Allow the find_abstract_instance_name() function in the BFD library to also return...
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2018 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the original bfd for which debug was loaded. This is what
104 we use to compare and so check that the cached debug data is still
105 valid - it saves having to possibly dereference the gnu_debuglink each
106 time. */
107 bfd *orig_bfd;
108
109 /* Pointer to the bfd, section and address of the beginning of the
110 section. The bfd might be different than expected because of
111 gnu_debuglink sections. */
112 bfd *bfd_ptr;
113 asection *sec;
114 bfd_byte *sec_info_ptr;
115
116 /* Support for alternate debug info sections created by the DWZ utility:
117 This includes a pointer to an alternate bfd which contains *extra*,
118 possibly duplicate debug sections, and pointers to the loaded
119 .debug_str and .debug_info sections from this bfd. */
120 bfd * alt_bfd_ptr;
121 bfd_byte * alt_dwarf_str_buffer;
122 bfd_size_type alt_dwarf_str_size;
123 bfd_byte * alt_dwarf_info_buffer;
124 bfd_size_type alt_dwarf_info_size;
125
126 /* A pointer to the memory block allocated for info_ptr. Neither
127 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
128 beginning of the malloc block. */
129 bfd_byte *info_ptr_memory;
130
131 /* Pointer to the symbol table. */
132 asymbol **syms;
133
134 /* Pointer to the .debug_abbrev section loaded into memory. */
135 bfd_byte *dwarf_abbrev_buffer;
136
137 /* Length of the loaded .debug_abbrev section. */
138 bfd_size_type dwarf_abbrev_size;
139
140 /* Buffer for decode_line_info. */
141 bfd_byte *dwarf_line_buffer;
142
143 /* Length of the loaded .debug_line section. */
144 bfd_size_type dwarf_line_size;
145
146 /* Pointer to the .debug_str section loaded into memory. */
147 bfd_byte *dwarf_str_buffer;
148
149 /* Length of the loaded .debug_str section. */
150 bfd_size_type dwarf_str_size;
151
152 /* Pointer to the .debug_line_str section loaded into memory. */
153 bfd_byte *dwarf_line_str_buffer;
154
155 /* Length of the loaded .debug_line_str section. */
156 bfd_size_type dwarf_line_str_size;
157
158 /* Pointer to the .debug_ranges section loaded into memory. */
159 bfd_byte *dwarf_ranges_buffer;
160
161 /* Length of the loaded .debug_ranges section. */
162 bfd_size_type dwarf_ranges_size;
163
164 /* If the most recent call to bfd_find_nearest_line was given an
165 address in an inlined function, preserve a pointer into the
166 calling chain for subsequent calls to bfd_find_inliner_info to
167 use. */
168 struct funcinfo *inliner_chain;
169
170 /* Section VMAs at the time the stash was built. */
171 bfd_vma *sec_vma;
172
173 /* Number of sections whose VMA we must adjust. */
174 int adjusted_section_count;
175
176 /* Array of sections with adjusted VMA. */
177 struct adjusted_section *adjusted_sections;
178
179 /* Number of times find_line is called. This is used in
180 the heuristic for enabling the info hash tables. */
181 int info_hash_count;
182
183 #define STASH_INFO_HASH_TRIGGER 100
184
185 /* Hash table mapping symbol names to function infos. */
186 struct info_hash_table *funcinfo_hash_table;
187
188 /* Hash table mapping symbol names to variable infos. */
189 struct info_hash_table *varinfo_hash_table;
190
191 /* Head of comp_unit list in the last hash table update. */
192 struct comp_unit *hash_units_head;
193
194 /* Status of info hash. */
195 int info_hash_status;
196 #define STASH_INFO_HASH_OFF 0
197 #define STASH_INFO_HASH_ON 1
198 #define STASH_INFO_HASH_DISABLED 2
199
200 /* True if we opened bfd_ptr. */
201 bfd_boolean close_on_cleanup;
202 };
203
204 struct arange
205 {
206 struct arange *next;
207 bfd_vma low;
208 bfd_vma high;
209 };
210
211 /* A minimal decoding of DWARF2 compilation units. We only decode
212 what's needed to get to the line number information. */
213
214 struct comp_unit
215 {
216 /* Chain the previously read compilation units. */
217 struct comp_unit *next_unit;
218
219 /* Likewise, chain the compilation unit read after this one.
220 The comp units are stored in reversed reading order. */
221 struct comp_unit *prev_unit;
222
223 /* Keep the bfd convenient (for memory allocation). */
224 bfd *abfd;
225
226 /* The lowest and highest addresses contained in this compilation
227 unit as specified in the compilation unit header. */
228 struct arange arange;
229
230 /* The DW_AT_name attribute (for error messages). */
231 char *name;
232
233 /* The abbrev hash table. */
234 struct abbrev_info **abbrevs;
235
236 /* DW_AT_language. */
237 int lang;
238
239 /* Note that an error was found by comp_unit_find_nearest_line. */
240 int error;
241
242 /* The DW_AT_comp_dir attribute. */
243 char *comp_dir;
244
245 /* TRUE if there is a line number table associated with this comp. unit. */
246 int stmtlist;
247
248 /* Pointer to the current comp_unit so that we can find a given entry
249 by its reference. */
250 bfd_byte *info_ptr_unit;
251
252 /* The offset into .debug_line of the line number table. */
253 unsigned long line_offset;
254
255 /* Pointer to the first child die for the comp unit. */
256 bfd_byte *first_child_die_ptr;
257
258 /* The end of the comp unit. */
259 bfd_byte *end_ptr;
260
261 /* The decoded line number, NULL if not yet decoded. */
262 struct line_info_table *line_table;
263
264 /* A list of the functions found in this comp. unit. */
265 struct funcinfo *function_table;
266
267 /* A table of function information references searchable by address. */
268 struct lookup_funcinfo *lookup_funcinfo_table;
269
270 /* Number of functions in the function_table and sorted_function_table. */
271 bfd_size_type number_of_functions;
272
273 /* A list of the variables found in this comp. unit. */
274 struct varinfo *variable_table;
275
276 /* Pointer to dwarf2_debug structure. */
277 struct dwarf2_debug *stash;
278
279 /* DWARF format version for this unit - from unit header. */
280 int version;
281
282 /* Address size for this unit - from unit header. */
283 unsigned char addr_size;
284
285 /* Offset size for this unit - from unit header. */
286 unsigned char offset_size;
287
288 /* Base address for this unit - from DW_AT_low_pc attribute of
289 DW_TAG_compile_unit DIE */
290 bfd_vma base_address;
291
292 /* TRUE if symbols are cached in hash table for faster lookup by name. */
293 bfd_boolean cached;
294 };
295
296 /* This data structure holds the information of an abbrev. */
297 struct abbrev_info
298 {
299 unsigned int number; /* Number identifying abbrev. */
300 enum dwarf_tag tag; /* DWARF tag. */
301 int has_children; /* Boolean. */
302 unsigned int num_attrs; /* Number of attributes. */
303 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
304 struct abbrev_info *next; /* Next in chain. */
305 };
306
307 struct attr_abbrev
308 {
309 enum dwarf_attribute name;
310 enum dwarf_form form;
311 bfd_vma implicit_const;
312 };
313
314 /* Map of uncompressed DWARF debug section name to compressed one. It
315 is terminated by NULL uncompressed_name. */
316
317 const struct dwarf_debug_section dwarf_debug_sections[] =
318 {
319 { ".debug_abbrev", ".zdebug_abbrev" },
320 { ".debug_aranges", ".zdebug_aranges" },
321 { ".debug_frame", ".zdebug_frame" },
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_pubnames", ".zdebug_pubnames" },
329 { ".debug_pubtypes", ".zdebug_pubtypes" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_static_func", ".zdebug_static_func" },
332 { ".debug_static_vars", ".zdebug_static_vars" },
333 { ".debug_str", ".zdebug_str", },
334 { ".debug_str", ".zdebug_str", },
335 { ".debug_line_str", ".zdebug_line_str", },
336 { ".debug_types", ".zdebug_types" },
337 /* GNU DWARF 1 extensions */
338 { ".debug_sfnames", ".zdebug_sfnames" },
339 { ".debug_srcinfo", ".zebug_srcinfo" },
340 /* SGI/MIPS DWARF 2 extensions */
341 { ".debug_funcnames", ".zdebug_funcnames" },
342 { ".debug_typenames", ".zdebug_typenames" },
343 { ".debug_varnames", ".zdebug_varnames" },
344 { ".debug_weaknames", ".zdebug_weaknames" },
345 { NULL, NULL },
346 };
347
348 /* NB/ Numbers in this enum must match up with indicies
349 into the dwarf_debug_sections[] array above. */
350 enum dwarf_debug_section_enum
351 {
352 debug_abbrev = 0,
353 debug_aranges,
354 debug_frame,
355 debug_info,
356 debug_info_alt,
357 debug_line,
358 debug_loc,
359 debug_macinfo,
360 debug_macro,
361 debug_pubnames,
362 debug_pubtypes,
363 debug_ranges,
364 debug_static_func,
365 debug_static_vars,
366 debug_str,
367 debug_str_alt,
368 debug_line_str,
369 debug_types,
370 debug_sfnames,
371 debug_srcinfo,
372 debug_funcnames,
373 debug_typenames,
374 debug_varnames,
375 debug_weaknames,
376 debug_max
377 };
378
379 /* A static assertion. */
380 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
381 == debug_max + 1 ? 1 : -1];
382
383 #ifndef ABBREV_HASH_SIZE
384 #define ABBREV_HASH_SIZE 121
385 #endif
386 #ifndef ATTR_ALLOC_CHUNK
387 #define ATTR_ALLOC_CHUNK 4
388 #endif
389
390 /* Variable and function hash tables. This is used to speed up look-up
391 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
392 In order to share code between variable and function infos, we use
393 a list of untyped pointer for all variable/function info associated with
394 a symbol. We waste a bit of memory for list with one node but that
395 simplifies the code. */
396
397 struct info_list_node
398 {
399 struct info_list_node *next;
400 void *info;
401 };
402
403 /* Info hash entry. */
404 struct info_hash_entry
405 {
406 struct bfd_hash_entry root;
407 struct info_list_node *head;
408 };
409
410 struct info_hash_table
411 {
412 struct bfd_hash_table base;
413 };
414
415 /* Function to create a new entry in info hash table. */
416
417 static struct bfd_hash_entry *
418 info_hash_table_newfunc (struct bfd_hash_entry *entry,
419 struct bfd_hash_table *table,
420 const char *string)
421 {
422 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
423
424 /* Allocate the structure if it has not already been allocated by a
425 derived class. */
426 if (ret == NULL)
427 {
428 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
429 sizeof (* ret));
430 if (ret == NULL)
431 return NULL;
432 }
433
434 /* Call the allocation method of the base class. */
435 ret = ((struct info_hash_entry *)
436 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
437
438 /* Initialize the local fields here. */
439 if (ret)
440 ret->head = NULL;
441
442 return (struct bfd_hash_entry *) ret;
443 }
444
445 /* Function to create a new info hash table. It returns a pointer to the
446 newly created table or NULL if there is any error. We need abfd
447 solely for memory allocation. */
448
449 static struct info_hash_table *
450 create_info_hash_table (bfd *abfd)
451 {
452 struct info_hash_table *hash_table;
453
454 hash_table = ((struct info_hash_table *)
455 bfd_alloc (abfd, sizeof (struct info_hash_table)));
456 if (!hash_table)
457 return hash_table;
458
459 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
460 sizeof (struct info_hash_entry)))
461 {
462 bfd_release (abfd, hash_table);
463 return NULL;
464 }
465
466 return hash_table;
467 }
468
469 /* Insert an info entry into an info hash table. We do not check of
470 duplicate entries. Also, the caller need to guarantee that the
471 right type of info in inserted as info is passed as a void* pointer.
472 This function returns true if there is no error. */
473
474 static bfd_boolean
475 insert_info_hash_table (struct info_hash_table *hash_table,
476 const char *key,
477 void *info,
478 bfd_boolean copy_p)
479 {
480 struct info_hash_entry *entry;
481 struct info_list_node *node;
482
483 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
484 key, TRUE, copy_p);
485 if (!entry)
486 return FALSE;
487
488 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
489 sizeof (*node));
490 if (!node)
491 return FALSE;
492
493 node->info = info;
494 node->next = entry->head;
495 entry->head = node;
496
497 return TRUE;
498 }
499
500 /* Look up an info entry list from an info hash table. Return NULL
501 if there is none. */
502
503 static struct info_list_node *
504 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
505 {
506 struct info_hash_entry *entry;
507
508 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
509 FALSE, FALSE);
510 return entry ? entry->head : NULL;
511 }
512
513 /* Read a section into its appropriate place in the dwarf2_debug
514 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
515 not NULL, use bfd_simple_get_relocated_section_contents to read the
516 section contents, otherwise use bfd_get_section_contents. Fail if
517 the located section does not contain at least OFFSET bytes. */
518
519 static bfd_boolean
520 read_section (bfd * abfd,
521 const struct dwarf_debug_section *sec,
522 asymbol ** syms,
523 bfd_uint64_t offset,
524 bfd_byte ** section_buffer,
525 bfd_size_type * section_size)
526 {
527 asection *msec;
528 const char *section_name = sec->uncompressed_name;
529 bfd_byte *contents = *section_buffer;
530
531 /* The section may have already been read. */
532 if (contents == NULL)
533 {
534 msec = bfd_get_section_by_name (abfd, section_name);
535 if (! msec)
536 {
537 section_name = sec->compressed_name;
538 if (section_name != NULL)
539 msec = bfd_get_section_by_name (abfd, section_name);
540 }
541 if (! msec)
542 {
543 _bfd_error_handler (_("Dwarf Error: Can't find %s section."),
544 sec->uncompressed_name);
545 bfd_set_error (bfd_error_bad_value);
546 return FALSE;
547 }
548
549 *section_size = msec->rawsize ? msec->rawsize : msec->size;
550 /* Paranoia - alloc one extra so that we can make sure a string
551 section is NUL terminated. */
552 contents = (bfd_byte *) bfd_malloc (*section_size + 1);
553 if (contents == NULL)
554 return FALSE;
555 if (syms
556 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
557 syms)
558 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
559 {
560 free (contents);
561 return FALSE;
562 }
563 contents[*section_size] = 0;
564 *section_buffer = contents;
565 }
566
567 /* It is possible to get a bad value for the offset into the section
568 that the client wants. Validate it here to avoid trouble later. */
569 if (offset != 0 && offset >= *section_size)
570 {
571 /* xgettext: c-format */
572 _bfd_error_handler (_("Dwarf Error: Offset (%llu)"
573 " greater than or equal to %s size (%Lu)."),
574 (long long) offset, section_name, *section_size);
575 bfd_set_error (bfd_error_bad_value);
576 return FALSE;
577 }
578
579 return TRUE;
580 }
581
582 /* Read dwarf information from a buffer. */
583
584 static unsigned int
585 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
586 {
587 if (buf + 1 > end)
588 return 0;
589 return bfd_get_8 (abfd, buf);
590 }
591
592 static int
593 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
594 {
595 if (buf + 1 > end)
596 return 0;
597 return bfd_get_signed_8 (abfd, buf);
598 }
599
600 static unsigned int
601 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
602 {
603 if (buf + 2 > end)
604 return 0;
605 return bfd_get_16 (abfd, buf);
606 }
607
608 static unsigned int
609 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
610 {
611 if (buf + 4 > end)
612 return 0;
613 return bfd_get_32 (abfd, buf);
614 }
615
616 static bfd_uint64_t
617 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
618 {
619 if (buf + 8 > end)
620 return 0;
621 return bfd_get_64 (abfd, buf);
622 }
623
624 static bfd_byte *
625 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
626 bfd_byte *buf,
627 bfd_byte *end,
628 unsigned int size ATTRIBUTE_UNUSED)
629 {
630 if (buf + size > end)
631 return NULL;
632 return buf;
633 }
634
635 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
636 Returns the number of characters in the string, *including* the NUL byte,
637 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
638 at or beyond BUF_END will not be read. Returns NULL if there was a
639 problem, or if the string is empty. */
640
641 static char *
642 read_string (bfd * abfd ATTRIBUTE_UNUSED,
643 bfd_byte * buf,
644 bfd_byte * buf_end,
645 unsigned int * bytes_read_ptr)
646 {
647 bfd_byte *str = buf;
648
649 if (buf >= buf_end)
650 {
651 * bytes_read_ptr = 0;
652 return NULL;
653 }
654
655 if (*str == '\0')
656 {
657 * bytes_read_ptr = 1;
658 return NULL;
659 }
660
661 while (buf < buf_end)
662 if (* buf ++ == 0)
663 {
664 * bytes_read_ptr = buf - str;
665 return (char *) str;
666 }
667
668 * bytes_read_ptr = buf - str;
669 return NULL;
670 }
671
672 /* Reads an offset from BUF and then locates the string at this offset
673 inside the debug string section. Returns a pointer to the string.
674 Returns the number of bytes read from BUF, *not* the length of the string,
675 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
676 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
677 a problem, or if the string is empty. Does not check for NUL termination
678 of the string. */
679
680 static char *
681 read_indirect_string (struct comp_unit * unit,
682 bfd_byte * buf,
683 bfd_byte * buf_end,
684 unsigned int * bytes_read_ptr)
685 {
686 bfd_uint64_t offset;
687 struct dwarf2_debug *stash = unit->stash;
688 char *str;
689
690 if (buf + unit->offset_size > buf_end)
691 {
692 * bytes_read_ptr = 0;
693 return NULL;
694 }
695
696 if (unit->offset_size == 4)
697 offset = read_4_bytes (unit->abfd, buf, buf_end);
698 else
699 offset = read_8_bytes (unit->abfd, buf, buf_end);
700
701 *bytes_read_ptr = unit->offset_size;
702
703 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
704 stash->syms, offset,
705 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
706 return NULL;
707
708 if (offset >= stash->dwarf_str_size)
709 return NULL;
710 str = (char *) stash->dwarf_str_buffer + offset;
711 if (*str == '\0')
712 return NULL;
713 return str;
714 }
715
716 /* Like read_indirect_string but from .debug_line_str section. */
717
718 static char *
719 read_indirect_line_string (struct comp_unit * unit,
720 bfd_byte * buf,
721 bfd_byte * buf_end,
722 unsigned int * bytes_read_ptr)
723 {
724 bfd_uint64_t offset;
725 struct dwarf2_debug *stash = unit->stash;
726 char *str;
727
728 if (buf + unit->offset_size > buf_end)
729 {
730 * bytes_read_ptr = 0;
731 return NULL;
732 }
733
734 if (unit->offset_size == 4)
735 offset = read_4_bytes (unit->abfd, buf, buf_end);
736 else
737 offset = read_8_bytes (unit->abfd, buf, buf_end);
738
739 *bytes_read_ptr = unit->offset_size;
740
741 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
742 stash->syms, offset,
743 &stash->dwarf_line_str_buffer,
744 &stash->dwarf_line_str_size))
745 return NULL;
746
747 if (offset >= stash->dwarf_line_str_size)
748 return NULL;
749 str = (char *) stash->dwarf_line_str_buffer + offset;
750 if (*str == '\0')
751 return NULL;
752 return str;
753 }
754
755 /* Like read_indirect_string but uses a .debug_str located in
756 an alternate file pointed to by the .gnu_debugaltlink section.
757 Used to impement DW_FORM_GNU_strp_alt. */
758
759 static char *
760 read_alt_indirect_string (struct comp_unit * unit,
761 bfd_byte * buf,
762 bfd_byte * buf_end,
763 unsigned int * bytes_read_ptr)
764 {
765 bfd_uint64_t offset;
766 struct dwarf2_debug *stash = unit->stash;
767 char *str;
768
769 if (buf + unit->offset_size > buf_end)
770 {
771 * bytes_read_ptr = 0;
772 return NULL;
773 }
774
775 if (unit->offset_size == 4)
776 offset = read_4_bytes (unit->abfd, buf, buf_end);
777 else
778 offset = read_8_bytes (unit->abfd, buf, buf_end);
779
780 *bytes_read_ptr = unit->offset_size;
781
782 if (stash->alt_bfd_ptr == NULL)
783 {
784 bfd * debug_bfd;
785 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
786
787 if (debug_filename == NULL)
788 return NULL;
789
790 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
791 || ! bfd_check_format (debug_bfd, bfd_object))
792 {
793 if (debug_bfd)
794 bfd_close (debug_bfd);
795
796 /* FIXME: Should we report our failure to follow the debuglink ? */
797 free (debug_filename);
798 return NULL;
799 }
800 stash->alt_bfd_ptr = debug_bfd;
801 }
802
803 if (! read_section (unit->stash->alt_bfd_ptr,
804 stash->debug_sections + debug_str_alt,
805 NULL, /* FIXME: Do we need to load alternate symbols ? */
806 offset,
807 &stash->alt_dwarf_str_buffer,
808 &stash->alt_dwarf_str_size))
809 return NULL;
810
811 if (offset >= stash->alt_dwarf_str_size)
812 return NULL;
813 str = (char *) stash->alt_dwarf_str_buffer + offset;
814 if (*str == '\0')
815 return NULL;
816
817 return str;
818 }
819
820 /* Resolve an alternate reference from UNIT at OFFSET.
821 Returns a pointer into the loaded alternate CU upon success
822 or NULL upon failure. */
823
824 static bfd_byte *
825 read_alt_indirect_ref (struct comp_unit * unit,
826 bfd_uint64_t offset)
827 {
828 struct dwarf2_debug *stash = unit->stash;
829
830 if (stash->alt_bfd_ptr == NULL)
831 {
832 bfd * debug_bfd;
833 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
834
835 if (debug_filename == NULL)
836 return FALSE;
837
838 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
839 || ! bfd_check_format (debug_bfd, bfd_object))
840 {
841 if (debug_bfd)
842 bfd_close (debug_bfd);
843
844 /* FIXME: Should we report our failure to follow the debuglink ? */
845 free (debug_filename);
846 return NULL;
847 }
848 stash->alt_bfd_ptr = debug_bfd;
849 }
850
851 if (! read_section (unit->stash->alt_bfd_ptr,
852 stash->debug_sections + debug_info_alt,
853 NULL, /* FIXME: Do we need to load alternate symbols ? */
854 offset,
855 &stash->alt_dwarf_info_buffer,
856 &stash->alt_dwarf_info_size))
857 return NULL;
858
859 if (offset >= stash->alt_dwarf_info_size)
860 return NULL;
861 return stash->alt_dwarf_info_buffer + offset;
862 }
863
864 static bfd_uint64_t
865 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
866 {
867 int signed_vma = 0;
868
869 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
870 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
871
872 if (buf + unit->addr_size > buf_end)
873 return 0;
874
875 if (signed_vma)
876 {
877 switch (unit->addr_size)
878 {
879 case 8:
880 return bfd_get_signed_64 (unit->abfd, buf);
881 case 4:
882 return bfd_get_signed_32 (unit->abfd, buf);
883 case 2:
884 return bfd_get_signed_16 (unit->abfd, buf);
885 default:
886 abort ();
887 }
888 }
889 else
890 {
891 switch (unit->addr_size)
892 {
893 case 8:
894 return bfd_get_64 (unit->abfd, buf);
895 case 4:
896 return bfd_get_32 (unit->abfd, buf);
897 case 2:
898 return bfd_get_16 (unit->abfd, buf);
899 default:
900 abort ();
901 }
902 }
903 }
904
905 /* Lookup an abbrev_info structure in the abbrev hash table. */
906
907 static struct abbrev_info *
908 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
909 {
910 unsigned int hash_number;
911 struct abbrev_info *abbrev;
912
913 hash_number = number % ABBREV_HASH_SIZE;
914 abbrev = abbrevs[hash_number];
915
916 while (abbrev)
917 {
918 if (abbrev->number == number)
919 return abbrev;
920 else
921 abbrev = abbrev->next;
922 }
923
924 return NULL;
925 }
926
927 /* In DWARF version 2, the description of the debugging information is
928 stored in a separate .debug_abbrev section. Before we read any
929 dies from a section we read in all abbreviations and install them
930 in a hash table. */
931
932 static struct abbrev_info**
933 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
934 {
935 struct abbrev_info **abbrevs;
936 bfd_byte *abbrev_ptr;
937 bfd_byte *abbrev_end;
938 struct abbrev_info *cur_abbrev;
939 unsigned int abbrev_number, bytes_read, abbrev_name;
940 unsigned int abbrev_form, hash_number;
941 bfd_size_type amt;
942
943 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
944 stash->syms, offset,
945 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
946 return NULL;
947
948 if (offset >= stash->dwarf_abbrev_size)
949 return NULL;
950
951 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
952 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
953 if (abbrevs == NULL)
954 return NULL;
955
956 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
957 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
958 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
959 FALSE, abbrev_end);
960 abbrev_ptr += bytes_read;
961
962 /* Loop until we reach an abbrev number of 0. */
963 while (abbrev_number)
964 {
965 amt = sizeof (struct abbrev_info);
966 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
967 if (cur_abbrev == NULL)
968 return NULL;
969
970 /* Read in abbrev header. */
971 cur_abbrev->number = abbrev_number;
972 cur_abbrev->tag = (enum dwarf_tag)
973 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
974 FALSE, abbrev_end);
975 abbrev_ptr += bytes_read;
976 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
977 abbrev_ptr += 1;
978
979 /* Now read in declarations. */
980 for (;;)
981 {
982 /* Initialize it just to avoid a GCC false warning. */
983 bfd_vma implicit_const = -1;
984
985 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
986 FALSE, abbrev_end);
987 abbrev_ptr += bytes_read;
988 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
989 FALSE, abbrev_end);
990 abbrev_ptr += bytes_read;
991 if (abbrev_form == DW_FORM_implicit_const)
992 {
993 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
994 &bytes_read, TRUE,
995 abbrev_end);
996 abbrev_ptr += bytes_read;
997 }
998
999 if (abbrev_name == 0)
1000 break;
1001
1002 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1003 {
1004 struct attr_abbrev *tmp;
1005
1006 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1007 amt *= sizeof (struct attr_abbrev);
1008 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1009 if (tmp == NULL)
1010 {
1011 size_t i;
1012
1013 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1014 {
1015 struct abbrev_info *abbrev = abbrevs[i];
1016
1017 while (abbrev)
1018 {
1019 free (abbrev->attrs);
1020 abbrev = abbrev->next;
1021 }
1022 }
1023 return NULL;
1024 }
1025 cur_abbrev->attrs = tmp;
1026 }
1027
1028 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1029 = (enum dwarf_attribute) abbrev_name;
1030 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1031 = (enum dwarf_form) abbrev_form;
1032 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1033 = implicit_const;
1034 ++cur_abbrev->num_attrs;
1035 }
1036
1037 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1038 cur_abbrev->next = abbrevs[hash_number];
1039 abbrevs[hash_number] = cur_abbrev;
1040
1041 /* Get next abbreviation.
1042 Under Irix6 the abbreviations for a compilation unit are not
1043 always properly terminated with an abbrev number of 0.
1044 Exit loop if we encounter an abbreviation which we have
1045 already read (which means we are about to read the abbreviations
1046 for the next compile unit) or if the end of the abbreviation
1047 table is reached. */
1048 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1049 >= stash->dwarf_abbrev_size)
1050 break;
1051 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1052 &bytes_read, FALSE, abbrev_end);
1053 abbrev_ptr += bytes_read;
1054 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1055 break;
1056 }
1057
1058 return abbrevs;
1059 }
1060
1061 /* Returns true if the form is one which has a string value. */
1062
1063 static inline bfd_boolean
1064 is_str_attr (enum dwarf_form form)
1065 {
1066 return (form == DW_FORM_string || form == DW_FORM_strp
1067 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1068 }
1069
1070 /* Read and fill in the value of attribute ATTR as described by FORM.
1071 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1072 Returns an updated INFO_PTR taking into account the amount of data read. */
1073
1074 static bfd_byte *
1075 read_attribute_value (struct attribute * attr,
1076 unsigned form,
1077 bfd_vma implicit_const,
1078 struct comp_unit * unit,
1079 bfd_byte * info_ptr,
1080 bfd_byte * info_ptr_end)
1081 {
1082 bfd *abfd = unit->abfd;
1083 unsigned int bytes_read;
1084 struct dwarf_block *blk;
1085 bfd_size_type amt;
1086
1087 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1088 {
1089 _bfd_error_handler (_("Dwarf Error: Info pointer extends beyond end of attributes"));
1090 bfd_set_error (bfd_error_bad_value);
1091 return info_ptr;
1092 }
1093
1094 attr->form = (enum dwarf_form) form;
1095
1096 switch (form)
1097 {
1098 case DW_FORM_ref_addr:
1099 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1100 DWARF3. */
1101 if (unit->version == 3 || unit->version == 4)
1102 {
1103 if (unit->offset_size == 4)
1104 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1105 else
1106 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1107 info_ptr += unit->offset_size;
1108 break;
1109 }
1110 /* FALLTHROUGH */
1111 case DW_FORM_addr:
1112 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1113 info_ptr += unit->addr_size;
1114 break;
1115 case DW_FORM_GNU_ref_alt:
1116 case DW_FORM_sec_offset:
1117 if (unit->offset_size == 4)
1118 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1119 else
1120 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1121 info_ptr += unit->offset_size;
1122 break;
1123 case DW_FORM_block2:
1124 amt = sizeof (struct dwarf_block);
1125 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1126 if (blk == NULL)
1127 return NULL;
1128 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1129 info_ptr += 2;
1130 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1131 info_ptr += blk->size;
1132 attr->u.blk = blk;
1133 break;
1134 case DW_FORM_block4:
1135 amt = sizeof (struct dwarf_block);
1136 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1137 if (blk == NULL)
1138 return NULL;
1139 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1140 info_ptr += 4;
1141 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1142 info_ptr += blk->size;
1143 attr->u.blk = blk;
1144 break;
1145 case DW_FORM_data2:
1146 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1147 info_ptr += 2;
1148 break;
1149 case DW_FORM_data4:
1150 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1151 info_ptr += 4;
1152 break;
1153 case DW_FORM_data8:
1154 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1155 info_ptr += 8;
1156 break;
1157 case DW_FORM_string:
1158 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1159 info_ptr += bytes_read;
1160 break;
1161 case DW_FORM_strp:
1162 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1163 info_ptr += bytes_read;
1164 break;
1165 case DW_FORM_line_strp:
1166 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1167 info_ptr += bytes_read;
1168 break;
1169 case DW_FORM_GNU_strp_alt:
1170 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1171 info_ptr += bytes_read;
1172 break;
1173 case DW_FORM_exprloc:
1174 case DW_FORM_block:
1175 amt = sizeof (struct dwarf_block);
1176 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1177 if (blk == NULL)
1178 return NULL;
1179 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1180 FALSE, info_ptr_end);
1181 info_ptr += bytes_read;
1182 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1183 info_ptr += blk->size;
1184 attr->u.blk = blk;
1185 break;
1186 case DW_FORM_block1:
1187 amt = sizeof (struct dwarf_block);
1188 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1189 if (blk == NULL)
1190 return NULL;
1191 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1192 info_ptr += 1;
1193 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1194 info_ptr += blk->size;
1195 attr->u.blk = blk;
1196 break;
1197 case DW_FORM_data1:
1198 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1199 info_ptr += 1;
1200 break;
1201 case DW_FORM_flag:
1202 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1203 info_ptr += 1;
1204 break;
1205 case DW_FORM_flag_present:
1206 attr->u.val = 1;
1207 break;
1208 case DW_FORM_sdata:
1209 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1210 TRUE, info_ptr_end);
1211 info_ptr += bytes_read;
1212 break;
1213 case DW_FORM_udata:
1214 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1215 FALSE, info_ptr_end);
1216 info_ptr += bytes_read;
1217 break;
1218 case DW_FORM_ref1:
1219 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1220 info_ptr += 1;
1221 break;
1222 case DW_FORM_ref2:
1223 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1224 info_ptr += 2;
1225 break;
1226 case DW_FORM_ref4:
1227 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1228 info_ptr += 4;
1229 break;
1230 case DW_FORM_ref8:
1231 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1232 info_ptr += 8;
1233 break;
1234 case DW_FORM_ref_sig8:
1235 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1236 info_ptr += 8;
1237 break;
1238 case DW_FORM_ref_udata:
1239 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1240 FALSE, info_ptr_end);
1241 info_ptr += bytes_read;
1242 break;
1243 case DW_FORM_indirect:
1244 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1245 FALSE, info_ptr_end);
1246 info_ptr += bytes_read;
1247 if (form == DW_FORM_implicit_const)
1248 {
1249 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1250 TRUE, info_ptr_end);
1251 info_ptr += bytes_read;
1252 }
1253 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1254 info_ptr, info_ptr_end);
1255 break;
1256 case DW_FORM_implicit_const:
1257 attr->form = DW_FORM_sdata;
1258 attr->u.sval = implicit_const;
1259 break;
1260 default:
1261 _bfd_error_handler (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1262 form);
1263 bfd_set_error (bfd_error_bad_value);
1264 return NULL;
1265 }
1266 return info_ptr;
1267 }
1268
1269 /* Read an attribute described by an abbreviated attribute. */
1270
1271 static bfd_byte *
1272 read_attribute (struct attribute * attr,
1273 struct attr_abbrev * abbrev,
1274 struct comp_unit * unit,
1275 bfd_byte * info_ptr,
1276 bfd_byte * info_ptr_end)
1277 {
1278 attr->name = abbrev->name;
1279 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1280 unit, info_ptr, info_ptr_end);
1281 return info_ptr;
1282 }
1283
1284 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1285 for a function. */
1286
1287 static bfd_boolean
1288 non_mangled (int lang)
1289 {
1290 switch (lang)
1291 {
1292 default:
1293 return FALSE;
1294
1295 case DW_LANG_C89:
1296 case DW_LANG_C:
1297 case DW_LANG_Ada83:
1298 case DW_LANG_Cobol74:
1299 case DW_LANG_Cobol85:
1300 case DW_LANG_Fortran77:
1301 case DW_LANG_Pascal83:
1302 case DW_LANG_C99:
1303 case DW_LANG_Ada95:
1304 case DW_LANG_PLI:
1305 case DW_LANG_UPC:
1306 case DW_LANG_C11:
1307 return TRUE;
1308 }
1309 }
1310
1311 /* Source line information table routines. */
1312
1313 #define FILE_ALLOC_CHUNK 5
1314 #define DIR_ALLOC_CHUNK 5
1315
1316 struct line_info
1317 {
1318 struct line_info * prev_line;
1319 bfd_vma address;
1320 char * filename;
1321 unsigned int line;
1322 unsigned int column;
1323 unsigned int discriminator;
1324 unsigned char op_index;
1325 unsigned char end_sequence; /* End of (sequential) code sequence. */
1326 };
1327
1328 struct fileinfo
1329 {
1330 char * name;
1331 unsigned int dir;
1332 unsigned int time;
1333 unsigned int size;
1334 };
1335
1336 struct line_sequence
1337 {
1338 bfd_vma low_pc;
1339 struct line_sequence* prev_sequence;
1340 struct line_info* last_line; /* Largest VMA. */
1341 struct line_info** line_info_lookup;
1342 bfd_size_type num_lines;
1343 };
1344
1345 struct line_info_table
1346 {
1347 bfd * abfd;
1348 unsigned int num_files;
1349 unsigned int num_dirs;
1350 unsigned int num_sequences;
1351 char * comp_dir;
1352 char ** dirs;
1353 struct fileinfo* files;
1354 struct line_sequence* sequences;
1355 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1356 };
1357
1358 /* Remember some information about each function. If the function is
1359 inlined (DW_TAG_inlined_subroutine) it may have two additional
1360 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1361 source code location where this function was inlined. */
1362
1363 struct funcinfo
1364 {
1365 /* Pointer to previous function in list of all functions. */
1366 struct funcinfo * prev_func;
1367 /* Pointer to function one scope higher. */
1368 struct funcinfo * caller_func;
1369 /* Source location file name where caller_func inlines this func. */
1370 char * caller_file;
1371 /* Source location file name. */
1372 char * file;
1373 /* Source location line number where caller_func inlines this func. */
1374 int caller_line;
1375 /* Source location line number. */
1376 int line;
1377 int tag;
1378 bfd_boolean is_linkage;
1379 const char * name;
1380 struct arange arange;
1381 /* Where the symbol is defined. */
1382 asection * sec;
1383 };
1384
1385 struct lookup_funcinfo
1386 {
1387 /* Function information corresponding to this lookup table entry. */
1388 struct funcinfo * funcinfo;
1389
1390 /* The lowest address for this specific function. */
1391 bfd_vma low_addr;
1392
1393 /* The highest address of this function before the lookup table is sorted.
1394 The highest address of all prior functions after the lookup table is
1395 sorted, which is used for binary search. */
1396 bfd_vma high_addr;
1397 };
1398
1399 struct varinfo
1400 {
1401 /* Pointer to previous variable in list of all variables */
1402 struct varinfo *prev_var;
1403 /* Source location file name */
1404 char *file;
1405 /* Source location line number */
1406 int line;
1407 int tag;
1408 char *name;
1409 bfd_vma addr;
1410 /* Where the symbol is defined */
1411 asection *sec;
1412 /* Is this a stack variable? */
1413 unsigned int stack: 1;
1414 };
1415
1416 /* Return TRUE if NEW_LINE should sort after LINE. */
1417
1418 static inline bfd_boolean
1419 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1420 {
1421 return (new_line->address > line->address
1422 || (new_line->address == line->address
1423 && new_line->op_index > line->op_index));
1424 }
1425
1426
1427 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1428 that the list is sorted. Note that the line_info list is sorted from
1429 highest to lowest VMA (with possible duplicates); that is,
1430 line_info->prev_line always accesses an equal or smaller VMA. */
1431
1432 static bfd_boolean
1433 add_line_info (struct line_info_table *table,
1434 bfd_vma address,
1435 unsigned char op_index,
1436 char *filename,
1437 unsigned int line,
1438 unsigned int column,
1439 unsigned int discriminator,
1440 int end_sequence)
1441 {
1442 bfd_size_type amt = sizeof (struct line_info);
1443 struct line_sequence* seq = table->sequences;
1444 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1445
1446 if (info == NULL)
1447 return FALSE;
1448
1449 /* Set member data of 'info'. */
1450 info->prev_line = NULL;
1451 info->address = address;
1452 info->op_index = op_index;
1453 info->line = line;
1454 info->column = column;
1455 info->discriminator = discriminator;
1456 info->end_sequence = end_sequence;
1457
1458 if (filename && filename[0])
1459 {
1460 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1461 if (info->filename == NULL)
1462 return FALSE;
1463 strcpy (info->filename, filename);
1464 }
1465 else
1466 info->filename = NULL;
1467
1468 /* Find the correct location for 'info'. Normally we will receive
1469 new line_info data 1) in order and 2) with increasing VMAs.
1470 However some compilers break the rules (cf. decode_line_info) and
1471 so we include some heuristics for quickly finding the correct
1472 location for 'info'. In particular, these heuristics optimize for
1473 the common case in which the VMA sequence that we receive is a
1474 list of locally sorted VMAs such as
1475 p...z a...j (where a < j < p < z)
1476
1477 Note: table->lcl_head is used to head an *actual* or *possible*
1478 sub-sequence within the list (such as a...j) that is not directly
1479 headed by table->last_line
1480
1481 Note: we may receive duplicate entries from 'decode_line_info'. */
1482
1483 if (seq
1484 && seq->last_line->address == address
1485 && seq->last_line->op_index == op_index
1486 && seq->last_line->end_sequence == end_sequence)
1487 {
1488 /* We only keep the last entry with the same address and end
1489 sequence. See PR ld/4986. */
1490 if (table->lcl_head == seq->last_line)
1491 table->lcl_head = info;
1492 info->prev_line = seq->last_line->prev_line;
1493 seq->last_line = info;
1494 }
1495 else if (!seq || seq->last_line->end_sequence)
1496 {
1497 /* Start a new line sequence. */
1498 amt = sizeof (struct line_sequence);
1499 seq = (struct line_sequence *) bfd_malloc (amt);
1500 if (seq == NULL)
1501 return FALSE;
1502 seq->low_pc = address;
1503 seq->prev_sequence = table->sequences;
1504 seq->last_line = info;
1505 table->lcl_head = info;
1506 table->sequences = seq;
1507 table->num_sequences++;
1508 }
1509 else if (info->end_sequence
1510 || new_line_sorts_after (info, seq->last_line))
1511 {
1512 /* Normal case: add 'info' to the beginning of the current sequence. */
1513 info->prev_line = seq->last_line;
1514 seq->last_line = info;
1515
1516 /* lcl_head: initialize to head a *possible* sequence at the end. */
1517 if (!table->lcl_head)
1518 table->lcl_head = info;
1519 }
1520 else if (!new_line_sorts_after (info, table->lcl_head)
1521 && (!table->lcl_head->prev_line
1522 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1523 {
1524 /* Abnormal but easy: lcl_head is the head of 'info'. */
1525 info->prev_line = table->lcl_head->prev_line;
1526 table->lcl_head->prev_line = info;
1527 }
1528 else
1529 {
1530 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1531 are valid heads for 'info'. Reset 'lcl_head'. */
1532 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1533 struct line_info* li1 = li2->prev_line;
1534
1535 while (li1)
1536 {
1537 if (!new_line_sorts_after (info, li2)
1538 && new_line_sorts_after (info, li1))
1539 break;
1540
1541 li2 = li1; /* always non-NULL */
1542 li1 = li1->prev_line;
1543 }
1544 table->lcl_head = li2;
1545 info->prev_line = table->lcl_head->prev_line;
1546 table->lcl_head->prev_line = info;
1547 if (address < seq->low_pc)
1548 seq->low_pc = address;
1549 }
1550 return TRUE;
1551 }
1552
1553 /* Extract a fully qualified filename from a line info table.
1554 The returned string has been malloc'ed and it is the caller's
1555 responsibility to free it. */
1556
1557 static char *
1558 concat_filename (struct line_info_table *table, unsigned int file)
1559 {
1560 char *filename;
1561
1562 if (file - 1 >= table->num_files)
1563 {
1564 /* FILE == 0 means unknown. */
1565 if (file)
1566 _bfd_error_handler
1567 (_("Dwarf Error: mangled line number section (bad file number)."));
1568 return strdup ("<unknown>");
1569 }
1570
1571 filename = table->files[file - 1].name;
1572 if (filename == NULL)
1573 return strdup ("<unknown>");
1574
1575 if (!IS_ABSOLUTE_PATH (filename))
1576 {
1577 char *dir_name = NULL;
1578 char *subdir_name = NULL;
1579 char *name;
1580 size_t len;
1581
1582 if (table->files[file - 1].dir
1583 /* PR 17512: file: 0317e960. */
1584 && table->files[file - 1].dir <= table->num_dirs
1585 /* PR 17512: file: 7f3d2e4b. */
1586 && table->dirs != NULL)
1587 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1588
1589 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1590 dir_name = table->comp_dir;
1591
1592 if (!dir_name)
1593 {
1594 dir_name = subdir_name;
1595 subdir_name = NULL;
1596 }
1597
1598 if (!dir_name)
1599 return strdup (filename);
1600
1601 len = strlen (dir_name) + strlen (filename) + 2;
1602
1603 if (subdir_name)
1604 {
1605 len += strlen (subdir_name) + 1;
1606 name = (char *) bfd_malloc (len);
1607 if (name)
1608 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1609 }
1610 else
1611 {
1612 name = (char *) bfd_malloc (len);
1613 if (name)
1614 sprintf (name, "%s/%s", dir_name, filename);
1615 }
1616
1617 return name;
1618 }
1619
1620 return strdup (filename);
1621 }
1622
1623 static bfd_boolean
1624 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1625 bfd_vma low_pc, bfd_vma high_pc)
1626 {
1627 struct arange *arange;
1628
1629 /* Ignore empty ranges. */
1630 if (low_pc == high_pc)
1631 return TRUE;
1632
1633 /* If the first arange is empty, use it. */
1634 if (first_arange->high == 0)
1635 {
1636 first_arange->low = low_pc;
1637 first_arange->high = high_pc;
1638 return TRUE;
1639 }
1640
1641 /* Next see if we can cheaply extend an existing range. */
1642 arange = first_arange;
1643 do
1644 {
1645 if (low_pc == arange->high)
1646 {
1647 arange->high = high_pc;
1648 return TRUE;
1649 }
1650 if (high_pc == arange->low)
1651 {
1652 arange->low = low_pc;
1653 return TRUE;
1654 }
1655 arange = arange->next;
1656 }
1657 while (arange);
1658
1659 /* Need to allocate a new arange and insert it into the arange list.
1660 Order isn't significant, so just insert after the first arange. */
1661 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1662 if (arange == NULL)
1663 return FALSE;
1664 arange->low = low_pc;
1665 arange->high = high_pc;
1666 arange->next = first_arange->next;
1667 first_arange->next = arange;
1668 return TRUE;
1669 }
1670
1671 /* Compare function for line sequences. */
1672
1673 static int
1674 compare_sequences (const void* a, const void* b)
1675 {
1676 const struct line_sequence* seq1 = a;
1677 const struct line_sequence* seq2 = b;
1678
1679 /* Sort by low_pc as the primary key. */
1680 if (seq1->low_pc < seq2->low_pc)
1681 return -1;
1682 if (seq1->low_pc > seq2->low_pc)
1683 return 1;
1684
1685 /* If low_pc values are equal, sort in reverse order of
1686 high_pc, so that the largest region comes first. */
1687 if (seq1->last_line->address < seq2->last_line->address)
1688 return 1;
1689 if (seq1->last_line->address > seq2->last_line->address)
1690 return -1;
1691
1692 if (seq1->last_line->op_index < seq2->last_line->op_index)
1693 return 1;
1694 if (seq1->last_line->op_index > seq2->last_line->op_index)
1695 return -1;
1696
1697 return 0;
1698 }
1699
1700 /* Construct the line information table for quick lookup. */
1701
1702 static bfd_boolean
1703 build_line_info_table (struct line_info_table * table,
1704 struct line_sequence * seq)
1705 {
1706 bfd_size_type amt;
1707 struct line_info** line_info_lookup;
1708 struct line_info* each_line;
1709 unsigned int num_lines;
1710 unsigned int line_index;
1711
1712 if (seq->line_info_lookup != NULL)
1713 return TRUE;
1714
1715 /* Count the number of line information entries. We could do this while
1716 scanning the debug information, but some entries may be added via
1717 lcl_head without having a sequence handy to increment the number of
1718 lines. */
1719 num_lines = 0;
1720 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1721 num_lines++;
1722
1723 if (num_lines == 0)
1724 return TRUE;
1725
1726 /* Allocate space for the line information lookup table. */
1727 amt = sizeof (struct line_info*) * num_lines;
1728 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1729 if (line_info_lookup == NULL)
1730 return FALSE;
1731
1732 /* Create the line information lookup table. */
1733 line_index = num_lines;
1734 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1735 line_info_lookup[--line_index] = each_line;
1736
1737 BFD_ASSERT (line_index == 0);
1738
1739 seq->num_lines = num_lines;
1740 seq->line_info_lookup = line_info_lookup;
1741
1742 return TRUE;
1743 }
1744
1745 /* Sort the line sequences for quick lookup. */
1746
1747 static bfd_boolean
1748 sort_line_sequences (struct line_info_table* table)
1749 {
1750 bfd_size_type amt;
1751 struct line_sequence* sequences;
1752 struct line_sequence* seq;
1753 unsigned int n = 0;
1754 unsigned int num_sequences = table->num_sequences;
1755 bfd_vma last_high_pc;
1756
1757 if (num_sequences == 0)
1758 return TRUE;
1759
1760 /* Allocate space for an array of sequences. */
1761 amt = sizeof (struct line_sequence) * num_sequences;
1762 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1763 if (sequences == NULL)
1764 return FALSE;
1765
1766 /* Copy the linked list into the array, freeing the original nodes. */
1767 seq = table->sequences;
1768 for (n = 0; n < num_sequences; n++)
1769 {
1770 struct line_sequence* last_seq = seq;
1771
1772 BFD_ASSERT (seq);
1773 sequences[n].low_pc = seq->low_pc;
1774 sequences[n].prev_sequence = NULL;
1775 sequences[n].last_line = seq->last_line;
1776 sequences[n].line_info_lookup = NULL;
1777 sequences[n].num_lines = 0;
1778 seq = seq->prev_sequence;
1779 free (last_seq);
1780 }
1781 BFD_ASSERT (seq == NULL);
1782
1783 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1784
1785 /* Make the list binary-searchable by trimming overlapping entries
1786 and removing nested entries. */
1787 num_sequences = 1;
1788 last_high_pc = sequences[0].last_line->address;
1789 for (n = 1; n < table->num_sequences; n++)
1790 {
1791 if (sequences[n].low_pc < last_high_pc)
1792 {
1793 if (sequences[n].last_line->address <= last_high_pc)
1794 /* Skip nested entries. */
1795 continue;
1796
1797 /* Trim overlapping entries. */
1798 sequences[n].low_pc = last_high_pc;
1799 }
1800 last_high_pc = sequences[n].last_line->address;
1801 if (n > num_sequences)
1802 {
1803 /* Close up the gap. */
1804 sequences[num_sequences].low_pc = sequences[n].low_pc;
1805 sequences[num_sequences].last_line = sequences[n].last_line;
1806 }
1807 num_sequences++;
1808 }
1809
1810 table->sequences = sequences;
1811 table->num_sequences = num_sequences;
1812 return TRUE;
1813 }
1814
1815 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1816
1817 static bfd_boolean
1818 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1819 {
1820 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1821 {
1822 char **tmp;
1823 bfd_size_type amt;
1824
1825 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1826 amt *= sizeof (char *);
1827
1828 tmp = (char **) bfd_realloc (table->dirs, amt);
1829 if (tmp == NULL)
1830 return FALSE;
1831 table->dirs = tmp;
1832 }
1833
1834 table->dirs[table->num_dirs++] = cur_dir;
1835 return TRUE;
1836 }
1837
1838 static bfd_boolean
1839 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1840 unsigned int dir ATTRIBUTE_UNUSED,
1841 unsigned int xtime ATTRIBUTE_UNUSED,
1842 unsigned int size ATTRIBUTE_UNUSED)
1843 {
1844 return line_info_add_include_dir (table, cur_dir);
1845 }
1846
1847 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1848
1849 static bfd_boolean
1850 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1851 unsigned int dir, unsigned int xtime,
1852 unsigned int size)
1853 {
1854 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1855 {
1856 struct fileinfo *tmp;
1857 bfd_size_type amt;
1858
1859 amt = table->num_files + FILE_ALLOC_CHUNK;
1860 amt *= sizeof (struct fileinfo);
1861
1862 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1863 if (tmp == NULL)
1864 return FALSE;
1865 table->files = tmp;
1866 }
1867
1868 table->files[table->num_files].name = cur_file;
1869 table->files[table->num_files].dir = dir;
1870 table->files[table->num_files].time = xtime;
1871 table->files[table->num_files].size = size;
1872 table->num_files++;
1873 return TRUE;
1874 }
1875
1876 /* Read directory or file name entry format, starting with byte of
1877 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1878 entries count and the entries themselves in the described entry
1879 format. */
1880
1881 static bfd_boolean
1882 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1883 bfd_byte *buf_end, struct line_info_table *table,
1884 bfd_boolean (*callback) (struct line_info_table *table,
1885 char *cur_file,
1886 unsigned int dir,
1887 unsigned int time,
1888 unsigned int size))
1889 {
1890 bfd *abfd = unit->abfd;
1891 bfd_byte format_count, formati;
1892 bfd_vma data_count, datai;
1893 bfd_byte *buf = *bufp;
1894 bfd_byte *format_header_data;
1895 unsigned int bytes_read;
1896
1897 format_count = read_1_byte (abfd, buf, buf_end);
1898 buf += 1;
1899 format_header_data = buf;
1900 for (formati = 0; formati < format_count; formati++)
1901 {
1902 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1903 buf += bytes_read;
1904 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1905 buf += bytes_read;
1906 }
1907
1908 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1909 buf += bytes_read;
1910 if (format_count == 0 && data_count != 0)
1911 {
1912 _bfd_error_handler (_("Dwarf Error: Zero format count."));
1913 bfd_set_error (bfd_error_bad_value);
1914 return FALSE;
1915 }
1916
1917 /* PR 22210. Paranoia check. Don't bother running the loop
1918 if we know that we are going to run out of buffer. */
1919 if (data_count > (bfd_vma) (buf_end - buf))
1920 {
1921 _bfd_error_handler (_("Dwarf Error: data count (%Lx) larger than buffer size."),
1922 data_count);
1923 bfd_set_error (bfd_error_bad_value);
1924 return FALSE;
1925 }
1926
1927 for (datai = 0; datai < data_count; datai++)
1928 {
1929 bfd_byte *format = format_header_data;
1930 struct fileinfo fe;
1931
1932 memset (&fe, 0, sizeof fe);
1933 for (formati = 0; formati < format_count; formati++)
1934 {
1935 bfd_vma content_type, form;
1936 char *string_trash;
1937 char **stringp = &string_trash;
1938 unsigned int uint_trash, *uintp = &uint_trash;
1939 struct attribute attr;
1940
1941 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1942 FALSE, buf_end);
1943 format += bytes_read;
1944 switch (content_type)
1945 {
1946 case DW_LNCT_path:
1947 stringp = &fe.name;
1948 break;
1949 case DW_LNCT_directory_index:
1950 uintp = &fe.dir;
1951 break;
1952 case DW_LNCT_timestamp:
1953 uintp = &fe.time;
1954 break;
1955 case DW_LNCT_size:
1956 uintp = &fe.size;
1957 break;
1958 case DW_LNCT_MD5:
1959 break;
1960 default:
1961 _bfd_error_handler
1962 (_("Dwarf Error: Unknown format content type %Lu."),
1963 content_type);
1964 bfd_set_error (bfd_error_bad_value);
1965 return FALSE;
1966 }
1967
1968 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1969 buf_end);
1970 format += bytes_read;
1971
1972 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
1973 if (buf == NULL)
1974 return FALSE;
1975 switch (form)
1976 {
1977 case DW_FORM_string:
1978 case DW_FORM_line_strp:
1979 *stringp = attr.u.str;
1980 break;
1981
1982 case DW_FORM_data1:
1983 case DW_FORM_data2:
1984 case DW_FORM_data4:
1985 case DW_FORM_data8:
1986 case DW_FORM_udata:
1987 *uintp = attr.u.val;
1988 break;
1989 }
1990 }
1991
1992 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
1993 return FALSE;
1994 }
1995
1996 *bufp = buf;
1997 return TRUE;
1998 }
1999
2000 /* Decode the line number information for UNIT. */
2001
2002 static struct line_info_table*
2003 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2004 {
2005 bfd *abfd = unit->abfd;
2006 struct line_info_table* table;
2007 bfd_byte *line_ptr;
2008 bfd_byte *line_end;
2009 struct line_head lh;
2010 unsigned int i, bytes_read, offset_size;
2011 char *cur_file, *cur_dir;
2012 unsigned char op_code, extended_op, adj_opcode;
2013 unsigned int exop_len;
2014 bfd_size_type amt;
2015
2016 if (! read_section (abfd, &stash->debug_sections[debug_line],
2017 stash->syms, unit->line_offset,
2018 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2019 return NULL;
2020
2021 amt = sizeof (struct line_info_table);
2022 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2023 if (table == NULL)
2024 return NULL;
2025 table->abfd = abfd;
2026 table->comp_dir = unit->comp_dir;
2027
2028 table->num_files = 0;
2029 table->files = NULL;
2030
2031 table->num_dirs = 0;
2032 table->dirs = NULL;
2033
2034 table->num_sequences = 0;
2035 table->sequences = NULL;
2036
2037 table->lcl_head = NULL;
2038
2039 if (stash->dwarf_line_size < 16)
2040 {
2041 _bfd_error_handler
2042 (_("Dwarf Error: Line info section is too small (%Ld)"),
2043 stash->dwarf_line_size);
2044 bfd_set_error (bfd_error_bad_value);
2045 return NULL;
2046 }
2047 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2048 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2049
2050 /* Read in the prologue. */
2051 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2052 line_ptr += 4;
2053 offset_size = 4;
2054 if (lh.total_length == 0xffffffff)
2055 {
2056 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2057 line_ptr += 8;
2058 offset_size = 8;
2059 }
2060 else if (lh.total_length == 0 && unit->addr_size == 8)
2061 {
2062 /* Handle (non-standard) 64-bit DWARF2 formats. */
2063 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2064 line_ptr += 4;
2065 offset_size = 8;
2066 }
2067
2068 if (lh.total_length > (size_t) (line_end - line_ptr))
2069 {
2070 _bfd_error_handler
2071 /* xgettext: c-format */
2072 (_("Dwarf Error: Line info data is bigger (%#Lx)"
2073 " than the space remaining in the section (%#lx)"),
2074 lh.total_length, (unsigned long) (line_end - line_ptr));
2075 bfd_set_error (bfd_error_bad_value);
2076 return NULL;
2077 }
2078
2079 line_end = line_ptr + lh.total_length;
2080
2081 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2082 if (lh.version < 2 || lh.version > 5)
2083 {
2084 _bfd_error_handler
2085 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
2086 bfd_set_error (bfd_error_bad_value);
2087 return NULL;
2088 }
2089 line_ptr += 2;
2090
2091 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2092 >= line_end)
2093 {
2094 _bfd_error_handler
2095 (_("Dwarf Error: Ran out of room reading prologue"));
2096 bfd_set_error (bfd_error_bad_value);
2097 return NULL;
2098 }
2099
2100 if (lh.version >= 5)
2101 {
2102 unsigned int segment_selector_size;
2103
2104 /* Skip address size. */
2105 read_1_byte (abfd, line_ptr, line_end);
2106 line_ptr += 1;
2107
2108 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2109 line_ptr += 1;
2110 if (segment_selector_size != 0)
2111 {
2112 _bfd_error_handler
2113 (_("Dwarf Error: Line info unsupported segment selector size %u."),
2114 segment_selector_size);
2115 bfd_set_error (bfd_error_bad_value);
2116 return NULL;
2117 }
2118 }
2119
2120 if (offset_size == 4)
2121 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2122 else
2123 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2124 line_ptr += offset_size;
2125
2126 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2127 line_ptr += 1;
2128
2129 if (lh.version >= 4)
2130 {
2131 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2132 line_ptr += 1;
2133 }
2134 else
2135 lh.maximum_ops_per_insn = 1;
2136
2137 if (lh.maximum_ops_per_insn == 0)
2138 {
2139 _bfd_error_handler
2140 (_("Dwarf Error: Invalid maximum operations per instruction."));
2141 bfd_set_error (bfd_error_bad_value);
2142 return NULL;
2143 }
2144
2145 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2146 line_ptr += 1;
2147
2148 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2149 line_ptr += 1;
2150
2151 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2152 line_ptr += 1;
2153
2154 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2155 line_ptr += 1;
2156
2157 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2158 {
2159 _bfd_error_handler (_("Dwarf Error: Ran out of room reading opcodes"));
2160 bfd_set_error (bfd_error_bad_value);
2161 return NULL;
2162 }
2163
2164 amt = lh.opcode_base * sizeof (unsigned char);
2165 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2166
2167 lh.standard_opcode_lengths[0] = 1;
2168
2169 for (i = 1; i < lh.opcode_base; ++i)
2170 {
2171 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2172 line_ptr += 1;
2173 }
2174
2175 if (lh.version >= 5)
2176 {
2177 /* Read directory table. */
2178 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2179 line_info_add_include_dir_stub))
2180 goto fail;
2181
2182 /* Read file name table. */
2183 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2184 line_info_add_file_name))
2185 goto fail;
2186 }
2187 else
2188 {
2189 /* Read directory table. */
2190 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2191 {
2192 line_ptr += bytes_read;
2193
2194 if (!line_info_add_include_dir (table, cur_dir))
2195 goto fail;
2196 }
2197
2198 line_ptr += bytes_read;
2199
2200 /* Read file name table. */
2201 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2202 {
2203 unsigned int dir, xtime, size;
2204
2205 line_ptr += bytes_read;
2206
2207 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2208 line_ptr += bytes_read;
2209 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2210 line_ptr += bytes_read;
2211 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2212 line_ptr += bytes_read;
2213
2214 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2215 goto fail;
2216 }
2217
2218 line_ptr += bytes_read;
2219 }
2220
2221 /* Read the statement sequences until there's nothing left. */
2222 while (line_ptr < line_end)
2223 {
2224 /* State machine registers. */
2225 bfd_vma address = 0;
2226 unsigned char op_index = 0;
2227 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2228 unsigned int line = 1;
2229 unsigned int column = 0;
2230 unsigned int discriminator = 0;
2231 int is_stmt = lh.default_is_stmt;
2232 int end_sequence = 0;
2233 unsigned int dir, xtime, size;
2234 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2235 compilers generate address sequences that are wildly out of
2236 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2237 for ia64-Linux). Thus, to determine the low and high
2238 address, we must compare on every DW_LNS_copy, etc. */
2239 bfd_vma low_pc = (bfd_vma) -1;
2240 bfd_vma high_pc = 0;
2241
2242 /* Decode the table. */
2243 while (!end_sequence && line_ptr < line_end)
2244 {
2245 op_code = read_1_byte (abfd, line_ptr, line_end);
2246 line_ptr += 1;
2247
2248 if (op_code >= lh.opcode_base)
2249 {
2250 /* Special operand. */
2251 adj_opcode = op_code - lh.opcode_base;
2252 if (lh.line_range == 0)
2253 goto line_fail;
2254 if (lh.maximum_ops_per_insn == 1)
2255 address += (adj_opcode / lh.line_range
2256 * lh.minimum_instruction_length);
2257 else
2258 {
2259 address += ((op_index + adj_opcode / lh.line_range)
2260 / lh.maximum_ops_per_insn
2261 * lh.minimum_instruction_length);
2262 op_index = ((op_index + adj_opcode / lh.line_range)
2263 % lh.maximum_ops_per_insn);
2264 }
2265 line += lh.line_base + (adj_opcode % lh.line_range);
2266 /* Append row to matrix using current values. */
2267 if (!add_line_info (table, address, op_index, filename,
2268 line, column, discriminator, 0))
2269 goto line_fail;
2270 discriminator = 0;
2271 if (address < low_pc)
2272 low_pc = address;
2273 if (address > high_pc)
2274 high_pc = address;
2275 }
2276 else switch (op_code)
2277 {
2278 case DW_LNS_extended_op:
2279 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2280 FALSE, line_end);
2281 line_ptr += bytes_read;
2282 extended_op = read_1_byte (abfd, line_ptr, line_end);
2283 line_ptr += 1;
2284
2285 switch (extended_op)
2286 {
2287 case DW_LNE_end_sequence:
2288 end_sequence = 1;
2289 if (!add_line_info (table, address, op_index, filename, line,
2290 column, discriminator, end_sequence))
2291 goto line_fail;
2292 discriminator = 0;
2293 if (address < low_pc)
2294 low_pc = address;
2295 if (address > high_pc)
2296 high_pc = address;
2297 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2298 goto line_fail;
2299 break;
2300 case DW_LNE_set_address:
2301 address = read_address (unit, line_ptr, line_end);
2302 op_index = 0;
2303 line_ptr += unit->addr_size;
2304 break;
2305 case DW_LNE_define_file:
2306 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2307 line_ptr += bytes_read;
2308 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2309 FALSE, line_end);
2310 line_ptr += bytes_read;
2311 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2312 FALSE, line_end);
2313 line_ptr += bytes_read;
2314 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2315 FALSE, line_end);
2316 line_ptr += bytes_read;
2317 if (!line_info_add_file_name (table, cur_file, dir,
2318 xtime, size))
2319 goto line_fail;
2320 break;
2321 case DW_LNE_set_discriminator:
2322 discriminator =
2323 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2324 FALSE, line_end);
2325 line_ptr += bytes_read;
2326 break;
2327 case DW_LNE_HP_source_file_correlation:
2328 line_ptr += exop_len - 1;
2329 break;
2330 default:
2331 _bfd_error_handler
2332 (_("Dwarf Error: mangled line number section."));
2333 bfd_set_error (bfd_error_bad_value);
2334 line_fail:
2335 if (filename != NULL)
2336 free (filename);
2337 goto fail;
2338 }
2339 break;
2340 case DW_LNS_copy:
2341 if (!add_line_info (table, address, op_index,
2342 filename, line, column, discriminator, 0))
2343 goto line_fail;
2344 discriminator = 0;
2345 if (address < low_pc)
2346 low_pc = address;
2347 if (address > high_pc)
2348 high_pc = address;
2349 break;
2350 case DW_LNS_advance_pc:
2351 if (lh.maximum_ops_per_insn == 1)
2352 address += (lh.minimum_instruction_length
2353 * _bfd_safe_read_leb128 (abfd, line_ptr,
2354 &bytes_read,
2355 FALSE, line_end));
2356 else
2357 {
2358 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2359 &bytes_read,
2360 FALSE, line_end);
2361 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2362 * lh.minimum_instruction_length);
2363 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2364 }
2365 line_ptr += bytes_read;
2366 break;
2367 case DW_LNS_advance_line:
2368 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2369 TRUE, line_end);
2370 line_ptr += bytes_read;
2371 break;
2372 case DW_LNS_set_file:
2373 {
2374 unsigned int file;
2375
2376 /* The file and directory tables are 0
2377 based, the references are 1 based. */
2378 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2379 FALSE, line_end);
2380 line_ptr += bytes_read;
2381 if (filename)
2382 free (filename);
2383 filename = concat_filename (table, file);
2384 break;
2385 }
2386 case DW_LNS_set_column:
2387 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2388 FALSE, line_end);
2389 line_ptr += bytes_read;
2390 break;
2391 case DW_LNS_negate_stmt:
2392 is_stmt = (!is_stmt);
2393 break;
2394 case DW_LNS_set_basic_block:
2395 break;
2396 case DW_LNS_const_add_pc:
2397 if (lh.line_range == 0)
2398 goto line_fail;
2399 if (lh.maximum_ops_per_insn == 1)
2400 address += (lh.minimum_instruction_length
2401 * ((255 - lh.opcode_base) / lh.line_range));
2402 else
2403 {
2404 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2405 address += (lh.minimum_instruction_length
2406 * ((op_index + adjust)
2407 / lh.maximum_ops_per_insn));
2408 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2409 }
2410 break;
2411 case DW_LNS_fixed_advance_pc:
2412 address += read_2_bytes (abfd, line_ptr, line_end);
2413 op_index = 0;
2414 line_ptr += 2;
2415 break;
2416 default:
2417 /* Unknown standard opcode, ignore it. */
2418 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2419 {
2420 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2421 FALSE, line_end);
2422 line_ptr += bytes_read;
2423 }
2424 break;
2425 }
2426 }
2427
2428 if (filename)
2429 free (filename);
2430 }
2431
2432 if (sort_line_sequences (table))
2433 return table;
2434
2435 fail:
2436 while (table->sequences != NULL)
2437 {
2438 struct line_sequence* seq = table->sequences;
2439 table->sequences = table->sequences->prev_sequence;
2440 free (seq);
2441 }
2442 if (table->files != NULL)
2443 free (table->files);
2444 if (table->dirs != NULL)
2445 free (table->dirs);
2446 return NULL;
2447 }
2448
2449 /* If ADDR is within TABLE set the output parameters and return the
2450 range of addresses covered by the entry used to fill them out.
2451 Otherwise set * FILENAME_PTR to NULL and return 0.
2452 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2453 are pointers to the objects to be filled in. */
2454
2455 static bfd_vma
2456 lookup_address_in_line_info_table (struct line_info_table *table,
2457 bfd_vma addr,
2458 const char **filename_ptr,
2459 unsigned int *linenumber_ptr,
2460 unsigned int *discriminator_ptr)
2461 {
2462 struct line_sequence *seq = NULL;
2463 struct line_info *info;
2464 int low, high, mid;
2465
2466 /* Binary search the array of sequences. */
2467 low = 0;
2468 high = table->num_sequences;
2469 while (low < high)
2470 {
2471 mid = (low + high) / 2;
2472 seq = &table->sequences[mid];
2473 if (addr < seq->low_pc)
2474 high = mid;
2475 else if (addr >= seq->last_line->address)
2476 low = mid + 1;
2477 else
2478 break;
2479 }
2480
2481 /* Check for a valid sequence. */
2482 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2483 goto fail;
2484
2485 if (!build_line_info_table (table, seq))
2486 goto fail;
2487
2488 /* Binary search the array of line information. */
2489 low = 0;
2490 high = seq->num_lines;
2491 info = NULL;
2492 while (low < high)
2493 {
2494 mid = (low + high) / 2;
2495 info = seq->line_info_lookup[mid];
2496 if (addr < info->address)
2497 high = mid;
2498 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2499 low = mid + 1;
2500 else
2501 break;
2502 }
2503
2504 /* Check for a valid line information entry. */
2505 if (info
2506 && addr >= info->address
2507 && addr < seq->line_info_lookup[mid + 1]->address
2508 && !(info->end_sequence || info == seq->last_line))
2509 {
2510 *filename_ptr = info->filename;
2511 *linenumber_ptr = info->line;
2512 if (discriminator_ptr)
2513 *discriminator_ptr = info->discriminator;
2514 return seq->last_line->address - seq->low_pc;
2515 }
2516
2517 fail:
2518 *filename_ptr = NULL;
2519 return 0;
2520 }
2521
2522 /* Read in the .debug_ranges section for future reference. */
2523
2524 static bfd_boolean
2525 read_debug_ranges (struct comp_unit * unit)
2526 {
2527 struct dwarf2_debug * stash = unit->stash;
2528
2529 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2530 stash->syms, 0,
2531 &stash->dwarf_ranges_buffer,
2532 &stash->dwarf_ranges_size);
2533 }
2534
2535 /* Function table functions. */
2536
2537 static int
2538 compare_lookup_funcinfos (const void * a, const void * b)
2539 {
2540 const struct lookup_funcinfo * lookup1 = a;
2541 const struct lookup_funcinfo * lookup2 = b;
2542
2543 if (lookup1->low_addr < lookup2->low_addr)
2544 return -1;
2545 if (lookup1->low_addr > lookup2->low_addr)
2546 return 1;
2547 if (lookup1->high_addr < lookup2->high_addr)
2548 return -1;
2549 if (lookup1->high_addr > lookup2->high_addr)
2550 return 1;
2551
2552 return 0;
2553 }
2554
2555 static bfd_boolean
2556 build_lookup_funcinfo_table (struct comp_unit * unit)
2557 {
2558 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2559 unsigned int number_of_functions = unit->number_of_functions;
2560 struct funcinfo *each;
2561 struct lookup_funcinfo *entry;
2562 size_t func_index;
2563 struct arange *range;
2564 bfd_vma low_addr, high_addr;
2565
2566 if (lookup_funcinfo_table || number_of_functions == 0)
2567 return TRUE;
2568
2569 /* Create the function info lookup table. */
2570 lookup_funcinfo_table = (struct lookup_funcinfo *)
2571 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2572 if (lookup_funcinfo_table == NULL)
2573 return FALSE;
2574
2575 /* Populate the function info lookup table. */
2576 func_index = number_of_functions;
2577 for (each = unit->function_table; each; each = each->prev_func)
2578 {
2579 entry = &lookup_funcinfo_table[--func_index];
2580 entry->funcinfo = each;
2581
2582 /* Calculate the lowest and highest address for this function entry. */
2583 low_addr = entry->funcinfo->arange.low;
2584 high_addr = entry->funcinfo->arange.high;
2585
2586 for (range = entry->funcinfo->arange.next; range; range = range->next)
2587 {
2588 if (range->low < low_addr)
2589 low_addr = range->low;
2590 if (range->high > high_addr)
2591 high_addr = range->high;
2592 }
2593
2594 entry->low_addr = low_addr;
2595 entry->high_addr = high_addr;
2596 }
2597
2598 BFD_ASSERT (func_index == 0);
2599
2600 /* Sort the function by address. */
2601 qsort (lookup_funcinfo_table,
2602 number_of_functions,
2603 sizeof (struct lookup_funcinfo),
2604 compare_lookup_funcinfos);
2605
2606 /* Calculate the high watermark for each function in the lookup table. */
2607 high_addr = lookup_funcinfo_table[0].high_addr;
2608 for (func_index = 1; func_index < number_of_functions; func_index++)
2609 {
2610 entry = &lookup_funcinfo_table[func_index];
2611 if (entry->high_addr > high_addr)
2612 high_addr = entry->high_addr;
2613 else
2614 entry->high_addr = high_addr;
2615 }
2616
2617 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2618 return TRUE;
2619 }
2620
2621 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2622 TRUE. Note that we need to find the function that has the smallest range
2623 that contains ADDR, to handle inlined functions without depending upon
2624 them being ordered in TABLE by increasing range. */
2625
2626 static bfd_boolean
2627 lookup_address_in_function_table (struct comp_unit *unit,
2628 bfd_vma addr,
2629 struct funcinfo **function_ptr)
2630 {
2631 unsigned int number_of_functions = unit->number_of_functions;
2632 struct lookup_funcinfo* lookup_funcinfo = NULL;
2633 struct funcinfo* funcinfo = NULL;
2634 struct funcinfo* best_fit = NULL;
2635 bfd_vma best_fit_len = 0;
2636 bfd_size_type low, high, mid, first;
2637 struct arange *arange;
2638
2639 if (number_of_functions == 0)
2640 return FALSE;
2641
2642 if (!build_lookup_funcinfo_table (unit))
2643 return FALSE;
2644
2645 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2646 return FALSE;
2647
2648 /* Find the first function in the lookup table which may contain the
2649 specified address. */
2650 low = 0;
2651 high = number_of_functions;
2652 first = high;
2653 while (low < high)
2654 {
2655 mid = (low + high) / 2;
2656 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2657 if (addr < lookup_funcinfo->low_addr)
2658 high = mid;
2659 else if (addr >= lookup_funcinfo->high_addr)
2660 low = mid + 1;
2661 else
2662 high = first = mid;
2663 }
2664
2665 /* Find the 'best' match for the address. The prior algorithm defined the
2666 best match as the function with the smallest address range containing
2667 the specified address. This definition should probably be changed to the
2668 innermost inline routine containing the address, but right now we want
2669 to get the same results we did before. */
2670 while (first < number_of_functions)
2671 {
2672 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2673 break;
2674 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2675
2676 for (arange = &funcinfo->arange; arange; arange = arange->next)
2677 {
2678 if (addr < arange->low || addr >= arange->high)
2679 continue;
2680
2681 if (!best_fit
2682 || arange->high - arange->low < best_fit_len
2683 /* The following comparison is designed to return the same
2684 match as the previous algorithm for routines which have the
2685 same best fit length. */
2686 || (arange->high - arange->low == best_fit_len
2687 && funcinfo > best_fit))
2688 {
2689 best_fit = funcinfo;
2690 best_fit_len = arange->high - arange->low;
2691 }
2692 }
2693
2694 first++;
2695 }
2696
2697 if (!best_fit)
2698 return FALSE;
2699
2700 *function_ptr = best_fit;
2701 return TRUE;
2702 }
2703
2704 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2705 and LINENUMBER_PTR, and return TRUE. */
2706
2707 static bfd_boolean
2708 lookup_symbol_in_function_table (struct comp_unit *unit,
2709 asymbol *sym,
2710 bfd_vma addr,
2711 const char **filename_ptr,
2712 unsigned int *linenumber_ptr)
2713 {
2714 struct funcinfo* each_func;
2715 struct funcinfo* best_fit = NULL;
2716 bfd_vma best_fit_len = 0;
2717 struct arange *arange;
2718 const char *name = bfd_asymbol_name (sym);
2719 asection *sec = bfd_get_section (sym);
2720
2721 for (each_func = unit->function_table;
2722 each_func;
2723 each_func = each_func->prev_func)
2724 {
2725 for (arange = &each_func->arange;
2726 arange;
2727 arange = arange->next)
2728 {
2729 if ((!each_func->sec || each_func->sec == sec)
2730 && addr >= arange->low
2731 && addr < arange->high
2732 && each_func->name
2733 && strcmp (name, each_func->name) == 0
2734 && (!best_fit
2735 || arange->high - arange->low < best_fit_len))
2736 {
2737 best_fit = each_func;
2738 best_fit_len = arange->high - arange->low;
2739 }
2740 }
2741 }
2742
2743 if (best_fit)
2744 {
2745 best_fit->sec = sec;
2746 *filename_ptr = best_fit->file;
2747 *linenumber_ptr = best_fit->line;
2748 return TRUE;
2749 }
2750 else
2751 return FALSE;
2752 }
2753
2754 /* Variable table functions. */
2755
2756 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2757 LINENUMBER_PTR, and return TRUE. */
2758
2759 static bfd_boolean
2760 lookup_symbol_in_variable_table (struct comp_unit *unit,
2761 asymbol *sym,
2762 bfd_vma addr,
2763 const char **filename_ptr,
2764 unsigned int *linenumber_ptr)
2765 {
2766 const char *name = bfd_asymbol_name (sym);
2767 asection *sec = bfd_get_section (sym);
2768 struct varinfo* each;
2769
2770 for (each = unit->variable_table; each; each = each->prev_var)
2771 if (each->stack == 0
2772 && each->file != NULL
2773 && each->name != NULL
2774 && each->addr == addr
2775 && (!each->sec || each->sec == sec)
2776 && strcmp (name, each->name) == 0)
2777 break;
2778
2779 if (each)
2780 {
2781 each->sec = sec;
2782 *filename_ptr = each->file;
2783 *linenumber_ptr = each->line;
2784 return TRUE;
2785 }
2786
2787 return FALSE;
2788 }
2789
2790 static bfd_boolean
2791 find_abstract_instance (struct comp_unit * unit,
2792 bfd_byte * orig_info_ptr,
2793 struct attribute * attr_ptr,
2794 const char ** pname,
2795 bfd_boolean * is_linkage,
2796 char ** filename_ptr,
2797 int * linenumber_ptr)
2798 {
2799 bfd *abfd = unit->abfd;
2800 bfd_byte *info_ptr;
2801 bfd_byte *info_ptr_end;
2802 unsigned int abbrev_number, bytes_read, i;
2803 struct abbrev_info *abbrev;
2804 bfd_uint64_t die_ref = attr_ptr->u.val;
2805 struct attribute attr;
2806 const char *name = NULL;
2807
2808 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2809 is an offset from the .debug_info section, not the current CU. */
2810 if (attr_ptr->form == DW_FORM_ref_addr)
2811 {
2812 /* We only support DW_FORM_ref_addr within the same file, so
2813 any relocations should be resolved already. Check this by
2814 testing for a zero die_ref; There can't be a valid reference
2815 to the header of a .debug_info section.
2816 DW_FORM_ref_addr is an offset relative to .debug_info.
2817 Normally when using the GNU linker this is accomplished by
2818 emitting a symbolic reference to a label, because .debug_info
2819 sections are linked at zero. When there are multiple section
2820 groups containing .debug_info, as there might be in a
2821 relocatable object file, it would be reasonable to assume that
2822 a symbolic reference to a label in any .debug_info section
2823 might be used. Since we lay out multiple .debug_info
2824 sections at non-zero VMAs (see place_sections), and read
2825 them contiguously into stash->info_ptr_memory, that means
2826 the reference is relative to stash->info_ptr_memory. */
2827 size_t total;
2828
2829 info_ptr = unit->stash->info_ptr_memory;
2830 info_ptr_end = unit->stash->info_ptr_end;
2831 total = info_ptr_end - info_ptr;
2832 if (!die_ref || die_ref >= total)
2833 {
2834 _bfd_error_handler
2835 (_("Dwarf Error: Invalid abstract instance DIE ref."));
2836 bfd_set_error (bfd_error_bad_value);
2837 return FALSE;
2838 }
2839 info_ptr += die_ref;
2840
2841 /* Now find the CU containing this pointer. */
2842 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2843 info_ptr_end = unit->end_ptr;
2844 else
2845 {
2846 /* Check other CUs to see if they contain the abbrev. */
2847 struct comp_unit * u;
2848
2849 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2850 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2851 break;
2852
2853 if (u == NULL)
2854 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2855 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2856 break;
2857
2858 if (u)
2859 {
2860 unit = u;
2861 info_ptr_end = unit->end_ptr;
2862 }
2863 /* else FIXME: What do we do now ? */
2864 }
2865 }
2866 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2867 {
2868 info_ptr = read_alt_indirect_ref (unit, die_ref);
2869 if (info_ptr == NULL)
2870 {
2871 _bfd_error_handler
2872 (_("Dwarf Error: Unable to read alt ref %llu."),
2873 (long long) die_ref);
2874 bfd_set_error (bfd_error_bad_value);
2875 return FALSE;
2876 }
2877 info_ptr_end = (unit->stash->alt_dwarf_info_buffer
2878 + unit->stash->alt_dwarf_info_size);
2879
2880 /* FIXME: Do we need to locate the correct CU, in a similar
2881 fashion to the code in the DW_FORM_ref_addr case above ? */
2882 }
2883 else
2884 {
2885 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
2886 DW_FORM_ref_udata. These are all references relative to the
2887 start of the current CU. */
2888 size_t total;
2889
2890 info_ptr = unit->info_ptr_unit;
2891 info_ptr_end = unit->end_ptr;
2892 total = info_ptr_end - info_ptr;
2893 if (!die_ref || die_ref >= total)
2894 {
2895 _bfd_error_handler
2896 (_("Dwarf Error: Invalid abstract instance DIE ref."));
2897 bfd_set_error (bfd_error_bad_value);
2898 return FALSE;
2899 }
2900 info_ptr += die_ref;
2901 }
2902
2903 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2904 FALSE, info_ptr_end);
2905 info_ptr += bytes_read;
2906
2907 if (abbrev_number)
2908 {
2909 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2910 if (! abbrev)
2911 {
2912 _bfd_error_handler
2913 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2914 bfd_set_error (bfd_error_bad_value);
2915 return FALSE;
2916 }
2917 else
2918 {
2919 for (i = 0; i < abbrev->num_attrs; ++i)
2920 {
2921 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2922 info_ptr, info_ptr_end);
2923 if (info_ptr == NULL)
2924 break;
2925 /* It doesn't ever make sense for DW_AT_specification to
2926 refer to the same DIE. Stop simple recursion. */
2927 if (info_ptr == orig_info_ptr)
2928 {
2929 _bfd_error_handler
2930 (_("Dwarf Error: Abstract instance recursion detected."));
2931 bfd_set_error (bfd_error_bad_value);
2932 return FALSE;
2933 }
2934 switch (attr.name)
2935 {
2936 case DW_AT_name:
2937 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2938 over DW_AT_name. */
2939 if (name == NULL && is_str_attr (attr.form))
2940 {
2941 name = attr.u.str;
2942 if (non_mangled (unit->lang))
2943 *is_linkage = TRUE;
2944 }
2945 break;
2946 case DW_AT_specification:
2947 if (!find_abstract_instance (unit, info_ptr, &attr,
2948 pname, is_linkage,
2949 filename_ptr, linenumber_ptr))
2950 return FALSE;
2951 break;
2952 case DW_AT_linkage_name:
2953 case DW_AT_MIPS_linkage_name:
2954 /* PR 16949: Corrupt debug info can place
2955 non-string forms into these attributes. */
2956 if (is_str_attr (attr.form))
2957 {
2958 name = attr.u.str;
2959 *is_linkage = TRUE;
2960 }
2961 break;
2962 case DW_AT_decl_file:
2963 *filename_ptr = concat_filename (unit->line_table,
2964 attr.u.val);
2965 break;
2966 case DW_AT_decl_line:
2967 *linenumber_ptr = attr.u.val;
2968 break;
2969 default:
2970 break;
2971 }
2972 }
2973 }
2974 }
2975 *pname = name;
2976 return TRUE;
2977 }
2978
2979 static bfd_boolean
2980 read_rangelist (struct comp_unit *unit, struct arange *arange,
2981 bfd_uint64_t offset)
2982 {
2983 bfd_byte *ranges_ptr;
2984 bfd_byte *ranges_end;
2985 bfd_vma base_address = unit->base_address;
2986
2987 if (! unit->stash->dwarf_ranges_buffer)
2988 {
2989 if (! read_debug_ranges (unit))
2990 return FALSE;
2991 }
2992
2993 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
2994 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
2995 return FALSE;
2996 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
2997
2998 for (;;)
2999 {
3000 bfd_vma low_pc;
3001 bfd_vma high_pc;
3002
3003 /* PR 17512: file: 62cada7d. */
3004 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3005 return FALSE;
3006
3007 low_pc = read_address (unit, ranges_ptr, ranges_end);
3008 ranges_ptr += unit->addr_size;
3009 high_pc = read_address (unit, ranges_ptr, ranges_end);
3010 ranges_ptr += unit->addr_size;
3011
3012 if (low_pc == 0 && high_pc == 0)
3013 break;
3014 if (low_pc == -1UL && high_pc != -1UL)
3015 base_address = high_pc;
3016 else
3017 {
3018 if (!arange_add (unit, arange,
3019 base_address + low_pc, base_address + high_pc))
3020 return FALSE;
3021 }
3022 }
3023 return TRUE;
3024 }
3025
3026 /* DWARF2 Compilation unit functions. */
3027
3028 /* Scan over each die in a comp. unit looking for functions to add
3029 to the function table and variables to the variable table. */
3030
3031 static bfd_boolean
3032 scan_unit_for_symbols (struct comp_unit *unit)
3033 {
3034 bfd *abfd = unit->abfd;
3035 bfd_byte *info_ptr = unit->first_child_die_ptr;
3036 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
3037 int nesting_level = 0;
3038 struct nest_funcinfo {
3039 struct funcinfo *func;
3040 } *nested_funcs;
3041 int nested_funcs_size;
3042
3043 /* Maintain a stack of in-scope functions and inlined functions, which we
3044 can use to set the caller_func field. */
3045 nested_funcs_size = 32;
3046 nested_funcs = (struct nest_funcinfo *)
3047 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3048 if (nested_funcs == NULL)
3049 return FALSE;
3050 nested_funcs[nesting_level].func = 0;
3051
3052 while (nesting_level >= 0)
3053 {
3054 unsigned int abbrev_number, bytes_read, i;
3055 struct abbrev_info *abbrev;
3056 struct attribute attr;
3057 struct funcinfo *func;
3058 struct varinfo *var;
3059 bfd_vma low_pc = 0;
3060 bfd_vma high_pc = 0;
3061 bfd_boolean high_pc_relative = FALSE;
3062
3063 /* PR 17512: file: 9f405d9d. */
3064 if (info_ptr >= info_ptr_end)
3065 goto fail;
3066
3067 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3068 FALSE, info_ptr_end);
3069 info_ptr += bytes_read;
3070
3071 if (! abbrev_number)
3072 {
3073 nesting_level--;
3074 continue;
3075 }
3076
3077 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3078 if (! abbrev)
3079 {
3080 static unsigned int previous_failed_abbrev = -1U;
3081
3082 /* Avoid multiple reports of the same missing abbrev. */
3083 if (abbrev_number != previous_failed_abbrev)
3084 {
3085 _bfd_error_handler
3086 (_("Dwarf Error: Could not find abbrev number %u."),
3087 abbrev_number);
3088 previous_failed_abbrev = abbrev_number;
3089 }
3090 bfd_set_error (bfd_error_bad_value);
3091 goto fail;
3092 }
3093
3094 var = NULL;
3095 if (abbrev->tag == DW_TAG_subprogram
3096 || abbrev->tag == DW_TAG_entry_point
3097 || abbrev->tag == DW_TAG_inlined_subroutine)
3098 {
3099 bfd_size_type amt = sizeof (struct funcinfo);
3100 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3101 if (func == NULL)
3102 goto fail;
3103 func->tag = abbrev->tag;
3104 func->prev_func = unit->function_table;
3105 unit->function_table = func;
3106 unit->number_of_functions++;
3107 BFD_ASSERT (!unit->cached);
3108
3109 if (func->tag == DW_TAG_inlined_subroutine)
3110 for (i = nesting_level; i-- != 0; )
3111 if (nested_funcs[i].func)
3112 {
3113 func->caller_func = nested_funcs[i].func;
3114 break;
3115 }
3116 nested_funcs[nesting_level].func = func;
3117 }
3118 else
3119 {
3120 func = NULL;
3121 if (abbrev->tag == DW_TAG_variable)
3122 {
3123 bfd_size_type amt = sizeof (struct varinfo);
3124 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3125 if (var == NULL)
3126 goto fail;
3127 var->tag = abbrev->tag;
3128 var->stack = 1;
3129 var->prev_var = unit->variable_table;
3130 unit->variable_table = var;
3131 /* PR 18205: Missing debug information can cause this
3132 var to be attached to an already cached unit. */
3133 }
3134
3135 /* No inline function in scope at this nesting level. */
3136 nested_funcs[nesting_level].func = 0;
3137 }
3138
3139 for (i = 0; i < abbrev->num_attrs; ++i)
3140 {
3141 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3142 unit, info_ptr, info_ptr_end);
3143 if (info_ptr == NULL)
3144 goto fail;
3145
3146 if (func)
3147 {
3148 switch (attr.name)
3149 {
3150 case DW_AT_call_file:
3151 func->caller_file = concat_filename (unit->line_table,
3152 attr.u.val);
3153 break;
3154
3155 case DW_AT_call_line:
3156 func->caller_line = attr.u.val;
3157 break;
3158
3159 case DW_AT_abstract_origin:
3160 case DW_AT_specification:
3161 if (!find_abstract_instance (unit, info_ptr, &attr,
3162 &func->name,
3163 &func->is_linkage,
3164 &func->file,
3165 &func->line))
3166 goto fail;
3167 break;
3168
3169 case DW_AT_name:
3170 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3171 over DW_AT_name. */
3172 if (func->name == NULL && is_str_attr (attr.form))
3173 {
3174 func->name = attr.u.str;
3175 if (non_mangled (unit->lang))
3176 func->is_linkage = TRUE;
3177 }
3178 break;
3179
3180 case DW_AT_linkage_name:
3181 case DW_AT_MIPS_linkage_name:
3182 /* PR 16949: Corrupt debug info can place
3183 non-string forms into these attributes. */
3184 if (is_str_attr (attr.form))
3185 {
3186 func->name = attr.u.str;
3187 func->is_linkage = TRUE;
3188 }
3189 break;
3190
3191 case DW_AT_low_pc:
3192 low_pc = attr.u.val;
3193 break;
3194
3195 case DW_AT_high_pc:
3196 high_pc = attr.u.val;
3197 high_pc_relative = attr.form != DW_FORM_addr;
3198 break;
3199
3200 case DW_AT_ranges:
3201 if (!read_rangelist (unit, &func->arange, attr.u.val))
3202 goto fail;
3203 break;
3204
3205 case DW_AT_decl_file:
3206 func->file = concat_filename (unit->line_table,
3207 attr.u.val);
3208 break;
3209
3210 case DW_AT_decl_line:
3211 func->line = attr.u.val;
3212 break;
3213
3214 default:
3215 break;
3216 }
3217 }
3218 else if (var)
3219 {
3220 switch (attr.name)
3221 {
3222 case DW_AT_name:
3223 if (is_str_attr (attr.form))
3224 var->name = attr.u.str;
3225 break;
3226
3227 case DW_AT_decl_file:
3228 var->file = concat_filename (unit->line_table,
3229 attr.u.val);
3230 break;
3231
3232 case DW_AT_decl_line:
3233 var->line = attr.u.val;
3234 break;
3235
3236 case DW_AT_external:
3237 if (attr.u.val != 0)
3238 var->stack = 0;
3239 break;
3240
3241 case DW_AT_location:
3242 switch (attr.form)
3243 {
3244 case DW_FORM_block:
3245 case DW_FORM_block1:
3246 case DW_FORM_block2:
3247 case DW_FORM_block4:
3248 case DW_FORM_exprloc:
3249 if (attr.u.blk->data != NULL
3250 && *attr.u.blk->data == DW_OP_addr)
3251 {
3252 var->stack = 0;
3253
3254 /* Verify that DW_OP_addr is the only opcode in the
3255 location, in which case the block size will be 1
3256 plus the address size. */
3257 /* ??? For TLS variables, gcc can emit
3258 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3259 which we don't handle here yet. */
3260 if (attr.u.blk->size == unit->addr_size + 1U)
3261 var->addr = bfd_get (unit->addr_size * 8,
3262 unit->abfd,
3263 attr.u.blk->data + 1);
3264 }
3265 break;
3266
3267 default:
3268 break;
3269 }
3270 break;
3271
3272 default:
3273 break;
3274 }
3275 }
3276 }
3277
3278 if (high_pc_relative)
3279 high_pc += low_pc;
3280
3281 if (func && high_pc != 0)
3282 {
3283 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3284 goto fail;
3285 }
3286
3287 if (abbrev->has_children)
3288 {
3289 nesting_level++;
3290
3291 if (nesting_level >= nested_funcs_size)
3292 {
3293 struct nest_funcinfo *tmp;
3294
3295 nested_funcs_size *= 2;
3296 tmp = (struct nest_funcinfo *)
3297 bfd_realloc (nested_funcs,
3298 nested_funcs_size * sizeof (*nested_funcs));
3299 if (tmp == NULL)
3300 goto fail;
3301 nested_funcs = tmp;
3302 }
3303 nested_funcs[nesting_level].func = 0;
3304 }
3305 }
3306
3307 free (nested_funcs);
3308 return TRUE;
3309
3310 fail:
3311 free (nested_funcs);
3312 return FALSE;
3313 }
3314
3315 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
3316 includes the compilation unit header that proceeds the DIE's, but
3317 does not include the length field that precedes each compilation
3318 unit header. END_PTR points one past the end of this comp unit.
3319 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3320
3321 This routine does not read the whole compilation unit; only enough
3322 to get to the line number information for the compilation unit. */
3323
3324 static struct comp_unit *
3325 parse_comp_unit (struct dwarf2_debug *stash,
3326 bfd_vma unit_length,
3327 bfd_byte *info_ptr_unit,
3328 unsigned int offset_size)
3329 {
3330 struct comp_unit* unit;
3331 unsigned int version;
3332 bfd_uint64_t abbrev_offset = 0;
3333 /* Initialize it just to avoid a GCC false warning. */
3334 unsigned int addr_size = -1;
3335 struct abbrev_info** abbrevs;
3336 unsigned int abbrev_number, bytes_read, i;
3337 struct abbrev_info *abbrev;
3338 struct attribute attr;
3339 bfd_byte *info_ptr = stash->info_ptr;
3340 bfd_byte *end_ptr = info_ptr + unit_length;
3341 bfd_size_type amt;
3342 bfd_vma low_pc = 0;
3343 bfd_vma high_pc = 0;
3344 bfd *abfd = stash->bfd_ptr;
3345 bfd_boolean high_pc_relative = FALSE;
3346 enum dwarf_unit_type unit_type;
3347
3348 version = read_2_bytes (abfd, info_ptr, end_ptr);
3349 info_ptr += 2;
3350 if (version < 2 || version > 5)
3351 {
3352 /* PR 19872: A version number of 0 probably means that there is padding
3353 at the end of the .debug_info section. Gold puts it there when
3354 performing an incremental link, for example. So do not generate
3355 an error, just return a NULL. */
3356 if (version)
3357 {
3358 _bfd_error_handler
3359 (_("Dwarf Error: found dwarf version '%u', this reader"
3360 " only handles version 2, 3, 4 and 5 information."), version);
3361 bfd_set_error (bfd_error_bad_value);
3362 }
3363 return NULL;
3364 }
3365
3366 if (version < 5)
3367 unit_type = DW_UT_compile;
3368 else
3369 {
3370 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3371 info_ptr += 1;
3372
3373 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3374 info_ptr += 1;
3375 }
3376
3377 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3378 if (offset_size == 4)
3379 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3380 else
3381 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3382 info_ptr += offset_size;
3383
3384 if (version < 5)
3385 {
3386 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3387 info_ptr += 1;
3388 }
3389
3390 if (unit_type == DW_UT_type)
3391 {
3392 /* Skip type signature. */
3393 info_ptr += 8;
3394
3395 /* Skip type offset. */
3396 info_ptr += offset_size;
3397 }
3398
3399 if (addr_size > sizeof (bfd_vma))
3400 {
3401 _bfd_error_handler
3402 /* xgettext: c-format */
3403 (_("Dwarf Error: found address size '%u', this reader"
3404 " can not handle sizes greater than '%u'."),
3405 addr_size,
3406 (unsigned int) sizeof (bfd_vma));
3407 bfd_set_error (bfd_error_bad_value);
3408 return NULL;
3409 }
3410
3411 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3412 {
3413 _bfd_error_handler
3414 ("Dwarf Error: found address size '%u', this reader"
3415 " can only handle address sizes '2', '4' and '8'.", addr_size);
3416 bfd_set_error (bfd_error_bad_value);
3417 return NULL;
3418 }
3419
3420 /* Read the abbrevs for this compilation unit into a table. */
3421 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3422 if (! abbrevs)
3423 return NULL;
3424
3425 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3426 FALSE, end_ptr);
3427 info_ptr += bytes_read;
3428 if (! abbrev_number)
3429 {
3430 /* PR 19872: An abbrev number of 0 probably means that there is padding
3431 at the end of the .debug_abbrev section. Gold puts it there when
3432 performing an incremental link, for example. So do not generate
3433 an error, just return a NULL. */
3434 return NULL;
3435 }
3436
3437 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3438 if (! abbrev)
3439 {
3440 _bfd_error_handler (_("Dwarf Error: Could not find abbrev number %u."),
3441 abbrev_number);
3442 bfd_set_error (bfd_error_bad_value);
3443 return NULL;
3444 }
3445
3446 amt = sizeof (struct comp_unit);
3447 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3448 if (unit == NULL)
3449 return NULL;
3450 unit->abfd = abfd;
3451 unit->version = version;
3452 unit->addr_size = addr_size;
3453 unit->offset_size = offset_size;
3454 unit->abbrevs = abbrevs;
3455 unit->end_ptr = end_ptr;
3456 unit->stash = stash;
3457 unit->info_ptr_unit = info_ptr_unit;
3458
3459 for (i = 0; i < abbrev->num_attrs; ++i)
3460 {
3461 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3462 if (info_ptr == NULL)
3463 return NULL;
3464
3465 /* Store the data if it is of an attribute we want to keep in a
3466 partial symbol table. */
3467 switch (attr.name)
3468 {
3469 case DW_AT_stmt_list:
3470 unit->stmtlist = 1;
3471 unit->line_offset = attr.u.val;
3472 break;
3473
3474 case DW_AT_name:
3475 if (is_str_attr (attr.form))
3476 unit->name = attr.u.str;
3477 break;
3478
3479 case DW_AT_low_pc:
3480 low_pc = attr.u.val;
3481 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3482 this is the base address to use when reading location
3483 lists or range lists. */
3484 if (abbrev->tag == DW_TAG_compile_unit)
3485 unit->base_address = low_pc;
3486 break;
3487
3488 case DW_AT_high_pc:
3489 high_pc = attr.u.val;
3490 high_pc_relative = attr.form != DW_FORM_addr;
3491 break;
3492
3493 case DW_AT_ranges:
3494 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3495 return NULL;
3496 break;
3497
3498 case DW_AT_comp_dir:
3499 {
3500 char *comp_dir = attr.u.str;
3501
3502 /* PR 17512: file: 1fe726be. */
3503 if (! is_str_attr (attr.form))
3504 {
3505 _bfd_error_handler
3506 (_("Dwarf Error: DW_AT_comp_dir attribute encountered with a non-string form."));
3507 comp_dir = NULL;
3508 }
3509
3510 if (comp_dir)
3511 {
3512 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3513 directory, get rid of it. */
3514 char *cp = strchr (comp_dir, ':');
3515
3516 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3517 comp_dir = cp + 1;
3518 }
3519 unit->comp_dir = comp_dir;
3520 break;
3521 }
3522
3523 case DW_AT_language:
3524 unit->lang = attr.u.val;
3525 break;
3526
3527 default:
3528 break;
3529 }
3530 }
3531 if (high_pc_relative)
3532 high_pc += low_pc;
3533 if (high_pc != 0)
3534 {
3535 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3536 return NULL;
3537 }
3538
3539 unit->first_child_die_ptr = info_ptr;
3540 return unit;
3541 }
3542
3543 /* Return TRUE if UNIT may contain the address given by ADDR. When
3544 there are functions written entirely with inline asm statements, the
3545 range info in the compilation unit header may not be correct. We
3546 need to consult the line info table to see if a compilation unit
3547 really contains the given address. */
3548
3549 static bfd_boolean
3550 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3551 {
3552 struct arange *arange;
3553
3554 if (unit->error)
3555 return FALSE;
3556
3557 arange = &unit->arange;
3558 do
3559 {
3560 if (addr >= arange->low && addr < arange->high)
3561 return TRUE;
3562 arange = arange->next;
3563 }
3564 while (arange);
3565
3566 return FALSE;
3567 }
3568
3569 /* If UNIT contains ADDR, set the output parameters to the values for
3570 the line containing ADDR. The output parameters, FILENAME_PTR,
3571 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3572 to be filled in.
3573
3574 Returns the range of addresses covered by the entry that was used
3575 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3576
3577 static bfd_vma
3578 comp_unit_find_nearest_line (struct comp_unit *unit,
3579 bfd_vma addr,
3580 const char **filename_ptr,
3581 struct funcinfo **function_ptr,
3582 unsigned int *linenumber_ptr,
3583 unsigned int *discriminator_ptr,
3584 struct dwarf2_debug *stash)
3585 {
3586 bfd_boolean func_p;
3587
3588 if (unit->error)
3589 return FALSE;
3590
3591 if (! unit->line_table)
3592 {
3593 if (! unit->stmtlist)
3594 {
3595 unit->error = 1;
3596 return FALSE;
3597 }
3598
3599 unit->line_table = decode_line_info (unit, stash);
3600
3601 if (! unit->line_table)
3602 {
3603 unit->error = 1;
3604 return FALSE;
3605 }
3606
3607 if (unit->first_child_die_ptr < unit->end_ptr
3608 && ! scan_unit_for_symbols (unit))
3609 {
3610 unit->error = 1;
3611 return FALSE;
3612 }
3613 }
3614
3615 *function_ptr = NULL;
3616 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3617 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3618 stash->inliner_chain = *function_ptr;
3619
3620 return lookup_address_in_line_info_table (unit->line_table, addr,
3621 filename_ptr,
3622 linenumber_ptr,
3623 discriminator_ptr);
3624 }
3625
3626 /* Check to see if line info is already decoded in a comp_unit.
3627 If not, decode it. Returns TRUE if no errors were encountered;
3628 FALSE otherwise. */
3629
3630 static bfd_boolean
3631 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3632 struct dwarf2_debug *stash)
3633 {
3634 if (unit->error)
3635 return FALSE;
3636
3637 if (! unit->line_table)
3638 {
3639 if (! unit->stmtlist)
3640 {
3641 unit->error = 1;
3642 return FALSE;
3643 }
3644
3645 unit->line_table = decode_line_info (unit, stash);
3646
3647 if (! unit->line_table)
3648 {
3649 unit->error = 1;
3650 return FALSE;
3651 }
3652
3653 if (unit->first_child_die_ptr < unit->end_ptr
3654 && ! scan_unit_for_symbols (unit))
3655 {
3656 unit->error = 1;
3657 return FALSE;
3658 }
3659 }
3660
3661 return TRUE;
3662 }
3663
3664 /* If UNIT contains SYM at ADDR, set the output parameters to the
3665 values for the line containing SYM. The output parameters,
3666 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3667 filled in.
3668
3669 Return TRUE if UNIT contains SYM, and no errors were encountered;
3670 FALSE otherwise. */
3671
3672 static bfd_boolean
3673 comp_unit_find_line (struct comp_unit *unit,
3674 asymbol *sym,
3675 bfd_vma addr,
3676 const char **filename_ptr,
3677 unsigned int *linenumber_ptr,
3678 struct dwarf2_debug *stash)
3679 {
3680 if (!comp_unit_maybe_decode_line_info (unit, stash))
3681 return FALSE;
3682
3683 if (sym->flags & BSF_FUNCTION)
3684 return lookup_symbol_in_function_table (unit, sym, addr,
3685 filename_ptr,
3686 linenumber_ptr);
3687
3688 return lookup_symbol_in_variable_table (unit, sym, addr,
3689 filename_ptr,
3690 linenumber_ptr);
3691 }
3692
3693 static struct funcinfo *
3694 reverse_funcinfo_list (struct funcinfo *head)
3695 {
3696 struct funcinfo *rhead;
3697 struct funcinfo *temp;
3698
3699 for (rhead = NULL; head; head = temp)
3700 {
3701 temp = head->prev_func;
3702 head->prev_func = rhead;
3703 rhead = head;
3704 }
3705 return rhead;
3706 }
3707
3708 static struct varinfo *
3709 reverse_varinfo_list (struct varinfo *head)
3710 {
3711 struct varinfo *rhead;
3712 struct varinfo *temp;
3713
3714 for (rhead = NULL; head; head = temp)
3715 {
3716 temp = head->prev_var;
3717 head->prev_var = rhead;
3718 rhead = head;
3719 }
3720 return rhead;
3721 }
3722
3723 /* Extract all interesting funcinfos and varinfos of a compilation
3724 unit into hash tables for faster lookup. Returns TRUE if no
3725 errors were enountered; FALSE otherwise. */
3726
3727 static bfd_boolean
3728 comp_unit_hash_info (struct dwarf2_debug *stash,
3729 struct comp_unit *unit,
3730 struct info_hash_table *funcinfo_hash_table,
3731 struct info_hash_table *varinfo_hash_table)
3732 {
3733 struct funcinfo* each_func;
3734 struct varinfo* each_var;
3735 bfd_boolean okay = TRUE;
3736
3737 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3738
3739 if (!comp_unit_maybe_decode_line_info (unit, stash))
3740 return FALSE;
3741
3742 BFD_ASSERT (!unit->cached);
3743
3744 /* To preserve the original search order, we went to visit the function
3745 infos in the reversed order of the list. However, making the list
3746 bi-directional use quite a bit of extra memory. So we reverse
3747 the list first, traverse the list in the now reversed order and
3748 finally reverse the list again to get back the original order. */
3749 unit->function_table = reverse_funcinfo_list (unit->function_table);
3750 for (each_func = unit->function_table;
3751 each_func && okay;
3752 each_func = each_func->prev_func)
3753 {
3754 /* Skip nameless functions. */
3755 if (each_func->name)
3756 /* There is no need to copy name string into hash table as
3757 name string is either in the dwarf string buffer or
3758 info in the stash. */
3759 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3760 (void*) each_func, FALSE);
3761 }
3762 unit->function_table = reverse_funcinfo_list (unit->function_table);
3763 if (!okay)
3764 return FALSE;
3765
3766 /* We do the same for variable infos. */
3767 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3768 for (each_var = unit->variable_table;
3769 each_var && okay;
3770 each_var = each_var->prev_var)
3771 {
3772 /* Skip stack vars and vars with no files or names. */
3773 if (each_var->stack == 0
3774 && each_var->file != NULL
3775 && each_var->name != NULL)
3776 /* There is no need to copy name string into hash table as
3777 name string is either in the dwarf string buffer or
3778 info in the stash. */
3779 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3780 (void*) each_var, FALSE);
3781 }
3782
3783 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3784 unit->cached = TRUE;
3785 return okay;
3786 }
3787
3788 /* Locate a section in a BFD containing debugging info. The search starts
3789 from the section after AFTER_SEC, or from the first section in the BFD if
3790 AFTER_SEC is NULL. The search works by examining the names of the
3791 sections. There are three permissiable names. The first two are given
3792 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3793 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3794 This is a variation on the .debug_info section which has a checksum
3795 describing the contents appended onto the name. This allows the linker to
3796 identify and discard duplicate debugging sections for different
3797 compilation units. */
3798 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3799
3800 static asection *
3801 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3802 asection *after_sec)
3803 {
3804 asection *msec;
3805 const char *look;
3806
3807 if (after_sec == NULL)
3808 {
3809 look = debug_sections[debug_info].uncompressed_name;
3810 msec = bfd_get_section_by_name (abfd, look);
3811 if (msec != NULL)
3812 return msec;
3813
3814 look = debug_sections[debug_info].compressed_name;
3815 if (look != NULL)
3816 {
3817 msec = bfd_get_section_by_name (abfd, look);
3818 if (msec != NULL)
3819 return msec;
3820 }
3821
3822 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3823 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3824 return msec;
3825
3826 return NULL;
3827 }
3828
3829 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3830 {
3831 look = debug_sections[debug_info].uncompressed_name;
3832 if (strcmp (msec->name, look) == 0)
3833 return msec;
3834
3835 look = debug_sections[debug_info].compressed_name;
3836 if (look != NULL && strcmp (msec->name, look) == 0)
3837 return msec;
3838
3839 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3840 return msec;
3841 }
3842
3843 return NULL;
3844 }
3845
3846 /* Transfer VMAs from object file to separate debug file. */
3847
3848 static void
3849 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3850 {
3851 asection *s, *d;
3852
3853 for (s = orig_bfd->sections, d = debug_bfd->sections;
3854 s != NULL && d != NULL;
3855 s = s->next, d = d->next)
3856 {
3857 if ((d->flags & SEC_DEBUGGING) != 0)
3858 break;
3859 /* ??? Assumes 1-1 correspondence between sections in the
3860 two files. */
3861 if (strcmp (s->name, d->name) == 0)
3862 {
3863 d->output_section = s->output_section;
3864 d->output_offset = s->output_offset;
3865 d->vma = s->vma;
3866 }
3867 }
3868 }
3869
3870 /* Unset vmas for adjusted sections in STASH. */
3871
3872 static void
3873 unset_sections (struct dwarf2_debug *stash)
3874 {
3875 int i;
3876 struct adjusted_section *p;
3877
3878 i = stash->adjusted_section_count;
3879 p = stash->adjusted_sections;
3880 for (; i > 0; i--, p++)
3881 p->section->vma = 0;
3882 }
3883
3884 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3885 relocatable object file. VMAs are normally all zero in relocatable
3886 object files, so if we want to distinguish locations in sections by
3887 address we need to set VMAs so the sections do not overlap. We
3888 also set VMA on .debug_info so that when we have multiple
3889 .debug_info sections (or the linkonce variant) they also do not
3890 overlap. The multiple .debug_info sections make up a single
3891 logical section. ??? We should probably do the same for other
3892 debug sections. */
3893
3894 static bfd_boolean
3895 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3896 {
3897 bfd *abfd;
3898 struct adjusted_section *p;
3899 int i;
3900 const char *debug_info_name;
3901
3902 if (stash->adjusted_section_count != 0)
3903 {
3904 i = stash->adjusted_section_count;
3905 p = stash->adjusted_sections;
3906 for (; i > 0; i--, p++)
3907 p->section->vma = p->adj_vma;
3908 return TRUE;
3909 }
3910
3911 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3912 i = 0;
3913 abfd = orig_bfd;
3914 while (1)
3915 {
3916 asection *sect;
3917
3918 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3919 {
3920 int is_debug_info;
3921
3922 if ((sect->output_section != NULL
3923 && sect->output_section != sect
3924 && (sect->flags & SEC_DEBUGGING) == 0)
3925 || sect->vma != 0)
3926 continue;
3927
3928 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3929 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3930
3931 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3932 && !is_debug_info)
3933 continue;
3934
3935 i++;
3936 }
3937 if (abfd == stash->bfd_ptr)
3938 break;
3939 abfd = stash->bfd_ptr;
3940 }
3941
3942 if (i <= 1)
3943 stash->adjusted_section_count = -1;
3944 else
3945 {
3946 bfd_vma last_vma = 0, last_dwarf = 0;
3947 bfd_size_type amt = i * sizeof (struct adjusted_section);
3948
3949 p = (struct adjusted_section *) bfd_malloc (amt);
3950 if (p == NULL)
3951 return FALSE;
3952
3953 stash->adjusted_sections = p;
3954 stash->adjusted_section_count = i;
3955
3956 abfd = orig_bfd;
3957 while (1)
3958 {
3959 asection *sect;
3960
3961 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3962 {
3963 bfd_size_type sz;
3964 int is_debug_info;
3965
3966 if ((sect->output_section != NULL
3967 && sect->output_section != sect
3968 && (sect->flags & SEC_DEBUGGING) == 0)
3969 || sect->vma != 0)
3970 continue;
3971
3972 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3973 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3974
3975 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3976 && !is_debug_info)
3977 continue;
3978
3979 sz = sect->rawsize ? sect->rawsize : sect->size;
3980
3981 if (is_debug_info)
3982 {
3983 BFD_ASSERT (sect->alignment_power == 0);
3984 sect->vma = last_dwarf;
3985 last_dwarf += sz;
3986 }
3987 else
3988 {
3989 /* Align the new address to the current section
3990 alignment. */
3991 last_vma = ((last_vma
3992 + ~(-((bfd_vma) 1 << sect->alignment_power)))
3993 & (-((bfd_vma) 1 << sect->alignment_power)));
3994 sect->vma = last_vma;
3995 last_vma += sz;
3996 }
3997
3998 p->section = sect;
3999 p->adj_vma = sect->vma;
4000 p++;
4001 }
4002 if (abfd == stash->bfd_ptr)
4003 break;
4004 abfd = stash->bfd_ptr;
4005 }
4006 }
4007
4008 if (orig_bfd != stash->bfd_ptr)
4009 set_debug_vma (orig_bfd, stash->bfd_ptr);
4010
4011 return TRUE;
4012 }
4013
4014 /* Look up a funcinfo by name using the given info hash table. If found,
4015 also update the locations pointed to by filename_ptr and linenumber_ptr.
4016
4017 This function returns TRUE if a funcinfo that matches the given symbol
4018 and address is found with any error; otherwise it returns FALSE. */
4019
4020 static bfd_boolean
4021 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4022 asymbol *sym,
4023 bfd_vma addr,
4024 const char **filename_ptr,
4025 unsigned int *linenumber_ptr)
4026 {
4027 struct funcinfo* each_func;
4028 struct funcinfo* best_fit = NULL;
4029 bfd_vma best_fit_len = 0;
4030 struct info_list_node *node;
4031 struct arange *arange;
4032 const char *name = bfd_asymbol_name (sym);
4033 asection *sec = bfd_get_section (sym);
4034
4035 for (node = lookup_info_hash_table (hash_table, name);
4036 node;
4037 node = node->next)
4038 {
4039 each_func = (struct funcinfo *) node->info;
4040 for (arange = &each_func->arange;
4041 arange;
4042 arange = arange->next)
4043 {
4044 if ((!each_func->sec || each_func->sec == sec)
4045 && addr >= arange->low
4046 && addr < arange->high
4047 && (!best_fit
4048 || arange->high - arange->low < best_fit_len))
4049 {
4050 best_fit = each_func;
4051 best_fit_len = arange->high - arange->low;
4052 }
4053 }
4054 }
4055
4056 if (best_fit)
4057 {
4058 best_fit->sec = sec;
4059 *filename_ptr = best_fit->file;
4060 *linenumber_ptr = best_fit->line;
4061 return TRUE;
4062 }
4063
4064 return FALSE;
4065 }
4066
4067 /* Look up a varinfo by name using the given info hash table. If found,
4068 also update the locations pointed to by filename_ptr and linenumber_ptr.
4069
4070 This function returns TRUE if a varinfo that matches the given symbol
4071 and address is found with any error; otherwise it returns FALSE. */
4072
4073 static bfd_boolean
4074 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4075 asymbol *sym,
4076 bfd_vma addr,
4077 const char **filename_ptr,
4078 unsigned int *linenumber_ptr)
4079 {
4080 const char *name = bfd_asymbol_name (sym);
4081 asection *sec = bfd_get_section (sym);
4082 struct varinfo* each;
4083 struct info_list_node *node;
4084
4085 for (node = lookup_info_hash_table (hash_table, name);
4086 node;
4087 node = node->next)
4088 {
4089 each = (struct varinfo *) node->info;
4090 if (each->addr == addr
4091 && (!each->sec || each->sec == sec))
4092 {
4093 each->sec = sec;
4094 *filename_ptr = each->file;
4095 *linenumber_ptr = each->line;
4096 return TRUE;
4097 }
4098 }
4099
4100 return FALSE;
4101 }
4102
4103 /* Update the funcinfo and varinfo info hash tables if they are
4104 not up to date. Returns TRUE if there is no error; otherwise
4105 returns FALSE and disable the info hash tables. */
4106
4107 static bfd_boolean
4108 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4109 {
4110 struct comp_unit *each;
4111
4112 /* Exit if hash tables are up-to-date. */
4113 if (stash->all_comp_units == stash->hash_units_head)
4114 return TRUE;
4115
4116 if (stash->hash_units_head)
4117 each = stash->hash_units_head->prev_unit;
4118 else
4119 each = stash->last_comp_unit;
4120
4121 while (each)
4122 {
4123 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4124 stash->varinfo_hash_table))
4125 {
4126 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4127 return FALSE;
4128 }
4129 each = each->prev_unit;
4130 }
4131
4132 stash->hash_units_head = stash->all_comp_units;
4133 return TRUE;
4134 }
4135
4136 /* Check consistency of info hash tables. This is for debugging only. */
4137
4138 static void ATTRIBUTE_UNUSED
4139 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4140 {
4141 struct comp_unit *each_unit;
4142 struct funcinfo *each_func;
4143 struct varinfo *each_var;
4144 struct info_list_node *node;
4145 bfd_boolean found;
4146
4147 for (each_unit = stash->all_comp_units;
4148 each_unit;
4149 each_unit = each_unit->next_unit)
4150 {
4151 for (each_func = each_unit->function_table;
4152 each_func;
4153 each_func = each_func->prev_func)
4154 {
4155 if (!each_func->name)
4156 continue;
4157 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4158 each_func->name);
4159 BFD_ASSERT (node);
4160 found = FALSE;
4161 while (node && !found)
4162 {
4163 found = node->info == each_func;
4164 node = node->next;
4165 }
4166 BFD_ASSERT (found);
4167 }
4168
4169 for (each_var = each_unit->variable_table;
4170 each_var;
4171 each_var = each_var->prev_var)
4172 {
4173 if (!each_var->name || !each_var->file || each_var->stack)
4174 continue;
4175 node = lookup_info_hash_table (stash->varinfo_hash_table,
4176 each_var->name);
4177 BFD_ASSERT (node);
4178 found = FALSE;
4179 while (node && !found)
4180 {
4181 found = node->info == each_var;
4182 node = node->next;
4183 }
4184 BFD_ASSERT (found);
4185 }
4186 }
4187 }
4188
4189 /* Check to see if we want to enable the info hash tables, which consume
4190 quite a bit of memory. Currently we only check the number times
4191 bfd_dwarf2_find_line is called. In the future, we may also want to
4192 take the number of symbols into account. */
4193
4194 static void
4195 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4196 {
4197 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4198
4199 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4200 return;
4201
4202 /* FIXME: Maybe we should check the reduce_memory_overheads
4203 and optimize fields in the bfd_link_info structure ? */
4204
4205 /* Create hash tables. */
4206 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4207 stash->varinfo_hash_table = create_info_hash_table (abfd);
4208 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4209 {
4210 /* Turn off info hashes if any allocation above fails. */
4211 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4212 return;
4213 }
4214 /* We need a forced update so that the info hash tables will
4215 be created even though there is no compilation unit. That
4216 happens if STASH_INFO_HASH_TRIGGER is 0. */
4217 stash_maybe_update_info_hash_tables (stash);
4218 stash->info_hash_status = STASH_INFO_HASH_ON;
4219 }
4220
4221 /* Find the file and line associated with a symbol and address using the
4222 info hash tables of a stash. If there is a match, the function returns
4223 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4224 otherwise it returns FALSE. */
4225
4226 static bfd_boolean
4227 stash_find_line_fast (struct dwarf2_debug *stash,
4228 asymbol *sym,
4229 bfd_vma addr,
4230 const char **filename_ptr,
4231 unsigned int *linenumber_ptr)
4232 {
4233 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4234
4235 if (sym->flags & BSF_FUNCTION)
4236 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4237 filename_ptr, linenumber_ptr);
4238 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4239 filename_ptr, linenumber_ptr);
4240 }
4241
4242 /* Save current section VMAs. */
4243
4244 static bfd_boolean
4245 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4246 {
4247 asection *s;
4248 unsigned int i;
4249
4250 if (abfd->section_count == 0)
4251 return TRUE;
4252 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4253 if (stash->sec_vma == NULL)
4254 return FALSE;
4255 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4256 {
4257 if (s->output_section != NULL)
4258 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4259 else
4260 stash->sec_vma[i] = s->vma;
4261 }
4262 return TRUE;
4263 }
4264
4265 /* Compare current section VMAs against those at the time the stash
4266 was created. If find_nearest_line is used in linker warnings or
4267 errors early in the link process, the debug info stash will be
4268 invalid for later calls. This is because we relocate debug info
4269 sections, so the stashed section contents depend on symbol values,
4270 which in turn depend on section VMAs. */
4271
4272 static bfd_boolean
4273 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4274 {
4275 asection *s;
4276 unsigned int i;
4277
4278 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4279 {
4280 bfd_vma vma;
4281
4282 if (s->output_section != NULL)
4283 vma = s->output_section->vma + s->output_offset;
4284 else
4285 vma = s->vma;
4286 if (vma != stash->sec_vma[i])
4287 return FALSE;
4288 }
4289 return TRUE;
4290 }
4291
4292 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4293 If DEBUG_BFD is not specified, we read debug information from ABFD
4294 or its gnu_debuglink. The results will be stored in PINFO.
4295 The function returns TRUE iff debug information is ready. */
4296
4297 bfd_boolean
4298 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4299 const struct dwarf_debug_section *debug_sections,
4300 asymbol **symbols,
4301 void **pinfo,
4302 bfd_boolean do_place)
4303 {
4304 bfd_size_type amt = sizeof (struct dwarf2_debug);
4305 bfd_size_type total_size;
4306 asection *msec;
4307 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4308
4309 if (stash != NULL)
4310 {
4311 if (stash->orig_bfd == abfd
4312 && section_vma_same (abfd, stash))
4313 {
4314 /* Check that we did previously find some debug information
4315 before attempting to make use of it. */
4316 if (stash->bfd_ptr != NULL)
4317 {
4318 if (do_place && !place_sections (abfd, stash))
4319 return FALSE;
4320 return TRUE;
4321 }
4322
4323 return FALSE;
4324 }
4325 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4326 memset (stash, 0, amt);
4327 }
4328 else
4329 {
4330 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4331 if (! stash)
4332 return FALSE;
4333 }
4334 stash->orig_bfd = abfd;
4335 stash->debug_sections = debug_sections;
4336 stash->syms = symbols;
4337 if (!save_section_vma (abfd, stash))
4338 return FALSE;
4339
4340 *pinfo = stash;
4341
4342 if (debug_bfd == NULL)
4343 debug_bfd = abfd;
4344
4345 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4346 if (msec == NULL && abfd == debug_bfd)
4347 {
4348 char * debug_filename;
4349
4350 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4351 if (debug_filename == NULL)
4352 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4353
4354 if (debug_filename == NULL)
4355 /* No dwarf2 info, and no gnu_debuglink to follow.
4356 Note that at this point the stash has been allocated, but
4357 contains zeros. This lets future calls to this function
4358 fail more quickly. */
4359 return FALSE;
4360
4361 /* Set BFD_DECOMPRESS to decompress debug sections. */
4362 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
4363 || !(debug_bfd->flags |= BFD_DECOMPRESS,
4364 bfd_check_format (debug_bfd, bfd_object))
4365 || (msec = find_debug_info (debug_bfd,
4366 debug_sections, NULL)) == NULL
4367 || !bfd_generic_link_read_symbols (debug_bfd))
4368 {
4369 if (debug_bfd)
4370 bfd_close (debug_bfd);
4371 /* FIXME: Should we report our failure to follow the debuglink ? */
4372 free (debug_filename);
4373 return FALSE;
4374 }
4375
4376 symbols = bfd_get_outsymbols (debug_bfd);
4377 stash->syms = symbols;
4378 stash->close_on_cleanup = TRUE;
4379 }
4380 stash->bfd_ptr = debug_bfd;
4381
4382 if (do_place
4383 && !place_sections (abfd, stash))
4384 return FALSE;
4385
4386 /* There can be more than one DWARF2 info section in a BFD these
4387 days. First handle the easy case when there's only one. If
4388 there's more than one, try case two: none of the sections is
4389 compressed. In that case, read them all in and produce one
4390 large stash. We do this in two passes - in the first pass we
4391 just accumulate the section sizes, and in the second pass we
4392 read in the section's contents. (The allows us to avoid
4393 reallocing the data as we add sections to the stash.) If
4394 some or all sections are compressed, then do things the slow
4395 way, with a bunch of reallocs. */
4396
4397 if (! find_debug_info (debug_bfd, debug_sections, msec))
4398 {
4399 /* Case 1: only one info section. */
4400 total_size = msec->size;
4401 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4402 symbols, 0,
4403 &stash->info_ptr_memory, &total_size))
4404 return FALSE;
4405 }
4406 else
4407 {
4408 /* Case 2: multiple sections. */
4409 for (total_size = 0;
4410 msec;
4411 msec = find_debug_info (debug_bfd, debug_sections, msec))
4412 total_size += msec->size;
4413
4414 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4415 if (stash->info_ptr_memory == NULL)
4416 return FALSE;
4417
4418 total_size = 0;
4419 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4420 msec;
4421 msec = find_debug_info (debug_bfd, debug_sections, msec))
4422 {
4423 bfd_size_type size;
4424
4425 size = msec->size;
4426 if (size == 0)
4427 continue;
4428
4429 if (!(bfd_simple_get_relocated_section_contents
4430 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4431 symbols)))
4432 return FALSE;
4433
4434 total_size += size;
4435 }
4436 }
4437
4438 stash->info_ptr = stash->info_ptr_memory;
4439 stash->info_ptr_end = stash->info_ptr + total_size;
4440 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4441 stash->sec_info_ptr = stash->info_ptr;
4442 return TRUE;
4443 }
4444
4445 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4446 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4447 symbol in SYMBOLS and return the difference between the low_pc and
4448 the symbol's address. Returns 0 if no suitable symbol could be found. */
4449
4450 bfd_signed_vma
4451 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4452 {
4453 struct dwarf2_debug *stash;
4454 struct comp_unit * unit;
4455
4456 stash = (struct dwarf2_debug *) *pinfo;
4457
4458 if (stash == NULL)
4459 return 0;
4460
4461 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4462 {
4463 struct funcinfo * func;
4464
4465 if (unit->function_table == NULL)
4466 {
4467 if (unit->line_table == NULL)
4468 unit->line_table = decode_line_info (unit, stash);
4469 if (unit->line_table != NULL)
4470 scan_unit_for_symbols (unit);
4471 }
4472
4473 for (func = unit->function_table; func != NULL; func = func->prev_func)
4474 if (func->name && func->arange.low)
4475 {
4476 asymbol ** psym;
4477
4478 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4479
4480 for (psym = symbols; * psym != NULL; psym++)
4481 {
4482 asymbol * sym = * psym;
4483
4484 if (sym->flags & BSF_FUNCTION
4485 && sym->section != NULL
4486 && strcmp (sym->name, func->name) == 0)
4487 return ((bfd_signed_vma) func->arange.low) -
4488 ((bfd_signed_vma) (sym->value + sym->section->vma));
4489 }
4490 }
4491 }
4492
4493 return 0;
4494 }
4495
4496 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4497 then find the nearest source code location corresponding to
4498 the address SECTION + OFFSET.
4499 Returns TRUE if the line is found without error and fills in
4500 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4501 NULL the FUNCTIONNAME_PTR is also filled in.
4502 SYMBOLS contains the symbol table for ABFD.
4503 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4504 ADDR_SIZE is the number of bytes in the initial .debug_info length
4505 field and in the abbreviation offset, or zero to indicate that the
4506 default value should be used. */
4507
4508 bfd_boolean
4509 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4510 asymbol **symbols,
4511 asymbol *symbol,
4512 asection *section,
4513 bfd_vma offset,
4514 const char **filename_ptr,
4515 const char **functionname_ptr,
4516 unsigned int *linenumber_ptr,
4517 unsigned int *discriminator_ptr,
4518 const struct dwarf_debug_section *debug_sections,
4519 unsigned int addr_size,
4520 void **pinfo)
4521 {
4522 /* Read each compilation unit from the section .debug_info, and check
4523 to see if it contains the address we are searching for. If yes,
4524 lookup the address, and return the line number info. If no, go
4525 on to the next compilation unit.
4526
4527 We keep a list of all the previously read compilation units, and
4528 a pointer to the next un-read compilation unit. Check the
4529 previously read units before reading more. */
4530 struct dwarf2_debug *stash;
4531 /* What address are we looking for? */
4532 bfd_vma addr;
4533 struct comp_unit* each;
4534 struct funcinfo *function = NULL;
4535 bfd_boolean found = FALSE;
4536 bfd_boolean do_line;
4537
4538 *filename_ptr = NULL;
4539 if (functionname_ptr != NULL)
4540 *functionname_ptr = NULL;
4541 *linenumber_ptr = 0;
4542 if (discriminator_ptr)
4543 *discriminator_ptr = 0;
4544
4545 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4546 symbols, pinfo,
4547 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4548 return FALSE;
4549
4550 stash = (struct dwarf2_debug *) *pinfo;
4551
4552 do_line = symbol != NULL;
4553 if (do_line)
4554 {
4555 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4556 section = bfd_get_section (symbol);
4557 addr = symbol->value;
4558 }
4559 else
4560 {
4561 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4562 addr = offset;
4563
4564 /* If we have no SYMBOL but the section we're looking at is not a
4565 code section, then take a look through the list of symbols to see
4566 if we have a symbol at the address we're looking for. If we do
4567 then use this to look up line information. This will allow us to
4568 give file and line results for data symbols. We exclude code
4569 symbols here, if we look up a function symbol and then look up the
4570 line information we'll actually return the line number for the
4571 opening '{' rather than the function definition line. This is
4572 because looking up by symbol uses the line table, in which the
4573 first line for a function is usually the opening '{', while
4574 looking up the function by section + offset uses the
4575 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4576 which will be the line of the function name. */
4577 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4578 {
4579 asymbol **tmp;
4580
4581 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4582 if ((*tmp)->the_bfd == abfd
4583 && (*tmp)->section == section
4584 && (*tmp)->value == offset
4585 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4586 {
4587 symbol = *tmp;
4588 do_line = TRUE;
4589 /* For local symbols, keep going in the hope we find a
4590 global. */
4591 if ((symbol->flags & BSF_GLOBAL) != 0)
4592 break;
4593 }
4594 }
4595 }
4596
4597 if (section->output_section)
4598 addr += section->output_section->vma + section->output_offset;
4599 else
4600 addr += section->vma;
4601
4602 /* A null info_ptr indicates that there is no dwarf2 info
4603 (or that an error occured while setting up the stash). */
4604 if (! stash->info_ptr)
4605 return FALSE;
4606
4607 stash->inliner_chain = NULL;
4608
4609 /* Check the previously read comp. units first. */
4610 if (do_line)
4611 {
4612 /* The info hash tables use quite a bit of memory. We may not want to
4613 always use them. We use some heuristics to decide if and when to
4614 turn it on. */
4615 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4616 stash_maybe_enable_info_hash_tables (abfd, stash);
4617
4618 /* Keep info hash table up to date if they are available. Note that we
4619 may disable the hash tables if there is any error duing update. */
4620 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4621 stash_maybe_update_info_hash_tables (stash);
4622
4623 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4624 {
4625 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4626 linenumber_ptr);
4627 if (found)
4628 goto done;
4629 }
4630 else
4631 {
4632 /* Check the previously read comp. units first. */
4633 for (each = stash->all_comp_units; each; each = each->next_unit)
4634 if ((symbol->flags & BSF_FUNCTION) == 0
4635 || each->arange.high == 0
4636 || comp_unit_contains_address (each, addr))
4637 {
4638 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4639 linenumber_ptr, stash);
4640 if (found)
4641 goto done;
4642 }
4643 }
4644 }
4645 else
4646 {
4647 bfd_vma min_range = (bfd_vma) -1;
4648 const char * local_filename = NULL;
4649 struct funcinfo *local_function = NULL;
4650 unsigned int local_linenumber = 0;
4651 unsigned int local_discriminator = 0;
4652
4653 for (each = stash->all_comp_units; each; each = each->next_unit)
4654 {
4655 bfd_vma range = (bfd_vma) -1;
4656
4657 found = ((each->arange.high == 0
4658 || comp_unit_contains_address (each, addr))
4659 && (range = comp_unit_find_nearest_line (each, addr,
4660 & local_filename,
4661 & local_function,
4662 & local_linenumber,
4663 & local_discriminator,
4664 stash)) != 0);
4665 if (found)
4666 {
4667 /* PRs 15935 15994: Bogus debug information may have provided us
4668 with an erroneous match. We attempt to counter this by
4669 selecting the match that has the smallest address range
4670 associated with it. (We are assuming that corrupt debug info
4671 will tend to result in extra large address ranges rather than
4672 extra small ranges).
4673
4674 This does mean that we scan through all of the CUs associated
4675 with the bfd each time this function is called. But this does
4676 have the benefit of producing consistent results every time the
4677 function is called. */
4678 if (range <= min_range)
4679 {
4680 if (filename_ptr && local_filename)
4681 * filename_ptr = local_filename;
4682 if (local_function)
4683 function = local_function;
4684 if (discriminator_ptr && local_discriminator)
4685 * discriminator_ptr = local_discriminator;
4686 if (local_linenumber)
4687 * linenumber_ptr = local_linenumber;
4688 min_range = range;
4689 }
4690 }
4691 }
4692
4693 if (* linenumber_ptr)
4694 {
4695 found = TRUE;
4696 goto done;
4697 }
4698 }
4699
4700 /* The DWARF2 spec says that the initial length field, and the
4701 offset of the abbreviation table, should both be 4-byte values.
4702 However, some compilers do things differently. */
4703 if (addr_size == 0)
4704 addr_size = 4;
4705 BFD_ASSERT (addr_size == 4 || addr_size == 8);
4706
4707 /* Read each remaining comp. units checking each as they are read. */
4708 while (stash->info_ptr < stash->info_ptr_end)
4709 {
4710 bfd_vma length;
4711 unsigned int offset_size = addr_size;
4712 bfd_byte *info_ptr_unit = stash->info_ptr;
4713
4714 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4715 /* A 0xffffff length is the DWARF3 way of indicating
4716 we use 64-bit offsets, instead of 32-bit offsets. */
4717 if (length == 0xffffffff)
4718 {
4719 offset_size = 8;
4720 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4721 stash->info_ptr += 12;
4722 }
4723 /* A zero length is the IRIX way of indicating 64-bit offsets,
4724 mostly because the 64-bit length will generally fit in 32
4725 bits, and the endianness helps. */
4726 else if (length == 0)
4727 {
4728 offset_size = 8;
4729 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4730 stash->info_ptr += 8;
4731 }
4732 /* In the absence of the hints above, we assume 32-bit DWARF2
4733 offsets even for targets with 64-bit addresses, because:
4734 a) most of the time these targets will not have generated
4735 more than 2Gb of debug info and so will not need 64-bit
4736 offsets,
4737 and
4738 b) if they do use 64-bit offsets but they are not using
4739 the size hints that are tested for above then they are
4740 not conforming to the DWARF3 standard anyway. */
4741 else if (addr_size == 8)
4742 {
4743 offset_size = 4;
4744 stash->info_ptr += 4;
4745 }
4746 else
4747 stash->info_ptr += 4;
4748
4749 if (length > 0)
4750 {
4751 bfd_byte * new_ptr;
4752
4753 /* PR 21151 */
4754 if (stash->info_ptr + length > stash->info_ptr_end)
4755 return FALSE;
4756
4757 each = parse_comp_unit (stash, length, info_ptr_unit,
4758 offset_size);
4759 if (!each)
4760 /* The dwarf information is damaged, don't trust it any
4761 more. */
4762 break;
4763
4764 new_ptr = stash->info_ptr + length;
4765 /* PR 17512: file: 1500698c. */
4766 if (new_ptr < stash->info_ptr)
4767 {
4768 /* A corrupt length value - do not trust the info any more. */
4769 found = FALSE;
4770 break;
4771 }
4772 else
4773 stash->info_ptr = new_ptr;
4774
4775 if (stash->all_comp_units)
4776 stash->all_comp_units->prev_unit = each;
4777 else
4778 stash->last_comp_unit = each;
4779
4780 each->next_unit = stash->all_comp_units;
4781 stash->all_comp_units = each;
4782
4783 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4784 compilation units. If we don't have them (i.e.,
4785 unit->high == 0), we need to consult the line info table
4786 to see if a compilation unit contains the given
4787 address. */
4788 if (do_line)
4789 found = (((symbol->flags & BSF_FUNCTION) == 0
4790 || each->arange.high == 0
4791 || comp_unit_contains_address (each, addr))
4792 && comp_unit_find_line (each, symbol, addr,
4793 filename_ptr,
4794 linenumber_ptr,
4795 stash));
4796 else
4797 found = ((each->arange.high == 0
4798 || comp_unit_contains_address (each, addr))
4799 && comp_unit_find_nearest_line (each, addr,
4800 filename_ptr,
4801 &function,
4802 linenumber_ptr,
4803 discriminator_ptr,
4804 stash) != 0);
4805
4806 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4807 == stash->sec->size)
4808 {
4809 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4810 stash->sec);
4811 stash->sec_info_ptr = stash->info_ptr;
4812 }
4813
4814 if (found)
4815 goto done;
4816 }
4817 }
4818
4819 done:
4820 if (function)
4821 {
4822 if (!function->is_linkage)
4823 {
4824 asymbol *fun;
4825 bfd_vma sec_vma;
4826
4827 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4828 *filename_ptr ? NULL : filename_ptr,
4829 functionname_ptr);
4830 sec_vma = section->vma;
4831 if (section->output_section != NULL)
4832 sec_vma = section->output_section->vma + section->output_offset;
4833 if (fun != NULL
4834 && fun->value + sec_vma == function->arange.low)
4835 function->name = *functionname_ptr;
4836 /* Even if we didn't find a linkage name, say that we have
4837 to stop a repeated search of symbols. */
4838 function->is_linkage = TRUE;
4839 }
4840 *functionname_ptr = function->name;
4841 }
4842 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4843 unset_sections (stash);
4844
4845 return found;
4846 }
4847
4848 bfd_boolean
4849 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4850 const char **filename_ptr,
4851 const char **functionname_ptr,
4852 unsigned int *linenumber_ptr,
4853 void **pinfo)
4854 {
4855 struct dwarf2_debug *stash;
4856
4857 stash = (struct dwarf2_debug *) *pinfo;
4858 if (stash)
4859 {
4860 struct funcinfo *func = stash->inliner_chain;
4861
4862 if (func && func->caller_func)
4863 {
4864 *filename_ptr = func->caller_file;
4865 *functionname_ptr = func->caller_func->name;
4866 *linenumber_ptr = func->caller_line;
4867 stash->inliner_chain = func->caller_func;
4868 return TRUE;
4869 }
4870 }
4871
4872 return FALSE;
4873 }
4874
4875 void
4876 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4877 {
4878 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4879 struct comp_unit *each;
4880
4881 if (abfd == NULL || stash == NULL)
4882 return;
4883
4884 for (each = stash->all_comp_units; each; each = each->next_unit)
4885 {
4886 struct abbrev_info **abbrevs = each->abbrevs;
4887 struct funcinfo *function_table = each->function_table;
4888 struct varinfo *variable_table = each->variable_table;
4889 size_t i;
4890
4891 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4892 {
4893 struct abbrev_info *abbrev = abbrevs[i];
4894
4895 while (abbrev)
4896 {
4897 free (abbrev->attrs);
4898 abbrev = abbrev->next;
4899 }
4900 }
4901
4902 if (each->line_table)
4903 {
4904 free (each->line_table->dirs);
4905 free (each->line_table->files);
4906 }
4907
4908 while (function_table)
4909 {
4910 if (function_table->file)
4911 {
4912 free (function_table->file);
4913 function_table->file = NULL;
4914 }
4915
4916 if (function_table->caller_file)
4917 {
4918 free (function_table->caller_file);
4919 function_table->caller_file = NULL;
4920 }
4921 function_table = function_table->prev_func;
4922 }
4923
4924 if (each->lookup_funcinfo_table)
4925 {
4926 free (each->lookup_funcinfo_table);
4927 each->lookup_funcinfo_table = NULL;
4928 }
4929
4930 while (variable_table)
4931 {
4932 if (variable_table->file)
4933 {
4934 free (variable_table->file);
4935 variable_table->file = NULL;
4936 }
4937
4938 variable_table = variable_table->prev_var;
4939 }
4940 }
4941
4942 if (stash->funcinfo_hash_table)
4943 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
4944 if (stash->varinfo_hash_table)
4945 bfd_hash_table_free (&stash->varinfo_hash_table->base);
4946 if (stash->dwarf_abbrev_buffer)
4947 free (stash->dwarf_abbrev_buffer);
4948 if (stash->dwarf_line_buffer)
4949 free (stash->dwarf_line_buffer);
4950 if (stash->dwarf_str_buffer)
4951 free (stash->dwarf_str_buffer);
4952 if (stash->dwarf_line_str_buffer)
4953 free (stash->dwarf_line_str_buffer);
4954 if (stash->dwarf_ranges_buffer)
4955 free (stash->dwarf_ranges_buffer);
4956 if (stash->info_ptr_memory)
4957 free (stash->info_ptr_memory);
4958 if (stash->close_on_cleanup)
4959 bfd_close (stash->bfd_ptr);
4960 if (stash->alt_dwarf_str_buffer)
4961 free (stash->alt_dwarf_str_buffer);
4962 if (stash->alt_dwarf_info_buffer)
4963 free (stash->alt_dwarf_info_buffer);
4964 if (stash->sec_vma)
4965 free (stash->sec_vma);
4966 if (stash->adjusted_sections)
4967 free (stash->adjusted_sections);
4968 if (stash->alt_bfd_ptr)
4969 bfd_close (stash->alt_bfd_ptr);
4970 }
4971
4972 /* Find the function to a particular section and offset,
4973 for error reporting. */
4974
4975 asymbol *
4976 _bfd_elf_find_function (bfd *abfd,
4977 asymbol **symbols,
4978 asection *section,
4979 bfd_vma offset,
4980 const char **filename_ptr,
4981 const char **functionname_ptr)
4982 {
4983 struct elf_find_function_cache
4984 {
4985 asection *last_section;
4986 asymbol *func;
4987 const char *filename;
4988 bfd_size_type func_size;
4989 } *cache;
4990
4991 if (symbols == NULL)
4992 return NULL;
4993
4994 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
4995 return NULL;
4996
4997 cache = elf_tdata (abfd)->elf_find_function_cache;
4998 if (cache == NULL)
4999 {
5000 cache = bfd_zalloc (abfd, sizeof (*cache));
5001 elf_tdata (abfd)->elf_find_function_cache = cache;
5002 if (cache == NULL)
5003 return NULL;
5004 }
5005 if (cache->last_section != section
5006 || cache->func == NULL
5007 || offset < cache->func->value
5008 || offset >= cache->func->value + cache->func_size)
5009 {
5010 asymbol *file;
5011 bfd_vma low_func;
5012 asymbol **p;
5013 /* ??? Given multiple file symbols, it is impossible to reliably
5014 choose the right file name for global symbols. File symbols are
5015 local symbols, and thus all file symbols must sort before any
5016 global symbols. The ELF spec may be interpreted to say that a
5017 file symbol must sort before other local symbols, but currently
5018 ld -r doesn't do this. So, for ld -r output, it is possible to
5019 make a better choice of file name for local symbols by ignoring
5020 file symbols appearing after a given local symbol. */
5021 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5022 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5023
5024 file = NULL;
5025 low_func = 0;
5026 state = nothing_seen;
5027 cache->filename = NULL;
5028 cache->func = NULL;
5029 cache->func_size = 0;
5030 cache->last_section = section;
5031
5032 for (p = symbols; *p != NULL; p++)
5033 {
5034 asymbol *sym = *p;
5035 bfd_vma code_off;
5036 bfd_size_type size;
5037
5038 if ((sym->flags & BSF_FILE) != 0)
5039 {
5040 file = sym;
5041 if (state == symbol_seen)
5042 state = file_after_symbol_seen;
5043 continue;
5044 }
5045
5046 size = bed->maybe_function_sym (sym, section, &code_off);
5047 if (size != 0
5048 && code_off <= offset
5049 && (code_off > low_func
5050 || (code_off == low_func
5051 && size > cache->func_size)))
5052 {
5053 cache->func = sym;
5054 cache->func_size = size;
5055 cache->filename = NULL;
5056 low_func = code_off;
5057 if (file != NULL
5058 && ((sym->flags & BSF_LOCAL) != 0
5059 || state != file_after_symbol_seen))
5060 cache->filename = bfd_asymbol_name (file);
5061 }
5062 if (state == nothing_seen)
5063 state = symbol_seen;
5064 }
5065 }
5066
5067 if (cache->func == NULL)
5068 return NULL;
5069
5070 if (filename_ptr)
5071 *filename_ptr = cache->filename;
5072 if (functionname_ptr)
5073 *functionname_ptr = bfd_asymbol_name (cache->func);
5074
5075 return cache->func;
5076 }
This page took 0.129089 seconds and 5 git commands to generate.