This fixes a typo in a previous commit.
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2014 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the bfd, section and address of the beginning of the
104 section. The bfd might be different than expected because of
105 gnu_debuglink sections. */
106 bfd *bfd_ptr;
107 asection *sec;
108 bfd_byte *sec_info_ptr;
109
110 /* Support for alternate debug info sections created by the DWZ utility:
111 This includes a pointer to an alternate bfd which contains *extra*,
112 possibly duplicate debug sections, and pointers to the loaded
113 .debug_str and .debug_info sections from this bfd. */
114 bfd * alt_bfd_ptr;
115 bfd_byte * alt_dwarf_str_buffer;
116 bfd_size_type alt_dwarf_str_size;
117 bfd_byte * alt_dwarf_info_buffer;
118 bfd_size_type alt_dwarf_info_size;
119
120 /* A pointer to the memory block allocated for info_ptr. Neither
121 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
122 beginning of the malloc block. This is used only to free the
123 memory later. */
124 bfd_byte *info_ptr_memory;
125
126 /* Pointer to the symbol table. */
127 asymbol **syms;
128
129 /* Pointer to the .debug_abbrev section loaded into memory. */
130 bfd_byte *dwarf_abbrev_buffer;
131
132 /* Length of the loaded .debug_abbrev section. */
133 bfd_size_type dwarf_abbrev_size;
134
135 /* Buffer for decode_line_info. */
136 bfd_byte *dwarf_line_buffer;
137
138 /* Length of the loaded .debug_line section. */
139 bfd_size_type dwarf_line_size;
140
141 /* Pointer to the .debug_str section loaded into memory. */
142 bfd_byte *dwarf_str_buffer;
143
144 /* Length of the loaded .debug_str section. */
145 bfd_size_type dwarf_str_size;
146
147 /* Pointer to the .debug_ranges section loaded into memory. */
148 bfd_byte *dwarf_ranges_buffer;
149
150 /* Length of the loaded .debug_ranges section. */
151 bfd_size_type dwarf_ranges_size;
152
153 /* If the most recent call to bfd_find_nearest_line was given an
154 address in an inlined function, preserve a pointer into the
155 calling chain for subsequent calls to bfd_find_inliner_info to
156 use. */
157 struct funcinfo *inliner_chain;
158
159 /* Section VMAs at the time the stash was built. */
160 bfd_vma *sec_vma;
161
162 /* Number of sections whose VMA we must adjust. */
163 int adjusted_section_count;
164
165 /* Array of sections with adjusted VMA. */
166 struct adjusted_section *adjusted_sections;
167
168 /* Number of times find_line is called. This is used in
169 the heuristic for enabling the info hash tables. */
170 int info_hash_count;
171
172 #define STASH_INFO_HASH_TRIGGER 100
173
174 /* Hash table mapping symbol names to function infos. */
175 struct info_hash_table *funcinfo_hash_table;
176
177 /* Hash table mapping symbol names to variable infos. */
178 struct info_hash_table *varinfo_hash_table;
179
180 /* Head of comp_unit list in the last hash table update. */
181 struct comp_unit *hash_units_head;
182
183 /* Status of info hash. */
184 int info_hash_status;
185 #define STASH_INFO_HASH_OFF 0
186 #define STASH_INFO_HASH_ON 1
187 #define STASH_INFO_HASH_DISABLED 2
188
189 /* True if we opened bfd_ptr. */
190 bfd_boolean close_on_cleanup;
191 };
192
193 struct arange
194 {
195 struct arange *next;
196 bfd_vma low;
197 bfd_vma high;
198 };
199
200 /* A minimal decoding of DWARF2 compilation units. We only decode
201 what's needed to get to the line number information. */
202
203 struct comp_unit
204 {
205 /* Chain the previously read compilation units. */
206 struct comp_unit *next_unit;
207
208 /* Likewise, chain the compilation unit read after this one.
209 The comp units are stored in reversed reading order. */
210 struct comp_unit *prev_unit;
211
212 /* Keep the bfd convenient (for memory allocation). */
213 bfd *abfd;
214
215 /* The lowest and highest addresses contained in this compilation
216 unit as specified in the compilation unit header. */
217 struct arange arange;
218
219 /* The DW_AT_name attribute (for error messages). */
220 char *name;
221
222 /* The abbrev hash table. */
223 struct abbrev_info **abbrevs;
224
225 /* Note that an error was found by comp_unit_find_nearest_line. */
226 int error;
227
228 /* The DW_AT_comp_dir attribute. */
229 char *comp_dir;
230
231 /* TRUE if there is a line number table associated with this comp. unit. */
232 int stmtlist;
233
234 /* Pointer to the current comp_unit so that we can find a given entry
235 by its reference. */
236 bfd_byte *info_ptr_unit;
237
238 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */
239 bfd_byte *sec_info_ptr;
240
241 /* The offset into .debug_line of the line number table. */
242 unsigned long line_offset;
243
244 /* Pointer to the first child die for the comp unit. */
245 bfd_byte *first_child_die_ptr;
246
247 /* The end of the comp unit. */
248 bfd_byte *end_ptr;
249
250 /* The decoded line number, NULL if not yet decoded. */
251 struct line_info_table *line_table;
252
253 /* A list of the functions found in this comp. unit. */
254 struct funcinfo *function_table;
255
256 /* A list of the variables found in this comp. unit. */
257 struct varinfo *variable_table;
258
259 /* Pointer to dwarf2_debug structure. */
260 struct dwarf2_debug *stash;
261
262 /* DWARF format version for this unit - from unit header. */
263 int version;
264
265 /* Address size for this unit - from unit header. */
266 unsigned char addr_size;
267
268 /* Offset size for this unit - from unit header. */
269 unsigned char offset_size;
270
271 /* Base address for this unit - from DW_AT_low_pc attribute of
272 DW_TAG_compile_unit DIE */
273 bfd_vma base_address;
274
275 /* TRUE if symbols are cached in hash table for faster lookup by name. */
276 bfd_boolean cached;
277 };
278
279 /* This data structure holds the information of an abbrev. */
280 struct abbrev_info
281 {
282 unsigned int number; /* Number identifying abbrev. */
283 enum dwarf_tag tag; /* DWARF tag. */
284 int has_children; /* Boolean. */
285 unsigned int num_attrs; /* Number of attributes. */
286 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
287 struct abbrev_info *next; /* Next in chain. */
288 };
289
290 struct attr_abbrev
291 {
292 enum dwarf_attribute name;
293 enum dwarf_form form;
294 };
295
296 /* Map of uncompressed DWARF debug section name to compressed one. It
297 is terminated by NULL uncompressed_name. */
298
299 const struct dwarf_debug_section dwarf_debug_sections[] =
300 {
301 { ".debug_abbrev", ".zdebug_abbrev" },
302 { ".debug_aranges", ".zdebug_aranges" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".debug_info", ".zdebug_info" },
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_line", ".zdebug_line" },
307 { ".debug_loc", ".zdebug_loc" },
308 { ".debug_macinfo", ".zdebug_macinfo" },
309 { ".debug_macro", ".zdebug_macro" },
310 { ".debug_pubnames", ".zdebug_pubnames" },
311 { ".debug_pubtypes", ".zdebug_pubtypes" },
312 { ".debug_ranges", ".zdebug_ranges" },
313 { ".debug_static_func", ".zdebug_static_func" },
314 { ".debug_static_vars", ".zdebug_static_vars" },
315 { ".debug_str", ".zdebug_str", },
316 { ".debug_str", ".zdebug_str", },
317 { ".debug_types", ".zdebug_types" },
318 /* GNU DWARF 1 extensions */
319 { ".debug_sfnames", ".zdebug_sfnames" },
320 { ".debug_srcinfo", ".zebug_srcinfo" },
321 /* SGI/MIPS DWARF 2 extensions */
322 { ".debug_funcnames", ".zdebug_funcnames" },
323 { ".debug_typenames", ".zdebug_typenames" },
324 { ".debug_varnames", ".zdebug_varnames" },
325 { ".debug_weaknames", ".zdebug_weaknames" },
326 { NULL, NULL },
327 };
328
329 /* NB/ Numbers in this enum must match up with indicies
330 into the dwarf_debug_sections[] array above. */
331 enum dwarf_debug_section_enum
332 {
333 debug_abbrev = 0,
334 debug_aranges,
335 debug_frame,
336 debug_info,
337 debug_info_alt,
338 debug_line,
339 debug_loc,
340 debug_macinfo,
341 debug_macro,
342 debug_pubnames,
343 debug_pubtypes,
344 debug_ranges,
345 debug_static_func,
346 debug_static_vars,
347 debug_str,
348 debug_str_alt,
349 debug_types,
350 debug_sfnames,
351 debug_srcinfo,
352 debug_funcnames,
353 debug_typenames,
354 debug_varnames,
355 debug_weaknames
356 };
357
358 #ifndef ABBREV_HASH_SIZE
359 #define ABBREV_HASH_SIZE 121
360 #endif
361 #ifndef ATTR_ALLOC_CHUNK
362 #define ATTR_ALLOC_CHUNK 4
363 #endif
364
365 /* Variable and function hash tables. This is used to speed up look-up
366 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
367 In order to share code between variable and function infos, we use
368 a list of untyped pointer for all variable/function info associated with
369 a symbol. We waste a bit of memory for list with one node but that
370 simplifies the code. */
371
372 struct info_list_node
373 {
374 struct info_list_node *next;
375 void *info;
376 };
377
378 /* Info hash entry. */
379 struct info_hash_entry
380 {
381 struct bfd_hash_entry root;
382 struct info_list_node *head;
383 };
384
385 struct info_hash_table
386 {
387 struct bfd_hash_table base;
388 };
389
390 /* Function to create a new entry in info hash table. */
391
392 static struct bfd_hash_entry *
393 info_hash_table_newfunc (struct bfd_hash_entry *entry,
394 struct bfd_hash_table *table,
395 const char *string)
396 {
397 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
398
399 /* Allocate the structure if it has not already been allocated by a
400 derived class. */
401 if (ret == NULL)
402 {
403 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
404 sizeof (* ret));
405 if (ret == NULL)
406 return NULL;
407 }
408
409 /* Call the allocation method of the base class. */
410 ret = ((struct info_hash_entry *)
411 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
412
413 /* Initialize the local fields here. */
414 if (ret)
415 ret->head = NULL;
416
417 return (struct bfd_hash_entry *) ret;
418 }
419
420 /* Function to create a new info hash table. It returns a pointer to the
421 newly created table or NULL if there is any error. We need abfd
422 solely for memory allocation. */
423
424 static struct info_hash_table *
425 create_info_hash_table (bfd *abfd)
426 {
427 struct info_hash_table *hash_table;
428
429 hash_table = ((struct info_hash_table *)
430 bfd_alloc (abfd, sizeof (struct info_hash_table)));
431 if (!hash_table)
432 return hash_table;
433
434 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
435 sizeof (struct info_hash_entry)))
436 {
437 bfd_release (abfd, hash_table);
438 return NULL;
439 }
440
441 return hash_table;
442 }
443
444 /* Insert an info entry into an info hash table. We do not check of
445 duplicate entries. Also, the caller need to guarantee that the
446 right type of info in inserted as info is passed as a void* pointer.
447 This function returns true if there is no error. */
448
449 static bfd_boolean
450 insert_info_hash_table (struct info_hash_table *hash_table,
451 const char *key,
452 void *info,
453 bfd_boolean copy_p)
454 {
455 struct info_hash_entry *entry;
456 struct info_list_node *node;
457
458 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
459 key, TRUE, copy_p);
460 if (!entry)
461 return FALSE;
462
463 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
464 sizeof (*node));
465 if (!node)
466 return FALSE;
467
468 node->info = info;
469 node->next = entry->head;
470 entry->head = node;
471
472 return TRUE;
473 }
474
475 /* Look up an info entry list from an info hash table. Return NULL
476 if there is none. */
477
478 static struct info_list_node *
479 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
480 {
481 struct info_hash_entry *entry;
482
483 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
484 FALSE, FALSE);
485 return entry ? entry->head : NULL;
486 }
487
488 /* Read a section into its appropriate place in the dwarf2_debug
489 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
490 not NULL, use bfd_simple_get_relocated_section_contents to read the
491 section contents, otherwise use bfd_get_section_contents. Fail if
492 the located section does not contain at least OFFSET bytes. */
493
494 static bfd_boolean
495 read_section (bfd * abfd,
496 const struct dwarf_debug_section *sec,
497 asymbol ** syms,
498 bfd_uint64_t offset,
499 bfd_byte ** section_buffer,
500 bfd_size_type * section_size)
501 {
502 asection *msec;
503 const char *section_name = sec->uncompressed_name;
504
505 /* The section may have already been read. */
506 if (*section_buffer == NULL)
507 {
508 msec = bfd_get_section_by_name (abfd, section_name);
509 if (! msec)
510 {
511 section_name = sec->compressed_name;
512 if (section_name != NULL)
513 msec = bfd_get_section_by_name (abfd, section_name);
514 }
515 if (! msec)
516 {
517 (*_bfd_error_handler) (_("Dwarf Error: Can't find %s section."),
518 sec->uncompressed_name);
519 bfd_set_error (bfd_error_bad_value);
520 return FALSE;
521 }
522
523 *section_size = msec->rawsize ? msec->rawsize : msec->size;
524 if (syms)
525 {
526 *section_buffer
527 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
528 if (! *section_buffer)
529 return FALSE;
530 }
531 else
532 {
533 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
534 if (! *section_buffer)
535 return FALSE;
536 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
537 0, *section_size))
538 return FALSE;
539 }
540 }
541
542 /* It is possible to get a bad value for the offset into the section
543 that the client wants. Validate it here to avoid trouble later. */
544 if (offset != 0 && offset >= *section_size)
545 {
546 (*_bfd_error_handler) (_("Dwarf Error: Offset (%lu)"
547 " greater than or equal to %s size (%lu)."),
548 (long) offset, section_name, *section_size);
549 bfd_set_error (bfd_error_bad_value);
550 return FALSE;
551 }
552
553 return TRUE;
554 }
555
556 /* VERBATIM
557 The following function up to the END VERBATIM mark are
558 copied directly from dwarf2read.c. */
559
560 /* Read dwarf information from a buffer. */
561
562 static unsigned int
563 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf)
564 {
565 return bfd_get_8 (abfd, buf);
566 }
567
568 static int
569 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf)
570 {
571 return bfd_get_signed_8 (abfd, buf);
572 }
573
574 static unsigned int
575 read_2_bytes (bfd *abfd, bfd_byte *buf)
576 {
577 return bfd_get_16 (abfd, buf);
578 }
579
580 static unsigned int
581 read_4_bytes (bfd *abfd, bfd_byte *buf)
582 {
583 return bfd_get_32 (abfd, buf);
584 }
585
586 static bfd_uint64_t
587 read_8_bytes (bfd *abfd, bfd_byte *buf)
588 {
589 return bfd_get_64 (abfd, buf);
590 }
591
592 static bfd_byte *
593 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
594 bfd_byte *buf,
595 unsigned int size ATTRIBUTE_UNUSED)
596 {
597 return buf;
598 }
599
600 static char *
601 read_string (bfd *abfd ATTRIBUTE_UNUSED,
602 bfd_byte *buf,
603 unsigned int *bytes_read_ptr)
604 {
605 /* Return a pointer to the embedded string. */
606 char *str = (char *) buf;
607
608 if (*str == '\0')
609 {
610 *bytes_read_ptr = 1;
611 return NULL;
612 }
613
614 *bytes_read_ptr = strlen (str) + 1;
615 return str;
616 }
617
618 /* END VERBATIM */
619
620 static char *
621 read_indirect_string (struct comp_unit * unit,
622 bfd_byte * buf,
623 unsigned int * bytes_read_ptr)
624 {
625 bfd_uint64_t offset;
626 struct dwarf2_debug *stash = unit->stash;
627 char *str;
628
629 if (unit->offset_size == 4)
630 offset = read_4_bytes (unit->abfd, buf);
631 else
632 offset = read_8_bytes (unit->abfd, buf);
633
634 *bytes_read_ptr = unit->offset_size;
635
636 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
637 stash->syms, offset,
638 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
639 return NULL;
640
641 str = (char *) stash->dwarf_str_buffer + offset;
642 if (*str == '\0')
643 return NULL;
644 return str;
645 }
646
647 /* Like read_indirect_string but uses a .debug_str located in
648 an alternate file pointed to by the .gnu_debugaltlink section.
649 Used to impement DW_FORM_GNU_strp_alt. */
650
651 static char *
652 read_alt_indirect_string (struct comp_unit * unit,
653 bfd_byte * buf,
654 unsigned int * bytes_read_ptr)
655 {
656 bfd_uint64_t offset;
657 struct dwarf2_debug *stash = unit->stash;
658 char *str;
659
660 if (unit->offset_size == 4)
661 offset = read_4_bytes (unit->abfd, buf);
662 else
663 offset = read_8_bytes (unit->abfd, buf);
664
665 *bytes_read_ptr = unit->offset_size;
666
667 if (stash->alt_bfd_ptr == NULL)
668 {
669 bfd * debug_bfd;
670 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
671
672 if (debug_filename == NULL)
673 return NULL;
674
675 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
676 || ! bfd_check_format (debug_bfd, bfd_object))
677 {
678 if (debug_bfd)
679 bfd_close (debug_bfd);
680
681 /* FIXME: Should we report our failure to follow the debuglink ? */
682 free (debug_filename);
683 return NULL;
684 }
685 stash->alt_bfd_ptr = debug_bfd;
686 }
687
688 if (! read_section (unit->stash->alt_bfd_ptr,
689 stash->debug_sections + debug_str_alt,
690 NULL, /* FIXME: Do we need to load alternate symbols ? */
691 offset,
692 &stash->alt_dwarf_str_buffer,
693 &stash->alt_dwarf_str_size))
694 return NULL;
695
696 str = (char *) stash->alt_dwarf_str_buffer + offset;
697 if (*str == '\0')
698 return NULL;
699
700 return str;
701 }
702
703 /* Resolve an alternate reference from UNIT at OFFSET.
704 Returns a pointer into the loaded alternate CU upon success
705 or NULL upon failure. */
706
707 static bfd_byte *
708 read_alt_indirect_ref (struct comp_unit * unit,
709 bfd_uint64_t offset)
710 {
711 struct dwarf2_debug *stash = unit->stash;
712
713 if (stash->alt_bfd_ptr == NULL)
714 {
715 bfd * debug_bfd;
716 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
717
718 if (debug_filename == NULL)
719 return FALSE;
720
721 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
722 || ! bfd_check_format (debug_bfd, bfd_object))
723 {
724 if (debug_bfd)
725 bfd_close (debug_bfd);
726
727 /* FIXME: Should we report our failure to follow the debuglink ? */
728 free (debug_filename);
729 return NULL;
730 }
731 stash->alt_bfd_ptr = debug_bfd;
732 }
733
734 if (! read_section (unit->stash->alt_bfd_ptr,
735 stash->debug_sections + debug_info_alt,
736 NULL, /* FIXME: Do we need to load alternate symbols ? */
737 offset,
738 &stash->alt_dwarf_info_buffer,
739 &stash->alt_dwarf_info_size))
740 return NULL;
741
742 return stash->alt_dwarf_info_buffer + offset;
743 }
744
745 static bfd_uint64_t
746 read_address (struct comp_unit *unit, bfd_byte *buf)
747 {
748 int signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
749
750 if (signed_vma)
751 {
752 switch (unit->addr_size)
753 {
754 case 8:
755 return bfd_get_signed_64 (unit->abfd, buf);
756 case 4:
757 return bfd_get_signed_32 (unit->abfd, buf);
758 case 2:
759 return bfd_get_signed_16 (unit->abfd, buf);
760 default:
761 abort ();
762 }
763 }
764 else
765 {
766 switch (unit->addr_size)
767 {
768 case 8:
769 return bfd_get_64 (unit->abfd, buf);
770 case 4:
771 return bfd_get_32 (unit->abfd, buf);
772 case 2:
773 return bfd_get_16 (unit->abfd, buf);
774 default:
775 abort ();
776 }
777 }
778 }
779
780 /* Lookup an abbrev_info structure in the abbrev hash table. */
781
782 static struct abbrev_info *
783 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
784 {
785 unsigned int hash_number;
786 struct abbrev_info *abbrev;
787
788 hash_number = number % ABBREV_HASH_SIZE;
789 abbrev = abbrevs[hash_number];
790
791 while (abbrev)
792 {
793 if (abbrev->number == number)
794 return abbrev;
795 else
796 abbrev = abbrev->next;
797 }
798
799 return NULL;
800 }
801
802 /* In DWARF version 2, the description of the debugging information is
803 stored in a separate .debug_abbrev section. Before we read any
804 dies from a section we read in all abbreviations and install them
805 in a hash table. */
806
807 static struct abbrev_info**
808 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
809 {
810 struct abbrev_info **abbrevs;
811 bfd_byte *abbrev_ptr;
812 struct abbrev_info *cur_abbrev;
813 unsigned int abbrev_number, bytes_read, abbrev_name;
814 unsigned int abbrev_form, hash_number;
815 bfd_size_type amt;
816
817 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
818 stash->syms, offset,
819 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
820 return NULL;
821
822 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
823 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
824 if (abbrevs == NULL)
825 return NULL;
826
827 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
828 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
829 abbrev_ptr += bytes_read;
830
831 /* Loop until we reach an abbrev number of 0. */
832 while (abbrev_number)
833 {
834 amt = sizeof (struct abbrev_info);
835 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
836 if (cur_abbrev == NULL)
837 return NULL;
838
839 /* Read in abbrev header. */
840 cur_abbrev->number = abbrev_number;
841 cur_abbrev->tag = (enum dwarf_tag)
842 read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
843 abbrev_ptr += bytes_read;
844 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
845 abbrev_ptr += 1;
846
847 /* Now read in declarations. */
848 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
849 abbrev_ptr += bytes_read;
850 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
851 abbrev_ptr += bytes_read;
852
853 while (abbrev_name)
854 {
855 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
856 {
857 struct attr_abbrev *tmp;
858
859 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
860 amt *= sizeof (struct attr_abbrev);
861 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
862 if (tmp == NULL)
863 {
864 size_t i;
865
866 for (i = 0; i < ABBREV_HASH_SIZE; i++)
867 {
868 struct abbrev_info *abbrev = abbrevs[i];
869
870 while (abbrev)
871 {
872 free (abbrev->attrs);
873 abbrev = abbrev->next;
874 }
875 }
876 return NULL;
877 }
878 cur_abbrev->attrs = tmp;
879 }
880
881 cur_abbrev->attrs[cur_abbrev->num_attrs].name
882 = (enum dwarf_attribute) abbrev_name;
883 cur_abbrev->attrs[cur_abbrev->num_attrs++].form
884 = (enum dwarf_form) abbrev_form;
885 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
886 abbrev_ptr += bytes_read;
887 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
888 abbrev_ptr += bytes_read;
889 }
890
891 hash_number = abbrev_number % ABBREV_HASH_SIZE;
892 cur_abbrev->next = abbrevs[hash_number];
893 abbrevs[hash_number] = cur_abbrev;
894
895 /* Get next abbreviation.
896 Under Irix6 the abbreviations for a compilation unit are not
897 always properly terminated with an abbrev number of 0.
898 Exit loop if we encounter an abbreviation which we have
899 already read (which means we are about to read the abbreviations
900 for the next compile unit) or if the end of the abbreviation
901 table is reached. */
902 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
903 >= stash->dwarf_abbrev_size)
904 break;
905 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
906 abbrev_ptr += bytes_read;
907 if (lookup_abbrev (abbrev_number,abbrevs) != NULL)
908 break;
909 }
910
911 return abbrevs;
912 }
913
914 /* Returns true if the form is one which has a string value. */
915
916 static inline bfd_boolean
917 is_str_attr (enum dwarf_form form)
918 {
919 return form == DW_FORM_string || form == DW_FORM_strp || form == DW_FORM_GNU_strp_alt;
920 }
921
922 /* Read an attribute value described by an attribute form. */
923
924 static bfd_byte *
925 read_attribute_value (struct attribute *attr,
926 unsigned form,
927 struct comp_unit *unit,
928 bfd_byte *info_ptr)
929 {
930 bfd *abfd = unit->abfd;
931 unsigned int bytes_read;
932 struct dwarf_block *blk;
933 bfd_size_type amt;
934
935 attr->form = (enum dwarf_form) form;
936
937 switch (form)
938 {
939 case DW_FORM_ref_addr:
940 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
941 DWARF3. */
942 if (unit->version == 3 || unit->version == 4)
943 {
944 if (unit->offset_size == 4)
945 attr->u.val = read_4_bytes (unit->abfd, info_ptr);
946 else
947 attr->u.val = read_8_bytes (unit->abfd, info_ptr);
948 info_ptr += unit->offset_size;
949 break;
950 }
951 /* FALLTHROUGH */
952 case DW_FORM_addr:
953 attr->u.val = read_address (unit, info_ptr);
954 info_ptr += unit->addr_size;
955 break;
956 case DW_FORM_GNU_ref_alt:
957 case DW_FORM_sec_offset:
958 if (unit->offset_size == 4)
959 attr->u.val = read_4_bytes (unit->abfd, info_ptr);
960 else
961 attr->u.val = read_8_bytes (unit->abfd, info_ptr);
962 info_ptr += unit->offset_size;
963 break;
964 case DW_FORM_block2:
965 amt = sizeof (struct dwarf_block);
966 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
967 if (blk == NULL)
968 return NULL;
969 blk->size = read_2_bytes (abfd, info_ptr);
970 info_ptr += 2;
971 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
972 info_ptr += blk->size;
973 attr->u.blk = blk;
974 break;
975 case DW_FORM_block4:
976 amt = sizeof (struct dwarf_block);
977 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
978 if (blk == NULL)
979 return NULL;
980 blk->size = read_4_bytes (abfd, info_ptr);
981 info_ptr += 4;
982 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
983 info_ptr += blk->size;
984 attr->u.blk = blk;
985 break;
986 case DW_FORM_data2:
987 attr->u.val = read_2_bytes (abfd, info_ptr);
988 info_ptr += 2;
989 break;
990 case DW_FORM_data4:
991 attr->u.val = read_4_bytes (abfd, info_ptr);
992 info_ptr += 4;
993 break;
994 case DW_FORM_data8:
995 attr->u.val = read_8_bytes (abfd, info_ptr);
996 info_ptr += 8;
997 break;
998 case DW_FORM_string:
999 attr->u.str = read_string (abfd, info_ptr, &bytes_read);
1000 info_ptr += bytes_read;
1001 break;
1002 case DW_FORM_strp:
1003 attr->u.str = read_indirect_string (unit, info_ptr, &bytes_read);
1004 info_ptr += bytes_read;
1005 break;
1006 case DW_FORM_GNU_strp_alt:
1007 attr->u.str = read_alt_indirect_string (unit, info_ptr, &bytes_read);
1008 info_ptr += bytes_read;
1009 break;
1010 case DW_FORM_exprloc:
1011 case DW_FORM_block:
1012 amt = sizeof (struct dwarf_block);
1013 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1014 if (blk == NULL)
1015 return NULL;
1016 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1017 info_ptr += bytes_read;
1018 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
1019 info_ptr += blk->size;
1020 attr->u.blk = blk;
1021 break;
1022 case DW_FORM_block1:
1023 amt = sizeof (struct dwarf_block);
1024 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1025 if (blk == NULL)
1026 return NULL;
1027 blk->size = read_1_byte (abfd, info_ptr);
1028 info_ptr += 1;
1029 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
1030 info_ptr += blk->size;
1031 attr->u.blk = blk;
1032 break;
1033 case DW_FORM_data1:
1034 attr->u.val = read_1_byte (abfd, info_ptr);
1035 info_ptr += 1;
1036 break;
1037 case DW_FORM_flag:
1038 attr->u.val = read_1_byte (abfd, info_ptr);
1039 info_ptr += 1;
1040 break;
1041 case DW_FORM_flag_present:
1042 attr->u.val = 1;
1043 break;
1044 case DW_FORM_sdata:
1045 attr->u.sval = read_signed_leb128 (abfd, info_ptr, &bytes_read);
1046 info_ptr += bytes_read;
1047 break;
1048 case DW_FORM_udata:
1049 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1050 info_ptr += bytes_read;
1051 break;
1052 case DW_FORM_ref1:
1053 attr->u.val = read_1_byte (abfd, info_ptr);
1054 info_ptr += 1;
1055 break;
1056 case DW_FORM_ref2:
1057 attr->u.val = read_2_bytes (abfd, info_ptr);
1058 info_ptr += 2;
1059 break;
1060 case DW_FORM_ref4:
1061 attr->u.val = read_4_bytes (abfd, info_ptr);
1062 info_ptr += 4;
1063 break;
1064 case DW_FORM_ref8:
1065 attr->u.val = read_8_bytes (abfd, info_ptr);
1066 info_ptr += 8;
1067 break;
1068 case DW_FORM_ref_sig8:
1069 attr->u.val = read_8_bytes (abfd, info_ptr);
1070 info_ptr += 8;
1071 break;
1072 case DW_FORM_ref_udata:
1073 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1074 info_ptr += bytes_read;
1075 break;
1076 case DW_FORM_indirect:
1077 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1078 info_ptr += bytes_read;
1079 info_ptr = read_attribute_value (attr, form, unit, info_ptr);
1080 break;
1081 default:
1082 (*_bfd_error_handler) (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1083 form);
1084 bfd_set_error (bfd_error_bad_value);
1085 return NULL;
1086 }
1087 return info_ptr;
1088 }
1089
1090 /* Read an attribute described by an abbreviated attribute. */
1091
1092 static bfd_byte *
1093 read_attribute (struct attribute *attr,
1094 struct attr_abbrev *abbrev,
1095 struct comp_unit *unit,
1096 bfd_byte *info_ptr)
1097 {
1098 attr->name = abbrev->name;
1099 info_ptr = read_attribute_value (attr, abbrev->form, unit, info_ptr);
1100 return info_ptr;
1101 }
1102
1103 /* Source line information table routines. */
1104
1105 #define FILE_ALLOC_CHUNK 5
1106 #define DIR_ALLOC_CHUNK 5
1107
1108 struct line_info
1109 {
1110 struct line_info* prev_line;
1111 bfd_vma address;
1112 char *filename;
1113 unsigned int line;
1114 unsigned int column;
1115 unsigned int discriminator;
1116 unsigned char op_index;
1117 unsigned char end_sequence; /* End of (sequential) code sequence. */
1118 };
1119
1120 struct fileinfo
1121 {
1122 char *name;
1123 unsigned int dir;
1124 unsigned int time;
1125 unsigned int size;
1126 };
1127
1128 struct line_sequence
1129 {
1130 bfd_vma low_pc;
1131 struct line_sequence* prev_sequence;
1132 struct line_info* last_line; /* Largest VMA. */
1133 };
1134
1135 struct line_info_table
1136 {
1137 bfd* abfd;
1138 unsigned int num_files;
1139 unsigned int num_dirs;
1140 unsigned int num_sequences;
1141 char * comp_dir;
1142 char ** dirs;
1143 struct fileinfo* files;
1144 struct line_sequence* sequences;
1145 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1146 };
1147
1148 /* Remember some information about each function. If the function is
1149 inlined (DW_TAG_inlined_subroutine) it may have two additional
1150 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1151 source code location where this function was inlined. */
1152
1153 struct funcinfo
1154 {
1155 /* Pointer to previous function in list of all functions. */
1156 struct funcinfo *prev_func;
1157 /* Pointer to function one scope higher. */
1158 struct funcinfo *caller_func;
1159 /* Source location file name where caller_func inlines this func. */
1160 char *caller_file;
1161 /* Source location line number where caller_func inlines this func. */
1162 int caller_line;
1163 /* Source location file name. */
1164 char *file;
1165 /* Source location line number. */
1166 int line;
1167 int tag;
1168 char *name;
1169 struct arange arange;
1170 /* Where the symbol is defined. */
1171 asection *sec;
1172 };
1173
1174 struct varinfo
1175 {
1176 /* Pointer to previous variable in list of all variables */
1177 struct varinfo *prev_var;
1178 /* Source location file name */
1179 char *file;
1180 /* Source location line number */
1181 int line;
1182 int tag;
1183 char *name;
1184 bfd_vma addr;
1185 /* Where the symbol is defined */
1186 asection *sec;
1187 /* Is this a stack variable? */
1188 unsigned int stack: 1;
1189 };
1190
1191 /* Return TRUE if NEW_LINE should sort after LINE. */
1192
1193 static inline bfd_boolean
1194 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1195 {
1196 return (new_line->address > line->address
1197 || (new_line->address == line->address
1198 && (new_line->op_index > line->op_index
1199 || (new_line->op_index == line->op_index
1200 && new_line->end_sequence < line->end_sequence))));
1201 }
1202
1203
1204 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1205 that the list is sorted. Note that the line_info list is sorted from
1206 highest to lowest VMA (with possible duplicates); that is,
1207 line_info->prev_line always accesses an equal or smaller VMA. */
1208
1209 static bfd_boolean
1210 add_line_info (struct line_info_table *table,
1211 bfd_vma address,
1212 unsigned char op_index,
1213 char *filename,
1214 unsigned int line,
1215 unsigned int column,
1216 unsigned int discriminator,
1217 int end_sequence)
1218 {
1219 bfd_size_type amt = sizeof (struct line_info);
1220 struct line_sequence* seq = table->sequences;
1221 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1222
1223 if (info == NULL)
1224 return FALSE;
1225
1226 /* Set member data of 'info'. */
1227 info->prev_line = NULL;
1228 info->address = address;
1229 info->op_index = op_index;
1230 info->line = line;
1231 info->column = column;
1232 info->discriminator = discriminator;
1233 info->end_sequence = end_sequence;
1234
1235 if (filename && filename[0])
1236 {
1237 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1238 if (info->filename == NULL)
1239 return FALSE;
1240 strcpy (info->filename, filename);
1241 }
1242 else
1243 info->filename = NULL;
1244
1245 /* Find the correct location for 'info'. Normally we will receive
1246 new line_info data 1) in order and 2) with increasing VMAs.
1247 However some compilers break the rules (cf. decode_line_info) and
1248 so we include some heuristics for quickly finding the correct
1249 location for 'info'. In particular, these heuristics optimize for
1250 the common case in which the VMA sequence that we receive is a
1251 list of locally sorted VMAs such as
1252 p...z a...j (where a < j < p < z)
1253
1254 Note: table->lcl_head is used to head an *actual* or *possible*
1255 sub-sequence within the list (such as a...j) that is not directly
1256 headed by table->last_line
1257
1258 Note: we may receive duplicate entries from 'decode_line_info'. */
1259
1260 if (seq
1261 && seq->last_line->address == address
1262 && seq->last_line->op_index == op_index
1263 && seq->last_line->end_sequence == end_sequence)
1264 {
1265 /* We only keep the last entry with the same address and end
1266 sequence. See PR ld/4986. */
1267 if (table->lcl_head == seq->last_line)
1268 table->lcl_head = info;
1269 info->prev_line = seq->last_line->prev_line;
1270 seq->last_line = info;
1271 }
1272 else if (!seq || seq->last_line->end_sequence)
1273 {
1274 /* Start a new line sequence. */
1275 amt = sizeof (struct line_sequence);
1276 seq = (struct line_sequence *) bfd_malloc (amt);
1277 if (seq == NULL)
1278 return FALSE;
1279 seq->low_pc = address;
1280 seq->prev_sequence = table->sequences;
1281 seq->last_line = info;
1282 table->lcl_head = info;
1283 table->sequences = seq;
1284 table->num_sequences++;
1285 }
1286 else if (new_line_sorts_after (info, seq->last_line))
1287 {
1288 /* Normal case: add 'info' to the beginning of the current sequence. */
1289 info->prev_line = seq->last_line;
1290 seq->last_line = info;
1291
1292 /* lcl_head: initialize to head a *possible* sequence at the end. */
1293 if (!table->lcl_head)
1294 table->lcl_head = info;
1295 }
1296 else if (!new_line_sorts_after (info, table->lcl_head)
1297 && (!table->lcl_head->prev_line
1298 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1299 {
1300 /* Abnormal but easy: lcl_head is the head of 'info'. */
1301 info->prev_line = table->lcl_head->prev_line;
1302 table->lcl_head->prev_line = info;
1303 }
1304 else
1305 {
1306 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1307 are valid heads for 'info'. Reset 'lcl_head'. */
1308 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1309 struct line_info* li1 = li2->prev_line;
1310
1311 while (li1)
1312 {
1313 if (!new_line_sorts_after (info, li2)
1314 && new_line_sorts_after (info, li1))
1315 break;
1316
1317 li2 = li1; /* always non-NULL */
1318 li1 = li1->prev_line;
1319 }
1320 table->lcl_head = li2;
1321 info->prev_line = table->lcl_head->prev_line;
1322 table->lcl_head->prev_line = info;
1323 if (address < seq->low_pc)
1324 seq->low_pc = address;
1325 }
1326 return TRUE;
1327 }
1328
1329 /* Extract a fully qualified filename from a line info table.
1330 The returned string has been malloc'ed and it is the caller's
1331 responsibility to free it. */
1332
1333 static char *
1334 concat_filename (struct line_info_table *table, unsigned int file)
1335 {
1336 char *filename;
1337
1338 if (file - 1 >= table->num_files)
1339 {
1340 /* FILE == 0 means unknown. */
1341 if (file)
1342 (*_bfd_error_handler)
1343 (_("Dwarf Error: mangled line number section (bad file number)."));
1344 return strdup ("<unknown>");
1345 }
1346
1347 filename = table->files[file - 1].name;
1348
1349 if (!IS_ABSOLUTE_PATH (filename))
1350 {
1351 char *dir_name = NULL;
1352 char *subdir_name = NULL;
1353 char *name;
1354 size_t len;
1355
1356 if (table->files[file - 1].dir)
1357 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1358
1359 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1360 dir_name = table->comp_dir;
1361
1362 if (!dir_name)
1363 {
1364 dir_name = subdir_name;
1365 subdir_name = NULL;
1366 }
1367
1368 if (!dir_name)
1369 return strdup (filename);
1370
1371 len = strlen (dir_name) + strlen (filename) + 2;
1372
1373 if (subdir_name)
1374 {
1375 len += strlen (subdir_name) + 1;
1376 name = (char *) bfd_malloc (len);
1377 if (name)
1378 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1379 }
1380 else
1381 {
1382 name = (char *) bfd_malloc (len);
1383 if (name)
1384 sprintf (name, "%s/%s", dir_name, filename);
1385 }
1386
1387 return name;
1388 }
1389
1390 return strdup (filename);
1391 }
1392
1393 static bfd_boolean
1394 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1395 bfd_vma low_pc, bfd_vma high_pc)
1396 {
1397 struct arange *arange;
1398
1399 /* Ignore empty ranges. */
1400 if (low_pc == high_pc)
1401 return TRUE;
1402
1403 /* If the first arange is empty, use it. */
1404 if (first_arange->high == 0)
1405 {
1406 first_arange->low = low_pc;
1407 first_arange->high = high_pc;
1408 return TRUE;
1409 }
1410
1411 /* Next see if we can cheaply extend an existing range. */
1412 arange = first_arange;
1413 do
1414 {
1415 if (low_pc == arange->high)
1416 {
1417 arange->high = high_pc;
1418 return TRUE;
1419 }
1420 if (high_pc == arange->low)
1421 {
1422 arange->low = low_pc;
1423 return TRUE;
1424 }
1425 arange = arange->next;
1426 }
1427 while (arange);
1428
1429 /* Need to allocate a new arange and insert it into the arange list.
1430 Order isn't significant, so just insert after the first arange. */
1431 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1432 if (arange == NULL)
1433 return FALSE;
1434 arange->low = low_pc;
1435 arange->high = high_pc;
1436 arange->next = first_arange->next;
1437 first_arange->next = arange;
1438 return TRUE;
1439 }
1440
1441 /* Compare function for line sequences. */
1442
1443 static int
1444 compare_sequences (const void* a, const void* b)
1445 {
1446 const struct line_sequence* seq1 = a;
1447 const struct line_sequence* seq2 = b;
1448
1449 /* Sort by low_pc as the primary key. */
1450 if (seq1->low_pc < seq2->low_pc)
1451 return -1;
1452 if (seq1->low_pc > seq2->low_pc)
1453 return 1;
1454
1455 /* If low_pc values are equal, sort in reverse order of
1456 high_pc, so that the largest region comes first. */
1457 if (seq1->last_line->address < seq2->last_line->address)
1458 return 1;
1459 if (seq1->last_line->address > seq2->last_line->address)
1460 return -1;
1461
1462 if (seq1->last_line->op_index < seq2->last_line->op_index)
1463 return 1;
1464 if (seq1->last_line->op_index > seq2->last_line->op_index)
1465 return -1;
1466
1467 return 0;
1468 }
1469
1470 /* Sort the line sequences for quick lookup. */
1471
1472 static bfd_boolean
1473 sort_line_sequences (struct line_info_table* table)
1474 {
1475 bfd_size_type amt;
1476 struct line_sequence* sequences;
1477 struct line_sequence* seq;
1478 unsigned int n = 0;
1479 unsigned int num_sequences = table->num_sequences;
1480 bfd_vma last_high_pc;
1481
1482 if (num_sequences == 0)
1483 return TRUE;
1484
1485 /* Allocate space for an array of sequences. */
1486 amt = sizeof (struct line_sequence) * num_sequences;
1487 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1488 if (sequences == NULL)
1489 return FALSE;
1490
1491 /* Copy the linked list into the array, freeing the original nodes. */
1492 seq = table->sequences;
1493 for (n = 0; n < num_sequences; n++)
1494 {
1495 struct line_sequence* last_seq = seq;
1496
1497 BFD_ASSERT (seq);
1498 sequences[n].low_pc = seq->low_pc;
1499 sequences[n].prev_sequence = NULL;
1500 sequences[n].last_line = seq->last_line;
1501 seq = seq->prev_sequence;
1502 free (last_seq);
1503 }
1504 BFD_ASSERT (seq == NULL);
1505
1506 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1507
1508 /* Make the list binary-searchable by trimming overlapping entries
1509 and removing nested entries. */
1510 num_sequences = 1;
1511 last_high_pc = sequences[0].last_line->address;
1512 for (n = 1; n < table->num_sequences; n++)
1513 {
1514 if (sequences[n].low_pc < last_high_pc)
1515 {
1516 if (sequences[n].last_line->address <= last_high_pc)
1517 /* Skip nested entries. */
1518 continue;
1519
1520 /* Trim overlapping entries. */
1521 sequences[n].low_pc = last_high_pc;
1522 }
1523 last_high_pc = sequences[n].last_line->address;
1524 if (n > num_sequences)
1525 {
1526 /* Close up the gap. */
1527 sequences[num_sequences].low_pc = sequences[n].low_pc;
1528 sequences[num_sequences].last_line = sequences[n].last_line;
1529 }
1530 num_sequences++;
1531 }
1532
1533 table->sequences = sequences;
1534 table->num_sequences = num_sequences;
1535 return TRUE;
1536 }
1537
1538 /* Decode the line number information for UNIT. */
1539
1540 static struct line_info_table*
1541 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
1542 {
1543 bfd *abfd = unit->abfd;
1544 struct line_info_table* table;
1545 bfd_byte *line_ptr;
1546 bfd_byte *line_end;
1547 struct line_head lh;
1548 unsigned int i, bytes_read, offset_size;
1549 char *cur_file, *cur_dir;
1550 unsigned char op_code, extended_op, adj_opcode;
1551 unsigned int exop_len;
1552 bfd_size_type amt;
1553
1554 if (! read_section (abfd, &stash->debug_sections[debug_line],
1555 stash->syms, unit->line_offset,
1556 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
1557 return NULL;
1558
1559 amt = sizeof (struct line_info_table);
1560 table = (struct line_info_table *) bfd_alloc (abfd, amt);
1561 if (table == NULL)
1562 return NULL;
1563 table->abfd = abfd;
1564 table->comp_dir = unit->comp_dir;
1565
1566 table->num_files = 0;
1567 table->files = NULL;
1568
1569 table->num_dirs = 0;
1570 table->dirs = NULL;
1571
1572 table->num_sequences = 0;
1573 table->sequences = NULL;
1574
1575 table->lcl_head = NULL;
1576
1577 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
1578
1579 /* Read in the prologue. */
1580 lh.total_length = read_4_bytes (abfd, line_ptr);
1581 line_ptr += 4;
1582 offset_size = 4;
1583 if (lh.total_length == 0xffffffff)
1584 {
1585 lh.total_length = read_8_bytes (abfd, line_ptr);
1586 line_ptr += 8;
1587 offset_size = 8;
1588 }
1589 else if (lh.total_length == 0 && unit->addr_size == 8)
1590 {
1591 /* Handle (non-standard) 64-bit DWARF2 formats. */
1592 lh.total_length = read_4_bytes (abfd, line_ptr);
1593 line_ptr += 4;
1594 offset_size = 8;
1595 }
1596 line_end = line_ptr + lh.total_length;
1597 lh.version = read_2_bytes (abfd, line_ptr);
1598 if (lh.version < 2 || lh.version > 4)
1599 {
1600 (*_bfd_error_handler)
1601 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
1602 bfd_set_error (bfd_error_bad_value);
1603 return NULL;
1604 }
1605 line_ptr += 2;
1606 if (offset_size == 4)
1607 lh.prologue_length = read_4_bytes (abfd, line_ptr);
1608 else
1609 lh.prologue_length = read_8_bytes (abfd, line_ptr);
1610 line_ptr += offset_size;
1611 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr);
1612 line_ptr += 1;
1613 if (lh.version >= 4)
1614 {
1615 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr);
1616 line_ptr += 1;
1617 }
1618 else
1619 lh.maximum_ops_per_insn = 1;
1620 if (lh.maximum_ops_per_insn == 0)
1621 {
1622 (*_bfd_error_handler)
1623 (_("Dwarf Error: Invalid maximum operations per instruction."));
1624 bfd_set_error (bfd_error_bad_value);
1625 return NULL;
1626 }
1627 lh.default_is_stmt = read_1_byte (abfd, line_ptr);
1628 line_ptr += 1;
1629 lh.line_base = read_1_signed_byte (abfd, line_ptr);
1630 line_ptr += 1;
1631 lh.line_range = read_1_byte (abfd, line_ptr);
1632 line_ptr += 1;
1633 lh.opcode_base = read_1_byte (abfd, line_ptr);
1634 line_ptr += 1;
1635 amt = lh.opcode_base * sizeof (unsigned char);
1636 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
1637
1638 lh.standard_opcode_lengths[0] = 1;
1639
1640 for (i = 1; i < lh.opcode_base; ++i)
1641 {
1642 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
1643 line_ptr += 1;
1644 }
1645
1646 /* Read directory table. */
1647 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
1648 {
1649 line_ptr += bytes_read;
1650
1651 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1652 {
1653 char **tmp;
1654
1655 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1656 amt *= sizeof (char *);
1657
1658 tmp = (char **) bfd_realloc (table->dirs, amt);
1659 if (tmp == NULL)
1660 goto fail;
1661 table->dirs = tmp;
1662 }
1663
1664 table->dirs[table->num_dirs++] = cur_dir;
1665 }
1666
1667 line_ptr += bytes_read;
1668
1669 /* Read file name table. */
1670 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
1671 {
1672 line_ptr += bytes_read;
1673
1674 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1675 {
1676 struct fileinfo *tmp;
1677
1678 amt = table->num_files + FILE_ALLOC_CHUNK;
1679 amt *= sizeof (struct fileinfo);
1680
1681 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1682 if (tmp == NULL)
1683 goto fail;
1684 table->files = tmp;
1685 }
1686
1687 table->files[table->num_files].name = cur_file;
1688 table->files[table->num_files].dir =
1689 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1690 line_ptr += bytes_read;
1691 table->files[table->num_files].time =
1692 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1693 line_ptr += bytes_read;
1694 table->files[table->num_files].size =
1695 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1696 line_ptr += bytes_read;
1697 table->num_files++;
1698 }
1699
1700 line_ptr += bytes_read;
1701
1702 /* Read the statement sequences until there's nothing left. */
1703 while (line_ptr < line_end)
1704 {
1705 /* State machine registers. */
1706 bfd_vma address = 0;
1707 unsigned char op_index = 0;
1708 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
1709 unsigned int line = 1;
1710 unsigned int column = 0;
1711 unsigned int discriminator = 0;
1712 int is_stmt = lh.default_is_stmt;
1713 int end_sequence = 0;
1714 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
1715 compilers generate address sequences that are wildly out of
1716 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
1717 for ia64-Linux). Thus, to determine the low and high
1718 address, we must compare on every DW_LNS_copy, etc. */
1719 bfd_vma low_pc = (bfd_vma) -1;
1720 bfd_vma high_pc = 0;
1721
1722 /* Decode the table. */
1723 while (! end_sequence)
1724 {
1725 op_code = read_1_byte (abfd, line_ptr);
1726 line_ptr += 1;
1727
1728 if (op_code >= lh.opcode_base)
1729 {
1730 /* Special operand. */
1731 adj_opcode = op_code - lh.opcode_base;
1732 if (lh.maximum_ops_per_insn == 1)
1733 address += (adj_opcode / lh.line_range
1734 * lh.minimum_instruction_length);
1735 else
1736 {
1737 address += ((op_index + adj_opcode / lh.line_range)
1738 / lh.maximum_ops_per_insn
1739 * lh.minimum_instruction_length);
1740 op_index = ((op_index + adj_opcode / lh.line_range)
1741 % lh.maximum_ops_per_insn);
1742 }
1743 line += lh.line_base + (adj_opcode % lh.line_range);
1744 /* Append row to matrix using current values. */
1745 if (!add_line_info (table, address, op_index, filename,
1746 line, column, discriminator, 0))
1747 goto line_fail;
1748 discriminator = 0;
1749 if (address < low_pc)
1750 low_pc = address;
1751 if (address > high_pc)
1752 high_pc = address;
1753 }
1754 else switch (op_code)
1755 {
1756 case DW_LNS_extended_op:
1757 exop_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1758 line_ptr += bytes_read;
1759 extended_op = read_1_byte (abfd, line_ptr);
1760 line_ptr += 1;
1761
1762 switch (extended_op)
1763 {
1764 case DW_LNE_end_sequence:
1765 end_sequence = 1;
1766 if (!add_line_info (table, address, op_index, filename, line,
1767 column, discriminator, end_sequence))
1768 goto line_fail;
1769 discriminator = 0;
1770 if (address < low_pc)
1771 low_pc = address;
1772 if (address > high_pc)
1773 high_pc = address;
1774 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
1775 goto line_fail;
1776 break;
1777 case DW_LNE_set_address:
1778 address = read_address (unit, line_ptr);
1779 op_index = 0;
1780 line_ptr += unit->addr_size;
1781 break;
1782 case DW_LNE_define_file:
1783 cur_file = read_string (abfd, line_ptr, &bytes_read);
1784 line_ptr += bytes_read;
1785 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1786 {
1787 struct fileinfo *tmp;
1788
1789 amt = table->num_files + FILE_ALLOC_CHUNK;
1790 amt *= sizeof (struct fileinfo);
1791 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1792 if (tmp == NULL)
1793 goto line_fail;
1794 table->files = tmp;
1795 }
1796 table->files[table->num_files].name = cur_file;
1797 table->files[table->num_files].dir =
1798 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1799 line_ptr += bytes_read;
1800 table->files[table->num_files].time =
1801 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1802 line_ptr += bytes_read;
1803 table->files[table->num_files].size =
1804 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1805 line_ptr += bytes_read;
1806 table->num_files++;
1807 break;
1808 case DW_LNE_set_discriminator:
1809 discriminator =
1810 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1811 line_ptr += bytes_read;
1812 break;
1813 case DW_LNE_HP_source_file_correlation:
1814 line_ptr += exop_len - 1;
1815 break;
1816 default:
1817 (*_bfd_error_handler)
1818 (_("Dwarf Error: mangled line number section."));
1819 bfd_set_error (bfd_error_bad_value);
1820 line_fail:
1821 if (filename != NULL)
1822 free (filename);
1823 goto fail;
1824 }
1825 break;
1826 case DW_LNS_copy:
1827 if (!add_line_info (table, address, op_index,
1828 filename, line, column, discriminator, 0))
1829 goto line_fail;
1830 discriminator = 0;
1831 if (address < low_pc)
1832 low_pc = address;
1833 if (address > high_pc)
1834 high_pc = address;
1835 break;
1836 case DW_LNS_advance_pc:
1837 if (lh.maximum_ops_per_insn == 1)
1838 address += (lh.minimum_instruction_length
1839 * read_unsigned_leb128 (abfd, line_ptr,
1840 &bytes_read));
1841 else
1842 {
1843 bfd_vma adjust = read_unsigned_leb128 (abfd, line_ptr,
1844 &bytes_read);
1845 address = ((op_index + adjust) / lh.maximum_ops_per_insn
1846 * lh.minimum_instruction_length);
1847 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
1848 }
1849 line_ptr += bytes_read;
1850 break;
1851 case DW_LNS_advance_line:
1852 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
1853 line_ptr += bytes_read;
1854 break;
1855 case DW_LNS_set_file:
1856 {
1857 unsigned int file;
1858
1859 /* The file and directory tables are 0
1860 based, the references are 1 based. */
1861 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1862 line_ptr += bytes_read;
1863 if (filename)
1864 free (filename);
1865 filename = concat_filename (table, file);
1866 break;
1867 }
1868 case DW_LNS_set_column:
1869 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1870 line_ptr += bytes_read;
1871 break;
1872 case DW_LNS_negate_stmt:
1873 is_stmt = (!is_stmt);
1874 break;
1875 case DW_LNS_set_basic_block:
1876 break;
1877 case DW_LNS_const_add_pc:
1878 if (lh.maximum_ops_per_insn == 1)
1879 address += (lh.minimum_instruction_length
1880 * ((255 - lh.opcode_base) / lh.line_range));
1881 else
1882 {
1883 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
1884 address += (lh.minimum_instruction_length
1885 * ((op_index + adjust)
1886 / lh.maximum_ops_per_insn));
1887 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
1888 }
1889 break;
1890 case DW_LNS_fixed_advance_pc:
1891 address += read_2_bytes (abfd, line_ptr);
1892 op_index = 0;
1893 line_ptr += 2;
1894 break;
1895 default:
1896 /* Unknown standard opcode, ignore it. */
1897 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
1898 {
1899 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1900 line_ptr += bytes_read;
1901 }
1902 break;
1903 }
1904 }
1905
1906 if (filename)
1907 free (filename);
1908 }
1909
1910 if (sort_line_sequences (table))
1911 return table;
1912
1913 fail:
1914 if (table->sequences != NULL)
1915 free (table->sequences);
1916 if (table->files != NULL)
1917 free (table->files);
1918 if (table->dirs != NULL)
1919 free (table->dirs);
1920 return NULL;
1921 }
1922
1923 /* If ADDR is within TABLE set the output parameters and return the
1924 range of addresses covered by the entry used to fill them out.
1925 Otherwise set * FILENAME_PTR to NULL and return 0.
1926 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
1927 are pointers to the objects to be filled in. */
1928
1929 static bfd_vma
1930 lookup_address_in_line_info_table (struct line_info_table *table,
1931 bfd_vma addr,
1932 const char **filename_ptr,
1933 unsigned int *linenumber_ptr,
1934 unsigned int *discriminator_ptr)
1935 {
1936 struct line_sequence *seq = NULL;
1937 struct line_info *each_line;
1938 int low, high, mid;
1939
1940 /* Binary search the array of sequences. */
1941 low = 0;
1942 high = table->num_sequences;
1943 while (low < high)
1944 {
1945 mid = (low + high) / 2;
1946 seq = &table->sequences[mid];
1947 if (addr < seq->low_pc)
1948 high = mid;
1949 else if (addr >= seq->last_line->address)
1950 low = mid + 1;
1951 else
1952 break;
1953 }
1954
1955 if (seq && addr >= seq->low_pc && addr < seq->last_line->address)
1956 {
1957 /* Note: seq->last_line should be a descendingly sorted list. */
1958 for (each_line = seq->last_line;
1959 each_line;
1960 each_line = each_line->prev_line)
1961 if (addr >= each_line->address)
1962 break;
1963
1964 if (each_line
1965 && !(each_line->end_sequence || each_line == seq->last_line))
1966 {
1967 *filename_ptr = each_line->filename;
1968 *linenumber_ptr = each_line->line;
1969 if (discriminator_ptr)
1970 *discriminator_ptr = each_line->discriminator;
1971 return seq->last_line->address - seq->low_pc;
1972 }
1973 }
1974
1975 *filename_ptr = NULL;
1976 return 0;
1977 }
1978
1979 /* Read in the .debug_ranges section for future reference. */
1980
1981 static bfd_boolean
1982 read_debug_ranges (struct comp_unit *unit)
1983 {
1984 struct dwarf2_debug *stash = unit->stash;
1985 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
1986 stash->syms, 0,
1987 &stash->dwarf_ranges_buffer, &stash->dwarf_ranges_size);
1988 }
1989
1990 /* Function table functions. */
1991
1992 /* If ADDR is within UNIT's function tables, set FUNCTIONNAME_PTR, and return
1993 TRUE. Note that we need to find the function that has the smallest range
1994 that contains ADDR, to handle inlined functions without depending upon
1995 them being ordered in TABLE by increasing range. */
1996
1997 static bfd_boolean
1998 lookup_address_in_function_table (struct comp_unit *unit,
1999 bfd_vma addr,
2000 struct funcinfo **function_ptr,
2001 const char **functionname_ptr)
2002 {
2003 struct funcinfo* each_func;
2004 struct funcinfo* best_fit = NULL;
2005 bfd_vma best_fit_len = 0;
2006 struct arange *arange;
2007
2008 for (each_func = unit->function_table;
2009 each_func;
2010 each_func = each_func->prev_func)
2011 {
2012 for (arange = &each_func->arange;
2013 arange;
2014 arange = arange->next)
2015 {
2016 if (addr >= arange->low && addr < arange->high)
2017 {
2018 if (!best_fit
2019 || arange->high - arange->low < best_fit_len)
2020 {
2021 best_fit = each_func;
2022 best_fit_len = arange->high - arange->low;
2023 }
2024 }
2025 }
2026 }
2027
2028 if (best_fit)
2029 {
2030 *functionname_ptr = best_fit->name;
2031 *function_ptr = best_fit;
2032 return TRUE;
2033 }
2034 else
2035 {
2036 return FALSE;
2037 }
2038 }
2039
2040 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2041 and LINENUMBER_PTR, and return TRUE. */
2042
2043 static bfd_boolean
2044 lookup_symbol_in_function_table (struct comp_unit *unit,
2045 asymbol *sym,
2046 bfd_vma addr,
2047 const char **filename_ptr,
2048 unsigned int *linenumber_ptr)
2049 {
2050 struct funcinfo* each_func;
2051 struct funcinfo* best_fit = NULL;
2052 bfd_vma best_fit_len = 0;
2053 struct arange *arange;
2054 const char *name = bfd_asymbol_name (sym);
2055 asection *sec = bfd_get_section (sym);
2056
2057 for (each_func = unit->function_table;
2058 each_func;
2059 each_func = each_func->prev_func)
2060 {
2061 for (arange = &each_func->arange;
2062 arange;
2063 arange = arange->next)
2064 {
2065 if ((!each_func->sec || each_func->sec == sec)
2066 && addr >= arange->low
2067 && addr < arange->high
2068 && each_func->name
2069 && strcmp (name, each_func->name) == 0
2070 && (!best_fit
2071 || arange->high - arange->low < best_fit_len))
2072 {
2073 best_fit = each_func;
2074 best_fit_len = arange->high - arange->low;
2075 }
2076 }
2077 }
2078
2079 if (best_fit)
2080 {
2081 best_fit->sec = sec;
2082 *filename_ptr = best_fit->file;
2083 *linenumber_ptr = best_fit->line;
2084 return TRUE;
2085 }
2086 else
2087 return FALSE;
2088 }
2089
2090 /* Variable table functions. */
2091
2092 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2093 LINENUMBER_PTR, and return TRUE. */
2094
2095 static bfd_boolean
2096 lookup_symbol_in_variable_table (struct comp_unit *unit,
2097 asymbol *sym,
2098 bfd_vma addr,
2099 const char **filename_ptr,
2100 unsigned int *linenumber_ptr)
2101 {
2102 const char *name = bfd_asymbol_name (sym);
2103 asection *sec = bfd_get_section (sym);
2104 struct varinfo* each;
2105
2106 for (each = unit->variable_table; each; each = each->prev_var)
2107 if (each->stack == 0
2108 && each->file != NULL
2109 && each->name != NULL
2110 && each->addr == addr
2111 && (!each->sec || each->sec == sec)
2112 && strcmp (name, each->name) == 0)
2113 break;
2114
2115 if (each)
2116 {
2117 each->sec = sec;
2118 *filename_ptr = each->file;
2119 *linenumber_ptr = each->line;
2120 return TRUE;
2121 }
2122 else
2123 return FALSE;
2124 }
2125
2126 static char *
2127 find_abstract_instance_name (struct comp_unit *unit,
2128 struct attribute *attr_ptr)
2129 {
2130 bfd *abfd = unit->abfd;
2131 bfd_byte *info_ptr;
2132 unsigned int abbrev_number, bytes_read, i;
2133 struct abbrev_info *abbrev;
2134 bfd_uint64_t die_ref = attr_ptr->u.val;
2135 struct attribute attr;
2136 char *name = NULL;
2137
2138 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2139 is an offset from the .debug_info section, not the current CU. */
2140 if (attr_ptr->form == DW_FORM_ref_addr)
2141 {
2142 /* We only support DW_FORM_ref_addr within the same file, so
2143 any relocations should be resolved already. */
2144 if (!die_ref)
2145 abort ();
2146
2147 info_ptr = unit->sec_info_ptr + die_ref;
2148
2149 /* Now find the CU containing this pointer. */
2150 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2151 ;
2152 else
2153 {
2154 /* Check other CUs to see if they contain the abbrev. */
2155 struct comp_unit * u;
2156
2157 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2158 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2159 break;
2160
2161 if (u == NULL)
2162 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2163 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2164 break;
2165
2166 if (u)
2167 unit = u;
2168 /* else FIXME: What do we do now ? */
2169 }
2170 }
2171 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2172 {
2173 info_ptr = read_alt_indirect_ref (unit, die_ref);
2174 if (info_ptr == NULL)
2175 {
2176 (*_bfd_error_handler)
2177 (_("Dwarf Error: Unable to read alt ref %u."), die_ref);
2178 bfd_set_error (bfd_error_bad_value);
2179 return name;
2180 }
2181 /* FIXME: Do we need to locate the correct CU, in a similar
2182 fashion to the code in the DW_FORM_ref_addr case above ? */
2183 }
2184 else
2185 info_ptr = unit->info_ptr_unit + die_ref;
2186
2187 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2188 info_ptr += bytes_read;
2189
2190 if (abbrev_number)
2191 {
2192 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2193 if (! abbrev)
2194 {
2195 (*_bfd_error_handler)
2196 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2197 bfd_set_error (bfd_error_bad_value);
2198 }
2199 else
2200 {
2201 for (i = 0; i < abbrev->num_attrs; ++i)
2202 {
2203 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2204 info_ptr);
2205 if (info_ptr == NULL)
2206 break;
2207 switch (attr.name)
2208 {
2209 case DW_AT_name:
2210 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2211 over DW_AT_name. */
2212 if (name == NULL && is_str_attr (attr.form))
2213 name = attr.u.str;
2214 break;
2215 case DW_AT_specification:
2216 name = find_abstract_instance_name (unit, &attr);
2217 break;
2218 case DW_AT_linkage_name:
2219 case DW_AT_MIPS_linkage_name:
2220 /* PR 16949: Corrupt debug info can place
2221 non-string forms into these attributes. */
2222 if (is_str_attr (attr.form))
2223 name = attr.u.str;
2224 break;
2225 default:
2226 break;
2227 }
2228 }
2229 }
2230 }
2231 return name;
2232 }
2233
2234 static bfd_boolean
2235 read_rangelist (struct comp_unit *unit, struct arange *arange,
2236 bfd_uint64_t offset)
2237 {
2238 bfd_byte *ranges_ptr;
2239 bfd_vma base_address = unit->base_address;
2240
2241 if (! unit->stash->dwarf_ranges_buffer)
2242 {
2243 if (! read_debug_ranges (unit))
2244 return FALSE;
2245 }
2246 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
2247
2248 for (;;)
2249 {
2250 bfd_vma low_pc;
2251 bfd_vma high_pc;
2252
2253 low_pc = read_address (unit, ranges_ptr);
2254 ranges_ptr += unit->addr_size;
2255 high_pc = read_address (unit, ranges_ptr);
2256 ranges_ptr += unit->addr_size;
2257
2258 if (low_pc == 0 && high_pc == 0)
2259 break;
2260 if (low_pc == -1UL && high_pc != -1UL)
2261 base_address = high_pc;
2262 else
2263 {
2264 if (!arange_add (unit, arange,
2265 base_address + low_pc, base_address + high_pc))
2266 return FALSE;
2267 }
2268 }
2269 return TRUE;
2270 }
2271
2272 /* DWARF2 Compilation unit functions. */
2273
2274 /* Scan over each die in a comp. unit looking for functions to add
2275 to the function table and variables to the variable table. */
2276
2277 static bfd_boolean
2278 scan_unit_for_symbols (struct comp_unit *unit)
2279 {
2280 bfd *abfd = unit->abfd;
2281 bfd_byte *info_ptr = unit->first_child_die_ptr;
2282 int nesting_level = 1;
2283 struct funcinfo **nested_funcs;
2284 int nested_funcs_size;
2285
2286 /* Maintain a stack of in-scope functions and inlined functions, which we
2287 can use to set the caller_func field. */
2288 nested_funcs_size = 32;
2289 nested_funcs = (struct funcinfo **)
2290 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *));
2291 if (nested_funcs == NULL)
2292 return FALSE;
2293 nested_funcs[nesting_level] = 0;
2294
2295 while (nesting_level)
2296 {
2297 unsigned int abbrev_number, bytes_read, i;
2298 struct abbrev_info *abbrev;
2299 struct attribute attr;
2300 struct funcinfo *func;
2301 struct varinfo *var;
2302 bfd_vma low_pc = 0;
2303 bfd_vma high_pc = 0;
2304 bfd_boolean high_pc_relative = FALSE;
2305
2306 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2307 info_ptr += bytes_read;
2308
2309 if (! abbrev_number)
2310 {
2311 nesting_level--;
2312 continue;
2313 }
2314
2315 abbrev = lookup_abbrev (abbrev_number,unit->abbrevs);
2316 if (! abbrev)
2317 {
2318 (*_bfd_error_handler)
2319 (_("Dwarf Error: Could not find abbrev number %u."),
2320 abbrev_number);
2321 bfd_set_error (bfd_error_bad_value);
2322 goto fail;
2323 }
2324
2325 var = NULL;
2326 if (abbrev->tag == DW_TAG_subprogram
2327 || abbrev->tag == DW_TAG_entry_point
2328 || abbrev->tag == DW_TAG_inlined_subroutine)
2329 {
2330 bfd_size_type amt = sizeof (struct funcinfo);
2331 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
2332 if (func == NULL)
2333 goto fail;
2334 func->tag = abbrev->tag;
2335 func->prev_func = unit->function_table;
2336 unit->function_table = func;
2337 BFD_ASSERT (!unit->cached);
2338
2339 if (func->tag == DW_TAG_inlined_subroutine)
2340 for (i = nesting_level - 1; i >= 1; i--)
2341 if (nested_funcs[i])
2342 {
2343 func->caller_func = nested_funcs[i];
2344 break;
2345 }
2346 nested_funcs[nesting_level] = func;
2347 }
2348 else
2349 {
2350 func = NULL;
2351 if (abbrev->tag == DW_TAG_variable)
2352 {
2353 bfd_size_type amt = sizeof (struct varinfo);
2354 var = (struct varinfo *) bfd_zalloc (abfd, amt);
2355 if (var == NULL)
2356 goto fail;
2357 var->tag = abbrev->tag;
2358 var->stack = 1;
2359 var->prev_var = unit->variable_table;
2360 unit->variable_table = var;
2361 BFD_ASSERT (!unit->cached);
2362 }
2363
2364 /* No inline function in scope at this nesting level. */
2365 nested_funcs[nesting_level] = 0;
2366 }
2367
2368 for (i = 0; i < abbrev->num_attrs; ++i)
2369 {
2370 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr);
2371 if (info_ptr == NULL)
2372 goto fail;
2373
2374 if (func)
2375 {
2376 switch (attr.name)
2377 {
2378 case DW_AT_call_file:
2379 func->caller_file = concat_filename (unit->line_table,
2380 attr.u.val);
2381 break;
2382
2383 case DW_AT_call_line:
2384 func->caller_line = attr.u.val;
2385 break;
2386
2387 case DW_AT_abstract_origin:
2388 case DW_AT_specification:
2389 func->name = find_abstract_instance_name (unit, &attr);
2390 break;
2391
2392 case DW_AT_name:
2393 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2394 over DW_AT_name. */
2395 if (func->name == NULL && is_str_attr (attr.form))
2396 func->name = attr.u.str;
2397 break;
2398
2399 case DW_AT_linkage_name:
2400 case DW_AT_MIPS_linkage_name:
2401 /* PR 16949: Corrupt debug info can place
2402 non-string forms into these attributes. */
2403 if (is_str_attr (attr.form))
2404 func->name = attr.u.str;
2405 break;
2406
2407 case DW_AT_low_pc:
2408 low_pc = attr.u.val;
2409 break;
2410
2411 case DW_AT_high_pc:
2412 high_pc = attr.u.val;
2413 high_pc_relative = attr.form != DW_FORM_addr;
2414 break;
2415
2416 case DW_AT_ranges:
2417 if (!read_rangelist (unit, &func->arange, attr.u.val))
2418 goto fail;
2419 break;
2420
2421 case DW_AT_decl_file:
2422 func->file = concat_filename (unit->line_table,
2423 attr.u.val);
2424 break;
2425
2426 case DW_AT_decl_line:
2427 func->line = attr.u.val;
2428 break;
2429
2430 default:
2431 break;
2432 }
2433 }
2434 else if (var)
2435 {
2436 switch (attr.name)
2437 {
2438 case DW_AT_name:
2439 var->name = attr.u.str;
2440 break;
2441
2442 case DW_AT_decl_file:
2443 var->file = concat_filename (unit->line_table,
2444 attr.u.val);
2445 break;
2446
2447 case DW_AT_decl_line:
2448 var->line = attr.u.val;
2449 break;
2450
2451 case DW_AT_external:
2452 if (attr.u.val != 0)
2453 var->stack = 0;
2454 break;
2455
2456 case DW_AT_location:
2457 switch (attr.form)
2458 {
2459 case DW_FORM_block:
2460 case DW_FORM_block1:
2461 case DW_FORM_block2:
2462 case DW_FORM_block4:
2463 case DW_FORM_exprloc:
2464 if (*attr.u.blk->data == DW_OP_addr)
2465 {
2466 var->stack = 0;
2467
2468 /* Verify that DW_OP_addr is the only opcode in the
2469 location, in which case the block size will be 1
2470 plus the address size. */
2471 /* ??? For TLS variables, gcc can emit
2472 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
2473 which we don't handle here yet. */
2474 if (attr.u.blk->size == unit->addr_size + 1U)
2475 var->addr = bfd_get (unit->addr_size * 8,
2476 unit->abfd,
2477 attr.u.blk->data + 1);
2478 }
2479 break;
2480
2481 default:
2482 break;
2483 }
2484 break;
2485
2486 default:
2487 break;
2488 }
2489 }
2490 }
2491
2492 if (high_pc_relative)
2493 high_pc += low_pc;
2494
2495 if (func && high_pc != 0)
2496 {
2497 if (!arange_add (unit, &func->arange, low_pc, high_pc))
2498 goto fail;
2499 }
2500
2501 if (abbrev->has_children)
2502 {
2503 nesting_level++;
2504
2505 if (nesting_level >= nested_funcs_size)
2506 {
2507 struct funcinfo **tmp;
2508
2509 nested_funcs_size *= 2;
2510 tmp = (struct funcinfo **)
2511 bfd_realloc (nested_funcs,
2512 nested_funcs_size * sizeof (struct funcinfo *));
2513 if (tmp == NULL)
2514 goto fail;
2515 nested_funcs = tmp;
2516 }
2517 nested_funcs[nesting_level] = 0;
2518 }
2519 }
2520
2521 free (nested_funcs);
2522 return TRUE;
2523
2524 fail:
2525 free (nested_funcs);
2526 return FALSE;
2527 }
2528
2529 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
2530 includes the compilation unit header that proceeds the DIE's, but
2531 does not include the length field that precedes each compilation
2532 unit header. END_PTR points one past the end of this comp unit.
2533 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
2534
2535 This routine does not read the whole compilation unit; only enough
2536 to get to the line number information for the compilation unit. */
2537
2538 static struct comp_unit *
2539 parse_comp_unit (struct dwarf2_debug *stash,
2540 bfd_vma unit_length,
2541 bfd_byte *info_ptr_unit,
2542 unsigned int offset_size)
2543 {
2544 struct comp_unit* unit;
2545 unsigned int version;
2546 bfd_uint64_t abbrev_offset = 0;
2547 unsigned int addr_size;
2548 struct abbrev_info** abbrevs;
2549 unsigned int abbrev_number, bytes_read, i;
2550 struct abbrev_info *abbrev;
2551 struct attribute attr;
2552 bfd_byte *info_ptr = stash->info_ptr;
2553 bfd_byte *end_ptr = info_ptr + unit_length;
2554 bfd_size_type amt;
2555 bfd_vma low_pc = 0;
2556 bfd_vma high_pc = 0;
2557 bfd *abfd = stash->bfd_ptr;
2558 bfd_boolean high_pc_relative = FALSE;
2559
2560 version = read_2_bytes (abfd, info_ptr);
2561 info_ptr += 2;
2562 BFD_ASSERT (offset_size == 4 || offset_size == 8);
2563 if (offset_size == 4)
2564 abbrev_offset = read_4_bytes (abfd, info_ptr);
2565 else
2566 abbrev_offset = read_8_bytes (abfd, info_ptr);
2567 info_ptr += offset_size;
2568 addr_size = read_1_byte (abfd, info_ptr);
2569 info_ptr += 1;
2570
2571 if (version != 2 && version != 3 && version != 4)
2572 {
2573 (*_bfd_error_handler)
2574 (_("Dwarf Error: found dwarf version '%u', this reader"
2575 " only handles version 2, 3 and 4 information."), version);
2576 bfd_set_error (bfd_error_bad_value);
2577 return 0;
2578 }
2579
2580 if (addr_size > sizeof (bfd_vma))
2581 {
2582 (*_bfd_error_handler)
2583 (_("Dwarf Error: found address size '%u', this reader"
2584 " can not handle sizes greater than '%u'."),
2585 addr_size,
2586 (unsigned int) sizeof (bfd_vma));
2587 bfd_set_error (bfd_error_bad_value);
2588 return 0;
2589 }
2590
2591 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
2592 {
2593 (*_bfd_error_handler)
2594 ("Dwarf Error: found address size '%u', this reader"
2595 " can only handle address sizes '2', '4' and '8'.", addr_size);
2596 bfd_set_error (bfd_error_bad_value);
2597 return 0;
2598 }
2599
2600 /* Read the abbrevs for this compilation unit into a table. */
2601 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
2602 if (! abbrevs)
2603 return 0;
2604
2605 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2606 info_ptr += bytes_read;
2607 if (! abbrev_number)
2608 {
2609 (*_bfd_error_handler) (_("Dwarf Error: Bad abbrev number: %u."),
2610 abbrev_number);
2611 bfd_set_error (bfd_error_bad_value);
2612 return 0;
2613 }
2614
2615 abbrev = lookup_abbrev (abbrev_number, abbrevs);
2616 if (! abbrev)
2617 {
2618 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."),
2619 abbrev_number);
2620 bfd_set_error (bfd_error_bad_value);
2621 return 0;
2622 }
2623
2624 amt = sizeof (struct comp_unit);
2625 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
2626 if (unit == NULL)
2627 return NULL;
2628 unit->abfd = abfd;
2629 unit->version = version;
2630 unit->addr_size = addr_size;
2631 unit->offset_size = offset_size;
2632 unit->abbrevs = abbrevs;
2633 unit->end_ptr = end_ptr;
2634 unit->stash = stash;
2635 unit->info_ptr_unit = info_ptr_unit;
2636 unit->sec_info_ptr = stash->sec_info_ptr;
2637
2638 for (i = 0; i < abbrev->num_attrs; ++i)
2639 {
2640 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr);
2641 if (info_ptr == NULL)
2642 return NULL;
2643
2644 /* Store the data if it is of an attribute we want to keep in a
2645 partial symbol table. */
2646 switch (attr.name)
2647 {
2648 case DW_AT_stmt_list:
2649 unit->stmtlist = 1;
2650 unit->line_offset = attr.u.val;
2651 break;
2652
2653 case DW_AT_name:
2654 unit->name = attr.u.str;
2655 break;
2656
2657 case DW_AT_low_pc:
2658 low_pc = attr.u.val;
2659 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
2660 this is the base address to use when reading location
2661 lists or range lists. */
2662 if (abbrev->tag == DW_TAG_compile_unit)
2663 unit->base_address = low_pc;
2664 break;
2665
2666 case DW_AT_high_pc:
2667 high_pc = attr.u.val;
2668 high_pc_relative = attr.form != DW_FORM_addr;
2669 break;
2670
2671 case DW_AT_ranges:
2672 if (!read_rangelist (unit, &unit->arange, attr.u.val))
2673 return NULL;
2674 break;
2675
2676 case DW_AT_comp_dir:
2677 {
2678 char *comp_dir = attr.u.str;
2679 if (comp_dir)
2680 {
2681 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2682 directory, get rid of it. */
2683 char *cp = strchr (comp_dir, ':');
2684
2685 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2686 comp_dir = cp + 1;
2687 }
2688 unit->comp_dir = comp_dir;
2689 break;
2690 }
2691
2692 default:
2693 break;
2694 }
2695 }
2696 if (high_pc_relative)
2697 high_pc += low_pc;
2698 if (high_pc != 0)
2699 {
2700 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2701 return NULL;
2702 }
2703
2704 unit->first_child_die_ptr = info_ptr;
2705 return unit;
2706 }
2707
2708 /* Return TRUE if UNIT may contain the address given by ADDR. When
2709 there are functions written entirely with inline asm statements, the
2710 range info in the compilation unit header may not be correct. We
2711 need to consult the line info table to see if a compilation unit
2712 really contains the given address. */
2713
2714 static bfd_boolean
2715 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
2716 {
2717 struct arange *arange;
2718
2719 if (unit->error)
2720 return FALSE;
2721
2722 arange = &unit->arange;
2723 do
2724 {
2725 if (addr >= arange->low && addr < arange->high)
2726 return TRUE;
2727 arange = arange->next;
2728 }
2729 while (arange);
2730
2731 return FALSE;
2732 }
2733
2734 /* If UNIT contains ADDR, set the output parameters to the values for
2735 the line containing ADDR. The output parameters, FILENAME_PTR,
2736 FUNCTIONNAME_PTR, and LINENUMBER_PTR, are pointers to the objects
2737 to be filled in.
2738
2739 Returns the range of addresses covered by the entry that was used
2740 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
2741
2742 static bfd_vma
2743 comp_unit_find_nearest_line (struct comp_unit *unit,
2744 bfd_vma addr,
2745 const char **filename_ptr,
2746 const char **functionname_ptr,
2747 unsigned int *linenumber_ptr,
2748 unsigned int *discriminator_ptr,
2749 struct dwarf2_debug *stash)
2750 {
2751 bfd_boolean func_p;
2752 struct funcinfo *function;
2753
2754 if (unit->error)
2755 return FALSE;
2756
2757 if (! unit->line_table)
2758 {
2759 if (! unit->stmtlist)
2760 {
2761 unit->error = 1;
2762 return FALSE;
2763 }
2764
2765 unit->line_table = decode_line_info (unit, stash);
2766
2767 if (! unit->line_table)
2768 {
2769 unit->error = 1;
2770 return FALSE;
2771 }
2772
2773 if (unit->first_child_die_ptr < unit->end_ptr
2774 && ! scan_unit_for_symbols (unit))
2775 {
2776 unit->error = 1;
2777 return FALSE;
2778 }
2779 }
2780
2781 function = NULL;
2782 func_p = lookup_address_in_function_table (unit, addr,
2783 &function, functionname_ptr);
2784 if (func_p && (function->tag == DW_TAG_inlined_subroutine))
2785 stash->inliner_chain = function;
2786
2787 return lookup_address_in_line_info_table (unit->line_table, addr,
2788 filename_ptr,
2789 linenumber_ptr,
2790 discriminator_ptr);
2791 }
2792
2793 /* Check to see if line info is already decoded in a comp_unit.
2794 If not, decode it. Returns TRUE if no errors were encountered;
2795 FALSE otherwise. */
2796
2797 static bfd_boolean
2798 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
2799 struct dwarf2_debug *stash)
2800 {
2801 if (unit->error)
2802 return FALSE;
2803
2804 if (! unit->line_table)
2805 {
2806 if (! unit->stmtlist)
2807 {
2808 unit->error = 1;
2809 return FALSE;
2810 }
2811
2812 unit->line_table = decode_line_info (unit, stash);
2813
2814 if (! unit->line_table)
2815 {
2816 unit->error = 1;
2817 return FALSE;
2818 }
2819
2820 if (unit->first_child_die_ptr < unit->end_ptr
2821 && ! scan_unit_for_symbols (unit))
2822 {
2823 unit->error = 1;
2824 return FALSE;
2825 }
2826 }
2827
2828 return TRUE;
2829 }
2830
2831 /* If UNIT contains SYM at ADDR, set the output parameters to the
2832 values for the line containing SYM. The output parameters,
2833 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
2834 filled in.
2835
2836 Return TRUE if UNIT contains SYM, and no errors were encountered;
2837 FALSE otherwise. */
2838
2839 static bfd_boolean
2840 comp_unit_find_line (struct comp_unit *unit,
2841 asymbol *sym,
2842 bfd_vma addr,
2843 const char **filename_ptr,
2844 unsigned int *linenumber_ptr,
2845 struct dwarf2_debug *stash)
2846 {
2847 if (!comp_unit_maybe_decode_line_info (unit, stash))
2848 return FALSE;
2849
2850 if (sym->flags & BSF_FUNCTION)
2851 return lookup_symbol_in_function_table (unit, sym, addr,
2852 filename_ptr,
2853 linenumber_ptr);
2854
2855 return lookup_symbol_in_variable_table (unit, sym, addr,
2856 filename_ptr,
2857 linenumber_ptr);
2858 }
2859
2860 static struct funcinfo *
2861 reverse_funcinfo_list (struct funcinfo *head)
2862 {
2863 struct funcinfo *rhead;
2864 struct funcinfo *temp;
2865
2866 for (rhead = NULL; head; head = temp)
2867 {
2868 temp = head->prev_func;
2869 head->prev_func = rhead;
2870 rhead = head;
2871 }
2872 return rhead;
2873 }
2874
2875 static struct varinfo *
2876 reverse_varinfo_list (struct varinfo *head)
2877 {
2878 struct varinfo *rhead;
2879 struct varinfo *temp;
2880
2881 for (rhead = NULL; head; head = temp)
2882 {
2883 temp = head->prev_var;
2884 head->prev_var = rhead;
2885 rhead = head;
2886 }
2887 return rhead;
2888 }
2889
2890 /* Extract all interesting funcinfos and varinfos of a compilation
2891 unit into hash tables for faster lookup. Returns TRUE if no
2892 errors were enountered; FALSE otherwise. */
2893
2894 static bfd_boolean
2895 comp_unit_hash_info (struct dwarf2_debug *stash,
2896 struct comp_unit *unit,
2897 struct info_hash_table *funcinfo_hash_table,
2898 struct info_hash_table *varinfo_hash_table)
2899 {
2900 struct funcinfo* each_func;
2901 struct varinfo* each_var;
2902 bfd_boolean okay = TRUE;
2903
2904 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
2905
2906 if (!comp_unit_maybe_decode_line_info (unit, stash))
2907 return FALSE;
2908
2909 BFD_ASSERT (!unit->cached);
2910
2911 /* To preserve the original search order, we went to visit the function
2912 infos in the reversed order of the list. However, making the list
2913 bi-directional use quite a bit of extra memory. So we reverse
2914 the list first, traverse the list in the now reversed order and
2915 finally reverse the list again to get back the original order. */
2916 unit->function_table = reverse_funcinfo_list (unit->function_table);
2917 for (each_func = unit->function_table;
2918 each_func && okay;
2919 each_func = each_func->prev_func)
2920 {
2921 /* Skip nameless functions. */
2922 if (each_func->name)
2923 /* There is no need to copy name string into hash table as
2924 name string is either in the dwarf string buffer or
2925 info in the stash. */
2926 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
2927 (void*) each_func, FALSE);
2928 }
2929 unit->function_table = reverse_funcinfo_list (unit->function_table);
2930 if (!okay)
2931 return FALSE;
2932
2933 /* We do the same for variable infos. */
2934 unit->variable_table = reverse_varinfo_list (unit->variable_table);
2935 for (each_var = unit->variable_table;
2936 each_var && okay;
2937 each_var = each_var->prev_var)
2938 {
2939 /* Skip stack vars and vars with no files or names. */
2940 if (each_var->stack == 0
2941 && each_var->file != NULL
2942 && each_var->name != NULL)
2943 /* There is no need to copy name string into hash table as
2944 name string is either in the dwarf string buffer or
2945 info in the stash. */
2946 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
2947 (void*) each_var, FALSE);
2948 }
2949
2950 unit->variable_table = reverse_varinfo_list (unit->variable_table);
2951 unit->cached = TRUE;
2952 return okay;
2953 }
2954
2955 /* Locate a section in a BFD containing debugging info. The search starts
2956 from the section after AFTER_SEC, or from the first section in the BFD if
2957 AFTER_SEC is NULL. The search works by examining the names of the
2958 sections. There are three permissiable names. The first two are given
2959 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
2960 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
2961 This is a variation on the .debug_info section which has a checksum
2962 describing the contents appended onto the name. This allows the linker to
2963 identify and discard duplicate debugging sections for different
2964 compilation units. */
2965 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
2966
2967 static asection *
2968 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
2969 asection *after_sec)
2970 {
2971 asection *msec;
2972 const char *look;
2973
2974 if (after_sec == NULL)
2975 {
2976 look = debug_sections[debug_info].uncompressed_name;
2977 msec = bfd_get_section_by_name (abfd, look);
2978 if (msec != NULL)
2979 return msec;
2980
2981 look = debug_sections[debug_info].compressed_name;
2982 if (look != NULL)
2983 {
2984 msec = bfd_get_section_by_name (abfd, look);
2985 if (msec != NULL)
2986 return msec;
2987 }
2988
2989 for (msec = abfd->sections; msec != NULL; msec = msec->next)
2990 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
2991 return msec;
2992
2993 return NULL;
2994 }
2995
2996 for (msec = after_sec->next; msec != NULL; msec = msec->next)
2997 {
2998 look = debug_sections[debug_info].uncompressed_name;
2999 if (strcmp (msec->name, look) == 0)
3000 return msec;
3001
3002 look = debug_sections[debug_info].compressed_name;
3003 if (look != NULL && strcmp (msec->name, look) == 0)
3004 return msec;
3005
3006 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3007 return msec;
3008 }
3009
3010 return NULL;
3011 }
3012
3013 /* Transfer VMAs from object file to separate debug file. */
3014
3015 static void
3016 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3017 {
3018 asection *s, *d;
3019
3020 for (s = orig_bfd->sections, d = debug_bfd->sections;
3021 s != NULL && d != NULL;
3022 s = s->next, d = d->next)
3023 {
3024 if ((d->flags & SEC_DEBUGGING) != 0)
3025 break;
3026 /* ??? Assumes 1-1 correspondence between sections in the
3027 two files. */
3028 if (strcmp (s->name, d->name) == 0)
3029 {
3030 d->output_section = s->output_section;
3031 d->output_offset = s->output_offset;
3032 d->vma = s->vma;
3033 }
3034 }
3035 }
3036
3037 /* Unset vmas for adjusted sections in STASH. */
3038
3039 static void
3040 unset_sections (struct dwarf2_debug *stash)
3041 {
3042 int i;
3043 struct adjusted_section *p;
3044
3045 i = stash->adjusted_section_count;
3046 p = stash->adjusted_sections;
3047 for (; i > 0; i--, p++)
3048 p->section->vma = 0;
3049 }
3050
3051 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3052 relocatable object file. VMAs are normally all zero in relocatable
3053 object files, so if we want to distinguish locations in sections by
3054 address we need to set VMAs so the sections do not overlap. We
3055 also set VMA on .debug_info so that when we have multiple
3056 .debug_info sections (or the linkonce variant) they also do not
3057 overlap. The multiple .debug_info sections make up a single
3058 logical section. ??? We should probably do the same for other
3059 debug sections. */
3060
3061 static bfd_boolean
3062 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3063 {
3064 bfd *abfd;
3065 struct adjusted_section *p;
3066 int i;
3067 const char *debug_info_name;
3068
3069 if (stash->adjusted_section_count != 0)
3070 {
3071 i = stash->adjusted_section_count;
3072 p = stash->adjusted_sections;
3073 for (; i > 0; i--, p++)
3074 p->section->vma = p->adj_vma;
3075 return TRUE;
3076 }
3077
3078 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3079 i = 0;
3080 abfd = orig_bfd;
3081 while (1)
3082 {
3083 asection *sect;
3084
3085 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3086 {
3087 int is_debug_info;
3088
3089 if ((sect->output_section != NULL
3090 && sect->output_section != sect
3091 && (sect->flags & SEC_DEBUGGING) == 0)
3092 || sect->vma != 0)
3093 continue;
3094
3095 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3096 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3097
3098 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3099 && !is_debug_info)
3100 continue;
3101
3102 i++;
3103 }
3104 if (abfd == stash->bfd_ptr)
3105 break;
3106 abfd = stash->bfd_ptr;
3107 }
3108
3109 if (i <= 1)
3110 stash->adjusted_section_count = -1;
3111 else
3112 {
3113 bfd_vma last_vma = 0, last_dwarf = 0;
3114 bfd_size_type amt = i * sizeof (struct adjusted_section);
3115
3116 p = (struct adjusted_section *) bfd_malloc (amt);
3117 if (p == NULL)
3118 return FALSE;
3119
3120 stash->adjusted_sections = p;
3121 stash->adjusted_section_count = i;
3122
3123 abfd = orig_bfd;
3124 while (1)
3125 {
3126 asection *sect;
3127
3128 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3129 {
3130 bfd_size_type sz;
3131 int is_debug_info;
3132
3133 if ((sect->output_section != NULL
3134 && sect->output_section != sect
3135 && (sect->flags & SEC_DEBUGGING) == 0)
3136 || sect->vma != 0)
3137 continue;
3138
3139 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3140 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3141
3142 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3143 && !is_debug_info)
3144 continue;
3145
3146 sz = sect->rawsize ? sect->rawsize : sect->size;
3147
3148 if (is_debug_info)
3149 {
3150 BFD_ASSERT (sect->alignment_power == 0);
3151 sect->vma = last_dwarf;
3152 last_dwarf += sz;
3153 }
3154 else
3155 {
3156 /* Align the new address to the current section
3157 alignment. */
3158 last_vma = ((last_vma
3159 + ~((bfd_vma) -1 << sect->alignment_power))
3160 & ((bfd_vma) -1 << sect->alignment_power));
3161 sect->vma = last_vma;
3162 last_vma += sz;
3163 }
3164
3165 p->section = sect;
3166 p->adj_vma = sect->vma;
3167 p++;
3168 }
3169 if (abfd == stash->bfd_ptr)
3170 break;
3171 abfd = stash->bfd_ptr;
3172 }
3173 }
3174
3175 if (orig_bfd != stash->bfd_ptr)
3176 set_debug_vma (orig_bfd, stash->bfd_ptr);
3177
3178 return TRUE;
3179 }
3180
3181 /* Look up a funcinfo by name using the given info hash table. If found,
3182 also update the locations pointed to by filename_ptr and linenumber_ptr.
3183
3184 This function returns TRUE if a funcinfo that matches the given symbol
3185 and address is found with any error; otherwise it returns FALSE. */
3186
3187 static bfd_boolean
3188 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
3189 asymbol *sym,
3190 bfd_vma addr,
3191 const char **filename_ptr,
3192 unsigned int *linenumber_ptr)
3193 {
3194 struct funcinfo* each_func;
3195 struct funcinfo* best_fit = NULL;
3196 bfd_vma best_fit_len = 0;
3197 struct info_list_node *node;
3198 struct arange *arange;
3199 const char *name = bfd_asymbol_name (sym);
3200 asection *sec = bfd_get_section (sym);
3201
3202 for (node = lookup_info_hash_table (hash_table, name);
3203 node;
3204 node = node->next)
3205 {
3206 each_func = (struct funcinfo *) node->info;
3207 for (arange = &each_func->arange;
3208 arange;
3209 arange = arange->next)
3210 {
3211 if ((!each_func->sec || each_func->sec == sec)
3212 && addr >= arange->low
3213 && addr < arange->high
3214 && (!best_fit
3215 || arange->high - arange->low < best_fit_len))
3216 {
3217 best_fit = each_func;
3218 best_fit_len = arange->high - arange->low;
3219 }
3220 }
3221 }
3222
3223 if (best_fit)
3224 {
3225 best_fit->sec = sec;
3226 *filename_ptr = best_fit->file;
3227 *linenumber_ptr = best_fit->line;
3228 return TRUE;
3229 }
3230
3231 return FALSE;
3232 }
3233
3234 /* Look up a varinfo by name using the given info hash table. If found,
3235 also update the locations pointed to by filename_ptr and linenumber_ptr.
3236
3237 This function returns TRUE if a varinfo that matches the given symbol
3238 and address is found with any error; otherwise it returns FALSE. */
3239
3240 static bfd_boolean
3241 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
3242 asymbol *sym,
3243 bfd_vma addr,
3244 const char **filename_ptr,
3245 unsigned int *linenumber_ptr)
3246 {
3247 const char *name = bfd_asymbol_name (sym);
3248 asection *sec = bfd_get_section (sym);
3249 struct varinfo* each;
3250 struct info_list_node *node;
3251
3252 for (node = lookup_info_hash_table (hash_table, name);
3253 node;
3254 node = node->next)
3255 {
3256 each = (struct varinfo *) node->info;
3257 if (each->addr == addr
3258 && (!each->sec || each->sec == sec))
3259 {
3260 each->sec = sec;
3261 *filename_ptr = each->file;
3262 *linenumber_ptr = each->line;
3263 return TRUE;
3264 }
3265 }
3266
3267 return FALSE;
3268 }
3269
3270 /* Update the funcinfo and varinfo info hash tables if they are
3271 not up to date. Returns TRUE if there is no error; otherwise
3272 returns FALSE and disable the info hash tables. */
3273
3274 static bfd_boolean
3275 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
3276 {
3277 struct comp_unit *each;
3278
3279 /* Exit if hash tables are up-to-date. */
3280 if (stash->all_comp_units == stash->hash_units_head)
3281 return TRUE;
3282
3283 if (stash->hash_units_head)
3284 each = stash->hash_units_head->prev_unit;
3285 else
3286 each = stash->last_comp_unit;
3287
3288 while (each)
3289 {
3290 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
3291 stash->varinfo_hash_table))
3292 {
3293 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
3294 return FALSE;
3295 }
3296 each = each->prev_unit;
3297 }
3298
3299 stash->hash_units_head = stash->all_comp_units;
3300 return TRUE;
3301 }
3302
3303 /* Check consistency of info hash tables. This is for debugging only. */
3304
3305 static void ATTRIBUTE_UNUSED
3306 stash_verify_info_hash_table (struct dwarf2_debug *stash)
3307 {
3308 struct comp_unit *each_unit;
3309 struct funcinfo *each_func;
3310 struct varinfo *each_var;
3311 struct info_list_node *node;
3312 bfd_boolean found;
3313
3314 for (each_unit = stash->all_comp_units;
3315 each_unit;
3316 each_unit = each_unit->next_unit)
3317 {
3318 for (each_func = each_unit->function_table;
3319 each_func;
3320 each_func = each_func->prev_func)
3321 {
3322 if (!each_func->name)
3323 continue;
3324 node = lookup_info_hash_table (stash->funcinfo_hash_table,
3325 each_func->name);
3326 BFD_ASSERT (node);
3327 found = FALSE;
3328 while (node && !found)
3329 {
3330 found = node->info == each_func;
3331 node = node->next;
3332 }
3333 BFD_ASSERT (found);
3334 }
3335
3336 for (each_var = each_unit->variable_table;
3337 each_var;
3338 each_var = each_var->prev_var)
3339 {
3340 if (!each_var->name || !each_var->file || each_var->stack)
3341 continue;
3342 node = lookup_info_hash_table (stash->varinfo_hash_table,
3343 each_var->name);
3344 BFD_ASSERT (node);
3345 found = FALSE;
3346 while (node && !found)
3347 {
3348 found = node->info == each_var;
3349 node = node->next;
3350 }
3351 BFD_ASSERT (found);
3352 }
3353 }
3354 }
3355
3356 /* Check to see if we want to enable the info hash tables, which consume
3357 quite a bit of memory. Currently we only check the number times
3358 bfd_dwarf2_find_line is called. In the future, we may also want to
3359 take the number of symbols into account. */
3360
3361 static void
3362 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
3363 {
3364 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
3365
3366 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
3367 return;
3368
3369 /* FIXME: Maybe we should check the reduce_memory_overheads
3370 and optimize fields in the bfd_link_info structure ? */
3371
3372 /* Create hash tables. */
3373 stash->funcinfo_hash_table = create_info_hash_table (abfd);
3374 stash->varinfo_hash_table = create_info_hash_table (abfd);
3375 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
3376 {
3377 /* Turn off info hashes if any allocation above fails. */
3378 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
3379 return;
3380 }
3381 /* We need a forced update so that the info hash tables will
3382 be created even though there is no compilation unit. That
3383 happens if STASH_INFO_HASH_TRIGGER is 0. */
3384 stash_maybe_update_info_hash_tables (stash);
3385 stash->info_hash_status = STASH_INFO_HASH_ON;
3386 }
3387
3388 /* Find the file and line associated with a symbol and address using the
3389 info hash tables of a stash. If there is a match, the function returns
3390 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
3391 otherwise it returns FALSE. */
3392
3393 static bfd_boolean
3394 stash_find_line_fast (struct dwarf2_debug *stash,
3395 asymbol *sym,
3396 bfd_vma addr,
3397 const char **filename_ptr,
3398 unsigned int *linenumber_ptr)
3399 {
3400 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
3401
3402 if (sym->flags & BSF_FUNCTION)
3403 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
3404 filename_ptr, linenumber_ptr);
3405 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
3406 filename_ptr, linenumber_ptr);
3407 }
3408
3409 /* Save current section VMAs. */
3410
3411 static bfd_boolean
3412 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
3413 {
3414 asection *s;
3415 unsigned int i;
3416
3417 if (abfd->section_count == 0)
3418 return TRUE;
3419 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
3420 if (stash->sec_vma == NULL)
3421 return FALSE;
3422 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
3423 {
3424 if (s->output_section != NULL)
3425 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
3426 else
3427 stash->sec_vma[i] = s->vma;
3428 }
3429 return TRUE;
3430 }
3431
3432 /* Compare current section VMAs against those at the time the stash
3433 was created. If find_nearest_line is used in linker warnings or
3434 errors early in the link process, the debug info stash will be
3435 invalid for later calls. This is because we relocate debug info
3436 sections, so the stashed section contents depend on symbol values,
3437 which in turn depend on section VMAs. */
3438
3439 static bfd_boolean
3440 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
3441 {
3442 asection *s;
3443 unsigned int i;
3444
3445 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
3446 {
3447 bfd_vma vma;
3448
3449 if (s->output_section != NULL)
3450 vma = s->output_section->vma + s->output_offset;
3451 else
3452 vma = s->vma;
3453 if (vma != stash->sec_vma[i])
3454 return FALSE;
3455 }
3456 return TRUE;
3457 }
3458
3459 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
3460 If DEBUG_BFD is not specified, we read debug information from ABFD
3461 or its gnu_debuglink. The results will be stored in PINFO.
3462 The function returns TRUE iff debug information is ready. */
3463
3464 bfd_boolean
3465 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
3466 const struct dwarf_debug_section *debug_sections,
3467 asymbol **symbols,
3468 void **pinfo,
3469 bfd_boolean do_place)
3470 {
3471 bfd_size_type amt = sizeof (struct dwarf2_debug);
3472 bfd_size_type total_size;
3473 asection *msec;
3474 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
3475
3476 if (stash != NULL)
3477 {
3478 if (section_vma_same (abfd, stash))
3479 return TRUE;
3480 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
3481 memset (stash, 0, amt);
3482 }
3483 else
3484 {
3485 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
3486 if (! stash)
3487 return FALSE;
3488 }
3489 stash->debug_sections = debug_sections;
3490 stash->syms = symbols;
3491 if (!save_section_vma (abfd, stash))
3492 return FALSE;
3493
3494 *pinfo = stash;
3495
3496 if (debug_bfd == NULL)
3497 debug_bfd = abfd;
3498
3499 msec = find_debug_info (debug_bfd, debug_sections, NULL);
3500 if (msec == NULL && abfd == debug_bfd)
3501 {
3502 char * debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
3503
3504 if (debug_filename == NULL)
3505 /* No dwarf2 info, and no gnu_debuglink to follow.
3506 Note that at this point the stash has been allocated, but
3507 contains zeros. This lets future calls to this function
3508 fail more quickly. */
3509 return FALSE;
3510
3511 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
3512 || ! bfd_check_format (debug_bfd, bfd_object)
3513 || (msec = find_debug_info (debug_bfd,
3514 debug_sections, NULL)) == NULL
3515 || !bfd_generic_link_read_symbols (debug_bfd))
3516 {
3517 if (debug_bfd)
3518 bfd_close (debug_bfd);
3519 /* FIXME: Should we report our failure to follow the debuglink ? */
3520 free (debug_filename);
3521 return FALSE;
3522 }
3523
3524 symbols = bfd_get_outsymbols (debug_bfd);
3525 stash->syms = symbols;
3526 stash->close_on_cleanup = TRUE;
3527 }
3528 stash->bfd_ptr = debug_bfd;
3529
3530 if (do_place
3531 && !place_sections (abfd, stash))
3532 return FALSE;
3533
3534 /* There can be more than one DWARF2 info section in a BFD these
3535 days. First handle the easy case when there's only one. If
3536 there's more than one, try case two: none of the sections is
3537 compressed. In that case, read them all in and produce one
3538 large stash. We do this in two passes - in the first pass we
3539 just accumulate the section sizes, and in the second pass we
3540 read in the section's contents. (The allows us to avoid
3541 reallocing the data as we add sections to the stash.) If
3542 some or all sections are compressed, then do things the slow
3543 way, with a bunch of reallocs. */
3544
3545 if (! find_debug_info (debug_bfd, debug_sections, msec))
3546 {
3547 /* Case 1: only one info section. */
3548 total_size = msec->size;
3549 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
3550 symbols, 0,
3551 &stash->info_ptr_memory, &total_size))
3552 return FALSE;
3553 }
3554 else
3555 {
3556 /* Case 2: multiple sections. */
3557 for (total_size = 0;
3558 msec;
3559 msec = find_debug_info (debug_bfd, debug_sections, msec))
3560 total_size += msec->size;
3561
3562 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
3563 if (stash->info_ptr_memory == NULL)
3564 return FALSE;
3565
3566 total_size = 0;
3567 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
3568 msec;
3569 msec = find_debug_info (debug_bfd, debug_sections, msec))
3570 {
3571 bfd_size_type size;
3572
3573 size = msec->size;
3574 if (size == 0)
3575 continue;
3576
3577 if (!(bfd_simple_get_relocated_section_contents
3578 (debug_bfd, msec, stash->info_ptr_memory + total_size,
3579 symbols)))
3580 return FALSE;
3581
3582 total_size += size;
3583 }
3584 }
3585
3586 stash->info_ptr = stash->info_ptr_memory;
3587 stash->info_ptr_end = stash->info_ptr + total_size;
3588 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
3589 stash->sec_info_ptr = stash->info_ptr;
3590 return TRUE;
3591 }
3592
3593 /* Find the source code location of SYMBOL. If SYMBOL is NULL
3594 then find the nearest source code location corresponding to
3595 the address SECTION + OFFSET.
3596 Returns TRUE if the line is found without error and fills in
3597 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
3598 NULL the FUNCTIONNAME_PTR is also filled in.
3599 SYMBOLS contains the symbol table for ABFD.
3600 DEBUG_SECTIONS contains the name of the dwarf debug sections.
3601 ADDR_SIZE is the number of bytes in the initial .debug_info length
3602 field and in the abbreviation offset, or zero to indicate that the
3603 default value should be used. */
3604
3605 static bfd_boolean
3606 find_line (bfd *abfd,
3607 const struct dwarf_debug_section *debug_sections,
3608 asection *section,
3609 bfd_vma offset,
3610 asymbol *symbol,
3611 asymbol **symbols,
3612 const char **filename_ptr,
3613 const char **functionname_ptr,
3614 unsigned int *linenumber_ptr,
3615 unsigned int *discriminator_ptr,
3616 unsigned int addr_size,
3617 void **pinfo)
3618 {
3619 /* Read each compilation unit from the section .debug_info, and check
3620 to see if it contains the address we are searching for. If yes,
3621 lookup the address, and return the line number info. If no, go
3622 on to the next compilation unit.
3623
3624 We keep a list of all the previously read compilation units, and
3625 a pointer to the next un-read compilation unit. Check the
3626 previously read units before reading more. */
3627 struct dwarf2_debug *stash;
3628 /* What address are we looking for? */
3629 bfd_vma addr;
3630 struct comp_unit* each;
3631 bfd_boolean found = FALSE;
3632 bfd_boolean do_line;
3633
3634 *filename_ptr = NULL;
3635 if (functionname_ptr != NULL)
3636 *functionname_ptr = NULL;
3637 *linenumber_ptr = 0;
3638 if (discriminator_ptr)
3639 *discriminator_ptr = 0;
3640
3641 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
3642 symbols, pinfo,
3643 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
3644 return FALSE;
3645
3646 stash = (struct dwarf2_debug *) *pinfo;
3647
3648 do_line = (section == NULL
3649 && offset == 0
3650 && functionname_ptr == NULL
3651 && symbol != NULL);
3652 if (do_line)
3653 {
3654 addr = symbol->value;
3655 section = bfd_get_section (symbol);
3656 }
3657 else if (section != NULL
3658 && functionname_ptr != NULL
3659 && symbol == NULL)
3660 addr = offset;
3661 else
3662 abort ();
3663
3664 if (section->output_section)
3665 addr += section->output_section->vma + section->output_offset;
3666 else
3667 addr += section->vma;
3668
3669 /* A null info_ptr indicates that there is no dwarf2 info
3670 (or that an error occured while setting up the stash). */
3671 if (! stash->info_ptr)
3672 return FALSE;
3673
3674 stash->inliner_chain = NULL;
3675
3676 /* Check the previously read comp. units first. */
3677 if (do_line)
3678 {
3679 /* The info hash tables use quite a bit of memory. We may not want to
3680 always use them. We use some heuristics to decide if and when to
3681 turn it on. */
3682 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
3683 stash_maybe_enable_info_hash_tables (abfd, stash);
3684
3685 /* Keep info hash table up to date if they are available. Note that we
3686 may disable the hash tables if there is any error duing update. */
3687 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3688 stash_maybe_update_info_hash_tables (stash);
3689
3690 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3691 {
3692 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
3693 linenumber_ptr);
3694 if (found)
3695 goto done;
3696 }
3697 else
3698 {
3699 /* Check the previously read comp. units first. */
3700 for (each = stash->all_comp_units; each; each = each->next_unit)
3701 if ((symbol->flags & BSF_FUNCTION) == 0
3702 || each->arange.high == 0
3703 || comp_unit_contains_address (each, addr))
3704 {
3705 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
3706 linenumber_ptr, stash);
3707 if (found)
3708 goto done;
3709 }
3710 }
3711 }
3712 else
3713 {
3714 bfd_vma min_range = (bfd_vma) -1;
3715 const char * local_filename = NULL;
3716 const char * local_functionname = NULL;
3717 unsigned int local_linenumber = 0;
3718 unsigned int local_discriminator = 0;
3719
3720 for (each = stash->all_comp_units; each; each = each->next_unit)
3721 {
3722 bfd_vma range = (bfd_vma) -1;
3723
3724 found = ((each->arange.high == 0
3725 || comp_unit_contains_address (each, addr))
3726 && (range = comp_unit_find_nearest_line (each, addr,
3727 & local_filename,
3728 & local_functionname,
3729 & local_linenumber,
3730 & local_discriminator,
3731 stash)) != 0);
3732 if (found)
3733 {
3734 /* PRs 15935 15994: Bogus debug information may have provided us
3735 with an erroneous match. We attempt to counter this by
3736 selecting the match that has the smallest address range
3737 associated with it. (We are assuming that corrupt debug info
3738 will tend to result in extra large address ranges rather than
3739 extra small ranges).
3740
3741 This does mean that we scan through all of the CUs associated
3742 with the bfd each time this function is called. But this does
3743 have the benefit of producing consistent results every time the
3744 function is called. */
3745 if (range <= min_range)
3746 {
3747 if (filename_ptr && local_filename)
3748 * filename_ptr = local_filename;
3749 if (functionname_ptr && local_functionname)
3750 * functionname_ptr = local_functionname;
3751 if (discriminator_ptr && local_discriminator)
3752 * discriminator_ptr = local_discriminator;
3753 if (local_linenumber)
3754 * linenumber_ptr = local_linenumber;
3755 min_range = range;
3756 }
3757 }
3758 }
3759
3760 if (* linenumber_ptr)
3761 {
3762 found = TRUE;
3763 goto done;
3764 }
3765 }
3766
3767 /* The DWARF2 spec says that the initial length field, and the
3768 offset of the abbreviation table, should both be 4-byte values.
3769 However, some compilers do things differently. */
3770 if (addr_size == 0)
3771 addr_size = 4;
3772 BFD_ASSERT (addr_size == 4 || addr_size == 8);
3773
3774 /* Read each remaining comp. units checking each as they are read. */
3775 while (stash->info_ptr < stash->info_ptr_end)
3776 {
3777 bfd_vma length;
3778 unsigned int offset_size = addr_size;
3779 bfd_byte *info_ptr_unit = stash->info_ptr;
3780
3781 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr);
3782 /* A 0xffffff length is the DWARF3 way of indicating
3783 we use 64-bit offsets, instead of 32-bit offsets. */
3784 if (length == 0xffffffff)
3785 {
3786 offset_size = 8;
3787 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4);
3788 stash->info_ptr += 12;
3789 }
3790 /* A zero length is the IRIX way of indicating 64-bit offsets,
3791 mostly because the 64-bit length will generally fit in 32
3792 bits, and the endianness helps. */
3793 else if (length == 0)
3794 {
3795 offset_size = 8;
3796 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4);
3797 stash->info_ptr += 8;
3798 }
3799 /* In the absence of the hints above, we assume 32-bit DWARF2
3800 offsets even for targets with 64-bit addresses, because:
3801 a) most of the time these targets will not have generated
3802 more than 2Gb of debug info and so will not need 64-bit
3803 offsets,
3804 and
3805 b) if they do use 64-bit offsets but they are not using
3806 the size hints that are tested for above then they are
3807 not conforming to the DWARF3 standard anyway. */
3808 else if (addr_size == 8)
3809 {
3810 offset_size = 4;
3811 stash->info_ptr += 4;
3812 }
3813 else
3814 stash->info_ptr += 4;
3815
3816 if (length > 0)
3817 {
3818 each = parse_comp_unit (stash, length, info_ptr_unit,
3819 offset_size);
3820 if (!each)
3821 /* The dwarf information is damaged, don't trust it any
3822 more. */
3823 break;
3824 stash->info_ptr += length;
3825
3826 if (stash->all_comp_units)
3827 stash->all_comp_units->prev_unit = each;
3828 else
3829 stash->last_comp_unit = each;
3830
3831 each->next_unit = stash->all_comp_units;
3832 stash->all_comp_units = each;
3833
3834 /* DW_AT_low_pc and DW_AT_high_pc are optional for
3835 compilation units. If we don't have them (i.e.,
3836 unit->high == 0), we need to consult the line info table
3837 to see if a compilation unit contains the given
3838 address. */
3839 if (do_line)
3840 found = (((symbol->flags & BSF_FUNCTION) == 0
3841 || each->arange.high == 0
3842 || comp_unit_contains_address (each, addr))
3843 && comp_unit_find_line (each, symbol, addr,
3844 filename_ptr,
3845 linenumber_ptr,
3846 stash));
3847 else
3848 found = ((each->arange.high == 0
3849 || comp_unit_contains_address (each, addr))
3850 && comp_unit_find_nearest_line (each, addr,
3851 filename_ptr,
3852 functionname_ptr,
3853 linenumber_ptr,
3854 discriminator_ptr,
3855 stash)) > 0;
3856
3857 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
3858 == stash->sec->size)
3859 {
3860 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
3861 stash->sec);
3862 stash->sec_info_ptr = stash->info_ptr;
3863 }
3864
3865 if (found)
3866 goto done;
3867 }
3868 }
3869
3870 done:
3871 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
3872 unset_sections (stash);
3873
3874 return found;
3875 }
3876
3877 /* The DWARF2 version of find_nearest_line.
3878 Return TRUE if the line is found without error. */
3879
3880 bfd_boolean
3881 _bfd_dwarf2_find_nearest_line (bfd *abfd,
3882 const struct dwarf_debug_section *debug_sections,
3883 asection *section,
3884 asymbol **symbols,
3885 bfd_vma offset,
3886 const char **filename_ptr,
3887 const char **functionname_ptr,
3888 unsigned int *linenumber_ptr,
3889 unsigned int *discriminator_ptr,
3890 unsigned int addr_size,
3891 void **pinfo)
3892 {
3893 return find_line (abfd, debug_sections, section, offset, NULL, symbols,
3894 filename_ptr, functionname_ptr, linenumber_ptr,
3895 discriminator_ptr, addr_size, pinfo);
3896 }
3897
3898 /* The DWARF2 version of find_line.
3899 Return TRUE if the line is found without error. */
3900
3901 bfd_boolean
3902 _bfd_dwarf2_find_line (bfd *abfd,
3903 asymbol **symbols,
3904 asymbol *symbol,
3905 const char **filename_ptr,
3906 unsigned int *linenumber_ptr,
3907 unsigned int *discriminator_ptr,
3908 unsigned int addr_size,
3909 void **pinfo)
3910 {
3911 return find_line (abfd, dwarf_debug_sections, NULL, 0, symbol, symbols,
3912 filename_ptr, NULL, linenumber_ptr, discriminator_ptr,
3913 addr_size, pinfo);
3914 }
3915
3916 bfd_boolean
3917 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
3918 const char **filename_ptr,
3919 const char **functionname_ptr,
3920 unsigned int *linenumber_ptr,
3921 void **pinfo)
3922 {
3923 struct dwarf2_debug *stash;
3924
3925 stash = (struct dwarf2_debug *) *pinfo;
3926 if (stash)
3927 {
3928 struct funcinfo *func = stash->inliner_chain;
3929
3930 if (func && func->caller_func)
3931 {
3932 *filename_ptr = func->caller_file;
3933 *functionname_ptr = func->caller_func->name;
3934 *linenumber_ptr = func->caller_line;
3935 stash->inliner_chain = func->caller_func;
3936 return TRUE;
3937 }
3938 }
3939
3940 return FALSE;
3941 }
3942
3943 void
3944 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
3945 {
3946 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
3947 struct comp_unit *each;
3948
3949 if (abfd == NULL || stash == NULL)
3950 return;
3951
3952 for (each = stash->all_comp_units; each; each = each->next_unit)
3953 {
3954 struct abbrev_info **abbrevs = each->abbrevs;
3955 struct funcinfo *function_table = each->function_table;
3956 struct varinfo *variable_table = each->variable_table;
3957 size_t i;
3958
3959 for (i = 0; i < ABBREV_HASH_SIZE; i++)
3960 {
3961 struct abbrev_info *abbrev = abbrevs[i];
3962
3963 while (abbrev)
3964 {
3965 free (abbrev->attrs);
3966 abbrev = abbrev->next;
3967 }
3968 }
3969
3970 if (each->line_table)
3971 {
3972 free (each->line_table->dirs);
3973 free (each->line_table->files);
3974 }
3975
3976 while (function_table)
3977 {
3978 if (function_table->file)
3979 {
3980 free (function_table->file);
3981 function_table->file = NULL;
3982 }
3983
3984 if (function_table->caller_file)
3985 {
3986 free (function_table->caller_file);
3987 function_table->caller_file = NULL;
3988 }
3989 function_table = function_table->prev_func;
3990 }
3991
3992 while (variable_table)
3993 {
3994 if (variable_table->file)
3995 {
3996 free (variable_table->file);
3997 variable_table->file = NULL;
3998 }
3999
4000 variable_table = variable_table->prev_var;
4001 }
4002 }
4003
4004 if (stash->dwarf_abbrev_buffer)
4005 free (stash->dwarf_abbrev_buffer);
4006 if (stash->dwarf_line_buffer)
4007 free (stash->dwarf_line_buffer);
4008 if (stash->dwarf_str_buffer)
4009 free (stash->dwarf_str_buffer);
4010 if (stash->dwarf_ranges_buffer)
4011 free (stash->dwarf_ranges_buffer);
4012 if (stash->info_ptr_memory)
4013 free (stash->info_ptr_memory);
4014 if (stash->close_on_cleanup)
4015 bfd_close (stash->bfd_ptr);
4016 if (stash->alt_dwarf_str_buffer)
4017 free (stash->alt_dwarf_str_buffer);
4018 if (stash->alt_dwarf_info_buffer)
4019 free (stash->alt_dwarf_info_buffer);
4020 if (stash->sec_vma)
4021 free (stash->sec_vma);
4022 if (stash->adjusted_sections)
4023 free (stash->adjusted_sections);
4024 if (stash->alt_bfd_ptr)
4025 bfd_close (stash->alt_bfd_ptr);
4026 }
This page took 0.138023 seconds and 5 git commands to generate.