Fix discrepancies in nm's --line-number output by adding support for the DW_AT_specif...
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2020 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38 #include "hashtab.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug_file
86 {
87 /* The actual bfd from which debug info was loaded. Might be
88 different to orig_bfd because of gnu_debuglink sections. */
89 bfd *bfd_ptr;
90
91 /* Pointer to the symbol table. */
92 asymbol **syms;
93
94 /* The current info pointer for the .debug_info section being parsed. */
95 bfd_byte *info_ptr;
96
97 /* A pointer to the memory block allocated for .debug_info sections. */
98 bfd_byte *dwarf_info_buffer;
99
100 /* Length of the loaded .debug_info sections. */
101 bfd_size_type dwarf_info_size;
102
103 /* Pointer to the .debug_abbrev section loaded into memory. */
104 bfd_byte *dwarf_abbrev_buffer;
105
106 /* Length of the loaded .debug_abbrev section. */
107 bfd_size_type dwarf_abbrev_size;
108
109 /* Buffer for decode_line_info. */
110 bfd_byte *dwarf_line_buffer;
111
112 /* Length of the loaded .debug_line section. */
113 bfd_size_type dwarf_line_size;
114
115 /* Pointer to the .debug_str section loaded into memory. */
116 bfd_byte *dwarf_str_buffer;
117
118 /* Length of the loaded .debug_str section. */
119 bfd_size_type dwarf_str_size;
120
121 /* Pointer to the .debug_line_str section loaded into memory. */
122 bfd_byte *dwarf_line_str_buffer;
123
124 /* Length of the loaded .debug_line_str section. */
125 bfd_size_type dwarf_line_str_size;
126
127 /* Pointer to the .debug_ranges section loaded into memory. */
128 bfd_byte *dwarf_ranges_buffer;
129
130 /* Length of the loaded .debug_ranges section. */
131 bfd_size_type dwarf_ranges_size;
132
133 /* A list of all previously read comp_units. */
134 struct comp_unit *all_comp_units;
135
136 /* Last comp unit in list above. */
137 struct comp_unit *last_comp_unit;
138
139 /* Line table at line_offset zero. */
140 struct line_info_table *line_table;
141
142 /* Hash table to map offsets to decoded abbrevs. */
143 htab_t abbrev_offsets;
144 };
145
146 struct dwarf2_debug
147 {
148 /* Names of the debug sections. */
149 const struct dwarf_debug_section *debug_sections;
150
151 /* Per-file stuff. */
152 struct dwarf2_debug_file f, alt;
153
154 /* Pointer to the original bfd for which debug was loaded. This is what
155 we use to compare and so check that the cached debug data is still
156 valid - it saves having to possibly dereference the gnu_debuglink each
157 time. */
158 bfd *orig_bfd;
159
160 /* If the most recent call to bfd_find_nearest_line was given an
161 address in an inlined function, preserve a pointer into the
162 calling chain for subsequent calls to bfd_find_inliner_info to
163 use. */
164 struct funcinfo *inliner_chain;
165
166 /* Section VMAs at the time the stash was built. */
167 bfd_vma *sec_vma;
168 /* Number of sections in the SEC_VMA table. */
169 unsigned int sec_vma_count;
170
171 /* Number of sections whose VMA we must adjust. */
172 int adjusted_section_count;
173
174 /* Array of sections with adjusted VMA. */
175 struct adjusted_section *adjusted_sections;
176
177 /* Number of times find_line is called. This is used in
178 the heuristic for enabling the info hash tables. */
179 int info_hash_count;
180
181 #define STASH_INFO_HASH_TRIGGER 100
182
183 /* Hash table mapping symbol names to function infos. */
184 struct info_hash_table *funcinfo_hash_table;
185
186 /* Hash table mapping symbol names to variable infos. */
187 struct info_hash_table *varinfo_hash_table;
188
189 /* Head of comp_unit list in the last hash table update. */
190 struct comp_unit *hash_units_head;
191
192 /* Status of info hash. */
193 int info_hash_status;
194 #define STASH_INFO_HASH_OFF 0
195 #define STASH_INFO_HASH_ON 1
196 #define STASH_INFO_HASH_DISABLED 2
197
198 /* True if we opened bfd_ptr. */
199 bfd_boolean close_on_cleanup;
200 };
201
202 struct arange
203 {
204 struct arange *next;
205 bfd_vma low;
206 bfd_vma high;
207 };
208
209 /* A minimal decoding of DWARF2 compilation units. We only decode
210 what's needed to get to the line number information. */
211
212 struct comp_unit
213 {
214 /* Chain the previously read compilation units. */
215 struct comp_unit *next_unit;
216
217 /* Likewise, chain the compilation unit read after this one.
218 The comp units are stored in reversed reading order. */
219 struct comp_unit *prev_unit;
220
221 /* Keep the bfd convenient (for memory allocation). */
222 bfd *abfd;
223
224 /* The lowest and highest addresses contained in this compilation
225 unit as specified in the compilation unit header. */
226 struct arange arange;
227
228 /* The DW_AT_name attribute (for error messages). */
229 char *name;
230
231 /* The abbrev hash table. */
232 struct abbrev_info **abbrevs;
233
234 /* DW_AT_language. */
235 int lang;
236
237 /* Note that an error was found by comp_unit_find_nearest_line. */
238 int error;
239
240 /* The DW_AT_comp_dir attribute. */
241 char *comp_dir;
242
243 /* TRUE if there is a line number table associated with this comp. unit. */
244 int stmtlist;
245
246 /* Pointer to the current comp_unit so that we can find a given entry
247 by its reference. */
248 bfd_byte *info_ptr_unit;
249
250 /* The offset into .debug_line of the line number table. */
251 unsigned long line_offset;
252
253 /* Pointer to the first child die for the comp unit. */
254 bfd_byte *first_child_die_ptr;
255
256 /* The end of the comp unit. */
257 bfd_byte *end_ptr;
258
259 /* The decoded line number, NULL if not yet decoded. */
260 struct line_info_table *line_table;
261
262 /* A list of the functions found in this comp. unit. */
263 struct funcinfo *function_table;
264
265 /* A table of function information references searchable by address. */
266 struct lookup_funcinfo *lookup_funcinfo_table;
267
268 /* Number of functions in the function_table and sorted_function_table. */
269 bfd_size_type number_of_functions;
270
271 /* A list of the variables found in this comp. unit. */
272 struct varinfo *variable_table;
273
274 /* Pointers to dwarf2_debug structures. */
275 struct dwarf2_debug *stash;
276 struct dwarf2_debug_file *file;
277
278 /* DWARF format version for this unit - from unit header. */
279 int version;
280
281 /* Address size for this unit - from unit header. */
282 unsigned char addr_size;
283
284 /* Offset size for this unit - from unit header. */
285 unsigned char offset_size;
286
287 /* Base address for this unit - from DW_AT_low_pc attribute of
288 DW_TAG_compile_unit DIE */
289 bfd_vma base_address;
290
291 /* TRUE if symbols are cached in hash table for faster lookup by name. */
292 bfd_boolean cached;
293 };
294
295 /* This data structure holds the information of an abbrev. */
296 struct abbrev_info
297 {
298 unsigned int number; /* Number identifying abbrev. */
299 enum dwarf_tag tag; /* DWARF tag. */
300 bfd_boolean has_children; /* TRUE if the abbrev has children. */
301 unsigned int num_attrs; /* Number of attributes. */
302 struct attr_abbrev * attrs; /* An array of attribute descriptions. */
303 struct abbrev_info * next; /* Next in chain. */
304 };
305
306 struct attr_abbrev
307 {
308 enum dwarf_attribute name;
309 enum dwarf_form form;
310 bfd_vma implicit_const;
311 };
312
313 /* Map of uncompressed DWARF debug section name to compressed one. It
314 is terminated by NULL uncompressed_name. */
315
316 const struct dwarf_debug_section dwarf_debug_sections[] =
317 {
318 { ".debug_abbrev", ".zdebug_abbrev" },
319 { ".debug_aranges", ".zdebug_aranges" },
320 { ".debug_frame", ".zdebug_frame" },
321 { ".debug_info", ".zdebug_info" },
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_line", ".zdebug_line" },
324 { ".debug_loc", ".zdebug_loc" },
325 { ".debug_macinfo", ".zdebug_macinfo" },
326 { ".debug_macro", ".zdebug_macro" },
327 { ".debug_pubnames", ".zdebug_pubnames" },
328 { ".debug_pubtypes", ".zdebug_pubtypes" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_static_func", ".zdebug_static_func" },
331 { ".debug_static_vars", ".zdebug_static_vars" },
332 { ".debug_str", ".zdebug_str", },
333 { ".debug_str", ".zdebug_str", },
334 { ".debug_line_str", ".zdebug_line_str", },
335 { ".debug_types", ".zdebug_types" },
336 /* GNU DWARF 1 extensions */
337 { ".debug_sfnames", ".zdebug_sfnames" },
338 { ".debug_srcinfo", ".zebug_srcinfo" },
339 /* SGI/MIPS DWARF 2 extensions */
340 { ".debug_funcnames", ".zdebug_funcnames" },
341 { ".debug_typenames", ".zdebug_typenames" },
342 { ".debug_varnames", ".zdebug_varnames" },
343 { ".debug_weaknames", ".zdebug_weaknames" },
344 { NULL, NULL },
345 };
346
347 /* NB/ Numbers in this enum must match up with indices
348 into the dwarf_debug_sections[] array above. */
349 enum dwarf_debug_section_enum
350 {
351 debug_abbrev = 0,
352 debug_aranges,
353 debug_frame,
354 debug_info,
355 debug_info_alt,
356 debug_line,
357 debug_loc,
358 debug_macinfo,
359 debug_macro,
360 debug_pubnames,
361 debug_pubtypes,
362 debug_ranges,
363 debug_static_func,
364 debug_static_vars,
365 debug_str,
366 debug_str_alt,
367 debug_line_str,
368 debug_types,
369 debug_sfnames,
370 debug_srcinfo,
371 debug_funcnames,
372 debug_typenames,
373 debug_varnames,
374 debug_weaknames,
375 debug_max
376 };
377
378 /* A static assertion. */
379 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
380 == debug_max + 1 ? 1 : -1];
381
382 #ifndef ABBREV_HASH_SIZE
383 #define ABBREV_HASH_SIZE 121
384 #endif
385 #ifndef ATTR_ALLOC_CHUNK
386 #define ATTR_ALLOC_CHUNK 4
387 #endif
388
389 /* Variable and function hash tables. This is used to speed up look-up
390 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
391 In order to share code between variable and function infos, we use
392 a list of untyped pointer for all variable/function info associated with
393 a symbol. We waste a bit of memory for list with one node but that
394 simplifies the code. */
395
396 struct info_list_node
397 {
398 struct info_list_node *next;
399 void *info;
400 };
401
402 /* Info hash entry. */
403 struct info_hash_entry
404 {
405 struct bfd_hash_entry root;
406 struct info_list_node *head;
407 };
408
409 struct info_hash_table
410 {
411 struct bfd_hash_table base;
412 };
413
414 /* Function to create a new entry in info hash table. */
415
416 static struct bfd_hash_entry *
417 info_hash_table_newfunc (struct bfd_hash_entry *entry,
418 struct bfd_hash_table *table,
419 const char *string)
420 {
421 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
422
423 /* Allocate the structure if it has not already been allocated by a
424 derived class. */
425 if (ret == NULL)
426 {
427 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
428 sizeof (* ret));
429 if (ret == NULL)
430 return NULL;
431 }
432
433 /* Call the allocation method of the base class. */
434 ret = ((struct info_hash_entry *)
435 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
436
437 /* Initialize the local fields here. */
438 if (ret)
439 ret->head = NULL;
440
441 return (struct bfd_hash_entry *) ret;
442 }
443
444 /* Function to create a new info hash table. It returns a pointer to the
445 newly created table or NULL if there is any error. We need abfd
446 solely for memory allocation. */
447
448 static struct info_hash_table *
449 create_info_hash_table (bfd *abfd)
450 {
451 struct info_hash_table *hash_table;
452
453 hash_table = ((struct info_hash_table *)
454 bfd_alloc (abfd, sizeof (struct info_hash_table)));
455 if (!hash_table)
456 return hash_table;
457
458 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
459 sizeof (struct info_hash_entry)))
460 {
461 bfd_release (abfd, hash_table);
462 return NULL;
463 }
464
465 return hash_table;
466 }
467
468 /* Insert an info entry into an info hash table. We do not check of
469 duplicate entries. Also, the caller need to guarantee that the
470 right type of info in inserted as info is passed as a void* pointer.
471 This function returns true if there is no error. */
472
473 static bfd_boolean
474 insert_info_hash_table (struct info_hash_table *hash_table,
475 const char *key,
476 void *info,
477 bfd_boolean copy_p)
478 {
479 struct info_hash_entry *entry;
480 struct info_list_node *node;
481
482 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
483 key, TRUE, copy_p);
484 if (!entry)
485 return FALSE;
486
487 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
488 sizeof (*node));
489 if (!node)
490 return FALSE;
491
492 node->info = info;
493 node->next = entry->head;
494 entry->head = node;
495
496 return TRUE;
497 }
498
499 /* Look up an info entry list from an info hash table. Return NULL
500 if there is none. */
501
502 static struct info_list_node *
503 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
504 {
505 struct info_hash_entry *entry;
506
507 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
508 FALSE, FALSE);
509 return entry ? entry->head : NULL;
510 }
511
512 /* Read a section into its appropriate place in the dwarf2_debug
513 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
514 not NULL, use bfd_simple_get_relocated_section_contents to read the
515 section contents, otherwise use bfd_get_section_contents. Fail if
516 the located section does not contain at least OFFSET bytes. */
517
518 static bfd_boolean
519 read_section (bfd * abfd,
520 const struct dwarf_debug_section *sec,
521 asymbol ** syms,
522 bfd_uint64_t offset,
523 bfd_byte ** section_buffer,
524 bfd_size_type * section_size)
525 {
526 asection *msec;
527 const char *section_name = sec->uncompressed_name;
528 bfd_byte *contents = *section_buffer;
529 bfd_size_type amt;
530
531 /* The section may have already been read. */
532 if (contents == NULL)
533 {
534 msec = bfd_get_section_by_name (abfd, section_name);
535 if (! msec)
536 {
537 section_name = sec->compressed_name;
538 if (section_name != NULL)
539 msec = bfd_get_section_by_name (abfd, section_name);
540 }
541 if (! msec)
542 {
543 _bfd_error_handler (_("DWARF error: can't find %s section."),
544 sec->uncompressed_name);
545 bfd_set_error (bfd_error_bad_value);
546 return FALSE;
547 }
548
549 *section_size = msec->rawsize ? msec->rawsize : msec->size;
550 /* Paranoia - alloc one extra so that we can make sure a string
551 section is NUL terminated. */
552 amt = *section_size + 1;
553 if (amt == 0)
554 {
555 bfd_set_error (bfd_error_no_memory);
556 return FALSE;
557 }
558 contents = (bfd_byte *) bfd_malloc (amt);
559 if (contents == NULL)
560 return FALSE;
561 if (syms
562 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
563 syms)
564 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
565 {
566 free (contents);
567 return FALSE;
568 }
569 contents[*section_size] = 0;
570 *section_buffer = contents;
571 }
572
573 /* It is possible to get a bad value for the offset into the section
574 that the client wants. Validate it here to avoid trouble later. */
575 if (offset != 0 && offset >= *section_size)
576 {
577 /* xgettext: c-format */
578 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
579 " greater than or equal to %s size (%" PRIu64 ")"),
580 (uint64_t) offset, section_name,
581 (uint64_t) *section_size);
582 bfd_set_error (bfd_error_bad_value);
583 return FALSE;
584 }
585
586 return TRUE;
587 }
588
589 /* Read dwarf information from a buffer. */
590
591 static unsigned int
592 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
593 {
594 if (buf + 1 > end)
595 return 0;
596 return bfd_get_8 (abfd, buf);
597 }
598
599 static int
600 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
601 {
602 if (buf + 1 > end)
603 return 0;
604 return bfd_get_signed_8 (abfd, buf);
605 }
606
607 static unsigned int
608 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
609 {
610 if (buf + 2 > end)
611 return 0;
612 return bfd_get_16 (abfd, buf);
613 }
614
615 static unsigned int
616 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
617 {
618 if (buf + 4 > end)
619 return 0;
620 return bfd_get_32 (abfd, buf);
621 }
622
623 static bfd_uint64_t
624 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
625 {
626 if (buf + 8 > end)
627 return 0;
628 return bfd_get_64 (abfd, buf);
629 }
630
631 static bfd_byte *
632 read_n_bytes (bfd_byte * buf,
633 bfd_byte * end,
634 struct dwarf_block * block)
635 {
636 unsigned int size = block->size;
637 bfd_byte * block_end = buf + size;
638
639 if (block_end > end || block_end < buf)
640 {
641 block->data = NULL;
642 block->size = 0;
643 return end;
644 }
645 else
646 {
647 block->data = buf;
648 return block_end;
649 }
650 }
651
652 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
653 Returns the number of characters in the string, *including* the NUL byte,
654 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
655 at or beyond BUF_END will not be read. Returns NULL if there was a
656 problem, or if the string is empty. */
657
658 static char *
659 read_string (bfd * abfd ATTRIBUTE_UNUSED,
660 bfd_byte * buf,
661 bfd_byte * buf_end,
662 unsigned int * bytes_read_ptr)
663 {
664 bfd_byte *str = buf;
665
666 if (buf >= buf_end)
667 {
668 * bytes_read_ptr = 0;
669 return NULL;
670 }
671
672 if (*str == '\0')
673 {
674 * bytes_read_ptr = 1;
675 return NULL;
676 }
677
678 while (buf < buf_end)
679 if (* buf ++ == 0)
680 {
681 * bytes_read_ptr = buf - str;
682 return (char *) str;
683 }
684
685 * bytes_read_ptr = buf - str;
686 return NULL;
687 }
688
689 /* Reads an offset from BUF and then locates the string at this offset
690 inside the debug string section. Returns a pointer to the string.
691 Returns the number of bytes read from BUF, *not* the length of the string,
692 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
693 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
694 a problem, or if the string is empty. Does not check for NUL termination
695 of the string. */
696
697 static char *
698 read_indirect_string (struct comp_unit * unit,
699 bfd_byte * buf,
700 bfd_byte * buf_end,
701 unsigned int * bytes_read_ptr)
702 {
703 bfd_uint64_t offset;
704 struct dwarf2_debug *stash = unit->stash;
705 struct dwarf2_debug_file *file = unit->file;
706 char *str;
707
708 if (buf + unit->offset_size > buf_end)
709 {
710 * bytes_read_ptr = 0;
711 return NULL;
712 }
713
714 if (unit->offset_size == 4)
715 offset = read_4_bytes (unit->abfd, buf, buf_end);
716 else
717 offset = read_8_bytes (unit->abfd, buf, buf_end);
718
719 *bytes_read_ptr = unit->offset_size;
720
721 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
722 file->syms, offset,
723 &file->dwarf_str_buffer, &file->dwarf_str_size))
724 return NULL;
725
726 str = (char *) file->dwarf_str_buffer + offset;
727 if (*str == '\0')
728 return NULL;
729 return str;
730 }
731
732 /* Like read_indirect_string but from .debug_line_str section. */
733
734 static char *
735 read_indirect_line_string (struct comp_unit * unit,
736 bfd_byte * buf,
737 bfd_byte * buf_end,
738 unsigned int * bytes_read_ptr)
739 {
740 bfd_uint64_t offset;
741 struct dwarf2_debug *stash = unit->stash;
742 struct dwarf2_debug_file *file = unit->file;
743 char *str;
744
745 if (buf + unit->offset_size > buf_end)
746 {
747 * bytes_read_ptr = 0;
748 return NULL;
749 }
750
751 if (unit->offset_size == 4)
752 offset = read_4_bytes (unit->abfd, buf, buf_end);
753 else
754 offset = read_8_bytes (unit->abfd, buf, buf_end);
755
756 *bytes_read_ptr = unit->offset_size;
757
758 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
759 file->syms, offset,
760 &file->dwarf_line_str_buffer,
761 &file->dwarf_line_str_size))
762 return NULL;
763
764 str = (char *) file->dwarf_line_str_buffer + offset;
765 if (*str == '\0')
766 return NULL;
767 return str;
768 }
769
770 /* Like read_indirect_string but uses a .debug_str located in
771 an alternate file pointed to by the .gnu_debugaltlink section.
772 Used to impement DW_FORM_GNU_strp_alt. */
773
774 static char *
775 read_alt_indirect_string (struct comp_unit * unit,
776 bfd_byte * buf,
777 bfd_byte * buf_end,
778 unsigned int * bytes_read_ptr)
779 {
780 bfd_uint64_t offset;
781 struct dwarf2_debug *stash = unit->stash;
782 char *str;
783
784 if (buf + unit->offset_size > buf_end)
785 {
786 * bytes_read_ptr = 0;
787 return NULL;
788 }
789
790 if (unit->offset_size == 4)
791 offset = read_4_bytes (unit->abfd, buf, buf_end);
792 else
793 offset = read_8_bytes (unit->abfd, buf, buf_end);
794
795 *bytes_read_ptr = unit->offset_size;
796
797 if (stash->alt.bfd_ptr == NULL)
798 {
799 bfd *debug_bfd;
800 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
801
802 if (debug_filename == NULL)
803 return NULL;
804
805 debug_bfd = bfd_openr (debug_filename, NULL);
806 free (debug_filename);
807 if (debug_bfd == NULL)
808 /* FIXME: Should we report our failure to follow the debuglink ? */
809 return NULL;
810
811 if (!bfd_check_format (debug_bfd, bfd_object))
812 {
813 bfd_close (debug_bfd);
814 return NULL;
815 }
816 stash->alt.bfd_ptr = debug_bfd;
817 }
818
819 if (! read_section (unit->stash->alt.bfd_ptr,
820 stash->debug_sections + debug_str_alt,
821 stash->alt.syms, offset,
822 &stash->alt.dwarf_str_buffer,
823 &stash->alt.dwarf_str_size))
824 return NULL;
825
826 str = (char *) stash->alt.dwarf_str_buffer + offset;
827 if (*str == '\0')
828 return NULL;
829
830 return str;
831 }
832
833 /* Resolve an alternate reference from UNIT at OFFSET.
834 Returns a pointer into the loaded alternate CU upon success
835 or NULL upon failure. */
836
837 static bfd_byte *
838 read_alt_indirect_ref (struct comp_unit * unit,
839 bfd_uint64_t offset)
840 {
841 struct dwarf2_debug *stash = unit->stash;
842
843 if (stash->alt.bfd_ptr == NULL)
844 {
845 bfd *debug_bfd;
846 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
847
848 if (debug_filename == NULL)
849 return NULL;
850
851 debug_bfd = bfd_openr (debug_filename, NULL);
852 free (debug_filename);
853 if (debug_bfd == NULL)
854 /* FIXME: Should we report our failure to follow the debuglink ? */
855 return NULL;
856
857 if (!bfd_check_format (debug_bfd, bfd_object))
858 {
859 bfd_close (debug_bfd);
860 return NULL;
861 }
862 stash->alt.bfd_ptr = debug_bfd;
863 }
864
865 if (! read_section (unit->stash->alt.bfd_ptr,
866 stash->debug_sections + debug_info_alt,
867 stash->alt.syms, offset,
868 &stash->alt.dwarf_info_buffer,
869 &stash->alt.dwarf_info_size))
870 return NULL;
871
872 return stash->alt.dwarf_info_buffer + offset;
873 }
874
875 static bfd_uint64_t
876 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
877 {
878 int signed_vma = 0;
879
880 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
881 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
882
883 if (buf + unit->addr_size > buf_end)
884 return 0;
885
886 if (signed_vma)
887 {
888 switch (unit->addr_size)
889 {
890 case 8:
891 return bfd_get_signed_64 (unit->abfd, buf);
892 case 4:
893 return bfd_get_signed_32 (unit->abfd, buf);
894 case 2:
895 return bfd_get_signed_16 (unit->abfd, buf);
896 default:
897 abort ();
898 }
899 }
900 else
901 {
902 switch (unit->addr_size)
903 {
904 case 8:
905 return bfd_get_64 (unit->abfd, buf);
906 case 4:
907 return bfd_get_32 (unit->abfd, buf);
908 case 2:
909 return bfd_get_16 (unit->abfd, buf);
910 default:
911 abort ();
912 }
913 }
914 }
915
916 /* Lookup an abbrev_info structure in the abbrev hash table. */
917
918 static struct abbrev_info *
919 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
920 {
921 unsigned int hash_number;
922 struct abbrev_info *abbrev;
923
924 hash_number = number % ABBREV_HASH_SIZE;
925 abbrev = abbrevs[hash_number];
926
927 while (abbrev)
928 {
929 if (abbrev->number == number)
930 return abbrev;
931 else
932 abbrev = abbrev->next;
933 }
934
935 return NULL;
936 }
937
938 /* We keep a hash table to map .debug_abbrev section offsets to the
939 array of abbrevs, so that compilation units using the same set of
940 abbrevs do not waste memory. */
941
942 struct abbrev_offset_entry
943 {
944 size_t offset;
945 struct abbrev_info **abbrevs;
946 };
947
948 static hashval_t
949 hash_abbrev (const void *p)
950 {
951 const struct abbrev_offset_entry *ent = p;
952 return htab_hash_pointer ((void *) ent->offset);
953 }
954
955 static int
956 eq_abbrev (const void *pa, const void *pb)
957 {
958 const struct abbrev_offset_entry *a = pa;
959 const struct abbrev_offset_entry *b = pb;
960 return a->offset == b->offset;
961 }
962
963 static void
964 del_abbrev (void *p)
965 {
966 struct abbrev_offset_entry *ent = p;
967 struct abbrev_info **abbrevs = ent->abbrevs;
968 size_t i;
969
970 for (i = 0; i < ABBREV_HASH_SIZE; i++)
971 {
972 struct abbrev_info *abbrev = abbrevs[i];
973
974 while (abbrev)
975 {
976 free (abbrev->attrs);
977 abbrev = abbrev->next;
978 }
979 }
980 free (ent);
981 }
982
983 /* In DWARF version 2, the description of the debugging information is
984 stored in a separate .debug_abbrev section. Before we read any
985 dies from a section we read in all abbreviations and install them
986 in a hash table. */
987
988 static struct abbrev_info**
989 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash,
990 struct dwarf2_debug_file *file)
991 {
992 struct abbrev_info **abbrevs;
993 bfd_byte *abbrev_ptr;
994 bfd_byte *abbrev_end;
995 struct abbrev_info *cur_abbrev;
996 unsigned int abbrev_number, bytes_read, abbrev_name;
997 unsigned int abbrev_form, hash_number;
998 size_t amt;
999 void **slot;
1000 struct abbrev_offset_entry ent = { offset, NULL };
1001
1002 if (ent.offset != offset)
1003 return NULL;
1004
1005 slot = htab_find_slot (file->abbrev_offsets, &ent, INSERT);
1006 if (slot == NULL)
1007 return NULL;
1008 if (*slot != NULL)
1009 return ((struct abbrev_offset_entry *) (*slot))->abbrevs;
1010
1011 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
1012 file->syms, offset,
1013 &file->dwarf_abbrev_buffer,
1014 &file->dwarf_abbrev_size))
1015 return NULL;
1016
1017 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
1018 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
1019 if (abbrevs == NULL)
1020 return NULL;
1021
1022 abbrev_ptr = file->dwarf_abbrev_buffer + offset;
1023 abbrev_end = file->dwarf_abbrev_buffer + file->dwarf_abbrev_size;
1024 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1025 FALSE, abbrev_end);
1026 abbrev_ptr += bytes_read;
1027
1028 /* Loop until we reach an abbrev number of 0. */
1029 while (abbrev_number)
1030 {
1031 amt = sizeof (struct abbrev_info);
1032 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
1033 if (cur_abbrev == NULL)
1034 goto fail;
1035
1036 /* Read in abbrev header. */
1037 cur_abbrev->number = abbrev_number;
1038 cur_abbrev->tag = (enum dwarf_tag)
1039 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1040 FALSE, abbrev_end);
1041 abbrev_ptr += bytes_read;
1042 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1043 abbrev_ptr += 1;
1044
1045 /* Now read in declarations. */
1046 for (;;)
1047 {
1048 /* Initialize it just to avoid a GCC false warning. */
1049 bfd_vma implicit_const = -1;
1050
1051 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1052 FALSE, abbrev_end);
1053 abbrev_ptr += bytes_read;
1054 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1055 FALSE, abbrev_end);
1056 abbrev_ptr += bytes_read;
1057 if (abbrev_form == DW_FORM_implicit_const)
1058 {
1059 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1060 &bytes_read, TRUE,
1061 abbrev_end);
1062 abbrev_ptr += bytes_read;
1063 }
1064
1065 if (abbrev_name == 0)
1066 break;
1067
1068 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1069 {
1070 struct attr_abbrev *tmp;
1071
1072 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1073 amt *= sizeof (struct attr_abbrev);
1074 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1075 if (tmp == NULL)
1076 goto fail;
1077 cur_abbrev->attrs = tmp;
1078 }
1079
1080 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1081 = (enum dwarf_attribute) abbrev_name;
1082 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1083 = (enum dwarf_form) abbrev_form;
1084 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1085 = implicit_const;
1086 ++cur_abbrev->num_attrs;
1087 }
1088
1089 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1090 cur_abbrev->next = abbrevs[hash_number];
1091 abbrevs[hash_number] = cur_abbrev;
1092
1093 /* Get next abbreviation.
1094 Under Irix6 the abbreviations for a compilation unit are not
1095 always properly terminated with an abbrev number of 0.
1096 Exit loop if we encounter an abbreviation which we have
1097 already read (which means we are about to read the abbreviations
1098 for the next compile unit) or if the end of the abbreviation
1099 table is reached. */
1100 if ((size_t) (abbrev_ptr - file->dwarf_abbrev_buffer)
1101 >= file->dwarf_abbrev_size)
1102 break;
1103 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1104 &bytes_read, FALSE, abbrev_end);
1105 abbrev_ptr += bytes_read;
1106 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1107 break;
1108 }
1109
1110 *slot = bfd_malloc (sizeof ent);
1111 if (!*slot)
1112 goto fail;
1113 ent.abbrevs = abbrevs;
1114 memcpy (*slot, &ent, sizeof ent);
1115 return abbrevs;
1116
1117 fail:
1118 if (abbrevs != NULL)
1119 {
1120 size_t i;
1121
1122 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1123 {
1124 struct abbrev_info *abbrev = abbrevs[i];
1125
1126 while (abbrev)
1127 {
1128 free (abbrev->attrs);
1129 abbrev = abbrev->next;
1130 }
1131 }
1132 free (abbrevs);
1133 }
1134 return NULL;
1135 }
1136
1137 /* Returns true if the form is one which has a string value. */
1138
1139 static inline bfd_boolean
1140 is_str_attr (enum dwarf_form form)
1141 {
1142 return (form == DW_FORM_string || form == DW_FORM_strp
1143 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1144 }
1145
1146 /* Read and fill in the value of attribute ATTR as described by FORM.
1147 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1148 Returns an updated INFO_PTR taking into account the amount of data read. */
1149
1150 static bfd_byte *
1151 read_attribute_value (struct attribute * attr,
1152 unsigned form,
1153 bfd_vma implicit_const,
1154 struct comp_unit * unit,
1155 bfd_byte * info_ptr,
1156 bfd_byte * info_ptr_end)
1157 {
1158 bfd *abfd = unit->abfd;
1159 unsigned int bytes_read;
1160 struct dwarf_block *blk;
1161 size_t amt;
1162
1163 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1164 {
1165 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1166 bfd_set_error (bfd_error_bad_value);
1167 return info_ptr;
1168 }
1169
1170 attr->form = (enum dwarf_form) form;
1171
1172 switch (form)
1173 {
1174 case DW_FORM_ref_addr:
1175 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1176 DWARF3. */
1177 if (unit->version == 3 || unit->version == 4)
1178 {
1179 if (unit->offset_size == 4)
1180 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1181 else
1182 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1183 info_ptr += unit->offset_size;
1184 break;
1185 }
1186 /* FALLTHROUGH */
1187 case DW_FORM_addr:
1188 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1189 info_ptr += unit->addr_size;
1190 break;
1191 case DW_FORM_GNU_ref_alt:
1192 case DW_FORM_sec_offset:
1193 if (unit->offset_size == 4)
1194 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1195 else
1196 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1197 info_ptr += unit->offset_size;
1198 break;
1199 case DW_FORM_block2:
1200 amt = sizeof (struct dwarf_block);
1201 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1202 if (blk == NULL)
1203 return NULL;
1204 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1205 info_ptr += 2;
1206 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1207 attr->u.blk = blk;
1208 break;
1209 case DW_FORM_block4:
1210 amt = sizeof (struct dwarf_block);
1211 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1212 if (blk == NULL)
1213 return NULL;
1214 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1215 info_ptr += 4;
1216 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1217 attr->u.blk = blk;
1218 break;
1219 case DW_FORM_data2:
1220 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1221 info_ptr += 2;
1222 break;
1223 case DW_FORM_data4:
1224 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1225 info_ptr += 4;
1226 break;
1227 case DW_FORM_data8:
1228 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1229 info_ptr += 8;
1230 break;
1231 case DW_FORM_string:
1232 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1233 info_ptr += bytes_read;
1234 break;
1235 case DW_FORM_strp:
1236 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1237 info_ptr += bytes_read;
1238 break;
1239 case DW_FORM_line_strp:
1240 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1241 info_ptr += bytes_read;
1242 break;
1243 case DW_FORM_GNU_strp_alt:
1244 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1245 info_ptr += bytes_read;
1246 break;
1247 case DW_FORM_exprloc:
1248 case DW_FORM_block:
1249 amt = sizeof (struct dwarf_block);
1250 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1251 if (blk == NULL)
1252 return NULL;
1253 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1254 FALSE, info_ptr_end);
1255 info_ptr += bytes_read;
1256 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1257 attr->u.blk = blk;
1258 break;
1259 case DW_FORM_block1:
1260 amt = sizeof (struct dwarf_block);
1261 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1262 if (blk == NULL)
1263 return NULL;
1264 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1265 info_ptr += 1;
1266 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1267 attr->u.blk = blk;
1268 break;
1269 case DW_FORM_data1:
1270 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1271 info_ptr += 1;
1272 break;
1273 case DW_FORM_flag:
1274 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1275 info_ptr += 1;
1276 break;
1277 case DW_FORM_flag_present:
1278 attr->u.val = 1;
1279 break;
1280 case DW_FORM_sdata:
1281 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1282 TRUE, info_ptr_end);
1283 info_ptr += bytes_read;
1284 break;
1285 case DW_FORM_udata:
1286 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1287 FALSE, info_ptr_end);
1288 info_ptr += bytes_read;
1289 break;
1290 case DW_FORM_ref1:
1291 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1292 info_ptr += 1;
1293 break;
1294 case DW_FORM_ref2:
1295 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1296 info_ptr += 2;
1297 break;
1298 case DW_FORM_ref4:
1299 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1300 info_ptr += 4;
1301 break;
1302 case DW_FORM_ref8:
1303 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1304 info_ptr += 8;
1305 break;
1306 case DW_FORM_ref_sig8:
1307 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1308 info_ptr += 8;
1309 break;
1310 case DW_FORM_ref_udata:
1311 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1312 FALSE, info_ptr_end);
1313 info_ptr += bytes_read;
1314 break;
1315 case DW_FORM_indirect:
1316 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1317 FALSE, info_ptr_end);
1318 info_ptr += bytes_read;
1319 if (form == DW_FORM_implicit_const)
1320 {
1321 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1322 TRUE, info_ptr_end);
1323 info_ptr += bytes_read;
1324 }
1325 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1326 info_ptr, info_ptr_end);
1327 break;
1328 case DW_FORM_implicit_const:
1329 attr->form = DW_FORM_sdata;
1330 attr->u.sval = implicit_const;
1331 break;
1332 default:
1333 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1334 form);
1335 bfd_set_error (bfd_error_bad_value);
1336 return NULL;
1337 }
1338 return info_ptr;
1339 }
1340
1341 /* Read an attribute described by an abbreviated attribute. */
1342
1343 static bfd_byte *
1344 read_attribute (struct attribute * attr,
1345 struct attr_abbrev * abbrev,
1346 struct comp_unit * unit,
1347 bfd_byte * info_ptr,
1348 bfd_byte * info_ptr_end)
1349 {
1350 attr->name = abbrev->name;
1351 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1352 unit, info_ptr, info_ptr_end);
1353 return info_ptr;
1354 }
1355
1356 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1357 for a function. */
1358
1359 static bfd_boolean
1360 non_mangled (int lang)
1361 {
1362 switch (lang)
1363 {
1364 default:
1365 return FALSE;
1366
1367 case DW_LANG_C89:
1368 case DW_LANG_C:
1369 case DW_LANG_Ada83:
1370 case DW_LANG_Cobol74:
1371 case DW_LANG_Cobol85:
1372 case DW_LANG_Fortran77:
1373 case DW_LANG_Pascal83:
1374 case DW_LANG_C99:
1375 case DW_LANG_Ada95:
1376 case DW_LANG_PLI:
1377 case DW_LANG_UPC:
1378 case DW_LANG_C11:
1379 return TRUE;
1380 }
1381 }
1382
1383 /* Source line information table routines. */
1384
1385 #define FILE_ALLOC_CHUNK 5
1386 #define DIR_ALLOC_CHUNK 5
1387
1388 struct line_info
1389 {
1390 struct line_info * prev_line;
1391 bfd_vma address;
1392 char * filename;
1393 unsigned int line;
1394 unsigned int column;
1395 unsigned int discriminator;
1396 unsigned char op_index;
1397 unsigned char end_sequence; /* End of (sequential) code sequence. */
1398 };
1399
1400 struct fileinfo
1401 {
1402 char * name;
1403 unsigned int dir;
1404 unsigned int time;
1405 unsigned int size;
1406 };
1407
1408 struct line_sequence
1409 {
1410 bfd_vma low_pc;
1411 struct line_sequence* prev_sequence;
1412 struct line_info* last_line; /* Largest VMA. */
1413 struct line_info** line_info_lookup;
1414 bfd_size_type num_lines;
1415 };
1416
1417 struct line_info_table
1418 {
1419 bfd * abfd;
1420 unsigned int num_files;
1421 unsigned int num_dirs;
1422 unsigned int num_sequences;
1423 char * comp_dir;
1424 char ** dirs;
1425 struct fileinfo* files;
1426 struct line_sequence* sequences;
1427 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1428 };
1429
1430 /* Remember some information about each function. If the function is
1431 inlined (DW_TAG_inlined_subroutine) it may have two additional
1432 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1433 source code location where this function was inlined. */
1434
1435 struct funcinfo
1436 {
1437 /* Pointer to previous function in list of all functions. */
1438 struct funcinfo * prev_func;
1439 /* Pointer to function one scope higher. */
1440 struct funcinfo * caller_func;
1441 /* Source location file name where caller_func inlines this func. */
1442 char * caller_file;
1443 /* Source location file name. */
1444 char * file;
1445 /* Source location line number where caller_func inlines this func. */
1446 int caller_line;
1447 /* Source location line number. */
1448 int line;
1449 int tag;
1450 bfd_boolean is_linkage;
1451 const char * name;
1452 struct arange arange;
1453 /* Where the symbol is defined. */
1454 asection * sec;
1455 };
1456
1457 struct lookup_funcinfo
1458 {
1459 /* Function information corresponding to this lookup table entry. */
1460 struct funcinfo * funcinfo;
1461
1462 /* The lowest address for this specific function. */
1463 bfd_vma low_addr;
1464
1465 /* The highest address of this function before the lookup table is sorted.
1466 The highest address of all prior functions after the lookup table is
1467 sorted, which is used for binary search. */
1468 bfd_vma high_addr;
1469 /* Index of this function, used to ensure qsort is stable. */
1470 unsigned int idx;
1471 };
1472
1473 struct varinfo
1474 {
1475 /* Pointer to previous variable in list of all variables. */
1476 struct varinfo *prev_var;
1477 /* The offset of the varinfo from the start of the unit. */
1478 bfd_uint64_t unit_offset;
1479 /* Source location file name. */
1480 char *file;
1481 /* Source location line number. */
1482 int line;
1483 /* The type of this variable. */
1484 int tag;
1485 /* The name of the variable, if it has one. */
1486 char *name;
1487 /* The address of the variable. */
1488 bfd_vma addr;
1489 /* Where the symbol is defined. */
1490 asection *sec;
1491 /* Is this a stack variable? */
1492 bfd_boolean stack;
1493 };
1494
1495 /* Return TRUE if NEW_LINE should sort after LINE. */
1496
1497 static inline bfd_boolean
1498 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1499 {
1500 return (new_line->address > line->address
1501 || (new_line->address == line->address
1502 && new_line->op_index > line->op_index));
1503 }
1504
1505
1506 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1507 that the list is sorted. Note that the line_info list is sorted from
1508 highest to lowest VMA (with possible duplicates); that is,
1509 line_info->prev_line always accesses an equal or smaller VMA. */
1510
1511 static bfd_boolean
1512 add_line_info (struct line_info_table *table,
1513 bfd_vma address,
1514 unsigned char op_index,
1515 char *filename,
1516 unsigned int line,
1517 unsigned int column,
1518 unsigned int discriminator,
1519 int end_sequence)
1520 {
1521 size_t amt = sizeof (struct line_info);
1522 struct line_sequence* seq = table->sequences;
1523 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1524
1525 if (info == NULL)
1526 return FALSE;
1527
1528 /* Set member data of 'info'. */
1529 info->prev_line = NULL;
1530 info->address = address;
1531 info->op_index = op_index;
1532 info->line = line;
1533 info->column = column;
1534 info->discriminator = discriminator;
1535 info->end_sequence = end_sequence;
1536
1537 if (filename && filename[0])
1538 {
1539 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1540 if (info->filename == NULL)
1541 return FALSE;
1542 strcpy (info->filename, filename);
1543 }
1544 else
1545 info->filename = NULL;
1546
1547 /* Find the correct location for 'info'. Normally we will receive
1548 new line_info data 1) in order and 2) with increasing VMAs.
1549 However some compilers break the rules (cf. decode_line_info) and
1550 so we include some heuristics for quickly finding the correct
1551 location for 'info'. In particular, these heuristics optimize for
1552 the common case in which the VMA sequence that we receive is a
1553 list of locally sorted VMAs such as
1554 p...z a...j (where a < j < p < z)
1555
1556 Note: table->lcl_head is used to head an *actual* or *possible*
1557 sub-sequence within the list (such as a...j) that is not directly
1558 headed by table->last_line
1559
1560 Note: we may receive duplicate entries from 'decode_line_info'. */
1561
1562 if (seq
1563 && seq->last_line->address == address
1564 && seq->last_line->op_index == op_index
1565 && seq->last_line->end_sequence == end_sequence)
1566 {
1567 /* We only keep the last entry with the same address and end
1568 sequence. See PR ld/4986. */
1569 if (table->lcl_head == seq->last_line)
1570 table->lcl_head = info;
1571 info->prev_line = seq->last_line->prev_line;
1572 seq->last_line = info;
1573 }
1574 else if (!seq || seq->last_line->end_sequence)
1575 {
1576 /* Start a new line sequence. */
1577 amt = sizeof (struct line_sequence);
1578 seq = (struct line_sequence *) bfd_malloc (amt);
1579 if (seq == NULL)
1580 return FALSE;
1581 seq->low_pc = address;
1582 seq->prev_sequence = table->sequences;
1583 seq->last_line = info;
1584 table->lcl_head = info;
1585 table->sequences = seq;
1586 table->num_sequences++;
1587 }
1588 else if (info->end_sequence
1589 || new_line_sorts_after (info, seq->last_line))
1590 {
1591 /* Normal case: add 'info' to the beginning of the current sequence. */
1592 info->prev_line = seq->last_line;
1593 seq->last_line = info;
1594
1595 /* lcl_head: initialize to head a *possible* sequence at the end. */
1596 if (!table->lcl_head)
1597 table->lcl_head = info;
1598 }
1599 else if (!new_line_sorts_after (info, table->lcl_head)
1600 && (!table->lcl_head->prev_line
1601 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1602 {
1603 /* Abnormal but easy: lcl_head is the head of 'info'. */
1604 info->prev_line = table->lcl_head->prev_line;
1605 table->lcl_head->prev_line = info;
1606 }
1607 else
1608 {
1609 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1610 are valid heads for 'info'. Reset 'lcl_head'. */
1611 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1612 struct line_info* li1 = li2->prev_line;
1613
1614 while (li1)
1615 {
1616 if (!new_line_sorts_after (info, li2)
1617 && new_line_sorts_after (info, li1))
1618 break;
1619
1620 li2 = li1; /* always non-NULL */
1621 li1 = li1->prev_line;
1622 }
1623 table->lcl_head = li2;
1624 info->prev_line = table->lcl_head->prev_line;
1625 table->lcl_head->prev_line = info;
1626 if (address < seq->low_pc)
1627 seq->low_pc = address;
1628 }
1629 return TRUE;
1630 }
1631
1632 /* Extract a fully qualified filename from a line info table.
1633 The returned string has been malloc'ed and it is the caller's
1634 responsibility to free it. */
1635
1636 static char *
1637 concat_filename (struct line_info_table *table, unsigned int file)
1638 {
1639 char *filename;
1640
1641 if (table == NULL || file - 1 >= table->num_files)
1642 {
1643 /* FILE == 0 means unknown. */
1644 if (file)
1645 _bfd_error_handler
1646 (_("DWARF error: mangled line number section (bad file number)"));
1647 return strdup ("<unknown>");
1648 }
1649
1650 filename = table->files[file - 1].name;
1651 if (filename == NULL)
1652 return strdup ("<unknown>");
1653
1654 if (!IS_ABSOLUTE_PATH (filename))
1655 {
1656 char *dir_name = NULL;
1657 char *subdir_name = NULL;
1658 char *name;
1659 size_t len;
1660
1661 if (table->files[file - 1].dir
1662 /* PR 17512: file: 0317e960. */
1663 && table->files[file - 1].dir <= table->num_dirs
1664 /* PR 17512: file: 7f3d2e4b. */
1665 && table->dirs != NULL)
1666 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1667
1668 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1669 dir_name = table->comp_dir;
1670
1671 if (!dir_name)
1672 {
1673 dir_name = subdir_name;
1674 subdir_name = NULL;
1675 }
1676
1677 if (!dir_name)
1678 return strdup (filename);
1679
1680 len = strlen (dir_name) + strlen (filename) + 2;
1681
1682 if (subdir_name)
1683 {
1684 len += strlen (subdir_name) + 1;
1685 name = (char *) bfd_malloc (len);
1686 if (name)
1687 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1688 }
1689 else
1690 {
1691 name = (char *) bfd_malloc (len);
1692 if (name)
1693 sprintf (name, "%s/%s", dir_name, filename);
1694 }
1695
1696 return name;
1697 }
1698
1699 return strdup (filename);
1700 }
1701
1702 static bfd_boolean
1703 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1704 bfd_vma low_pc, bfd_vma high_pc)
1705 {
1706 struct arange *arange;
1707
1708 /* Ignore empty ranges. */
1709 if (low_pc == high_pc)
1710 return TRUE;
1711
1712 /* If the first arange is empty, use it. */
1713 if (first_arange->high == 0)
1714 {
1715 first_arange->low = low_pc;
1716 first_arange->high = high_pc;
1717 return TRUE;
1718 }
1719
1720 /* Next see if we can cheaply extend an existing range. */
1721 arange = first_arange;
1722 do
1723 {
1724 if (low_pc == arange->high)
1725 {
1726 arange->high = high_pc;
1727 return TRUE;
1728 }
1729 if (high_pc == arange->low)
1730 {
1731 arange->low = low_pc;
1732 return TRUE;
1733 }
1734 arange = arange->next;
1735 }
1736 while (arange);
1737
1738 /* Need to allocate a new arange and insert it into the arange list.
1739 Order isn't significant, so just insert after the first arange. */
1740 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1741 if (arange == NULL)
1742 return FALSE;
1743 arange->low = low_pc;
1744 arange->high = high_pc;
1745 arange->next = first_arange->next;
1746 first_arange->next = arange;
1747 return TRUE;
1748 }
1749
1750 /* Compare function for line sequences. */
1751
1752 static int
1753 compare_sequences (const void* a, const void* b)
1754 {
1755 const struct line_sequence* seq1 = a;
1756 const struct line_sequence* seq2 = b;
1757
1758 /* Sort by low_pc as the primary key. */
1759 if (seq1->low_pc < seq2->low_pc)
1760 return -1;
1761 if (seq1->low_pc > seq2->low_pc)
1762 return 1;
1763
1764 /* If low_pc values are equal, sort in reverse order of
1765 high_pc, so that the largest region comes first. */
1766 if (seq1->last_line->address < seq2->last_line->address)
1767 return 1;
1768 if (seq1->last_line->address > seq2->last_line->address)
1769 return -1;
1770
1771 if (seq1->last_line->op_index < seq2->last_line->op_index)
1772 return 1;
1773 if (seq1->last_line->op_index > seq2->last_line->op_index)
1774 return -1;
1775
1776 /* num_lines is initially an index, to make the sort stable. */
1777 if (seq1->num_lines < seq2->num_lines)
1778 return -1;
1779 if (seq1->num_lines > seq2->num_lines)
1780 return 1;
1781 return 0;
1782 }
1783
1784 /* Construct the line information table for quick lookup. */
1785
1786 static bfd_boolean
1787 build_line_info_table (struct line_info_table * table,
1788 struct line_sequence * seq)
1789 {
1790 size_t amt;
1791 struct line_info **line_info_lookup;
1792 struct line_info *each_line;
1793 unsigned int num_lines;
1794 unsigned int line_index;
1795
1796 if (seq->line_info_lookup != NULL)
1797 return TRUE;
1798
1799 /* Count the number of line information entries. We could do this while
1800 scanning the debug information, but some entries may be added via
1801 lcl_head without having a sequence handy to increment the number of
1802 lines. */
1803 num_lines = 0;
1804 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1805 num_lines++;
1806
1807 seq->num_lines = num_lines;
1808 if (num_lines == 0)
1809 return TRUE;
1810
1811 /* Allocate space for the line information lookup table. */
1812 amt = sizeof (struct line_info*) * num_lines;
1813 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1814 seq->line_info_lookup = line_info_lookup;
1815 if (line_info_lookup == NULL)
1816 return FALSE;
1817
1818 /* Create the line information lookup table. */
1819 line_index = num_lines;
1820 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1821 line_info_lookup[--line_index] = each_line;
1822
1823 BFD_ASSERT (line_index == 0);
1824 return TRUE;
1825 }
1826
1827 /* Sort the line sequences for quick lookup. */
1828
1829 static bfd_boolean
1830 sort_line_sequences (struct line_info_table* table)
1831 {
1832 size_t amt;
1833 struct line_sequence *sequences;
1834 struct line_sequence *seq;
1835 unsigned int n = 0;
1836 unsigned int num_sequences = table->num_sequences;
1837 bfd_vma last_high_pc;
1838
1839 if (num_sequences == 0)
1840 return TRUE;
1841
1842 /* Allocate space for an array of sequences. */
1843 amt = sizeof (struct line_sequence) * num_sequences;
1844 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1845 if (sequences == NULL)
1846 return FALSE;
1847
1848 /* Copy the linked list into the array, freeing the original nodes. */
1849 seq = table->sequences;
1850 for (n = 0; n < num_sequences; n++)
1851 {
1852 struct line_sequence* last_seq = seq;
1853
1854 BFD_ASSERT (seq);
1855 sequences[n].low_pc = seq->low_pc;
1856 sequences[n].prev_sequence = NULL;
1857 sequences[n].last_line = seq->last_line;
1858 sequences[n].line_info_lookup = NULL;
1859 sequences[n].num_lines = n;
1860 seq = seq->prev_sequence;
1861 free (last_seq);
1862 }
1863 BFD_ASSERT (seq == NULL);
1864
1865 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1866
1867 /* Make the list binary-searchable by trimming overlapping entries
1868 and removing nested entries. */
1869 num_sequences = 1;
1870 last_high_pc = sequences[0].last_line->address;
1871 for (n = 1; n < table->num_sequences; n++)
1872 {
1873 if (sequences[n].low_pc < last_high_pc)
1874 {
1875 if (sequences[n].last_line->address <= last_high_pc)
1876 /* Skip nested entries. */
1877 continue;
1878
1879 /* Trim overlapping entries. */
1880 sequences[n].low_pc = last_high_pc;
1881 }
1882 last_high_pc = sequences[n].last_line->address;
1883 if (n > num_sequences)
1884 {
1885 /* Close up the gap. */
1886 sequences[num_sequences].low_pc = sequences[n].low_pc;
1887 sequences[num_sequences].last_line = sequences[n].last_line;
1888 }
1889 num_sequences++;
1890 }
1891
1892 table->sequences = sequences;
1893 table->num_sequences = num_sequences;
1894 return TRUE;
1895 }
1896
1897 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1898
1899 static bfd_boolean
1900 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1901 {
1902 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1903 {
1904 char **tmp;
1905 size_t amt;
1906
1907 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1908 amt *= sizeof (char *);
1909
1910 tmp = (char **) bfd_realloc (table->dirs, amt);
1911 if (tmp == NULL)
1912 return FALSE;
1913 table->dirs = tmp;
1914 }
1915
1916 table->dirs[table->num_dirs++] = cur_dir;
1917 return TRUE;
1918 }
1919
1920 static bfd_boolean
1921 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1922 unsigned int dir ATTRIBUTE_UNUSED,
1923 unsigned int xtime ATTRIBUTE_UNUSED,
1924 unsigned int size ATTRIBUTE_UNUSED)
1925 {
1926 return line_info_add_include_dir (table, cur_dir);
1927 }
1928
1929 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1930
1931 static bfd_boolean
1932 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1933 unsigned int dir, unsigned int xtime,
1934 unsigned int size)
1935 {
1936 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1937 {
1938 struct fileinfo *tmp;
1939 size_t amt;
1940
1941 amt = table->num_files + FILE_ALLOC_CHUNK;
1942 amt *= sizeof (struct fileinfo);
1943
1944 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1945 if (tmp == NULL)
1946 return FALSE;
1947 table->files = tmp;
1948 }
1949
1950 table->files[table->num_files].name = cur_file;
1951 table->files[table->num_files].dir = dir;
1952 table->files[table->num_files].time = xtime;
1953 table->files[table->num_files].size = size;
1954 table->num_files++;
1955 return TRUE;
1956 }
1957
1958 /* Read directory or file name entry format, starting with byte of
1959 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1960 entries count and the entries themselves in the described entry
1961 format. */
1962
1963 static bfd_boolean
1964 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1965 bfd_byte *buf_end, struct line_info_table *table,
1966 bfd_boolean (*callback) (struct line_info_table *table,
1967 char *cur_file,
1968 unsigned int dir,
1969 unsigned int time,
1970 unsigned int size))
1971 {
1972 bfd *abfd = unit->abfd;
1973 bfd_byte format_count, formati;
1974 bfd_vma data_count, datai;
1975 bfd_byte *buf = *bufp;
1976 bfd_byte *format_header_data;
1977 unsigned int bytes_read;
1978
1979 format_count = read_1_byte (abfd, buf, buf_end);
1980 buf += 1;
1981 format_header_data = buf;
1982 for (formati = 0; formati < format_count; formati++)
1983 {
1984 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1985 buf += bytes_read;
1986 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1987 buf += bytes_read;
1988 }
1989
1990 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1991 buf += bytes_read;
1992 if (format_count == 0 && data_count != 0)
1993 {
1994 _bfd_error_handler (_("DWARF error: zero format count"));
1995 bfd_set_error (bfd_error_bad_value);
1996 return FALSE;
1997 }
1998
1999 /* PR 22210. Paranoia check. Don't bother running the loop
2000 if we know that we are going to run out of buffer. */
2001 if (data_count > (bfd_vma) (buf_end - buf))
2002 {
2003 _bfd_error_handler
2004 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
2005 (uint64_t) data_count);
2006 bfd_set_error (bfd_error_bad_value);
2007 return FALSE;
2008 }
2009
2010 for (datai = 0; datai < data_count; datai++)
2011 {
2012 bfd_byte *format = format_header_data;
2013 struct fileinfo fe;
2014
2015 memset (&fe, 0, sizeof fe);
2016 for (formati = 0; formati < format_count; formati++)
2017 {
2018 bfd_vma content_type, form;
2019 char *string_trash;
2020 char **stringp = &string_trash;
2021 unsigned int uint_trash, *uintp = &uint_trash;
2022 struct attribute attr;
2023
2024 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
2025 FALSE, buf_end);
2026 format += bytes_read;
2027 switch (content_type)
2028 {
2029 case DW_LNCT_path:
2030 stringp = &fe.name;
2031 break;
2032 case DW_LNCT_directory_index:
2033 uintp = &fe.dir;
2034 break;
2035 case DW_LNCT_timestamp:
2036 uintp = &fe.time;
2037 break;
2038 case DW_LNCT_size:
2039 uintp = &fe.size;
2040 break;
2041 case DW_LNCT_MD5:
2042 break;
2043 default:
2044 _bfd_error_handler
2045 (_("DWARF error: unknown format content type %" PRIu64),
2046 (uint64_t) content_type);
2047 bfd_set_error (bfd_error_bad_value);
2048 return FALSE;
2049 }
2050
2051 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
2052 buf_end);
2053 format += bytes_read;
2054
2055 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
2056 if (buf == NULL)
2057 return FALSE;
2058 switch (form)
2059 {
2060 case DW_FORM_string:
2061 case DW_FORM_line_strp:
2062 *stringp = attr.u.str;
2063 break;
2064
2065 case DW_FORM_data1:
2066 case DW_FORM_data2:
2067 case DW_FORM_data4:
2068 case DW_FORM_data8:
2069 case DW_FORM_udata:
2070 *uintp = attr.u.val;
2071 break;
2072 }
2073 }
2074
2075 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2076 return FALSE;
2077 }
2078
2079 *bufp = buf;
2080 return TRUE;
2081 }
2082
2083 /* Decode the line number information for UNIT. */
2084
2085 static struct line_info_table*
2086 decode_line_info (struct comp_unit *unit)
2087 {
2088 bfd *abfd = unit->abfd;
2089 struct dwarf2_debug *stash = unit->stash;
2090 struct dwarf2_debug_file *file = unit->file;
2091 struct line_info_table* table;
2092 bfd_byte *line_ptr;
2093 bfd_byte *line_end;
2094 struct line_head lh;
2095 unsigned int i, bytes_read, offset_size;
2096 char *cur_file, *cur_dir;
2097 unsigned char op_code, extended_op, adj_opcode;
2098 unsigned int exop_len;
2099 size_t amt;
2100
2101 if (unit->line_offset == 0 && file->line_table)
2102 return file->line_table;
2103
2104 if (! read_section (abfd, &stash->debug_sections[debug_line],
2105 file->syms, unit->line_offset,
2106 &file->dwarf_line_buffer, &file->dwarf_line_size))
2107 return NULL;
2108
2109 if (file->dwarf_line_size < 16)
2110 {
2111 _bfd_error_handler
2112 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2113 (int64_t) file->dwarf_line_size);
2114 bfd_set_error (bfd_error_bad_value);
2115 return NULL;
2116 }
2117 line_ptr = file->dwarf_line_buffer + unit->line_offset;
2118 line_end = file->dwarf_line_buffer + file->dwarf_line_size;
2119
2120 /* Read in the prologue. */
2121 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2122 line_ptr += 4;
2123 offset_size = 4;
2124 if (lh.total_length == 0xffffffff)
2125 {
2126 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2127 line_ptr += 8;
2128 offset_size = 8;
2129 }
2130 else if (lh.total_length == 0 && unit->addr_size == 8)
2131 {
2132 /* Handle (non-standard) 64-bit DWARF2 formats. */
2133 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2134 line_ptr += 4;
2135 offset_size = 8;
2136 }
2137
2138 if (lh.total_length > (size_t) (line_end - line_ptr))
2139 {
2140 _bfd_error_handler
2141 /* xgettext: c-format */
2142 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2143 " than the space remaining in the section (%#lx)"),
2144 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2145 bfd_set_error (bfd_error_bad_value);
2146 return NULL;
2147 }
2148
2149 line_end = line_ptr + lh.total_length;
2150
2151 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2152 if (lh.version < 2 || lh.version > 5)
2153 {
2154 _bfd_error_handler
2155 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2156 bfd_set_error (bfd_error_bad_value);
2157 return NULL;
2158 }
2159 line_ptr += 2;
2160
2161 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2162 >= line_end)
2163 {
2164 _bfd_error_handler
2165 (_("DWARF error: ran out of room reading prologue"));
2166 bfd_set_error (bfd_error_bad_value);
2167 return NULL;
2168 }
2169
2170 if (lh.version >= 5)
2171 {
2172 unsigned int segment_selector_size;
2173
2174 /* Skip address size. */
2175 read_1_byte (abfd, line_ptr, line_end);
2176 line_ptr += 1;
2177
2178 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2179 line_ptr += 1;
2180 if (segment_selector_size != 0)
2181 {
2182 _bfd_error_handler
2183 (_("DWARF error: line info unsupported segment selector size %u"),
2184 segment_selector_size);
2185 bfd_set_error (bfd_error_bad_value);
2186 return NULL;
2187 }
2188 }
2189
2190 if (offset_size == 4)
2191 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2192 else
2193 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2194 line_ptr += offset_size;
2195
2196 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2197 line_ptr += 1;
2198
2199 if (lh.version >= 4)
2200 {
2201 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2202 line_ptr += 1;
2203 }
2204 else
2205 lh.maximum_ops_per_insn = 1;
2206
2207 if (lh.maximum_ops_per_insn == 0)
2208 {
2209 _bfd_error_handler
2210 (_("DWARF error: invalid maximum operations per instruction"));
2211 bfd_set_error (bfd_error_bad_value);
2212 return NULL;
2213 }
2214
2215 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2216 line_ptr += 1;
2217
2218 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2219 line_ptr += 1;
2220
2221 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2222 line_ptr += 1;
2223
2224 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2225 line_ptr += 1;
2226
2227 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2228 {
2229 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2230 bfd_set_error (bfd_error_bad_value);
2231 return NULL;
2232 }
2233
2234 amt = lh.opcode_base * sizeof (unsigned char);
2235 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2236
2237 lh.standard_opcode_lengths[0] = 1;
2238
2239 for (i = 1; i < lh.opcode_base; ++i)
2240 {
2241 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2242 line_ptr += 1;
2243 }
2244
2245 amt = sizeof (struct line_info_table);
2246 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2247 if (table == NULL)
2248 return NULL;
2249 table->abfd = abfd;
2250 table->comp_dir = unit->comp_dir;
2251
2252 table->num_files = 0;
2253 table->files = NULL;
2254
2255 table->num_dirs = 0;
2256 table->dirs = NULL;
2257
2258 table->num_sequences = 0;
2259 table->sequences = NULL;
2260
2261 table->lcl_head = NULL;
2262
2263 if (lh.version >= 5)
2264 {
2265 /* Read directory table. */
2266 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2267 line_info_add_include_dir_stub))
2268 goto fail;
2269
2270 /* Read file name table. */
2271 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2272 line_info_add_file_name))
2273 goto fail;
2274 }
2275 else
2276 {
2277 /* Read directory table. */
2278 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2279 {
2280 line_ptr += bytes_read;
2281
2282 if (!line_info_add_include_dir (table, cur_dir))
2283 goto fail;
2284 }
2285
2286 line_ptr += bytes_read;
2287
2288 /* Read file name table. */
2289 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2290 {
2291 unsigned int dir, xtime, size;
2292
2293 line_ptr += bytes_read;
2294
2295 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2296 line_ptr += bytes_read;
2297 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2298 line_ptr += bytes_read;
2299 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2300 line_ptr += bytes_read;
2301
2302 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2303 goto fail;
2304 }
2305
2306 line_ptr += bytes_read;
2307 }
2308
2309 /* Read the statement sequences until there's nothing left. */
2310 while (line_ptr < line_end)
2311 {
2312 /* State machine registers. */
2313 bfd_vma address = 0;
2314 unsigned char op_index = 0;
2315 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2316 unsigned int line = 1;
2317 unsigned int column = 0;
2318 unsigned int discriminator = 0;
2319 int is_stmt = lh.default_is_stmt;
2320 int end_sequence = 0;
2321 unsigned int dir, xtime, size;
2322 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2323 compilers generate address sequences that are wildly out of
2324 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2325 for ia64-Linux). Thus, to determine the low and high
2326 address, we must compare on every DW_LNS_copy, etc. */
2327 bfd_vma low_pc = (bfd_vma) -1;
2328 bfd_vma high_pc = 0;
2329
2330 /* Decode the table. */
2331 while (!end_sequence && line_ptr < line_end)
2332 {
2333 op_code = read_1_byte (abfd, line_ptr, line_end);
2334 line_ptr += 1;
2335
2336 if (op_code >= lh.opcode_base)
2337 {
2338 /* Special operand. */
2339 adj_opcode = op_code - lh.opcode_base;
2340 if (lh.line_range == 0)
2341 goto line_fail;
2342 if (lh.maximum_ops_per_insn == 1)
2343 address += (adj_opcode / lh.line_range
2344 * lh.minimum_instruction_length);
2345 else
2346 {
2347 address += ((op_index + adj_opcode / lh.line_range)
2348 / lh.maximum_ops_per_insn
2349 * lh.minimum_instruction_length);
2350 op_index = ((op_index + adj_opcode / lh.line_range)
2351 % lh.maximum_ops_per_insn);
2352 }
2353 line += lh.line_base + (adj_opcode % lh.line_range);
2354 /* Append row to matrix using current values. */
2355 if (!add_line_info (table, address, op_index, filename,
2356 line, column, discriminator, 0))
2357 goto line_fail;
2358 discriminator = 0;
2359 if (address < low_pc)
2360 low_pc = address;
2361 if (address > high_pc)
2362 high_pc = address;
2363 }
2364 else switch (op_code)
2365 {
2366 case DW_LNS_extended_op:
2367 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2368 FALSE, line_end);
2369 line_ptr += bytes_read;
2370 extended_op = read_1_byte (abfd, line_ptr, line_end);
2371 line_ptr += 1;
2372
2373 switch (extended_op)
2374 {
2375 case DW_LNE_end_sequence:
2376 end_sequence = 1;
2377 if (!add_line_info (table, address, op_index, filename, line,
2378 column, discriminator, end_sequence))
2379 goto line_fail;
2380 discriminator = 0;
2381 if (address < low_pc)
2382 low_pc = address;
2383 if (address > high_pc)
2384 high_pc = address;
2385 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2386 goto line_fail;
2387 break;
2388 case DW_LNE_set_address:
2389 address = read_address (unit, line_ptr, line_end);
2390 op_index = 0;
2391 line_ptr += unit->addr_size;
2392 break;
2393 case DW_LNE_define_file:
2394 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2395 line_ptr += bytes_read;
2396 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2397 FALSE, line_end);
2398 line_ptr += bytes_read;
2399 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2400 FALSE, line_end);
2401 line_ptr += bytes_read;
2402 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2403 FALSE, line_end);
2404 line_ptr += bytes_read;
2405 if (!line_info_add_file_name (table, cur_file, dir,
2406 xtime, size))
2407 goto line_fail;
2408 break;
2409 case DW_LNE_set_discriminator:
2410 discriminator =
2411 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2412 FALSE, line_end);
2413 line_ptr += bytes_read;
2414 break;
2415 case DW_LNE_HP_source_file_correlation:
2416 line_ptr += exop_len - 1;
2417 break;
2418 default:
2419 _bfd_error_handler
2420 (_("DWARF error: mangled line number section"));
2421 bfd_set_error (bfd_error_bad_value);
2422 line_fail:
2423 if (filename != NULL)
2424 free (filename);
2425 goto fail;
2426 }
2427 break;
2428 case DW_LNS_copy:
2429 if (!add_line_info (table, address, op_index,
2430 filename, line, column, discriminator, 0))
2431 goto line_fail;
2432 discriminator = 0;
2433 if (address < low_pc)
2434 low_pc = address;
2435 if (address > high_pc)
2436 high_pc = address;
2437 break;
2438 case DW_LNS_advance_pc:
2439 if (lh.maximum_ops_per_insn == 1)
2440 address += (lh.minimum_instruction_length
2441 * _bfd_safe_read_leb128 (abfd, line_ptr,
2442 &bytes_read,
2443 FALSE, line_end));
2444 else
2445 {
2446 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2447 &bytes_read,
2448 FALSE, line_end);
2449 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2450 * lh.minimum_instruction_length);
2451 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2452 }
2453 line_ptr += bytes_read;
2454 break;
2455 case DW_LNS_advance_line:
2456 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2457 TRUE, line_end);
2458 line_ptr += bytes_read;
2459 break;
2460 case DW_LNS_set_file:
2461 {
2462 unsigned int filenum;
2463
2464 /* The file and directory tables are 0
2465 based, the references are 1 based. */
2466 filenum = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2467 FALSE, line_end);
2468 line_ptr += bytes_read;
2469 if (filename)
2470 free (filename);
2471 filename = concat_filename (table, filenum);
2472 break;
2473 }
2474 case DW_LNS_set_column:
2475 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2476 FALSE, line_end);
2477 line_ptr += bytes_read;
2478 break;
2479 case DW_LNS_negate_stmt:
2480 is_stmt = (!is_stmt);
2481 break;
2482 case DW_LNS_set_basic_block:
2483 break;
2484 case DW_LNS_const_add_pc:
2485 if (lh.line_range == 0)
2486 goto line_fail;
2487 if (lh.maximum_ops_per_insn == 1)
2488 address += (lh.minimum_instruction_length
2489 * ((255 - lh.opcode_base) / lh.line_range));
2490 else
2491 {
2492 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2493 address += (lh.minimum_instruction_length
2494 * ((op_index + adjust)
2495 / lh.maximum_ops_per_insn));
2496 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2497 }
2498 break;
2499 case DW_LNS_fixed_advance_pc:
2500 address += read_2_bytes (abfd, line_ptr, line_end);
2501 op_index = 0;
2502 line_ptr += 2;
2503 break;
2504 default:
2505 /* Unknown standard opcode, ignore it. */
2506 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2507 {
2508 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2509 FALSE, line_end);
2510 line_ptr += bytes_read;
2511 }
2512 break;
2513 }
2514 }
2515
2516 if (filename)
2517 free (filename);
2518 }
2519
2520 if (unit->line_offset == 0)
2521 file->line_table = table;
2522 if (sort_line_sequences (table))
2523 return table;
2524
2525 fail:
2526 while (table->sequences != NULL)
2527 {
2528 struct line_sequence* seq = table->sequences;
2529 table->sequences = table->sequences->prev_sequence;
2530 free (seq);
2531 }
2532 if (table->files != NULL)
2533 free (table->files);
2534 if (table->dirs != NULL)
2535 free (table->dirs);
2536 return NULL;
2537 }
2538
2539 /* If ADDR is within TABLE set the output parameters and return the
2540 range of addresses covered by the entry used to fill them out.
2541 Otherwise set * FILENAME_PTR to NULL and return 0.
2542 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2543 are pointers to the objects to be filled in. */
2544
2545 static bfd_vma
2546 lookup_address_in_line_info_table (struct line_info_table *table,
2547 bfd_vma addr,
2548 const char **filename_ptr,
2549 unsigned int *linenumber_ptr,
2550 unsigned int *discriminator_ptr)
2551 {
2552 struct line_sequence *seq = NULL;
2553 struct line_info *info;
2554 int low, high, mid;
2555
2556 /* Binary search the array of sequences. */
2557 low = 0;
2558 high = table->num_sequences;
2559 while (low < high)
2560 {
2561 mid = (low + high) / 2;
2562 seq = &table->sequences[mid];
2563 if (addr < seq->low_pc)
2564 high = mid;
2565 else if (addr >= seq->last_line->address)
2566 low = mid + 1;
2567 else
2568 break;
2569 }
2570
2571 /* Check for a valid sequence. */
2572 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2573 goto fail;
2574
2575 if (!build_line_info_table (table, seq))
2576 goto fail;
2577
2578 /* Binary search the array of line information. */
2579 low = 0;
2580 high = seq->num_lines;
2581 info = NULL;
2582 while (low < high)
2583 {
2584 mid = (low + high) / 2;
2585 info = seq->line_info_lookup[mid];
2586 if (addr < info->address)
2587 high = mid;
2588 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2589 low = mid + 1;
2590 else
2591 break;
2592 }
2593
2594 /* Check for a valid line information entry. */
2595 if (info
2596 && addr >= info->address
2597 && addr < seq->line_info_lookup[mid + 1]->address
2598 && !(info->end_sequence || info == seq->last_line))
2599 {
2600 *filename_ptr = info->filename;
2601 *linenumber_ptr = info->line;
2602 if (discriminator_ptr)
2603 *discriminator_ptr = info->discriminator;
2604 return seq->last_line->address - seq->low_pc;
2605 }
2606
2607 fail:
2608 *filename_ptr = NULL;
2609 return 0;
2610 }
2611
2612 /* Read in the .debug_ranges section for future reference. */
2613
2614 static bfd_boolean
2615 read_debug_ranges (struct comp_unit * unit)
2616 {
2617 struct dwarf2_debug *stash = unit->stash;
2618 struct dwarf2_debug_file *file = unit->file;
2619
2620 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2621 file->syms, 0,
2622 &file->dwarf_ranges_buffer, &file->dwarf_ranges_size);
2623 }
2624
2625 /* Function table functions. */
2626
2627 static int
2628 compare_lookup_funcinfos (const void * a, const void * b)
2629 {
2630 const struct lookup_funcinfo * lookup1 = a;
2631 const struct lookup_funcinfo * lookup2 = b;
2632
2633 if (lookup1->low_addr < lookup2->low_addr)
2634 return -1;
2635 if (lookup1->low_addr > lookup2->low_addr)
2636 return 1;
2637 if (lookup1->high_addr < lookup2->high_addr)
2638 return -1;
2639 if (lookup1->high_addr > lookup2->high_addr)
2640 return 1;
2641
2642 if (lookup1->idx < lookup2->idx)
2643 return -1;
2644 if (lookup1->idx > lookup2->idx)
2645 return 1;
2646 return 0;
2647 }
2648
2649 static bfd_boolean
2650 build_lookup_funcinfo_table (struct comp_unit * unit)
2651 {
2652 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2653 unsigned int number_of_functions = unit->number_of_functions;
2654 struct funcinfo *each;
2655 struct lookup_funcinfo *entry;
2656 size_t func_index;
2657 struct arange *range;
2658 bfd_vma low_addr, high_addr;
2659
2660 if (lookup_funcinfo_table || number_of_functions == 0)
2661 return TRUE;
2662
2663 /* Create the function info lookup table. */
2664 lookup_funcinfo_table = (struct lookup_funcinfo *)
2665 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2666 if (lookup_funcinfo_table == NULL)
2667 return FALSE;
2668
2669 /* Populate the function info lookup table. */
2670 func_index = number_of_functions;
2671 for (each = unit->function_table; each; each = each->prev_func)
2672 {
2673 entry = &lookup_funcinfo_table[--func_index];
2674 entry->funcinfo = each;
2675 entry->idx = func_index;
2676
2677 /* Calculate the lowest and highest address for this function entry. */
2678 low_addr = entry->funcinfo->arange.low;
2679 high_addr = entry->funcinfo->arange.high;
2680
2681 for (range = entry->funcinfo->arange.next; range; range = range->next)
2682 {
2683 if (range->low < low_addr)
2684 low_addr = range->low;
2685 if (range->high > high_addr)
2686 high_addr = range->high;
2687 }
2688
2689 entry->low_addr = low_addr;
2690 entry->high_addr = high_addr;
2691 }
2692
2693 BFD_ASSERT (func_index == 0);
2694
2695 /* Sort the function by address. */
2696 qsort (lookup_funcinfo_table,
2697 number_of_functions,
2698 sizeof (struct lookup_funcinfo),
2699 compare_lookup_funcinfos);
2700
2701 /* Calculate the high watermark for each function in the lookup table. */
2702 high_addr = lookup_funcinfo_table[0].high_addr;
2703 for (func_index = 1; func_index < number_of_functions; func_index++)
2704 {
2705 entry = &lookup_funcinfo_table[func_index];
2706 if (entry->high_addr > high_addr)
2707 high_addr = entry->high_addr;
2708 else
2709 entry->high_addr = high_addr;
2710 }
2711
2712 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2713 return TRUE;
2714 }
2715
2716 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2717 TRUE. Note that we need to find the function that has the smallest range
2718 that contains ADDR, to handle inlined functions without depending upon
2719 them being ordered in TABLE by increasing range. */
2720
2721 static bfd_boolean
2722 lookup_address_in_function_table (struct comp_unit *unit,
2723 bfd_vma addr,
2724 struct funcinfo **function_ptr)
2725 {
2726 unsigned int number_of_functions = unit->number_of_functions;
2727 struct lookup_funcinfo* lookup_funcinfo = NULL;
2728 struct funcinfo* funcinfo = NULL;
2729 struct funcinfo* best_fit = NULL;
2730 bfd_vma best_fit_len = 0;
2731 bfd_size_type low, high, mid, first;
2732 struct arange *arange;
2733
2734 if (number_of_functions == 0)
2735 return FALSE;
2736
2737 if (!build_lookup_funcinfo_table (unit))
2738 return FALSE;
2739
2740 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2741 return FALSE;
2742
2743 /* Find the first function in the lookup table which may contain the
2744 specified address. */
2745 low = 0;
2746 high = number_of_functions;
2747 first = high;
2748 while (low < high)
2749 {
2750 mid = (low + high) / 2;
2751 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2752 if (addr < lookup_funcinfo->low_addr)
2753 high = mid;
2754 else if (addr >= lookup_funcinfo->high_addr)
2755 low = mid + 1;
2756 else
2757 high = first = mid;
2758 }
2759
2760 /* Find the 'best' match for the address. The prior algorithm defined the
2761 best match as the function with the smallest address range containing
2762 the specified address. This definition should probably be changed to the
2763 innermost inline routine containing the address, but right now we want
2764 to get the same results we did before. */
2765 while (first < number_of_functions)
2766 {
2767 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2768 break;
2769 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2770
2771 for (arange = &funcinfo->arange; arange; arange = arange->next)
2772 {
2773 if (addr < arange->low || addr >= arange->high)
2774 continue;
2775
2776 if (!best_fit
2777 || arange->high - arange->low < best_fit_len
2778 /* The following comparison is designed to return the same
2779 match as the previous algorithm for routines which have the
2780 same best fit length. */
2781 || (arange->high - arange->low == best_fit_len
2782 && funcinfo > best_fit))
2783 {
2784 best_fit = funcinfo;
2785 best_fit_len = arange->high - arange->low;
2786 }
2787 }
2788
2789 first++;
2790 }
2791
2792 if (!best_fit)
2793 return FALSE;
2794
2795 *function_ptr = best_fit;
2796 return TRUE;
2797 }
2798
2799 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2800 and LINENUMBER_PTR, and return TRUE. */
2801
2802 static bfd_boolean
2803 lookup_symbol_in_function_table (struct comp_unit *unit,
2804 asymbol *sym,
2805 bfd_vma addr,
2806 const char **filename_ptr,
2807 unsigned int *linenumber_ptr)
2808 {
2809 struct funcinfo* each_func;
2810 struct funcinfo* best_fit = NULL;
2811 bfd_vma best_fit_len = 0;
2812 struct arange *arange;
2813 const char *name = bfd_asymbol_name (sym);
2814 asection *sec = bfd_asymbol_section (sym);
2815
2816 for (each_func = unit->function_table;
2817 each_func;
2818 each_func = each_func->prev_func)
2819 {
2820 for (arange = &each_func->arange;
2821 arange;
2822 arange = arange->next)
2823 {
2824 if ((!each_func->sec || each_func->sec == sec)
2825 && addr >= arange->low
2826 && addr < arange->high
2827 && each_func->name
2828 && strcmp (name, each_func->name) == 0
2829 && (!best_fit
2830 || arange->high - arange->low < best_fit_len))
2831 {
2832 best_fit = each_func;
2833 best_fit_len = arange->high - arange->low;
2834 }
2835 }
2836 }
2837
2838 if (best_fit)
2839 {
2840 best_fit->sec = sec;
2841 *filename_ptr = best_fit->file;
2842 *linenumber_ptr = best_fit->line;
2843 return TRUE;
2844 }
2845 else
2846 return FALSE;
2847 }
2848
2849 /* Variable table functions. */
2850
2851 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2852 LINENUMBER_PTR, and return TRUE. */
2853
2854 static bfd_boolean
2855 lookup_symbol_in_variable_table (struct comp_unit *unit,
2856 asymbol *sym,
2857 bfd_vma addr,
2858 const char **filename_ptr,
2859 unsigned int *linenumber_ptr)
2860 {
2861 const char *name = bfd_asymbol_name (sym);
2862 asection *sec = bfd_asymbol_section (sym);
2863 struct varinfo* each;
2864
2865 for (each = unit->variable_table; each; each = each->prev_var)
2866 if (! each->stack
2867 && each->file != NULL
2868 && each->name != NULL
2869 && each->addr == addr
2870 && (!each->sec || each->sec == sec)
2871 && strcmp (name, each->name) == 0)
2872 break;
2873
2874 if (each)
2875 {
2876 each->sec = sec;
2877 *filename_ptr = each->file;
2878 *linenumber_ptr = each->line;
2879 return TRUE;
2880 }
2881
2882 return FALSE;
2883 }
2884
2885 static struct comp_unit *stash_comp_unit (struct dwarf2_debug *,
2886 struct dwarf2_debug_file *);
2887 static bfd_boolean comp_unit_maybe_decode_line_info (struct comp_unit *);
2888
2889 static bfd_boolean
2890 find_abstract_instance (struct comp_unit *unit,
2891 struct attribute *attr_ptr,
2892 unsigned int recur_count,
2893 const char **pname,
2894 bfd_boolean *is_linkage,
2895 char **filename_ptr,
2896 int *linenumber_ptr)
2897 {
2898 bfd *abfd = unit->abfd;
2899 bfd_byte *info_ptr = NULL;
2900 bfd_byte *info_ptr_end;
2901 unsigned int abbrev_number, bytes_read, i;
2902 struct abbrev_info *abbrev;
2903 bfd_uint64_t die_ref = attr_ptr->u.val;
2904 struct attribute attr;
2905 const char *name = NULL;
2906
2907 if (recur_count == 100)
2908 {
2909 _bfd_error_handler
2910 (_("DWARF error: abstract instance recursion detected"));
2911 bfd_set_error (bfd_error_bad_value);
2912 return FALSE;
2913 }
2914
2915 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2916 is an offset from the .debug_info section, not the current CU. */
2917 if (attr_ptr->form == DW_FORM_ref_addr)
2918 {
2919 /* We only support DW_FORM_ref_addr within the same file, so
2920 any relocations should be resolved already. Check this by
2921 testing for a zero die_ref; There can't be a valid reference
2922 to the header of a .debug_info section.
2923 DW_FORM_ref_addr is an offset relative to .debug_info.
2924 Normally when using the GNU linker this is accomplished by
2925 emitting a symbolic reference to a label, because .debug_info
2926 sections are linked at zero. When there are multiple section
2927 groups containing .debug_info, as there might be in a
2928 relocatable object file, it would be reasonable to assume that
2929 a symbolic reference to a label in any .debug_info section
2930 might be used. Since we lay out multiple .debug_info
2931 sections at non-zero VMAs (see place_sections), and read
2932 them contiguously into dwarf_info_buffer, that means the
2933 reference is relative to dwarf_info_buffer. */
2934 size_t total;
2935
2936 info_ptr = unit->file->dwarf_info_buffer;
2937 info_ptr_end = info_ptr + unit->file->dwarf_info_size;
2938 total = info_ptr_end - info_ptr;
2939 if (!die_ref)
2940 return TRUE;
2941 else if (die_ref >= total)
2942 {
2943 _bfd_error_handler
2944 (_("DWARF error: invalid abstract instance DIE ref"));
2945 bfd_set_error (bfd_error_bad_value);
2946 return FALSE;
2947 }
2948 info_ptr += die_ref;
2949 }
2950 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2951 {
2952 bfd_boolean first_time = unit->stash->alt.dwarf_info_buffer == NULL;
2953
2954 info_ptr = read_alt_indirect_ref (unit, die_ref);
2955 if (first_time)
2956 unit->stash->alt.info_ptr = unit->stash->alt.dwarf_info_buffer;
2957 if (info_ptr == NULL)
2958 {
2959 _bfd_error_handler
2960 (_("DWARF error: unable to read alt ref %" PRIu64),
2961 (uint64_t) die_ref);
2962 bfd_set_error (bfd_error_bad_value);
2963 return FALSE;
2964 }
2965 info_ptr_end = (unit->stash->alt.dwarf_info_buffer
2966 + unit->stash->alt.dwarf_info_size);
2967 if (unit->stash->alt.all_comp_units)
2968 unit = unit->stash->alt.all_comp_units;
2969 }
2970
2971 if (attr_ptr->form == DW_FORM_ref_addr
2972 || attr_ptr->form == DW_FORM_GNU_ref_alt)
2973 {
2974 /* Now find the CU containing this pointer. */
2975 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2976 info_ptr_end = unit->end_ptr;
2977 else
2978 {
2979 /* Check other CUs to see if they contain the abbrev. */
2980 struct comp_unit *u;
2981
2982 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2983 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2984 break;
2985
2986 if (u == NULL)
2987 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2988 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2989 break;
2990
2991 if (attr_ptr->form == DW_FORM_ref_addr)
2992 while (u == NULL)
2993 {
2994 u = stash_comp_unit (unit->stash, &unit->stash->f);
2995 if (u == NULL)
2996 break;
2997 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2998 break;
2999 u = NULL;
3000 }
3001
3002 if (attr_ptr->form == DW_FORM_GNU_ref_alt)
3003 while (u == NULL)
3004 {
3005 u = stash_comp_unit (unit->stash, &unit->stash->alt);
3006 if (u == NULL)
3007 break;
3008 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3009 break;
3010 u = NULL;
3011 }
3012
3013 if (u == NULL)
3014 {
3015 _bfd_error_handler
3016 (_("DWARF error: unable to locate abstract instance DIE ref %"
3017 PRIu64), (uint64_t) die_ref);
3018 bfd_set_error (bfd_error_bad_value);
3019 return FALSE;
3020 }
3021 unit = u;
3022 info_ptr_end = unit->end_ptr;
3023 }
3024 }
3025 else
3026 {
3027 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
3028 DW_FORM_ref_udata. These are all references relative to the
3029 start of the current CU. */
3030 size_t total;
3031
3032 info_ptr = unit->info_ptr_unit;
3033 info_ptr_end = unit->end_ptr;
3034 total = info_ptr_end - info_ptr;
3035 if (!die_ref || die_ref >= total)
3036 {
3037 _bfd_error_handler
3038 (_("DWARF error: invalid abstract instance DIE ref"));
3039 bfd_set_error (bfd_error_bad_value);
3040 return FALSE;
3041 }
3042 info_ptr += die_ref;
3043 }
3044
3045 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3046 FALSE, info_ptr_end);
3047 info_ptr += bytes_read;
3048
3049 if (abbrev_number)
3050 {
3051 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3052 if (! abbrev)
3053 {
3054 _bfd_error_handler
3055 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
3056 bfd_set_error (bfd_error_bad_value);
3057 return FALSE;
3058 }
3059 else
3060 {
3061 for (i = 0; i < abbrev->num_attrs; ++i)
3062 {
3063 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
3064 info_ptr, info_ptr_end);
3065 if (info_ptr == NULL)
3066 break;
3067 switch (attr.name)
3068 {
3069 case DW_AT_name:
3070 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3071 over DW_AT_name. */
3072 if (name == NULL && is_str_attr (attr.form))
3073 {
3074 name = attr.u.str;
3075 if (non_mangled (unit->lang))
3076 *is_linkage = TRUE;
3077 }
3078 break;
3079 case DW_AT_specification:
3080 if (!find_abstract_instance (unit, &attr, recur_count + 1,
3081 &name, is_linkage,
3082 filename_ptr, linenumber_ptr))
3083 return FALSE;
3084 break;
3085 case DW_AT_linkage_name:
3086 case DW_AT_MIPS_linkage_name:
3087 /* PR 16949: Corrupt debug info can place
3088 non-string forms into these attributes. */
3089 if (is_str_attr (attr.form))
3090 {
3091 name = attr.u.str;
3092 *is_linkage = TRUE;
3093 }
3094 break;
3095 case DW_AT_decl_file:
3096 if (!comp_unit_maybe_decode_line_info (unit))
3097 return FALSE;
3098 *filename_ptr = concat_filename (unit->line_table,
3099 attr.u.val);
3100 break;
3101 case DW_AT_decl_line:
3102 *linenumber_ptr = attr.u.val;
3103 break;
3104 default:
3105 break;
3106 }
3107 }
3108 }
3109 }
3110 *pname = name;
3111 return TRUE;
3112 }
3113
3114 static bfd_boolean
3115 read_rangelist (struct comp_unit *unit, struct arange *arange,
3116 bfd_uint64_t offset)
3117 {
3118 bfd_byte *ranges_ptr;
3119 bfd_byte *ranges_end;
3120 bfd_vma base_address = unit->base_address;
3121
3122 if (! unit->file->dwarf_ranges_buffer)
3123 {
3124 if (! read_debug_ranges (unit))
3125 return FALSE;
3126 }
3127
3128 ranges_ptr = unit->file->dwarf_ranges_buffer + offset;
3129 if (ranges_ptr < unit->file->dwarf_ranges_buffer)
3130 return FALSE;
3131 ranges_end = unit->file->dwarf_ranges_buffer + unit->file->dwarf_ranges_size;
3132
3133 for (;;)
3134 {
3135 bfd_vma low_pc;
3136 bfd_vma high_pc;
3137
3138 /* PR 17512: file: 62cada7d. */
3139 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3140 return FALSE;
3141
3142 low_pc = read_address (unit, ranges_ptr, ranges_end);
3143 ranges_ptr += unit->addr_size;
3144 high_pc = read_address (unit, ranges_ptr, ranges_end);
3145 ranges_ptr += unit->addr_size;
3146
3147 if (low_pc == 0 && high_pc == 0)
3148 break;
3149 if (low_pc == -1UL && high_pc != -1UL)
3150 base_address = high_pc;
3151 else
3152 {
3153 if (!arange_add (unit, arange,
3154 base_address + low_pc, base_address + high_pc))
3155 return FALSE;
3156 }
3157 }
3158 return TRUE;
3159 }
3160
3161 static struct varinfo *
3162 lookup_var_by_offset (bfd_uint64_t offset, struct varinfo * table)
3163 {
3164 while (table)
3165 {
3166 if (table->unit_offset == offset)
3167 return table;
3168 table = table->prev_var;
3169 }
3170
3171 return NULL;
3172 }
3173
3174
3175 /* DWARF2 Compilation unit functions. */
3176
3177 /* Scan over each die in a comp. unit looking for functions to add
3178 to the function table and variables to the variable table. */
3179
3180 static bfd_boolean
3181 scan_unit_for_symbols (struct comp_unit *unit)
3182 {
3183 bfd *abfd = unit->abfd;
3184 bfd_byte *info_ptr = unit->first_child_die_ptr;
3185 bfd_byte *info_ptr_end = unit->end_ptr;
3186 int nesting_level = 0;
3187 struct nest_funcinfo {
3188 struct funcinfo *func;
3189 } *nested_funcs;
3190 int nested_funcs_size;
3191
3192 /* Maintain a stack of in-scope functions and inlined functions, which we
3193 can use to set the caller_func field. */
3194 nested_funcs_size = 32;
3195 nested_funcs = (struct nest_funcinfo *)
3196 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3197 if (nested_funcs == NULL)
3198 return FALSE;
3199 nested_funcs[nesting_level].func = 0;
3200
3201 while (nesting_level >= 0)
3202 {
3203 unsigned int abbrev_number, bytes_read, i;
3204 struct abbrev_info *abbrev;
3205 struct attribute attr;
3206 struct funcinfo *func;
3207 struct varinfo *var;
3208 bfd_vma low_pc = 0;
3209 bfd_vma high_pc = 0;
3210 bfd_boolean high_pc_relative = FALSE;
3211 bfd_uint64_t current_offset;
3212
3213 /* PR 17512: file: 9f405d9d. */
3214 if (info_ptr >= info_ptr_end)
3215 goto fail;
3216
3217 current_offset = info_ptr - unit->info_ptr_unit;
3218 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3219 FALSE, info_ptr_end);
3220 info_ptr += bytes_read;
3221
3222 if (! abbrev_number)
3223 {
3224 nesting_level--;
3225 continue;
3226 }
3227
3228 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3229 if (! abbrev)
3230 {
3231 static unsigned int previous_failed_abbrev = -1U;
3232
3233 /* Avoid multiple reports of the same missing abbrev. */
3234 if (abbrev_number != previous_failed_abbrev)
3235 {
3236 _bfd_error_handler
3237 (_("DWARF error: could not find abbrev number %u"),
3238 abbrev_number);
3239 previous_failed_abbrev = abbrev_number;
3240 }
3241 bfd_set_error (bfd_error_bad_value);
3242 goto fail;
3243 }
3244
3245 if (abbrev->tag == DW_TAG_subprogram
3246 || abbrev->tag == DW_TAG_entry_point
3247 || abbrev->tag == DW_TAG_inlined_subroutine)
3248 {
3249 size_t amt = sizeof (struct funcinfo);
3250
3251 var = NULL;
3252 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3253 if (func == NULL)
3254 goto fail;
3255 func->tag = abbrev->tag;
3256 func->prev_func = unit->function_table;
3257 unit->function_table = func;
3258 unit->number_of_functions++;
3259 BFD_ASSERT (!unit->cached);
3260
3261 if (func->tag == DW_TAG_inlined_subroutine)
3262 for (i = nesting_level; i-- != 0; )
3263 if (nested_funcs[i].func)
3264 {
3265 func->caller_func = nested_funcs[i].func;
3266 break;
3267 }
3268 nested_funcs[nesting_level].func = func;
3269 }
3270 else
3271 {
3272 func = NULL;
3273 if (abbrev->tag == DW_TAG_variable)
3274 {
3275 size_t amt = sizeof (struct varinfo);
3276 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3277 if (var == NULL)
3278 goto fail;
3279 var->tag = abbrev->tag;
3280 var->stack = TRUE;
3281 var->prev_var = unit->variable_table;
3282 unit->variable_table = var;
3283 var->unit_offset = current_offset;
3284 /* PR 18205: Missing debug information can cause this
3285 var to be attached to an already cached unit. */
3286 }
3287 else
3288 var = NULL;
3289
3290 /* No inline function in scope at this nesting level. */
3291 nested_funcs[nesting_level].func = 0;
3292 }
3293
3294 for (i = 0; i < abbrev->num_attrs; ++i)
3295 {
3296 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3297 unit, info_ptr, info_ptr_end);
3298 if (info_ptr == NULL)
3299 goto fail;
3300
3301 if (func)
3302 {
3303 switch (attr.name)
3304 {
3305 case DW_AT_call_file:
3306 func->caller_file = concat_filename (unit->line_table,
3307 attr.u.val);
3308 break;
3309
3310 case DW_AT_call_line:
3311 func->caller_line = attr.u.val;
3312 break;
3313
3314 case DW_AT_abstract_origin:
3315 case DW_AT_specification:
3316 if (!find_abstract_instance (unit, &attr, 0,
3317 &func->name,
3318 &func->is_linkage,
3319 &func->file,
3320 &func->line))
3321 goto fail;
3322 break;
3323
3324 case DW_AT_name:
3325 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3326 over DW_AT_name. */
3327 if (func->name == NULL && is_str_attr (attr.form))
3328 {
3329 func->name = attr.u.str;
3330 if (non_mangled (unit->lang))
3331 func->is_linkage = TRUE;
3332 }
3333 break;
3334
3335 case DW_AT_linkage_name:
3336 case DW_AT_MIPS_linkage_name:
3337 /* PR 16949: Corrupt debug info can place
3338 non-string forms into these attributes. */
3339 if (is_str_attr (attr.form))
3340 {
3341 func->name = attr.u.str;
3342 func->is_linkage = TRUE;
3343 }
3344 break;
3345
3346 case DW_AT_low_pc:
3347 low_pc = attr.u.val;
3348 break;
3349
3350 case DW_AT_high_pc:
3351 high_pc = attr.u.val;
3352 high_pc_relative = attr.form != DW_FORM_addr;
3353 break;
3354
3355 case DW_AT_ranges:
3356 if (!read_rangelist (unit, &func->arange, attr.u.val))
3357 goto fail;
3358 break;
3359
3360 case DW_AT_decl_file:
3361 func->file = concat_filename (unit->line_table,
3362 attr.u.val);
3363 break;
3364
3365 case DW_AT_decl_line:
3366 func->line = attr.u.val;
3367 break;
3368
3369 default:
3370 break;
3371 }
3372 }
3373 else if (var)
3374 {
3375 switch (attr.name)
3376 {
3377 case DW_AT_specification:
3378 if (attr.u.val)
3379 {
3380 struct varinfo * spec_var;
3381
3382 spec_var = lookup_var_by_offset (attr.u.val, unit->variable_table);
3383 if (spec_var == NULL)
3384 {
3385 _bfd_error_handler
3386 (_("DWARF error: could not find variable specification at offset %lx"),
3387 (unsigned long) attr.u.val);
3388 break;
3389 }
3390
3391 if (var->name == NULL)
3392 var->name = spec_var->name;
3393 if (var->file == NULL)
3394 var->file = strdup (spec_var->file);
3395 if (var->line == 0)
3396 var->line = spec_var->line;
3397 if (var->sec == NULL)
3398 var->sec = spec_var->sec;
3399 }
3400 break;
3401
3402 case DW_AT_name:
3403 if (is_str_attr (attr.form))
3404 var->name = attr.u.str;
3405 break;
3406
3407 case DW_AT_decl_file:
3408 var->file = concat_filename (unit->line_table,
3409 attr.u.val);
3410 break;
3411
3412 case DW_AT_decl_line:
3413 var->line = attr.u.val;
3414 break;
3415
3416 case DW_AT_external:
3417 if (attr.u.val != 0)
3418 var->stack = FALSE;
3419 break;
3420
3421 case DW_AT_location:
3422 switch (attr.form)
3423 {
3424 case DW_FORM_block:
3425 case DW_FORM_block1:
3426 case DW_FORM_block2:
3427 case DW_FORM_block4:
3428 case DW_FORM_exprloc:
3429 if (attr.u.blk->data != NULL
3430 && *attr.u.blk->data == DW_OP_addr)
3431 {
3432 var->stack = FALSE;
3433
3434 /* Verify that DW_OP_addr is the only opcode in the
3435 location, in which case the block size will be 1
3436 plus the address size. */
3437 /* ??? For TLS variables, gcc can emit
3438 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3439 which we don't handle here yet. */
3440 if (attr.u.blk->size == unit->addr_size + 1U)
3441 var->addr = bfd_get (unit->addr_size * 8,
3442 unit->abfd,
3443 attr.u.blk->data + 1);
3444 }
3445 break;
3446
3447 default:
3448 break;
3449 }
3450 break;
3451
3452 default:
3453 break;
3454 }
3455 }
3456 }
3457
3458 if (high_pc_relative)
3459 high_pc += low_pc;
3460
3461 if (func && high_pc != 0)
3462 {
3463 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3464 goto fail;
3465 }
3466
3467 if (abbrev->has_children)
3468 {
3469 nesting_level++;
3470
3471 if (nesting_level >= nested_funcs_size)
3472 {
3473 struct nest_funcinfo *tmp;
3474
3475 nested_funcs_size *= 2;
3476 tmp = (struct nest_funcinfo *)
3477 bfd_realloc (nested_funcs,
3478 nested_funcs_size * sizeof (*nested_funcs));
3479 if (tmp == NULL)
3480 goto fail;
3481 nested_funcs = tmp;
3482 }
3483 nested_funcs[nesting_level].func = 0;
3484 }
3485 }
3486
3487 free (nested_funcs);
3488 return TRUE;
3489
3490 fail:
3491 free (nested_funcs);
3492 return FALSE;
3493 }
3494
3495 /* Parse a DWARF2 compilation unit starting at INFO_PTR. UNIT_LENGTH
3496 includes the compilation unit header that proceeds the DIE's, but
3497 does not include the length field that precedes each compilation
3498 unit header. END_PTR points one past the end of this comp unit.
3499 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3500
3501 This routine does not read the whole compilation unit; only enough
3502 to get to the line number information for the compilation unit. */
3503
3504 static struct comp_unit *
3505 parse_comp_unit (struct dwarf2_debug *stash,
3506 struct dwarf2_debug_file *file,
3507 bfd_byte *info_ptr,
3508 bfd_vma unit_length,
3509 bfd_byte *info_ptr_unit,
3510 unsigned int offset_size)
3511 {
3512 struct comp_unit* unit;
3513 unsigned int version;
3514 bfd_uint64_t abbrev_offset = 0;
3515 /* Initialize it just to avoid a GCC false warning. */
3516 unsigned int addr_size = -1;
3517 struct abbrev_info** abbrevs;
3518 unsigned int abbrev_number, bytes_read, i;
3519 struct abbrev_info *abbrev;
3520 struct attribute attr;
3521 bfd_byte *end_ptr = info_ptr + unit_length;
3522 size_t amt;
3523 bfd_vma low_pc = 0;
3524 bfd_vma high_pc = 0;
3525 bfd *abfd = file->bfd_ptr;
3526 bfd_boolean high_pc_relative = FALSE;
3527 enum dwarf_unit_type unit_type;
3528
3529 version = read_2_bytes (abfd, info_ptr, end_ptr);
3530 info_ptr += 2;
3531 if (version < 2 || version > 5)
3532 {
3533 /* PR 19872: A version number of 0 probably means that there is padding
3534 at the end of the .debug_info section. Gold puts it there when
3535 performing an incremental link, for example. So do not generate
3536 an error, just return a NULL. */
3537 if (version)
3538 {
3539 _bfd_error_handler
3540 (_("DWARF error: found dwarf version '%u', this reader"
3541 " only handles version 2, 3, 4 and 5 information"), version);
3542 bfd_set_error (bfd_error_bad_value);
3543 }
3544 return NULL;
3545 }
3546
3547 if (version < 5)
3548 unit_type = DW_UT_compile;
3549 else
3550 {
3551 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3552 info_ptr += 1;
3553
3554 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3555 info_ptr += 1;
3556 }
3557
3558 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3559 if (offset_size == 4)
3560 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3561 else
3562 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3563 info_ptr += offset_size;
3564
3565 if (version < 5)
3566 {
3567 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3568 info_ptr += 1;
3569 }
3570
3571 if (unit_type == DW_UT_type)
3572 {
3573 /* Skip type signature. */
3574 info_ptr += 8;
3575
3576 /* Skip type offset. */
3577 info_ptr += offset_size;
3578 }
3579
3580 if (addr_size > sizeof (bfd_vma))
3581 {
3582 _bfd_error_handler
3583 /* xgettext: c-format */
3584 (_("DWARF error: found address size '%u', this reader"
3585 " can not handle sizes greater than '%u'"),
3586 addr_size,
3587 (unsigned int) sizeof (bfd_vma));
3588 bfd_set_error (bfd_error_bad_value);
3589 return NULL;
3590 }
3591
3592 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3593 {
3594 _bfd_error_handler
3595 ("DWARF error: found address size '%u', this reader"
3596 " can only handle address sizes '2', '4' and '8'", addr_size);
3597 bfd_set_error (bfd_error_bad_value);
3598 return NULL;
3599 }
3600
3601 /* Read the abbrevs for this compilation unit into a table. */
3602 abbrevs = read_abbrevs (abfd, abbrev_offset, stash, file);
3603 if (! abbrevs)
3604 return NULL;
3605
3606 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3607 FALSE, end_ptr);
3608 info_ptr += bytes_read;
3609 if (! abbrev_number)
3610 {
3611 /* PR 19872: An abbrev number of 0 probably means that there is padding
3612 at the end of the .debug_abbrev section. Gold puts it there when
3613 performing an incremental link, for example. So do not generate
3614 an error, just return a NULL. */
3615 return NULL;
3616 }
3617
3618 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3619 if (! abbrev)
3620 {
3621 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3622 abbrev_number);
3623 bfd_set_error (bfd_error_bad_value);
3624 return NULL;
3625 }
3626
3627 amt = sizeof (struct comp_unit);
3628 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3629 if (unit == NULL)
3630 return NULL;
3631 unit->abfd = abfd;
3632 unit->version = version;
3633 unit->addr_size = addr_size;
3634 unit->offset_size = offset_size;
3635 unit->abbrevs = abbrevs;
3636 unit->end_ptr = end_ptr;
3637 unit->stash = stash;
3638 unit->file = file;
3639 unit->info_ptr_unit = info_ptr_unit;
3640
3641 for (i = 0; i < abbrev->num_attrs; ++i)
3642 {
3643 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3644 if (info_ptr == NULL)
3645 return NULL;
3646
3647 /* Store the data if it is of an attribute we want to keep in a
3648 partial symbol table. */
3649 switch (attr.name)
3650 {
3651 case DW_AT_stmt_list:
3652 unit->stmtlist = 1;
3653 unit->line_offset = attr.u.val;
3654 break;
3655
3656 case DW_AT_name:
3657 if (is_str_attr (attr.form))
3658 unit->name = attr.u.str;
3659 break;
3660
3661 case DW_AT_low_pc:
3662 low_pc = attr.u.val;
3663 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3664 this is the base address to use when reading location
3665 lists or range lists. */
3666 if (abbrev->tag == DW_TAG_compile_unit)
3667 unit->base_address = low_pc;
3668 break;
3669
3670 case DW_AT_high_pc:
3671 high_pc = attr.u.val;
3672 high_pc_relative = attr.form != DW_FORM_addr;
3673 break;
3674
3675 case DW_AT_ranges:
3676 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3677 return NULL;
3678 break;
3679
3680 case DW_AT_comp_dir:
3681 {
3682 char *comp_dir = attr.u.str;
3683
3684 /* PR 17512: file: 1fe726be. */
3685 if (! is_str_attr (attr.form))
3686 {
3687 _bfd_error_handler
3688 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3689 comp_dir = NULL;
3690 }
3691
3692 if (comp_dir)
3693 {
3694 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3695 directory, get rid of it. */
3696 char *cp = strchr (comp_dir, ':');
3697
3698 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3699 comp_dir = cp + 1;
3700 }
3701 unit->comp_dir = comp_dir;
3702 break;
3703 }
3704
3705 case DW_AT_language:
3706 unit->lang = attr.u.val;
3707 break;
3708
3709 default:
3710 break;
3711 }
3712 }
3713 if (high_pc_relative)
3714 high_pc += low_pc;
3715 if (high_pc != 0)
3716 {
3717 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3718 return NULL;
3719 }
3720
3721 unit->first_child_die_ptr = info_ptr;
3722 return unit;
3723 }
3724
3725 /* Return TRUE if UNIT may contain the address given by ADDR. When
3726 there are functions written entirely with inline asm statements, the
3727 range info in the compilation unit header may not be correct. We
3728 need to consult the line info table to see if a compilation unit
3729 really contains the given address. */
3730
3731 static bfd_boolean
3732 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3733 {
3734 struct arange *arange;
3735
3736 if (unit->error)
3737 return FALSE;
3738
3739 arange = &unit->arange;
3740 do
3741 {
3742 if (addr >= arange->low && addr < arange->high)
3743 return TRUE;
3744 arange = arange->next;
3745 }
3746 while (arange);
3747
3748 return FALSE;
3749 }
3750
3751 /* If UNIT contains ADDR, set the output parameters to the values for
3752 the line containing ADDR. The output parameters, FILENAME_PTR,
3753 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3754 to be filled in.
3755
3756 Returns the range of addresses covered by the entry that was used
3757 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3758
3759 static bfd_vma
3760 comp_unit_find_nearest_line (struct comp_unit *unit,
3761 bfd_vma addr,
3762 const char **filename_ptr,
3763 struct funcinfo **function_ptr,
3764 unsigned int *linenumber_ptr,
3765 unsigned int *discriminator_ptr)
3766 {
3767 bfd_boolean func_p;
3768
3769 if (!comp_unit_maybe_decode_line_info (unit))
3770 return FALSE;
3771
3772 *function_ptr = NULL;
3773 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3774 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3775 unit->stash->inliner_chain = *function_ptr;
3776
3777 return lookup_address_in_line_info_table (unit->line_table, addr,
3778 filename_ptr,
3779 linenumber_ptr,
3780 discriminator_ptr);
3781 }
3782
3783 /* Check to see if line info is already decoded in a comp_unit.
3784 If not, decode it. Returns TRUE if no errors were encountered;
3785 FALSE otherwise. */
3786
3787 static bfd_boolean
3788 comp_unit_maybe_decode_line_info (struct comp_unit *unit)
3789 {
3790 if (unit->error)
3791 return FALSE;
3792
3793 if (! unit->line_table)
3794 {
3795 if (! unit->stmtlist)
3796 {
3797 unit->error = 1;
3798 return FALSE;
3799 }
3800
3801 unit->line_table = decode_line_info (unit);
3802
3803 if (! unit->line_table)
3804 {
3805 unit->error = 1;
3806 return FALSE;
3807 }
3808
3809 if (unit->first_child_die_ptr < unit->end_ptr
3810 && ! scan_unit_for_symbols (unit))
3811 {
3812 unit->error = 1;
3813 return FALSE;
3814 }
3815 }
3816
3817 return TRUE;
3818 }
3819
3820 /* If UNIT contains SYM at ADDR, set the output parameters to the
3821 values for the line containing SYM. The output parameters,
3822 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3823 filled in.
3824
3825 Return TRUE if UNIT contains SYM, and no errors were encountered;
3826 FALSE otherwise. */
3827
3828 static bfd_boolean
3829 comp_unit_find_line (struct comp_unit *unit,
3830 asymbol *sym,
3831 bfd_vma addr,
3832 const char **filename_ptr,
3833 unsigned int *linenumber_ptr)
3834 {
3835 if (!comp_unit_maybe_decode_line_info (unit))
3836 return FALSE;
3837
3838 if (sym->flags & BSF_FUNCTION)
3839 return lookup_symbol_in_function_table (unit, sym, addr,
3840 filename_ptr,
3841 linenumber_ptr);
3842
3843 return lookup_symbol_in_variable_table (unit, sym, addr,
3844 filename_ptr,
3845 linenumber_ptr);
3846 }
3847
3848 static struct funcinfo *
3849 reverse_funcinfo_list (struct funcinfo *head)
3850 {
3851 struct funcinfo *rhead;
3852 struct funcinfo *temp;
3853
3854 for (rhead = NULL; head; head = temp)
3855 {
3856 temp = head->prev_func;
3857 head->prev_func = rhead;
3858 rhead = head;
3859 }
3860 return rhead;
3861 }
3862
3863 static struct varinfo *
3864 reverse_varinfo_list (struct varinfo *head)
3865 {
3866 struct varinfo *rhead;
3867 struct varinfo *temp;
3868
3869 for (rhead = NULL; head; head = temp)
3870 {
3871 temp = head->prev_var;
3872 head->prev_var = rhead;
3873 rhead = head;
3874 }
3875 return rhead;
3876 }
3877
3878 /* Extract all interesting funcinfos and varinfos of a compilation
3879 unit into hash tables for faster lookup. Returns TRUE if no
3880 errors were enountered; FALSE otherwise. */
3881
3882 static bfd_boolean
3883 comp_unit_hash_info (struct dwarf2_debug *stash,
3884 struct comp_unit *unit,
3885 struct info_hash_table *funcinfo_hash_table,
3886 struct info_hash_table *varinfo_hash_table)
3887 {
3888 struct funcinfo* each_func;
3889 struct varinfo* each_var;
3890 bfd_boolean okay = TRUE;
3891
3892 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3893
3894 if (!comp_unit_maybe_decode_line_info (unit))
3895 return FALSE;
3896
3897 BFD_ASSERT (!unit->cached);
3898
3899 /* To preserve the original search order, we went to visit the function
3900 infos in the reversed order of the list. However, making the list
3901 bi-directional use quite a bit of extra memory. So we reverse
3902 the list first, traverse the list in the now reversed order and
3903 finally reverse the list again to get back the original order. */
3904 unit->function_table = reverse_funcinfo_list (unit->function_table);
3905 for (each_func = unit->function_table;
3906 each_func && okay;
3907 each_func = each_func->prev_func)
3908 {
3909 /* Skip nameless functions. */
3910 if (each_func->name)
3911 /* There is no need to copy name string into hash table as
3912 name string is either in the dwarf string buffer or
3913 info in the stash. */
3914 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3915 (void*) each_func, FALSE);
3916 }
3917 unit->function_table = reverse_funcinfo_list (unit->function_table);
3918 if (!okay)
3919 return FALSE;
3920
3921 /* We do the same for variable infos. */
3922 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3923 for (each_var = unit->variable_table;
3924 each_var && okay;
3925 each_var = each_var->prev_var)
3926 {
3927 /* Skip stack vars and vars with no files or names. */
3928 if (! each_var->stack
3929 && each_var->file != NULL
3930 && each_var->name != NULL)
3931 /* There is no need to copy name string into hash table as
3932 name string is either in the dwarf string buffer or
3933 info in the stash. */
3934 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3935 (void*) each_var, FALSE);
3936 }
3937
3938 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3939 unit->cached = TRUE;
3940 return okay;
3941 }
3942
3943 /* Locate a section in a BFD containing debugging info. The search starts
3944 from the section after AFTER_SEC, or from the first section in the BFD if
3945 AFTER_SEC is NULL. The search works by examining the names of the
3946 sections. There are three permissiable names. The first two are given
3947 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3948 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3949 This is a variation on the .debug_info section which has a checksum
3950 describing the contents appended onto the name. This allows the linker to
3951 identify and discard duplicate debugging sections for different
3952 compilation units. */
3953 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3954
3955 static asection *
3956 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3957 asection *after_sec)
3958 {
3959 asection *msec;
3960 const char *look;
3961
3962 if (after_sec == NULL)
3963 {
3964 look = debug_sections[debug_info].uncompressed_name;
3965 msec = bfd_get_section_by_name (abfd, look);
3966 if (msec != NULL)
3967 return msec;
3968
3969 look = debug_sections[debug_info].compressed_name;
3970 if (look != NULL)
3971 {
3972 msec = bfd_get_section_by_name (abfd, look);
3973 if (msec != NULL)
3974 return msec;
3975 }
3976
3977 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3978 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3979 return msec;
3980
3981 return NULL;
3982 }
3983
3984 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3985 {
3986 look = debug_sections[debug_info].uncompressed_name;
3987 if (strcmp (msec->name, look) == 0)
3988 return msec;
3989
3990 look = debug_sections[debug_info].compressed_name;
3991 if (look != NULL && strcmp (msec->name, look) == 0)
3992 return msec;
3993
3994 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3995 return msec;
3996 }
3997
3998 return NULL;
3999 }
4000
4001 /* Transfer VMAs from object file to separate debug file. */
4002
4003 static void
4004 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
4005 {
4006 asection *s, *d;
4007
4008 for (s = orig_bfd->sections, d = debug_bfd->sections;
4009 s != NULL && d != NULL;
4010 s = s->next, d = d->next)
4011 {
4012 if ((d->flags & SEC_DEBUGGING) != 0)
4013 break;
4014 /* ??? Assumes 1-1 correspondence between sections in the
4015 two files. */
4016 if (strcmp (s->name, d->name) == 0)
4017 {
4018 d->output_section = s->output_section;
4019 d->output_offset = s->output_offset;
4020 d->vma = s->vma;
4021 }
4022 }
4023 }
4024
4025 /* If the dwarf2 info was found in a separate debug file, return the
4026 debug file section corresponding to the section in the original file
4027 and the debug file symbols. */
4028
4029 static void
4030 _bfd_dwarf2_stash_syms (struct dwarf2_debug *stash, bfd *abfd,
4031 asection **sec, asymbol ***syms)
4032 {
4033 if (stash->f.bfd_ptr != abfd)
4034 {
4035 asection *s, *d;
4036
4037 if (*sec == NULL)
4038 {
4039 *syms = stash->f.syms;
4040 return;
4041 }
4042
4043 for (s = abfd->sections, d = stash->f.bfd_ptr->sections;
4044 s != NULL && d != NULL;
4045 s = s->next, d = d->next)
4046 {
4047 if ((d->flags & SEC_DEBUGGING) != 0)
4048 break;
4049 if (s == *sec
4050 && strcmp (s->name, d->name) == 0)
4051 {
4052 *sec = d;
4053 *syms = stash->f.syms;
4054 break;
4055 }
4056 }
4057 }
4058 }
4059
4060 /* Unset vmas for adjusted sections in STASH. */
4061
4062 static void
4063 unset_sections (struct dwarf2_debug *stash)
4064 {
4065 int i;
4066 struct adjusted_section *p;
4067
4068 i = stash->adjusted_section_count;
4069 p = stash->adjusted_sections;
4070 for (; i > 0; i--, p++)
4071 p->section->vma = 0;
4072 }
4073
4074 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
4075 relocatable object file. VMAs are normally all zero in relocatable
4076 object files, so if we want to distinguish locations in sections by
4077 address we need to set VMAs so the sections do not overlap. We
4078 also set VMA on .debug_info so that when we have multiple
4079 .debug_info sections (or the linkonce variant) they also do not
4080 overlap. The multiple .debug_info sections make up a single
4081 logical section. ??? We should probably do the same for other
4082 debug sections. */
4083
4084 static bfd_boolean
4085 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
4086 {
4087 bfd *abfd;
4088 struct adjusted_section *p;
4089 int i;
4090 const char *debug_info_name;
4091
4092 if (stash->adjusted_section_count != 0)
4093 {
4094 i = stash->adjusted_section_count;
4095 p = stash->adjusted_sections;
4096 for (; i > 0; i--, p++)
4097 p->section->vma = p->adj_vma;
4098 return TRUE;
4099 }
4100
4101 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
4102 i = 0;
4103 abfd = orig_bfd;
4104 while (1)
4105 {
4106 asection *sect;
4107
4108 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4109 {
4110 int is_debug_info;
4111
4112 if ((sect->output_section != NULL
4113 && sect->output_section != sect
4114 && (sect->flags & SEC_DEBUGGING) == 0)
4115 || sect->vma != 0)
4116 continue;
4117
4118 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4119 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4120
4121 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4122 && !is_debug_info)
4123 continue;
4124
4125 i++;
4126 }
4127 if (abfd == stash->f.bfd_ptr)
4128 break;
4129 abfd = stash->f.bfd_ptr;
4130 }
4131
4132 if (i <= 1)
4133 stash->adjusted_section_count = -1;
4134 else
4135 {
4136 bfd_vma last_vma = 0, last_dwarf = 0;
4137 size_t amt = i * sizeof (struct adjusted_section);
4138
4139 p = (struct adjusted_section *) bfd_malloc (amt);
4140 if (p == NULL)
4141 return FALSE;
4142
4143 stash->adjusted_sections = p;
4144 stash->adjusted_section_count = i;
4145
4146 abfd = orig_bfd;
4147 while (1)
4148 {
4149 asection *sect;
4150
4151 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4152 {
4153 bfd_size_type sz;
4154 int is_debug_info;
4155
4156 if ((sect->output_section != NULL
4157 && sect->output_section != sect
4158 && (sect->flags & SEC_DEBUGGING) == 0)
4159 || sect->vma != 0)
4160 continue;
4161
4162 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4163 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4164
4165 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4166 && !is_debug_info)
4167 continue;
4168
4169 sz = sect->rawsize ? sect->rawsize : sect->size;
4170
4171 if (is_debug_info)
4172 {
4173 BFD_ASSERT (sect->alignment_power == 0);
4174 sect->vma = last_dwarf;
4175 last_dwarf += sz;
4176 }
4177 else
4178 {
4179 /* Align the new address to the current section
4180 alignment. */
4181 last_vma = ((last_vma
4182 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4183 & (-((bfd_vma) 1 << sect->alignment_power)));
4184 sect->vma = last_vma;
4185 last_vma += sz;
4186 }
4187
4188 p->section = sect;
4189 p->adj_vma = sect->vma;
4190 p++;
4191 }
4192 if (abfd == stash->f.bfd_ptr)
4193 break;
4194 abfd = stash->f.bfd_ptr;
4195 }
4196 }
4197
4198 if (orig_bfd != stash->f.bfd_ptr)
4199 set_debug_vma (orig_bfd, stash->f.bfd_ptr);
4200
4201 return TRUE;
4202 }
4203
4204 /* Look up a funcinfo by name using the given info hash table. If found,
4205 also update the locations pointed to by filename_ptr and linenumber_ptr.
4206
4207 This function returns TRUE if a funcinfo that matches the given symbol
4208 and address is found with any error; otherwise it returns FALSE. */
4209
4210 static bfd_boolean
4211 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4212 asymbol *sym,
4213 bfd_vma addr,
4214 const char **filename_ptr,
4215 unsigned int *linenumber_ptr)
4216 {
4217 struct funcinfo* each_func;
4218 struct funcinfo* best_fit = NULL;
4219 bfd_vma best_fit_len = 0;
4220 struct info_list_node *node;
4221 struct arange *arange;
4222 const char *name = bfd_asymbol_name (sym);
4223 asection *sec = bfd_asymbol_section (sym);
4224
4225 for (node = lookup_info_hash_table (hash_table, name);
4226 node;
4227 node = node->next)
4228 {
4229 each_func = (struct funcinfo *) node->info;
4230 for (arange = &each_func->arange;
4231 arange;
4232 arange = arange->next)
4233 {
4234 if ((!each_func->sec || each_func->sec == sec)
4235 && addr >= arange->low
4236 && addr < arange->high
4237 && (!best_fit
4238 || arange->high - arange->low < best_fit_len))
4239 {
4240 best_fit = each_func;
4241 best_fit_len = arange->high - arange->low;
4242 }
4243 }
4244 }
4245
4246 if (best_fit)
4247 {
4248 best_fit->sec = sec;
4249 *filename_ptr = best_fit->file;
4250 *linenumber_ptr = best_fit->line;
4251 return TRUE;
4252 }
4253
4254 return FALSE;
4255 }
4256
4257 /* Look up a varinfo by name using the given info hash table. If found,
4258 also update the locations pointed to by filename_ptr and linenumber_ptr.
4259
4260 This function returns TRUE if a varinfo that matches the given symbol
4261 and address is found with any error; otherwise it returns FALSE. */
4262
4263 static bfd_boolean
4264 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4265 asymbol *sym,
4266 bfd_vma addr,
4267 const char **filename_ptr,
4268 unsigned int *linenumber_ptr)
4269 {
4270 const char *name = bfd_asymbol_name (sym);
4271 asection *sec = bfd_asymbol_section (sym);
4272 struct varinfo* each;
4273 struct info_list_node *node;
4274
4275 for (node = lookup_info_hash_table (hash_table, name);
4276 node;
4277 node = node->next)
4278 {
4279 each = (struct varinfo *) node->info;
4280 if (each->addr == addr
4281 && (!each->sec || each->sec == sec))
4282 {
4283 each->sec = sec;
4284 *filename_ptr = each->file;
4285 *linenumber_ptr = each->line;
4286 return TRUE;
4287 }
4288 }
4289
4290 return FALSE;
4291 }
4292
4293 /* Update the funcinfo and varinfo info hash tables if they are
4294 not up to date. Returns TRUE if there is no error; otherwise
4295 returns FALSE and disable the info hash tables. */
4296
4297 static bfd_boolean
4298 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4299 {
4300 struct comp_unit *each;
4301
4302 /* Exit if hash tables are up-to-date. */
4303 if (stash->f.all_comp_units == stash->hash_units_head)
4304 return TRUE;
4305
4306 if (stash->hash_units_head)
4307 each = stash->hash_units_head->prev_unit;
4308 else
4309 each = stash->f.last_comp_unit;
4310
4311 while (each)
4312 {
4313 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4314 stash->varinfo_hash_table))
4315 {
4316 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4317 return FALSE;
4318 }
4319 each = each->prev_unit;
4320 }
4321
4322 stash->hash_units_head = stash->f.all_comp_units;
4323 return TRUE;
4324 }
4325
4326 /* Check consistency of info hash tables. This is for debugging only. */
4327
4328 static void ATTRIBUTE_UNUSED
4329 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4330 {
4331 struct comp_unit *each_unit;
4332 struct funcinfo *each_func;
4333 struct varinfo *each_var;
4334 struct info_list_node *node;
4335 bfd_boolean found;
4336
4337 for (each_unit = stash->f.all_comp_units;
4338 each_unit;
4339 each_unit = each_unit->next_unit)
4340 {
4341 for (each_func = each_unit->function_table;
4342 each_func;
4343 each_func = each_func->prev_func)
4344 {
4345 if (!each_func->name)
4346 continue;
4347 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4348 each_func->name);
4349 BFD_ASSERT (node);
4350 found = FALSE;
4351 while (node && !found)
4352 {
4353 found = node->info == each_func;
4354 node = node->next;
4355 }
4356 BFD_ASSERT (found);
4357 }
4358
4359 for (each_var = each_unit->variable_table;
4360 each_var;
4361 each_var = each_var->prev_var)
4362 {
4363 if (!each_var->name || !each_var->file || each_var->stack)
4364 continue;
4365 node = lookup_info_hash_table (stash->varinfo_hash_table,
4366 each_var->name);
4367 BFD_ASSERT (node);
4368 found = FALSE;
4369 while (node && !found)
4370 {
4371 found = node->info == each_var;
4372 node = node->next;
4373 }
4374 BFD_ASSERT (found);
4375 }
4376 }
4377 }
4378
4379 /* Check to see if we want to enable the info hash tables, which consume
4380 quite a bit of memory. Currently we only check the number times
4381 bfd_dwarf2_find_line is called. In the future, we may also want to
4382 take the number of symbols into account. */
4383
4384 static void
4385 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4386 {
4387 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4388
4389 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4390 return;
4391
4392 /* FIXME: Maybe we should check the reduce_memory_overheads
4393 and optimize fields in the bfd_link_info structure ? */
4394
4395 /* Create hash tables. */
4396 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4397 stash->varinfo_hash_table = create_info_hash_table (abfd);
4398 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4399 {
4400 /* Turn off info hashes if any allocation above fails. */
4401 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4402 return;
4403 }
4404 /* We need a forced update so that the info hash tables will
4405 be created even though there is no compilation unit. That
4406 happens if STASH_INFO_HASH_TRIGGER is 0. */
4407 if (stash_maybe_update_info_hash_tables (stash))
4408 stash->info_hash_status = STASH_INFO_HASH_ON;
4409 }
4410
4411 /* Find the file and line associated with a symbol and address using the
4412 info hash tables of a stash. If there is a match, the function returns
4413 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4414 otherwise it returns FALSE. */
4415
4416 static bfd_boolean
4417 stash_find_line_fast (struct dwarf2_debug *stash,
4418 asymbol *sym,
4419 bfd_vma addr,
4420 const char **filename_ptr,
4421 unsigned int *linenumber_ptr)
4422 {
4423 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4424
4425 if (sym->flags & BSF_FUNCTION)
4426 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4427 filename_ptr, linenumber_ptr);
4428 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4429 filename_ptr, linenumber_ptr);
4430 }
4431
4432 /* Save current section VMAs. */
4433
4434 static bfd_boolean
4435 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4436 {
4437 asection *s;
4438 unsigned int i;
4439
4440 if (abfd->section_count == 0)
4441 return TRUE;
4442 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4443 if (stash->sec_vma == NULL)
4444 return FALSE;
4445 stash->sec_vma_count = abfd->section_count;
4446 for (i = 0, s = abfd->sections;
4447 s != NULL && i < abfd->section_count;
4448 i++, s = s->next)
4449 {
4450 if (s->output_section != NULL)
4451 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4452 else
4453 stash->sec_vma[i] = s->vma;
4454 }
4455 return TRUE;
4456 }
4457
4458 /* Compare current section VMAs against those at the time the stash
4459 was created. If find_nearest_line is used in linker warnings or
4460 errors early in the link process, the debug info stash will be
4461 invalid for later calls. This is because we relocate debug info
4462 sections, so the stashed section contents depend on symbol values,
4463 which in turn depend on section VMAs. */
4464
4465 static bfd_boolean
4466 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4467 {
4468 asection *s;
4469 unsigned int i;
4470
4471 /* PR 24334: If the number of sections in ABFD has changed between
4472 when the stash was created and now, then we cannot trust the
4473 stashed vma information. */
4474 if (abfd->section_count != stash->sec_vma_count)
4475 return FALSE;
4476
4477 for (i = 0, s = abfd->sections;
4478 s != NULL && i < abfd->section_count;
4479 i++, s = s->next)
4480 {
4481 bfd_vma vma;
4482
4483 if (s->output_section != NULL)
4484 vma = s->output_section->vma + s->output_offset;
4485 else
4486 vma = s->vma;
4487 if (vma != stash->sec_vma[i])
4488 return FALSE;
4489 }
4490 return TRUE;
4491 }
4492
4493 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4494 If DEBUG_BFD is not specified, we read debug information from ABFD
4495 or its gnu_debuglink. The results will be stored in PINFO.
4496 The function returns TRUE iff debug information is ready. */
4497
4498 bfd_boolean
4499 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4500 const struct dwarf_debug_section *debug_sections,
4501 asymbol **symbols,
4502 void **pinfo,
4503 bfd_boolean do_place)
4504 {
4505 size_t amt = sizeof (struct dwarf2_debug);
4506 bfd_size_type total_size;
4507 asection *msec;
4508 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4509
4510 if (stash != NULL)
4511 {
4512 if (stash->orig_bfd == abfd
4513 && section_vma_same (abfd, stash))
4514 {
4515 /* Check that we did previously find some debug information
4516 before attempting to make use of it. */
4517 if (stash->f.bfd_ptr != NULL)
4518 {
4519 if (do_place && !place_sections (abfd, stash))
4520 return FALSE;
4521 return TRUE;
4522 }
4523
4524 return FALSE;
4525 }
4526 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4527 memset (stash, 0, amt);
4528 }
4529 else
4530 {
4531 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4532 if (! stash)
4533 return FALSE;
4534 }
4535 stash->orig_bfd = abfd;
4536 stash->debug_sections = debug_sections;
4537 stash->f.syms = symbols;
4538 if (!save_section_vma (abfd, stash))
4539 return FALSE;
4540
4541 stash->f.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4542 del_abbrev, calloc, free);
4543 if (!stash->f.abbrev_offsets)
4544 return FALSE;
4545
4546 stash->alt.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4547 del_abbrev, calloc, free);
4548 if (!stash->alt.abbrev_offsets)
4549 return FALSE;
4550
4551 *pinfo = stash;
4552
4553 if (debug_bfd == NULL)
4554 debug_bfd = abfd;
4555
4556 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4557 if (msec == NULL && abfd == debug_bfd)
4558 {
4559 char * debug_filename;
4560
4561 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4562 if (debug_filename == NULL)
4563 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4564
4565 if (debug_filename == NULL)
4566 /* No dwarf2 info, and no gnu_debuglink to follow.
4567 Note that at this point the stash has been allocated, but
4568 contains zeros. This lets future calls to this function
4569 fail more quickly. */
4570 return FALSE;
4571
4572 debug_bfd = bfd_openr (debug_filename, NULL);
4573 free (debug_filename);
4574 if (debug_bfd == NULL)
4575 /* FIXME: Should we report our failure to follow the debuglink ? */
4576 return FALSE;
4577
4578 /* Set BFD_DECOMPRESS to decompress debug sections. */
4579 debug_bfd->flags |= BFD_DECOMPRESS;
4580 if (!bfd_check_format (debug_bfd, bfd_object)
4581 || (msec = find_debug_info (debug_bfd,
4582 debug_sections, NULL)) == NULL
4583 || !bfd_generic_link_read_symbols (debug_bfd))
4584 {
4585 bfd_close (debug_bfd);
4586 return FALSE;
4587 }
4588
4589 symbols = bfd_get_outsymbols (debug_bfd);
4590 stash->f.syms = symbols;
4591 stash->close_on_cleanup = TRUE;
4592 }
4593 stash->f.bfd_ptr = debug_bfd;
4594
4595 if (do_place
4596 && !place_sections (abfd, stash))
4597 return FALSE;
4598
4599 /* There can be more than one DWARF2 info section in a BFD these
4600 days. First handle the easy case when there's only one. If
4601 there's more than one, try case two: none of the sections is
4602 compressed. In that case, read them all in and produce one
4603 large stash. We do this in two passes - in the first pass we
4604 just accumulate the section sizes, and in the second pass we
4605 read in the section's contents. (The allows us to avoid
4606 reallocing the data as we add sections to the stash.) If
4607 some or all sections are compressed, then do things the slow
4608 way, with a bunch of reallocs. */
4609
4610 if (! find_debug_info (debug_bfd, debug_sections, msec))
4611 {
4612 /* Case 1: only one info section. */
4613 total_size = msec->size;
4614 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4615 symbols, 0,
4616 &stash->f.dwarf_info_buffer, &total_size))
4617 return FALSE;
4618 }
4619 else
4620 {
4621 /* Case 2: multiple sections. */
4622 for (total_size = 0;
4623 msec;
4624 msec = find_debug_info (debug_bfd, debug_sections, msec))
4625 {
4626 /* Catch PR25070 testcase overflowing size calculation here. */
4627 if (total_size + msec->size < total_size
4628 || total_size + msec->size < msec->size)
4629 {
4630 bfd_set_error (bfd_error_no_memory);
4631 return FALSE;
4632 }
4633 total_size += msec->size;
4634 }
4635
4636 stash->f.dwarf_info_buffer = (bfd_byte *) bfd_malloc (total_size);
4637 if (stash->f.dwarf_info_buffer == NULL)
4638 return FALSE;
4639
4640 total_size = 0;
4641 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4642 msec;
4643 msec = find_debug_info (debug_bfd, debug_sections, msec))
4644 {
4645 bfd_size_type size;
4646
4647 size = msec->size;
4648 if (size == 0)
4649 continue;
4650
4651 if (!(bfd_simple_get_relocated_section_contents
4652 (debug_bfd, msec, stash->f.dwarf_info_buffer + total_size,
4653 symbols)))
4654 return FALSE;
4655
4656 total_size += size;
4657 }
4658 }
4659
4660 stash->f.info_ptr = stash->f.dwarf_info_buffer;
4661 stash->f.dwarf_info_size = total_size;
4662 return TRUE;
4663 }
4664
4665 /* Parse the next DWARF2 compilation unit at FILE->INFO_PTR. */
4666
4667 static struct comp_unit *
4668 stash_comp_unit (struct dwarf2_debug *stash, struct dwarf2_debug_file *file)
4669 {
4670 bfd_size_type length;
4671 unsigned int offset_size;
4672 bfd_byte *info_ptr_unit = file->info_ptr;
4673 bfd_byte *info_ptr_end = file->dwarf_info_buffer + file->dwarf_info_size;
4674
4675 if (file->info_ptr >= info_ptr_end)
4676 return NULL;
4677
4678 length = read_4_bytes (file->bfd_ptr, file->info_ptr, info_ptr_end);
4679 /* A 0xffffff length is the DWARF3 way of indicating
4680 we use 64-bit offsets, instead of 32-bit offsets. */
4681 if (length == 0xffffffff)
4682 {
4683 offset_size = 8;
4684 length = read_8_bytes (file->bfd_ptr, file->info_ptr + 4,
4685 info_ptr_end);
4686 file->info_ptr += 12;
4687 }
4688 /* A zero length is the IRIX way of indicating 64-bit offsets,
4689 mostly because the 64-bit length will generally fit in 32
4690 bits, and the endianness helps. */
4691 else if (length == 0)
4692 {
4693 offset_size = 8;
4694 length = read_4_bytes (file->bfd_ptr, file->info_ptr + 4,
4695 info_ptr_end);
4696 file->info_ptr += 8;
4697 }
4698 /* In the absence of the hints above, we assume 32-bit DWARF2
4699 offsets even for targets with 64-bit addresses, because:
4700 a) most of the time these targets will not have generated
4701 more than 2Gb of debug info and so will not need 64-bit
4702 offsets,
4703 and
4704 b) if they do use 64-bit offsets but they are not using
4705 the size hints that are tested for above then they are
4706 not conforming to the DWARF3 standard anyway. */
4707 else
4708 {
4709 offset_size = 4;
4710 file->info_ptr += 4;
4711 }
4712
4713 if (length != 0
4714 && file->info_ptr + length <= info_ptr_end
4715 && file->info_ptr + length > file->info_ptr)
4716 {
4717 struct comp_unit *each = parse_comp_unit (stash, file,
4718 file->info_ptr, length,
4719 info_ptr_unit, offset_size);
4720 if (each)
4721 {
4722 if (file->all_comp_units)
4723 file->all_comp_units->prev_unit = each;
4724 else
4725 file->last_comp_unit = each;
4726
4727 each->next_unit = file->all_comp_units;
4728 file->all_comp_units = each;
4729
4730 file->info_ptr += length;
4731 return each;
4732 }
4733 }
4734
4735 /* Don't trust any of the DWARF info after a corrupted length or
4736 parse error. */
4737 file->info_ptr = info_ptr_end;
4738 return NULL;
4739 }
4740
4741 /* Hash function for an asymbol. */
4742
4743 static hashval_t
4744 hash_asymbol (const void *sym)
4745 {
4746 const asymbol *asym = sym;
4747 return htab_hash_string (asym->name);
4748 }
4749
4750 /* Equality function for asymbols. */
4751
4752 static int
4753 eq_asymbol (const void *a, const void *b)
4754 {
4755 const asymbol *sa = a;
4756 const asymbol *sb = b;
4757 return strcmp (sa->name, sb->name) == 0;
4758 }
4759
4760 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4761 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4762 symbol in SYMBOLS and return the difference between the low_pc and
4763 the symbol's address. Returns 0 if no suitable symbol could be found. */
4764
4765 bfd_signed_vma
4766 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4767 {
4768 struct dwarf2_debug *stash;
4769 struct comp_unit * unit;
4770 htab_t sym_hash;
4771 bfd_signed_vma result = 0;
4772 asymbol ** psym;
4773
4774 stash = (struct dwarf2_debug *) *pinfo;
4775
4776 if (stash == NULL || symbols == NULL)
4777 return 0;
4778
4779 sym_hash = htab_create_alloc (10, hash_asymbol, eq_asymbol,
4780 NULL, xcalloc, free);
4781 for (psym = symbols; * psym != NULL; psym++)
4782 {
4783 asymbol * sym = * psym;
4784
4785 if (sym->flags & BSF_FUNCTION && sym->section != NULL)
4786 {
4787 void **slot = htab_find_slot (sym_hash, sym, INSERT);
4788 *slot = sym;
4789 }
4790 }
4791
4792 for (unit = stash->f.all_comp_units; unit; unit = unit->next_unit)
4793 {
4794 struct funcinfo * func;
4795
4796 comp_unit_maybe_decode_line_info (unit);
4797
4798 for (func = unit->function_table; func != NULL; func = func->prev_func)
4799 if (func->name && func->arange.low)
4800 {
4801 asymbol search, *sym;
4802
4803 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4804
4805 search.name = func->name;
4806 sym = htab_find (sym_hash, &search);
4807 if (sym != NULL)
4808 {
4809 result = ((bfd_signed_vma) func->arange.low) -
4810 ((bfd_signed_vma) (sym->value + sym->section->vma));
4811 goto done;
4812 }
4813 }
4814 }
4815
4816 done:
4817 htab_delete (sym_hash);
4818 return result;
4819 }
4820
4821 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4822 then find the nearest source code location corresponding to
4823 the address SECTION + OFFSET.
4824 Returns 1 if the line is found without error and fills in
4825 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4826 NULL the FUNCTIONNAME_PTR is also filled in.
4827 Returns 2 if partial information from _bfd_elf_find_function is
4828 returned (function and maybe file) by looking at symbols. DWARF2
4829 info is present but not regarding the requested code location.
4830 Returns 0 otherwise.
4831 SYMBOLS contains the symbol table for ABFD.
4832 DEBUG_SECTIONS contains the name of the dwarf debug sections. */
4833
4834 int
4835 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4836 asymbol **symbols,
4837 asymbol *symbol,
4838 asection *section,
4839 bfd_vma offset,
4840 const char **filename_ptr,
4841 const char **functionname_ptr,
4842 unsigned int *linenumber_ptr,
4843 unsigned int *discriminator_ptr,
4844 const struct dwarf_debug_section *debug_sections,
4845 void **pinfo)
4846 {
4847 /* Read each compilation unit from the section .debug_info, and check
4848 to see if it contains the address we are searching for. If yes,
4849 lookup the address, and return the line number info. If no, go
4850 on to the next compilation unit.
4851
4852 We keep a list of all the previously read compilation units, and
4853 a pointer to the next un-read compilation unit. Check the
4854 previously read units before reading more. */
4855 struct dwarf2_debug *stash;
4856 /* What address are we looking for? */
4857 bfd_vma addr;
4858 struct comp_unit* each;
4859 struct funcinfo *function = NULL;
4860 int found = FALSE;
4861 bfd_boolean do_line;
4862
4863 *filename_ptr = NULL;
4864 if (functionname_ptr != NULL)
4865 *functionname_ptr = NULL;
4866 *linenumber_ptr = 0;
4867 if (discriminator_ptr)
4868 *discriminator_ptr = 0;
4869
4870 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4871 symbols, pinfo,
4872 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4873 return FALSE;
4874
4875 stash = (struct dwarf2_debug *) *pinfo;
4876
4877 do_line = symbol != NULL;
4878 if (do_line)
4879 {
4880 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4881 section = bfd_asymbol_section (symbol);
4882 addr = symbol->value;
4883 }
4884 else
4885 {
4886 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4887 addr = offset;
4888
4889 /* If we have no SYMBOL but the section we're looking at is not a
4890 code section, then take a look through the list of symbols to see
4891 if we have a symbol at the address we're looking for. If we do
4892 then use this to look up line information. This will allow us to
4893 give file and line results for data symbols. We exclude code
4894 symbols here, if we look up a function symbol and then look up the
4895 line information we'll actually return the line number for the
4896 opening '{' rather than the function definition line. This is
4897 because looking up by symbol uses the line table, in which the
4898 first line for a function is usually the opening '{', while
4899 looking up the function by section + offset uses the
4900 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4901 which will be the line of the function name. */
4902 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4903 {
4904 asymbol **tmp;
4905
4906 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4907 if ((*tmp)->the_bfd == abfd
4908 && (*tmp)->section == section
4909 && (*tmp)->value == offset
4910 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4911 {
4912 symbol = *tmp;
4913 do_line = TRUE;
4914 /* For local symbols, keep going in the hope we find a
4915 global. */
4916 if ((symbol->flags & BSF_GLOBAL) != 0)
4917 break;
4918 }
4919 }
4920 }
4921
4922 if (section->output_section)
4923 addr += section->output_section->vma + section->output_offset;
4924 else
4925 addr += section->vma;
4926
4927 /* A null info_ptr indicates that there is no dwarf2 info
4928 (or that an error occured while setting up the stash). */
4929 if (! stash->f.info_ptr)
4930 return FALSE;
4931
4932 stash->inliner_chain = NULL;
4933
4934 /* Check the previously read comp. units first. */
4935 if (do_line)
4936 {
4937 /* The info hash tables use quite a bit of memory. We may not want to
4938 always use them. We use some heuristics to decide if and when to
4939 turn it on. */
4940 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4941 stash_maybe_enable_info_hash_tables (abfd, stash);
4942
4943 /* Keep info hash table up to date if they are available. Note that we
4944 may disable the hash tables if there is any error duing update. */
4945 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4946 stash_maybe_update_info_hash_tables (stash);
4947
4948 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4949 {
4950 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4951 linenumber_ptr);
4952 if (found)
4953 goto done;
4954 }
4955 else
4956 {
4957 /* Check the previously read comp. units first. */
4958 for (each = stash->f.all_comp_units; each; each = each->next_unit)
4959 if ((symbol->flags & BSF_FUNCTION) == 0
4960 || each->arange.high == 0
4961 || comp_unit_contains_address (each, addr))
4962 {
4963 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4964 linenumber_ptr);
4965 if (found)
4966 goto done;
4967 }
4968 }
4969 }
4970 else
4971 {
4972 bfd_vma min_range = (bfd_vma) -1;
4973 const char * local_filename = NULL;
4974 struct funcinfo *local_function = NULL;
4975 unsigned int local_linenumber = 0;
4976 unsigned int local_discriminator = 0;
4977
4978 for (each = stash->f.all_comp_units; each; each = each->next_unit)
4979 {
4980 bfd_vma range = (bfd_vma) -1;
4981
4982 found = ((each->arange.high == 0
4983 || comp_unit_contains_address (each, addr))
4984 && (range = (comp_unit_find_nearest_line
4985 (each, addr, &local_filename,
4986 &local_function, &local_linenumber,
4987 &local_discriminator))) != 0);
4988 if (found)
4989 {
4990 /* PRs 15935 15994: Bogus debug information may have provided us
4991 with an erroneous match. We attempt to counter this by
4992 selecting the match that has the smallest address range
4993 associated with it. (We are assuming that corrupt debug info
4994 will tend to result in extra large address ranges rather than
4995 extra small ranges).
4996
4997 This does mean that we scan through all of the CUs associated
4998 with the bfd each time this function is called. But this does
4999 have the benefit of producing consistent results every time the
5000 function is called. */
5001 if (range <= min_range)
5002 {
5003 if (filename_ptr && local_filename)
5004 * filename_ptr = local_filename;
5005 if (local_function)
5006 function = local_function;
5007 if (discriminator_ptr && local_discriminator)
5008 * discriminator_ptr = local_discriminator;
5009 if (local_linenumber)
5010 * linenumber_ptr = local_linenumber;
5011 min_range = range;
5012 }
5013 }
5014 }
5015
5016 if (* linenumber_ptr)
5017 {
5018 found = TRUE;
5019 goto done;
5020 }
5021 }
5022
5023 /* Read each remaining comp. units checking each as they are read. */
5024 while ((each = stash_comp_unit (stash, &stash->f)) != NULL)
5025 {
5026 /* DW_AT_low_pc and DW_AT_high_pc are optional for
5027 compilation units. If we don't have them (i.e.,
5028 unit->high == 0), we need to consult the line info table
5029 to see if a compilation unit contains the given
5030 address. */
5031 if (do_line)
5032 found = (((symbol->flags & BSF_FUNCTION) == 0
5033 || each->arange.high == 0
5034 || comp_unit_contains_address (each, addr))
5035 && comp_unit_find_line (each, symbol, addr,
5036 filename_ptr, linenumber_ptr));
5037 else
5038 found = ((each->arange.high == 0
5039 || comp_unit_contains_address (each, addr))
5040 && comp_unit_find_nearest_line (each, addr,
5041 filename_ptr,
5042 &function,
5043 linenumber_ptr,
5044 discriminator_ptr) != 0);
5045
5046 if (found)
5047 break;
5048 }
5049
5050 done:
5051 if (functionname_ptr && function && function->is_linkage)
5052 *functionname_ptr = function->name;
5053 else if (functionname_ptr
5054 && (!*functionname_ptr
5055 || (function && !function->is_linkage)))
5056 {
5057 asymbol *fun;
5058 asymbol **syms = symbols;
5059 asection *sec = section;
5060
5061 _bfd_dwarf2_stash_syms (stash, abfd, &sec, &syms);
5062 fun = _bfd_elf_find_function (abfd, syms, sec, offset,
5063 *filename_ptr ? NULL : filename_ptr,
5064 functionname_ptr);
5065
5066 if (!found && fun != NULL)
5067 found = 2;
5068
5069 if (function && !function->is_linkage)
5070 {
5071 bfd_vma sec_vma;
5072
5073 sec_vma = section->vma;
5074 if (section->output_section != NULL)
5075 sec_vma = section->output_section->vma + section->output_offset;
5076 if (fun != NULL
5077 && fun->value + sec_vma == function->arange.low)
5078 function->name = *functionname_ptr;
5079 /* Even if we didn't find a linkage name, say that we have
5080 to stop a repeated search of symbols. */
5081 function->is_linkage = TRUE;
5082 }
5083 }
5084
5085 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
5086 unset_sections (stash);
5087
5088 return found;
5089 }
5090
5091 bfd_boolean
5092 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
5093 const char **filename_ptr,
5094 const char **functionname_ptr,
5095 unsigned int *linenumber_ptr,
5096 void **pinfo)
5097 {
5098 struct dwarf2_debug *stash;
5099
5100 stash = (struct dwarf2_debug *) *pinfo;
5101 if (stash)
5102 {
5103 struct funcinfo *func = stash->inliner_chain;
5104
5105 if (func && func->caller_func)
5106 {
5107 *filename_ptr = func->caller_file;
5108 *functionname_ptr = func->caller_func->name;
5109 *linenumber_ptr = func->caller_line;
5110 stash->inliner_chain = func->caller_func;
5111 return TRUE;
5112 }
5113 }
5114
5115 return FALSE;
5116 }
5117
5118 void
5119 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
5120 {
5121 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
5122 struct comp_unit *each;
5123 struct dwarf2_debug_file *file;
5124
5125 if (abfd == NULL || stash == NULL)
5126 return;
5127
5128 if (stash->varinfo_hash_table)
5129 bfd_hash_table_free (&stash->varinfo_hash_table->base);
5130 if (stash->funcinfo_hash_table)
5131 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
5132
5133 file = &stash->f;
5134 while (1)
5135 {
5136 for (each = file->all_comp_units; each; each = each->next_unit)
5137 {
5138 struct funcinfo *function_table = each->function_table;
5139 struct varinfo *variable_table = each->variable_table;
5140
5141 if (each->line_table && each->line_table != file->line_table)
5142 {
5143 free (each->line_table->files);
5144 free (each->line_table->dirs);
5145 }
5146
5147 if (each->lookup_funcinfo_table)
5148 {
5149 free (each->lookup_funcinfo_table);
5150 each->lookup_funcinfo_table = NULL;
5151 }
5152
5153 while (function_table)
5154 {
5155 if (function_table->file)
5156 {
5157 free (function_table->file);
5158 function_table->file = NULL;
5159 }
5160 if (function_table->caller_file)
5161 {
5162 free (function_table->caller_file);
5163 function_table->caller_file = NULL;
5164 }
5165 function_table = function_table->prev_func;
5166 }
5167
5168 while (variable_table)
5169 {
5170 if (variable_table->file)
5171 {
5172 free (variable_table->file);
5173 variable_table->file = NULL;
5174 }
5175 variable_table = variable_table->prev_var;
5176 }
5177 }
5178
5179 if (file->line_table)
5180 {
5181 free (file->line_table->files);
5182 free (file->line_table->dirs);
5183 }
5184 htab_delete (file->abbrev_offsets);
5185
5186 free (file->dwarf_line_str_buffer);
5187 free (file->dwarf_str_buffer);
5188 free (file->dwarf_ranges_buffer);
5189 free (file->dwarf_line_buffer);
5190 free (file->dwarf_abbrev_buffer);
5191 free (file->dwarf_info_buffer);
5192 if (file == &stash->alt)
5193 break;
5194 file = &stash->alt;
5195 }
5196 free (stash->sec_vma);
5197 free (stash->adjusted_sections);
5198 if (stash->close_on_cleanup)
5199 bfd_close (stash->f.bfd_ptr);
5200 if (stash->alt.bfd_ptr)
5201 bfd_close (stash->alt.bfd_ptr);
5202 }
5203
5204 /* Find the function to a particular section and offset,
5205 for error reporting. */
5206
5207 asymbol *
5208 _bfd_elf_find_function (bfd *abfd,
5209 asymbol **symbols,
5210 asection *section,
5211 bfd_vma offset,
5212 const char **filename_ptr,
5213 const char **functionname_ptr)
5214 {
5215 struct elf_find_function_cache
5216 {
5217 asection *last_section;
5218 asymbol *func;
5219 const char *filename;
5220 bfd_size_type func_size;
5221 } *cache;
5222
5223 if (symbols == NULL)
5224 return NULL;
5225
5226 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5227 return NULL;
5228
5229 cache = elf_tdata (abfd)->elf_find_function_cache;
5230 if (cache == NULL)
5231 {
5232 cache = bfd_zalloc (abfd, sizeof (*cache));
5233 elf_tdata (abfd)->elf_find_function_cache = cache;
5234 if (cache == NULL)
5235 return NULL;
5236 }
5237 if (cache->last_section != section
5238 || cache->func == NULL
5239 || offset < cache->func->value
5240 || offset >= cache->func->value + cache->func_size)
5241 {
5242 asymbol *file;
5243 bfd_vma low_func;
5244 asymbol **p;
5245 /* ??? Given multiple file symbols, it is impossible to reliably
5246 choose the right file name for global symbols. File symbols are
5247 local symbols, and thus all file symbols must sort before any
5248 global symbols. The ELF spec may be interpreted to say that a
5249 file symbol must sort before other local symbols, but currently
5250 ld -r doesn't do this. So, for ld -r output, it is possible to
5251 make a better choice of file name for local symbols by ignoring
5252 file symbols appearing after a given local symbol. */
5253 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5255
5256 file = NULL;
5257 low_func = 0;
5258 state = nothing_seen;
5259 cache->filename = NULL;
5260 cache->func = NULL;
5261 cache->func_size = 0;
5262 cache->last_section = section;
5263
5264 for (p = symbols; *p != NULL; p++)
5265 {
5266 asymbol *sym = *p;
5267 bfd_vma code_off;
5268 bfd_size_type size;
5269
5270 if ((sym->flags & BSF_FILE) != 0)
5271 {
5272 file = sym;
5273 if (state == symbol_seen)
5274 state = file_after_symbol_seen;
5275 continue;
5276 }
5277
5278 size = bed->maybe_function_sym (sym, section, &code_off);
5279 if (size != 0
5280 && code_off <= offset
5281 && (code_off > low_func
5282 || (code_off == low_func
5283 && size > cache->func_size)))
5284 {
5285 cache->func = sym;
5286 cache->func_size = size;
5287 cache->filename = NULL;
5288 low_func = code_off;
5289 if (file != NULL
5290 && ((sym->flags & BSF_LOCAL) != 0
5291 || state != file_after_symbol_seen))
5292 cache->filename = bfd_asymbol_name (file);
5293 }
5294 if (state == nothing_seen)
5295 state = symbol_seen;
5296 }
5297 }
5298
5299 if (cache->func == NULL)
5300 return NULL;
5301
5302 if (filename_ptr)
5303 *filename_ptr = cache->filename;
5304 if (functionname_ptr)
5305 *functionname_ptr = bfd_asymbol_name (cache->func);
5306
5307 return cache->func;
5308 }
This page took 0.147486 seconds and 5 git commands to generate.