* elf-bfd.h (elf_backend_data): Add elf_backend_eh_frame_address_size.
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Written by Jakub Jelinek <jakub@redhat.com>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/dwarf2.h"
26
27 #define EH_FRAME_HDR_SIZE 8
28
29 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
30 move onto the next byte. Return true on success. */
31
32 static inline bfd_boolean
33 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
34 {
35 if (*iter >= end)
36 return FALSE;
37 *result = *((*iter)++);
38 return TRUE;
39 }
40
41 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
42 Return true it was possible to move LENGTH bytes. */
43
44 static inline bfd_boolean
45 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
46 {
47 if ((bfd_size_type) (end - *iter) < length)
48 {
49 *iter = end;
50 return FALSE;
51 }
52 *iter += length;
53 return TRUE;
54 }
55
56 /* Move *ITER over an leb128, stopping at END. Return true if the end
57 of the leb128 was found. */
58
59 static bfd_boolean
60 skip_leb128 (bfd_byte **iter, bfd_byte *end)
61 {
62 unsigned char byte;
63 do
64 if (!read_byte (iter, end, &byte))
65 return FALSE;
66 while (byte & 0x80);
67 return TRUE;
68 }
69
70 /* Like skip_leb128, but treat the leb128 as an unsigned value and
71 store it in *VALUE. */
72
73 static bfd_boolean
74 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
75 {
76 bfd_byte *start, *p;
77
78 start = *iter;
79 if (!skip_leb128 (iter, end))
80 return FALSE;
81
82 p = *iter;
83 *value = *--p;
84 while (p > start)
85 *value = (*value << 7) | (*--p & 0x7f);
86
87 return TRUE;
88 }
89
90 /* Like read_uleb128, but for signed values. */
91
92 static bfd_boolean
93 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
94 {
95 bfd_byte *start, *p;
96
97 start = *iter;
98 if (!skip_leb128 (iter, end))
99 return FALSE;
100
101 p = *iter;
102 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
103 while (p > start)
104 *value = (*value << 7) | (*--p & 0x7f);
105
106 return TRUE;
107 }
108
109 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
110
111 static
112 int get_DW_EH_PE_width (int encoding, int ptr_size)
113 {
114 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
115 was added to bfd. */
116 if ((encoding & 0x60) == 0x60)
117 return 0;
118
119 switch (encoding & 7)
120 {
121 case DW_EH_PE_udata2: return 2;
122 case DW_EH_PE_udata4: return 4;
123 case DW_EH_PE_udata8: return 8;
124 case DW_EH_PE_absptr: return ptr_size;
125 default:
126 break;
127 }
128
129 return 0;
130 }
131
132 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
133
134 /* Read a width sized value from memory. */
135
136 static bfd_vma
137 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
138 {
139 bfd_vma value;
140
141 switch (width)
142 {
143 case 2:
144 if (is_signed)
145 value = bfd_get_signed_16 (abfd, buf);
146 else
147 value = bfd_get_16 (abfd, buf);
148 break;
149 case 4:
150 if (is_signed)
151 value = bfd_get_signed_32 (abfd, buf);
152 else
153 value = bfd_get_32 (abfd, buf);
154 break;
155 case 8:
156 if (is_signed)
157 value = bfd_get_signed_64 (abfd, buf);
158 else
159 value = bfd_get_64 (abfd, buf);
160 break;
161 default:
162 BFD_FAIL ();
163 return 0;
164 }
165
166 return value;
167 }
168
169 /* Store a width sized value to memory. */
170
171 static void
172 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
173 {
174 switch (width)
175 {
176 case 2: bfd_put_16 (abfd, value, buf); break;
177 case 4: bfd_put_32 (abfd, value, buf); break;
178 case 8: bfd_put_64 (abfd, value, buf); break;
179 default: BFD_FAIL ();
180 }
181 }
182
183 /* Return zero if C1 and C2 CIEs can be merged. */
184
185 static
186 int cie_compare (struct cie *c1, struct cie *c2)
187 {
188 if (c1->hdr.length == c2->hdr.length
189 && c1->version == c2->version
190 && strcmp (c1->augmentation, c2->augmentation) == 0
191 && strcmp (c1->augmentation, "eh") != 0
192 && c1->code_align == c2->code_align
193 && c1->data_align == c2->data_align
194 && c1->ra_column == c2->ra_column
195 && c1->augmentation_size == c2->augmentation_size
196 && c1->personality == c2->personality
197 && c1->per_encoding == c2->per_encoding
198 && c1->lsda_encoding == c2->lsda_encoding
199 && c1->fde_encoding == c2->fde_encoding
200 && c1->initial_insn_length == c2->initial_insn_length
201 && memcmp (c1->initial_instructions,
202 c2->initial_instructions,
203 c1->initial_insn_length) == 0)
204 return 0;
205
206 return 1;
207 }
208
209 /* Return the number of extra bytes that we'll be inserting into
210 ENTRY's augmentation string. */
211
212 static INLINE unsigned int
213 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
214 {
215 unsigned int size = 0;
216 if (entry->cie)
217 {
218 if (entry->add_augmentation_size)
219 size++;
220 if (entry->add_fde_encoding)
221 size++;
222 }
223 return size;
224 }
225
226 /* Likewise ENTRY's augmentation data. */
227
228 static INLINE unsigned int
229 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
230 {
231 unsigned int size = 0;
232 if (entry->cie)
233 {
234 if (entry->add_augmentation_size)
235 size++;
236 if (entry->add_fde_encoding)
237 size++;
238 }
239 else
240 {
241 if (entry->cie_inf->add_augmentation_size)
242 size++;
243 }
244 return size;
245 }
246
247 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
248 required alignment of ENTRY in bytes. */
249
250 static unsigned int
251 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
252 {
253 if (entry->removed)
254 return 0;
255 if (entry->size == 4)
256 return 4;
257 return (entry->size
258 + extra_augmentation_string_bytes (entry)
259 + extra_augmentation_data_bytes (entry)
260 + alignment - 1) & -alignment;
261 }
262
263 /* Assume that the bytes between *ITER and END are CFA instructions.
264 Try to move *ITER past the first instruction and return true on
265 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
266
267 static bfd_boolean
268 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
269 {
270 bfd_byte op;
271 bfd_vma length;
272
273 if (!read_byte (iter, end, &op))
274 return FALSE;
275
276 switch (op & 0x80 ? op & 0xc0 : op)
277 {
278 case DW_CFA_nop:
279 case DW_CFA_advance_loc:
280 case DW_CFA_restore:
281 /* No arguments. */
282 return TRUE;
283
284 case DW_CFA_offset:
285 case DW_CFA_restore_extended:
286 case DW_CFA_undefined:
287 case DW_CFA_same_value:
288 case DW_CFA_def_cfa_register:
289 case DW_CFA_def_cfa_offset:
290 case DW_CFA_def_cfa_offset_sf:
291 case DW_CFA_GNU_args_size:
292 /* One leb128 argument. */
293 return skip_leb128 (iter, end);
294
295 case DW_CFA_offset_extended:
296 case DW_CFA_register:
297 case DW_CFA_def_cfa:
298 case DW_CFA_offset_extended_sf:
299 case DW_CFA_GNU_negative_offset_extended:
300 case DW_CFA_def_cfa_sf:
301 /* Two leb128 arguments. */
302 return (skip_leb128 (iter, end)
303 && skip_leb128 (iter, end));
304
305 case DW_CFA_def_cfa_expression:
306 /* A variable-length argument. */
307 return (read_uleb128 (iter, end, &length)
308 && skip_bytes (iter, end, length));
309
310 case DW_CFA_expression:
311 /* A leb128 followed by a variable-length argument. */
312 return (skip_leb128 (iter, end)
313 && read_uleb128 (iter, end, &length)
314 && skip_bytes (iter, end, length));
315
316 case DW_CFA_set_loc:
317 return skip_bytes (iter, end, encoded_ptr_width);
318
319 case DW_CFA_advance_loc1:
320 return skip_bytes (iter, end, 1);
321
322 case DW_CFA_advance_loc2:
323 return skip_bytes (iter, end, 2);
324
325 case DW_CFA_advance_loc4:
326 return skip_bytes (iter, end, 4);
327
328 case DW_CFA_MIPS_advance_loc8:
329 return skip_bytes (iter, end, 8);
330
331 default:
332 return FALSE;
333 }
334 }
335
336 /* Try to interpret the bytes between BUF and END as CFA instructions.
337 If every byte makes sense, return a pointer to the first DW_CFA_nop
338 padding byte, or END if there is no padding. Return null otherwise.
339 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
340
341 static bfd_byte *
342 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width)
343 {
344 bfd_byte *last;
345
346 last = buf;
347 while (buf < end)
348 if (*buf == DW_CFA_nop)
349 buf++;
350 else
351 {
352 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
353 return 0;
354 last = buf;
355 }
356 return last;
357 }
358
359 /* This function is called for each input file before the .eh_frame
360 section is relocated. It discards duplicate CIEs and FDEs for discarded
361 functions. The function returns TRUE iff any entries have been
362 deleted. */
363
364 bfd_boolean
365 _bfd_elf_discard_section_eh_frame
366 (bfd *abfd, struct bfd_link_info *info, asection *sec,
367 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
368 struct elf_reloc_cookie *cookie)
369 {
370 #define REQUIRE(COND) \
371 do \
372 if (!(COND)) \
373 goto free_no_table; \
374 while (0)
375
376 bfd_byte *ehbuf = NULL, *buf;
377 bfd_byte *last_cie, *last_fde;
378 struct eh_cie_fde *ent, *last_cie_inf, *this_inf;
379 struct cie_header hdr;
380 struct cie cie;
381 struct elf_link_hash_table *htab;
382 struct eh_frame_hdr_info *hdr_info;
383 struct eh_frame_sec_info *sec_info = NULL;
384 unsigned int cie_usage_count, offset;
385 unsigned int ptr_size;
386
387 if (sec->size == 0)
388 {
389 /* This file does not contain .eh_frame information. */
390 return FALSE;
391 }
392
393 if ((sec->output_section != NULL
394 && bfd_is_abs_section (sec->output_section)))
395 {
396 /* At least one of the sections is being discarded from the
397 link, so we should just ignore them. */
398 return FALSE;
399 }
400
401 htab = elf_hash_table (info);
402 hdr_info = &htab->eh_info;
403
404 /* Read the frame unwind information from abfd. */
405
406 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
407
408 if (sec->size >= 4
409 && bfd_get_32 (abfd, ehbuf) == 0
410 && cookie->rel == cookie->relend)
411 {
412 /* Empty .eh_frame section. */
413 free (ehbuf);
414 return FALSE;
415 }
416
417 /* If .eh_frame section size doesn't fit into int, we cannot handle
418 it (it would need to use 64-bit .eh_frame format anyway). */
419 REQUIRE (sec->size == (unsigned int) sec->size);
420
421 ptr_size = (get_elf_backend_data (abfd)
422 ->elf_backend_eh_frame_address_size (abfd, sec));
423 REQUIRE (ptr_size != 0);
424
425 buf = ehbuf;
426 last_cie = NULL;
427 last_cie_inf = NULL;
428 memset (&cie, 0, sizeof (cie));
429 cie_usage_count = 0;
430 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
431 + 99 * sizeof (struct eh_cie_fde));
432 REQUIRE (sec_info);
433
434 sec_info->alloced = 100;
435
436 #define ENSURE_NO_RELOCS(buf) \
437 REQUIRE (!(cookie->rel < cookie->relend \
438 && (cookie->rel->r_offset \
439 < (bfd_size_type) ((buf) - ehbuf)) \
440 && cookie->rel->r_info != 0))
441
442 #define SKIP_RELOCS(buf) \
443 while (cookie->rel < cookie->relend \
444 && (cookie->rel->r_offset \
445 < (bfd_size_type) ((buf) - ehbuf))) \
446 cookie->rel++
447
448 #define GET_RELOC(buf) \
449 ((cookie->rel < cookie->relend \
450 && (cookie->rel->r_offset \
451 == (bfd_size_type) ((buf) - ehbuf))) \
452 ? cookie->rel : NULL)
453
454 for (;;)
455 {
456 unsigned char *aug;
457 bfd_byte *start, *end, *insns;
458 bfd_size_type length;
459
460 if (sec_info->count == sec_info->alloced)
461 {
462 struct eh_cie_fde *old_entry = sec_info->entry;
463 sec_info = bfd_realloc (sec_info,
464 sizeof (struct eh_frame_sec_info)
465 + ((sec_info->alloced + 99)
466 * sizeof (struct eh_cie_fde)));
467 REQUIRE (sec_info);
468
469 memset (&sec_info->entry[sec_info->alloced], 0,
470 100 * sizeof (struct eh_cie_fde));
471 sec_info->alloced += 100;
472
473 /* Now fix any pointers into the array. */
474 if (last_cie_inf >= old_entry
475 && last_cie_inf < old_entry + sec_info->count)
476 last_cie_inf = sec_info->entry + (last_cie_inf - old_entry);
477 }
478
479 this_inf = sec_info->entry + sec_info->count;
480 last_fde = buf;
481 /* If we are at the end of the section, we still need to decide
482 on whether to output or discard last encountered CIE (if any). */
483 if ((bfd_size_type) (buf - ehbuf) == sec->size)
484 {
485 hdr.id = (unsigned int) -1;
486 end = buf;
487 }
488 else
489 {
490 /* Read the length of the entry. */
491 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
492 hdr.length = bfd_get_32 (abfd, buf - 4);
493
494 /* 64-bit .eh_frame is not supported. */
495 REQUIRE (hdr.length != 0xffffffff);
496
497 /* The CIE/FDE must be fully contained in this input section. */
498 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr.length <= sec->size);
499 end = buf + hdr.length;
500
501 this_inf->offset = last_fde - ehbuf;
502 this_inf->size = 4 + hdr.length;
503
504 if (hdr.length == 0)
505 {
506 /* A zero-length CIE should only be found at the end of
507 the section. */
508 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
509 ENSURE_NO_RELOCS (buf);
510 sec_info->count++;
511 /* Now just finish last encountered CIE processing and break
512 the loop. */
513 hdr.id = (unsigned int) -1;
514 }
515 else
516 {
517 REQUIRE (skip_bytes (&buf, end, 4));
518 hdr.id = bfd_get_32 (abfd, buf - 4);
519 REQUIRE (hdr.id != (unsigned int) -1);
520 }
521 }
522
523 if (hdr.id == 0 || hdr.id == (unsigned int) -1)
524 {
525 unsigned int initial_insn_length;
526
527 /* CIE */
528 if (last_cie != NULL)
529 {
530 /* Now check if this CIE is identical to the last CIE,
531 in which case we can remove it provided we adjust
532 all FDEs. Also, it can be removed if we have removed
533 all FDEs using it. */
534 if ((!info->relocatable
535 && hdr_info->last_cie_sec
536 && (sec->output_section
537 == hdr_info->last_cie_sec->output_section)
538 && cie_compare (&cie, &hdr_info->last_cie) == 0)
539 || cie_usage_count == 0)
540 last_cie_inf->removed = 1;
541 else
542 {
543 hdr_info->last_cie = cie;
544 hdr_info->last_cie_sec = sec;
545 last_cie_inf->make_relative = cie.make_relative;
546 last_cie_inf->make_lsda_relative = cie.make_lsda_relative;
547 last_cie_inf->per_encoding_relative
548 = (cie.per_encoding & 0x70) == DW_EH_PE_pcrel;
549 }
550 }
551
552 if (hdr.id == (unsigned int) -1)
553 break;
554
555 last_cie_inf = this_inf;
556 this_inf->cie = 1;
557
558 cie_usage_count = 0;
559 memset (&cie, 0, sizeof (cie));
560 cie.hdr = hdr;
561 REQUIRE (read_byte (&buf, end, &cie.version));
562
563 /* Cannot handle unknown versions. */
564 REQUIRE (cie.version == 1 || cie.version == 3);
565 REQUIRE (strlen (buf) < sizeof (cie.augmentation));
566
567 strcpy (cie.augmentation, buf);
568 buf = strchr (buf, '\0') + 1;
569 ENSURE_NO_RELOCS (buf);
570 if (buf[0] == 'e' && buf[1] == 'h')
571 {
572 /* GCC < 3.0 .eh_frame CIE */
573 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
574 is private to each CIE, so we don't need it for anything.
575 Just skip it. */
576 REQUIRE (skip_bytes (&buf, end, ptr_size));
577 SKIP_RELOCS (buf);
578 }
579 REQUIRE (read_uleb128 (&buf, end, &cie.code_align));
580 REQUIRE (read_sleb128 (&buf, end, &cie.data_align));
581 if (cie.version == 1)
582 {
583 REQUIRE (buf < end);
584 cie.ra_column = *buf++;
585 }
586 else
587 REQUIRE (read_uleb128 (&buf, end, &cie.ra_column));
588 ENSURE_NO_RELOCS (buf);
589 cie.lsda_encoding = DW_EH_PE_omit;
590 cie.fde_encoding = DW_EH_PE_omit;
591 cie.per_encoding = DW_EH_PE_omit;
592 aug = cie.augmentation;
593 if (aug[0] != 'e' || aug[1] != 'h')
594 {
595 if (*aug == 'z')
596 {
597 aug++;
598 REQUIRE (read_uleb128 (&buf, end, &cie.augmentation_size));
599 ENSURE_NO_RELOCS (buf);
600 }
601
602 while (*aug != '\0')
603 switch (*aug++)
604 {
605 case 'L':
606 REQUIRE (read_byte (&buf, end, &cie.lsda_encoding));
607 ENSURE_NO_RELOCS (buf);
608 REQUIRE (get_DW_EH_PE_width (cie.lsda_encoding, ptr_size));
609 break;
610 case 'R':
611 REQUIRE (read_byte (&buf, end, &cie.fde_encoding));
612 ENSURE_NO_RELOCS (buf);
613 REQUIRE (get_DW_EH_PE_width (cie.fde_encoding, ptr_size));
614 break;
615 case 'P':
616 {
617 int per_width;
618
619 REQUIRE (read_byte (&buf, end, &cie.per_encoding));
620 per_width = get_DW_EH_PE_width (cie.per_encoding,
621 ptr_size);
622 REQUIRE (per_width);
623 if ((cie.per_encoding & 0xf0) == DW_EH_PE_aligned)
624 {
625 length = -(buf - ehbuf) & (per_width - 1);
626 REQUIRE (skip_bytes (&buf, end, length));
627 }
628 ENSURE_NO_RELOCS (buf);
629 /* Ensure we have a reloc here, against
630 a global symbol. */
631 if (GET_RELOC (buf) != NULL)
632 {
633 unsigned long r_symndx;
634
635 #ifdef BFD64
636 if (ptr_size == 8)
637 r_symndx = ELF64_R_SYM (cookie->rel->r_info);
638 else
639 #endif
640 r_symndx = ELF32_R_SYM (cookie->rel->r_info);
641 if (r_symndx >= cookie->locsymcount)
642 {
643 struct elf_link_hash_entry *h;
644
645 r_symndx -= cookie->extsymoff;
646 h = cookie->sym_hashes[r_symndx];
647
648 while (h->root.type == bfd_link_hash_indirect
649 || h->root.type == bfd_link_hash_warning)
650 h = (struct elf_link_hash_entry *)
651 h->root.u.i.link;
652
653 cie.personality = h;
654 }
655 /* Cope with MIPS-style composite relocations. */
656 do
657 cookie->rel++;
658 while (GET_RELOC (buf) != NULL);
659 }
660 REQUIRE (skip_bytes (&buf, end, per_width));
661 }
662 break;
663 default:
664 /* Unrecognized augmentation. Better bail out. */
665 goto free_no_table;
666 }
667 }
668
669 /* For shared libraries, try to get rid of as many RELATIVE relocs
670 as possible. */
671 if (info->shared
672 && (get_elf_backend_data (abfd)
673 ->elf_backend_can_make_relative_eh_frame
674 (abfd, info, sec)))
675 {
676 if ((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr)
677 cie.make_relative = 1;
678 /* If the CIE doesn't already have an 'R' entry, it's fairly
679 easy to add one, provided that there's no aligned data
680 after the augmentation string. */
681 else if (cie.fde_encoding == DW_EH_PE_omit
682 && (cie.per_encoding & 0xf0) != DW_EH_PE_aligned)
683 {
684 if (*cie.augmentation == 0)
685 this_inf->add_augmentation_size = 1;
686 this_inf->add_fde_encoding = 1;
687 cie.make_relative = 1;
688 }
689 }
690
691 if (info->shared
692 && (get_elf_backend_data (abfd)
693 ->elf_backend_can_make_lsda_relative_eh_frame
694 (abfd, info, sec))
695 && (cie.lsda_encoding & 0xf0) == DW_EH_PE_absptr)
696 cie.make_lsda_relative = 1;
697
698 /* If FDE encoding was not specified, it defaults to
699 DW_EH_absptr. */
700 if (cie.fde_encoding == DW_EH_PE_omit)
701 cie.fde_encoding = DW_EH_PE_absptr;
702
703 initial_insn_length = end - buf;
704 if (initial_insn_length <= 50)
705 {
706 cie.initial_insn_length = initial_insn_length;
707 memcpy (cie.initial_instructions, buf, initial_insn_length);
708 }
709 insns = buf;
710 buf += initial_insn_length;
711 ENSURE_NO_RELOCS (buf);
712 last_cie = last_fde;
713 }
714 else
715 {
716 /* Ensure this FDE uses the last CIE encountered. */
717 REQUIRE (last_cie);
718 REQUIRE (hdr.id == (unsigned int) (buf - 4 - last_cie));
719
720 ENSURE_NO_RELOCS (buf);
721 REQUIRE (GET_RELOC (buf));
722
723 if ((*reloc_symbol_deleted_p) (buf - ehbuf, cookie))
724 /* This is a FDE against a discarded section. It should
725 be deleted. */
726 this_inf->removed = 1;
727 else
728 {
729 if (info->shared
730 && (((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr
731 && cie.make_relative == 0)
732 || (cie.fde_encoding & 0xf0) == DW_EH_PE_aligned))
733 {
734 /* If a shared library uses absolute pointers
735 which we cannot turn into PC relative,
736 don't create the binary search table,
737 since it is affected by runtime relocations. */
738 hdr_info->table = FALSE;
739 }
740 cie_usage_count++;
741 hdr_info->fde_count++;
742 }
743 /* Skip the initial location and address range. */
744 start = buf;
745 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
746 REQUIRE (skip_bytes (&buf, end, 2 * length));
747
748 /* Skip the augmentation size, if present. */
749 if (cie.augmentation[0] == 'z')
750 REQUIRE (read_uleb128 (&buf, end, &length));
751 else
752 length = 0;
753
754 /* Of the supported augmentation characters above, only 'L'
755 adds augmentation data to the FDE. This code would need to
756 be adjusted if any future augmentations do the same thing. */
757 if (cie.lsda_encoding != DW_EH_PE_omit)
758 {
759 this_inf->lsda_offset = buf - start;
760 /* If there's no 'z' augmentation, we don't know where the
761 CFA insns begin. Assume no padding. */
762 if (cie.augmentation[0] != 'z')
763 length = end - buf;
764 }
765
766 /* Skip over the augmentation data. */
767 REQUIRE (skip_bytes (&buf, end, length));
768 insns = buf;
769
770 buf = last_fde + 4 + hdr.length;
771 SKIP_RELOCS (buf);
772 }
773
774 /* Try to interpret the CFA instructions and find the first
775 padding nop. Shrink this_inf's size so that it doesn't
776 including the padding. */
777 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
778 insns = skip_non_nops (insns, end, length);
779 if (insns != 0)
780 this_inf->size -= end - insns;
781
782 this_inf->fde_encoding = cie.fde_encoding;
783 this_inf->lsda_encoding = cie.lsda_encoding;
784 sec_info->count++;
785 }
786
787 elf_section_data (sec)->sec_info = sec_info;
788 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
789
790 /* Ok, now we can assign new offsets. */
791 offset = 0;
792 last_cie_inf = hdr_info->last_cie_inf;
793 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
794 if (!ent->removed)
795 {
796 if (ent->cie)
797 last_cie_inf = ent;
798 else
799 ent->cie_inf = last_cie_inf;
800 ent->new_offset = offset;
801 offset += size_of_output_cie_fde (ent, ptr_size);
802 }
803 hdr_info->last_cie_inf = last_cie_inf;
804
805 /* Resize the sec as needed. */
806 sec->rawsize = sec->size;
807 sec->size = offset;
808 if (sec->size == 0)
809 sec->flags |= SEC_EXCLUDE;
810
811 free (ehbuf);
812 return offset != sec->rawsize;
813
814 free_no_table:
815 if (ehbuf)
816 free (ehbuf);
817 if (sec_info)
818 free (sec_info);
819 hdr_info->table = FALSE;
820 hdr_info->last_cie.hdr.length = 0;
821 return FALSE;
822
823 #undef REQUIRE
824 }
825
826 /* This function is called for .eh_frame_hdr section after
827 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
828 input sections. It finalizes the size of .eh_frame_hdr section. */
829
830 bfd_boolean
831 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
832 {
833 struct elf_link_hash_table *htab;
834 struct eh_frame_hdr_info *hdr_info;
835 asection *sec;
836
837 htab = elf_hash_table (info);
838 hdr_info = &htab->eh_info;
839 sec = hdr_info->hdr_sec;
840 if (sec == NULL)
841 return FALSE;
842
843 sec->size = EH_FRAME_HDR_SIZE;
844 if (hdr_info->table)
845 sec->size += 4 + hdr_info->fde_count * 8;
846
847 /* Request program headers to be recalculated. */
848 elf_tdata (abfd)->program_header_size = 0;
849 elf_tdata (abfd)->eh_frame_hdr = sec;
850 return TRUE;
851 }
852
853 /* This function is called from size_dynamic_sections.
854 It needs to decide whether .eh_frame_hdr should be output or not,
855 because later on it is too late for calling _bfd_strip_section_from_output,
856 since dynamic symbol table has been sized. */
857
858 bfd_boolean
859 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
860 {
861 asection *o;
862 bfd *abfd;
863 struct elf_link_hash_table *htab;
864 struct eh_frame_hdr_info *hdr_info;
865
866 htab = elf_hash_table (info);
867 hdr_info = &htab->eh_info;
868 if (hdr_info->hdr_sec == NULL)
869 return TRUE;
870
871 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
872 {
873 hdr_info->hdr_sec = NULL;
874 return TRUE;
875 }
876
877 abfd = NULL;
878 if (info->eh_frame_hdr)
879 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
880 {
881 /* Count only sections which have at least a single CIE or FDE.
882 There cannot be any CIE or FDE <= 8 bytes. */
883 o = bfd_get_section_by_name (abfd, ".eh_frame");
884 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
885 break;
886 }
887
888 if (abfd == NULL)
889 {
890 _bfd_strip_section_from_output (info, hdr_info->hdr_sec);
891 hdr_info->hdr_sec = NULL;
892 return TRUE;
893 }
894
895 hdr_info->table = TRUE;
896 return TRUE;
897 }
898
899 /* Adjust an address in the .eh_frame section. Given OFFSET within
900 SEC, this returns the new offset in the adjusted .eh_frame section,
901 or -1 if the address refers to a CIE/FDE which has been removed
902 or to offset with dynamic relocation which is no longer needed. */
903
904 bfd_vma
905 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
906 struct bfd_link_info *info,
907 asection *sec,
908 bfd_vma offset)
909 {
910 struct eh_frame_sec_info *sec_info;
911 struct elf_link_hash_table *htab;
912 struct eh_frame_hdr_info *hdr_info;
913 unsigned int lo, hi, mid;
914
915 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
916 return offset;
917 sec_info = elf_section_data (sec)->sec_info;
918
919 if (offset >= sec->rawsize)
920 return offset - sec->rawsize + sec->size;
921
922 htab = elf_hash_table (info);
923 hdr_info = &htab->eh_info;
924 if (hdr_info->offsets_adjusted)
925 offset += sec->output_offset;
926
927 lo = 0;
928 hi = sec_info->count;
929 mid = 0;
930 while (lo < hi)
931 {
932 mid = (lo + hi) / 2;
933 if (offset < sec_info->entry[mid].offset)
934 hi = mid;
935 else if (offset
936 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
937 lo = mid + 1;
938 else
939 break;
940 }
941
942 BFD_ASSERT (lo < hi);
943
944 /* FDE or CIE was removed. */
945 if (sec_info->entry[mid].removed)
946 return (bfd_vma) -1;
947
948 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
949 relocation against FDE's initial_location field. */
950 if (!sec_info->entry[mid].cie
951 && sec_info->entry[mid].cie_inf->make_relative
952 && offset == sec_info->entry[mid].offset + 8)
953 return (bfd_vma) -2;
954
955 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
956 for run-time relocation against LSDA field. */
957 if (!sec_info->entry[mid].cie
958 && sec_info->entry[mid].cie_inf->make_lsda_relative
959 && (offset == (sec_info->entry[mid].offset + 8
960 + sec_info->entry[mid].lsda_offset))
961 && (sec_info->entry[mid].cie_inf->need_lsda_relative
962 || !hdr_info->offsets_adjusted))
963 {
964 sec_info->entry[mid].cie_inf->need_lsda_relative = 1;
965 return (bfd_vma) -2;
966 }
967
968 if (hdr_info->offsets_adjusted)
969 offset -= sec->output_offset;
970 /* Any new augmentation bytes go before the first relocation. */
971 return (offset + sec_info->entry[mid].new_offset
972 - sec_info->entry[mid].offset
973 + extra_augmentation_string_bytes (sec_info->entry + mid)
974 + extra_augmentation_data_bytes (sec_info->entry + mid));
975 }
976
977 /* Write out .eh_frame section. This is called with the relocated
978 contents. */
979
980 bfd_boolean
981 _bfd_elf_write_section_eh_frame (bfd *abfd,
982 struct bfd_link_info *info,
983 asection *sec,
984 bfd_byte *contents)
985 {
986 struct eh_frame_sec_info *sec_info;
987 struct elf_link_hash_table *htab;
988 struct eh_frame_hdr_info *hdr_info;
989 unsigned int ptr_size;
990 struct eh_cie_fde *ent;
991
992 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
993 return bfd_set_section_contents (abfd, sec->output_section, contents,
994 sec->output_offset, sec->size);
995
996 ptr_size = (get_elf_backend_data (abfd)
997 ->elf_backend_eh_frame_address_size (abfd, sec));
998 BFD_ASSERT (ptr_size != 0);
999
1000 sec_info = elf_section_data (sec)->sec_info;
1001 htab = elf_hash_table (info);
1002 hdr_info = &htab->eh_info;
1003
1004 /* First convert all offsets to output section offsets, so that a
1005 CIE offset is valid if the CIE is used by a FDE from some other
1006 section. This can happen when duplicate CIEs are deleted in
1007 _bfd_elf_discard_section_eh_frame. We do all sections here because
1008 this function might not be called on sections in the same order as
1009 _bfd_elf_discard_section_eh_frame. */
1010 if (!hdr_info->offsets_adjusted)
1011 {
1012 bfd *ibfd;
1013 asection *eh;
1014 struct eh_frame_sec_info *eh_inf;
1015
1016 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1017 {
1018 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1019 || (ibfd->flags & DYNAMIC) != 0)
1020 continue;
1021
1022 eh = bfd_get_section_by_name (ibfd, ".eh_frame");
1023 if (eh == NULL || eh->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1024 continue;
1025
1026 eh_inf = elf_section_data (eh)->sec_info;
1027 for (ent = eh_inf->entry; ent < eh_inf->entry + eh_inf->count; ++ent)
1028 {
1029 ent->offset += eh->output_offset;
1030 ent->new_offset += eh->output_offset;
1031 }
1032 }
1033 hdr_info->offsets_adjusted = TRUE;
1034 }
1035
1036 if (hdr_info->table && hdr_info->array == NULL)
1037 hdr_info->array
1038 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1039 if (hdr_info->array == NULL)
1040 hdr_info = NULL;
1041
1042 /* The new offsets can be bigger or smaller than the original offsets.
1043 We therefore need to make two passes over the section: one backward
1044 pass to move entries up and one forward pass to move entries down.
1045 The two passes won't interfere with each other because entries are
1046 not reordered */
1047 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1048 if (!ent->removed && ent->new_offset > ent->offset)
1049 memmove (contents + ent->new_offset - sec->output_offset,
1050 contents + ent->offset - sec->output_offset, ent->size);
1051
1052 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1053 if (!ent->removed && ent->new_offset < ent->offset)
1054 memmove (contents + ent->new_offset - sec->output_offset,
1055 contents + ent->offset - sec->output_offset, ent->size);
1056
1057 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1058 {
1059 unsigned char *buf, *end;
1060 unsigned int new_size;
1061
1062 if (ent->removed)
1063 continue;
1064
1065 if (ent->size == 4)
1066 {
1067 /* Any terminating FDE must be at the end of the section. */
1068 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1069 continue;
1070 }
1071
1072 buf = contents + ent->new_offset - sec->output_offset;
1073 end = buf + ent->size;
1074 new_size = size_of_output_cie_fde (ent, ptr_size);
1075
1076 /* Install the new size, filling the extra bytes with DW_CFA_nops. */
1077 if (new_size != ent->size)
1078 {
1079 memset (end, 0, new_size - ent->size);
1080 bfd_put_32 (abfd, new_size - 4, buf);
1081 }
1082
1083 if (ent->cie)
1084 {
1085 /* CIE */
1086 if (ent->make_relative
1087 || ent->need_lsda_relative
1088 || ent->per_encoding_relative)
1089 {
1090 unsigned char *aug;
1091 unsigned int action, extra_string, extra_data;
1092 unsigned int per_width, per_encoding;
1093
1094 /* Need to find 'R' or 'L' augmentation's argument and modify
1095 DW_EH_PE_* value. */
1096 action = ((ent->make_relative ? 1 : 0)
1097 | (ent->need_lsda_relative ? 2 : 0)
1098 | (ent->per_encoding_relative ? 4 : 0));
1099 extra_string = extra_augmentation_string_bytes (ent);
1100 extra_data = extra_augmentation_data_bytes (ent);
1101
1102 /* Skip length, id and version. */
1103 buf += 9;
1104 aug = buf;
1105 buf = strchr (buf, '\0') + 1;
1106 skip_leb128 (&buf, end);
1107 skip_leb128 (&buf, end);
1108 skip_leb128 (&buf, end);
1109 if (*aug == 'z')
1110 {
1111 /* The uleb128 will always be a single byte for the kind
1112 of augmentation strings that we're prepared to handle. */
1113 *buf++ += extra_data;
1114 aug++;
1115 }
1116
1117 /* Make room for the new augmentation string and data bytes. */
1118 memmove (buf + extra_string + extra_data, buf, end - buf);
1119 memmove (aug + extra_string, aug, buf - aug);
1120 buf += extra_string;
1121 end += extra_string + extra_data;
1122
1123 if (ent->add_augmentation_size)
1124 {
1125 *aug++ = 'z';
1126 *buf++ = extra_data - 1;
1127 }
1128 if (ent->add_fde_encoding)
1129 {
1130 BFD_ASSERT (action & 1);
1131 *aug++ = 'R';
1132 *buf++ = DW_EH_PE_pcrel;
1133 action &= ~1;
1134 }
1135
1136 while (action)
1137 switch (*aug++)
1138 {
1139 case 'L':
1140 if (action & 2)
1141 {
1142 BFD_ASSERT (*buf == ent->lsda_encoding);
1143 *buf |= DW_EH_PE_pcrel;
1144 action &= ~2;
1145 }
1146 buf++;
1147 break;
1148 case 'P':
1149 per_encoding = *buf++;
1150 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1151 BFD_ASSERT (per_width != 0);
1152 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1153 == ent->per_encoding_relative);
1154 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1155 buf = (contents
1156 + ((buf - contents + per_width - 1)
1157 & ~((bfd_size_type) per_width - 1)));
1158 if (action & 4)
1159 {
1160 bfd_vma val;
1161
1162 val = read_value (abfd, buf, per_width,
1163 get_DW_EH_PE_signed (per_encoding));
1164 val += ent->offset - ent->new_offset;
1165 val -= extra_string + extra_data;
1166 write_value (abfd, buf, val, per_width);
1167 action &= ~4;
1168 }
1169 buf += per_width;
1170 break;
1171 case 'R':
1172 if (action & 1)
1173 {
1174 BFD_ASSERT (*buf == ent->fde_encoding);
1175 *buf |= DW_EH_PE_pcrel;
1176 action &= ~1;
1177 }
1178 buf++;
1179 break;
1180 default:
1181 BFD_FAIL ();
1182 }
1183 }
1184 }
1185 else
1186 {
1187 /* FDE */
1188 bfd_vma value, address;
1189 unsigned int width;
1190
1191 /* Skip length. */
1192 buf += 4;
1193 value = ent->new_offset + 4 - ent->cie_inf->new_offset;
1194 bfd_put_32 (abfd, value, buf);
1195 buf += 4;
1196 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1197 value = read_value (abfd, buf, width,
1198 get_DW_EH_PE_signed (ent->fde_encoding));
1199 address = value;
1200 if (value)
1201 {
1202 switch (ent->fde_encoding & 0xf0)
1203 {
1204 case DW_EH_PE_indirect:
1205 case DW_EH_PE_textrel:
1206 BFD_ASSERT (hdr_info == NULL);
1207 break;
1208 case DW_EH_PE_datarel:
1209 {
1210 asection *got = bfd_get_section_by_name (abfd, ".got");
1211
1212 BFD_ASSERT (got != NULL);
1213 address += got->vma;
1214 }
1215 break;
1216 case DW_EH_PE_pcrel:
1217 value += ent->offset - ent->new_offset;
1218 address += sec->output_section->vma + ent->offset + 8;
1219 break;
1220 }
1221 if (ent->cie_inf->make_relative)
1222 value -= sec->output_section->vma + ent->new_offset + 8;
1223 write_value (abfd, buf, value, width);
1224 }
1225
1226 if (hdr_info)
1227 {
1228 hdr_info->array[hdr_info->array_count].initial_loc = address;
1229 hdr_info->array[hdr_info->array_count++].fde
1230 = sec->output_section->vma + ent->new_offset;
1231 }
1232
1233 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1234 || ent->cie_inf->need_lsda_relative)
1235 {
1236 buf += ent->lsda_offset;
1237 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1238 value = read_value (abfd, buf, width,
1239 get_DW_EH_PE_signed (ent->lsda_encoding));
1240 if (value)
1241 {
1242 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1243 value += ent->offset - ent->new_offset;
1244 else if (ent->cie_inf->need_lsda_relative)
1245 value -= (sec->output_section->vma + ent->new_offset + 8
1246 + ent->lsda_offset);
1247 write_value (abfd, buf, value, width);
1248 }
1249 }
1250 else if (ent->cie_inf->add_augmentation_size)
1251 {
1252 /* Skip the PC and length and insert a zero byte for the
1253 augmentation size. */
1254 buf += width * 2;
1255 memmove (buf + 1, buf, end - buf);
1256 *buf = 0;
1257 }
1258 }
1259 }
1260
1261 {
1262 unsigned int alignment = 1 << sec->alignment_power;
1263 unsigned int pad = sec->size % alignment;
1264
1265 /* Don't pad beyond the raw size of the output section. It
1266 can happen at the last input section. */
1267 if (pad
1268 && ((sec->output_offset + sec->size + pad)
1269 <= sec->output_section->size))
1270 {
1271 bfd_byte *buf;
1272 unsigned int new_size;
1273
1274 /* Find the last CIE/FDE. */
1275 ent = sec_info->entry + sec_info->count;
1276 while (--ent != sec_info->entry)
1277 if (!ent->removed)
1278 break;
1279
1280 /* The size of the last CIE/FDE must be at least 4. */
1281 if (ent->removed || ent->size < 4)
1282 abort ();
1283
1284 pad = alignment - pad;
1285 buf = contents + ent->new_offset - sec->output_offset;
1286 new_size = size_of_output_cie_fde (ent, ptr_size);
1287
1288 /* Pad it with DW_CFA_nop */
1289 memset (buf + new_size, 0, pad);
1290 bfd_put_32 (abfd, new_size + pad - 4, buf);
1291
1292 sec->size += pad;
1293 }
1294 }
1295
1296 return bfd_set_section_contents (abfd, sec->output_section,
1297 contents, (file_ptr) sec->output_offset,
1298 sec->size);
1299 }
1300
1301 /* Helper function used to sort .eh_frame_hdr search table by increasing
1302 VMA of FDE initial location. */
1303
1304 static int
1305 vma_compare (const void *a, const void *b)
1306 {
1307 const struct eh_frame_array_ent *p = a;
1308 const struct eh_frame_array_ent *q = b;
1309 if (p->initial_loc > q->initial_loc)
1310 return 1;
1311 if (p->initial_loc < q->initial_loc)
1312 return -1;
1313 return 0;
1314 }
1315
1316 /* Write out .eh_frame_hdr section. This must be called after
1317 _bfd_elf_write_section_eh_frame has been called on all input
1318 .eh_frame sections.
1319 .eh_frame_hdr format:
1320 ubyte version (currently 1)
1321 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1322 .eh_frame section)
1323 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1324 number (or DW_EH_PE_omit if there is no
1325 binary search table computed))
1326 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1327 or DW_EH_PE_omit if not present.
1328 DW_EH_PE_datarel is using address of
1329 .eh_frame_hdr section start as base)
1330 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1331 optionally followed by:
1332 [encoded] fde_count (total number of FDEs in .eh_frame section)
1333 fde_count x [encoded] initial_loc, fde
1334 (array of encoded pairs containing
1335 FDE initial_location field and FDE address,
1336 sorted by increasing initial_loc). */
1337
1338 bfd_boolean
1339 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1340 {
1341 struct elf_link_hash_table *htab;
1342 struct eh_frame_hdr_info *hdr_info;
1343 asection *sec;
1344 bfd_byte *contents;
1345 asection *eh_frame_sec;
1346 bfd_size_type size;
1347 bfd_boolean retval;
1348 bfd_vma encoded_eh_frame;
1349
1350 htab = elf_hash_table (info);
1351 hdr_info = &htab->eh_info;
1352 sec = hdr_info->hdr_sec;
1353 if (sec == NULL)
1354 return TRUE;
1355
1356 size = EH_FRAME_HDR_SIZE;
1357 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1358 size += 4 + hdr_info->fde_count * 8;
1359 contents = bfd_malloc (size);
1360 if (contents == NULL)
1361 return FALSE;
1362
1363 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1364 if (eh_frame_sec == NULL)
1365 {
1366 free (contents);
1367 return FALSE;
1368 }
1369
1370 memset (contents, 0, EH_FRAME_HDR_SIZE);
1371 contents[0] = 1; /* Version. */
1372 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1373 (abfd, info, eh_frame_sec, 0, sec, 4,
1374 &encoded_eh_frame); /* .eh_frame offset. */
1375
1376 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1377 {
1378 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1379 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1380 }
1381 else
1382 {
1383 contents[2] = DW_EH_PE_omit;
1384 contents[3] = DW_EH_PE_omit;
1385 }
1386 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1387
1388 if (contents[2] != DW_EH_PE_omit)
1389 {
1390 unsigned int i;
1391
1392 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1393 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1394 vma_compare);
1395 for (i = 0; i < hdr_info->fde_count; i++)
1396 {
1397 bfd_put_32 (abfd,
1398 hdr_info->array[i].initial_loc
1399 - sec->output_section->vma,
1400 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1401 bfd_put_32 (abfd,
1402 hdr_info->array[i].fde - sec->output_section->vma,
1403 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1404 }
1405 }
1406
1407 retval = bfd_set_section_contents (abfd, sec->output_section,
1408 contents, (file_ptr) sec->output_offset,
1409 sec->size);
1410 free (contents);
1411 return retval;
1412 }
1413
1414 /* Return the width of FDE addresses. This is the default implementation. */
1415
1416 unsigned int
1417 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1418 {
1419 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1420 }
1421
1422 /* Decide whether we can use a PC-relative encoding within the given
1423 EH frame section. This is the default implementation. */
1424
1425 bfd_boolean
1426 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1427 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1428 asection *eh_frame_section ATTRIBUTE_UNUSED)
1429 {
1430 return TRUE;
1431 }
1432
1433 /* Select an encoding for the given address. Preference is given to
1434 PC-relative addressing modes. */
1435
1436 bfd_byte
1437 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1438 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1439 asection *osec, bfd_vma offset,
1440 asection *loc_sec, bfd_vma loc_offset,
1441 bfd_vma *encoded)
1442 {
1443 *encoded = osec->vma + offset -
1444 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1445 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1446 }
This page took 0.060173 seconds and 5 git commands to generate.