Copyright update for binutils
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Written by Jakub Jelinek <jakub@redhat.com>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "dwarf2.h"
27
28 #define EH_FRAME_HDR_SIZE 8
29
30 struct cie
31 {
32 unsigned int length;
33 unsigned int hash;
34 unsigned char version;
35 unsigned char local_personality;
36 char augmentation[20];
37 bfd_vma code_align;
38 bfd_signed_vma data_align;
39 bfd_vma ra_column;
40 bfd_vma augmentation_size;
41 union {
42 struct elf_link_hash_entry *h;
43 struct {
44 unsigned int bfd_id;
45 unsigned int index;
46 } sym;
47 unsigned int reloc_index;
48 } personality;
49 struct eh_cie_fde *cie_inf;
50 unsigned char per_encoding;
51 unsigned char lsda_encoding;
52 unsigned char fde_encoding;
53 unsigned char initial_insn_length;
54 unsigned char can_make_lsda_relative;
55 unsigned char initial_instructions[50];
56 };
57
58
59
60 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
61 move onto the next byte. Return true on success. */
62
63 static inline bfd_boolean
64 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
65 {
66 if (*iter >= end)
67 return FALSE;
68 *result = *((*iter)++);
69 return TRUE;
70 }
71
72 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
73 Return true it was possible to move LENGTH bytes. */
74
75 static inline bfd_boolean
76 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
77 {
78 if ((bfd_size_type) (end - *iter) < length)
79 {
80 *iter = end;
81 return FALSE;
82 }
83 *iter += length;
84 return TRUE;
85 }
86
87 /* Move *ITER over an leb128, stopping at END. Return true if the end
88 of the leb128 was found. */
89
90 static bfd_boolean
91 skip_leb128 (bfd_byte **iter, bfd_byte *end)
92 {
93 unsigned char byte;
94 do
95 if (!read_byte (iter, end, &byte))
96 return FALSE;
97 while (byte & 0x80);
98 return TRUE;
99 }
100
101 /* Like skip_leb128, but treat the leb128 as an unsigned value and
102 store it in *VALUE. */
103
104 static bfd_boolean
105 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
106 {
107 bfd_byte *start, *p;
108
109 start = *iter;
110 if (!skip_leb128 (iter, end))
111 return FALSE;
112
113 p = *iter;
114 *value = *--p;
115 while (p > start)
116 *value = (*value << 7) | (*--p & 0x7f);
117
118 return TRUE;
119 }
120
121 /* Like read_uleb128, but for signed values. */
122
123 static bfd_boolean
124 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
125 {
126 bfd_byte *start, *p;
127
128 start = *iter;
129 if (!skip_leb128 (iter, end))
130 return FALSE;
131
132 p = *iter;
133 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
134 while (p > start)
135 *value = (*value << 7) | (*--p & 0x7f);
136
137 return TRUE;
138 }
139
140 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
141
142 static
143 int get_DW_EH_PE_width (int encoding, int ptr_size)
144 {
145 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
146 was added to bfd. */
147 if ((encoding & 0x60) == 0x60)
148 return 0;
149
150 switch (encoding & 7)
151 {
152 case DW_EH_PE_udata2: return 2;
153 case DW_EH_PE_udata4: return 4;
154 case DW_EH_PE_udata8: return 8;
155 case DW_EH_PE_absptr: return ptr_size;
156 default:
157 break;
158 }
159
160 return 0;
161 }
162
163 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
164
165 /* Read a width sized value from memory. */
166
167 static bfd_vma
168 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
169 {
170 bfd_vma value;
171
172 switch (width)
173 {
174 case 2:
175 if (is_signed)
176 value = bfd_get_signed_16 (abfd, buf);
177 else
178 value = bfd_get_16 (abfd, buf);
179 break;
180 case 4:
181 if (is_signed)
182 value = bfd_get_signed_32 (abfd, buf);
183 else
184 value = bfd_get_32 (abfd, buf);
185 break;
186 case 8:
187 if (is_signed)
188 value = bfd_get_signed_64 (abfd, buf);
189 else
190 value = bfd_get_64 (abfd, buf);
191 break;
192 default:
193 BFD_FAIL ();
194 return 0;
195 }
196
197 return value;
198 }
199
200 /* Store a width sized value to memory. */
201
202 static void
203 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
204 {
205 switch (width)
206 {
207 case 2: bfd_put_16 (abfd, value, buf); break;
208 case 4: bfd_put_32 (abfd, value, buf); break;
209 case 8: bfd_put_64 (abfd, value, buf); break;
210 default: BFD_FAIL ();
211 }
212 }
213
214 /* Return one if C1 and C2 CIEs can be merged. */
215
216 static int
217 cie_eq (const void *e1, const void *e2)
218 {
219 const struct cie *c1 = (const struct cie *) e1;
220 const struct cie *c2 = (const struct cie *) e2;
221
222 if (c1->hash == c2->hash
223 && c1->length == c2->length
224 && c1->version == c2->version
225 && c1->local_personality == c2->local_personality
226 && strcmp (c1->augmentation, c2->augmentation) == 0
227 && strcmp (c1->augmentation, "eh") != 0
228 && c1->code_align == c2->code_align
229 && c1->data_align == c2->data_align
230 && c1->ra_column == c2->ra_column
231 && c1->augmentation_size == c2->augmentation_size
232 && memcmp (&c1->personality, &c2->personality,
233 sizeof (c1->personality)) == 0
234 && (c1->cie_inf->u.cie.u.sec->output_section
235 == c2->cie_inf->u.cie.u.sec->output_section)
236 && c1->per_encoding == c2->per_encoding
237 && c1->lsda_encoding == c2->lsda_encoding
238 && c1->fde_encoding == c2->fde_encoding
239 && c1->initial_insn_length == c2->initial_insn_length
240 && c1->initial_insn_length <= sizeof (c1->initial_instructions)
241 && memcmp (c1->initial_instructions,
242 c2->initial_instructions,
243 c1->initial_insn_length) == 0)
244 return 1;
245
246 return 0;
247 }
248
249 static hashval_t
250 cie_hash (const void *e)
251 {
252 const struct cie *c = (const struct cie *) e;
253 return c->hash;
254 }
255
256 static hashval_t
257 cie_compute_hash (struct cie *c)
258 {
259 hashval_t h = 0;
260 size_t len;
261 h = iterative_hash_object (c->length, h);
262 h = iterative_hash_object (c->version, h);
263 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
264 h = iterative_hash_object (c->code_align, h);
265 h = iterative_hash_object (c->data_align, h);
266 h = iterative_hash_object (c->ra_column, h);
267 h = iterative_hash_object (c->augmentation_size, h);
268 h = iterative_hash_object (c->personality, h);
269 h = iterative_hash_object (c->cie_inf->u.cie.u.sec->output_section, h);
270 h = iterative_hash_object (c->per_encoding, h);
271 h = iterative_hash_object (c->lsda_encoding, h);
272 h = iterative_hash_object (c->fde_encoding, h);
273 h = iterative_hash_object (c->initial_insn_length, h);
274 len = c->initial_insn_length;
275 if (len > sizeof (c->initial_instructions))
276 len = sizeof (c->initial_instructions);
277 h = iterative_hash (c->initial_instructions, len, h);
278 c->hash = h;
279 return h;
280 }
281
282 /* Return the number of extra bytes that we'll be inserting into
283 ENTRY's augmentation string. */
284
285 static INLINE unsigned int
286 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
287 {
288 unsigned int size = 0;
289 if (entry->cie)
290 {
291 if (entry->add_augmentation_size)
292 size++;
293 if (entry->u.cie.add_fde_encoding)
294 size++;
295 }
296 return size;
297 }
298
299 /* Likewise ENTRY's augmentation data. */
300
301 static INLINE unsigned int
302 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
303 {
304 unsigned int size = 0;
305 if (entry->add_augmentation_size)
306 size++;
307 if (entry->cie && entry->u.cie.add_fde_encoding)
308 size++;
309 return size;
310 }
311
312 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
313 required alignment of ENTRY in bytes. */
314
315 static unsigned int
316 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
317 {
318 if (entry->removed)
319 return 0;
320 if (entry->size == 4)
321 return 4;
322 return (entry->size
323 + extra_augmentation_string_bytes (entry)
324 + extra_augmentation_data_bytes (entry)
325 + alignment - 1) & -alignment;
326 }
327
328 /* Assume that the bytes between *ITER and END are CFA instructions.
329 Try to move *ITER past the first instruction and return true on
330 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
331
332 static bfd_boolean
333 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
334 {
335 bfd_byte op;
336 bfd_vma length;
337
338 if (!read_byte (iter, end, &op))
339 return FALSE;
340
341 switch (op & 0xc0 ? op & 0xc0 : op)
342 {
343 case DW_CFA_nop:
344 case DW_CFA_advance_loc:
345 case DW_CFA_restore:
346 case DW_CFA_remember_state:
347 case DW_CFA_restore_state:
348 case DW_CFA_GNU_window_save:
349 /* No arguments. */
350 return TRUE;
351
352 case DW_CFA_offset:
353 case DW_CFA_restore_extended:
354 case DW_CFA_undefined:
355 case DW_CFA_same_value:
356 case DW_CFA_def_cfa_register:
357 case DW_CFA_def_cfa_offset:
358 case DW_CFA_def_cfa_offset_sf:
359 case DW_CFA_GNU_args_size:
360 /* One leb128 argument. */
361 return skip_leb128 (iter, end);
362
363 case DW_CFA_val_offset:
364 case DW_CFA_val_offset_sf:
365 case DW_CFA_offset_extended:
366 case DW_CFA_register:
367 case DW_CFA_def_cfa:
368 case DW_CFA_offset_extended_sf:
369 case DW_CFA_GNU_negative_offset_extended:
370 case DW_CFA_def_cfa_sf:
371 /* Two leb128 arguments. */
372 return (skip_leb128 (iter, end)
373 && skip_leb128 (iter, end));
374
375 case DW_CFA_def_cfa_expression:
376 /* A variable-length argument. */
377 return (read_uleb128 (iter, end, &length)
378 && skip_bytes (iter, end, length));
379
380 case DW_CFA_expression:
381 case DW_CFA_val_expression:
382 /* A leb128 followed by a variable-length argument. */
383 return (skip_leb128 (iter, end)
384 && read_uleb128 (iter, end, &length)
385 && skip_bytes (iter, end, length));
386
387 case DW_CFA_set_loc:
388 return skip_bytes (iter, end, encoded_ptr_width);
389
390 case DW_CFA_advance_loc1:
391 return skip_bytes (iter, end, 1);
392
393 case DW_CFA_advance_loc2:
394 return skip_bytes (iter, end, 2);
395
396 case DW_CFA_advance_loc4:
397 return skip_bytes (iter, end, 4);
398
399 case DW_CFA_MIPS_advance_loc8:
400 return skip_bytes (iter, end, 8);
401
402 default:
403 return FALSE;
404 }
405 }
406
407 /* Try to interpret the bytes between BUF and END as CFA instructions.
408 If every byte makes sense, return a pointer to the first DW_CFA_nop
409 padding byte, or END if there is no padding. Return null otherwise.
410 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
411
412 static bfd_byte *
413 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
414 unsigned int *set_loc_count)
415 {
416 bfd_byte *last;
417
418 last = buf;
419 while (buf < end)
420 if (*buf == DW_CFA_nop)
421 buf++;
422 else
423 {
424 if (*buf == DW_CFA_set_loc)
425 ++*set_loc_count;
426 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
427 return 0;
428 last = buf;
429 }
430 return last;
431 }
432
433 /* Convert absolute encoding ENCODING into PC-relative form.
434 SIZE is the size of a pointer. */
435
436 static unsigned char
437 make_pc_relative (unsigned char encoding, unsigned int ptr_size)
438 {
439 if ((encoding & 0x7f) == DW_EH_PE_absptr)
440 switch (ptr_size)
441 {
442 case 2:
443 encoding |= DW_EH_PE_sdata2;
444 break;
445 case 4:
446 encoding |= DW_EH_PE_sdata4;
447 break;
448 case 8:
449 encoding |= DW_EH_PE_sdata8;
450 break;
451 }
452 return encoding | DW_EH_PE_pcrel;
453 }
454
455 /* Examine each .eh_frame_entry section and discard those
456 those that are marked SEC_EXCLUDE. */
457
458 static void
459 bfd_elf_discard_eh_frame_entry (struct eh_frame_hdr_info *hdr_info)
460 {
461 unsigned int i;
462 for (i = 0; i < hdr_info->array_count; i++)
463 {
464 if (hdr_info->u.compact.entries[i]->flags & SEC_EXCLUDE)
465 {
466 unsigned int j;
467 for (j = i + 1; j < hdr_info->array_count; j++)
468 hdr_info->u.compact.entries[j-1] = hdr_info->u.compact.entries[j];
469
470 hdr_info->array_count--;
471 hdr_info->u.compact.entries[hdr_info->array_count] = NULL;
472 i--;
473 }
474 }
475 }
476
477 /* Add a .eh_frame_entry section. */
478
479 static void
480 bfd_elf_record_eh_frame_entry (struct eh_frame_hdr_info *hdr_info,
481 asection *sec)
482 {
483 if (hdr_info->array_count == hdr_info->u.compact.allocated_entries)
484 {
485 if (hdr_info->u.compact.allocated_entries == 0)
486 {
487 hdr_info->frame_hdr_is_compact = TRUE;
488 hdr_info->u.compact.allocated_entries = 2;
489 hdr_info->u.compact.entries =
490 bfd_malloc (hdr_info->u.compact.allocated_entries
491 * sizeof (hdr_info->u.compact.entries[0]));
492 }
493 else
494 {
495 hdr_info->u.compact.allocated_entries *= 2;
496 hdr_info->u.compact.entries =
497 bfd_realloc (hdr_info->u.compact.entries,
498 hdr_info->u.compact.allocated_entries
499 * sizeof (hdr_info->u.compact.entries[0]));
500 }
501
502 BFD_ASSERT (hdr_info->u.compact.entries);
503 }
504
505 hdr_info->u.compact.entries[hdr_info->array_count++] = sec;
506 }
507
508 /* Parse a .eh_frame_entry section. Figure out which text section it
509 references. */
510
511 bfd_boolean
512 _bfd_elf_parse_eh_frame_entry (struct bfd_link_info *info,
513 asection *sec, struct elf_reloc_cookie *cookie)
514 {
515 struct elf_link_hash_table *htab;
516 struct eh_frame_hdr_info *hdr_info;
517 unsigned long r_symndx;
518 asection *text_sec;
519
520 htab = elf_hash_table (info);
521 hdr_info = &htab->eh_info;
522
523 if (sec->size == 0
524 || sec->sec_info_type != SEC_INFO_TYPE_NONE)
525 {
526 return TRUE;
527 }
528
529 if (sec->output_section && bfd_is_abs_section (sec->output_section))
530 {
531 /* At least one of the sections is being discarded from the
532 link, so we should just ignore them. */
533 return TRUE;
534 }
535
536 if (cookie->rel == cookie->relend)
537 return FALSE;
538
539 /* The first relocation is the function start. */
540 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
541 if (r_symndx == STN_UNDEF)
542 return FALSE;
543
544 text_sec = _bfd_elf_section_for_symbol (cookie, r_symndx, FALSE);
545
546 if (text_sec == NULL)
547 return FALSE;
548
549 elf_section_eh_frame_entry (text_sec) = sec;
550 if (text_sec->output_section
551 && bfd_is_abs_section (text_sec->output_section))
552 sec->flags |= SEC_EXCLUDE;
553
554 sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME_ENTRY;
555 elf_section_data (sec)->sec_info = text_sec;
556 bfd_elf_record_eh_frame_entry (hdr_info, sec);
557 return TRUE;
558 }
559
560 /* Try to parse .eh_frame section SEC, which belongs to ABFD. Store the
561 information in the section's sec_info field on success. COOKIE
562 describes the relocations in SEC. */
563
564 void
565 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
566 asection *sec, struct elf_reloc_cookie *cookie)
567 {
568 #define REQUIRE(COND) \
569 do \
570 if (!(COND)) \
571 goto free_no_table; \
572 while (0)
573
574 bfd_byte *ehbuf = NULL, *buf, *end;
575 bfd_byte *last_fde;
576 struct eh_cie_fde *this_inf;
577 unsigned int hdr_length, hdr_id;
578 unsigned int cie_count;
579 struct cie *cie, *local_cies = NULL;
580 struct elf_link_hash_table *htab;
581 struct eh_frame_hdr_info *hdr_info;
582 struct eh_frame_sec_info *sec_info = NULL;
583 unsigned int ptr_size;
584 unsigned int num_cies;
585 unsigned int num_entries;
586 elf_gc_mark_hook_fn gc_mark_hook;
587
588 htab = elf_hash_table (info);
589 hdr_info = &htab->eh_info;
590
591 if (sec->size == 0
592 || sec->sec_info_type != SEC_INFO_TYPE_NONE)
593 {
594 /* This file does not contain .eh_frame information. */
595 return;
596 }
597
598 if (bfd_is_abs_section (sec->output_section))
599 {
600 /* At least one of the sections is being discarded from the
601 link, so we should just ignore them. */
602 return;
603 }
604
605 /* Read the frame unwind information from abfd. */
606
607 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
608
609 if (sec->size >= 4
610 && bfd_get_32 (abfd, ehbuf) == 0
611 && cookie->rel == cookie->relend)
612 {
613 /* Empty .eh_frame section. */
614 free (ehbuf);
615 return;
616 }
617
618 /* If .eh_frame section size doesn't fit into int, we cannot handle
619 it (it would need to use 64-bit .eh_frame format anyway). */
620 REQUIRE (sec->size == (unsigned int) sec->size);
621
622 ptr_size = (get_elf_backend_data (abfd)
623 ->elf_backend_eh_frame_address_size (abfd, sec));
624 REQUIRE (ptr_size != 0);
625
626 /* Go through the section contents and work out how many FDEs and
627 CIEs there are. */
628 buf = ehbuf;
629 end = ehbuf + sec->size;
630 num_cies = 0;
631 num_entries = 0;
632 while (buf != end)
633 {
634 num_entries++;
635
636 /* Read the length of the entry. */
637 REQUIRE (skip_bytes (&buf, end, 4));
638 hdr_length = bfd_get_32 (abfd, buf - 4);
639
640 /* 64-bit .eh_frame is not supported. */
641 REQUIRE (hdr_length != 0xffffffff);
642 if (hdr_length == 0)
643 break;
644
645 REQUIRE (skip_bytes (&buf, end, 4));
646 hdr_id = bfd_get_32 (abfd, buf - 4);
647 if (hdr_id == 0)
648 num_cies++;
649
650 REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
651 }
652
653 sec_info = (struct eh_frame_sec_info *)
654 bfd_zmalloc (sizeof (struct eh_frame_sec_info)
655 + (num_entries - 1) * sizeof (struct eh_cie_fde));
656 REQUIRE (sec_info);
657
658 /* We need to have a "struct cie" for each CIE in this section. */
659 local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies));
660 REQUIRE (local_cies);
661
662 /* FIXME: octets_per_byte. */
663 #define ENSURE_NO_RELOCS(buf) \
664 while (cookie->rel < cookie->relend \
665 && (cookie->rel->r_offset \
666 < (bfd_size_type) ((buf) - ehbuf))) \
667 { \
668 REQUIRE (cookie->rel->r_info == 0); \
669 cookie->rel++; \
670 }
671
672 /* FIXME: octets_per_byte. */
673 #define SKIP_RELOCS(buf) \
674 while (cookie->rel < cookie->relend \
675 && (cookie->rel->r_offset \
676 < (bfd_size_type) ((buf) - ehbuf))) \
677 cookie->rel++
678
679 /* FIXME: octets_per_byte. */
680 #define GET_RELOC(buf) \
681 ((cookie->rel < cookie->relend \
682 && (cookie->rel->r_offset \
683 == (bfd_size_type) ((buf) - ehbuf))) \
684 ? cookie->rel : NULL)
685
686 buf = ehbuf;
687 cie_count = 0;
688 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
689 while ((bfd_size_type) (buf - ehbuf) != sec->size)
690 {
691 char *aug;
692 bfd_byte *start, *insns, *insns_end;
693 bfd_size_type length;
694 unsigned int set_loc_count;
695
696 this_inf = sec_info->entry + sec_info->count;
697 last_fde = buf;
698
699 /* Read the length of the entry. */
700 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
701 hdr_length = bfd_get_32 (abfd, buf - 4);
702
703 /* The CIE/FDE must be fully contained in this input section. */
704 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
705 end = buf + hdr_length;
706
707 this_inf->offset = last_fde - ehbuf;
708 this_inf->size = 4 + hdr_length;
709 this_inf->reloc_index = cookie->rel - cookie->rels;
710
711 if (hdr_length == 0)
712 {
713 /* A zero-length CIE should only be found at the end of
714 the section. */
715 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
716 ENSURE_NO_RELOCS (buf);
717 sec_info->count++;
718 break;
719 }
720
721 REQUIRE (skip_bytes (&buf, end, 4));
722 hdr_id = bfd_get_32 (abfd, buf - 4);
723
724 if (hdr_id == 0)
725 {
726 unsigned int initial_insn_length;
727
728 /* CIE */
729 this_inf->cie = 1;
730
731 /* Point CIE to one of the section-local cie structures. */
732 cie = local_cies + cie_count++;
733
734 cie->cie_inf = this_inf;
735 cie->length = hdr_length;
736 start = buf;
737 REQUIRE (read_byte (&buf, end, &cie->version));
738
739 /* Cannot handle unknown versions. */
740 REQUIRE (cie->version == 1
741 || cie->version == 3
742 || cie->version == 4);
743 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
744
745 strcpy (cie->augmentation, (char *) buf);
746 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
747 ENSURE_NO_RELOCS (buf);
748 if (buf[0] == 'e' && buf[1] == 'h')
749 {
750 /* GCC < 3.0 .eh_frame CIE */
751 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
752 is private to each CIE, so we don't need it for anything.
753 Just skip it. */
754 REQUIRE (skip_bytes (&buf, end, ptr_size));
755 SKIP_RELOCS (buf);
756 }
757 if (cie->version >= 4)
758 {
759 REQUIRE (buf + 1 < end);
760 REQUIRE (buf[0] == ptr_size);
761 REQUIRE (buf[1] == 0);
762 buf += 2;
763 }
764 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
765 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
766 if (cie->version == 1)
767 {
768 REQUIRE (buf < end);
769 cie->ra_column = *buf++;
770 }
771 else
772 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
773 ENSURE_NO_RELOCS (buf);
774 cie->lsda_encoding = DW_EH_PE_omit;
775 cie->fde_encoding = DW_EH_PE_omit;
776 cie->per_encoding = DW_EH_PE_omit;
777 aug = cie->augmentation;
778 if (aug[0] != 'e' || aug[1] != 'h')
779 {
780 if (*aug == 'z')
781 {
782 aug++;
783 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
784 ENSURE_NO_RELOCS (buf);
785 }
786
787 while (*aug != '\0')
788 switch (*aug++)
789 {
790 case 'L':
791 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
792 ENSURE_NO_RELOCS (buf);
793 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
794 break;
795 case 'R':
796 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
797 ENSURE_NO_RELOCS (buf);
798 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
799 break;
800 case 'S':
801 break;
802 case 'P':
803 {
804 int per_width;
805
806 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
807 per_width = get_DW_EH_PE_width (cie->per_encoding,
808 ptr_size);
809 REQUIRE (per_width);
810 if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned)
811 {
812 length = -(buf - ehbuf) & (per_width - 1);
813 REQUIRE (skip_bytes (&buf, end, length));
814 }
815 this_inf->u.cie.personality_offset = buf - start;
816 ENSURE_NO_RELOCS (buf);
817 /* Ensure we have a reloc here. */
818 REQUIRE (GET_RELOC (buf));
819 cie->personality.reloc_index
820 = cookie->rel - cookie->rels;
821 /* Cope with MIPS-style composite relocations. */
822 do
823 cookie->rel++;
824 while (GET_RELOC (buf) != NULL);
825 REQUIRE (skip_bytes (&buf, end, per_width));
826 }
827 break;
828 default:
829 /* Unrecognized augmentation. Better bail out. */
830 goto free_no_table;
831 }
832 }
833
834 /* For shared libraries, try to get rid of as many RELATIVE relocs
835 as possible. */
836 if (bfd_link_pic (info)
837 && (get_elf_backend_data (abfd)
838 ->elf_backend_can_make_relative_eh_frame
839 (abfd, info, sec)))
840 {
841 if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr)
842 this_inf->make_relative = 1;
843 /* If the CIE doesn't already have an 'R' entry, it's fairly
844 easy to add one, provided that there's no aligned data
845 after the augmentation string. */
846 else if (cie->fde_encoding == DW_EH_PE_omit
847 && (cie->per_encoding & 0x70) != DW_EH_PE_aligned)
848 {
849 if (*cie->augmentation == 0)
850 this_inf->add_augmentation_size = 1;
851 this_inf->u.cie.add_fde_encoding = 1;
852 this_inf->make_relative = 1;
853 }
854
855 if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr)
856 cie->can_make_lsda_relative = 1;
857 }
858
859 /* If FDE encoding was not specified, it defaults to
860 DW_EH_absptr. */
861 if (cie->fde_encoding == DW_EH_PE_omit)
862 cie->fde_encoding = DW_EH_PE_absptr;
863
864 initial_insn_length = end - buf;
865 cie->initial_insn_length = initial_insn_length;
866 memcpy (cie->initial_instructions, buf,
867 initial_insn_length <= sizeof (cie->initial_instructions)
868 ? initial_insn_length : sizeof (cie->initial_instructions));
869 insns = buf;
870 buf += initial_insn_length;
871 ENSURE_NO_RELOCS (buf);
872
873 if (!bfd_link_relocatable (info))
874 {
875 /* Keep info for merging cies. */
876 this_inf->u.cie.u.full_cie = cie;
877 this_inf->u.cie.per_encoding_relative
878 = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
879 }
880 }
881 else
882 {
883 /* Find the corresponding CIE. */
884 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
885 for (cie = local_cies; cie < local_cies + cie_count; cie++)
886 if (cie_offset == cie->cie_inf->offset)
887 break;
888
889 /* Ensure this FDE references one of the CIEs in this input
890 section. */
891 REQUIRE (cie != local_cies + cie_count);
892 this_inf->u.fde.cie_inf = cie->cie_inf;
893 this_inf->make_relative = cie->cie_inf->make_relative;
894 this_inf->add_augmentation_size
895 = cie->cie_inf->add_augmentation_size;
896
897 ENSURE_NO_RELOCS (buf);
898 if ((sec->flags & SEC_LINKER_CREATED) == 0 || cookie->rels != NULL)
899 {
900 asection *rsec;
901
902 REQUIRE (GET_RELOC (buf));
903
904 /* Chain together the FDEs for each section. */
905 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook,
906 cookie, NULL);
907 /* RSEC will be NULL if FDE was cleared out as it was belonging to
908 a discarded SHT_GROUP. */
909 if (rsec)
910 {
911 REQUIRE (rsec->owner == abfd);
912 this_inf->u.fde.next_for_section = elf_fde_list (rsec);
913 elf_fde_list (rsec) = this_inf;
914 }
915 }
916
917 /* Skip the initial location and address range. */
918 start = buf;
919 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
920 REQUIRE (skip_bytes (&buf, end, 2 * length));
921
922 SKIP_RELOCS (buf - length);
923 if (!GET_RELOC (buf - length)
924 && read_value (abfd, buf - length, length, FALSE) == 0)
925 {
926 (*info->callbacks->minfo)
927 (_("discarding zero address range FDE in %B(%A).\n"),
928 abfd, sec);
929 this_inf->u.fde.cie_inf = NULL;
930 }
931
932 /* Skip the augmentation size, if present. */
933 if (cie->augmentation[0] == 'z')
934 REQUIRE (read_uleb128 (&buf, end, &length));
935 else
936 length = 0;
937
938 /* Of the supported augmentation characters above, only 'L'
939 adds augmentation data to the FDE. This code would need to
940 be adjusted if any future augmentations do the same thing. */
941 if (cie->lsda_encoding != DW_EH_PE_omit)
942 {
943 SKIP_RELOCS (buf);
944 if (cie->can_make_lsda_relative && GET_RELOC (buf))
945 cie->cie_inf->u.cie.make_lsda_relative = 1;
946 this_inf->lsda_offset = buf - start;
947 /* If there's no 'z' augmentation, we don't know where the
948 CFA insns begin. Assume no padding. */
949 if (cie->augmentation[0] != 'z')
950 length = end - buf;
951 }
952
953 /* Skip over the augmentation data. */
954 REQUIRE (skip_bytes (&buf, end, length));
955 insns = buf;
956
957 buf = last_fde + 4 + hdr_length;
958
959 /* For NULL RSEC (cleared FDE belonging to a discarded section)
960 the relocations are commonly cleared. We do not sanity check if
961 all these relocations are cleared as (1) relocations to
962 .gcc_except_table will remain uncleared (they will get dropped
963 with the drop of this unused FDE) and (2) BFD already safely drops
964 relocations of any type to .eh_frame by
965 elf_section_ignore_discarded_relocs.
966 TODO: The .gcc_except_table entries should be also filtered as
967 .eh_frame entries; or GCC could rather use COMDAT for them. */
968 SKIP_RELOCS (buf);
969 }
970
971 /* Try to interpret the CFA instructions and find the first
972 padding nop. Shrink this_inf's size so that it doesn't
973 include the padding. */
974 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
975 set_loc_count = 0;
976 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
977 /* If we don't understand the CFA instructions, we can't know
978 what needs to be adjusted there. */
979 if (insns_end == NULL
980 /* For the time being we don't support DW_CFA_set_loc in
981 CIE instructions. */
982 || (set_loc_count && this_inf->cie))
983 goto free_no_table;
984 this_inf->size -= end - insns_end;
985 if (insns_end != end && this_inf->cie)
986 {
987 cie->initial_insn_length -= end - insns_end;
988 cie->length -= end - insns_end;
989 }
990 if (set_loc_count
991 && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel
992 || this_inf->make_relative))
993 {
994 unsigned int cnt;
995 bfd_byte *p;
996
997 this_inf->set_loc = (unsigned int *)
998 bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int));
999 REQUIRE (this_inf->set_loc);
1000 this_inf->set_loc[0] = set_loc_count;
1001 p = insns;
1002 cnt = 0;
1003 while (p < end)
1004 {
1005 if (*p == DW_CFA_set_loc)
1006 this_inf->set_loc[++cnt] = p + 1 - start;
1007 REQUIRE (skip_cfa_op (&p, end, length));
1008 }
1009 }
1010
1011 this_inf->removed = 1;
1012 this_inf->fde_encoding = cie->fde_encoding;
1013 this_inf->lsda_encoding = cie->lsda_encoding;
1014 sec_info->count++;
1015 }
1016 BFD_ASSERT (sec_info->count == num_entries);
1017 BFD_ASSERT (cie_count == num_cies);
1018
1019 elf_section_data (sec)->sec_info = sec_info;
1020 sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME;
1021 if (!bfd_link_relocatable (info))
1022 {
1023 /* Keep info for merging cies. */
1024 sec_info->cies = local_cies;
1025 local_cies = NULL;
1026 }
1027 goto success;
1028
1029 free_no_table:
1030 (*info->callbacks->einfo)
1031 (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
1032 abfd, sec);
1033 hdr_info->u.dwarf.table = FALSE;
1034 if (sec_info)
1035 free (sec_info);
1036 success:
1037 if (ehbuf)
1038 free (ehbuf);
1039 if (local_cies)
1040 free (local_cies);
1041 #undef REQUIRE
1042 }
1043
1044 /* Order eh_frame_hdr entries by the VMA of their text section. */
1045
1046 static int
1047 cmp_eh_frame_hdr (const void *a, const void *b)
1048 {
1049 bfd_vma text_a;
1050 bfd_vma text_b;
1051 asection *sec;
1052
1053 sec = *(asection *const *)a;
1054 sec = (asection *) elf_section_data (sec)->sec_info;
1055 text_a = sec->output_section->vma + sec->output_offset;
1056 sec = *(asection *const *)b;
1057 sec = (asection *) elf_section_data (sec)->sec_info;
1058 text_b = sec->output_section->vma + sec->output_offset;
1059
1060 if (text_a < text_b)
1061 return -1;
1062 return text_a > text_b;
1063
1064 }
1065
1066 /* Add space for a CANTUNWIND terminator to SEC if the text sections
1067 referenced by it and NEXT are not contiguous, or NEXT is NULL. */
1068
1069 static void
1070 add_eh_frame_hdr_terminator (asection *sec,
1071 asection *next)
1072 {
1073 bfd_vma end;
1074 bfd_vma next_start;
1075 asection *text_sec;
1076
1077 if (next)
1078 {
1079 /* See if there is a gap (presumably a text section without unwind info)
1080 between these two entries. */
1081 text_sec = (asection *) elf_section_data (sec)->sec_info;
1082 end = text_sec->output_section->vma + text_sec->output_offset
1083 + text_sec->size;
1084 text_sec = (asection *) elf_section_data (next)->sec_info;
1085 next_start = text_sec->output_section->vma + text_sec->output_offset;
1086 if (end == next_start)
1087 return;
1088 }
1089
1090 /* Add space for a CANTUNWIND terminator. */
1091 if (!sec->rawsize)
1092 sec->rawsize = sec->size;
1093
1094 bfd_set_section_size (sec->owner, sec, sec->size + 8);
1095 }
1096
1097 /* Finish a pass over all .eh_frame_entry sections. */
1098
1099 bfd_boolean
1100 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
1101 {
1102 struct eh_frame_hdr_info *hdr_info;
1103 unsigned int i;
1104
1105 hdr_info = &elf_hash_table (info)->eh_info;
1106
1107 if (info->eh_frame_hdr_type != COMPACT_EH_HDR
1108 || hdr_info->array_count == 0)
1109 return FALSE;
1110
1111 bfd_elf_discard_eh_frame_entry (hdr_info);
1112
1113 qsort (hdr_info->u.compact.entries, hdr_info->array_count,
1114 sizeof (asection *), cmp_eh_frame_hdr);
1115
1116 for (i = 0; i < hdr_info->array_count - 1; i++)
1117 {
1118 add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i],
1119 hdr_info->u.compact.entries[i + 1]);
1120 }
1121
1122 /* Add a CANTUNWIND terminator after the last entry. */
1123 add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i], NULL);
1124 return TRUE;
1125 }
1126
1127 /* Mark all relocations against CIE or FDE ENT, which occurs in
1128 .eh_frame section SEC. COOKIE describes the relocations in SEC;
1129 its "rel" field can be changed freely. */
1130
1131 static bfd_boolean
1132 mark_entry (struct bfd_link_info *info, asection *sec,
1133 struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
1134 struct elf_reloc_cookie *cookie)
1135 {
1136 /* FIXME: octets_per_byte. */
1137 for (cookie->rel = cookie->rels + ent->reloc_index;
1138 cookie->rel < cookie->relend
1139 && cookie->rel->r_offset < ent->offset + ent->size;
1140 cookie->rel++)
1141 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
1142 return FALSE;
1143
1144 return TRUE;
1145 }
1146
1147 /* Mark all the relocations against FDEs that relate to code in input
1148 section SEC. The FDEs belong to .eh_frame section EH_FRAME, whose
1149 relocations are described by COOKIE. */
1150
1151 bfd_boolean
1152 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
1153 asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
1154 struct elf_reloc_cookie *cookie)
1155 {
1156 struct eh_cie_fde *fde, *cie;
1157
1158 for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
1159 {
1160 if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
1161 return FALSE;
1162
1163 /* At this stage, all cie_inf fields point to local CIEs, so we
1164 can use the same cookie to refer to them. */
1165 cie = fde->u.fde.cie_inf;
1166 if (cie != NULL && !cie->u.cie.gc_mark)
1167 {
1168 cie->u.cie.gc_mark = 1;
1169 if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
1170 return FALSE;
1171 }
1172 }
1173 return TRUE;
1174 }
1175
1176 /* Input section SEC of ABFD is an .eh_frame section that contains the
1177 CIE described by CIE_INF. Return a version of CIE_INF that is going
1178 to be kept in the output, adding CIE_INF to the output if necessary.
1179
1180 HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
1181 relocations in REL. */
1182
1183 static struct eh_cie_fde *
1184 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec,
1185 struct eh_frame_hdr_info *hdr_info,
1186 struct elf_reloc_cookie *cookie,
1187 struct eh_cie_fde *cie_inf)
1188 {
1189 unsigned long r_symndx;
1190 struct cie *cie, *new_cie;
1191 Elf_Internal_Rela *rel;
1192 void **loc;
1193
1194 /* Use CIE_INF if we have already decided to keep it. */
1195 if (!cie_inf->removed)
1196 return cie_inf;
1197
1198 /* If we have merged CIE_INF with another CIE, use that CIE instead. */
1199 if (cie_inf->u.cie.merged)
1200 return cie_inf->u.cie.u.merged_with;
1201
1202 cie = cie_inf->u.cie.u.full_cie;
1203
1204 /* Assume we will need to keep CIE_INF. */
1205 cie_inf->removed = 0;
1206 cie_inf->u.cie.u.sec = sec;
1207
1208 /* If we are not merging CIEs, use CIE_INF. */
1209 if (cie == NULL)
1210 return cie_inf;
1211
1212 if (cie->per_encoding != DW_EH_PE_omit)
1213 {
1214 bfd_boolean per_binds_local;
1215
1216 /* Work out the address of personality routine, or at least
1217 enough info that we could calculate the address had we made a
1218 final section layout. The symbol on the reloc is enough,
1219 either the hash for a global, or (bfd id, index) pair for a
1220 local. The assumption here is that no one uses addends on
1221 the reloc. */
1222 rel = cookie->rels + cie->personality.reloc_index;
1223 memset (&cie->personality, 0, sizeof (cie->personality));
1224 #ifdef BFD64
1225 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1226 r_symndx = ELF64_R_SYM (rel->r_info);
1227 else
1228 #endif
1229 r_symndx = ELF32_R_SYM (rel->r_info);
1230 if (r_symndx >= cookie->locsymcount
1231 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1232 {
1233 struct elf_link_hash_entry *h;
1234
1235 r_symndx -= cookie->extsymoff;
1236 h = cookie->sym_hashes[r_symndx];
1237
1238 while (h->root.type == bfd_link_hash_indirect
1239 || h->root.type == bfd_link_hash_warning)
1240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1241
1242 cie->personality.h = h;
1243 per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h);
1244 }
1245 else
1246 {
1247 Elf_Internal_Sym *sym;
1248 asection *sym_sec;
1249
1250 sym = &cookie->locsyms[r_symndx];
1251 sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1252 if (sym_sec == NULL)
1253 return cie_inf;
1254
1255 if (sym_sec->kept_section != NULL)
1256 sym_sec = sym_sec->kept_section;
1257 if (sym_sec->output_section == NULL)
1258 return cie_inf;
1259
1260 cie->local_personality = 1;
1261 cie->personality.sym.bfd_id = abfd->id;
1262 cie->personality.sym.index = r_symndx;
1263 per_binds_local = TRUE;
1264 }
1265
1266 if (per_binds_local
1267 && bfd_link_pic (info)
1268 && (cie->per_encoding & 0x70) == DW_EH_PE_absptr
1269 && (get_elf_backend_data (abfd)
1270 ->elf_backend_can_make_relative_eh_frame (abfd, info, sec)))
1271 {
1272 cie_inf->u.cie.make_per_encoding_relative = 1;
1273 cie_inf->u.cie.per_encoding_relative = 1;
1274 }
1275 }
1276
1277 /* See if we can merge this CIE with an earlier one. */
1278 cie_compute_hash (cie);
1279 if (hdr_info->u.dwarf.cies == NULL)
1280 {
1281 hdr_info->u.dwarf.cies = htab_try_create (1, cie_hash, cie_eq, free);
1282 if (hdr_info->u.dwarf.cies == NULL)
1283 return cie_inf;
1284 }
1285 loc = htab_find_slot_with_hash (hdr_info->u.dwarf.cies, cie,
1286 cie->hash, INSERT);
1287 if (loc == NULL)
1288 return cie_inf;
1289
1290 new_cie = (struct cie *) *loc;
1291 if (new_cie == NULL)
1292 {
1293 /* Keep CIE_INF and record it in the hash table. */
1294 new_cie = (struct cie *) malloc (sizeof (struct cie));
1295 if (new_cie == NULL)
1296 return cie_inf;
1297
1298 memcpy (new_cie, cie, sizeof (struct cie));
1299 *loc = new_cie;
1300 }
1301 else
1302 {
1303 /* Merge CIE_INF with NEW_CIE->CIE_INF. */
1304 cie_inf->removed = 1;
1305 cie_inf->u.cie.merged = 1;
1306 cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1307 if (cie_inf->u.cie.make_lsda_relative)
1308 new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1309 }
1310 return new_cie->cie_inf;
1311 }
1312
1313 /* This function is called for each input file before the .eh_frame
1314 section is relocated. It discards duplicate CIEs and FDEs for discarded
1315 functions. The function returns TRUE iff any entries have been
1316 deleted. */
1317
1318 bfd_boolean
1319 _bfd_elf_discard_section_eh_frame
1320 (bfd *abfd, struct bfd_link_info *info, asection *sec,
1321 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
1322 struct elf_reloc_cookie *cookie)
1323 {
1324 struct eh_cie_fde *ent;
1325 struct eh_frame_sec_info *sec_info;
1326 struct eh_frame_hdr_info *hdr_info;
1327 unsigned int ptr_size, offset;
1328
1329 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1330 return FALSE;
1331
1332 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1333 if (sec_info == NULL)
1334 return FALSE;
1335
1336 ptr_size = (get_elf_backend_data (sec->owner)
1337 ->elf_backend_eh_frame_address_size (sec->owner, sec));
1338
1339 hdr_info = &elf_hash_table (info)->eh_info;
1340 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1341 if (ent->size == 4)
1342 /* There should only be one zero terminator, on the last input
1343 file supplying .eh_frame (crtend.o). Remove any others. */
1344 ent->removed = sec->map_head.s != NULL;
1345 else if (!ent->cie && ent->u.fde.cie_inf != NULL)
1346 {
1347 bfd_boolean keep;
1348 if ((sec->flags & SEC_LINKER_CREATED) != 0 && cookie->rels == NULL)
1349 {
1350 unsigned int width
1351 = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1352 bfd_vma value
1353 = read_value (abfd, sec->contents + ent->offset + 8 + width,
1354 width, get_DW_EH_PE_signed (ent->fde_encoding));
1355 keep = value != 0;
1356 }
1357 else
1358 {
1359 cookie->rel = cookie->rels + ent->reloc_index;
1360 /* FIXME: octets_per_byte. */
1361 BFD_ASSERT (cookie->rel < cookie->relend
1362 && cookie->rel->r_offset == ent->offset + 8);
1363 keep = !(*reloc_symbol_deleted_p) (ent->offset + 8, cookie);
1364 }
1365 if (keep)
1366 {
1367 if (bfd_link_pic (info)
1368 && (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr
1369 && ent->make_relative == 0)
1370 || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned))
1371 {
1372 /* If a shared library uses absolute pointers
1373 which we cannot turn into PC relative,
1374 don't create the binary search table,
1375 since it is affected by runtime relocations. */
1376 hdr_info->u.dwarf.table = FALSE;
1377 (*info->callbacks->einfo)
1378 (_("%P: FDE encoding in %B(%A) prevents .eh_frame_hdr"
1379 " table being created.\n"), abfd, sec);
1380 }
1381 ent->removed = 0;
1382 hdr_info->u.dwarf.fde_count++;
1383 ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info,
1384 cookie, ent->u.fde.cie_inf);
1385 }
1386 }
1387
1388 if (sec_info->cies)
1389 {
1390 free (sec_info->cies);
1391 sec_info->cies = NULL;
1392 }
1393
1394 offset = 0;
1395 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1396 if (!ent->removed)
1397 {
1398 ent->new_offset = offset;
1399 offset += size_of_output_cie_fde (ent, ptr_size);
1400 }
1401
1402 sec->rawsize = sec->size;
1403 sec->size = offset;
1404 return offset != sec->rawsize;
1405 }
1406
1407 /* This function is called for .eh_frame_hdr section after
1408 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1409 input sections. It finalizes the size of .eh_frame_hdr section. */
1410
1411 bfd_boolean
1412 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1413 {
1414 struct elf_link_hash_table *htab;
1415 struct eh_frame_hdr_info *hdr_info;
1416 asection *sec;
1417
1418 htab = elf_hash_table (info);
1419 hdr_info = &htab->eh_info;
1420
1421 if (!hdr_info->frame_hdr_is_compact && hdr_info->u.dwarf.cies != NULL)
1422 {
1423 htab_delete (hdr_info->u.dwarf.cies);
1424 hdr_info->u.dwarf.cies = NULL;
1425 }
1426
1427 sec = hdr_info->hdr_sec;
1428 if (sec == NULL)
1429 return FALSE;
1430
1431 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
1432 {
1433 /* For compact frames we only add the header. The actual table comes
1434 from the .eh_frame_entry sections. */
1435 sec->size = 8;
1436 }
1437 else
1438 {
1439 sec->size = EH_FRAME_HDR_SIZE;
1440 if (hdr_info->u.dwarf.table)
1441 sec->size += 4 + hdr_info->u.dwarf.fde_count * 8;
1442 }
1443
1444 elf_eh_frame_hdr (abfd) = sec;
1445 return TRUE;
1446 }
1447
1448 /* Return true if there is at least one non-empty .eh_frame section in
1449 input files. Can only be called after ld has mapped input to
1450 output sections, and before sections are stripped. */
1451
1452 bfd_boolean
1453 _bfd_elf_eh_frame_present (struct bfd_link_info *info)
1454 {
1455 asection *eh = bfd_get_section_by_name (info->output_bfd, ".eh_frame");
1456
1457 if (eh == NULL)
1458 return FALSE;
1459
1460 /* Count only sections which have at least a single CIE or FDE.
1461 There cannot be any CIE or FDE <= 8 bytes. */
1462 for (eh = eh->map_head.s; eh != NULL; eh = eh->map_head.s)
1463 if (eh->size > 8)
1464 return TRUE;
1465
1466 return FALSE;
1467 }
1468
1469 /* Return true if there is at least one .eh_frame_entry section in
1470 input files. */
1471
1472 bfd_boolean
1473 _bfd_elf_eh_frame_entry_present (struct bfd_link_info *info)
1474 {
1475 asection *o;
1476 bfd *abfd;
1477
1478 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1479 {
1480 for (o = abfd->sections; o; o = o->next)
1481 {
1482 const char *name = bfd_get_section_name (abfd, o);
1483
1484 if (strcmp (name, ".eh_frame_entry")
1485 && !bfd_is_abs_section (o->output_section))
1486 return TRUE;
1487 }
1488 }
1489 return FALSE;
1490 }
1491
1492 /* This function is called from size_dynamic_sections.
1493 It needs to decide whether .eh_frame_hdr should be output or not,
1494 because when the dynamic symbol table has been sized it is too late
1495 to strip sections. */
1496
1497 bfd_boolean
1498 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1499 {
1500 struct elf_link_hash_table *htab;
1501 struct eh_frame_hdr_info *hdr_info;
1502 struct bfd_link_hash_entry *bh = NULL;
1503 struct elf_link_hash_entry *h;
1504
1505 htab = elf_hash_table (info);
1506 hdr_info = &htab->eh_info;
1507 if (hdr_info->hdr_sec == NULL)
1508 return TRUE;
1509
1510 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section)
1511 || info->eh_frame_hdr_type == 0
1512 || (info->eh_frame_hdr_type == DWARF2_EH_HDR
1513 && !_bfd_elf_eh_frame_present (info))
1514 || (info->eh_frame_hdr_type == COMPACT_EH_HDR
1515 && !_bfd_elf_eh_frame_entry_present (info)))
1516 {
1517 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1518 hdr_info->hdr_sec = NULL;
1519 return TRUE;
1520 }
1521
1522 /* Add a hidden symbol so that systems without access to PHDRs can
1523 find the table. */
1524 if (! (_bfd_generic_link_add_one_symbol
1525 (info, info->output_bfd, "__GNU_EH_FRAME_HDR", BSF_LOCAL,
1526 hdr_info->hdr_sec, 0, NULL, FALSE, FALSE, &bh)))
1527 return FALSE;
1528
1529 h = (struct elf_link_hash_entry *) bh;
1530 h->def_regular = 1;
1531 h->other = STV_HIDDEN;
1532 get_elf_backend_data
1533 (info->output_bfd)->elf_backend_hide_symbol (info, h, TRUE);
1534
1535 if (!hdr_info->frame_hdr_is_compact)
1536 hdr_info->u.dwarf.table = TRUE;
1537 return TRUE;
1538 }
1539
1540 /* Adjust an address in the .eh_frame section. Given OFFSET within
1541 SEC, this returns the new offset in the adjusted .eh_frame section,
1542 or -1 if the address refers to a CIE/FDE which has been removed
1543 or to offset with dynamic relocation which is no longer needed. */
1544
1545 bfd_vma
1546 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1547 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1548 asection *sec,
1549 bfd_vma offset)
1550 {
1551 struct eh_frame_sec_info *sec_info;
1552 unsigned int lo, hi, mid;
1553
1554 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1555 return offset;
1556 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1557
1558 if (offset >= sec->rawsize)
1559 return offset - sec->rawsize + sec->size;
1560
1561 lo = 0;
1562 hi = sec_info->count;
1563 mid = 0;
1564 while (lo < hi)
1565 {
1566 mid = (lo + hi) / 2;
1567 if (offset < sec_info->entry[mid].offset)
1568 hi = mid;
1569 else if (offset
1570 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1571 lo = mid + 1;
1572 else
1573 break;
1574 }
1575
1576 BFD_ASSERT (lo < hi);
1577
1578 /* FDE or CIE was removed. */
1579 if (sec_info->entry[mid].removed)
1580 return (bfd_vma) -1;
1581
1582 /* If converting personality pointers to DW_EH_PE_pcrel, there will be
1583 no need for run-time relocation against the personality field. */
1584 if (sec_info->entry[mid].cie
1585 && sec_info->entry[mid].u.cie.make_per_encoding_relative
1586 && offset == (sec_info->entry[mid].offset + 8
1587 + sec_info->entry[mid].u.cie.personality_offset))
1588 return (bfd_vma) -2;
1589
1590 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1591 relocation against FDE's initial_location field. */
1592 if (!sec_info->entry[mid].cie
1593 && sec_info->entry[mid].make_relative
1594 && offset == sec_info->entry[mid].offset + 8)
1595 return (bfd_vma) -2;
1596
1597 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1598 for run-time relocation against LSDA field. */
1599 if (!sec_info->entry[mid].cie
1600 && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1601 && offset == (sec_info->entry[mid].offset + 8
1602 + sec_info->entry[mid].lsda_offset))
1603 return (bfd_vma) -2;
1604
1605 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1606 relocation against DW_CFA_set_loc's arguments. */
1607 if (sec_info->entry[mid].set_loc
1608 && sec_info->entry[mid].make_relative
1609 && (offset >= sec_info->entry[mid].offset + 8
1610 + sec_info->entry[mid].set_loc[1]))
1611 {
1612 unsigned int cnt;
1613
1614 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1615 if (offset == sec_info->entry[mid].offset + 8
1616 + sec_info->entry[mid].set_loc[cnt])
1617 return (bfd_vma) -2;
1618 }
1619
1620 /* Any new augmentation bytes go before the first relocation. */
1621 return (offset + sec_info->entry[mid].new_offset
1622 - sec_info->entry[mid].offset
1623 + extra_augmentation_string_bytes (sec_info->entry + mid)
1624 + extra_augmentation_data_bytes (sec_info->entry + mid));
1625 }
1626
1627 /* Write out .eh_frame_entry section. Add CANTUNWIND terminator if needed.
1628 Also check that the contents look sane. */
1629
1630 bfd_boolean
1631 _bfd_elf_write_section_eh_frame_entry (bfd *abfd, struct bfd_link_info *info,
1632 asection *sec, bfd_byte *contents)
1633 {
1634 const struct elf_backend_data *bed;
1635 bfd_byte cantunwind[8];
1636 bfd_vma addr;
1637 bfd_vma last_addr;
1638 bfd_vma offset;
1639 asection *text_sec = (asection *) elf_section_data (sec)->sec_info;
1640
1641 if (!sec->rawsize)
1642 sec->rawsize = sec->size;
1643
1644 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_EH_FRAME_ENTRY);
1645
1646 /* Check to make sure that the text section corresponding to this eh_frame_entry
1647 section has not been excluded. In particular, mips16 stub entries will be
1648 excluded outside of the normal process. */
1649 if (sec->flags & SEC_EXCLUDE
1650 || text_sec->flags & SEC_EXCLUDE)
1651 return TRUE;
1652
1653 if (!bfd_set_section_contents (abfd, sec->output_section, contents,
1654 sec->output_offset, sec->rawsize))
1655 return FALSE;
1656
1657 last_addr = bfd_get_signed_32 (abfd, contents);
1658 /* Check that all the entries are in order. */
1659 for (offset = 8; offset < sec->rawsize; offset += 8)
1660 {
1661 addr = bfd_get_signed_32 (abfd, contents + offset) + offset;
1662 if (addr <= last_addr)
1663 {
1664 (*_bfd_error_handler) (_("%B: %s not in order"), sec->owner, sec->name);
1665 return FALSE;
1666 }
1667
1668 last_addr = addr;
1669 }
1670
1671 addr = text_sec->output_section->vma + text_sec->output_offset
1672 + text_sec->size;
1673 addr &= ~1;
1674 addr -= (sec->output_section->vma + sec->output_offset + sec->rawsize);
1675 if (addr & 1)
1676 {
1677 (*_bfd_error_handler) (_("%B: %s invalid input section size"),
1678 sec->owner, sec->name);
1679 bfd_set_error (bfd_error_bad_value);
1680 return FALSE;
1681 }
1682 if (last_addr >= addr + sec->rawsize)
1683 {
1684 (*_bfd_error_handler) (_("%B: %s points past end of text section"),
1685 sec->owner, sec->name);
1686 bfd_set_error (bfd_error_bad_value);
1687 return FALSE;
1688 }
1689
1690 if (sec->size == sec->rawsize)
1691 return TRUE;
1692
1693 bed = get_elf_backend_data (abfd);
1694 BFD_ASSERT (sec->size == sec->rawsize + 8);
1695 BFD_ASSERT ((addr & 1) == 0);
1696 BFD_ASSERT (bed->cant_unwind_opcode);
1697
1698 bfd_put_32 (abfd, addr, cantunwind);
1699 bfd_put_32 (abfd, (*bed->cant_unwind_opcode) (info), cantunwind + 4);
1700 return bfd_set_section_contents (abfd, sec->output_section, cantunwind,
1701 sec->output_offset + sec->rawsize, 8);
1702 }
1703
1704 /* Write out .eh_frame section. This is called with the relocated
1705 contents. */
1706
1707 bfd_boolean
1708 _bfd_elf_write_section_eh_frame (bfd *abfd,
1709 struct bfd_link_info *info,
1710 asection *sec,
1711 bfd_byte *contents)
1712 {
1713 struct eh_frame_sec_info *sec_info;
1714 struct elf_link_hash_table *htab;
1715 struct eh_frame_hdr_info *hdr_info;
1716 unsigned int ptr_size;
1717 struct eh_cie_fde *ent;
1718 bfd_size_type sec_size;
1719
1720 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1721 /* FIXME: octets_per_byte. */
1722 return bfd_set_section_contents (abfd, sec->output_section, contents,
1723 sec->output_offset, sec->size);
1724
1725 ptr_size = (get_elf_backend_data (abfd)
1726 ->elf_backend_eh_frame_address_size (abfd, sec));
1727 BFD_ASSERT (ptr_size != 0);
1728
1729 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1730 htab = elf_hash_table (info);
1731 hdr_info = &htab->eh_info;
1732
1733 if (hdr_info->u.dwarf.table && hdr_info->u.dwarf.array == NULL)
1734 {
1735 hdr_info->frame_hdr_is_compact = FALSE;
1736 hdr_info->u.dwarf.array = (struct eh_frame_array_ent *)
1737 bfd_malloc (hdr_info->u.dwarf.fde_count
1738 * sizeof (*hdr_info->u.dwarf.array));
1739 }
1740 if (hdr_info->u.dwarf.array == NULL)
1741 hdr_info = NULL;
1742
1743 /* The new offsets can be bigger or smaller than the original offsets.
1744 We therefore need to make two passes over the section: one backward
1745 pass to move entries up and one forward pass to move entries down.
1746 The two passes won't interfere with each other because entries are
1747 not reordered */
1748 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1749 if (!ent->removed && ent->new_offset > ent->offset)
1750 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1751
1752 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1753 if (!ent->removed && ent->new_offset < ent->offset)
1754 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1755
1756 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1757 {
1758 unsigned char *buf, *end;
1759 unsigned int new_size;
1760
1761 if (ent->removed)
1762 continue;
1763
1764 if (ent->size == 4)
1765 {
1766 /* Any terminating FDE must be at the end of the section. */
1767 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1768 continue;
1769 }
1770
1771 buf = contents + ent->new_offset;
1772 end = buf + ent->size;
1773 new_size = size_of_output_cie_fde (ent, ptr_size);
1774
1775 /* Update the size. It may be shrinked. */
1776 bfd_put_32 (abfd, new_size - 4, buf);
1777
1778 /* Filling the extra bytes with DW_CFA_nops. */
1779 if (new_size != ent->size)
1780 memset (end, 0, new_size - ent->size);
1781
1782 if (ent->cie)
1783 {
1784 /* CIE */
1785 if (ent->make_relative
1786 || ent->u.cie.make_lsda_relative
1787 || ent->u.cie.per_encoding_relative)
1788 {
1789 char *aug;
1790 unsigned int action, extra_string, extra_data;
1791 unsigned int per_width, per_encoding;
1792
1793 /* Need to find 'R' or 'L' augmentation's argument and modify
1794 DW_EH_PE_* value. */
1795 action = ((ent->make_relative ? 1 : 0)
1796 | (ent->u.cie.make_lsda_relative ? 2 : 0)
1797 | (ent->u.cie.per_encoding_relative ? 4 : 0));
1798 extra_string = extra_augmentation_string_bytes (ent);
1799 extra_data = extra_augmentation_data_bytes (ent);
1800
1801 /* Skip length, id and version. */
1802 buf += 9;
1803 aug = (char *) buf;
1804 buf += strlen (aug) + 1;
1805 skip_leb128 (&buf, end);
1806 skip_leb128 (&buf, end);
1807 skip_leb128 (&buf, end);
1808 if (*aug == 'z')
1809 {
1810 /* The uleb128 will always be a single byte for the kind
1811 of augmentation strings that we're prepared to handle. */
1812 *buf++ += extra_data;
1813 aug++;
1814 }
1815
1816 /* Make room for the new augmentation string and data bytes. */
1817 memmove (buf + extra_string + extra_data, buf, end - buf);
1818 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1819 buf += extra_string;
1820 end += extra_string + extra_data;
1821
1822 if (ent->add_augmentation_size)
1823 {
1824 *aug++ = 'z';
1825 *buf++ = extra_data - 1;
1826 }
1827 if (ent->u.cie.add_fde_encoding)
1828 {
1829 BFD_ASSERT (action & 1);
1830 *aug++ = 'R';
1831 *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size);
1832 action &= ~1;
1833 }
1834
1835 while (action)
1836 switch (*aug++)
1837 {
1838 case 'L':
1839 if (action & 2)
1840 {
1841 BFD_ASSERT (*buf == ent->lsda_encoding);
1842 *buf = make_pc_relative (*buf, ptr_size);
1843 action &= ~2;
1844 }
1845 buf++;
1846 break;
1847 case 'P':
1848 if (ent->u.cie.make_per_encoding_relative)
1849 *buf = make_pc_relative (*buf, ptr_size);
1850 per_encoding = *buf++;
1851 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1852 BFD_ASSERT (per_width != 0);
1853 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1854 == ent->u.cie.per_encoding_relative);
1855 if ((per_encoding & 0x70) == DW_EH_PE_aligned)
1856 buf = (contents
1857 + ((buf - contents + per_width - 1)
1858 & ~((bfd_size_type) per_width - 1)));
1859 if (action & 4)
1860 {
1861 bfd_vma val;
1862
1863 val = read_value (abfd, buf, per_width,
1864 get_DW_EH_PE_signed (per_encoding));
1865 if (ent->u.cie.make_per_encoding_relative)
1866 val -= (sec->output_section->vma
1867 + sec->output_offset
1868 + (buf - contents));
1869 else
1870 {
1871 val += (bfd_vma) ent->offset - ent->new_offset;
1872 val -= extra_string + extra_data;
1873 }
1874 write_value (abfd, buf, val, per_width);
1875 action &= ~4;
1876 }
1877 buf += per_width;
1878 break;
1879 case 'R':
1880 if (action & 1)
1881 {
1882 BFD_ASSERT (*buf == ent->fde_encoding);
1883 *buf = make_pc_relative (*buf, ptr_size);
1884 action &= ~1;
1885 }
1886 buf++;
1887 break;
1888 case 'S':
1889 break;
1890 default:
1891 BFD_FAIL ();
1892 }
1893 }
1894 }
1895 else
1896 {
1897 /* FDE */
1898 bfd_vma value, address;
1899 unsigned int width;
1900 bfd_byte *start;
1901 struct eh_cie_fde *cie;
1902
1903 /* Skip length. */
1904 cie = ent->u.fde.cie_inf;
1905 buf += 4;
1906 value = ((ent->new_offset + sec->output_offset + 4)
1907 - (cie->new_offset + cie->u.cie.u.sec->output_offset));
1908 bfd_put_32 (abfd, value, buf);
1909 if (bfd_link_relocatable (info))
1910 continue;
1911 buf += 4;
1912 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1913 value = read_value (abfd, buf, width,
1914 get_DW_EH_PE_signed (ent->fde_encoding));
1915 address = value;
1916 if (value)
1917 {
1918 switch (ent->fde_encoding & 0x70)
1919 {
1920 case DW_EH_PE_textrel:
1921 BFD_ASSERT (hdr_info == NULL);
1922 break;
1923 case DW_EH_PE_datarel:
1924 {
1925 switch (abfd->arch_info->arch)
1926 {
1927 case bfd_arch_ia64:
1928 BFD_ASSERT (elf_gp (abfd) != 0);
1929 address += elf_gp (abfd);
1930 break;
1931 default:
1932 (*info->callbacks->einfo)
1933 (_("%P: DW_EH_PE_datarel unspecified"
1934 " for this architecture.\n"));
1935 /* Fall thru */
1936 case bfd_arch_frv:
1937 case bfd_arch_i386:
1938 BFD_ASSERT (htab->hgot != NULL
1939 && ((htab->hgot->root.type
1940 == bfd_link_hash_defined)
1941 || (htab->hgot->root.type
1942 == bfd_link_hash_defweak)));
1943 address
1944 += (htab->hgot->root.u.def.value
1945 + htab->hgot->root.u.def.section->output_offset
1946 + (htab->hgot->root.u.def.section->output_section
1947 ->vma));
1948 break;
1949 }
1950 }
1951 break;
1952 case DW_EH_PE_pcrel:
1953 value += (bfd_vma) ent->offset - ent->new_offset;
1954 address += (sec->output_section->vma
1955 + sec->output_offset
1956 + ent->offset + 8);
1957 break;
1958 }
1959 if (ent->make_relative)
1960 value -= (sec->output_section->vma
1961 + sec->output_offset
1962 + ent->new_offset + 8);
1963 write_value (abfd, buf, value, width);
1964 }
1965
1966 start = buf;
1967
1968 if (hdr_info)
1969 {
1970 /* The address calculation may overflow, giving us a
1971 value greater than 4G on a 32-bit target when
1972 dwarf_vma is 64-bit. */
1973 if (sizeof (address) > 4 && ptr_size == 4)
1974 address &= 0xffffffff;
1975 hdr_info->u.dwarf.array[hdr_info->array_count].initial_loc
1976 = address;
1977 hdr_info->u.dwarf.array[hdr_info->array_count].range
1978 = read_value (abfd, buf + width, width, FALSE);
1979 hdr_info->u.dwarf.array[hdr_info->array_count++].fde
1980 = (sec->output_section->vma
1981 + sec->output_offset
1982 + ent->new_offset);
1983 }
1984
1985 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel
1986 || cie->u.cie.make_lsda_relative)
1987 {
1988 buf += ent->lsda_offset;
1989 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1990 value = read_value (abfd, buf, width,
1991 get_DW_EH_PE_signed (ent->lsda_encoding));
1992 if (value)
1993 {
1994 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel)
1995 value += (bfd_vma) ent->offset - ent->new_offset;
1996 else if (cie->u.cie.make_lsda_relative)
1997 value -= (sec->output_section->vma
1998 + sec->output_offset
1999 + ent->new_offset + 8 + ent->lsda_offset);
2000 write_value (abfd, buf, value, width);
2001 }
2002 }
2003 else if (ent->add_augmentation_size)
2004 {
2005 /* Skip the PC and length and insert a zero byte for the
2006 augmentation size. */
2007 buf += width * 2;
2008 memmove (buf + 1, buf, end - buf);
2009 *buf = 0;
2010 }
2011
2012 if (ent->set_loc)
2013 {
2014 /* Adjust DW_CFA_set_loc. */
2015 unsigned int cnt;
2016 bfd_vma new_offset;
2017
2018 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
2019 new_offset = ent->new_offset + 8
2020 + extra_augmentation_string_bytes (ent)
2021 + extra_augmentation_data_bytes (ent);
2022
2023 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
2024 {
2025 buf = start + ent->set_loc[cnt];
2026
2027 value = read_value (abfd, buf, width,
2028 get_DW_EH_PE_signed (ent->fde_encoding));
2029 if (!value)
2030 continue;
2031
2032 if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel)
2033 value += (bfd_vma) ent->offset + 8 - new_offset;
2034 if (ent->make_relative)
2035 value -= (sec->output_section->vma
2036 + sec->output_offset
2037 + new_offset + ent->set_loc[cnt]);
2038 write_value (abfd, buf, value, width);
2039 }
2040 }
2041 }
2042 }
2043
2044 /* We don't align the section to its section alignment since the
2045 runtime library only expects all CIE/FDE records aligned at
2046 the pointer size. _bfd_elf_discard_section_eh_frame should
2047 have padded CIE/FDE records to multiple of pointer size with
2048 size_of_output_cie_fde. */
2049 sec_size = sec->size;
2050 if (sec_info->count != 0
2051 && sec_info->entry[sec_info->count - 1].size == 4)
2052 sec_size -= 4;
2053 if ((sec_size % ptr_size) != 0)
2054 abort ();
2055
2056 /* FIXME: octets_per_byte. */
2057 return bfd_set_section_contents (abfd, sec->output_section,
2058 contents, (file_ptr) sec->output_offset,
2059 sec->size);
2060 }
2061
2062 /* Helper function used to sort .eh_frame_hdr search table by increasing
2063 VMA of FDE initial location. */
2064
2065 static int
2066 vma_compare (const void *a, const void *b)
2067 {
2068 const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a;
2069 const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b;
2070 if (p->initial_loc > q->initial_loc)
2071 return 1;
2072 if (p->initial_loc < q->initial_loc)
2073 return -1;
2074 if (p->range > q->range)
2075 return 1;
2076 if (p->range < q->range)
2077 return -1;
2078 return 0;
2079 }
2080
2081 /* Reorder .eh_frame_entry sections to match the associated text sections.
2082 This routine is called during the final linking step, just before writing
2083 the contents. At this stage, sections in the eh_frame_hdr_info are already
2084 sorted in order of increasing text section address and so we simply need
2085 to make the .eh_frame_entrys follow that same order. Note that it is
2086 invalid for a linker script to try to force a particular order of
2087 .eh_frame_entry sections. */
2088
2089 bfd_boolean
2090 _bfd_elf_fixup_eh_frame_hdr (struct bfd_link_info *info)
2091 {
2092 asection *sec = NULL;
2093 asection *osec;
2094 struct eh_frame_hdr_info *hdr_info;
2095 unsigned int i;
2096 bfd_vma offset;
2097 struct bfd_link_order *p;
2098
2099 hdr_info = &elf_hash_table (info)->eh_info;
2100
2101 if (hdr_info->hdr_sec == NULL
2102 || info->eh_frame_hdr_type != COMPACT_EH_HDR
2103 || hdr_info->array_count == 0)
2104 return TRUE;
2105
2106 /* Change section output offsets to be in text section order. */
2107 offset = 8;
2108 osec = hdr_info->u.compact.entries[0]->output_section;
2109 for (i = 0; i < hdr_info->array_count; i++)
2110 {
2111 sec = hdr_info->u.compact.entries[i];
2112 if (sec->output_section != osec)
2113 {
2114 (*_bfd_error_handler)
2115 (_("Invalid output section for .eh_frame_entry: %s"),
2116 sec->output_section->name);
2117 return FALSE;
2118 }
2119 sec->output_offset = offset;
2120 offset += sec->size;
2121 }
2122
2123
2124 /* Fix the link_order to match. */
2125 for (p = sec->output_section->map_head.link_order; p != NULL; p = p->next)
2126 {
2127 if (p->type != bfd_indirect_link_order)
2128 abort();
2129
2130 p->offset = p->u.indirect.section->output_offset;
2131 if (p->next != NULL)
2132 i--;
2133 }
2134
2135 if (i != 0)
2136 {
2137 (*_bfd_error_handler)
2138 (_("Invalid contents in %s section"), osec->name);
2139 return FALSE;
2140 }
2141
2142 return TRUE;
2143 }
2144
2145 /* The .eh_frame_hdr format for Compact EH frames:
2146 ubyte version (2)
2147 ubyte eh_ref_enc (DW_EH_PE_* encoding of typinfo references)
2148 uint32_t count (Number of entries in table)
2149 [array from .eh_frame_entry sections] */
2150
2151 static bfd_boolean
2152 write_compact_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2153 {
2154 struct elf_link_hash_table *htab;
2155 struct eh_frame_hdr_info *hdr_info;
2156 asection *sec;
2157 const struct elf_backend_data *bed;
2158 bfd_vma count;
2159 bfd_byte contents[8];
2160 unsigned int i;
2161
2162 htab = elf_hash_table (info);
2163 hdr_info = &htab->eh_info;
2164 sec = hdr_info->hdr_sec;
2165
2166 if (sec->size != 8)
2167 abort();
2168
2169 for (i = 0; i < sizeof (contents); i++)
2170 contents[i] = 0;
2171
2172 contents[0] = COMPACT_EH_HDR;
2173 bed = get_elf_backend_data (abfd);
2174
2175 BFD_ASSERT (bed->compact_eh_encoding);
2176 contents[1] = (*bed->compact_eh_encoding) (info);
2177
2178 count = (sec->output_section->size - 8) / 8;
2179 bfd_put_32 (abfd, count, contents + 4);
2180 return bfd_set_section_contents (abfd, sec->output_section, contents,
2181 (file_ptr) sec->output_offset, sec->size);
2182 }
2183
2184 /* The .eh_frame_hdr format for DWARF frames:
2185
2186 ubyte version (currently 1)
2187 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
2188 .eh_frame section)
2189 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
2190 number (or DW_EH_PE_omit if there is no
2191 binary search table computed))
2192 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
2193 or DW_EH_PE_omit if not present.
2194 DW_EH_PE_datarel is using address of
2195 .eh_frame_hdr section start as base)
2196 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
2197 optionally followed by:
2198 [encoded] fde_count (total number of FDEs in .eh_frame section)
2199 fde_count x [encoded] initial_loc, fde
2200 (array of encoded pairs containing
2201 FDE initial_location field and FDE address,
2202 sorted by increasing initial_loc). */
2203
2204 static bfd_boolean
2205 write_dwarf_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2206 {
2207 struct elf_link_hash_table *htab;
2208 struct eh_frame_hdr_info *hdr_info;
2209 asection *sec;
2210 bfd_boolean retval = TRUE;
2211
2212 htab = elf_hash_table (info);
2213 hdr_info = &htab->eh_info;
2214 sec = hdr_info->hdr_sec;
2215 bfd_byte *contents;
2216 asection *eh_frame_sec;
2217 bfd_size_type size;
2218 bfd_vma encoded_eh_frame;
2219
2220 size = EH_FRAME_HDR_SIZE;
2221 if (hdr_info->u.dwarf.array
2222 && hdr_info->array_count == hdr_info->u.dwarf.fde_count)
2223 size += 4 + hdr_info->u.dwarf.fde_count * 8;
2224 contents = (bfd_byte *) bfd_malloc (size);
2225 if (contents == NULL)
2226 return FALSE;
2227
2228 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
2229 if (eh_frame_sec == NULL)
2230 {
2231 free (contents);
2232 return FALSE;
2233 }
2234
2235 memset (contents, 0, EH_FRAME_HDR_SIZE);
2236 /* Version. */
2237 contents[0] = 1;
2238 /* .eh_frame offset. */
2239 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
2240 (abfd, info, eh_frame_sec, 0, sec, 4, &encoded_eh_frame);
2241
2242 if (hdr_info->u.dwarf.array
2243 && hdr_info->array_count == hdr_info->u.dwarf.fde_count)
2244 {
2245 /* FDE count encoding. */
2246 contents[2] = DW_EH_PE_udata4;
2247 /* Search table encoding. */
2248 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
2249 }
2250 else
2251 {
2252 contents[2] = DW_EH_PE_omit;
2253 contents[3] = DW_EH_PE_omit;
2254 }
2255 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
2256
2257 if (contents[2] != DW_EH_PE_omit)
2258 {
2259 unsigned int i;
2260 bfd_boolean overlap, overflow;
2261
2262 bfd_put_32 (abfd, hdr_info->u.dwarf.fde_count,
2263 contents + EH_FRAME_HDR_SIZE);
2264 qsort (hdr_info->u.dwarf.array, hdr_info->u.dwarf.fde_count,
2265 sizeof (*hdr_info->u.dwarf.array), vma_compare);
2266 overlap = FALSE;
2267 overflow = FALSE;
2268 for (i = 0; i < hdr_info->u.dwarf.fde_count; i++)
2269 {
2270 bfd_vma val;
2271
2272 val = hdr_info->u.dwarf.array[i].initial_loc
2273 - sec->output_section->vma;
2274 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
2275 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64
2276 && (hdr_info->u.dwarf.array[i].initial_loc
2277 != sec->output_section->vma + val))
2278 overflow = TRUE;
2279 bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
2280 val = hdr_info->u.dwarf.array[i].fde - sec->output_section->vma;
2281 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
2282 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64
2283 && (hdr_info->u.dwarf.array[i].fde
2284 != sec->output_section->vma + val))
2285 overflow = TRUE;
2286 bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
2287 if (i != 0
2288 && (hdr_info->u.dwarf.array[i].initial_loc
2289 < (hdr_info->u.dwarf.array[i - 1].initial_loc
2290 + hdr_info->u.dwarf.array[i - 1].range)))
2291 overlap = TRUE;
2292 }
2293 if (overflow)
2294 (*info->callbacks->einfo) (_("%P: .eh_frame_hdr entry overflow.\n"));
2295 if (overlap)
2296 (*info->callbacks->einfo)
2297 (_("%P: .eh_frame_hdr refers to overlapping FDEs.\n"));
2298 if (overflow || overlap)
2299 {
2300 bfd_set_error (bfd_error_bad_value);
2301 retval = FALSE;
2302 }
2303 }
2304
2305 /* FIXME: octets_per_byte. */
2306 if (!bfd_set_section_contents (abfd, sec->output_section, contents,
2307 (file_ptr) sec->output_offset,
2308 sec->size))
2309 retval = FALSE;
2310 free (contents);
2311
2312 if (hdr_info->u.dwarf.array != NULL)
2313 free (hdr_info->u.dwarf.array);
2314 return retval;
2315 }
2316
2317 /* Write out .eh_frame_hdr section. This must be called after
2318 _bfd_elf_write_section_eh_frame has been called on all input
2319 .eh_frame sections. */
2320
2321 bfd_boolean
2322 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2323 {
2324 struct elf_link_hash_table *htab;
2325 struct eh_frame_hdr_info *hdr_info;
2326 asection *sec;
2327
2328 htab = elf_hash_table (info);
2329 hdr_info = &htab->eh_info;
2330 sec = hdr_info->hdr_sec;
2331
2332 if (info->eh_frame_hdr_type == 0 || sec == NULL)
2333 return TRUE;
2334
2335 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
2336 return write_compact_eh_frame_hdr (abfd, info);
2337 else
2338 return write_dwarf_eh_frame_hdr (abfd, info);
2339 }
2340
2341 /* Return the width of FDE addresses. This is the default implementation. */
2342
2343 unsigned int
2344 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
2345 {
2346 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
2347 }
2348
2349 /* Decide whether we can use a PC-relative encoding within the given
2350 EH frame section. This is the default implementation. */
2351
2352 bfd_boolean
2353 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
2354 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2355 asection *eh_frame_section ATTRIBUTE_UNUSED)
2356 {
2357 return TRUE;
2358 }
2359
2360 /* Select an encoding for the given address. Preference is given to
2361 PC-relative addressing modes. */
2362
2363 bfd_byte
2364 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
2365 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2366 asection *osec, bfd_vma offset,
2367 asection *loc_sec, bfd_vma loc_offset,
2368 bfd_vma *encoded)
2369 {
2370 *encoded = osec->vma + offset -
2371 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
2372 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
2373 }
This page took 0.07595 seconds and 5 git commands to generate.