This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Written by Jakub Jelinek <jakub@redhat.com>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/dwarf2.h"
26
27 #define EH_FRAME_HDR_SIZE 8
28
29 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
30 move onto the next byte. Return true on success. */
31
32 static inline bfd_boolean
33 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
34 {
35 if (*iter >= end)
36 return FALSE;
37 *result = *((*iter)++);
38 return TRUE;
39 }
40
41 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
42 Return true it was possible to move LENGTH bytes. */
43
44 static inline bfd_boolean
45 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
46 {
47 if ((bfd_size_type) (end - *iter) < length)
48 {
49 *iter = end;
50 return FALSE;
51 }
52 *iter += length;
53 return TRUE;
54 }
55
56 /* Move *ITER over an leb128, stopping at END. Return true if the end
57 of the leb128 was found. */
58
59 static bfd_boolean
60 skip_leb128 (bfd_byte **iter, bfd_byte *end)
61 {
62 unsigned char byte;
63 do
64 if (!read_byte (iter, end, &byte))
65 return FALSE;
66 while (byte & 0x80);
67 return TRUE;
68 }
69
70 /* Like skip_leb128, but treat the leb128 as an unsigned value and
71 store it in *VALUE. */
72
73 static bfd_boolean
74 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
75 {
76 bfd_byte *start, *p;
77
78 start = *iter;
79 if (!skip_leb128 (iter, end))
80 return FALSE;
81
82 p = *iter;
83 *value = *--p;
84 while (p > start)
85 *value = (*value << 7) | (*--p & 0x7f);
86
87 return TRUE;
88 }
89
90 /* Like read_uleb128, but for signed values. */
91
92 static bfd_boolean
93 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
94 {
95 bfd_byte *start, *p;
96
97 start = *iter;
98 if (!skip_leb128 (iter, end))
99 return FALSE;
100
101 p = *iter;
102 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
103 while (p > start)
104 *value = (*value << 7) | (*--p & 0x7f);
105
106 return TRUE;
107 }
108
109 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
110
111 static
112 int get_DW_EH_PE_width (int encoding, int ptr_size)
113 {
114 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
115 was added to bfd. */
116 if ((encoding & 0x60) == 0x60)
117 return 0;
118
119 switch (encoding & 7)
120 {
121 case DW_EH_PE_udata2: return 2;
122 case DW_EH_PE_udata4: return 4;
123 case DW_EH_PE_udata8: return 8;
124 case DW_EH_PE_absptr: return ptr_size;
125 default:
126 break;
127 }
128
129 return 0;
130 }
131
132 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
133
134 /* Read a width sized value from memory. */
135
136 static bfd_vma
137 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
138 {
139 bfd_vma value;
140
141 switch (width)
142 {
143 case 2:
144 if (is_signed)
145 value = bfd_get_signed_16 (abfd, buf);
146 else
147 value = bfd_get_16 (abfd, buf);
148 break;
149 case 4:
150 if (is_signed)
151 value = bfd_get_signed_32 (abfd, buf);
152 else
153 value = bfd_get_32 (abfd, buf);
154 break;
155 case 8:
156 if (is_signed)
157 value = bfd_get_signed_64 (abfd, buf);
158 else
159 value = bfd_get_64 (abfd, buf);
160 break;
161 default:
162 BFD_FAIL ();
163 return 0;
164 }
165
166 return value;
167 }
168
169 /* Store a width sized value to memory. */
170
171 static void
172 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
173 {
174 switch (width)
175 {
176 case 2: bfd_put_16 (abfd, value, buf); break;
177 case 4: bfd_put_32 (abfd, value, buf); break;
178 case 8: bfd_put_64 (abfd, value, buf); break;
179 default: BFD_FAIL ();
180 }
181 }
182
183 /* Return zero if C1 and C2 CIEs can be merged. */
184
185 static
186 int cie_compare (struct cie *c1, struct cie *c2)
187 {
188 if (c1->hdr.length == c2->hdr.length
189 && c1->version == c2->version
190 && strcmp (c1->augmentation, c2->augmentation) == 0
191 && strcmp (c1->augmentation, "eh") != 0
192 && c1->code_align == c2->code_align
193 && c1->data_align == c2->data_align
194 && c1->ra_column == c2->ra_column
195 && c1->augmentation_size == c2->augmentation_size
196 && c1->personality == c2->personality
197 && c1->per_encoding == c2->per_encoding
198 && c1->lsda_encoding == c2->lsda_encoding
199 && c1->fde_encoding == c2->fde_encoding
200 && c1->initial_insn_length == c2->initial_insn_length
201 && memcmp (c1->initial_instructions,
202 c2->initial_instructions,
203 c1->initial_insn_length) == 0)
204 return 0;
205
206 return 1;
207 }
208
209 /* Return the number of extra bytes that we'll be inserting into
210 ENTRY's augmentation string. */
211
212 static INLINE unsigned int
213 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
214 {
215 unsigned int size = 0;
216 if (entry->cie)
217 {
218 if (entry->add_augmentation_size)
219 size++;
220 if (entry->add_fde_encoding)
221 size++;
222 }
223 return size;
224 }
225
226 /* Likewise ENTRY's augmentation data. */
227
228 static INLINE unsigned int
229 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
230 {
231 unsigned int size = 0;
232 if (entry->cie)
233 {
234 if (entry->add_augmentation_size)
235 size++;
236 if (entry->add_fde_encoding)
237 size++;
238 }
239 else
240 {
241 if (entry->cie_inf->add_augmentation_size)
242 size++;
243 }
244 return size;
245 }
246
247 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
248 required alignment of ENTRY in bytes. */
249
250 static unsigned int
251 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
252 {
253 if (entry->removed)
254 return 0;
255 if (entry->size == 4)
256 return 4;
257 return (entry->size
258 + extra_augmentation_string_bytes (entry)
259 + extra_augmentation_data_bytes (entry)
260 + alignment - 1) & -alignment;
261 }
262
263 /* Assume that the bytes between *ITER and END are CFA instructions.
264 Try to move *ITER past the first instruction and return true on
265 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
266
267 static bfd_boolean
268 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
269 {
270 bfd_byte op;
271 bfd_vma length;
272
273 if (!read_byte (iter, end, &op))
274 return FALSE;
275
276 switch (op & 0x80 ? op & 0xc0 : op)
277 {
278 case DW_CFA_nop:
279 case DW_CFA_advance_loc:
280 case DW_CFA_restore:
281 /* No arguments. */
282 return TRUE;
283
284 case DW_CFA_offset:
285 case DW_CFA_restore_extended:
286 case DW_CFA_undefined:
287 case DW_CFA_same_value:
288 case DW_CFA_def_cfa_register:
289 case DW_CFA_def_cfa_offset:
290 case DW_CFA_def_cfa_offset_sf:
291 case DW_CFA_GNU_args_size:
292 /* One leb128 argument. */
293 return skip_leb128 (iter, end);
294
295 case DW_CFA_offset_extended:
296 case DW_CFA_register:
297 case DW_CFA_def_cfa:
298 case DW_CFA_offset_extended_sf:
299 case DW_CFA_GNU_negative_offset_extended:
300 case DW_CFA_def_cfa_sf:
301 /* Two leb128 arguments. */
302 return (skip_leb128 (iter, end)
303 && skip_leb128 (iter, end));
304
305 case DW_CFA_def_cfa_expression:
306 /* A variable-length argument. */
307 return (read_uleb128 (iter, end, &length)
308 && skip_bytes (iter, end, length));
309
310 case DW_CFA_expression:
311 /* A leb128 followed by a variable-length argument. */
312 return (skip_leb128 (iter, end)
313 && read_uleb128 (iter, end, &length)
314 && skip_bytes (iter, end, length));
315
316 case DW_CFA_set_loc:
317 return skip_bytes (iter, end, encoded_ptr_width);
318
319 case DW_CFA_advance_loc1:
320 return skip_bytes (iter, end, 1);
321
322 case DW_CFA_advance_loc2:
323 return skip_bytes (iter, end, 2);
324
325 case DW_CFA_advance_loc4:
326 return skip_bytes (iter, end, 4);
327
328 case DW_CFA_MIPS_advance_loc8:
329 return skip_bytes (iter, end, 8);
330
331 default:
332 return FALSE;
333 }
334 }
335
336 /* Try to interpret the bytes between BUF and END as CFA instructions.
337 If every byte makes sense, return a pointer to the first DW_CFA_nop
338 padding byte, or END if there is no padding. Return null otherwise.
339 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
340
341 static bfd_byte *
342 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width)
343 {
344 bfd_byte *last;
345
346 last = buf;
347 while (buf < end)
348 if (*buf == DW_CFA_nop)
349 buf++;
350 else
351 {
352 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
353 return 0;
354 last = buf;
355 }
356 return last;
357 }
358
359 /* This function is called for each input file before the .eh_frame
360 section is relocated. It discards duplicate CIEs and FDEs for discarded
361 functions. The function returns TRUE iff any entries have been
362 deleted. */
363
364 bfd_boolean
365 _bfd_elf_discard_section_eh_frame
366 (bfd *abfd, struct bfd_link_info *info, asection *sec,
367 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
368 struct elf_reloc_cookie *cookie)
369 {
370 #define REQUIRE(COND) \
371 do \
372 if (!(COND)) \
373 goto free_no_table; \
374 while (0)
375
376 bfd_byte *ehbuf = NULL, *buf;
377 bfd_byte *last_cie, *last_fde;
378 struct eh_cie_fde *ent, *last_cie_inf, *this_inf;
379 struct cie_header hdr;
380 struct cie cie;
381 struct elf_link_hash_table *htab;
382 struct eh_frame_hdr_info *hdr_info;
383 struct eh_frame_sec_info *sec_info = NULL;
384 unsigned int cie_usage_count, offset;
385 unsigned int ptr_size;
386
387 if (sec->size == 0)
388 {
389 /* This file does not contain .eh_frame information. */
390 return FALSE;
391 }
392
393 if ((sec->output_section != NULL
394 && bfd_is_abs_section (sec->output_section)))
395 {
396 /* At least one of the sections is being discarded from the
397 link, so we should just ignore them. */
398 return FALSE;
399 }
400
401 htab = elf_hash_table (info);
402 hdr_info = &htab->eh_info;
403
404 /* Read the frame unwind information from abfd. */
405
406 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
407
408 if (sec->size >= 4
409 && bfd_get_32 (abfd, ehbuf) == 0
410 && cookie->rel == cookie->relend)
411 {
412 /* Empty .eh_frame section. */
413 free (ehbuf);
414 return FALSE;
415 }
416
417 /* If .eh_frame section size doesn't fit into int, we cannot handle
418 it (it would need to use 64-bit .eh_frame format anyway). */
419 REQUIRE (sec->size == (unsigned int) sec->size);
420
421 ptr_size = (get_elf_backend_data (abfd)
422 ->elf_backend_eh_frame_address_size (abfd, sec));
423 REQUIRE (ptr_size != 0);
424
425 buf = ehbuf;
426 last_cie = NULL;
427 last_cie_inf = NULL;
428 memset (&cie, 0, sizeof (cie));
429 cie_usage_count = 0;
430 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
431 + 99 * sizeof (struct eh_cie_fde));
432 REQUIRE (sec_info);
433
434 sec_info->alloced = 100;
435
436 #define ENSURE_NO_RELOCS(buf) \
437 REQUIRE (!(cookie->rel < cookie->relend \
438 && (cookie->rel->r_offset \
439 < (bfd_size_type) ((buf) - ehbuf)) \
440 && cookie->rel->r_info != 0))
441
442 #define SKIP_RELOCS(buf) \
443 while (cookie->rel < cookie->relend \
444 && (cookie->rel->r_offset \
445 < (bfd_size_type) ((buf) - ehbuf))) \
446 cookie->rel++
447
448 #define GET_RELOC(buf) \
449 ((cookie->rel < cookie->relend \
450 && (cookie->rel->r_offset \
451 == (bfd_size_type) ((buf) - ehbuf))) \
452 ? cookie->rel : NULL)
453
454 for (;;)
455 {
456 char *aug;
457 bfd_byte *start, *end, *insns;
458 bfd_size_type length;
459
460 if (sec_info->count == sec_info->alloced)
461 {
462 struct eh_cie_fde *old_entry = sec_info->entry;
463 sec_info = bfd_realloc (sec_info,
464 sizeof (struct eh_frame_sec_info)
465 + ((sec_info->alloced + 99)
466 * sizeof (struct eh_cie_fde)));
467 REQUIRE (sec_info);
468
469 memset (&sec_info->entry[sec_info->alloced], 0,
470 100 * sizeof (struct eh_cie_fde));
471 sec_info->alloced += 100;
472
473 /* Now fix any pointers into the array. */
474 if (last_cie_inf >= old_entry
475 && last_cie_inf < old_entry + sec_info->count)
476 last_cie_inf = sec_info->entry + (last_cie_inf - old_entry);
477 }
478
479 this_inf = sec_info->entry + sec_info->count;
480 last_fde = buf;
481 /* If we are at the end of the section, we still need to decide
482 on whether to output or discard last encountered CIE (if any). */
483 if ((bfd_size_type) (buf - ehbuf) == sec->size)
484 {
485 hdr.length = 0;
486 hdr.id = (unsigned int) -1;
487 end = buf;
488 }
489 else
490 {
491 /* Read the length of the entry. */
492 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
493 hdr.length = bfd_get_32 (abfd, buf - 4);
494
495 /* 64-bit .eh_frame is not supported. */
496 REQUIRE (hdr.length != 0xffffffff);
497
498 /* The CIE/FDE must be fully contained in this input section. */
499 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr.length <= sec->size);
500 end = buf + hdr.length;
501
502 this_inf->offset = last_fde - ehbuf;
503 this_inf->size = 4 + hdr.length;
504
505 if (hdr.length == 0)
506 {
507 /* A zero-length CIE should only be found at the end of
508 the section. */
509 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
510 ENSURE_NO_RELOCS (buf);
511 sec_info->count++;
512 /* Now just finish last encountered CIE processing and break
513 the loop. */
514 hdr.id = (unsigned int) -1;
515 }
516 else
517 {
518 REQUIRE (skip_bytes (&buf, end, 4));
519 hdr.id = bfd_get_32 (abfd, buf - 4);
520 REQUIRE (hdr.id != (unsigned int) -1);
521 }
522 }
523
524 if (hdr.id == 0 || hdr.id == (unsigned int) -1)
525 {
526 unsigned int initial_insn_length;
527
528 /* CIE */
529 if (last_cie != NULL)
530 {
531 /* Now check if this CIE is identical to the last CIE,
532 in which case we can remove it provided we adjust
533 all FDEs. Also, it can be removed if we have removed
534 all FDEs using it. */
535 if ((!info->relocatable
536 && hdr_info->last_cie_sec
537 && (sec->output_section
538 == hdr_info->last_cie_sec->output_section)
539 && cie_compare (&cie, &hdr_info->last_cie) == 0)
540 || cie_usage_count == 0)
541 last_cie_inf->removed = 1;
542 else
543 {
544 hdr_info->last_cie = cie;
545 hdr_info->last_cie_sec = sec;
546 last_cie_inf->make_relative = cie.make_relative;
547 last_cie_inf->make_lsda_relative = cie.make_lsda_relative;
548 last_cie_inf->per_encoding_relative
549 = (cie.per_encoding & 0x70) == DW_EH_PE_pcrel;
550 }
551 }
552
553 if (hdr.id == (unsigned int) -1)
554 break;
555
556 last_cie_inf = this_inf;
557 this_inf->cie = 1;
558
559 cie_usage_count = 0;
560 memset (&cie, 0, sizeof (cie));
561 cie.hdr = hdr;
562 REQUIRE (read_byte (&buf, end, &cie.version));
563
564 /* Cannot handle unknown versions. */
565 REQUIRE (cie.version == 1 || cie.version == 3);
566 REQUIRE (strlen ((char *) buf) < sizeof (cie.augmentation));
567
568 strcpy (cie.augmentation, (char *) buf);
569 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
570 ENSURE_NO_RELOCS (buf);
571 if (buf[0] == 'e' && buf[1] == 'h')
572 {
573 /* GCC < 3.0 .eh_frame CIE */
574 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
575 is private to each CIE, so we don't need it for anything.
576 Just skip it. */
577 REQUIRE (skip_bytes (&buf, end, ptr_size));
578 SKIP_RELOCS (buf);
579 }
580 REQUIRE (read_uleb128 (&buf, end, &cie.code_align));
581 REQUIRE (read_sleb128 (&buf, end, &cie.data_align));
582 if (cie.version == 1)
583 {
584 REQUIRE (buf < end);
585 cie.ra_column = *buf++;
586 }
587 else
588 REQUIRE (read_uleb128 (&buf, end, &cie.ra_column));
589 ENSURE_NO_RELOCS (buf);
590 cie.lsda_encoding = DW_EH_PE_omit;
591 cie.fde_encoding = DW_EH_PE_omit;
592 cie.per_encoding = DW_EH_PE_omit;
593 aug = cie.augmentation;
594 if (aug[0] != 'e' || aug[1] != 'h')
595 {
596 if (*aug == 'z')
597 {
598 aug++;
599 REQUIRE (read_uleb128 (&buf, end, &cie.augmentation_size));
600 ENSURE_NO_RELOCS (buf);
601 }
602
603 while (*aug != '\0')
604 switch (*aug++)
605 {
606 case 'L':
607 REQUIRE (read_byte (&buf, end, &cie.lsda_encoding));
608 ENSURE_NO_RELOCS (buf);
609 REQUIRE (get_DW_EH_PE_width (cie.lsda_encoding, ptr_size));
610 break;
611 case 'R':
612 REQUIRE (read_byte (&buf, end, &cie.fde_encoding));
613 ENSURE_NO_RELOCS (buf);
614 REQUIRE (get_DW_EH_PE_width (cie.fde_encoding, ptr_size));
615 break;
616 case 'S':
617 break;
618 case 'P':
619 {
620 int per_width;
621
622 REQUIRE (read_byte (&buf, end, &cie.per_encoding));
623 per_width = get_DW_EH_PE_width (cie.per_encoding,
624 ptr_size);
625 REQUIRE (per_width);
626 if ((cie.per_encoding & 0xf0) == DW_EH_PE_aligned)
627 {
628 length = -(buf - ehbuf) & (per_width - 1);
629 REQUIRE (skip_bytes (&buf, end, length));
630 }
631 ENSURE_NO_RELOCS (buf);
632 /* Ensure we have a reloc here, against
633 a global symbol. */
634 if (GET_RELOC (buf) != NULL)
635 {
636 unsigned long r_symndx;
637
638 #ifdef BFD64
639 if (ptr_size == 8)
640 r_symndx = ELF64_R_SYM (cookie->rel->r_info);
641 else
642 #endif
643 r_symndx = ELF32_R_SYM (cookie->rel->r_info);
644 if (r_symndx >= cookie->locsymcount)
645 {
646 struct elf_link_hash_entry *h;
647
648 r_symndx -= cookie->extsymoff;
649 h = cookie->sym_hashes[r_symndx];
650
651 while (h->root.type == bfd_link_hash_indirect
652 || h->root.type == bfd_link_hash_warning)
653 h = (struct elf_link_hash_entry *)
654 h->root.u.i.link;
655
656 cie.personality = h;
657 }
658 /* Cope with MIPS-style composite relocations. */
659 do
660 cookie->rel++;
661 while (GET_RELOC (buf) != NULL);
662 }
663 REQUIRE (skip_bytes (&buf, end, per_width));
664 }
665 break;
666 default:
667 /* Unrecognized augmentation. Better bail out. */
668 goto free_no_table;
669 }
670 }
671
672 /* For shared libraries, try to get rid of as many RELATIVE relocs
673 as possible. */
674 if (info->shared
675 && (get_elf_backend_data (abfd)
676 ->elf_backend_can_make_relative_eh_frame
677 (abfd, info, sec)))
678 {
679 if ((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr)
680 cie.make_relative = 1;
681 /* If the CIE doesn't already have an 'R' entry, it's fairly
682 easy to add one, provided that there's no aligned data
683 after the augmentation string. */
684 else if (cie.fde_encoding == DW_EH_PE_omit
685 && (cie.per_encoding & 0xf0) != DW_EH_PE_aligned)
686 {
687 if (*cie.augmentation == 0)
688 this_inf->add_augmentation_size = 1;
689 this_inf->add_fde_encoding = 1;
690 cie.make_relative = 1;
691 }
692 }
693
694 if (info->shared
695 && (get_elf_backend_data (abfd)
696 ->elf_backend_can_make_lsda_relative_eh_frame
697 (abfd, info, sec))
698 && (cie.lsda_encoding & 0xf0) == DW_EH_PE_absptr)
699 cie.make_lsda_relative = 1;
700
701 /* If FDE encoding was not specified, it defaults to
702 DW_EH_absptr. */
703 if (cie.fde_encoding == DW_EH_PE_omit)
704 cie.fde_encoding = DW_EH_PE_absptr;
705
706 initial_insn_length = end - buf;
707 if (initial_insn_length <= 50)
708 {
709 cie.initial_insn_length = initial_insn_length;
710 memcpy (cie.initial_instructions, buf, initial_insn_length);
711 }
712 insns = buf;
713 buf += initial_insn_length;
714 ENSURE_NO_RELOCS (buf);
715 last_cie = last_fde;
716 }
717 else
718 {
719 /* Ensure this FDE uses the last CIE encountered. */
720 REQUIRE (last_cie);
721 REQUIRE (hdr.id == (unsigned int) (buf - 4 - last_cie));
722
723 ENSURE_NO_RELOCS (buf);
724 REQUIRE (GET_RELOC (buf));
725
726 if ((*reloc_symbol_deleted_p) (buf - ehbuf, cookie))
727 /* This is a FDE against a discarded section. It should
728 be deleted. */
729 this_inf->removed = 1;
730 else
731 {
732 if (info->shared
733 && (((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr
734 && cie.make_relative == 0)
735 || (cie.fde_encoding & 0xf0) == DW_EH_PE_aligned))
736 {
737 /* If a shared library uses absolute pointers
738 which we cannot turn into PC relative,
739 don't create the binary search table,
740 since it is affected by runtime relocations. */
741 hdr_info->table = FALSE;
742 }
743 cie_usage_count++;
744 hdr_info->fde_count++;
745 }
746 /* Skip the initial location and address range. */
747 start = buf;
748 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
749 REQUIRE (skip_bytes (&buf, end, 2 * length));
750
751 /* Skip the augmentation size, if present. */
752 if (cie.augmentation[0] == 'z')
753 REQUIRE (read_uleb128 (&buf, end, &length));
754 else
755 length = 0;
756
757 /* Of the supported augmentation characters above, only 'L'
758 adds augmentation data to the FDE. This code would need to
759 be adjusted if any future augmentations do the same thing. */
760 if (cie.lsda_encoding != DW_EH_PE_omit)
761 {
762 this_inf->lsda_offset = buf - start;
763 /* If there's no 'z' augmentation, we don't know where the
764 CFA insns begin. Assume no padding. */
765 if (cie.augmentation[0] != 'z')
766 length = end - buf;
767 }
768
769 /* Skip over the augmentation data. */
770 REQUIRE (skip_bytes (&buf, end, length));
771 insns = buf;
772
773 buf = last_fde + 4 + hdr.length;
774 SKIP_RELOCS (buf);
775 }
776
777 /* Try to interpret the CFA instructions and find the first
778 padding nop. Shrink this_inf's size so that it doesn't
779 including the padding. */
780 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
781 insns = skip_non_nops (insns, end, length);
782 if (insns != 0)
783 this_inf->size -= end - insns;
784
785 this_inf->fde_encoding = cie.fde_encoding;
786 this_inf->lsda_encoding = cie.lsda_encoding;
787 sec_info->count++;
788 }
789
790 elf_section_data (sec)->sec_info = sec_info;
791 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
792
793 /* Ok, now we can assign new offsets. */
794 offset = 0;
795 last_cie_inf = hdr_info->last_cie_inf;
796 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
797 if (!ent->removed)
798 {
799 if (ent->cie)
800 last_cie_inf = ent;
801 else
802 ent->cie_inf = last_cie_inf;
803 ent->new_offset = offset;
804 offset += size_of_output_cie_fde (ent, ptr_size);
805 }
806 hdr_info->last_cie_inf = last_cie_inf;
807
808 /* Resize the sec as needed. */
809 sec->rawsize = sec->size;
810 sec->size = offset;
811 if (sec->size == 0)
812 sec->flags |= SEC_EXCLUDE;
813
814 free (ehbuf);
815 return offset != sec->rawsize;
816
817 free_no_table:
818 if (ehbuf)
819 free (ehbuf);
820 if (sec_info)
821 free (sec_info);
822 hdr_info->table = FALSE;
823 hdr_info->last_cie.hdr.length = 0;
824 return FALSE;
825
826 #undef REQUIRE
827 }
828
829 /* This function is called for .eh_frame_hdr section after
830 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
831 input sections. It finalizes the size of .eh_frame_hdr section. */
832
833 bfd_boolean
834 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
835 {
836 struct elf_link_hash_table *htab;
837 struct eh_frame_hdr_info *hdr_info;
838 asection *sec;
839
840 htab = elf_hash_table (info);
841 hdr_info = &htab->eh_info;
842 sec = hdr_info->hdr_sec;
843 if (sec == NULL)
844 return FALSE;
845
846 sec->size = EH_FRAME_HDR_SIZE;
847 if (hdr_info->table)
848 sec->size += 4 + hdr_info->fde_count * 8;
849
850 /* Request program headers to be recalculated. */
851 elf_tdata (abfd)->program_header_size = 0;
852 elf_tdata (abfd)->eh_frame_hdr = sec;
853 return TRUE;
854 }
855
856 /* This function is called from size_dynamic_sections.
857 It needs to decide whether .eh_frame_hdr should be output or not,
858 because when the dynamic symbol table has been sized it is too late
859 to strip sections. */
860
861 bfd_boolean
862 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
863 {
864 asection *o;
865 bfd *abfd;
866 struct elf_link_hash_table *htab;
867 struct eh_frame_hdr_info *hdr_info;
868
869 htab = elf_hash_table (info);
870 hdr_info = &htab->eh_info;
871 if (hdr_info->hdr_sec == NULL)
872 return TRUE;
873
874 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
875 {
876 hdr_info->hdr_sec = NULL;
877 return TRUE;
878 }
879
880 abfd = NULL;
881 if (info->eh_frame_hdr)
882 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
883 {
884 /* Count only sections which have at least a single CIE or FDE.
885 There cannot be any CIE or FDE <= 8 bytes. */
886 o = bfd_get_section_by_name (abfd, ".eh_frame");
887 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
888 break;
889 }
890
891 if (abfd == NULL)
892 {
893 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
894 hdr_info->hdr_sec = NULL;
895 return TRUE;
896 }
897
898 hdr_info->table = TRUE;
899 return TRUE;
900 }
901
902 /* Adjust an address in the .eh_frame section. Given OFFSET within
903 SEC, this returns the new offset in the adjusted .eh_frame section,
904 or -1 if the address refers to a CIE/FDE which has been removed
905 or to offset with dynamic relocation which is no longer needed. */
906
907 bfd_vma
908 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
909 struct bfd_link_info *info,
910 asection *sec,
911 bfd_vma offset)
912 {
913 struct eh_frame_sec_info *sec_info;
914 struct elf_link_hash_table *htab;
915 struct eh_frame_hdr_info *hdr_info;
916 unsigned int lo, hi, mid;
917
918 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
919 return offset;
920 sec_info = elf_section_data (sec)->sec_info;
921
922 if (offset >= sec->rawsize)
923 return offset - sec->rawsize + sec->size;
924
925 htab = elf_hash_table (info);
926 hdr_info = &htab->eh_info;
927 if (hdr_info->offsets_adjusted)
928 offset += sec->output_offset;
929
930 lo = 0;
931 hi = sec_info->count;
932 mid = 0;
933 while (lo < hi)
934 {
935 mid = (lo + hi) / 2;
936 if (offset < sec_info->entry[mid].offset)
937 hi = mid;
938 else if (offset
939 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
940 lo = mid + 1;
941 else
942 break;
943 }
944
945 BFD_ASSERT (lo < hi);
946
947 /* FDE or CIE was removed. */
948 if (sec_info->entry[mid].removed)
949 return (bfd_vma) -1;
950
951 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
952 relocation against FDE's initial_location field. */
953 if (!sec_info->entry[mid].cie
954 && sec_info->entry[mid].cie_inf->make_relative
955 && offset == sec_info->entry[mid].offset + 8)
956 return (bfd_vma) -2;
957
958 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
959 for run-time relocation against LSDA field. */
960 if (!sec_info->entry[mid].cie
961 && sec_info->entry[mid].cie_inf->make_lsda_relative
962 && (offset == (sec_info->entry[mid].offset + 8
963 + sec_info->entry[mid].lsda_offset))
964 && (sec_info->entry[mid].cie_inf->need_lsda_relative
965 || !hdr_info->offsets_adjusted))
966 {
967 sec_info->entry[mid].cie_inf->need_lsda_relative = 1;
968 return (bfd_vma) -2;
969 }
970
971 if (hdr_info->offsets_adjusted)
972 offset -= sec->output_offset;
973 /* Any new augmentation bytes go before the first relocation. */
974 return (offset + sec_info->entry[mid].new_offset
975 - sec_info->entry[mid].offset
976 + extra_augmentation_string_bytes (sec_info->entry + mid)
977 + extra_augmentation_data_bytes (sec_info->entry + mid));
978 }
979
980 /* Write out .eh_frame section. This is called with the relocated
981 contents. */
982
983 bfd_boolean
984 _bfd_elf_write_section_eh_frame (bfd *abfd,
985 struct bfd_link_info *info,
986 asection *sec,
987 bfd_byte *contents)
988 {
989 struct eh_frame_sec_info *sec_info;
990 struct elf_link_hash_table *htab;
991 struct eh_frame_hdr_info *hdr_info;
992 unsigned int ptr_size;
993 struct eh_cie_fde *ent;
994
995 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
996 return bfd_set_section_contents (abfd, sec->output_section, contents,
997 sec->output_offset, sec->size);
998
999 ptr_size = (get_elf_backend_data (abfd)
1000 ->elf_backend_eh_frame_address_size (abfd, sec));
1001 BFD_ASSERT (ptr_size != 0);
1002
1003 sec_info = elf_section_data (sec)->sec_info;
1004 htab = elf_hash_table (info);
1005 hdr_info = &htab->eh_info;
1006
1007 /* First convert all offsets to output section offsets, so that a
1008 CIE offset is valid if the CIE is used by a FDE from some other
1009 section. This can happen when duplicate CIEs are deleted in
1010 _bfd_elf_discard_section_eh_frame. We do all sections here because
1011 this function might not be called on sections in the same order as
1012 _bfd_elf_discard_section_eh_frame. */
1013 if (!hdr_info->offsets_adjusted)
1014 {
1015 bfd *ibfd;
1016 asection *eh;
1017 struct eh_frame_sec_info *eh_inf;
1018
1019 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1020 {
1021 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1022 || (ibfd->flags & DYNAMIC) != 0)
1023 continue;
1024
1025 eh = bfd_get_section_by_name (ibfd, ".eh_frame");
1026 if (eh == NULL || eh->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1027 continue;
1028
1029 eh_inf = elf_section_data (eh)->sec_info;
1030 for (ent = eh_inf->entry; ent < eh_inf->entry + eh_inf->count; ++ent)
1031 {
1032 ent->offset += eh->output_offset;
1033 ent->new_offset += eh->output_offset;
1034 }
1035 }
1036 hdr_info->offsets_adjusted = TRUE;
1037 }
1038
1039 if (hdr_info->table && hdr_info->array == NULL)
1040 hdr_info->array
1041 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1042 if (hdr_info->array == NULL)
1043 hdr_info = NULL;
1044
1045 /* The new offsets can be bigger or smaller than the original offsets.
1046 We therefore need to make two passes over the section: one backward
1047 pass to move entries up and one forward pass to move entries down.
1048 The two passes won't interfere with each other because entries are
1049 not reordered */
1050 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1051 if (!ent->removed && ent->new_offset > ent->offset)
1052 memmove (contents + ent->new_offset - sec->output_offset,
1053 contents + ent->offset - sec->output_offset, ent->size);
1054
1055 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1056 if (!ent->removed && ent->new_offset < ent->offset)
1057 memmove (contents + ent->new_offset - sec->output_offset,
1058 contents + ent->offset - sec->output_offset, ent->size);
1059
1060 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1061 {
1062 unsigned char *buf, *end;
1063 unsigned int new_size;
1064
1065 if (ent->removed)
1066 continue;
1067
1068 if (ent->size == 4)
1069 {
1070 /* Any terminating FDE must be at the end of the section. */
1071 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1072 continue;
1073 }
1074
1075 buf = contents + ent->new_offset - sec->output_offset;
1076 end = buf + ent->size;
1077 new_size = size_of_output_cie_fde (ent, ptr_size);
1078
1079 /* Install the new size, filling the extra bytes with DW_CFA_nops. */
1080 if (new_size != ent->size)
1081 {
1082 memset (end, 0, new_size - ent->size);
1083 bfd_put_32 (abfd, new_size - 4, buf);
1084 }
1085
1086 if (ent->cie)
1087 {
1088 /* CIE */
1089 if (ent->make_relative
1090 || ent->need_lsda_relative
1091 || ent->per_encoding_relative)
1092 {
1093 char *aug;
1094 unsigned int action, extra_string, extra_data;
1095 unsigned int per_width, per_encoding;
1096
1097 /* Need to find 'R' or 'L' augmentation's argument and modify
1098 DW_EH_PE_* value. */
1099 action = ((ent->make_relative ? 1 : 0)
1100 | (ent->need_lsda_relative ? 2 : 0)
1101 | (ent->per_encoding_relative ? 4 : 0));
1102 extra_string = extra_augmentation_string_bytes (ent);
1103 extra_data = extra_augmentation_data_bytes (ent);
1104
1105 /* Skip length, id and version. */
1106 buf += 9;
1107 aug = (char *) buf;
1108 buf += strlen (aug) + 1;
1109 skip_leb128 (&buf, end);
1110 skip_leb128 (&buf, end);
1111 skip_leb128 (&buf, end);
1112 if (*aug == 'z')
1113 {
1114 /* The uleb128 will always be a single byte for the kind
1115 of augmentation strings that we're prepared to handle. */
1116 *buf++ += extra_data;
1117 aug++;
1118 }
1119
1120 /* Make room for the new augmentation string and data bytes. */
1121 memmove (buf + extra_string + extra_data, buf, end - buf);
1122 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1123 buf += extra_string;
1124 end += extra_string + extra_data;
1125
1126 if (ent->add_augmentation_size)
1127 {
1128 *aug++ = 'z';
1129 *buf++ = extra_data - 1;
1130 }
1131 if (ent->add_fde_encoding)
1132 {
1133 BFD_ASSERT (action & 1);
1134 *aug++ = 'R';
1135 *buf++ = DW_EH_PE_pcrel;
1136 action &= ~1;
1137 }
1138
1139 while (action)
1140 switch (*aug++)
1141 {
1142 case 'L':
1143 if (action & 2)
1144 {
1145 BFD_ASSERT (*buf == ent->lsda_encoding);
1146 *buf |= DW_EH_PE_pcrel;
1147 action &= ~2;
1148 }
1149 buf++;
1150 break;
1151 case 'P':
1152 per_encoding = *buf++;
1153 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1154 BFD_ASSERT (per_width != 0);
1155 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1156 == ent->per_encoding_relative);
1157 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1158 buf = (contents
1159 + ((buf - contents + per_width - 1)
1160 & ~((bfd_size_type) per_width - 1)));
1161 if (action & 4)
1162 {
1163 bfd_vma val;
1164
1165 val = read_value (abfd, buf, per_width,
1166 get_DW_EH_PE_signed (per_encoding));
1167 val += ent->offset - ent->new_offset;
1168 val -= extra_string + extra_data;
1169 write_value (abfd, buf, val, per_width);
1170 action &= ~4;
1171 }
1172 buf += per_width;
1173 break;
1174 case 'R':
1175 if (action & 1)
1176 {
1177 BFD_ASSERT (*buf == ent->fde_encoding);
1178 *buf |= DW_EH_PE_pcrel;
1179 action &= ~1;
1180 }
1181 buf++;
1182 break;
1183 case 'S':
1184 break;
1185 default:
1186 BFD_FAIL ();
1187 }
1188 }
1189 }
1190 else
1191 {
1192 /* FDE */
1193 bfd_vma value, address;
1194 unsigned int width;
1195
1196 /* Skip length. */
1197 buf += 4;
1198 value = ent->new_offset + 4 - ent->cie_inf->new_offset;
1199 bfd_put_32 (abfd, value, buf);
1200 buf += 4;
1201 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1202 value = read_value (abfd, buf, width,
1203 get_DW_EH_PE_signed (ent->fde_encoding));
1204 address = value;
1205 if (value)
1206 {
1207 switch (ent->fde_encoding & 0xf0)
1208 {
1209 case DW_EH_PE_indirect:
1210 case DW_EH_PE_textrel:
1211 BFD_ASSERT (hdr_info == NULL);
1212 break;
1213 case DW_EH_PE_datarel:
1214 {
1215 asection *got = bfd_get_section_by_name (abfd, ".got");
1216
1217 BFD_ASSERT (got != NULL);
1218 address += got->vma;
1219 }
1220 break;
1221 case DW_EH_PE_pcrel:
1222 value += ent->offset - ent->new_offset;
1223 address += sec->output_section->vma + ent->offset + 8;
1224 break;
1225 }
1226 if (ent->cie_inf->make_relative)
1227 value -= sec->output_section->vma + ent->new_offset + 8;
1228 write_value (abfd, buf, value, width);
1229 }
1230
1231 if (hdr_info)
1232 {
1233 hdr_info->array[hdr_info->array_count].initial_loc = address;
1234 hdr_info->array[hdr_info->array_count++].fde
1235 = sec->output_section->vma + ent->new_offset;
1236 }
1237
1238 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1239 || ent->cie_inf->need_lsda_relative)
1240 {
1241 buf += ent->lsda_offset;
1242 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1243 value = read_value (abfd, buf, width,
1244 get_DW_EH_PE_signed (ent->lsda_encoding));
1245 if (value)
1246 {
1247 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1248 value += ent->offset - ent->new_offset;
1249 else if (ent->cie_inf->need_lsda_relative)
1250 value -= (sec->output_section->vma + ent->new_offset + 8
1251 + ent->lsda_offset);
1252 write_value (abfd, buf, value, width);
1253 }
1254 }
1255 else if (ent->cie_inf->add_augmentation_size)
1256 {
1257 /* Skip the PC and length and insert a zero byte for the
1258 augmentation size. */
1259 buf += width * 2;
1260 memmove (buf + 1, buf, end - buf);
1261 *buf = 0;
1262 }
1263 }
1264 }
1265
1266 {
1267 unsigned int alignment = 1 << sec->alignment_power;
1268 unsigned int pad = sec->size % alignment;
1269
1270 /* Don't pad beyond the raw size of the output section. It
1271 can happen at the last input section. */
1272 if (pad
1273 && ((sec->output_offset + sec->size + pad)
1274 <= sec->output_section->size))
1275 {
1276 bfd_byte *buf;
1277 unsigned int new_size;
1278
1279 /* Find the last CIE/FDE. */
1280 ent = sec_info->entry + sec_info->count;
1281 while (--ent != sec_info->entry)
1282 if (!ent->removed)
1283 break;
1284
1285 /* The size of the last CIE/FDE must be at least 4. */
1286 if (ent->removed || ent->size < 4)
1287 abort ();
1288
1289 pad = alignment - pad;
1290 buf = contents + ent->new_offset - sec->output_offset;
1291 new_size = size_of_output_cie_fde (ent, ptr_size);
1292
1293 /* Pad it with DW_CFA_nop */
1294 memset (buf + new_size, 0, pad);
1295 bfd_put_32 (abfd, new_size + pad - 4, buf);
1296
1297 sec->size += pad;
1298 }
1299 }
1300
1301 return bfd_set_section_contents (abfd, sec->output_section,
1302 contents, (file_ptr) sec->output_offset,
1303 sec->size);
1304 }
1305
1306 /* Helper function used to sort .eh_frame_hdr search table by increasing
1307 VMA of FDE initial location. */
1308
1309 static int
1310 vma_compare (const void *a, const void *b)
1311 {
1312 const struct eh_frame_array_ent *p = a;
1313 const struct eh_frame_array_ent *q = b;
1314 if (p->initial_loc > q->initial_loc)
1315 return 1;
1316 if (p->initial_loc < q->initial_loc)
1317 return -1;
1318 return 0;
1319 }
1320
1321 /* Write out .eh_frame_hdr section. This must be called after
1322 _bfd_elf_write_section_eh_frame has been called on all input
1323 .eh_frame sections.
1324 .eh_frame_hdr format:
1325 ubyte version (currently 1)
1326 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1327 .eh_frame section)
1328 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1329 number (or DW_EH_PE_omit if there is no
1330 binary search table computed))
1331 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1332 or DW_EH_PE_omit if not present.
1333 DW_EH_PE_datarel is using address of
1334 .eh_frame_hdr section start as base)
1335 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1336 optionally followed by:
1337 [encoded] fde_count (total number of FDEs in .eh_frame section)
1338 fde_count x [encoded] initial_loc, fde
1339 (array of encoded pairs containing
1340 FDE initial_location field and FDE address,
1341 sorted by increasing initial_loc). */
1342
1343 bfd_boolean
1344 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1345 {
1346 struct elf_link_hash_table *htab;
1347 struct eh_frame_hdr_info *hdr_info;
1348 asection *sec;
1349 bfd_byte *contents;
1350 asection *eh_frame_sec;
1351 bfd_size_type size;
1352 bfd_boolean retval;
1353 bfd_vma encoded_eh_frame;
1354
1355 htab = elf_hash_table (info);
1356 hdr_info = &htab->eh_info;
1357 sec = hdr_info->hdr_sec;
1358 if (sec == NULL)
1359 return TRUE;
1360
1361 size = EH_FRAME_HDR_SIZE;
1362 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1363 size += 4 + hdr_info->fde_count * 8;
1364 contents = bfd_malloc (size);
1365 if (contents == NULL)
1366 return FALSE;
1367
1368 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1369 if (eh_frame_sec == NULL)
1370 {
1371 free (contents);
1372 return FALSE;
1373 }
1374
1375 memset (contents, 0, EH_FRAME_HDR_SIZE);
1376 contents[0] = 1; /* Version. */
1377 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1378 (abfd, info, eh_frame_sec, 0, sec, 4,
1379 &encoded_eh_frame); /* .eh_frame offset. */
1380
1381 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1382 {
1383 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1384 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1385 }
1386 else
1387 {
1388 contents[2] = DW_EH_PE_omit;
1389 contents[3] = DW_EH_PE_omit;
1390 }
1391 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1392
1393 if (contents[2] != DW_EH_PE_omit)
1394 {
1395 unsigned int i;
1396
1397 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1398 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1399 vma_compare);
1400 for (i = 0; i < hdr_info->fde_count; i++)
1401 {
1402 bfd_put_32 (abfd,
1403 hdr_info->array[i].initial_loc
1404 - sec->output_section->vma,
1405 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1406 bfd_put_32 (abfd,
1407 hdr_info->array[i].fde - sec->output_section->vma,
1408 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1409 }
1410 }
1411
1412 retval = bfd_set_section_contents (abfd, sec->output_section,
1413 contents, (file_ptr) sec->output_offset,
1414 sec->size);
1415 free (contents);
1416 return retval;
1417 }
1418
1419 /* Return the width of FDE addresses. This is the default implementation. */
1420
1421 unsigned int
1422 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1423 {
1424 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1425 }
1426
1427 /* Decide whether we can use a PC-relative encoding within the given
1428 EH frame section. This is the default implementation. */
1429
1430 bfd_boolean
1431 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1432 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1433 asection *eh_frame_section ATTRIBUTE_UNUSED)
1434 {
1435 return TRUE;
1436 }
1437
1438 /* Select an encoding for the given address. Preference is given to
1439 PC-relative addressing modes. */
1440
1441 bfd_byte
1442 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1443 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1444 asection *osec, bfd_vma offset,
1445 asection *loc_sec, bfd_vma loc_offset,
1446 bfd_vma *encoded)
1447 {
1448 *encoded = osec->vma + offset -
1449 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1450 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1451 }
This page took 0.06094 seconds and 5 git commands to generate.