->debug_sections + debug_str_alt,
827 NULL, /* FIXME: Do we need to load alternate symbols ? */
828 offset,
829 &stash->alt_dwarf_str_buffer,
830 &stash->alt_dwarf_str_size))
831 return NULL;
832
833 if (offset >= stash->alt_dwarf_str_size)
834 return NULL;
835 str = (char *) stash->alt_dwarf_str_buffer + offset;
836 if (*str == '\0')
837 return NULL;
838
839 return str;
840 }
841
842 /* Resolve an alternate reference from UNIT at OFFSET.
843 Returns a pointer into the loaded alternate CU upon success
844 or NULL upon failure. */
845
846 static bfd_byte *
847 read_alt_indirect_ref (struct comp_unit * unit,
848 bfd_uint64_t offset)
849 {
850 struct dwarf2_debug *stash = unit->stash;
851
852 if (stash->alt_bfd_ptr == NULL)
853 {
854 bfd *debug_bfd;
855 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
856
857 if (debug_filename == NULL)
858 return FALSE;
859
860 debug_bfd = bfd_openr (debug_filename, NULL);
861 free (debug_filename);
862 if (debug_bfd == NULL)
863 /* FIXME: Should we report our failure to follow the debuglink ? */
864 return NULL;
865
866 if (!bfd_check_format (debug_bfd, bfd_object))
867 {
868 bfd_close (debug_bfd);
869 return NULL;
870 }
871 stash->alt_bfd_ptr = debug_bfd;
872 }
873
874 if (! read_section (unit->stash->alt_bfd_ptr,
875 stash->debug_sections + debug_info_alt,
876 NULL, /* FIXME: Do we need to load alternate symbols ? */
877 offset,
878 &stash->alt_dwarf_info_buffer,
879 &stash->alt_dwarf_info_size))
880 return NULL;
881
882 if (offset >= stash->alt_dwarf_info_size)
883 return NULL;
884 return stash->alt_dwarf_info_buffer + offset;
885 }
886
887 static bfd_uint64_t
888 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
889 {
890 int signed_vma = 0;
891
892 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
893 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
894
895 if (buf + unit->addr_size > buf_end)
896 return 0;
897
898 if (signed_vma)
899 {
900 switch (unit->addr_size)
901 {
902 case 8:
903 return bfd_get_signed_64 (unit->abfd, buf);
904 case 4:
905 return bfd_get_signed_32 (unit->abfd, buf);
906 case 2:
907 return bfd_get_signed_16 (unit->abfd, buf);
908 default:
909 abort ();
910 }
911 }
912 else
913 {
914 switch (unit->addr_size)
915 {
916 case 8:
917 return bfd_get_64 (unit->abfd, buf);
918 case 4:
919 return bfd_get_32 (unit->abfd, buf);
920 case 2:
921 return bfd_get_16 (unit->abfd, buf);
922 default:
923 abort ();
924 }
925 }
926 }
927
928 /* Lookup an abbrev_info structure in the abbrev hash table. */
929
930 static struct abbrev_info *
931 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
932 {
933 unsigned int hash_number;
934 struct abbrev_info *abbrev;
935
936 hash_number = number % ABBREV_HASH_SIZE;
937 abbrev = abbrevs[hash_number];
938
939 while (abbrev)
940 {
941 if (abbrev->number == number)
942 return abbrev;
943 else
944 abbrev = abbrev->next;
945 }
946
947 return NULL;
948 }
949
950 /* In DWARF version 2, the description of the debugging information is
951 stored in a separate .debug_abbrev section. Before we read any
952 dies from a section we read in all abbreviations and install them
953 in a hash table. */
954
955 static struct abbrev_info**
956 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
957 {
958 struct abbrev_info **abbrevs;
959 bfd_byte *abbrev_ptr;
960 bfd_byte *abbrev_end;
961 struct abbrev_info *cur_abbrev;
962 unsigned int abbrev_number, bytes_read, abbrev_name;
963 unsigned int abbrev_form, hash_number;
964 bfd_size_type amt;
965
966 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
967 stash->syms, offset,
968 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
969 return NULL;
970
971 if (offset >= stash->dwarf_abbrev_size)
972 return NULL;
973
974 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
975 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
976 if (abbrevs == NULL)
977 return NULL;
978
979 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
980 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
981 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
982 FALSE, abbrev_end);
983 abbrev_ptr += bytes_read;
984
985 /* Loop until we reach an abbrev number of 0. */
986 while (abbrev_number)
987 {
988 amt = sizeof (struct abbrev_info);
989 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
990 if (cur_abbrev == NULL)
991 return NULL;
992
993 /* Read in abbrev header. */
994 cur_abbrev->number = abbrev_number;
995 cur_abbrev->tag = (enum dwarf_tag)
996 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
997 FALSE, abbrev_end);
998 abbrev_ptr += bytes_read;
999 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1000 abbrev_ptr += 1;
1001
1002 /* Now read in declarations. */
1003 for (;;)
1004 {
1005 /* Initialize it just to avoid a GCC false warning. */
1006 bfd_vma implicit_const = -1;
1007
1008 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1009 FALSE, abbrev_end);
1010 abbrev_ptr += bytes_read;
1011 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1012 FALSE, abbrev_end);
1013 abbrev_ptr += bytes_read;
1014 if (abbrev_form == DW_FORM_implicit_const)
1015 {
1016 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1017 &bytes_read, TRUE,
1018 abbrev_end);
1019 abbrev_ptr += bytes_read;
1020 }
1021
1022 if (abbrev_name == 0)
1023 break;
1024
1025 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1026 {
1027 struct attr_abbrev *tmp;
1028
1029 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1030 amt *= sizeof (struct attr_abbrev);
1031 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1032 if (tmp == NULL)
1033 {
1034 size_t i;
1035
1036 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1037 {
1038 struct abbrev_info *abbrev = abbrevs[i];
1039
1040 while (abbrev)
1041 {
1042 free (abbrev->attrs);
1043 abbrev = abbrev->next;
1044 }
1045 }
1046 return NULL;
1047 }
1048 cur_abbrev->attrs = tmp;
1049 }
1050
1051 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1052 = (enum dwarf_attribute) abbrev_name;
1053 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1054 = (enum dwarf_form) abbrev_form;
1055 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1056 = implicit_const;
1057 ++cur_abbrev->num_attrs;
1058 }
1059
1060 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1061 cur_abbrev->next = abbrevs[hash_number];
1062 abbrevs[hash_number] = cur_abbrev;
1063
1064 /* Get next abbreviation.
1065 Under Irix6 the abbreviations for a compilation unit are not
1066 always properly terminated with an abbrev number of 0.
1067 Exit loop if we encounter an abbreviation which we have
1068 already read (which means we are about to read the abbreviations
1069 for the next compile unit) or if the end of the abbreviation
1070 table is reached. */
1071 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1072 >= stash->dwarf_abbrev_size)
1073 break;
1074 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1075 &bytes_read, FALSE, abbrev_end);
1076 abbrev_ptr += bytes_read;
1077 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1078 break;
1079 }
1080
1081 return abbrevs;
1082 }
1083
1084 /* Returns true if the form is one which has a string value. */
1085
1086 static inline bfd_boolean
1087 is_str_attr (enum dwarf_form form)
1088 {
1089 return (form == DW_FORM_string || form == DW_FORM_strp
1090 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1091 }
1092
1093 /* Read and fill in the value of attribute ATTR as described by FORM.
1094 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1095 Returns an updated INFO_PTR taking into account the amount of data read. */
1096
1097 static bfd_byte *
1098 read_attribute_value (struct attribute * attr,
1099 unsigned form,
1100 bfd_vma implicit_const,
1101 struct comp_unit * unit,
1102 bfd_byte * info_ptr,
1103 bfd_byte * info_ptr_end)
1104 {
1105 bfd *abfd = unit->abfd;
1106 unsigned int bytes_read;
1107 struct dwarf_block *blk;
1108 bfd_size_type amt;
1109
1110 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1111 {
1112 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1113 bfd_set_error (bfd_error_bad_value);
1114 return info_ptr;
1115 }
1116
1117 attr->form = (enum dwarf_form) form;
1118
1119 switch (form)
1120 {
1121 case DW_FORM_ref_addr:
1122 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1123 DWARF3. */
1124 if (unit->version == 3 || unit->version == 4)
1125 {
1126 if (unit->offset_size == 4)
1127 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1128 else
1129 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1130 info_ptr += unit->offset_size;
1131 break;
1132 }
1133 /* FALLTHROUGH */
1134 case DW_FORM_addr:
1135 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1136 info_ptr += unit->addr_size;
1137 break;
1138 case DW_FORM_GNU_ref_alt:
1139 case DW_FORM_sec_offset:
1140 if (unit->offset_size == 4)
1141 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1142 else
1143 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1144 info_ptr += unit->offset_size;
1145 break;
1146 case DW_FORM_block2:
1147 amt = sizeof (struct dwarf_block);
1148 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1149 if (blk == NULL)
1150 return NULL;
1151 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1152 info_ptr += 2;
1153 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1154 attr->u.blk = blk;
1155 break;
1156 case DW_FORM_block4:
1157 amt = sizeof (struct dwarf_block);
1158 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1159 if (blk == NULL)
1160 return NULL;
1161 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1162 info_ptr += 4;
1163 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1164 attr->u.blk = blk;
1165 break;
1166 case DW_FORM_data2:
1167 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1168 info_ptr += 2;
1169 break;
1170 case DW_FORM_data4:
1171 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1172 info_ptr += 4;
1173 break;
1174 case DW_FORM_data8:
1175 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1176 info_ptr += 8;
1177 break;
1178 case DW_FORM_string:
1179 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1180 info_ptr += bytes_read;
1181 break;
1182 case DW_FORM_strp:
1183 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1184 info_ptr += bytes_read;
1185 break;
1186 case DW_FORM_line_strp:
1187 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1188 info_ptr += bytes_read;
1189 break;
1190 case DW_FORM_GNU_strp_alt:
1191 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1192 info_ptr += bytes_read;
1193 break;
1194 case DW_FORM_exprloc:
1195 case DW_FORM_block:
1196 amt = sizeof (struct dwarf_block);
1197 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1198 if (blk == NULL)
1199 return NULL;
1200 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1201 FALSE, info_ptr_end);
1202 info_ptr += bytes_read;
1203 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1204 attr->u.blk = blk;
1205 break;
1206 case DW_FORM_block1:
1207 amt = sizeof (struct dwarf_block);
1208 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1209 if (blk == NULL)
1210 return NULL;
1211 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1212 info_ptr += 1;
1213 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1214 attr->u.blk = blk;
1215 break;
1216 case DW_FORM_data1:
1217 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1218 info_ptr += 1;
1219 break;
1220 case DW_FORM_flag:
1221 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1222 info_ptr += 1;
1223 break;
1224 case DW_FORM_flag_present:
1225 attr->u.val = 1;
1226 break;
1227 case DW_FORM_sdata:
1228 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1229 TRUE, info_ptr_end);
1230 info_ptr += bytes_read;
1231 break;
1232 case DW_FORM_udata:
1233 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1234 FALSE, info_ptr_end);
1235 info_ptr += bytes_read;
1236 break;
1237 case DW_FORM_ref1:
1238 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1239 info_ptr += 1;
1240 break;
1241 case DW_FORM_ref2:
1242 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1243 info_ptr += 2;
1244 break;
1245 case DW_FORM_ref4:
1246 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1247 info_ptr += 4;
1248 break;
1249 case DW_FORM_ref8:
1250 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1251 info_ptr += 8;
1252 break;
1253 case DW_FORM_ref_sig8:
1254 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1255 info_ptr += 8;
1256 break;
1257 case DW_FORM_ref_udata:
1258 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1259 FALSE, info_ptr_end);
1260 info_ptr += bytes_read;
1261 break;
1262 case DW_FORM_indirect:
1263 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1264 FALSE, info_ptr_end);
1265 info_ptr += bytes_read;
1266 if (form == DW_FORM_implicit_const)
1267 {
1268 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1269 TRUE, info_ptr_end);
1270 info_ptr += bytes_read;
1271 }
1272 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1273 info_ptr, info_ptr_end);
1274 break;
1275 case DW_FORM_implicit_const:
1276 attr->form = DW_FORM_sdata;
1277 attr->u.sval = implicit_const;
1278 break;
1279 default:
1280 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1281 form);
1282 bfd_set_error (bfd_error_bad_value);
1283 return NULL;
1284 }
1285 return info_ptr;
1286 }
1287
1288 /* Read an attribute described by an abbreviated attribute. */
1289
1290 static bfd_byte *
1291 read_attribute (struct attribute * attr,
1292 struct attr_abbrev * abbrev,
1293 struct comp_unit * unit,
1294 bfd_byte * info_ptr,
1295 bfd_byte * info_ptr_end)
1296 {
1297 attr->name = abbrev->name;
1298 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1299 unit, info_ptr, info_ptr_end);
1300 return info_ptr;
1301 }
1302
1303 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1304 for a function. */
1305
1306 static bfd_boolean
1307 non_mangled (int lang)
1308 {
1309 switch (lang)
1310 {
1311 default:
1312 return FALSE;
1313
1314 case DW_LANG_C89:
1315 case DW_LANG_C:
1316 case DW_LANG_Ada83:
1317 case DW_LANG_Cobol74:
1318 case DW_LANG_Cobol85:
1319 case DW_LANG_Fortran77:
1320 case DW_LANG_Pascal83:
1321 case DW_LANG_C99:
1322 case DW_LANG_Ada95:
1323 case DW_LANG_PLI:
1324 case DW_LANG_UPC:
1325 case DW_LANG_C11:
1326 return TRUE;
1327 }
1328 }
1329
1330 /* Source line information table routines. */
1331
1332 #define FILE_ALLOC_CHUNK 5
1333 #define DIR_ALLOC_CHUNK 5
1334
1335 struct line_info
1336 {
1337 struct line_info * prev_line;
1338 bfd_vma address;
1339 char * filename;
1340 unsigned int line;
1341 unsigned int column;
1342 unsigned int discriminator;
1343 unsigned char op_index;
1344 unsigned char end_sequence; /* End of (sequential) code sequence. */
1345 };
1346
1347 struct fileinfo
1348 {
1349 char * name;
1350 unsigned int dir;
1351 unsigned int time;
1352 unsigned int size;
1353 };
1354
1355 struct line_sequence
1356 {
1357 bfd_vma low_pc;
1358 struct line_sequence* prev_sequence;
1359 struct line_info* last_line; /* Largest VMA. */
1360 struct line_info** line_info_lookup;
1361 bfd_size_type num_lines;
1362 };
1363
1364 struct line_info_table
1365 {
1366 bfd * abfd;
1367 unsigned int num_files;
1368 unsigned int num_dirs;
1369 unsigned int num_sequences;
1370 char * comp_dir;
1371 char ** dirs;
1372 struct fileinfo* files;
1373 struct line_sequence* sequences;
1374 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1375 };
1376
1377 /* Remember some information about each function. If the function is
1378 inlined (DW_TAG_inlined_subroutine) it may have two additional
1379 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1380 source code location where this function was inlined. */
1381
1382 struct funcinfo
1383 {
1384 /* Pointer to previous function in list of all functions. */
1385 struct funcinfo * prev_func;
1386 /* Pointer to function one scope higher. */
1387 struct funcinfo * caller_func;
1388 /* Source location file name where caller_func inlines this func. */
1389 char * caller_file;
1390 /* Source location file name. */
1391 char * file;
1392 /* Source location line number where caller_func inlines this func. */
1393 int caller_line;
1394 /* Source location line number. */
1395 int line;
1396 int tag;
1397 bfd_boolean is_linkage;
1398 const char * name;
1399 struct arange arange;
1400 /* Where the symbol is defined. */
1401 asection * sec;
1402 };
1403
1404 struct lookup_funcinfo
1405 {
1406 /* Function information corresponding to this lookup table entry. */
1407 struct funcinfo * funcinfo;
1408
1409 /* The lowest address for this specific function. */
1410 bfd_vma low_addr;
1411
1412 /* The highest address of this function before the lookup table is sorted.
1413 The highest address of all prior functions after the lookup table is
1414 sorted, which is used for binary search. */
1415 bfd_vma high_addr;
1416 };
1417
1418 struct varinfo
1419 {
1420 /* Pointer to previous variable in list of all variables */
1421 struct varinfo *prev_var;
1422 /* Source location file name */
1423 char *file;
1424 /* Source location line number */
1425 int line;
1426 int tag;
1427 char *name;
1428 bfd_vma addr;
1429 /* Where the symbol is defined */
1430 asection *sec;
1431 /* Is this a stack variable? */
1432 unsigned int stack: 1;
1433 };
1434
1435 /* Return TRUE if NEW_LINE should sort after LINE. */
1436
1437 static inline bfd_boolean
1438 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1439 {
1440 return (new_line->address > line->address
1441 || (new_line->address == line->address
1442 && new_line->op_index > line->op_index));
1443 }
1444
1445
1446 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1447 that the list is sorted. Note that the line_info list is sorted from
1448 highest to lowest VMA (with possible duplicates); that is,
1449 line_info->prev_line always accesses an equal or smaller VMA. */
1450
1451 static bfd_boolean
1452 add_line_info (struct line_info_table *table,
1453 bfd_vma address,
1454 unsigned char op_index,
1455 char *filename,
1456 unsigned int line,
1457 unsigned int column,
1458 unsigned int discriminator,
1459 int end_sequence)
1460 {
1461 bfd_size_type amt = sizeof (struct line_info);
1462 struct line_sequence* seq = table->sequences;
1463 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1464
1465 if (info == NULL)
1466 return FALSE;
1467
1468 /* Set member data of 'info'. */
1469 info->prev_line = NULL;
1470 info->address = address;
1471 info->op_index = op_index;
1472 info->line = line;
1473 info->column = column;
1474 info->discriminator = discriminator;
1475 info->end_sequence = end_sequence;
1476
1477 if (filename && filename[0])
1478 {
1479 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1480 if (info->filename == NULL)
1481 return FALSE;
1482 strcpy (info->filename, filename);
1483 }
1484 else
1485 info->filename = NULL;
1486
1487 /* Find the correct location for 'info'. Normally we will receive
1488 new line_info data 1) in order and 2) with increasing VMAs.
1489 However some compilers break the rules (cf. decode_line_info) and
1490 so we include some heuristics for quickly finding the correct
1491 location for 'info'. In particular, these heuristics optimize for
1492 the common case in which the VMA sequence that we receive is a
1493 list of locally sorted VMAs such as
1494 p...z a...j (where a < j < p < z)
1495
1496 Note: table->lcl_head is used to head an *actual* or *possible*
1497 sub-sequence within the list (such as a...j) that is not directly
1498 headed by table->last_line
1499
1500 Note: we may receive duplicate entries from 'decode_line_info'. */
1501
1502 if (seq
1503 && seq->last_line->address == address
1504 && seq->last_line->op_index == op_index
1505 && seq->last_line->end_sequence == end_sequence)
1506 {
1507 /* We only keep the last entry with the same address and end
1508 sequence. See PR ld/4986. */
1509 if (table->lcl_head == seq->last_line)
1510 table->lcl_head = info;
1511 info->prev_line = seq->last_line->prev_line;
1512 seq->last_line = info;
1513 }
1514 else if (!seq || seq->last_line->end_sequence)
1515 {
1516 /* Start a new line sequence. */
1517 amt = sizeof (struct line_sequence);
1518 seq = (struct line_sequence *) bfd_malloc (amt);
1519 if (seq == NULL)
1520 return FALSE;
1521 seq->low_pc = address;
1522 seq->prev_sequence = table->sequences;
1523 seq->last_line = info;
1524 table->lcl_head = info;
1525 table->sequences = seq;
1526 table->num_sequences++;
1527 }
1528 else if (info->end_sequence
1529 || new_line_sorts_after (info, seq->last_line))
1530 {
1531 /* Normal case: add 'info' to the beginning of the current sequence. */
1532 info->prev_line = seq->last_line;
1533 seq->last_line = info;
1534
1535 /* lcl_head: initialize to head a *possible* sequence at the end. */
1536 if (!table->lcl_head)
1537 table->lcl_head = info;
1538 }
1539 else if (!new_line_sorts_after (info, table->lcl_head)
1540 && (!table->lcl_head->prev_line
1541 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1542 {
1543 /* Abnormal but easy: lcl_head is the head of 'info'. */
1544 info->prev_line = table->lcl_head->prev_line;
1545 table->lcl_head->prev_line = info;
1546 }
1547 else
1548 {
1549 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1550 are valid heads for 'info'. Reset 'lcl_head'. */
1551 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1552 struct line_info* li1 = li2->prev_line;
1553
1554 while (li1)
1555 {
1556 if (!new_line_sorts_after (info, li2)
1557 && new_line_sorts_after (info, li1))
1558 break;
1559
1560 li2 = li1; /* always non-NULL */
1561 li1 = li1->prev_line;
1562 }
1563 table->lcl_head = li2;
1564 info->prev_line = table->lcl_head->prev_line;
1565 table->lcl_head->prev_line = info;
1566 if (address < seq->low_pc)
1567 seq->low_pc = address;
1568 }
1569 return TRUE;
1570 }
1571
1572 /* Extract a fully qualified filename from a line info table.
1573 The returned string has been malloc'ed and it is the caller's
1574 responsibility to free it. */
1575
1576 static char *
1577 concat_filename (struct line_info_table *table, unsigned int file)
1578 {
1579 char *filename;
1580
1581 if (table == NULL || file - 1 >= table->num_files)
1582 {
1583 /* FILE == 0 means unknown. */
1584 if (file)
1585 _bfd_error_handler
1586 (_("DWARF error: mangled line number section (bad file number)"));
1587 return strdup ("<unknown>");
1588 }
1589
1590 filename = table->files[file - 1].name;
1591 if (filename == NULL)
1592 return strdup ("<unknown>");
1593
1594 if (!IS_ABSOLUTE_PATH (filename))
1595 {
1596 char *dir_name = NULL;
1597 char *subdir_name = NULL;
1598 char *name;
1599 size_t len;
1600
1601 if (table->files[file - 1].dir
1602 /* PR 17512: file: 0317e960. */
1603 && table->files[file - 1].dir <= table->num_dirs
1604 /* PR 17512: file: 7f3d2e4b. */
1605 && table->dirs != NULL)
1606 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1607
1608 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1609 dir_name = table->comp_dir;
1610
1611 if (!dir_name)
1612 {
1613 dir_name = subdir_name;
1614 subdir_name = NULL;
1615 }
1616
1617 if (!dir_name)
1618 return strdup (filename);
1619
1620 len = strlen (dir_name) + strlen (filename) + 2;
1621
1622 if (subdir_name)
1623 {
1624 len += strlen (subdir_name) + 1;
1625 name = (char *) bfd_malloc (len);
1626 if (name)
1627 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1628 }
1629 else
1630 {
1631 name = (char *) bfd_malloc (len);
1632 if (name)
1633 sprintf (name, "%s/%s", dir_name, filename);
1634 }
1635
1636 return name;
1637 }
1638
1639 return strdup (filename);
1640 }
1641
1642 static bfd_boolean
1643 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1644 bfd_vma low_pc, bfd_vma high_pc)
1645 {
1646 struct arange *arange;
1647
1648 /* Ignore empty ranges. */
1649 if (low_pc == high_pc)
1650 return TRUE;
1651
1652 /* If the first arange is empty, use it. */
1653 if (first_arange->high == 0)
1654 {
1655 first_arange->low = low_pc;
1656 first_arange->high = high_pc;
1657 return TRUE;
1658 }
1659
1660 /* Next see if we can cheaply extend an existing range. */
1661 arange = first_arange;
1662 do
1663 {
1664 if (low_pc == arange->high)
1665 {
1666 arange->high = high_pc;
1667 return TRUE;
1668 }
1669 if (high_pc == arange->low)
1670 {
1671 arange->low = low_pc;
1672 return TRUE;
1673 }
1674 arange = arange->next;
1675 }
1676 while (arange);
1677
1678 /* Need to allocate a new arange and insert it into the arange list.
1679 Order isn't significant, so just insert after the first arange. */
1680 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1681 if (arange == NULL)
1682 return FALSE;
1683 arange->low = low_pc;
1684 arange->high = high_pc;
1685 arange->next = first_arange->next;
1686 first_arange->next = arange;
1687 return TRUE;
1688 }
1689
1690 /* Compare function for line sequences. */
1691
1692 static int
1693 compare_sequences (const void* a, const void* b)
1694 {
1695 const struct line_sequence* seq1 = a;
1696 const struct line_sequence* seq2 = b;
1697
1698 /* Sort by low_pc as the primary key. */
1699 if (seq1->low_pc < seq2->low_pc)
1700 return -1;
1701 if (seq1->low_pc > seq2->low_pc)
1702 return 1;
1703
1704 /* If low_pc values are equal, sort in reverse order of
1705 high_pc, so that the largest region comes first. */
1706 if (seq1->last_line->address < seq2->last_line->address)
1707 return 1;
1708 if (seq1->last_line->address > seq2->last_line->address)
1709 return -1;
1710
1711 if (seq1->last_line->op_index < seq2->last_line->op_index)
1712 return 1;
1713 if (seq1->last_line->op_index > seq2->last_line->op_index)
1714 return -1;
1715
1716 return 0;
1717 }
1718
1719 /* Construct the line information table for quick lookup. */
1720
1721 static bfd_boolean
1722 build_line_info_table (struct line_info_table * table,
1723 struct line_sequence * seq)
1724 {
1725 bfd_size_type amt;
1726 struct line_info** line_info_lookup;
1727 struct line_info* each_line;
1728 unsigned int num_lines;
1729 unsigned int line_index;
1730
1731 if (seq->line_info_lookup != NULL)
1732 return TRUE;
1733
1734 /* Count the number of line information entries. We could do this while
1735 scanning the debug information, but some entries may be added via
1736 lcl_head without having a sequence handy to increment the number of
1737 lines. */
1738 num_lines = 0;
1739 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1740 num_lines++;
1741
1742 if (num_lines == 0)
1743 return TRUE;
1744
1745 /* Allocate space for the line information lookup table. */
1746 amt = sizeof (struct line_info*) * num_lines;
1747 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1748 if (line_info_lookup == NULL)
1749 return FALSE;
1750
1751 /* Create the line information lookup table. */
1752 line_index = num_lines;
1753 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1754 line_info_lookup[--line_index] = each_line;
1755
1756 BFD_ASSERT (line_index == 0);
1757
1758 seq->num_lines = num_lines;
1759 seq->line_info_lookup = line_info_lookup;
1760
1761 return TRUE;
1762 }
1763
1764 /* Sort the line sequences for quick lookup. */
1765
1766 static bfd_boolean
1767 sort_line_sequences (struct line_info_table* table)
1768 {
1769 bfd_size_type amt;
1770 struct line_sequence* sequences;
1771 struct line_sequence* seq;
1772 unsigned int n = 0;
1773 unsigned int num_sequences = table->num_sequences;
1774 bfd_vma last_high_pc;
1775
1776 if (num_sequences == 0)
1777 return TRUE;
1778
1779 /* Allocate space for an array of sequences. */
1780 amt = sizeof (struct line_sequence) * num_sequences;
1781 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1782 if (sequences == NULL)
1783 return FALSE;
1784
1785 /* Copy the linked list into the array, freeing the original nodes. */
1786 seq = table->sequences;
1787 for (n = 0; n < num_sequences; n++)
1788 {
1789 struct line_sequence* last_seq = seq;
1790
1791 BFD_ASSERT (seq);
1792 sequences[n].low_pc = seq->low_pc;
1793 sequences[n].prev_sequence = NULL;
1794 sequences[n].last_line = seq->last_line;
1795 sequences[n].line_info_lookup = NULL;
1796 sequences[n].num_lines = 0;
1797 seq = seq->prev_sequence;
1798 free (last_seq);
1799 }
1800 BFD_ASSERT (seq == NULL);
1801
1802 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1803
1804 /* Make the list binary-searchable by trimming overlapping entries
1805 and removing nested entries. */
1806 num_sequences = 1;
1807 last_high_pc = sequences[0].last_line->address;
1808 for (n = 1; n < table->num_sequences; n++)
1809 {
1810 if (sequences[n].low_pc < last_high_pc)
1811 {
1812 if (sequences[n].last_line->address <= last_high_pc)
1813 /* Skip nested entries. */
1814 continue;
1815
1816 /* Trim overlapping entries. */
1817 sequences[n].low_pc = last_high_pc;
1818 }
1819 last_high_pc = sequences[n].last_line->address;
1820 if (n > num_sequences)
1821 {
1822 /* Close up the gap. */
1823 sequences[num_sequences].low_pc = sequences[n].low_pc;
1824 sequences[num_sequences].last_line = sequences[n].last_line;
1825 }
1826 num_sequences++;
1827 }
1828
1829 table->sequences = sequences;
1830 table->num_sequences = num_sequences;
1831 return TRUE;
1832 }
1833
1834 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1835
1836 static bfd_boolean
1837 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1838 {
1839 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1840 {
1841 char **tmp;
1842 bfd_size_type amt;
1843
1844 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1845 amt *= sizeof (char *);
1846
1847 tmp = (char **) bfd_realloc (table->dirs, amt);
1848 if (tmp == NULL)
1849 return FALSE;
1850 table->dirs = tmp;
1851 }
1852
1853 table->dirs[table->num_dirs++] = cur_dir;
1854 return TRUE;
1855 }
1856
1857 static bfd_boolean
1858 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1859 unsigned int dir ATTRIBUTE_UNUSED,
1860 unsigned int xtime ATTRIBUTE_UNUSED,
1861 unsigned int size ATTRIBUTE_UNUSED)
1862 {
1863 return line_info_add_include_dir (table, cur_dir);
1864 }
1865
1866 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1867
1868 static bfd_boolean
1869 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1870 unsigned int dir, unsigned int xtime,
1871 unsigned int size)
1872 {
1873 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1874 {
1875 struct fileinfo *tmp;
1876 bfd_size_type amt;
1877
1878 amt = table->num_files + FILE_ALLOC_CHUNK;
1879 amt *= sizeof (struct fileinfo);
1880
1881 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1882 if (tmp == NULL)
1883 return FALSE;
1884 table->files = tmp;
1885 }
1886
1887 table->files[table->num_files].name = cur_file;
1888 table->files[table->num_files].dir = dir;
1889 table->files[table->num_files].time = xtime;
1890 table->files[table->num_files].size = size;
1891 table->num_files++;
1892 return TRUE;
1893 }
1894
1895 /* Read directory or file name entry format, starting with byte of
1896 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1897 entries count and the entries themselves in the described entry
1898 format. */
1899
1900 static bfd_boolean
1901 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1902 bfd_byte *buf_end, struct line_info_table *table,
1903 bfd_boolean (*callback) (struct line_info_table *table,
1904 char *cur_file,
1905 unsigned int dir,
1906 unsigned int time,
1907 unsigned int size))
1908 {
1909 bfd *abfd = unit->abfd;
1910 bfd_byte format_count, formati;
1911 bfd_vma data_count, datai;
1912 bfd_byte *buf = *bufp;
1913 bfd_byte *format_header_data;
1914 unsigned int bytes_read;
1915
1916 format_count = read_1_byte (abfd, buf, buf_end);
1917 buf += 1;
1918 format_header_data = buf;
1919 for (formati = 0; formati < format_count; formati++)
1920 {
1921 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1922 buf += bytes_read;
1923 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1924 buf += bytes_read;
1925 }
1926
1927 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1928 buf += bytes_read;
1929 if (format_count == 0 && data_count != 0)
1930 {
1931 _bfd_error_handler (_("DWARF error: zero format count"));
1932 bfd_set_error (bfd_error_bad_value);
1933 return FALSE;
1934 }
1935
1936 /* PR 22210. Paranoia check. Don't bother running the loop
1937 if we know that we are going to run out of buffer. */
1938 if (data_count > (bfd_vma) (buf_end - buf))
1939 {
1940 _bfd_error_handler
1941 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
1942 (uint64_t) data_count);
1943 bfd_set_error (bfd_error_bad_value);
1944 return FALSE;
1945 }
1946
1947 for (datai = 0; datai < data_count; datai++)
1948 {
1949 bfd_byte *format = format_header_data;
1950 struct fileinfo fe;
1951
1952 memset (&fe, 0, sizeof fe);
1953 for (formati = 0; formati < format_count; formati++)
1954 {
1955 bfd_vma content_type, form;
1956 char *string_trash;
1957 char **stringp = &string_trash;
1958 unsigned int uint_trash, *uintp = &uint_trash;
1959 struct attribute attr;
1960
1961 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1962 FALSE, buf_end);
1963 format += bytes_read;
1964 switch (content_type)
1965 {
1966 case DW_LNCT_path:
1967 stringp = &fe.name;
1968 break;
1969 case DW_LNCT_directory_index:
1970 uintp = &fe.dir;
1971 break;
1972 case DW_LNCT_timestamp:
1973 uintp = &fe.time;
1974 break;
1975 case DW_LNCT_size:
1976 uintp = &fe.size;
1977 break;
1978 case DW_LNCT_MD5:
1979 break;
1980 default:
1981 _bfd_error_handler
1982 (_("DWARF error: unknown format content type %" PRIu64),
1983 (uint64_t) content_type);
1984 bfd_set_error (bfd_error_bad_value);
1985 return FALSE;
1986 }
1987
1988 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1989 buf_end);
1990 format += bytes_read;
1991
1992 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
1993 if (buf == NULL)
1994 return FALSE;
1995 switch (form)
1996 {
1997 case DW_FORM_string:
1998 case DW_FORM_line_strp:
1999 *stringp = attr.u.str;
2000 break;
2001
2002 case DW_FORM_data1:
2003 case DW_FORM_data2:
2004 case DW_FORM_data4:
2005 case DW_FORM_data8:
2006 case DW_FORM_udata:
2007 *uintp = attr.u.val;
2008 break;
2009 }
2010 }
2011
2012 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2013 return FALSE;
2014 }
2015
2016 *bufp = buf;
2017 return TRUE;
2018 }
2019
2020 /* Decode the line number information for UNIT. */
2021
2022 static struct line_info_table*
2023 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2024 {
2025 bfd *abfd = unit->abfd;
2026 struct line_info_table* table;
2027 bfd_byte *line_ptr;
2028 bfd_byte *line_end;
2029 struct line_head lh;
2030 unsigned int i, bytes_read, offset_size;
2031 char *cur_file, *cur_dir;
2032 unsigned char op_code, extended_op, adj_opcode;
2033 unsigned int exop_len;
2034 bfd_size_type amt;
2035
2036 if (! read_section (abfd, &stash->debug_sections[debug_line],
2037 stash->syms, unit->line_offset,
2038 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2039 return NULL;
2040
2041 amt = sizeof (struct line_info_table);
2042 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2043 if (table == NULL)
2044 return NULL;
2045 table->abfd = abfd;
2046 table->comp_dir = unit->comp_dir;
2047
2048 table->num_files = 0;
2049 table->files = NULL;
2050
2051 table->num_dirs = 0;
2052 table->dirs = NULL;
2053
2054 table->num_sequences = 0;
2055 table->sequences = NULL;
2056
2057 table->lcl_head = NULL;
2058
2059 if (stash->dwarf_line_size < 16)
2060 {
2061 _bfd_error_handler
2062 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2063 (int64_t) stash->dwarf_line_size);
2064 bfd_set_error (bfd_error_bad_value);
2065 return NULL;
2066 }
2067 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2068 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2069
2070 /* Read in the prologue. */
2071 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2072 line_ptr += 4;
2073 offset_size = 4;
2074 if (lh.total_length == 0xffffffff)
2075 {
2076 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2077 line_ptr += 8;
2078 offset_size = 8;
2079 }
2080 else if (lh.total_length == 0 && unit->addr_size == 8)
2081 {
2082 /* Handle (non-standard) 64-bit DWARF2 formats. */
2083 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2084 line_ptr += 4;
2085 offset_size = 8;
2086 }
2087
2088 if (lh.total_length > (size_t) (line_end - line_ptr))
2089 {
2090 _bfd_error_handler
2091 /* xgettext: c-format */
2092 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2093 " than the space remaining in the section (%#lx)"),
2094 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2095 bfd_set_error (bfd_error_bad_value);
2096 return NULL;
2097 }
2098
2099 line_end = line_ptr + lh.total_length;
2100
2101 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2102 if (lh.version < 2 || lh.version > 5)
2103 {
2104 _bfd_error_handler
2105 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2106 bfd_set_error (bfd_error_bad_value);
2107 return NULL;
2108 }
2109 line_ptr += 2;
2110
2111 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2112 >= line_end)
2113 {
2114 _bfd_error_handler
2115 (_("DWARF error: ran out of room reading prologue"));
2116 bfd_set_error (bfd_error_bad_value);
2117 return NULL;
2118 }
2119
2120 if (lh.version >= 5)
2121 {
2122 unsigned int segment_selector_size;
2123
2124 /* Skip address size. */
2125 read_1_byte (abfd, line_ptr, line_end);
2126 line_ptr += 1;
2127
2128 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2129 line_ptr += 1;
2130 if (segment_selector_size != 0)
2131 {
2132 _bfd_error_handler
2133 (_("DWARF error: line info unsupported segment selector size %u"),
2134 segment_selector_size);
2135 bfd_set_error (bfd_error_bad_value);
2136 return NULL;
2137 }
2138 }
2139
2140 if (offset_size == 4)
2141 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2142 else
2143 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2144 line_ptr += offset_size;
2145
2146 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2147 line_ptr += 1;
2148
2149 if (lh.version >= 4)
2150 {
2151 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2152 line_ptr += 1;
2153 }
2154 else
2155 lh.maximum_ops_per_insn = 1;
2156
2157 if (lh.maximum_ops_per_insn == 0)
2158 {
2159 _bfd_error_handler
2160 (_("DWARF error: invalid maximum operations per instruction"));
2161 bfd_set_error (bfd_error_bad_value);
2162 return NULL;
2163 }
2164
2165 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2166 line_ptr += 1;
2167
2168 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2169 line_ptr += 1;
2170
2171 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2172 line_ptr += 1;
2173
2174 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2175 line_ptr += 1;
2176
2177 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2178 {
2179 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2180 bfd_set_error (bfd_error_bad_value);
2181 return NULL;
2182 }
2183
2184 amt = lh.opcode_base * sizeof (unsigned char);
2185 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2186
2187 lh.standard_opcode_lengths[0] = 1;
2188
2189 for (i = 1; i < lh.opcode_base; ++i)
2190 {
2191 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2192 line_ptr += 1;
2193 }
2194
2195 if (lh.version >= 5)
2196 {
2197 /* Read directory table. */
2198 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2199 line_info_add_include_dir_stub))
2200 goto fail;
2201
2202 /* Read file name table. */
2203 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2204 line_info_add_file_name))
2205 goto fail;
2206 }
2207 else
2208 {
2209 /* Read directory table. */
2210 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2211 {
2212 line_ptr += bytes_read;
2213
2214 if (!line_info_add_include_dir (table, cur_dir))
2215 goto fail;
2216 }
2217
2218 line_ptr += bytes_read;
2219
2220 /* Read file name table. */
2221 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2222 {
2223 unsigned int dir, xtime, size;
2224
2225 line_ptr += bytes_read;
2226
2227 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2228 line_ptr += bytes_read;
2229 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2230 line_ptr += bytes_read;
2231 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2232 line_ptr += bytes_read;
2233
2234 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2235 goto fail;
2236 }
2237
2238 line_ptr += bytes_read;
2239 }
2240
2241 /* Read the statement sequences until there's nothing left. */
2242 while (line_ptr < line_end)
2243 {
2244 /* State machine registers. */
2245 bfd_vma address = 0;
2246 unsigned char op_index = 0;
2247 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2248 unsigned int line = 1;
2249 unsigned int column = 0;
2250 unsigned int discriminator = 0;
2251 int is_stmt = lh.default_is_stmt;
2252 int end_sequence = 0;
2253 unsigned int dir, xtime, size;
2254 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2255 compilers generate address sequences that are wildly out of
2256 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2257 for ia64-Linux). Thus, to determine the low and high
2258 address, we must compare on every DW_LNS_copy, etc. */
2259 bfd_vma low_pc = (bfd_vma) -1;
2260 bfd_vma high_pc = 0;
2261
2262 /* Decode the table. */
2263 while (!end_sequence && line_ptr < line_end)
2264 {
2265 op_code = read_1_byte (abfd, line_ptr, line_end);
2266 line_ptr += 1;
2267
2268 if (op_code >= lh.opcode_base)
2269 {
2270 /* Special operand. */
2271 adj_opcode = op_code - lh.opcode_base;
2272 if (lh.line_range == 0)
2273 goto line_fail;
2274 if (lh.maximum_ops_per_insn == 1)
2275 address += (adj_opcode / lh.line_range
2276 * lh.minimum_instruction_length);
2277 else
2278 {
2279 address += ((op_index + adj_opcode / lh.line_range)
2280 / lh.maximum_ops_per_insn
2281 * lh.minimum_instruction_length);
2282 op_index = ((op_index + adj_opcode / lh.line_range)
2283 % lh.maximum_ops_per_insn);
2284 }
2285 line += lh.line_base + (adj_opcode % lh.line_range);
2286 /* Append row to matrix using current values. */
2287 if (!add_line_info (table, address, op_index, filename,
2288 line, column, discriminator, 0))
2289 goto line_fail;
2290 discriminator = 0;
2291 if (address < low_pc)
2292 low_pc = address;
2293 if (address > high_pc)
2294 high_pc = address;
2295 }
2296 else switch (op_code)
2297 {
2298 case DW_LNS_extended_op:
2299 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2300 FALSE, line_end);
2301 line_ptr += bytes_read;
2302 extended_op = read_1_byte (abfd, line_ptr, line_end);
2303 line_ptr += 1;
2304
2305 switch (extended_op)
2306 {
2307 case DW_LNE_end_sequence:
2308 end_sequence = 1;
2309 if (!add_line_info (table, address, op_index, filename, line,
2310 column, discriminator, end_sequence))
2311 goto line_fail;
2312 discriminator = 0;
2313 if (address < low_pc)
2314 low_pc = address;
2315 if (address > high_pc)
2316 high_pc = address;
2317 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2318 goto line_fail;
2319 break;
2320 case DW_LNE_set_address:
2321 address = read_address (unit, line_ptr, line_end);
2322 op_index = 0;
2323 line_ptr += unit->addr_size;
2324 break;
2325 case DW_LNE_define_file:
2326 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2327 line_ptr += bytes_read;
2328 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2329 FALSE, line_end);
2330 line_ptr += bytes_read;
2331 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2332 FALSE, line_end);
2333 line_ptr += bytes_read;
2334 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2335 FALSE, line_end);
2336 line_ptr += bytes_read;
2337 if (!line_info_add_file_name (table, cur_file, dir,
2338 xtime, size))
2339 goto line_fail;
2340 break;
2341 case DW_LNE_set_discriminator:
2342 discriminator =
2343 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2344 FALSE, line_end);
2345 line_ptr += bytes_read;
2346 break;
2347 case DW_LNE_HP_source_file_correlation:
2348 line_ptr += exop_len - 1;
2349 break;
2350 default:
2351 _bfd_error_handler
2352 (_("DWARF error: mangled line number section"));
2353 bfd_set_error (bfd_error_bad_value);
2354 line_fail:
2355 if (filename != NULL)
2356 free (filename);
2357 goto fail;
2358 }
2359 break;
2360 case DW_LNS_copy:
2361 if (!add_line_info (table, address, op_index,
2362 filename, line, column, discriminator, 0))
2363 goto line_fail;
2364 discriminator = 0;
2365 if (address < low_pc)
2366 low_pc = address;
2367 if (address > high_pc)
2368 high_pc = address;
2369 break;
2370 case DW_LNS_advance_pc:
2371 if (lh.maximum_ops_per_insn == 1)
2372 address += (lh.minimum_instruction_length
2373 * _bfd_safe_read_leb128 (abfd, line_ptr,
2374 &bytes_read,
2375 FALSE, line_end));
2376 else
2377 {
2378 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2379 &bytes_read,
2380 FALSE, line_end);
2381 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2382 * lh.minimum_instruction_length);
2383 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2384 }
2385 line_ptr += bytes_read;
2386 break;
2387 case DW_LNS_advance_line:
2388 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2389 TRUE, line_end);
2390 line_ptr += bytes_read;
2391 break;
2392 case DW_LNS_set_file:
2393 {
2394 unsigned int file;
2395
2396 /* The file and directory tables are 0
2397 based, the references are 1 based. */
2398 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2399 FALSE, line_end);
2400 line_ptr += bytes_read;
2401 if (filename)
2402 free (filename);
2403 filename = concat_filename (table, file);
2404 break;
2405 }
2406 case DW_LNS_set_column:
2407 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2408 FALSE, line_end);
2409 line_ptr += bytes_read;
2410 break;
2411 case DW_LNS_negate_stmt:
2412 is_stmt = (!is_stmt);
2413 break;
2414 case DW_LNS_set_basic_block:
2415 break;
2416 case DW_LNS_const_add_pc:
2417 if (lh.line_range == 0)
2418 goto line_fail;
2419 if (lh.maximum_ops_per_insn == 1)
2420 address += (lh.minimum_instruction_length
2421 * ((255 - lh.opcode_base) / lh.line_range));
2422 else
2423 {
2424 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2425 address += (lh.minimum_instruction_length
2426 * ((op_index + adjust)
2427 / lh.maximum_ops_per_insn));
2428 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2429 }
2430 break;
2431 case DW_LNS_fixed_advance_pc:
2432 address += read_2_bytes (abfd, line_ptr, line_end);
2433 op_index = 0;
2434 line_ptr += 2;
2435 break;
2436 default:
2437 /* Unknown standard opcode, ignore it. */
2438 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2439 {
2440 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2441 FALSE, line_end);
2442 line_ptr += bytes_read;
2443 }
2444 break;
2445 }
2446 }
2447
2448 if (filename)
2449 free (filename);
2450 }
2451
2452 if (sort_line_sequences (table))
2453 return table;
2454
2455 fail:
2456 while (table->sequences != NULL)
2457 {
2458 struct line_sequence* seq = table->sequences;
2459 table->sequences = table->sequences->prev_sequence;
2460 free (seq);
2461 }
2462 if (table->files != NULL)
2463 free (table->files);
2464 if (table->dirs != NULL)
2465 free (table->dirs);
2466 return NULL;
2467 }
2468
2469 /* If ADDR is within TABLE set the output parameters and return the
2470 range of addresses covered by the entry used to fill them out.
2471 Otherwise set * FILENAME_PTR to NULL and return 0.
2472 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2473 are pointers to the objects to be filled in. */
2474
2475 static bfd_vma
2476 lookup_address_in_line_info_table (struct line_info_table *table,
2477 bfd_vma addr,
2478 const char **filename_ptr,
2479 unsigned int *linenumber_ptr,
2480 unsigned int *discriminator_ptr)
2481 {
2482 struct line_sequence *seq = NULL;
2483 struct line_info *info;
2484 int low, high, mid;
2485
2486 /* Binary search the array of sequences. */
2487 low = 0;
2488 high = table->num_sequences;
2489 while (low < high)
2490 {
2491 mid = (low + high) / 2;
2492 seq = &table->sequences[mid];
2493 if (addr < seq->low_pc)
2494 high = mid;
2495 else if (addr >= seq->last_line->address)
2496 low = mid + 1;
2497 else
2498 break;
2499 }
2500
2501 /* Check for a valid sequence. */
2502 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2503 goto fail;
2504
2505 if (!build_line_info_table (table, seq))
2506 goto fail;
2507
2508 /* Binary search the array of line information. */
2509 low = 0;
2510 high = seq->num_lines;
2511 info = NULL;
2512 while (low < high)
2513 {
2514 mid = (low + high) / 2;
2515 info = seq->line_info_lookup[mid];
2516 if (addr < info->address)
2517 high = mid;
2518 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2519 low = mid + 1;
2520 else
2521 break;
2522 }
2523
2524 /* Check for a valid line information entry. */
2525 if (info
2526 && addr >= info->address
2527 && addr < seq->line_info_lookup[mid + 1]->address
2528 && !(info->end_sequence || info == seq->last_line))
2529 {
2530 *filename_ptr = info->filename;
2531 *linenumber_ptr = info->line;
2532 if (discriminator_ptr)
2533 *discriminator_ptr = info->discriminator;
2534 return seq->last_line->address - seq->low_pc;
2535 }
2536
2537 fail:
2538 *filename_ptr = NULL;
2539 return 0;
2540 }
2541
2542 /* Read in the .debug_ranges section for future reference. */
2543
2544 static bfd_boolean
2545 read_debug_ranges (struct comp_unit * unit)
2546 {
2547 struct dwarf2_debug * stash = unit->stash;
2548
2549 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2550 stash->syms, 0,
2551 &stash->dwarf_ranges_buffer,
2552 &stash->dwarf_ranges_size);
2553 }
2554
2555 /* Function table functions. */
2556
2557 static int
2558 compare_lookup_funcinfos (const void * a, const void * b)
2559 {
2560 const struct lookup_funcinfo * lookup1 = a;
2561 const struct lookup_funcinfo * lookup2 = b;
2562
2563 if (lookup1->low_addr < lookup2->low_addr)
2564 return -1;
2565 if (lookup1->low_addr > lookup2->low_addr)
2566 return 1;
2567 if (lookup1->high_addr < lookup2->high_addr)
2568 return -1;
2569 if (lookup1->high_addr > lookup2->high_addr)
2570 return 1;
2571
2572 return 0;
2573 }
2574
2575 static bfd_boolean
2576 build_lookup_funcinfo_table (struct comp_unit * unit)
2577 {
2578 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2579 unsigned int number_of_functions = unit->number_of_functions;
2580 struct funcinfo *each;
2581 struct lookup_funcinfo *entry;
2582 size_t func_index;
2583 struct arange *range;
2584 bfd_vma low_addr, high_addr;
2585
2586 if (lookup_funcinfo_table || number_of_functions == 0)
2587 return TRUE;
2588
2589 /* Create the function info lookup table. */
2590 lookup_funcinfo_table = (struct lookup_funcinfo *)
2591 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2592 if (lookup_funcinfo_table == NULL)
2593 return FALSE;
2594
2595 /* Populate the function info lookup table. */
2596 func_index = number_of_functions;
2597 for (each = unit->function_table; each; each = each->prev_func)
2598 {
2599 entry = &lookup_funcinfo_table[--func_index];
2600 entry->funcinfo = each;
2601
2602 /* Calculate the lowest and highest address for this function entry. */
2603 low_addr = entry->funcinfo->arange.low;
2604 high_addr = entry->funcinfo->arange.high;
2605
2606 for (range = entry->funcinfo->arange.next; range; range = range->next)
2607 {
2608 if (range->low < low_addr)
2609 low_addr = range->low;
2610 if (range->high > high_addr)
2611 high_addr = range->high;
2612 }
2613
2614 entry->low_addr = low_addr;
2615 entry->high_addr = high_addr;
2616 }
2617
2618 BFD_ASSERT (func_index == 0);
2619
2620 /* Sort the function by address. */
2621 qsort (lookup_funcinfo_table,
2622 number_of_functions,
2623 sizeof (struct lookup_funcinfo),
2624 compare_lookup_funcinfos);
2625
2626 /* Calculate the high watermark for each function in the lookup table. */
2627 high_addr = lookup_funcinfo_table[0].high_addr;
2628 for (func_index = 1; func_index < number_of_functions; func_index++)
2629 {
2630 entry = &lookup_funcinfo_table[func_index];
2631 if (entry->high_addr > high_addr)
2632 high_addr = entry->high_addr;
2633 else
2634 entry->high_addr = high_addr;
2635 }
2636
2637 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2638 return TRUE;
2639 }
2640
2641 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2642 TRUE. Note that we need to find the function that has the smallest range
2643 that contains ADDR, to handle inlined functions without depending upon
2644 them being ordered in TABLE by increasing range. */
2645
2646 static bfd_boolean
2647 lookup_address_in_function_table (struct comp_unit *unit,
2648 bfd_vma addr,
2649 struct funcinfo **function_ptr)
2650 {
2651 unsigned int number_of_functions = unit->number_of_functions;
2652 struct lookup_funcinfo* lookup_funcinfo = NULL;
2653 struct funcinfo* funcinfo = NULL;
2654 struct funcinfo* best_fit = NULL;
2655 bfd_vma best_fit_len = 0;
2656 bfd_size_type low, high, mid, first;
2657 struct arange *arange;
2658
2659 if (number_of_functions == 0)
2660 return FALSE;
2661
2662 if (!build_lookup_funcinfo_table (unit))
2663 return FALSE;
2664
2665 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2666 return FALSE;
2667
2668 /* Find the first function in the lookup table which may contain the
2669 specified address. */
2670 low = 0;
2671 high = number_of_functions;
2672 first = high;
2673 while (low < high)
2674 {
2675 mid = (low + high) / 2;
2676 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2677 if (addr < lookup_funcinfo->low_addr)
2678 high = mid;
2679 else if (addr >= lookup_funcinfo->high_addr)
2680 low = mid + 1;
2681 else
2682 high = first = mid;
2683 }
2684
2685 /* Find the 'best' match for the address. The prior algorithm defined the
2686 best match as the function with the smallest address range containing
2687 the specified address. This definition should probably be changed to the
2688 innermost inline routine containing the address, but right now we want
2689 to get the same results we did before. */
2690 while (first < number_of_functions)
2691 {
2692 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2693 break;
2694 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2695
2696 for (arange = &funcinfo->arange; arange; arange = arange->next)
2697 {
2698 if (addr < arange->low || addr >= arange->high)
2699 continue;
2700
2701 if (!best_fit
2702 || arange->high - arange->low < best_fit_len
2703 /* The following comparison is designed to return the same
2704 match as the previous algorithm for routines which have the
2705 same best fit length. */
2706 || (arange->high - arange->low == best_fit_len
2707 && funcinfo > best_fit))
2708 {
2709 best_fit = funcinfo;
2710 best_fit_len = arange->high - arange->low;
2711 }
2712 }
2713
2714 first++;
2715 }
2716
2717 if (!best_fit)
2718 return FALSE;
2719
2720 *function_ptr = best_fit;
2721 return TRUE;
2722 }
2723
2724 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2725 and LINENUMBER_PTR, and return TRUE. */
2726
2727 static bfd_boolean
2728 lookup_symbol_in_function_table (struct comp_unit *unit,
2729 asymbol *sym,
2730 bfd_vma addr,
2731 const char **filename_ptr,
2732 unsigned int *linenumber_ptr)
2733 {
2734 struct funcinfo* each_func;
2735 struct funcinfo* best_fit = NULL;
2736 bfd_vma best_fit_len = 0;
2737 struct arange *arange;
2738 const char *name = bfd_asymbol_name (sym);
2739 asection *sec = bfd_get_section (sym);
2740
2741 for (each_func = unit->function_table;
2742 each_func;
2743 each_func = each_func->prev_func)
2744 {
2745 for (arange = &each_func->arange;
2746 arange;
2747 arange = arange->next)
2748 {
2749 if ((!each_func->sec || each_func->sec == sec)
2750 && addr >= arange->low
2751 && addr < arange->high
2752 && each_func->name
2753 && strcmp (name, each_func->name) == 0
2754 && (!best_fit
2755 || arange->high - arange->low < best_fit_len))
2756 {
2757 best_fit = each_func;
2758 best_fit_len = arange->high - arange->low;
2759 }
2760 }
2761 }
2762
2763 if (best_fit)
2764 {
2765 best_fit->sec = sec;
2766 *filename_ptr = best_fit->file;
2767 *linenumber_ptr = best_fit->line;
2768 return TRUE;
2769 }
2770 else
2771 return FALSE;
2772 }
2773
2774 /* Variable table functions. */
2775
2776 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2777 LINENUMBER_PTR, and return TRUE. */
2778
2779 static bfd_boolean
2780 lookup_symbol_in_variable_table (struct comp_unit *unit,
2781 asymbol *sym,
2782 bfd_vma addr,
2783 const char **filename_ptr,
2784 unsigned int *linenumber_ptr)
2785 {
2786 const char *name = bfd_asymbol_name (sym);
2787 asection *sec = bfd_get_section (sym);
2788 struct varinfo* each;
2789
2790 for (each = unit->variable_table; each; each = each->prev_var)
2791 if (each->stack == 0
2792 && each->file != NULL
2793 && each->name != NULL
2794 && each->addr == addr
2795 && (!each->sec || each->sec == sec)
2796 && strcmp (name, each->name) == 0)
2797 break;
2798
2799 if (each)
2800 {
2801 each->sec = sec;
2802 *filename_ptr = each->file;
2803 *linenumber_ptr = each->line;
2804 return TRUE;
2805 }
2806
2807 return FALSE;
2808 }
2809
2810 static struct comp_unit *stash_comp_unit (struct dwarf2_debug *);
2811 static bfd_boolean comp_unit_maybe_decode_line_info (struct comp_unit *,
2812 struct dwarf2_debug *);
2813
2814 static bfd_boolean
2815 find_abstract_instance (struct comp_unit * unit,
2816 bfd_byte * orig_info_ptr,
2817 struct attribute * attr_ptr,
2818 const char ** pname,
2819 bfd_boolean * is_linkage,
2820 char ** filename_ptr,
2821 int * linenumber_ptr)
2822 {
2823 bfd *abfd = unit->abfd;
2824 bfd_byte *info_ptr;
2825 bfd_byte *info_ptr_end;
2826 unsigned int abbrev_number, bytes_read, i;
2827 struct abbrev_info *abbrev;
2828 bfd_uint64_t die_ref = attr_ptr->u.val;
2829 struct attribute attr;
2830 const char *name = NULL;
2831
2832 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2833 is an offset from the .debug_info section, not the current CU. */
2834 if (attr_ptr->form == DW_FORM_ref_addr)
2835 {
2836 /* We only support DW_FORM_ref_addr within the same file, so
2837 any relocations should be resolved already. Check this by
2838 testing for a zero die_ref; There can't be a valid reference
2839 to the header of a .debug_info section.
2840 DW_FORM_ref_addr is an offset relative to .debug_info.
2841 Normally when using the GNU linker this is accomplished by
2842 emitting a symbolic reference to a label, because .debug_info
2843 sections are linked at zero. When there are multiple section
2844 groups containing .debug_info, as there might be in a
2845 relocatable object file, it would be reasonable to assume that
2846 a symbolic reference to a label in any .debug_info section
2847 might be used. Since we lay out multiple .debug_info
2848 sections at non-zero VMAs (see place_sections), and read
2849 them contiguously into stash->info_ptr_memory, that means
2850 the reference is relative to stash->info_ptr_memory. */
2851 size_t total;
2852
2853 info_ptr = unit->stash->info_ptr_memory;
2854 info_ptr_end = unit->stash->info_ptr_end;
2855 total = info_ptr_end - info_ptr;
2856 if (!die_ref)
2857 return TRUE;
2858 else if (die_ref >= total)
2859 {
2860 _bfd_error_handler
2861 (_("DWARF error: invalid abstract instance DIE ref"));
2862 bfd_set_error (bfd_error_bad_value);
2863 return FALSE;
2864 }
2865 info_ptr += die_ref;
2866
2867 /* Now find the CU containing this pointer. */
2868 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2869 info_ptr_end = unit->end_ptr;
2870 else
2871 {
2872 /* Check other CUs to see if they contain the abbrev. */
2873 struct comp_unit * u;
2874
2875 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2876 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2877 break;
2878
2879 if (u == NULL)
2880 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2881 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2882 break;
2883
2884 while (u == NULL)
2885 {
2886 u = stash_comp_unit (unit->stash);
2887 if (u == NULL)
2888 break;
2889 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2890 break;
2891 u = NULL;
2892 }
2893
2894 if (u == NULL)
2895 {
2896 _bfd_error_handler
2897 (_("DWARF error: unable to locate abstract instance DIE ref %"
2898 PRIu64), (uint64_t) die_ref);
2899 bfd_set_error (bfd_error_bad_value);
2900 return FALSE;
2901 }
2902 unit = u;
2903 info_ptr_end = unit->end_ptr;
2904 }
2905 }
2906 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2907 {
2908 info_ptr = read_alt_indirect_ref (unit, die_ref);
2909 if (info_ptr == NULL)
2910 {
2911 _bfd_error_handler
2912 (_("DWARF error: unable to read alt ref %" PRIu64),
2913 (uint64_t) die_ref);
2914 bfd_set_error (bfd_error_bad_value);
2915 return FALSE;
2916 }
2917 info_ptr_end = (unit->stash->alt_dwarf_info_buffer
2918 + unit->stash->alt_dwarf_info_size);
2919
2920 /* FIXME: Do we need to locate the correct CU, in a similar
2921 fashion to the code in the DW_FORM_ref_addr case above ? */
2922 }
2923 else
2924 {
2925 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
2926 DW_FORM_ref_udata. These are all references relative to the
2927 start of the current CU. */
2928 size_t total;
2929
2930 info_ptr = unit->info_ptr_unit;
2931 info_ptr_end = unit->end_ptr;
2932 total = info_ptr_end - info_ptr;
2933 if (!die_ref || die_ref >= total)
2934 {
2935 _bfd_error_handler
2936 (_("DWARF error: invalid abstract instance DIE ref"));
2937 bfd_set_error (bfd_error_bad_value);
2938 return FALSE;
2939 }
2940 info_ptr += die_ref;
2941 }
2942
2943 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2944 FALSE, info_ptr_end);
2945 info_ptr += bytes_read;
2946
2947 if (abbrev_number)
2948 {
2949 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2950 if (! abbrev)
2951 {
2952 _bfd_error_handler
2953 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
2954 bfd_set_error (bfd_error_bad_value);
2955 return FALSE;
2956 }
2957 else
2958 {
2959 for (i = 0; i < abbrev->num_attrs; ++i)
2960 {
2961 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2962 info_ptr, info_ptr_end);
2963 if (info_ptr == NULL)
2964 break;
2965 /* It doesn't ever make sense for DW_AT_specification to
2966 refer to the same DIE. Stop simple recursion. */
2967 if (info_ptr == orig_info_ptr)
2968 {
2969 _bfd_error_handler
2970 (_("DWARF error: abstract instance recursion detected"));
2971 bfd_set_error (bfd_error_bad_value);
2972 return FALSE;
2973 }
2974 switch (attr.name)
2975 {
2976 case DW_AT_name:
2977 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2978 over DW_AT_name. */
2979 if (name == NULL && is_str_attr (attr.form))
2980 {
2981 name = attr.u.str;
2982 if (non_mangled (unit->lang))
2983 *is_linkage = TRUE;
2984 }
2985 break;
2986 case DW_AT_specification:
2987 if (!find_abstract_instance (unit, info_ptr, &attr,
2988 &name, is_linkage,
2989 filename_ptr, linenumber_ptr))
2990 return FALSE;
2991 break;
2992 case DW_AT_linkage_name:
2993 case DW_AT_MIPS_linkage_name:
2994 /* PR 16949: Corrupt debug info can place
2995 non-string forms into these attributes. */
2996 if (is_str_attr (attr.form))
2997 {
2998 name = attr.u.str;
2999 *is_linkage = TRUE;
3000 }
3001 break;
3002 case DW_AT_decl_file:
3003 if (!comp_unit_maybe_decode_line_info (unit, unit->stash))
3004 return FALSE;
3005 *filename_ptr = concat_filename (unit->line_table,
3006 attr.u.val);
3007 break;
3008 case DW_AT_decl_line:
3009 *linenumber_ptr = attr.u.val;
3010 break;
3011 default:
3012 break;
3013 }
3014 }
3015 }
3016 }
3017 *pname = name;
3018 return TRUE;
3019 }
3020
3021 static bfd_boolean
3022 read_rangelist (struct comp_unit *unit, struct arange *arange,
3023 bfd_uint64_t offset)
3024 {
3025 bfd_byte *ranges_ptr;
3026 bfd_byte *ranges_end;
3027 bfd_vma base_address = unit->base_address;
3028
3029 if (! unit->stash->dwarf_ranges_buffer)
3030 {
3031 if (! read_debug_ranges (unit))
3032 return FALSE;
3033 }
3034
3035 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
3036 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
3037 return FALSE;
3038 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
3039
3040 for (;;)
3041 {
3042 bfd_vma low_pc;
3043 bfd_vma high_pc;
3044
3045 /* PR 17512: file: 62cada7d. */
3046 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3047 return FALSE;
3048
3049 low_pc = read_address (unit, ranges_ptr, ranges_end);
3050 ranges_ptr += unit->addr_size;
3051 high_pc = read_address (unit, ranges_ptr, ranges_end);
3052 ranges_ptr += unit->addr_size;
3053
3054 if (low_pc == 0 && high_pc == 0)
3055 break;
3056 if (low_pc == -1UL && high_pc != -1UL)
3057 base_address = high_pc;
3058 else
3059 {
3060 if (!arange_add (unit, arange,
3061 base_address + low_pc, base_address + high_pc))
3062 return FALSE;
3063 }
3064 }
3065 return TRUE;
3066 }
3067
3068 /* DWARF2 Compilation unit functions. */
3069
3070 /* Scan over each die in a comp. unit looking for functions to add
3071 to the function table and variables to the variable table. */
3072
3073 static bfd_boolean
3074 scan_unit_for_symbols (struct comp_unit *unit)
3075 {
3076 bfd *abfd = unit->abfd;
3077 bfd_byte *info_ptr = unit->first_child_die_ptr;
3078 bfd_byte *info_ptr_end = unit->end_ptr;
3079 int nesting_level = 0;
3080 struct nest_funcinfo {
3081 struct funcinfo *func;
3082 } *nested_funcs;
3083 int nested_funcs_size;
3084
3085 /* Maintain a stack of in-scope functions and inlined functions, which we
3086 can use to set the caller_func field. */
3087 nested_funcs_size = 32;
3088 nested_funcs = (struct nest_funcinfo *)
3089 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3090 if (nested_funcs == NULL)
3091 return FALSE;
3092 nested_funcs[nesting_level].func = 0;
3093
3094 while (nesting_level >= 0)
3095 {
3096 unsigned int abbrev_number, bytes_read, i;
3097 struct abbrev_info *abbrev;
3098 struct attribute attr;
3099 struct funcinfo *func;
3100 struct varinfo *var;
3101 bfd_vma low_pc = 0;
3102 bfd_vma high_pc = 0;
3103 bfd_boolean high_pc_relative = FALSE;
3104
3105 /* PR 17512: file: 9f405d9d. */
3106 if (info_ptr >= info_ptr_end)
3107 goto fail;
3108
3109 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3110 FALSE, info_ptr_end);
3111 info_ptr += bytes_read;
3112
3113 if (! abbrev_number)
3114 {
3115 nesting_level--;
3116 continue;
3117 }
3118
3119 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3120 if (! abbrev)
3121 {
3122 static unsigned int previous_failed_abbrev = -1U;
3123
3124 /* Avoid multiple reports of the same missing abbrev. */
3125 if (abbrev_number != previous_failed_abbrev)
3126 {
3127 _bfd_error_handler
3128 (_("DWARF error: could not find abbrev number %u"),
3129 abbrev_number);
3130 previous_failed_abbrev = abbrev_number;
3131 }
3132 bfd_set_error (bfd_error_bad_value);
3133 goto fail;
3134 }
3135
3136 var = NULL;
3137 if (abbrev->tag == DW_TAG_subprogram
3138 || abbrev->tag == DW_TAG_entry_point
3139 || abbrev->tag == DW_TAG_inlined_subroutine)
3140 {
3141 bfd_size_type amt = sizeof (struct funcinfo);
3142 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3143 if (func == NULL)
3144 goto fail;
3145 func->tag = abbrev->tag;
3146 func->prev_func = unit->function_table;
3147 unit->function_table = func;
3148 unit->number_of_functions++;
3149 BFD_ASSERT (!unit->cached);
3150
3151 if (func->tag == DW_TAG_inlined_subroutine)
3152 for (i = nesting_level; i-- != 0; )
3153 if (nested_funcs[i].func)
3154 {
3155 func->caller_func = nested_funcs[i].func;
3156 break;
3157 }
3158 nested_funcs[nesting_level].func = func;
3159 }
3160 else
3161 {
3162 func = NULL;
3163 if (abbrev->tag == DW_TAG_variable)
3164 {
3165 bfd_size_type amt = sizeof (struct varinfo);
3166 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3167 if (var == NULL)
3168 goto fail;
3169 var->tag = abbrev->tag;
3170 var->stack = 1;
3171 var->prev_var = unit->variable_table;
3172 unit->variable_table = var;
3173 /* PR 18205: Missing debug information can cause this
3174 var to be attached to an already cached unit. */
3175 }
3176
3177 /* No inline function in scope at this nesting level. */
3178 nested_funcs[nesting_level].func = 0;
3179 }
3180
3181 for (i = 0; i < abbrev->num_attrs; ++i)
3182 {
3183 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3184 unit, info_ptr, info_ptr_end);
3185 if (info_ptr == NULL)
3186 goto fail;
3187
3188 if (func)
3189 {
3190 switch (attr.name)
3191 {
3192 case DW_AT_call_file:
3193 func->caller_file = concat_filename (unit->line_table,
3194 attr.u.val);
3195 break;
3196
3197 case DW_AT_call_line:
3198 func->caller_line = attr.u.val;
3199 break;
3200
3201 case DW_AT_abstract_origin:
3202 case DW_AT_specification:
3203 if (!find_abstract_instance (unit, info_ptr, &attr,
3204 &func->name,
3205 &func->is_linkage,
3206 &func->file,
3207 &func->line))
3208 goto fail;
3209 break;
3210
3211 case DW_AT_name:
3212 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3213 over DW_AT_name. */
3214 if (func->name == NULL && is_str_attr (attr.form))
3215 {
3216 func->name = attr.u.str;
3217 if (non_mangled (unit->lang))
3218 func->is_linkage = TRUE;
3219 }
3220 break;
3221
3222 case DW_AT_linkage_name:
3223 case DW_AT_MIPS_linkage_name:
3224 /* PR 16949: Corrupt debug info can place
3225 non-string forms into these attributes. */
3226 if (is_str_attr (attr.form))
3227 {
3228 func->name = attr.u.str;
3229 func->is_linkage = TRUE;
3230 }
3231 break;
3232
3233 case DW_AT_low_pc:
3234 low_pc = attr.u.val;
3235 break;
3236
3237 case DW_AT_high_pc:
3238 high_pc = attr.u.val;
3239 high_pc_relative = attr.form != DW_FORM_addr;
3240 break;
3241
3242 case DW_AT_ranges:
3243 if (!read_rangelist (unit, &func->arange, attr.u.val))
3244 goto fail;
3245 break;
3246
3247 case DW_AT_decl_file:
3248 func->file = concat_filename (unit->line_table,
3249 attr.u.val);
3250 break;
3251
3252 case DW_AT_decl_line:
3253 func->line = attr.u.val;
3254 break;
3255
3256 default:
3257 break;
3258 }
3259 }
3260 else if (var)
3261 {
3262 switch (attr.name)
3263 {
3264 case DW_AT_name:
3265 if (is_str_attr (attr.form))
3266 var->name = attr.u.str;
3267 break;
3268
3269 case DW_AT_decl_file:
3270 var->file = concat_filename (unit->line_table,
3271 attr.u.val);
3272 break;
3273
3274 case DW_AT_decl_line:
3275 var->line = attr.u.val;
3276 break;
3277
3278 case DW_AT_external:
3279 if (attr.u.val != 0)
3280 var->stack = 0;
3281 break;
3282
3283 case DW_AT_location:
3284 switch (attr.form)
3285 {
3286 case DW_FORM_block:
3287 case DW_FORM_block1:
3288 case DW_FORM_block2:
3289 case DW_FORM_block4:
3290 case DW_FORM_exprloc:
3291 if (attr.u.blk->data != NULL
3292 && *attr.u.blk->data == DW_OP_addr)
3293 {
3294 var->stack = 0;
3295
3296 /* Verify that DW_OP_addr is the only opcode in the
3297 location, in which case the block size will be 1
3298 plus the address size. */
3299 /* ??? For TLS variables, gcc can emit
3300 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3301 which we don't handle here yet. */
3302 if (attr.u.blk->size == unit->addr_size + 1U)
3303 var->addr = bfd_get (unit->addr_size * 8,
3304 unit->abfd,
3305 attr.u.blk->data + 1);
3306 }
3307 break;
3308
3309 default:
3310 break;
3311 }
3312 break;
3313
3314 default:
3315 break;
3316 }
3317 }
3318 }
3319
3320 if (high_pc_relative)
3321 high_pc += low_pc;
3322
3323 if (func && high_pc != 0)
3324 {
3325 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3326 goto fail;
3327 }
3328
3329 if (abbrev->has_children)
3330 {
3331 nesting_level++;
3332
3333 if (nesting_level >= nested_funcs_size)
3334 {
3335 struct nest_funcinfo *tmp;
3336
3337 nested_funcs_size *= 2;
3338 tmp = (struct nest_funcinfo *)
3339 bfd_realloc (nested_funcs,
3340 nested_funcs_size * sizeof (*nested_funcs));
3341 if (tmp == NULL)
3342 goto fail;
3343 nested_funcs = tmp;
3344 }
3345 nested_funcs[nesting_level].func = 0;
3346 }
3347 }
3348
3349 free (nested_funcs);
3350 return TRUE;
3351
3352 fail:
3353 free (nested_funcs);
3354 return FALSE;
3355 }
3356
3357 /* Parse a DWARF2 compilation unit starting at INFO_PTR. UNIT_LENGTH
3358 includes the compilation unit header that proceeds the DIE's, but
3359 does not include the length field that precedes each compilation
3360 unit header. END_PTR points one past the end of this comp unit.
3361 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3362
3363 This routine does not read the whole compilation unit; only enough
3364 to get to the line number information for the compilation unit. */
3365
3366 static struct comp_unit *
3367 parse_comp_unit (struct dwarf2_debug *stash,
3368 bfd_vma unit_length,
3369 bfd_byte *info_ptr_unit,
3370 unsigned int offset_size)
3371 {
3372 struct comp_unit* unit;
3373 unsigned int version;
3374 bfd_uint64_t abbrev_offset = 0;
3375 /* Initialize it just to avoid a GCC false warning. */
3376 unsigned int addr_size = -1;
3377 struct abbrev_info** abbrevs;
3378 unsigned int abbrev_number, bytes_read, i;
3379 struct abbrev_info *abbrev;
3380 struct attribute attr;
3381 bfd_byte *info_ptr = stash->info_ptr;
3382 bfd_byte *end_ptr = info_ptr + unit_length;
3383 bfd_size_type amt;
3384 bfd_vma low_pc = 0;
3385 bfd_vma high_pc = 0;
3386 bfd *abfd = stash->bfd_ptr;
3387 bfd_boolean high_pc_relative = FALSE;
3388 enum dwarf_unit_type unit_type;
3389
3390 version = read_2_bytes (abfd, info_ptr, end_ptr);
3391 info_ptr += 2;
3392 if (version < 2 || version > 5)
3393 {
3394 /* PR 19872: A version number of 0 probably means that there is padding
3395 at the end of the .debug_info section. Gold puts it there when
3396 performing an incremental link, for example. So do not generate
3397 an error, just return a NULL. */
3398 if (version)
3399 {
3400 _bfd_error_handler
3401 (_("DWARF error: found dwarf version '%u', this reader"
3402 " only handles version 2, 3, 4 and 5 information"), version);
3403 bfd_set_error (bfd_error_bad_value);
3404 }
3405 return NULL;
3406 }
3407
3408 if (version < 5)
3409 unit_type = DW_UT_compile;
3410 else
3411 {
3412 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3413 info_ptr += 1;
3414
3415 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3416 info_ptr += 1;
3417 }
3418
3419 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3420 if (offset_size == 4)
3421 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3422 else
3423 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3424 info_ptr += offset_size;
3425
3426 if (version < 5)
3427 {
3428 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3429 info_ptr += 1;
3430 }
3431
3432 if (unit_type == DW_UT_type)
3433 {
3434 /* Skip type signature. */
3435 info_ptr += 8;
3436
3437 /* Skip type offset. */
3438 info_ptr += offset_size;
3439 }
3440
3441 if (addr_size > sizeof (bfd_vma))
3442 {
3443 _bfd_error_handler
3444 /* xgettext: c-format */
3445 (_("DWARF error: found address size '%u', this reader"
3446 " can not handle sizes greater than '%u'"),
3447 addr_size,
3448 (unsigned int) sizeof (bfd_vma));
3449 bfd_set_error (bfd_error_bad_value);
3450 return NULL;
3451 }
3452
3453 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3454 {
3455 _bfd_error_handler
3456 ("DWARF error: found address size '%u', this reader"
3457 " can only handle address sizes '2', '4' and '8'", addr_size);
3458 bfd_set_error (bfd_error_bad_value);
3459 return NULL;
3460 }
3461
3462 /* Read the abbrevs for this compilation unit into a table. */
3463 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3464 if (! abbrevs)
3465 return NULL;
3466
3467 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3468 FALSE, end_ptr);
3469 info_ptr += bytes_read;
3470 if (! abbrev_number)
3471 {
3472 /* PR 19872: An abbrev number of 0 probably means that there is padding
3473 at the end of the .debug_abbrev section. Gold puts it there when
3474 performing an incremental link, for example. So do not generate
3475 an error, just return a NULL. */
3476 return NULL;
3477 }
3478
3479 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3480 if (! abbrev)
3481 {
3482 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3483 abbrev_number);
3484 bfd_set_error (bfd_error_bad_value);
3485 return NULL;
3486 }
3487
3488 amt = sizeof (struct comp_unit);
3489 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3490 if (unit == NULL)
3491 return NULL;
3492 unit->abfd = abfd;
3493 unit->version = version;
3494 unit->addr_size = addr_size;
3495 unit->offset_size = offset_size;
3496 unit->abbrevs = abbrevs;
3497 unit->end_ptr = end_ptr;
3498 unit->stash = stash;
3499 unit->info_ptr_unit = info_ptr_unit;
3500
3501 for (i = 0; i < abbrev->num_attrs; ++i)
3502 {
3503 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3504 if (info_ptr == NULL)
3505 return NULL;
3506
3507 /* Store the data if it is of an attribute we want to keep in a
3508 partial symbol table. */
3509 switch (attr.name)
3510 {
3511 case DW_AT_stmt_list:
3512 unit->stmtlist = 1;
3513 unit->line_offset = attr.u.val;
3514 break;
3515
3516 case DW_AT_name:
3517 if (is_str_attr (attr.form))
3518 unit->name = attr.u.str;
3519 break;
3520
3521 case DW_AT_low_pc:
3522 low_pc = attr.u.val;
3523 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3524 this is the base address to use when reading location
3525 lists or range lists. */
3526 if (abbrev->tag == DW_TAG_compile_unit)
3527 unit->base_address = low_pc;
3528 break;
3529
3530 case DW_AT_high_pc:
3531 high_pc = attr.u.val;
3532 high_pc_relative = attr.form != DW_FORM_addr;
3533 break;
3534
3535 case DW_AT_ranges:
3536 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3537 return NULL;
3538 break;
3539
3540 case DW_AT_comp_dir:
3541 {
3542 char *comp_dir = attr.u.str;
3543
3544 /* PR 17512: file: 1fe726be. */
3545 if (! is_str_attr (attr.form))
3546 {
3547 _bfd_error_handler
3548 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3549 comp_dir = NULL;
3550 }
3551
3552 if (comp_dir)
3553 {
3554 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3555 directory, get rid of it. */
3556 char *cp = strchr (comp_dir, ':');
3557
3558 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3559 comp_dir = cp + 1;
3560 }
3561 unit->comp_dir = comp_dir;
3562 break;
3563 }
3564
3565 case DW_AT_language:
3566 unit->lang = attr.u.val;
3567 break;
3568
3569 default:
3570 break;
3571 }
3572 }
3573 if (high_pc_relative)
3574 high_pc += low_pc;
3575 if (high_pc != 0)
3576 {
3577 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3578 return NULL;
3579 }
3580
3581 unit->first_child_die_ptr = info_ptr;
3582 return unit;
3583 }
3584
3585 /* Return TRUE if UNIT may contain the address given by ADDR. When
3586 there are functions written entirely with inline asm statements, the
3587 range info in the compilation unit header may not be correct. We
3588 need to consult the line info table to see if a compilation unit
3589 really contains the given address. */
3590
3591 static bfd_boolean
3592 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3593 {
3594 struct arange *arange;
3595
3596 if (unit->error)
3597 return FALSE;
3598
3599 arange = &unit->arange;
3600 do
3601 {
3602 if (addr >= arange->low && addr < arange->high)
3603 return TRUE;
3604 arange = arange->next;
3605 }
3606 while (arange);
3607
3608 return FALSE;
3609 }
3610
3611 /* If UNIT contains ADDR, set the output parameters to the values for
3612 the line containing ADDR. The output parameters, FILENAME_PTR,
3613 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3614 to be filled in.
3615
3616 Returns the range of addresses covered by the entry that was used
3617 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3618
3619 static bfd_vma
3620 comp_unit_find_nearest_line (struct comp_unit *unit,
3621 bfd_vma addr,
3622 const char **filename_ptr,
3623 struct funcinfo **function_ptr,
3624 unsigned int *linenumber_ptr,
3625 unsigned int *discriminator_ptr,
3626 struct dwarf2_debug *stash)
3627 {
3628 bfd_boolean func_p;
3629
3630 if (!comp_unit_maybe_decode_line_info (unit, stash))
3631 return FALSE;
3632
3633 *function_ptr = NULL;
3634 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3635 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3636 stash->inliner_chain = *function_ptr;
3637
3638 return lookup_address_in_line_info_table (unit->line_table, addr,
3639 filename_ptr,
3640 linenumber_ptr,
3641 discriminator_ptr);
3642 }
3643
3644 /* Check to see if line info is already decoded in a comp_unit.
3645 If not, decode it. Returns TRUE if no errors were encountered;
3646 FALSE otherwise. */
3647
3648 static bfd_boolean
3649 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3650 struct dwarf2_debug *stash)
3651 {
3652 if (unit->error)
3653 return FALSE;
3654
3655 if (! unit->line_table)
3656 {
3657 if (! unit->stmtlist)
3658 {
3659 unit->error = 1;
3660 return FALSE;
3661 }
3662
3663 unit->line_table = decode_line_info (unit, stash);
3664
3665 if (! unit->line_table)
3666 {
3667 unit->error = 1;
3668 return FALSE;
3669 }
3670
3671 if (unit->first_child_die_ptr < unit->end_ptr
3672 && ! scan_unit_for_symbols (unit))
3673 {
3674 unit->error = 1;
3675 return FALSE;
3676 }
3677 }
3678
3679 return TRUE;
3680 }
3681
3682 /* If UNIT contains SYM at ADDR, set the output parameters to the
3683 values for the line containing SYM. The output parameters,
3684 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3685 filled in.
3686
3687 Return TRUE if UNIT contains SYM, and no errors were encountered;
3688 FALSE otherwise. */
3689
3690 static bfd_boolean
3691 comp_unit_find_line (struct comp_unit *unit,
3692 asymbol *sym,
3693 bfd_vma addr,
3694 const char **filename_ptr,
3695 unsigned int *linenumber_ptr,
3696 struct dwarf2_debug *stash)
3697 {
3698 if (!comp_unit_maybe_decode_line_info (unit, stash))
3699 return FALSE;
3700
3701 if (sym->flags & BSF_FUNCTION)
3702 return lookup_symbol_in_function_table (unit, sym, addr,
3703 filename_ptr,
3704 linenumber_ptr);
3705
3706 return lookup_symbol_in_variable_table (unit, sym, addr,
3707 filename_ptr,
3708 linenumber_ptr);
3709 }
3710
3711 static struct funcinfo *
3712 reverse_funcinfo_list (struct funcinfo *head)
3713 {
3714 struct funcinfo *rhead;
3715 struct funcinfo *temp;
3716
3717 for (rhead = NULL; head; head = temp)
3718 {
3719 temp = head->prev_func;
3720 head->prev_func = rhead;
3721 rhead = head;
3722 }
3723 return rhead;
3724 }
3725
3726 static struct varinfo *
3727 reverse_varinfo_list (struct varinfo *head)
3728 {
3729 struct varinfo *rhead;
3730 struct varinfo *temp;
3731
3732 for (rhead = NULL; head; head = temp)
3733 {
3734 temp = head->prev_var;
3735 head->prev_var = rhead;
3736 rhead = head;
3737 }
3738 return rhead;
3739 }
3740
3741 /* Extract all interesting funcinfos and varinfos of a compilation
3742 unit into hash tables for faster lookup. Returns TRUE if no
3743 errors were enountered; FALSE otherwise. */
3744
3745 static bfd_boolean
3746 comp_unit_hash_info (struct dwarf2_debug *stash,
3747 struct comp_unit *unit,
3748 struct info_hash_table *funcinfo_hash_table,
3749 struct info_hash_table *varinfo_hash_table)
3750 {
3751 struct funcinfo* each_func;
3752 struct varinfo* each_var;
3753 bfd_boolean okay = TRUE;
3754
3755 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3756
3757 if (!comp_unit_maybe_decode_line_info (unit, stash))
3758 return FALSE;
3759
3760 BFD_ASSERT (!unit->cached);
3761
3762 /* To preserve the original search order, we went to visit the function
3763 infos in the reversed order of the list. However, making the list
3764 bi-directional use quite a bit of extra memory. So we reverse
3765 the list first, traverse the list in the now reversed order and
3766 finally reverse the list again to get back the original order. */
3767 unit->function_table = reverse_funcinfo_list (unit->function_table);
3768 for (each_func = unit->function_table;
3769 each_func && okay;
3770 each_func = each_func->prev_func)
3771 {
3772 /* Skip nameless functions. */
3773 if (each_func->name)
3774 /* There is no need to copy name string into hash table as
3775 name string is either in the dwarf string buffer or
3776 info in the stash. */
3777 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3778 (void*) each_func, FALSE);
3779 }
3780 unit->function_table = reverse_funcinfo_list (unit->function_table);
3781 if (!okay)
3782 return FALSE;
3783
3784 /* We do the same for variable infos. */
3785 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3786 for (each_var = unit->variable_table;
3787 each_var && okay;
3788 each_var = each_var->prev_var)
3789 {
3790 /* Skip stack vars and vars with no files or names. */
3791 if (each_var->stack == 0
3792 && each_var->file != NULL
3793 && each_var->name != NULL)
3794 /* There is no need to copy name string into hash table as
3795 name string is either in the dwarf string buffer or
3796 info in the stash. */
3797 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3798 (void*) each_var, FALSE);
3799 }
3800
3801 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3802 unit->cached = TRUE;
3803 return okay;
3804 }
3805
3806 /* Locate a section in a BFD containing debugging info. The search starts
3807 from the section after AFTER_SEC, or from the first section in the BFD if
3808 AFTER_SEC is NULL. The search works by examining the names of the
3809 sections. There are three permissiable names. The first two are given
3810 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3811 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3812 This is a variation on the .debug_info section which has a checksum
3813 describing the contents appended onto the name. This allows the linker to
3814 identify and discard duplicate debugging sections for different
3815 compilation units. */
3816 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3817
3818 static asection *
3819 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3820 asection *after_sec)
3821 {
3822 asection *msec;
3823 const char *look;
3824
3825 if (after_sec == NULL)
3826 {
3827 look = debug_sections[debug_info].uncompressed_name;
3828 msec = bfd_get_section_by_name (abfd, look);
3829 if (msec != NULL)
3830 return msec;
3831
3832 look = debug_sections[debug_info].compressed_name;
3833 if (look != NULL)
3834 {
3835 msec = bfd_get_section_by_name (abfd, look);
3836 if (msec != NULL)
3837 return msec;
3838 }
3839
3840 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3841 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3842 return msec;
3843
3844 return NULL;
3845 }
3846
3847 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3848 {
3849 look = debug_sections[debug_info].uncompressed_name;
3850 if (strcmp (msec->name, look) == 0)
3851 return msec;
3852
3853 look = debug_sections[debug_info].compressed_name;
3854 if (look != NULL && strcmp (msec->name, look) == 0)
3855 return msec;
3856
3857 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3858 return msec;
3859 }
3860
3861 return NULL;
3862 }
3863
3864 /* Transfer VMAs from object file to separate debug file. */
3865
3866 static void
3867 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3868 {
3869 asection *s, *d;
3870
3871 for (s = orig_bfd->sections, d = debug_bfd->sections;
3872 s != NULL && d != NULL;
3873 s = s->next, d = d->next)
3874 {
3875 if ((d->flags & SEC_DEBUGGING) != 0)
3876 break;
3877 /* ??? Assumes 1-1 correspondence between sections in the
3878 two files. */
3879 if (strcmp (s->name, d->name) == 0)
3880 {
3881 d->output_section = s->output_section;
3882 d->output_offset = s->output_offset;
3883 d->vma = s->vma;
3884 }
3885 }
3886 }
3887
3888 /* Unset vmas for adjusted sections in STASH. */
3889
3890 static void
3891 unset_sections (struct dwarf2_debug *stash)
3892 {
3893 int i;
3894 struct adjusted_section *p;
3895
3896 i = stash->adjusted_section_count;
3897 p = stash->adjusted_sections;
3898 for (; i > 0; i--, p++)
3899 p->section->vma = 0;
3900 }
3901
3902 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3903 relocatable object file. VMAs are normally all zero in relocatable
3904 object files, so if we want to distinguish locations in sections by
3905 address we need to set VMAs so the sections do not overlap. We
3906 also set VMA on .debug_info so that when we have multiple
3907 .debug_info sections (or the linkonce variant) they also do not
3908 overlap. The multiple .debug_info sections make up a single
3909 logical section. ??? We should probably do the same for other
3910 debug sections. */
3911
3912 static bfd_boolean
3913 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3914 {
3915 bfd *abfd;
3916 struct adjusted_section *p;
3917 int i;
3918 const char *debug_info_name;
3919
3920 if (stash->adjusted_section_count != 0)
3921 {
3922 i = stash->adjusted_section_count;
3923 p = stash->adjusted_sections;
3924 for (; i > 0; i--, p++)
3925 p->section->vma = p->adj_vma;
3926 return TRUE;
3927 }
3928
3929 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3930 i = 0;
3931 abfd = orig_bfd;
3932 while (1)
3933 {
3934 asection *sect;
3935
3936 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3937 {
3938 int is_debug_info;
3939
3940 if ((sect->output_section != NULL
3941 && sect->output_section != sect
3942 && (sect->flags & SEC_DEBUGGING) == 0)
3943 || sect->vma != 0)
3944 continue;
3945
3946 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3947 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3948
3949 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3950 && !is_debug_info)
3951 continue;
3952
3953 i++;
3954 }
3955 if (abfd == stash->bfd_ptr)
3956 break;
3957 abfd = stash->bfd_ptr;
3958 }
3959
3960 if (i <= 1)
3961 stash->adjusted_section_count = -1;
3962 else
3963 {
3964 bfd_vma last_vma = 0, last_dwarf = 0;
3965 bfd_size_type amt = i * sizeof (struct adjusted_section);
3966
3967 p = (struct adjusted_section *) bfd_malloc (amt);
3968 if (p == NULL)
3969 return FALSE;
3970
3971 stash->adjusted_sections = p;
3972 stash->adjusted_section_count = i;
3973
3974 abfd = orig_bfd;
3975 while (1)
3976 {
3977 asection *sect;
3978
3979 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3980 {
3981 bfd_size_type sz;
3982 int is_debug_info;
3983
3984 if ((sect->output_section != NULL
3985 && sect->output_section != sect
3986 && (sect->flags & SEC_DEBUGGING) == 0)
3987 || sect->vma != 0)
3988 continue;
3989
3990 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3991 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3992
3993 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3994 && !is_debug_info)
3995 continue;
3996
3997 sz = sect->rawsize ? sect->rawsize : sect->size;
3998
3999 if (is_debug_info)
4000 {
4001 BFD_ASSERT (sect->alignment_power == 0);
4002 sect->vma = last_dwarf;
4003 last_dwarf += sz;
4004 }
4005 else
4006 {
4007 /* Align the new address to the current section
4008 alignment. */
4009 last_vma = ((last_vma
4010 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4011 & (-((bfd_vma) 1 << sect->alignment_power)));
4012 sect->vma = last_vma;
4013 last_vma += sz;
4014 }
4015
4016 p->section = sect;
4017 p->adj_vma = sect->vma;
4018 p++;
4019 }
4020 if (abfd == stash->bfd_ptr)
4021 break;
4022 abfd = stash->bfd_ptr;
4023 }
4024 }
4025
4026 if (orig_bfd != stash->bfd_ptr)
4027 set_debug_vma (orig_bfd, stash->bfd_ptr);
4028
4029 return TRUE;
4030 }
4031
4032 /* Look up a funcinfo by name using the given info hash table. If found,
4033 also update the locations pointed to by filename_ptr and linenumber_ptr.
4034
4035 This function returns TRUE if a funcinfo that matches the given symbol
4036 and address is found with any error; otherwise it returns FALSE. */
4037
4038 static bfd_boolean
4039 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4040 asymbol *sym,
4041 bfd_vma addr,
4042 const char **filename_ptr,
4043 unsigned int *linenumber_ptr)
4044 {
4045 struct funcinfo* each_func;
4046 struct funcinfo* best_fit = NULL;
4047 bfd_vma best_fit_len = 0;
4048 struct info_list_node *node;
4049 struct arange *arange;
4050 const char *name = bfd_asymbol_name (sym);
4051 asection *sec = bfd_get_section (sym);
4052
4053 for (node = lookup_info_hash_table (hash_table, name);
4054 node;
4055 node = node->next)
4056 {
4057 each_func = (struct funcinfo *) node->info;
4058 for (arange = &each_func->arange;
4059 arange;
4060 arange = arange->next)
4061 {
4062 if ((!each_func->sec || each_func->sec == sec)
4063 && addr >= arange->low
4064 && addr < arange->high
4065 && (!best_fit
4066 || arange->high - arange->low < best_fit_len))
4067 {
4068 best_fit = each_func;
4069 best_fit_len = arange->high - arange->low;
4070 }
4071 }
4072 }
4073
4074 if (best_fit)
4075 {
4076 best_fit->sec = sec;
4077 *filename_ptr = best_fit->file;
4078 *linenumber_ptr = best_fit->line;
4079 return TRUE;
4080 }
4081
4082 return FALSE;
4083 }
4084
4085 /* Look up a varinfo by name using the given info hash table. If found,
4086 also update the locations pointed to by filename_ptr and linenumber_ptr.
4087
4088 This function returns TRUE if a varinfo that matches the given symbol
4089 and address is found with any error; otherwise it returns FALSE. */
4090
4091 static bfd_boolean
4092 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4093 asymbol *sym,
4094 bfd_vma addr,
4095 const char **filename_ptr,
4096 unsigned int *linenumber_ptr)
4097 {
4098 const char *name = bfd_asymbol_name (sym);
4099 asection *sec = bfd_get_section (sym);
4100 struct varinfo* each;
4101 struct info_list_node *node;
4102
4103 for (node = lookup_info_hash_table (hash_table, name);
4104 node;
4105 node = node->next)
4106 {
4107 each = (struct varinfo *) node->info;
4108 if (each->addr == addr
4109 && (!each->sec || each->sec == sec))
4110 {
4111 each->sec = sec;
4112 *filename_ptr = each->file;
4113 *linenumber_ptr = each->line;
4114 return TRUE;
4115 }
4116 }
4117
4118 return FALSE;
4119 }
4120
4121 /* Update the funcinfo and varinfo info hash tables if they are
4122 not up to date. Returns TRUE if there is no error; otherwise
4123 returns FALSE and disable the info hash tables. */
4124
4125 static bfd_boolean
4126 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4127 {
4128 struct comp_unit *each;
4129
4130 /* Exit if hash tables are up-to-date. */
4131 if (stash->all_comp_units == stash->hash_units_head)
4132 return TRUE;
4133
4134 if (stash->hash_units_head)
4135 each = stash->hash_units_head->prev_unit;
4136 else
4137 each = stash->last_comp_unit;
4138
4139 while (each)
4140 {
4141 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4142 stash->varinfo_hash_table))
4143 {
4144 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4145 return FALSE;
4146 }
4147 each = each->prev_unit;
4148 }
4149
4150 stash->hash_units_head = stash->all_comp_units;
4151 return TRUE;
4152 }
4153
4154 /* Check consistency of info hash tables. This is for debugging only. */
4155
4156 static void ATTRIBUTE_UNUSED
4157 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4158 {
4159 struct comp_unit *each_unit;
4160 struct funcinfo *each_func;
4161 struct varinfo *each_var;
4162 struct info_list_node *node;
4163 bfd_boolean found;
4164
4165 for (each_unit = stash->all_comp_units;
4166 each_unit;
4167 each_unit = each_unit->next_unit)
4168 {
4169 for (each_func = each_unit->function_table;
4170 each_func;
4171 each_func = each_func->prev_func)
4172 {
4173 if (!each_func->name)
4174 continue;
4175 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4176 each_func->name);
4177 BFD_ASSERT (node);
4178 found = FALSE;
4179 while (node && !found)
4180 {
4181 found = node->info == each_func;
4182 node = node->next;
4183 }
4184 BFD_ASSERT (found);
4185 }
4186
4187 for (each_var = each_unit->variable_table;
4188 each_var;
4189 each_var = each_var->prev_var)
4190 {
4191 if (!each_var->name || !each_var->file || each_var->stack)
4192 continue;
4193 node = lookup_info_hash_table (stash->varinfo_hash_table,
4194 each_var->name);
4195 BFD_ASSERT (node);
4196 found = FALSE;
4197 while (node && !found)
4198 {
4199 found = node->info == each_var;
4200 node = node->next;
4201 }
4202 BFD_ASSERT (found);
4203 }
4204 }
4205 }
4206
4207 /* Check to see if we want to enable the info hash tables, which consume
4208 quite a bit of memory. Currently we only check the number times
4209 bfd_dwarf2_find_line is called. In the future, we may also want to
4210 take the number of symbols into account. */
4211
4212 static void
4213 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4214 {
4215 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4216
4217 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4218 return;
4219
4220 /* FIXME: Maybe we should check the reduce_memory_overheads
4221 and optimize fields in the bfd_link_info structure ? */
4222
4223 /* Create hash tables. */
4224 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4225 stash->varinfo_hash_table = create_info_hash_table (abfd);
4226 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4227 {
4228 /* Turn off info hashes if any allocation above fails. */
4229 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4230 return;
4231 }
4232 /* We need a forced update so that the info hash tables will
4233 be created even though there is no compilation unit. That
4234 happens if STASH_INFO_HASH_TRIGGER is 0. */
4235 stash_maybe_update_info_hash_tables (stash);
4236 stash->info_hash_status = STASH_INFO_HASH_ON;
4237 }
4238
4239 /* Find the file and line associated with a symbol and address using the
4240 info hash tables of a stash. If there is a match, the function returns
4241 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4242 otherwise it returns FALSE. */
4243
4244 static bfd_boolean
4245 stash_find_line_fast (struct dwarf2_debug *stash,
4246 asymbol *sym,
4247 bfd_vma addr,
4248 const char **filename_ptr,
4249 unsigned int *linenumber_ptr)
4250 {
4251 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4252
4253 if (sym->flags & BSF_FUNCTION)
4254 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4255 filename_ptr, linenumber_ptr);
4256 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4257 filename_ptr, linenumber_ptr);
4258 }
4259
4260 /* Save current section VMAs. */
4261
4262 static bfd_boolean
4263 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4264 {
4265 asection *s;
4266 unsigned int i;
4267
4268 if (abfd->section_count == 0)
4269 return TRUE;
4270 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4271 if (stash->sec_vma == NULL)
4272 return FALSE;
4273 stash->sec_vma_count = abfd->section_count;
4274 for (i = 0, s = abfd->sections;
4275 s != NULL && i < abfd->section_count;
4276 i++, s = s->next)
4277 {
4278 if (s->output_section != NULL)
4279 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4280 else
4281 stash->sec_vma[i] = s->vma;
4282 }
4283 return TRUE;
4284 }
4285
4286 /* Compare current section VMAs against those at the time the stash
4287 was created. If find_nearest_line is used in linker warnings or
4288 errors early in the link process, the debug info stash will be
4289 invalid for later calls. This is because we relocate debug info
4290 sections, so the stashed section contents depend on symbol values,
4291 which in turn depend on section VMAs. */
4292
4293 static bfd_boolean
4294 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4295 {
4296 asection *s;
4297 unsigned int i;
4298
4299 /* PR 24334: If the number of sections in ABFD has changed between
4300 when the stash was created and now, then we cannot trust the
4301 stashed vma information. */
4302 if (abfd->section_count != stash->sec_vma_count)
4303 return FALSE;
4304
4305 for (i = 0, s = abfd->sections;
4306 s != NULL && i < abfd->section_count;
4307 i++, s = s->next)
4308 {
4309 bfd_vma vma;
4310
4311 if (s->output_section != NULL)
4312 vma = s->output_section->vma + s->output_offset;
4313 else
4314 vma = s->vma;
4315 if (vma != stash->sec_vma[i])
4316 return FALSE;
4317 }
4318 return TRUE;
4319 }
4320
4321 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4322 If DEBUG_BFD is not specified, we read debug information from ABFD
4323 or its gnu_debuglink. The results will be stored in PINFO.
4324 The function returns TRUE iff debug information is ready. */
4325
4326 bfd_boolean
4327 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4328 const struct dwarf_debug_section *debug_sections,
4329 asymbol **symbols,
4330 void **pinfo,
4331 bfd_boolean do_place)
4332 {
4333 bfd_size_type amt = sizeof (struct dwarf2_debug);
4334 bfd_size_type total_size;
4335 asection *msec;
4336 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4337
4338 if (stash != NULL)
4339 {
4340 if (stash->orig_bfd == abfd
4341 && section_vma_same (abfd, stash))
4342 {
4343 /* Check that we did previously find some debug information
4344 before attempting to make use of it. */
4345 if (stash->bfd_ptr != NULL)
4346 {
4347 if (do_place && !place_sections (abfd, stash))
4348 return FALSE;
4349 return TRUE;
4350 }
4351
4352 return FALSE;
4353 }
4354 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4355 memset (stash, 0, amt);
4356 }
4357 else
4358 {
4359 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4360 if (! stash)
4361 return FALSE;
4362 }
4363 stash->orig_bfd = abfd;
4364 stash->debug_sections = debug_sections;
4365 stash->syms = symbols;
4366 if (!save_section_vma (abfd, stash))
4367 return FALSE;
4368
4369 *pinfo = stash;
4370
4371 if (debug_bfd == NULL)
4372 debug_bfd = abfd;
4373
4374 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4375 if (msec == NULL && abfd == debug_bfd)
4376 {
4377 char * debug_filename;
4378
4379 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4380 if (debug_filename == NULL)
4381 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4382
4383 if (debug_filename == NULL)
4384 /* No dwarf2 info, and no gnu_debuglink to follow.
4385 Note that at this point the stash has been allocated, but
4386 contains zeros. This lets future calls to this function
4387 fail more quickly. */
4388 return FALSE;
4389
4390 debug_bfd = bfd_openr (debug_filename, NULL);
4391 free (debug_filename);
4392 if (debug_bfd == NULL)
4393 /* FIXME: Should we report our failure to follow the debuglink ? */
4394 return FALSE;
4395
4396 /* Set BFD_DECOMPRESS to decompress debug sections. */
4397 debug_bfd->flags |= BFD_DECOMPRESS;
4398 if (!bfd_check_format (debug_bfd, bfd_object)
4399 || (msec = find_debug_info (debug_bfd,
4400 debug_sections, NULL)) == NULL
4401 || !bfd_generic_link_read_symbols (debug_bfd))
4402 {
4403 bfd_close (debug_bfd);
4404 return FALSE;
4405 }
4406
4407 symbols = bfd_get_outsymbols (debug_bfd);
4408 stash->syms = symbols;
4409 stash->close_on_cleanup = TRUE;
4410 }
4411 stash->bfd_ptr = debug_bfd;
4412
4413 if (do_place
4414 && !place_sections (abfd, stash))
4415 return FALSE;
4416
4417 /* There can be more than one DWARF2 info section in a BFD these
4418 days. First handle the easy case when there's only one. If
4419 there's more than one, try case two: none of the sections is
4420 compressed. In that case, read them all in and produce one
4421 large stash. We do this in two passes - in the first pass we
4422 just accumulate the section sizes, and in the second pass we
4423 read in the section's contents. (The allows us to avoid
4424 reallocing the data as we add sections to the stash.) If
4425 some or all sections are compressed, then do things the slow
4426 way, with a bunch of reallocs. */
4427
4428 if (! find_debug_info (debug_bfd, debug_sections, msec))
4429 {
4430 /* Case 1: only one info section. */
4431 total_size = msec->size;
4432 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4433 symbols, 0,
4434 &stash->info_ptr_memory, &total_size))
4435 return FALSE;
4436 }
4437 else
4438 {
4439 /* Case 2: multiple sections. */
4440 for (total_size = 0;
4441 msec;
4442 msec = find_debug_info (debug_bfd, debug_sections, msec))
4443 total_size += msec->size;
4444
4445 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4446 if (stash->info_ptr_memory == NULL)
4447 return FALSE;
4448
4449 total_size = 0;
4450 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4451 msec;
4452 msec = find_debug_info (debug_bfd, debug_sections, msec))
4453 {
4454 bfd_size_type size;
4455
4456 size = msec->size;
4457 if (size == 0)
4458 continue;
4459
4460 if (!(bfd_simple_get_relocated_section_contents
4461 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4462 symbols)))
4463 return FALSE;
4464
4465 total_size += size;
4466 }
4467 }
4468
4469 stash->info_ptr = stash->info_ptr_memory;
4470 stash->info_ptr_end = stash->info_ptr + total_size;
4471 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4472 stash->sec_info_ptr = stash->info_ptr;
4473 return TRUE;
4474 }
4475
4476 /* Parse the next DWARF2 compilation unit at STASH->INFO_PTR. */
4477
4478 static struct comp_unit *
4479 stash_comp_unit (struct dwarf2_debug *stash)
4480 {
4481 bfd_size_type length;
4482 unsigned int offset_size;
4483 bfd_byte *info_ptr_unit = stash->info_ptr;
4484
4485 if (stash->info_ptr >= stash->info_ptr_end)
4486 return NULL;
4487
4488 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr,
4489 stash->info_ptr_end);
4490 /* A 0xffffff length is the DWARF3 way of indicating
4491 we use 64-bit offsets, instead of 32-bit offsets. */
4492 if (length == 0xffffffff)
4493 {
4494 offset_size = 8;
4495 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4,
4496 stash->info_ptr_end);
4497 stash->info_ptr += 12;
4498 }
4499 /* A zero length is the IRIX way of indicating 64-bit offsets,
4500 mostly because the 64-bit length will generally fit in 32
4501 bits, and the endianness helps. */
4502 else if (length == 0)
4503 {
4504 offset_size = 8;
4505 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4,
4506 stash->info_ptr_end);
4507 stash->info_ptr += 8;
4508 }
4509 /* In the absence of the hints above, we assume 32-bit DWARF2
4510 offsets even for targets with 64-bit addresses, because:
4511 a) most of the time these targets will not have generated
4512 more than 2Gb of debug info and so will not need 64-bit
4513 offsets,
4514 and
4515 b) if they do use 64-bit offsets but they are not using
4516 the size hints that are tested for above then they are
4517 not conforming to the DWARF3 standard anyway. */
4518 else
4519 {
4520 offset_size = 4;
4521 stash->info_ptr += 4;
4522 }
4523
4524 if (length != 0
4525 && stash->info_ptr + length <= stash->info_ptr_end
4526 && stash->info_ptr + length > stash->info_ptr)
4527 {
4528 struct comp_unit *each = parse_comp_unit (stash, length, info_ptr_unit,
4529 offset_size);
4530 if (each)
4531 {
4532 if (stash->all_comp_units)
4533 stash->all_comp_units->prev_unit = each;
4534 else
4535 stash->last_comp_unit = each;
4536
4537 each->next_unit = stash->all_comp_units;
4538 stash->all_comp_units = each;
4539
4540 stash->info_ptr += length;
4541
4542 if ((bfd_size_type) (stash->info_ptr - stash->sec_info_ptr)
4543 == stash->sec->size)
4544 {
4545 stash->sec = find_debug_info (stash->bfd_ptr,
4546 stash->debug_sections,
4547 stash->sec);
4548 stash->sec_info_ptr = stash->info_ptr;
4549 }
4550 return each;
4551 }
4552 }
4553
4554 /* Don't trust any of the DWARF info after a corrupted length or
4555 parse error. */
4556 stash->info_ptr = stash->info_ptr_end;
4557 return NULL;
4558 }
4559
4560 /* Hash function for an asymbol. */
4561
4562 static hashval_t
4563 hash_asymbol (const void *sym)
4564 {
4565 const asymbol *asym = sym;
4566 return htab_hash_string (asym->name);
4567 }
4568
4569 /* Equality function for asymbols. */
4570
4571 static int
4572 eq_asymbol (const void *a, const void *b)
4573 {
4574 const asymbol *sa = a;
4575 const asymbol *sb = b;
4576 return strcmp (sa->name, sb->name) == 0;
4577 }
4578
4579 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4580 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4581 symbol in SYMBOLS and return the difference between the low_pc and
4582 the symbol's address. Returns 0 if no suitable symbol could be found. */
4583
4584 bfd_signed_vma
4585 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4586 {
4587 struct dwarf2_debug *stash;
4588 struct comp_unit * unit;
4589 htab_t sym_hash;
4590 bfd_signed_vma result = 0;
4591 asymbol ** psym;
4592
4593 stash = (struct dwarf2_debug *) *pinfo;
4594
4595 if (stash == NULL || symbols == NULL)
4596 return 0;
4597
4598 sym_hash = htab_create_alloc (10, hash_asymbol, eq_asymbol,
4599 NULL, xcalloc, free);
4600 for (psym = symbols; * psym != NULL; psym++)
4601 {
4602 asymbol * sym = * psym;
4603
4604 if (sym->flags & BSF_FUNCTION && sym->section != NULL)
4605 {
4606 void **slot = htab_find_slot (sym_hash, sym, INSERT);
4607 *slot = sym;
4608 }
4609 }
4610
4611 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4612 {
4613 struct funcinfo * func;
4614
4615 comp_unit_maybe_decode_line_info (unit, stash);
4616
4617 for (func = unit->function_table; func != NULL; func = func->prev_func)
4618 if (func->name && func->arange.low)
4619 {
4620 asymbol search, *sym;
4621
4622 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4623
4624 search.name = func->name;
4625 sym = htab_find (sym_hash, &search);
4626 if (sym != NULL)
4627 {
4628 result = ((bfd_signed_vma) func->arange.low) -
4629 ((bfd_signed_vma) (sym->value + sym->section->vma));
4630 goto done;
4631 }
4632 }
4633 }
4634
4635 done:
4636 htab_delete (sym_hash);
4637 return result;
4638 }
4639
4640 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4641 then find the nearest source code location corresponding to
4642 the address SECTION + OFFSET.
4643 Returns TRUE if the line is found without error and fills in
4644 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4645 NULL the FUNCTIONNAME_PTR is also filled in.
4646 SYMBOLS contains the symbol table for ABFD.
4647 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4648 field and in the abbreviation offset, or zero to indicate that the
4649 default value should be used. */
4650
4651 bfd_boolean
4652 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4653 asymbol **symbols,
4654 asymbol *symbol,
4655 asection *section,
4656 bfd_vma offset,
4657 const char **filename_ptr,
4658 const char **functionname_ptr,
4659 unsigned int *linenumber_ptr,
4660 unsigned int *discriminator_ptr,
4661 const struct dwarf_debug_section *debug_sections,
4662 void **pinfo)
4663 {
4664 /* Read each compilation unit from the section .debug_info, and check
4665 to see if it contains the address we are searching for. If yes,
4666 lookup the address, and return the line number info. If no, go
4667 on to the next compilation unit.
4668
4669 We keep a list of all the previously read compilation units, and
4670 a pointer to the next un-read compilation unit. Check the
4671 previously read units before reading more. */
4672 struct dwarf2_debug *stash;
4673 /* What address are we looking for? */
4674 bfd_vma addr;
4675 struct comp_unit* each;
4676 struct funcinfo *function = NULL;
4677 bfd_boolean found = FALSE;
4678 bfd_boolean do_line;
4679
4680 *filename_ptr = NULL;
4681 if (functionname_ptr != NULL)
4682 *functionname_ptr = NULL;
4683 *linenumber_ptr = 0;
4684 if (discriminator_ptr)
4685 *discriminator_ptr = 0;
4686
4687 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4688 symbols, pinfo,
4689 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4690 return FALSE;
4691
4692 stash = (struct dwarf2_debug *) *pinfo;
4693
4694 do_line = symbol != NULL;
4695 if (do_line)
4696 {
4697 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4698 section = bfd_get_section (symbol);
4699 addr = symbol->value;
4700 }
4701 else
4702 {
4703 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4704 addr = offset;
4705
4706 /* If we have no SYMBOL but the section we're looking at is not a
4707 code section, then take a look through the list of symbols to see
4708 if we have a symbol at the address we're looking for. If we do
4709 then use this to look up line information. This will allow us to
4710 give file and line results for data symbols. We exclude code
4711 symbols here, if we look up a function symbol and then look up the
4712 line information we'll actually return the line number for the
4713 opening '{' rather than the function definition line. This is
4714 because looking up by symbol uses the line table, in which the
4715 first line for a function is usually the opening '{', while
4716 looking up the function by section + offset uses the
4717 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4718 which will be the line of the function name. */
4719 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4720 {
4721 asymbol **tmp;
4722
4723 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4724 if ((*tmp)->the_bfd == abfd
4725 && (*tmp)->section == section
4726 && (*tmp)->value == offset
4727 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4728 {
4729 symbol = *tmp;
4730 do_line = TRUE;
4731 /* For local symbols, keep going in the hope we find a
4732 global. */
4733 if ((symbol->flags & BSF_GLOBAL) != 0)
4734 break;
4735 }
4736 }
4737 }
4738
4739 if (section->output_section)
4740 addr += section->output_section->vma + section->output_offset;
4741 else
4742 addr += section->vma;
4743
4744 /* A null info_ptr indicates that there is no dwarf2 info
4745 (or that an error occured while setting up the stash). */
4746 if (! stash->info_ptr)
4747 return FALSE;
4748
4749 stash->inliner_chain = NULL;
4750
4751 /* Check the previously read comp. units first. */
4752 if (do_line)
4753 {
4754 /* The info hash tables use quite a bit of memory. We may not want to
4755 always use them. We use some heuristics to decide if and when to
4756 turn it on. */
4757 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4758 stash_maybe_enable_info_hash_tables (abfd, stash);
4759
4760 /* Keep info hash table up to date if they are available. Note that we
4761 may disable the hash tables if there is any error duing update. */
4762 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4763 stash_maybe_update_info_hash_tables (stash);
4764
4765 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4766 {
4767 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4768 linenumber_ptr);
4769 if (found)
4770 goto done;
4771 }
4772 else
4773 {
4774 /* Check the previously read comp. units first. */
4775 for (each = stash->all_comp_units; each; each = each->next_unit)
4776 if ((symbol->flags & BSF_FUNCTION) == 0
4777 || each->arange.high == 0
4778 || comp_unit_contains_address (each, addr))
4779 {
4780 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4781 linenumber_ptr, stash);
4782 if (found)
4783 goto done;
4784 }
4785 }
4786 }
4787 else
4788 {
4789 bfd_vma min_range = (bfd_vma) -1;
4790 const char * local_filename = NULL;
4791 struct funcinfo *local_function = NULL;
4792 unsigned int local_linenumber = 0;
4793 unsigned int local_discriminator = 0;
4794
4795 for (each = stash->all_comp_units; each; each = each->next_unit)
4796 {
4797 bfd_vma range = (bfd_vma) -1;
4798
4799 found = ((each->arange.high == 0
4800 || comp_unit_contains_address (each, addr))
4801 && (range = comp_unit_find_nearest_line (each, addr,
4802 & local_filename,
4803 & local_function,
4804 & local_linenumber,
4805 & local_discriminator,
4806 stash)) != 0);
4807 if (found)
4808 {
4809 /* PRs 15935 15994: Bogus debug information may have provided us
4810 with an erroneous match. We attempt to counter this by
4811 selecting the match that has the smallest address range
4812 associated with it. (We are assuming that corrupt debug info
4813 will tend to result in extra large address ranges rather than
4814 extra small ranges).
4815
4816 This does mean that we scan through all of the CUs associated
4817 with the bfd each time this function is called. But this does
4818 have the benefit of producing consistent results every time the
4819 function is called. */
4820 if (range <= min_range)
4821 {
4822 if (filename_ptr && local_filename)
4823 * filename_ptr = local_filename;
4824 if (local_function)
4825 function = local_function;
4826 if (discriminator_ptr && local_discriminator)
4827 * discriminator_ptr = local_discriminator;
4828 if (local_linenumber)
4829 * linenumber_ptr = local_linenumber;
4830 min_range = range;
4831 }
4832 }
4833 }
4834
4835 if (* linenumber_ptr)
4836 {
4837 found = TRUE;
4838 goto done;
4839 }
4840 }
4841
4842 /* Read each remaining comp. units checking each as they are read. */
4843 while ((each = stash_comp_unit (stash)) != NULL)
4844 {
4845 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4846 compilation units. If we don't have them (i.e.,
4847 unit->high == 0), we need to consult the line info table
4848 to see if a compilation unit contains the given
4849 address. */
4850 if (do_line)
4851 found = (((symbol->flags & BSF_FUNCTION) == 0
4852 || each->arange.high == 0
4853 || comp_unit_contains_address (each, addr))
4854 && comp_unit_find_line (each, symbol, addr,
4855 filename_ptr,
4856 linenumber_ptr,
4857 stash));
4858 else
4859 found = ((each->arange.high == 0
4860 || comp_unit_contains_address (each, addr))
4861 && comp_unit_find_nearest_line (each, addr,
4862 filename_ptr,
4863 &function,
4864 linenumber_ptr,
4865 discriminator_ptr,
4866 stash) != 0);
4867
4868 if (found)
4869 break;
4870 }
4871
4872 done:
4873 if (function)
4874 {
4875 if (!function->is_linkage)
4876 {
4877 asymbol *fun;
4878 bfd_vma sec_vma;
4879
4880 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4881 *filename_ptr ? NULL : filename_ptr,
4882 functionname_ptr);
4883 sec_vma = section->vma;
4884 if (section->output_section != NULL)
4885 sec_vma = section->output_section->vma + section->output_offset;
4886 if (fun != NULL
4887 && fun->value + sec_vma == function->arange.low)
4888 function->name = *functionname_ptr;
4889 /* Even if we didn't find a linkage name, say that we have
4890 to stop a repeated search of symbols. */
4891 function->is_linkage = TRUE;
4892 }
4893 *functionname_ptr = function->name;
4894 }
4895 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4896 unset_sections (stash);
4897
4898 return found;
4899 }
4900
4901 bfd_boolean
4902 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4903 const char **filename_ptr,
4904 const char **functionname_ptr,
4905 unsigned int *linenumber_ptr,
4906 void **pinfo)
4907 {
4908 struct dwarf2_debug *stash;
4909
4910 stash = (struct dwarf2_debug *) *pinfo;
4911 if (stash)
4912 {
4913 struct funcinfo *func = stash->inliner_chain;
4914
4915 if (func && func->caller_func)
4916 {
4917 *filename_ptr = func->caller_file;
4918 *functionname_ptr = func->caller_func->name;
4919 *linenumber_ptr = func->caller_line;
4920 stash->inliner_chain = func->caller_func;
4921 return TRUE;
4922 }
4923 }
4924
4925 return FALSE;
4926 }
4927
4928 void
4929 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4930 {
4931 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4932 struct comp_unit *each;
4933
4934 if (abfd == NULL || stash == NULL)
4935 return;
4936
4937 for (each = stash->all_comp_units; each; each = each->next_unit)
4938 {
4939 struct abbrev_info **abbrevs = each->abbrevs;
4940 struct funcinfo *function_table = each->function_table;
4941 struct varinfo *variable_table = each->variable_table;
4942 size_t i;
4943
4944 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4945 {
4946 struct abbrev_info *abbrev = abbrevs[i];
4947
4948 while (abbrev)
4949 {
4950 free (abbrev->attrs);
4951 abbrev = abbrev->next;
4952 }
4953 }
4954
4955 if (each->line_table)
4956 {
4957 free (each->line_table->dirs);
4958 free (each->line_table->files);
4959 }
4960
4961 while (function_table)
4962 {
4963 if (function_table->file)
4964 {
4965 free (function_table->file);
4966 function_table->file = NULL;
4967 }
4968
4969 if (function_table->caller_file)
4970 {
4971 free (function_table->caller_file);
4972 function_table->caller_file = NULL;
4973 }
4974 function_table = function_table->prev_func;
4975 }
4976
4977 if (each->lookup_funcinfo_table)
4978 {
4979 free (each->lookup_funcinfo_table);
4980 each->lookup_funcinfo_table = NULL;
4981 }
4982
4983 while (variable_table)
4984 {
4985 if (variable_table->file)
4986 {
4987 free (variable_table->file);
4988 variable_table->file = NULL;
4989 }
4990
4991 variable_table = variable_table->prev_var;
4992 }
4993 }
4994
4995 if (stash->funcinfo_hash_table)
4996 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
4997 if (stash->varinfo_hash_table)
4998 bfd_hash_table_free (&stash->varinfo_hash_table->base);
4999 if (stash->dwarf_abbrev_buffer)
5000 free (stash->dwarf_abbrev_buffer);
5001 if (stash->dwarf_line_buffer)
5002 free (stash->dwarf_line_buffer);
5003 if (stash->dwarf_str_buffer)
5004 free (stash->dwarf_str_buffer);
5005 if (stash->dwarf_line_str_buffer)
5006 free (stash->dwarf_line_str_buffer);
5007 if (stash->dwarf_ranges_buffer)
5008 free (stash->dwarf_ranges_buffer);
5009 if (stash->info_ptr_memory)
5010 free (stash->info_ptr_memory);
5011 if (stash->close_on_cleanup)
5012 bfd_close (stash->bfd_ptr);
5013 if (stash->alt_dwarf_str_buffer)
5014 free (stash->alt_dwarf_str_buffer);
5015 if (stash->alt_dwarf_info_buffer)
5016 free (stash->alt_dwarf_info_buffer);
5017 if (stash->sec_vma)
5018 free (stash->sec_vma);
5019 if (stash->adjusted_sections)
5020 free (stash->adjusted_sections);
5021 if (stash->alt_bfd_ptr)
5022 bfd_close (stash->alt_bfd_ptr);
5023 }
5024
5025 /* Find the function to a particular section and offset,
5026 for error reporting. */
5027
5028 asymbol *
5029 _bfd_elf_find_function (bfd *abfd,
5030 asymbol **symbols,
5031 asection *section,
5032 bfd_vma offset,
5033 const char **filename_ptr,
5034 const char **functionname_ptr)
5035 {
5036 struct elf_find_function_cache
5037 {
5038 asection *last_section;
5039 asymbol *func;
5040 const char *filename;
5041 bfd_size_type func_size;
5042 } *cache;
5043
5044 if (symbols == NULL)
5045 return NULL;
5046
5047 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5048 return NULL;
5049
5050 cache = elf_tdata (abfd)->elf_find_function_cache;
5051 if (cache == NULL)
5052 {
5053 cache = bfd_zalloc (abfd, sizeof (*cache));
5054 elf_tdata (abfd)->elf_find_function_cache = cache;
5055 if (cache == NULL)
5056 return NULL;
5057 }
5058 if (cache->last_section != section
5059 || cache->func == NULL
5060 || offset < cache->func->value
5061 || offset >= cache->func->value + cache->func_size)
5062 {
5063 asymbol *file;
5064 bfd_vma low_func;
5065 asymbol **p;
5066 /* ??? Given multiple file symbols, it is impossible to reliably
5067 choose the right file name for global symbols. File symbols are
5068 local symbols, and thus all file symbols must sort before any
5069 global symbols. The ELF spec may be interpreted to say that a
5070 file symbol must sort before other local symbols, but currently
5071 ld -r doesn't do this. So, for ld -r output, it is possible to
5072 make a better choice of file name for local symbols by ignoring
5073 file symbols appearing after a given local symbol. */
5074 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5075 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5076
5077 file = NULL;
5078 low_func = 0;
5079 state = nothing_seen;
5080 cache->filename = NULL;
5081 cache->func = NULL;
5082 cache->func_size = 0;
5083 cache->last_section = section;
5084
5085 for (p = symbols; *p != NULL; p++)
5086 {
5087 asymbol *sym = *p;
5088 bfd_vma code_off;
5089 bfd_size_type size;
5090
5091 if ((sym->flags & BSF_FILE) != 0)
5092 {
5093 file = sym;
5094 if (state == symbol_seen)
5095 state = file_after_symbol_seen;
5096 continue;
5097 }
5098
5099 size = bed->maybe_function_sym (sym, section, &code_off);
5100 if (size != 0
5101 && code_off <= offset
5102 && (code_off > low_func
5103 || (code_off == low_func
5104 && size > cache->func_size)))
5105 {
5106 cache->func = sym;
5107 cache->func_size = size;
5108 cache->filename = NULL;
5109 low_func = code_off;
5110 if (file != NULL
5111 && ((sym->flags & BSF_LOCAL) != 0
5112 || state != file_after_symbol_seen))
5113 cache->filename = bfd_asymbol_name (file);
5114 }
5115 if (state == nothing_seen)
5116 state = symbol_seen;
5117 }
5118 }
5119
5120 if (cache->func == NULL)
5121 return NULL;
5122
5123 if (filename_ptr)
5124 *filename_ptr = cache->filename;
5125 if (functionname_ptr)
5126 *functionname_ptr = bfd_asymbol_name (cache->func);
5127
5128 return cache->func;
5129 }
This page took 0.133015 seconds and 5 git commands to generate.