* dwarf2.c: Formatting.
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Written by Jakub Jelinek <jakub@redhat.com>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/dwarf2.h"
26
27 #define EH_FRAME_HDR_SIZE 8
28
29 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
30 move onto the next byte. Return true on success. */
31
32 static inline bfd_boolean
33 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
34 {
35 if (*iter >= end)
36 return FALSE;
37 *result = *((*iter)++);
38 return TRUE;
39 }
40
41 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
42 Return true it was possible to move LENGTH bytes. */
43
44 static inline bfd_boolean
45 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
46 {
47 if ((bfd_size_type) (end - *iter) < length)
48 {
49 *iter = end;
50 return FALSE;
51 }
52 *iter += length;
53 return TRUE;
54 }
55
56 /* Move *ITER over an leb128, stopping at END. Return true if the end
57 of the leb128 was found. */
58
59 static bfd_boolean
60 skip_leb128 (bfd_byte **iter, bfd_byte *end)
61 {
62 unsigned char byte;
63 do
64 if (!read_byte (iter, end, &byte))
65 return FALSE;
66 while (byte & 0x80);
67 return TRUE;
68 }
69
70 /* Like skip_leb128, but treat the leb128 as an unsigned value and
71 store it in *VALUE. */
72
73 static bfd_boolean
74 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
75 {
76 bfd_byte *start, *p;
77
78 start = *iter;
79 if (!skip_leb128 (iter, end))
80 return FALSE;
81
82 p = *iter;
83 *value = *--p;
84 while (p > start)
85 *value = (*value << 7) | (*--p & 0x7f);
86
87 return TRUE;
88 }
89
90 /* Like read_uleb128, but for signed values. */
91
92 static bfd_boolean
93 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
94 {
95 bfd_byte *start, *p;
96
97 start = *iter;
98 if (!skip_leb128 (iter, end))
99 return FALSE;
100
101 p = *iter;
102 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
103 while (p > start)
104 *value = (*value << 7) | (*--p & 0x7f);
105
106 return TRUE;
107 }
108
109 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
110
111 static
112 int get_DW_EH_PE_width (int encoding, int ptr_size)
113 {
114 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
115 was added to bfd. */
116 if ((encoding & 0x60) == 0x60)
117 return 0;
118
119 switch (encoding & 7)
120 {
121 case DW_EH_PE_udata2: return 2;
122 case DW_EH_PE_udata4: return 4;
123 case DW_EH_PE_udata8: return 8;
124 case DW_EH_PE_absptr: return ptr_size;
125 default:
126 break;
127 }
128
129 return 0;
130 }
131
132 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
133
134 /* Read a width sized value from memory. */
135
136 static bfd_vma
137 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
138 {
139 bfd_vma value;
140
141 switch (width)
142 {
143 case 2:
144 if (is_signed)
145 value = bfd_get_signed_16 (abfd, buf);
146 else
147 value = bfd_get_16 (abfd, buf);
148 break;
149 case 4:
150 if (is_signed)
151 value = bfd_get_signed_32 (abfd, buf);
152 else
153 value = bfd_get_32 (abfd, buf);
154 break;
155 case 8:
156 if (is_signed)
157 value = bfd_get_signed_64 (abfd, buf);
158 else
159 value = bfd_get_64 (abfd, buf);
160 break;
161 default:
162 BFD_FAIL ();
163 return 0;
164 }
165
166 return value;
167 }
168
169 /* Store a width sized value to memory. */
170
171 static void
172 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
173 {
174 switch (width)
175 {
176 case 2: bfd_put_16 (abfd, value, buf); break;
177 case 4: bfd_put_32 (abfd, value, buf); break;
178 case 8: bfd_put_64 (abfd, value, buf); break;
179 default: BFD_FAIL ();
180 }
181 }
182
183 /* Return zero if C1 and C2 CIEs can be merged. */
184
185 static
186 int cie_compare (struct cie *c1, struct cie *c2)
187 {
188 if (c1->hdr.length == c2->hdr.length
189 && c1->version == c2->version
190 && strcmp (c1->augmentation, c2->augmentation) == 0
191 && strcmp (c1->augmentation, "eh") != 0
192 && c1->code_align == c2->code_align
193 && c1->data_align == c2->data_align
194 && c1->ra_column == c2->ra_column
195 && c1->augmentation_size == c2->augmentation_size
196 && c1->personality == c2->personality
197 && c1->per_encoding == c2->per_encoding
198 && c1->lsda_encoding == c2->lsda_encoding
199 && c1->fde_encoding == c2->fde_encoding
200 && c1->initial_insn_length == c2->initial_insn_length
201 && memcmp (c1->initial_instructions,
202 c2->initial_instructions,
203 c1->initial_insn_length) == 0)
204 return 0;
205
206 return 1;
207 }
208
209 /* Return the number of extra bytes that we'll be inserting into
210 ENTRY's augmentation string. */
211
212 static INLINE unsigned int
213 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
214 {
215 unsigned int size = 0;
216 if (entry->cie)
217 {
218 if (entry->add_augmentation_size)
219 size++;
220 if (entry->add_fde_encoding)
221 size++;
222 }
223 return size;
224 }
225
226 /* Likewise ENTRY's augmentation data. */
227
228 static INLINE unsigned int
229 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
230 {
231 unsigned int size = 0;
232 if (entry->cie)
233 {
234 if (entry->add_augmentation_size)
235 size++;
236 if (entry->add_fde_encoding)
237 size++;
238 }
239 else
240 {
241 if (entry->cie_inf->add_augmentation_size)
242 size++;
243 }
244 return size;
245 }
246
247 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
248 required alignment of ENTRY in bytes. */
249
250 static unsigned int
251 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
252 {
253 if (entry->removed)
254 return 0;
255 if (entry->size == 4)
256 return 4;
257 return (entry->size
258 + extra_augmentation_string_bytes (entry)
259 + extra_augmentation_data_bytes (entry)
260 + alignment - 1) & -alignment;
261 }
262
263 /* Assume that the bytes between *ITER and END are CFA instructions.
264 Try to move *ITER past the first instruction and return true on
265 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
266
267 static bfd_boolean
268 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
269 {
270 bfd_byte op;
271 bfd_vma length;
272
273 if (!read_byte (iter, end, &op))
274 return FALSE;
275
276 switch (op & 0x80 ? op & 0xc0 : op)
277 {
278 case DW_CFA_nop:
279 case DW_CFA_advance_loc:
280 case DW_CFA_restore:
281 /* No arguments. */
282 return TRUE;
283
284 case DW_CFA_offset:
285 case DW_CFA_restore_extended:
286 case DW_CFA_undefined:
287 case DW_CFA_same_value:
288 case DW_CFA_def_cfa_register:
289 case DW_CFA_def_cfa_offset:
290 case DW_CFA_def_cfa_offset_sf:
291 case DW_CFA_GNU_args_size:
292 /* One leb128 argument. */
293 return skip_leb128 (iter, end);
294
295 case DW_CFA_offset_extended:
296 case DW_CFA_register:
297 case DW_CFA_def_cfa:
298 case DW_CFA_offset_extended_sf:
299 case DW_CFA_GNU_negative_offset_extended:
300 case DW_CFA_def_cfa_sf:
301 /* Two leb128 arguments. */
302 return (skip_leb128 (iter, end)
303 && skip_leb128 (iter, end));
304
305 case DW_CFA_def_cfa_expression:
306 /* A variable-length argument. */
307 return (read_uleb128 (iter, end, &length)
308 && skip_bytes (iter, end, length));
309
310 case DW_CFA_expression:
311 /* A leb128 followed by a variable-length argument. */
312 return (skip_leb128 (iter, end)
313 && read_uleb128 (iter, end, &length)
314 && skip_bytes (iter, end, length));
315
316 case DW_CFA_set_loc:
317 return skip_bytes (iter, end, encoded_ptr_width);
318
319 case DW_CFA_advance_loc1:
320 return skip_bytes (iter, end, 1);
321
322 case DW_CFA_advance_loc2:
323 return skip_bytes (iter, end, 2);
324
325 case DW_CFA_advance_loc4:
326 return skip_bytes (iter, end, 4);
327
328 case DW_CFA_MIPS_advance_loc8:
329 return skip_bytes (iter, end, 8);
330
331 default:
332 return FALSE;
333 }
334 }
335
336 /* Try to interpret the bytes between BUF and END as CFA instructions.
337 If every byte makes sense, return a pointer to the first DW_CFA_nop
338 padding byte, or END if there is no padding. Return null otherwise.
339 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
340
341 static bfd_byte *
342 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width)
343 {
344 bfd_byte *last;
345
346 last = buf;
347 while (buf < end)
348 if (*buf == DW_CFA_nop)
349 buf++;
350 else
351 {
352 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
353 return 0;
354 last = buf;
355 }
356 return last;
357 }
358
359 /* This function is called for each input file before the .eh_frame
360 section is relocated. It discards duplicate CIEs and FDEs for discarded
361 functions. The function returns TRUE iff any entries have been
362 deleted. */
363
364 bfd_boolean
365 _bfd_elf_discard_section_eh_frame
366 (bfd *abfd, struct bfd_link_info *info, asection *sec,
367 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
368 struct elf_reloc_cookie *cookie)
369 {
370 #define REQUIRE(COND) \
371 do \
372 if (!(COND)) \
373 goto free_no_table; \
374 while (0)
375
376 bfd_byte *ehbuf = NULL, *buf;
377 bfd_byte *last_cie, *last_fde;
378 struct eh_cie_fde *ent, *last_cie_inf, *this_inf;
379 struct cie_header hdr;
380 struct cie cie;
381 struct elf_link_hash_table *htab;
382 struct eh_frame_hdr_info *hdr_info;
383 struct eh_frame_sec_info *sec_info = NULL;
384 unsigned int cie_usage_count, offset;
385 unsigned int ptr_size;
386
387 if (sec->size == 0)
388 {
389 /* This file does not contain .eh_frame information. */
390 return FALSE;
391 }
392
393 if (bfd_is_abs_section (sec->output_section))
394 {
395 /* At least one of the sections is being discarded from the
396 link, so we should just ignore them. */
397 return FALSE;
398 }
399
400 htab = elf_hash_table (info);
401 hdr_info = &htab->eh_info;
402
403 /* Read the frame unwind information from abfd. */
404
405 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
406
407 if (sec->size >= 4
408 && bfd_get_32 (abfd, ehbuf) == 0
409 && cookie->rel == cookie->relend)
410 {
411 /* Empty .eh_frame section. */
412 free (ehbuf);
413 return FALSE;
414 }
415
416 /* If .eh_frame section size doesn't fit into int, we cannot handle
417 it (it would need to use 64-bit .eh_frame format anyway). */
418 REQUIRE (sec->size == (unsigned int) sec->size);
419
420 ptr_size = (get_elf_backend_data (abfd)
421 ->elf_backend_eh_frame_address_size (abfd, sec));
422 REQUIRE (ptr_size != 0);
423
424 buf = ehbuf;
425 last_cie = NULL;
426 last_cie_inf = NULL;
427 memset (&cie, 0, sizeof (cie));
428 cie_usage_count = 0;
429 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
430 + 99 * sizeof (struct eh_cie_fde));
431 REQUIRE (sec_info);
432
433 sec_info->alloced = 100;
434
435 #define ENSURE_NO_RELOCS(buf) \
436 REQUIRE (!(cookie->rel < cookie->relend \
437 && (cookie->rel->r_offset \
438 < (bfd_size_type) ((buf) - ehbuf)) \
439 && cookie->rel->r_info != 0))
440
441 #define SKIP_RELOCS(buf) \
442 while (cookie->rel < cookie->relend \
443 && (cookie->rel->r_offset \
444 < (bfd_size_type) ((buf) - ehbuf))) \
445 cookie->rel++
446
447 #define GET_RELOC(buf) \
448 ((cookie->rel < cookie->relend \
449 && (cookie->rel->r_offset \
450 == (bfd_size_type) ((buf) - ehbuf))) \
451 ? cookie->rel : NULL)
452
453 for (;;)
454 {
455 char *aug;
456 bfd_byte *start, *end, *insns;
457 bfd_size_type length;
458
459 if (sec_info->count == sec_info->alloced)
460 {
461 struct eh_cie_fde *old_entry = sec_info->entry;
462 sec_info = bfd_realloc (sec_info,
463 sizeof (struct eh_frame_sec_info)
464 + ((sec_info->alloced + 99)
465 * sizeof (struct eh_cie_fde)));
466 REQUIRE (sec_info);
467
468 memset (&sec_info->entry[sec_info->alloced], 0,
469 100 * sizeof (struct eh_cie_fde));
470 sec_info->alloced += 100;
471
472 /* Now fix any pointers into the array. */
473 if (last_cie_inf >= old_entry
474 && last_cie_inf < old_entry + sec_info->count)
475 last_cie_inf = sec_info->entry + (last_cie_inf - old_entry);
476 }
477
478 this_inf = sec_info->entry + sec_info->count;
479 last_fde = buf;
480 /* If we are at the end of the section, we still need to decide
481 on whether to output or discard last encountered CIE (if any). */
482 if ((bfd_size_type) (buf - ehbuf) == sec->size)
483 {
484 hdr.length = 0;
485 hdr.id = (unsigned int) -1;
486 end = buf;
487 }
488 else
489 {
490 /* Read the length of the entry. */
491 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
492 hdr.length = bfd_get_32 (abfd, buf - 4);
493
494 /* 64-bit .eh_frame is not supported. */
495 REQUIRE (hdr.length != 0xffffffff);
496
497 /* The CIE/FDE must be fully contained in this input section. */
498 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr.length <= sec->size);
499 end = buf + hdr.length;
500
501 this_inf->offset = last_fde - ehbuf;
502 this_inf->size = 4 + hdr.length;
503
504 if (hdr.length == 0)
505 {
506 /* A zero-length CIE should only be found at the end of
507 the section. */
508 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
509 ENSURE_NO_RELOCS (buf);
510 sec_info->count++;
511 /* Now just finish last encountered CIE processing and break
512 the loop. */
513 hdr.id = (unsigned int) -1;
514 }
515 else
516 {
517 REQUIRE (skip_bytes (&buf, end, 4));
518 hdr.id = bfd_get_32 (abfd, buf - 4);
519 REQUIRE (hdr.id != (unsigned int) -1);
520 }
521 }
522
523 if (hdr.id == 0 || hdr.id == (unsigned int) -1)
524 {
525 unsigned int initial_insn_length;
526
527 /* CIE */
528 if (last_cie != NULL)
529 {
530 /* Now check if this CIE is identical to the last CIE,
531 in which case we can remove it provided we adjust
532 all FDEs. Also, it can be removed if we have removed
533 all FDEs using it. */
534 if ((!info->relocatable
535 && hdr_info->last_cie_sec
536 && (sec->output_section
537 == hdr_info->last_cie_sec->output_section)
538 && cie_compare (&cie, &hdr_info->last_cie) == 0)
539 || cie_usage_count == 0)
540 last_cie_inf->removed = 1;
541 else
542 {
543 hdr_info->last_cie = cie;
544 hdr_info->last_cie_sec = sec;
545 last_cie_inf->make_relative = cie.make_relative;
546 last_cie_inf->make_lsda_relative = cie.make_lsda_relative;
547 last_cie_inf->per_encoding_relative
548 = (cie.per_encoding & 0x70) == DW_EH_PE_pcrel;
549 }
550 }
551
552 if (hdr.id == (unsigned int) -1)
553 break;
554
555 last_cie_inf = this_inf;
556 this_inf->cie = 1;
557
558 cie_usage_count = 0;
559 memset (&cie, 0, sizeof (cie));
560 cie.hdr = hdr;
561 REQUIRE (read_byte (&buf, end, &cie.version));
562
563 /* Cannot handle unknown versions. */
564 REQUIRE (cie.version == 1 || cie.version == 3);
565 REQUIRE (strlen ((char *) buf) < sizeof (cie.augmentation));
566
567 strcpy (cie.augmentation, (char *) buf);
568 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
569 ENSURE_NO_RELOCS (buf);
570 if (buf[0] == 'e' && buf[1] == 'h')
571 {
572 /* GCC < 3.0 .eh_frame CIE */
573 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
574 is private to each CIE, so we don't need it for anything.
575 Just skip it. */
576 REQUIRE (skip_bytes (&buf, end, ptr_size));
577 SKIP_RELOCS (buf);
578 }
579 REQUIRE (read_uleb128 (&buf, end, &cie.code_align));
580 REQUIRE (read_sleb128 (&buf, end, &cie.data_align));
581 if (cie.version == 1)
582 {
583 REQUIRE (buf < end);
584 cie.ra_column = *buf++;
585 }
586 else
587 REQUIRE (read_uleb128 (&buf, end, &cie.ra_column));
588 ENSURE_NO_RELOCS (buf);
589 cie.lsda_encoding = DW_EH_PE_omit;
590 cie.fde_encoding = DW_EH_PE_omit;
591 cie.per_encoding = DW_EH_PE_omit;
592 aug = cie.augmentation;
593 if (aug[0] != 'e' || aug[1] != 'h')
594 {
595 if (*aug == 'z')
596 {
597 aug++;
598 REQUIRE (read_uleb128 (&buf, end, &cie.augmentation_size));
599 ENSURE_NO_RELOCS (buf);
600 }
601
602 while (*aug != '\0')
603 switch (*aug++)
604 {
605 case 'L':
606 REQUIRE (read_byte (&buf, end, &cie.lsda_encoding));
607 ENSURE_NO_RELOCS (buf);
608 REQUIRE (get_DW_EH_PE_width (cie.lsda_encoding, ptr_size));
609 break;
610 case 'R':
611 REQUIRE (read_byte (&buf, end, &cie.fde_encoding));
612 ENSURE_NO_RELOCS (buf);
613 REQUIRE (get_DW_EH_PE_width (cie.fde_encoding, ptr_size));
614 break;
615 case 'S':
616 break;
617 case 'P':
618 {
619 int per_width;
620
621 REQUIRE (read_byte (&buf, end, &cie.per_encoding));
622 per_width = get_DW_EH_PE_width (cie.per_encoding,
623 ptr_size);
624 REQUIRE (per_width);
625 if ((cie.per_encoding & 0xf0) == DW_EH_PE_aligned)
626 {
627 length = -(buf - ehbuf) & (per_width - 1);
628 REQUIRE (skip_bytes (&buf, end, length));
629 }
630 ENSURE_NO_RELOCS (buf);
631 /* Ensure we have a reloc here, against
632 a global symbol. */
633 if (GET_RELOC (buf) != NULL)
634 {
635 unsigned long r_symndx;
636
637 #ifdef BFD64
638 if (ptr_size == 8)
639 r_symndx = ELF64_R_SYM (cookie->rel->r_info);
640 else
641 #endif
642 r_symndx = ELF32_R_SYM (cookie->rel->r_info);
643 if (r_symndx >= cookie->locsymcount)
644 {
645 struct elf_link_hash_entry *h;
646
647 r_symndx -= cookie->extsymoff;
648 h = cookie->sym_hashes[r_symndx];
649
650 while (h->root.type == bfd_link_hash_indirect
651 || h->root.type == bfd_link_hash_warning)
652 h = (struct elf_link_hash_entry *)
653 h->root.u.i.link;
654
655 cie.personality = h;
656 }
657 /* Cope with MIPS-style composite relocations. */
658 do
659 cookie->rel++;
660 while (GET_RELOC (buf) != NULL);
661 }
662 REQUIRE (skip_bytes (&buf, end, per_width));
663 }
664 break;
665 default:
666 /* Unrecognized augmentation. Better bail out. */
667 goto free_no_table;
668 }
669 }
670
671 /* For shared libraries, try to get rid of as many RELATIVE relocs
672 as possible. */
673 if (info->shared
674 && (get_elf_backend_data (abfd)
675 ->elf_backend_can_make_relative_eh_frame
676 (abfd, info, sec)))
677 {
678 if ((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr)
679 cie.make_relative = 1;
680 /* If the CIE doesn't already have an 'R' entry, it's fairly
681 easy to add one, provided that there's no aligned data
682 after the augmentation string. */
683 else if (cie.fde_encoding == DW_EH_PE_omit
684 && (cie.per_encoding & 0xf0) != DW_EH_PE_aligned)
685 {
686 if (*cie.augmentation == 0)
687 this_inf->add_augmentation_size = 1;
688 this_inf->add_fde_encoding = 1;
689 cie.make_relative = 1;
690 }
691 }
692
693 if (info->shared
694 && (get_elf_backend_data (abfd)
695 ->elf_backend_can_make_lsda_relative_eh_frame
696 (abfd, info, sec))
697 && (cie.lsda_encoding & 0xf0) == DW_EH_PE_absptr)
698 cie.make_lsda_relative = 1;
699
700 /* If FDE encoding was not specified, it defaults to
701 DW_EH_absptr. */
702 if (cie.fde_encoding == DW_EH_PE_omit)
703 cie.fde_encoding = DW_EH_PE_absptr;
704
705 initial_insn_length = end - buf;
706 if (initial_insn_length <= 50)
707 {
708 cie.initial_insn_length = initial_insn_length;
709 memcpy (cie.initial_instructions, buf, initial_insn_length);
710 }
711 insns = buf;
712 buf += initial_insn_length;
713 ENSURE_NO_RELOCS (buf);
714 last_cie = last_fde;
715 }
716 else
717 {
718 /* Ensure this FDE uses the last CIE encountered. */
719 REQUIRE (last_cie);
720 REQUIRE (hdr.id == (unsigned int) (buf - 4 - last_cie));
721
722 ENSURE_NO_RELOCS (buf);
723 REQUIRE (GET_RELOC (buf));
724
725 if ((*reloc_symbol_deleted_p) (buf - ehbuf, cookie))
726 /* This is a FDE against a discarded section. It should
727 be deleted. */
728 this_inf->removed = 1;
729 else
730 {
731 if (info->shared
732 && (((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr
733 && cie.make_relative == 0)
734 || (cie.fde_encoding & 0xf0) == DW_EH_PE_aligned))
735 {
736 /* If a shared library uses absolute pointers
737 which we cannot turn into PC relative,
738 don't create the binary search table,
739 since it is affected by runtime relocations. */
740 hdr_info->table = FALSE;
741 }
742 cie_usage_count++;
743 hdr_info->fde_count++;
744 }
745 /* Skip the initial location and address range. */
746 start = buf;
747 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
748 REQUIRE (skip_bytes (&buf, end, 2 * length));
749
750 /* Skip the augmentation size, if present. */
751 if (cie.augmentation[0] == 'z')
752 REQUIRE (read_uleb128 (&buf, end, &length));
753 else
754 length = 0;
755
756 /* Of the supported augmentation characters above, only 'L'
757 adds augmentation data to the FDE. This code would need to
758 be adjusted if any future augmentations do the same thing. */
759 if (cie.lsda_encoding != DW_EH_PE_omit)
760 {
761 this_inf->lsda_offset = buf - start;
762 /* If there's no 'z' augmentation, we don't know where the
763 CFA insns begin. Assume no padding. */
764 if (cie.augmentation[0] != 'z')
765 length = end - buf;
766 }
767
768 /* Skip over the augmentation data. */
769 REQUIRE (skip_bytes (&buf, end, length));
770 insns = buf;
771
772 buf = last_fde + 4 + hdr.length;
773 SKIP_RELOCS (buf);
774 }
775
776 /* Try to interpret the CFA instructions and find the first
777 padding nop. Shrink this_inf's size so that it doesn't
778 including the padding. */
779 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
780 insns = skip_non_nops (insns, end, length);
781 if (insns != 0)
782 this_inf->size -= end - insns;
783
784 this_inf->fde_encoding = cie.fde_encoding;
785 this_inf->lsda_encoding = cie.lsda_encoding;
786 sec_info->count++;
787 }
788
789 elf_section_data (sec)->sec_info = sec_info;
790 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
791
792 /* Ok, now we can assign new offsets. */
793 offset = 0;
794 last_cie_inf = hdr_info->last_cie_inf;
795 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
796 if (!ent->removed)
797 {
798 if (ent->cie)
799 last_cie_inf = ent;
800 else
801 ent->cie_inf = last_cie_inf;
802 ent->new_offset = offset;
803 offset += size_of_output_cie_fde (ent, ptr_size);
804 }
805 hdr_info->last_cie_inf = last_cie_inf;
806
807 /* Resize the sec as needed. */
808 sec->rawsize = sec->size;
809 sec->size = offset;
810 if (sec->size == 0)
811 sec->flags |= SEC_EXCLUDE;
812
813 free (ehbuf);
814 return offset != sec->rawsize;
815
816 free_no_table:
817 if (ehbuf)
818 free (ehbuf);
819 if (sec_info)
820 free (sec_info);
821 hdr_info->table = FALSE;
822 hdr_info->last_cie.hdr.length = 0;
823 return FALSE;
824
825 #undef REQUIRE
826 }
827
828 /* This function is called for .eh_frame_hdr section after
829 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
830 input sections. It finalizes the size of .eh_frame_hdr section. */
831
832 bfd_boolean
833 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
834 {
835 struct elf_link_hash_table *htab;
836 struct eh_frame_hdr_info *hdr_info;
837 asection *sec;
838
839 htab = elf_hash_table (info);
840 hdr_info = &htab->eh_info;
841 sec = hdr_info->hdr_sec;
842 if (sec == NULL)
843 return FALSE;
844
845 sec->size = EH_FRAME_HDR_SIZE;
846 if (hdr_info->table)
847 sec->size += 4 + hdr_info->fde_count * 8;
848
849 /* Request program headers to be recalculated. */
850 elf_tdata (abfd)->program_header_size = 0;
851 elf_tdata (abfd)->eh_frame_hdr = sec;
852 return TRUE;
853 }
854
855 /* This function is called from size_dynamic_sections.
856 It needs to decide whether .eh_frame_hdr should be output or not,
857 because when the dynamic symbol table has been sized it is too late
858 to strip sections. */
859
860 bfd_boolean
861 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
862 {
863 asection *o;
864 bfd *abfd;
865 struct elf_link_hash_table *htab;
866 struct eh_frame_hdr_info *hdr_info;
867
868 htab = elf_hash_table (info);
869 hdr_info = &htab->eh_info;
870 if (hdr_info->hdr_sec == NULL)
871 return TRUE;
872
873 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
874 {
875 hdr_info->hdr_sec = NULL;
876 return TRUE;
877 }
878
879 abfd = NULL;
880 if (info->eh_frame_hdr)
881 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
882 {
883 /* Count only sections which have at least a single CIE or FDE.
884 There cannot be any CIE or FDE <= 8 bytes. */
885 o = bfd_get_section_by_name (abfd, ".eh_frame");
886 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
887 break;
888 }
889
890 if (abfd == NULL)
891 {
892 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
893 hdr_info->hdr_sec = NULL;
894 return TRUE;
895 }
896
897 hdr_info->table = TRUE;
898 return TRUE;
899 }
900
901 /* Adjust an address in the .eh_frame section. Given OFFSET within
902 SEC, this returns the new offset in the adjusted .eh_frame section,
903 or -1 if the address refers to a CIE/FDE which has been removed
904 or to offset with dynamic relocation which is no longer needed. */
905
906 bfd_vma
907 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
908 struct bfd_link_info *info,
909 asection *sec,
910 bfd_vma offset)
911 {
912 struct eh_frame_sec_info *sec_info;
913 struct elf_link_hash_table *htab;
914 struct eh_frame_hdr_info *hdr_info;
915 unsigned int lo, hi, mid;
916
917 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
918 return offset;
919 sec_info = elf_section_data (sec)->sec_info;
920
921 if (offset >= sec->rawsize)
922 return offset - sec->rawsize + sec->size;
923
924 htab = elf_hash_table (info);
925 hdr_info = &htab->eh_info;
926 if (hdr_info->offsets_adjusted)
927 offset += sec->output_offset;
928
929 lo = 0;
930 hi = sec_info->count;
931 mid = 0;
932 while (lo < hi)
933 {
934 mid = (lo + hi) / 2;
935 if (offset < sec_info->entry[mid].offset)
936 hi = mid;
937 else if (offset
938 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
939 lo = mid + 1;
940 else
941 break;
942 }
943
944 BFD_ASSERT (lo < hi);
945
946 /* FDE or CIE was removed. */
947 if (sec_info->entry[mid].removed)
948 return (bfd_vma) -1;
949
950 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
951 relocation against FDE's initial_location field. */
952 if (!sec_info->entry[mid].cie
953 && sec_info->entry[mid].cie_inf->make_relative
954 && offset == sec_info->entry[mid].offset + 8)
955 return (bfd_vma) -2;
956
957 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
958 for run-time relocation against LSDA field. */
959 if (!sec_info->entry[mid].cie
960 && sec_info->entry[mid].cie_inf->make_lsda_relative
961 && (offset == (sec_info->entry[mid].offset + 8
962 + sec_info->entry[mid].lsda_offset))
963 && (sec_info->entry[mid].cie_inf->need_lsda_relative
964 || !hdr_info->offsets_adjusted))
965 {
966 sec_info->entry[mid].cie_inf->need_lsda_relative = 1;
967 return (bfd_vma) -2;
968 }
969
970 if (hdr_info->offsets_adjusted)
971 offset -= sec->output_offset;
972 /* Any new augmentation bytes go before the first relocation. */
973 return (offset + sec_info->entry[mid].new_offset
974 - sec_info->entry[mid].offset
975 + extra_augmentation_string_bytes (sec_info->entry + mid)
976 + extra_augmentation_data_bytes (sec_info->entry + mid));
977 }
978
979 /* Write out .eh_frame section. This is called with the relocated
980 contents. */
981
982 bfd_boolean
983 _bfd_elf_write_section_eh_frame (bfd *abfd,
984 struct bfd_link_info *info,
985 asection *sec,
986 bfd_byte *contents)
987 {
988 struct eh_frame_sec_info *sec_info;
989 struct elf_link_hash_table *htab;
990 struct eh_frame_hdr_info *hdr_info;
991 unsigned int ptr_size;
992 struct eh_cie_fde *ent;
993
994 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
995 return bfd_set_section_contents (abfd, sec->output_section, contents,
996 sec->output_offset, sec->size);
997
998 ptr_size = (get_elf_backend_data (abfd)
999 ->elf_backend_eh_frame_address_size (abfd, sec));
1000 BFD_ASSERT (ptr_size != 0);
1001
1002 sec_info = elf_section_data (sec)->sec_info;
1003 htab = elf_hash_table (info);
1004 hdr_info = &htab->eh_info;
1005
1006 /* First convert all offsets to output section offsets, so that a
1007 CIE offset is valid if the CIE is used by a FDE from some other
1008 section. This can happen when duplicate CIEs are deleted in
1009 _bfd_elf_discard_section_eh_frame. We do all sections here because
1010 this function might not be called on sections in the same order as
1011 _bfd_elf_discard_section_eh_frame. */
1012 if (!hdr_info->offsets_adjusted)
1013 {
1014 bfd *ibfd;
1015 asection *eh;
1016 struct eh_frame_sec_info *eh_inf;
1017
1018 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1019 {
1020 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1021 || (ibfd->flags & DYNAMIC) != 0)
1022 continue;
1023
1024 eh = bfd_get_section_by_name (ibfd, ".eh_frame");
1025 if (eh == NULL || eh->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1026 continue;
1027
1028 eh_inf = elf_section_data (eh)->sec_info;
1029 for (ent = eh_inf->entry; ent < eh_inf->entry + eh_inf->count; ++ent)
1030 {
1031 ent->offset += eh->output_offset;
1032 ent->new_offset += eh->output_offset;
1033 }
1034 }
1035 hdr_info->offsets_adjusted = TRUE;
1036 }
1037
1038 if (hdr_info->table && hdr_info->array == NULL)
1039 hdr_info->array
1040 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1041 if (hdr_info->array == NULL)
1042 hdr_info = NULL;
1043
1044 /* The new offsets can be bigger or smaller than the original offsets.
1045 We therefore need to make two passes over the section: one backward
1046 pass to move entries up and one forward pass to move entries down.
1047 The two passes won't interfere with each other because entries are
1048 not reordered */
1049 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1050 if (!ent->removed && ent->new_offset > ent->offset)
1051 memmove (contents + ent->new_offset - sec->output_offset,
1052 contents + ent->offset - sec->output_offset, ent->size);
1053
1054 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1055 if (!ent->removed && ent->new_offset < ent->offset)
1056 memmove (contents + ent->new_offset - sec->output_offset,
1057 contents + ent->offset - sec->output_offset, ent->size);
1058
1059 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1060 {
1061 unsigned char *buf, *end;
1062 unsigned int new_size;
1063
1064 if (ent->removed)
1065 continue;
1066
1067 if (ent->size == 4)
1068 {
1069 /* Any terminating FDE must be at the end of the section. */
1070 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1071 continue;
1072 }
1073
1074 buf = contents + ent->new_offset - sec->output_offset;
1075 end = buf + ent->size;
1076 new_size = size_of_output_cie_fde (ent, ptr_size);
1077
1078 /* Install the new size, filling the extra bytes with DW_CFA_nops. */
1079 if (new_size != ent->size)
1080 {
1081 memset (end, 0, new_size - ent->size);
1082 bfd_put_32 (abfd, new_size - 4, buf);
1083 }
1084
1085 if (ent->cie)
1086 {
1087 /* CIE */
1088 if (ent->make_relative
1089 || ent->need_lsda_relative
1090 || ent->per_encoding_relative)
1091 {
1092 char *aug;
1093 unsigned int action, extra_string, extra_data;
1094 unsigned int per_width, per_encoding;
1095
1096 /* Need to find 'R' or 'L' augmentation's argument and modify
1097 DW_EH_PE_* value. */
1098 action = ((ent->make_relative ? 1 : 0)
1099 | (ent->need_lsda_relative ? 2 : 0)
1100 | (ent->per_encoding_relative ? 4 : 0));
1101 extra_string = extra_augmentation_string_bytes (ent);
1102 extra_data = extra_augmentation_data_bytes (ent);
1103
1104 /* Skip length, id and version. */
1105 buf += 9;
1106 aug = (char *) buf;
1107 buf += strlen (aug) + 1;
1108 skip_leb128 (&buf, end);
1109 skip_leb128 (&buf, end);
1110 skip_leb128 (&buf, end);
1111 if (*aug == 'z')
1112 {
1113 /* The uleb128 will always be a single byte for the kind
1114 of augmentation strings that we're prepared to handle. */
1115 *buf++ += extra_data;
1116 aug++;
1117 }
1118
1119 /* Make room for the new augmentation string and data bytes. */
1120 memmove (buf + extra_string + extra_data, buf, end - buf);
1121 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1122 buf += extra_string;
1123 end += extra_string + extra_data;
1124
1125 if (ent->add_augmentation_size)
1126 {
1127 *aug++ = 'z';
1128 *buf++ = extra_data - 1;
1129 }
1130 if (ent->add_fde_encoding)
1131 {
1132 BFD_ASSERT (action & 1);
1133 *aug++ = 'R';
1134 *buf++ = DW_EH_PE_pcrel;
1135 action &= ~1;
1136 }
1137
1138 while (action)
1139 switch (*aug++)
1140 {
1141 case 'L':
1142 if (action & 2)
1143 {
1144 BFD_ASSERT (*buf == ent->lsda_encoding);
1145 *buf |= DW_EH_PE_pcrel;
1146 action &= ~2;
1147 }
1148 buf++;
1149 break;
1150 case 'P':
1151 per_encoding = *buf++;
1152 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1153 BFD_ASSERT (per_width != 0);
1154 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1155 == ent->per_encoding_relative);
1156 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1157 buf = (contents
1158 + ((buf - contents + per_width - 1)
1159 & ~((bfd_size_type) per_width - 1)));
1160 if (action & 4)
1161 {
1162 bfd_vma val;
1163
1164 val = read_value (abfd, buf, per_width,
1165 get_DW_EH_PE_signed (per_encoding));
1166 val += ent->offset - ent->new_offset;
1167 val -= extra_string + extra_data;
1168 write_value (abfd, buf, val, per_width);
1169 action &= ~4;
1170 }
1171 buf += per_width;
1172 break;
1173 case 'R':
1174 if (action & 1)
1175 {
1176 BFD_ASSERT (*buf == ent->fde_encoding);
1177 *buf |= DW_EH_PE_pcrel;
1178 action &= ~1;
1179 }
1180 buf++;
1181 break;
1182 case 'S':
1183 break;
1184 default:
1185 BFD_FAIL ();
1186 }
1187 }
1188 }
1189 else
1190 {
1191 /* FDE */
1192 bfd_vma value, address;
1193 unsigned int width;
1194
1195 /* Skip length. */
1196 buf += 4;
1197 value = ent->new_offset + 4 - ent->cie_inf->new_offset;
1198 bfd_put_32 (abfd, value, buf);
1199 buf += 4;
1200 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1201 value = read_value (abfd, buf, width,
1202 get_DW_EH_PE_signed (ent->fde_encoding));
1203 address = value;
1204 if (value)
1205 {
1206 switch (ent->fde_encoding & 0xf0)
1207 {
1208 case DW_EH_PE_indirect:
1209 case DW_EH_PE_textrel:
1210 BFD_ASSERT (hdr_info == NULL);
1211 break;
1212 case DW_EH_PE_datarel:
1213 {
1214 asection *got = bfd_get_section_by_name (abfd, ".got");
1215
1216 BFD_ASSERT (got != NULL);
1217 address += got->vma;
1218 }
1219 break;
1220 case DW_EH_PE_pcrel:
1221 value += ent->offset - ent->new_offset;
1222 address += sec->output_section->vma + ent->offset + 8;
1223 break;
1224 }
1225 if (ent->cie_inf->make_relative)
1226 value -= sec->output_section->vma + ent->new_offset + 8;
1227 write_value (abfd, buf, value, width);
1228 }
1229
1230 if (hdr_info)
1231 {
1232 hdr_info->array[hdr_info->array_count].initial_loc = address;
1233 hdr_info->array[hdr_info->array_count++].fde
1234 = sec->output_section->vma + ent->new_offset;
1235 }
1236
1237 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1238 || ent->cie_inf->need_lsda_relative)
1239 {
1240 buf += ent->lsda_offset;
1241 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1242 value = read_value (abfd, buf, width,
1243 get_DW_EH_PE_signed (ent->lsda_encoding));
1244 if (value)
1245 {
1246 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1247 value += ent->offset - ent->new_offset;
1248 else if (ent->cie_inf->need_lsda_relative)
1249 value -= (sec->output_section->vma + ent->new_offset + 8
1250 + ent->lsda_offset);
1251 write_value (abfd, buf, value, width);
1252 }
1253 }
1254 else if (ent->cie_inf->add_augmentation_size)
1255 {
1256 /* Skip the PC and length and insert a zero byte for the
1257 augmentation size. */
1258 buf += width * 2;
1259 memmove (buf + 1, buf, end - buf);
1260 *buf = 0;
1261 }
1262 }
1263 }
1264
1265 {
1266 unsigned int alignment = 1 << sec->alignment_power;
1267 unsigned int pad = sec->size % alignment;
1268
1269 /* Don't pad beyond the raw size of the output section. It
1270 can happen at the last input section. */
1271 if (pad
1272 && ((sec->output_offset + sec->size + pad)
1273 <= sec->output_section->size))
1274 {
1275 bfd_byte *buf;
1276 unsigned int new_size;
1277
1278 /* Find the last CIE/FDE. */
1279 ent = sec_info->entry + sec_info->count;
1280 while (--ent != sec_info->entry)
1281 if (!ent->removed)
1282 break;
1283
1284 /* The size of the last CIE/FDE must be at least 4. */
1285 if (ent->removed || ent->size < 4)
1286 abort ();
1287
1288 pad = alignment - pad;
1289 buf = contents + ent->new_offset - sec->output_offset;
1290 new_size = size_of_output_cie_fde (ent, ptr_size);
1291
1292 /* Pad it with DW_CFA_nop */
1293 memset (buf + new_size, 0, pad);
1294 bfd_put_32 (abfd, new_size + pad - 4, buf);
1295
1296 sec->size += pad;
1297 }
1298 }
1299
1300 return bfd_set_section_contents (abfd, sec->output_section,
1301 contents, (file_ptr) sec->output_offset,
1302 sec->size);
1303 }
1304
1305 /* Helper function used to sort .eh_frame_hdr search table by increasing
1306 VMA of FDE initial location. */
1307
1308 static int
1309 vma_compare (const void *a, const void *b)
1310 {
1311 const struct eh_frame_array_ent *p = a;
1312 const struct eh_frame_array_ent *q = b;
1313 if (p->initial_loc > q->initial_loc)
1314 return 1;
1315 if (p->initial_loc < q->initial_loc)
1316 return -1;
1317 return 0;
1318 }
1319
1320 /* Write out .eh_frame_hdr section. This must be called after
1321 _bfd_elf_write_section_eh_frame has been called on all input
1322 .eh_frame sections.
1323 .eh_frame_hdr format:
1324 ubyte version (currently 1)
1325 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1326 .eh_frame section)
1327 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1328 number (or DW_EH_PE_omit if there is no
1329 binary search table computed))
1330 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1331 or DW_EH_PE_omit if not present.
1332 DW_EH_PE_datarel is using address of
1333 .eh_frame_hdr section start as base)
1334 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1335 optionally followed by:
1336 [encoded] fde_count (total number of FDEs in .eh_frame section)
1337 fde_count x [encoded] initial_loc, fde
1338 (array of encoded pairs containing
1339 FDE initial_location field and FDE address,
1340 sorted by increasing initial_loc). */
1341
1342 bfd_boolean
1343 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1344 {
1345 struct elf_link_hash_table *htab;
1346 struct eh_frame_hdr_info *hdr_info;
1347 asection *sec;
1348 bfd_byte *contents;
1349 asection *eh_frame_sec;
1350 bfd_size_type size;
1351 bfd_boolean retval;
1352 bfd_vma encoded_eh_frame;
1353
1354 htab = elf_hash_table (info);
1355 hdr_info = &htab->eh_info;
1356 sec = hdr_info->hdr_sec;
1357 if (sec == NULL)
1358 return TRUE;
1359
1360 size = EH_FRAME_HDR_SIZE;
1361 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1362 size += 4 + hdr_info->fde_count * 8;
1363 contents = bfd_malloc (size);
1364 if (contents == NULL)
1365 return FALSE;
1366
1367 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1368 if (eh_frame_sec == NULL)
1369 {
1370 free (contents);
1371 return FALSE;
1372 }
1373
1374 memset (contents, 0, EH_FRAME_HDR_SIZE);
1375 contents[0] = 1; /* Version. */
1376 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1377 (abfd, info, eh_frame_sec, 0, sec, 4,
1378 &encoded_eh_frame); /* .eh_frame offset. */
1379
1380 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1381 {
1382 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1383 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1384 }
1385 else
1386 {
1387 contents[2] = DW_EH_PE_omit;
1388 contents[3] = DW_EH_PE_omit;
1389 }
1390 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1391
1392 if (contents[2] != DW_EH_PE_omit)
1393 {
1394 unsigned int i;
1395
1396 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1397 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1398 vma_compare);
1399 for (i = 0; i < hdr_info->fde_count; i++)
1400 {
1401 bfd_put_32 (abfd,
1402 hdr_info->array[i].initial_loc
1403 - sec->output_section->vma,
1404 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1405 bfd_put_32 (abfd,
1406 hdr_info->array[i].fde - sec->output_section->vma,
1407 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1408 }
1409 }
1410
1411 retval = bfd_set_section_contents (abfd, sec->output_section,
1412 contents, (file_ptr) sec->output_offset,
1413 sec->size);
1414 free (contents);
1415 return retval;
1416 }
1417
1418 /* Return the width of FDE addresses. This is the default implementation. */
1419
1420 unsigned int
1421 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1422 {
1423 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1424 }
1425
1426 /* Decide whether we can use a PC-relative encoding within the given
1427 EH frame section. This is the default implementation. */
1428
1429 bfd_boolean
1430 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1431 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1432 asection *eh_frame_section ATTRIBUTE_UNUSED)
1433 {
1434 return TRUE;
1435 }
1436
1437 /* Select an encoding for the given address. Preference is given to
1438 PC-relative addressing modes. */
1439
1440 bfd_byte
1441 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1442 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1443 asection *osec, bfd_vma offset,
1444 asection *loc_sec, bfd_vma loc_offset,
1445 bfd_vma *encoded)
1446 {
1447 *encoded = osec->vma + offset -
1448 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1449 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1450 }
This page took 0.06451 seconds and 5 git commands to generate.