PR 4497
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Written by Jakub Jelinek <jakub@redhat.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/dwarf2.h"
27
28 #define EH_FRAME_HDR_SIZE 8
29
30 struct cie
31 {
32 unsigned int length;
33 unsigned int hash;
34 unsigned char version;
35 unsigned char local_personality;
36 char augmentation[20];
37 bfd_vma code_align;
38 bfd_signed_vma data_align;
39 bfd_vma ra_column;
40 bfd_vma augmentation_size;
41 union {
42 struct elf_link_hash_entry *h;
43 bfd_vma val;
44 } personality;
45 asection *output_sec;
46 struct eh_cie_fde *cie_inf;
47 unsigned char per_encoding;
48 unsigned char lsda_encoding;
49 unsigned char fde_encoding;
50 unsigned char initial_insn_length;
51 unsigned char make_relative;
52 unsigned char make_lsda_relative;
53 unsigned char initial_instructions[50];
54 };
55
56
57
58 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
59 move onto the next byte. Return true on success. */
60
61 static inline bfd_boolean
62 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
63 {
64 if (*iter >= end)
65 return FALSE;
66 *result = *((*iter)++);
67 return TRUE;
68 }
69
70 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
71 Return true it was possible to move LENGTH bytes. */
72
73 static inline bfd_boolean
74 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
75 {
76 if ((bfd_size_type) (end - *iter) < length)
77 {
78 *iter = end;
79 return FALSE;
80 }
81 *iter += length;
82 return TRUE;
83 }
84
85 /* Move *ITER over an leb128, stopping at END. Return true if the end
86 of the leb128 was found. */
87
88 static bfd_boolean
89 skip_leb128 (bfd_byte **iter, bfd_byte *end)
90 {
91 unsigned char byte;
92 do
93 if (!read_byte (iter, end, &byte))
94 return FALSE;
95 while (byte & 0x80);
96 return TRUE;
97 }
98
99 /* Like skip_leb128, but treat the leb128 as an unsigned value and
100 store it in *VALUE. */
101
102 static bfd_boolean
103 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
104 {
105 bfd_byte *start, *p;
106
107 start = *iter;
108 if (!skip_leb128 (iter, end))
109 return FALSE;
110
111 p = *iter;
112 *value = *--p;
113 while (p > start)
114 *value = (*value << 7) | (*--p & 0x7f);
115
116 return TRUE;
117 }
118
119 /* Like read_uleb128, but for signed values. */
120
121 static bfd_boolean
122 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
123 {
124 bfd_byte *start, *p;
125
126 start = *iter;
127 if (!skip_leb128 (iter, end))
128 return FALSE;
129
130 p = *iter;
131 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
132 while (p > start)
133 *value = (*value << 7) | (*--p & 0x7f);
134
135 return TRUE;
136 }
137
138 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
139
140 static
141 int get_DW_EH_PE_width (int encoding, int ptr_size)
142 {
143 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
144 was added to bfd. */
145 if ((encoding & 0x60) == 0x60)
146 return 0;
147
148 switch (encoding & 7)
149 {
150 case DW_EH_PE_udata2: return 2;
151 case DW_EH_PE_udata4: return 4;
152 case DW_EH_PE_udata8: return 8;
153 case DW_EH_PE_absptr: return ptr_size;
154 default:
155 break;
156 }
157
158 return 0;
159 }
160
161 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
162
163 /* Read a width sized value from memory. */
164
165 static bfd_vma
166 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
167 {
168 bfd_vma value;
169
170 switch (width)
171 {
172 case 2:
173 if (is_signed)
174 value = bfd_get_signed_16 (abfd, buf);
175 else
176 value = bfd_get_16 (abfd, buf);
177 break;
178 case 4:
179 if (is_signed)
180 value = bfd_get_signed_32 (abfd, buf);
181 else
182 value = bfd_get_32 (abfd, buf);
183 break;
184 case 8:
185 if (is_signed)
186 value = bfd_get_signed_64 (abfd, buf);
187 else
188 value = bfd_get_64 (abfd, buf);
189 break;
190 default:
191 BFD_FAIL ();
192 return 0;
193 }
194
195 return value;
196 }
197
198 /* Store a width sized value to memory. */
199
200 static void
201 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
202 {
203 switch (width)
204 {
205 case 2: bfd_put_16 (abfd, value, buf); break;
206 case 4: bfd_put_32 (abfd, value, buf); break;
207 case 8: bfd_put_64 (abfd, value, buf); break;
208 default: BFD_FAIL ();
209 }
210 }
211
212 /* Return one if C1 and C2 CIEs can be merged. */
213
214 static int
215 cie_eq (const void *e1, const void *e2)
216 {
217 const struct cie *c1 = e1;
218 const struct cie *c2 = e2;
219
220 if (c1->hash == c2->hash
221 && c1->length == c2->length
222 && c1->version == c2->version
223 && c1->local_personality == c2->local_personality
224 && strcmp (c1->augmentation, c2->augmentation) == 0
225 && strcmp (c1->augmentation, "eh") != 0
226 && c1->code_align == c2->code_align
227 && c1->data_align == c2->data_align
228 && c1->ra_column == c2->ra_column
229 && c1->augmentation_size == c2->augmentation_size
230 && memcmp (&c1->personality, &c2->personality,
231 sizeof (c1->personality)) == 0
232 && c1->output_sec == c2->output_sec
233 && c1->per_encoding == c2->per_encoding
234 && c1->lsda_encoding == c2->lsda_encoding
235 && c1->fde_encoding == c2->fde_encoding
236 && c1->initial_insn_length == c2->initial_insn_length
237 && memcmp (c1->initial_instructions,
238 c2->initial_instructions,
239 c1->initial_insn_length) == 0)
240 return 1;
241
242 return 0;
243 }
244
245 static hashval_t
246 cie_hash (const void *e)
247 {
248 const struct cie *c = e;
249 return c->hash;
250 }
251
252 static hashval_t
253 cie_compute_hash (struct cie *c)
254 {
255 hashval_t h = 0;
256 h = iterative_hash_object (c->length, h);
257 h = iterative_hash_object (c->version, h);
258 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
259 h = iterative_hash_object (c->code_align, h);
260 h = iterative_hash_object (c->data_align, h);
261 h = iterative_hash_object (c->ra_column, h);
262 h = iterative_hash_object (c->augmentation_size, h);
263 h = iterative_hash_object (c->personality, h);
264 h = iterative_hash_object (c->output_sec, h);
265 h = iterative_hash_object (c->per_encoding, h);
266 h = iterative_hash_object (c->lsda_encoding, h);
267 h = iterative_hash_object (c->fde_encoding, h);
268 h = iterative_hash_object (c->initial_insn_length, h);
269 h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
270 c->hash = h;
271 return h;
272 }
273
274 /* Return the number of extra bytes that we'll be inserting into
275 ENTRY's augmentation string. */
276
277 static INLINE unsigned int
278 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
279 {
280 unsigned int size = 0;
281 if (entry->cie)
282 {
283 if (entry->add_augmentation_size)
284 size++;
285 if (entry->add_fde_encoding)
286 size++;
287 }
288 return size;
289 }
290
291 /* Likewise ENTRY's augmentation data. */
292
293 static INLINE unsigned int
294 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
295 {
296 unsigned int size = 0;
297 if (entry->cie)
298 {
299 if (entry->add_augmentation_size)
300 size++;
301 if (entry->add_fde_encoding)
302 size++;
303 }
304 else
305 {
306 if (entry->cie_inf->add_augmentation_size)
307 size++;
308 }
309 return size;
310 }
311
312 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
313 required alignment of ENTRY in bytes. */
314
315 static unsigned int
316 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
317 {
318 if (entry->removed)
319 return 0;
320 if (entry->size == 4)
321 return 4;
322 return (entry->size
323 + extra_augmentation_string_bytes (entry)
324 + extra_augmentation_data_bytes (entry)
325 + alignment - 1) & -alignment;
326 }
327
328 /* Assume that the bytes between *ITER and END are CFA instructions.
329 Try to move *ITER past the first instruction and return true on
330 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
331
332 static bfd_boolean
333 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
334 {
335 bfd_byte op;
336 bfd_vma length;
337
338 if (!read_byte (iter, end, &op))
339 return FALSE;
340
341 switch (op & 0xc0 ? op & 0xc0 : op)
342 {
343 case DW_CFA_nop:
344 case DW_CFA_advance_loc:
345 case DW_CFA_restore:
346 case DW_CFA_remember_state:
347 case DW_CFA_restore_state:
348 case DW_CFA_GNU_window_save:
349 /* No arguments. */
350 return TRUE;
351
352 case DW_CFA_offset:
353 case DW_CFA_restore_extended:
354 case DW_CFA_undefined:
355 case DW_CFA_same_value:
356 case DW_CFA_def_cfa_register:
357 case DW_CFA_def_cfa_offset:
358 case DW_CFA_def_cfa_offset_sf:
359 case DW_CFA_GNU_args_size:
360 /* One leb128 argument. */
361 return skip_leb128 (iter, end);
362
363 case DW_CFA_val_offset:
364 case DW_CFA_val_offset_sf:
365 case DW_CFA_offset_extended:
366 case DW_CFA_register:
367 case DW_CFA_def_cfa:
368 case DW_CFA_offset_extended_sf:
369 case DW_CFA_GNU_negative_offset_extended:
370 case DW_CFA_def_cfa_sf:
371 /* Two leb128 arguments. */
372 return (skip_leb128 (iter, end)
373 && skip_leb128 (iter, end));
374
375 case DW_CFA_def_cfa_expression:
376 /* A variable-length argument. */
377 return (read_uleb128 (iter, end, &length)
378 && skip_bytes (iter, end, length));
379
380 case DW_CFA_expression:
381 case DW_CFA_val_expression:
382 /* A leb128 followed by a variable-length argument. */
383 return (skip_leb128 (iter, end)
384 && read_uleb128 (iter, end, &length)
385 && skip_bytes (iter, end, length));
386
387 case DW_CFA_set_loc:
388 return skip_bytes (iter, end, encoded_ptr_width);
389
390 case DW_CFA_advance_loc1:
391 return skip_bytes (iter, end, 1);
392
393 case DW_CFA_advance_loc2:
394 return skip_bytes (iter, end, 2);
395
396 case DW_CFA_advance_loc4:
397 return skip_bytes (iter, end, 4);
398
399 case DW_CFA_MIPS_advance_loc8:
400 return skip_bytes (iter, end, 8);
401
402 default:
403 return FALSE;
404 }
405 }
406
407 /* Try to interpret the bytes between BUF and END as CFA instructions.
408 If every byte makes sense, return a pointer to the first DW_CFA_nop
409 padding byte, or END if there is no padding. Return null otherwise.
410 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
411
412 static bfd_byte *
413 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
414 unsigned int *set_loc_count)
415 {
416 bfd_byte *last;
417
418 last = buf;
419 while (buf < end)
420 if (*buf == DW_CFA_nop)
421 buf++;
422 else
423 {
424 if (*buf == DW_CFA_set_loc)
425 ++*set_loc_count;
426 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
427 return 0;
428 last = buf;
429 }
430 return last;
431 }
432
433 /* This function is called for each input file before the .eh_frame
434 section is relocated. It discards duplicate CIEs and FDEs for discarded
435 functions. The function returns TRUE iff any entries have been
436 deleted. */
437
438 bfd_boolean
439 _bfd_elf_discard_section_eh_frame
440 (bfd *abfd, struct bfd_link_info *info, asection *sec,
441 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
442 struct elf_reloc_cookie *cookie)
443 {
444 #define REQUIRE(COND) \
445 do \
446 if (!(COND)) \
447 goto free_no_table; \
448 while (0)
449
450 bfd_byte *ehbuf = NULL, *buf;
451 bfd_byte *last_fde;
452 struct eh_cie_fde *ent, *this_inf;
453 unsigned int hdr_length, hdr_id;
454 struct extended_cie
455 {
456 struct cie cie;
457 unsigned int offset;
458 unsigned int usage_count;
459 unsigned int entry;
460 } *ecies = NULL, *ecie;
461 unsigned int ecie_count = 0, ecie_alloced = 0;
462 struct cie *cie;
463 struct elf_link_hash_table *htab;
464 struct eh_frame_hdr_info *hdr_info;
465 struct eh_frame_sec_info *sec_info = NULL;
466 unsigned int offset;
467 unsigned int ptr_size;
468 unsigned int entry_alloced;
469
470 if (sec->size == 0)
471 {
472 /* This file does not contain .eh_frame information. */
473 return FALSE;
474 }
475
476 if (bfd_is_abs_section (sec->output_section))
477 {
478 /* At least one of the sections is being discarded from the
479 link, so we should just ignore them. */
480 return FALSE;
481 }
482
483 htab = elf_hash_table (info);
484 hdr_info = &htab->eh_info;
485
486 if (hdr_info->cies == NULL && !info->relocatable)
487 hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
488
489 /* Read the frame unwind information from abfd. */
490
491 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
492
493 if (sec->size >= 4
494 && bfd_get_32 (abfd, ehbuf) == 0
495 && cookie->rel == cookie->relend)
496 {
497 /* Empty .eh_frame section. */
498 free (ehbuf);
499 return FALSE;
500 }
501
502 /* If .eh_frame section size doesn't fit into int, we cannot handle
503 it (it would need to use 64-bit .eh_frame format anyway). */
504 REQUIRE (sec->size == (unsigned int) sec->size);
505
506 ptr_size = (get_elf_backend_data (abfd)
507 ->elf_backend_eh_frame_address_size (abfd, sec));
508 REQUIRE (ptr_size != 0);
509
510 buf = ehbuf;
511 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
512 + 99 * sizeof (struct eh_cie_fde));
513 REQUIRE (sec_info);
514
515 entry_alloced = 100;
516
517 #define ENSURE_NO_RELOCS(buf) \
518 REQUIRE (!(cookie->rel < cookie->relend \
519 && (cookie->rel->r_offset \
520 < (bfd_size_type) ((buf) - ehbuf)) \
521 && cookie->rel->r_info != 0))
522
523 #define SKIP_RELOCS(buf) \
524 while (cookie->rel < cookie->relend \
525 && (cookie->rel->r_offset \
526 < (bfd_size_type) ((buf) - ehbuf))) \
527 cookie->rel++
528
529 #define GET_RELOC(buf) \
530 ((cookie->rel < cookie->relend \
531 && (cookie->rel->r_offset \
532 == (bfd_size_type) ((buf) - ehbuf))) \
533 ? cookie->rel : NULL)
534
535 for (;;)
536 {
537 char *aug;
538 bfd_byte *start, *end, *insns, *insns_end;
539 bfd_size_type length;
540 unsigned int set_loc_count;
541
542 if (sec_info->count == entry_alloced)
543 {
544 sec_info = bfd_realloc (sec_info,
545 sizeof (struct eh_frame_sec_info)
546 + ((entry_alloced + 99)
547 * sizeof (struct eh_cie_fde)));
548 REQUIRE (sec_info);
549
550 memset (&sec_info->entry[entry_alloced], 0,
551 100 * sizeof (struct eh_cie_fde));
552 entry_alloced += 100;
553 }
554
555 this_inf = sec_info->entry + sec_info->count;
556 last_fde = buf;
557
558 if ((bfd_size_type) (buf - ehbuf) == sec->size)
559 break;
560
561 /* Read the length of the entry. */
562 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
563 hdr_length = bfd_get_32 (abfd, buf - 4);
564
565 /* 64-bit .eh_frame is not supported. */
566 REQUIRE (hdr_length != 0xffffffff);
567
568 /* The CIE/FDE must be fully contained in this input section. */
569 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
570 end = buf + hdr_length;
571
572 this_inf->offset = last_fde - ehbuf;
573 this_inf->size = 4 + hdr_length;
574
575 if (hdr_length == 0)
576 {
577 /* A zero-length CIE should only be found at the end of
578 the section. */
579 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
580 ENSURE_NO_RELOCS (buf);
581 sec_info->count++;
582 break;
583 }
584
585 REQUIRE (skip_bytes (&buf, end, 4));
586 hdr_id = bfd_get_32 (abfd, buf - 4);
587
588 if (hdr_id == 0)
589 {
590 unsigned int initial_insn_length;
591
592 /* CIE */
593 this_inf->cie = 1;
594
595 if (ecie_count == ecie_alloced)
596 {
597 ecies = bfd_realloc (ecies,
598 (ecie_alloced + 20) * sizeof (*ecies));
599 REQUIRE (ecies);
600 memset (&ecies[ecie_alloced], 0, 20 * sizeof (*ecies));
601 ecie_alloced += 20;
602 }
603
604 cie = &ecies[ecie_count].cie;
605 ecies[ecie_count].offset = this_inf->offset;
606 ecies[ecie_count++].entry = sec_info->count;
607 cie->length = hdr_length;
608 start = buf;
609 REQUIRE (read_byte (&buf, end, &cie->version));
610
611 /* Cannot handle unknown versions. */
612 REQUIRE (cie->version == 1 || cie->version == 3);
613 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
614
615 strcpy (cie->augmentation, (char *) buf);
616 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
617 ENSURE_NO_RELOCS (buf);
618 if (buf[0] == 'e' && buf[1] == 'h')
619 {
620 /* GCC < 3.0 .eh_frame CIE */
621 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
622 is private to each CIE, so we don't need it for anything.
623 Just skip it. */
624 REQUIRE (skip_bytes (&buf, end, ptr_size));
625 SKIP_RELOCS (buf);
626 }
627 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
628 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
629 if (cie->version == 1)
630 {
631 REQUIRE (buf < end);
632 cie->ra_column = *buf++;
633 }
634 else
635 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
636 ENSURE_NO_RELOCS (buf);
637 cie->lsda_encoding = DW_EH_PE_omit;
638 cie->fde_encoding = DW_EH_PE_omit;
639 cie->per_encoding = DW_EH_PE_omit;
640 aug = cie->augmentation;
641 if (aug[0] != 'e' || aug[1] != 'h')
642 {
643 if (*aug == 'z')
644 {
645 aug++;
646 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
647 ENSURE_NO_RELOCS (buf);
648 }
649
650 while (*aug != '\0')
651 switch (*aug++)
652 {
653 case 'L':
654 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
655 ENSURE_NO_RELOCS (buf);
656 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
657 break;
658 case 'R':
659 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
660 ENSURE_NO_RELOCS (buf);
661 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
662 break;
663 case 'S':
664 break;
665 case 'P':
666 {
667 int per_width;
668
669 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
670 per_width = get_DW_EH_PE_width (cie->per_encoding,
671 ptr_size);
672 REQUIRE (per_width);
673 if ((cie->per_encoding & 0xf0) == DW_EH_PE_aligned)
674 {
675 length = -(buf - ehbuf) & (per_width - 1);
676 REQUIRE (skip_bytes (&buf, end, length));
677 }
678 ENSURE_NO_RELOCS (buf);
679 /* Ensure we have a reloc here. */
680 if (GET_RELOC (buf) != NULL)
681 {
682 unsigned long r_symndx;
683
684 #ifdef BFD64
685 if (ptr_size == 8)
686 r_symndx = ELF64_R_SYM (cookie->rel->r_info);
687 else
688 #endif
689 r_symndx = ELF32_R_SYM (cookie->rel->r_info);
690 if (r_symndx >= cookie->locsymcount
691 || ELF_ST_BIND (cookie->locsyms[r_symndx]
692 .st_info) != STB_LOCAL)
693 {
694 struct elf_link_hash_entry *h;
695
696 r_symndx -= cookie->extsymoff;
697 h = cookie->sym_hashes[r_symndx];
698
699 while (h->root.type == bfd_link_hash_indirect
700 || h->root.type == bfd_link_hash_warning)
701 h = (struct elf_link_hash_entry *)
702 h->root.u.i.link;
703
704 cie->personality.h = h;
705 }
706 else
707 {
708 Elf_Internal_Sym *sym;
709 asection *sym_sec;
710 bfd_vma val;
711
712 sym = &cookie->locsyms[r_symndx];
713 sym_sec = (bfd_section_from_elf_index
714 (abfd, sym->st_shndx));
715 if (sym_sec->kept_section != NULL)
716 sym_sec = sym_sec->kept_section;
717 if (sym_sec != NULL
718 && sym_sec->output_section != NULL)
719 {
720 val = (sym->st_value
721 + sym_sec->output_offset
722 + sym_sec->output_section->vma);
723 cie->personality.val = val;
724 cie->local_personality = 1;
725 }
726 }
727
728 /* Cope with MIPS-style composite relocations. */
729 do
730 cookie->rel++;
731 while (GET_RELOC (buf) != NULL);
732 }
733 REQUIRE (skip_bytes (&buf, end, per_width));
734 REQUIRE (cie->local_personality || cie->personality.h);
735 }
736 break;
737 default:
738 /* Unrecognized augmentation. Better bail out. */
739 goto free_no_table;
740 }
741 }
742
743 /* For shared libraries, try to get rid of as many RELATIVE relocs
744 as possible. */
745 if (info->shared
746 && (get_elf_backend_data (abfd)
747 ->elf_backend_can_make_relative_eh_frame
748 (abfd, info, sec)))
749 {
750 if ((cie->fde_encoding & 0xf0) == DW_EH_PE_absptr)
751 cie->make_relative = 1;
752 /* If the CIE doesn't already have an 'R' entry, it's fairly
753 easy to add one, provided that there's no aligned data
754 after the augmentation string. */
755 else if (cie->fde_encoding == DW_EH_PE_omit
756 && (cie->per_encoding & 0xf0) != DW_EH_PE_aligned)
757 {
758 if (*cie->augmentation == 0)
759 this_inf->add_augmentation_size = 1;
760 this_inf->add_fde_encoding = 1;
761 cie->make_relative = 1;
762 }
763 }
764
765 if (info->shared
766 && (get_elf_backend_data (abfd)
767 ->elf_backend_can_make_lsda_relative_eh_frame
768 (abfd, info, sec))
769 && (cie->lsda_encoding & 0xf0) == DW_EH_PE_absptr)
770 cie->make_lsda_relative = 1;
771
772 /* If FDE encoding was not specified, it defaults to
773 DW_EH_absptr. */
774 if (cie->fde_encoding == DW_EH_PE_omit)
775 cie->fde_encoding = DW_EH_PE_absptr;
776
777 initial_insn_length = end - buf;
778 if (initial_insn_length <= sizeof (cie->initial_instructions))
779 {
780 cie->initial_insn_length = initial_insn_length;
781 memcpy (cie->initial_instructions, buf, initial_insn_length);
782 }
783 insns = buf;
784 buf += initial_insn_length;
785 ENSURE_NO_RELOCS (buf);
786 }
787 else
788 {
789 /* Find the corresponding CIE. */
790 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
791 for (ecie = ecies; ecie < ecies + ecie_count; ++ecie)
792 if (cie_offset == ecie->offset)
793 break;
794
795 /* Ensure this FDE references one of the CIEs in this input
796 section. */
797 REQUIRE (ecie != ecies + ecie_count);
798 cie = &ecie->cie;
799
800 ENSURE_NO_RELOCS (buf);
801 REQUIRE (GET_RELOC (buf));
802
803 if ((*reloc_symbol_deleted_p) (buf - ehbuf, cookie))
804 /* This is a FDE against a discarded section. It should
805 be deleted. */
806 this_inf->removed = 1;
807 else
808 {
809 if (info->shared
810 && (((cie->fde_encoding & 0xf0) == DW_EH_PE_absptr
811 && cie->make_relative == 0)
812 || (cie->fde_encoding & 0xf0) == DW_EH_PE_aligned))
813 {
814 /* If a shared library uses absolute pointers
815 which we cannot turn into PC relative,
816 don't create the binary search table,
817 since it is affected by runtime relocations. */
818 hdr_info->table = FALSE;
819 (*info->callbacks->einfo)
820 (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
821 " table being created.\n"), abfd, sec);
822 }
823 ecie->usage_count++;
824 hdr_info->fde_count++;
825 this_inf->cie_inf = (void *) (ecie - ecies);
826 }
827
828 /* Skip the initial location and address range. */
829 start = buf;
830 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
831 REQUIRE (skip_bytes (&buf, end, 2 * length));
832
833 /* Skip the augmentation size, if present. */
834 if (cie->augmentation[0] == 'z')
835 REQUIRE (read_uleb128 (&buf, end, &length));
836 else
837 length = 0;
838
839 /* Of the supported augmentation characters above, only 'L'
840 adds augmentation data to the FDE. This code would need to
841 be adjusted if any future augmentations do the same thing. */
842 if (cie->lsda_encoding != DW_EH_PE_omit)
843 {
844 this_inf->lsda_offset = buf - start;
845 /* If there's no 'z' augmentation, we don't know where the
846 CFA insns begin. Assume no padding. */
847 if (cie->augmentation[0] != 'z')
848 length = end - buf;
849 }
850
851 /* Skip over the augmentation data. */
852 REQUIRE (skip_bytes (&buf, end, length));
853 insns = buf;
854
855 buf = last_fde + 4 + hdr_length;
856 SKIP_RELOCS (buf);
857 }
858
859 /* Try to interpret the CFA instructions and find the first
860 padding nop. Shrink this_inf's size so that it doesn't
861 include the padding. */
862 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
863 set_loc_count = 0;
864 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
865 /* If we don't understand the CFA instructions, we can't know
866 what needs to be adjusted there. */
867 if (insns_end == NULL
868 /* For the time being we don't support DW_CFA_set_loc in
869 CIE instructions. */
870 || (set_loc_count && this_inf->cie))
871 goto free_no_table;
872 this_inf->size -= end - insns_end;
873 if (insns_end != end && this_inf->cie)
874 {
875 cie->initial_insn_length -= end - insns_end;
876 cie->length -= end - insns_end;
877 }
878 if (set_loc_count
879 && ((cie->fde_encoding & 0xf0) == DW_EH_PE_pcrel
880 || cie->make_relative))
881 {
882 unsigned int cnt;
883 bfd_byte *p;
884
885 this_inf->set_loc = bfd_malloc ((set_loc_count + 1)
886 * sizeof (unsigned int));
887 REQUIRE (this_inf->set_loc);
888 this_inf->set_loc[0] = set_loc_count;
889 p = insns;
890 cnt = 0;
891 while (p < end)
892 {
893 if (*p == DW_CFA_set_loc)
894 this_inf->set_loc[++cnt] = p + 1 - start;
895 REQUIRE (skip_cfa_op (&p, end, length));
896 }
897 }
898
899 this_inf->fde_encoding = cie->fde_encoding;
900 this_inf->lsda_encoding = cie->lsda_encoding;
901 sec_info->count++;
902 }
903
904 elf_section_data (sec)->sec_info = sec_info;
905 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
906
907 /* Look at all CIEs in this section and determine which can be
908 removed as unused, which can be merged with previous duplicate
909 CIEs and which need to be kept. */
910 for (ecie = ecies; ecie < ecies + ecie_count; ++ecie)
911 {
912 if (ecie->usage_count == 0)
913 {
914 sec_info->entry[ecie->entry].removed = 1;
915 continue;
916 }
917 ecie->cie.output_sec = sec->output_section;
918 ecie->cie.cie_inf = sec_info->entry + ecie->entry;
919 cie_compute_hash (&ecie->cie);
920 if (hdr_info->cies != NULL)
921 {
922 void **loc = htab_find_slot_with_hash (hdr_info->cies, &ecie->cie,
923 ecie->cie.hash, INSERT);
924 if (loc != NULL)
925 {
926 if (*loc != HTAB_EMPTY_ENTRY)
927 {
928 sec_info->entry[ecie->entry].removed = 1;
929 ecie->cie.cie_inf = ((struct cie *) *loc)->cie_inf;
930 continue;
931 }
932
933 *loc = malloc (sizeof (struct cie));
934 if (*loc == NULL)
935 *loc = HTAB_DELETED_ENTRY;
936 else
937 memcpy (*loc, &ecie->cie, sizeof (struct cie));
938 }
939 }
940 ecie->cie.cie_inf->make_relative = ecie->cie.make_relative;
941 ecie->cie.cie_inf->make_lsda_relative = ecie->cie.make_lsda_relative;
942 ecie->cie.cie_inf->per_encoding_relative
943 = (ecie->cie.per_encoding & 0x70) == DW_EH_PE_pcrel;
944 }
945
946 /* Ok, now we can assign new offsets. */
947 offset = 0;
948 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
949 if (!ent->removed)
950 {
951 if (!ent->cie)
952 {
953 ecie = ecies + (unsigned long) ent->cie_inf;
954 ent->cie_inf = ecie->cie.cie_inf;
955 }
956 ent->new_offset = offset;
957 offset += size_of_output_cie_fde (ent, ptr_size);
958 }
959
960 /* Resize the sec as needed. */
961 sec->rawsize = sec->size;
962 sec->size = offset;
963
964 free (ehbuf);
965 if (ecies)
966 free (ecies);
967 return offset != sec->rawsize;
968
969 free_no_table:
970 (*info->callbacks->einfo)
971 (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
972 abfd, sec);
973 if (ehbuf)
974 free (ehbuf);
975 if (sec_info)
976 free (sec_info);
977 if (ecies)
978 free (ecies);
979 hdr_info->table = FALSE;
980 return FALSE;
981
982 #undef REQUIRE
983 }
984
985 /* This function is called for .eh_frame_hdr section after
986 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
987 input sections. It finalizes the size of .eh_frame_hdr section. */
988
989 bfd_boolean
990 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
991 {
992 struct elf_link_hash_table *htab;
993 struct eh_frame_hdr_info *hdr_info;
994 asection *sec;
995
996 htab = elf_hash_table (info);
997 hdr_info = &htab->eh_info;
998
999 if (hdr_info->cies != NULL)
1000 {
1001 htab_delete (hdr_info->cies);
1002 hdr_info->cies = NULL;
1003 }
1004
1005 sec = hdr_info->hdr_sec;
1006 if (sec == NULL)
1007 return FALSE;
1008
1009 sec->size = EH_FRAME_HDR_SIZE;
1010 if (hdr_info->table)
1011 sec->size += 4 + hdr_info->fde_count * 8;
1012
1013 elf_tdata (abfd)->eh_frame_hdr = sec;
1014 return TRUE;
1015 }
1016
1017 /* This function is called from size_dynamic_sections.
1018 It needs to decide whether .eh_frame_hdr should be output or not,
1019 because when the dynamic symbol table has been sized it is too late
1020 to strip sections. */
1021
1022 bfd_boolean
1023 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1024 {
1025 asection *o;
1026 bfd *abfd;
1027 struct elf_link_hash_table *htab;
1028 struct eh_frame_hdr_info *hdr_info;
1029
1030 htab = elf_hash_table (info);
1031 hdr_info = &htab->eh_info;
1032 if (hdr_info->hdr_sec == NULL)
1033 return TRUE;
1034
1035 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
1036 {
1037 hdr_info->hdr_sec = NULL;
1038 return TRUE;
1039 }
1040
1041 abfd = NULL;
1042 if (info->eh_frame_hdr)
1043 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1044 {
1045 /* Count only sections which have at least a single CIE or FDE.
1046 There cannot be any CIE or FDE <= 8 bytes. */
1047 o = bfd_get_section_by_name (abfd, ".eh_frame");
1048 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
1049 break;
1050 }
1051
1052 if (abfd == NULL)
1053 {
1054 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1055 hdr_info->hdr_sec = NULL;
1056 return TRUE;
1057 }
1058
1059 hdr_info->table = TRUE;
1060 return TRUE;
1061 }
1062
1063 /* Adjust an address in the .eh_frame section. Given OFFSET within
1064 SEC, this returns the new offset in the adjusted .eh_frame section,
1065 or -1 if the address refers to a CIE/FDE which has been removed
1066 or to offset with dynamic relocation which is no longer needed. */
1067
1068 bfd_vma
1069 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1070 struct bfd_link_info *info,
1071 asection *sec,
1072 bfd_vma offset)
1073 {
1074 struct eh_frame_sec_info *sec_info;
1075 struct elf_link_hash_table *htab;
1076 struct eh_frame_hdr_info *hdr_info;
1077 unsigned int lo, hi, mid;
1078
1079 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1080 return offset;
1081 sec_info = elf_section_data (sec)->sec_info;
1082
1083 if (offset >= sec->rawsize)
1084 return offset - sec->rawsize + sec->size;
1085
1086 htab = elf_hash_table (info);
1087 hdr_info = &htab->eh_info;
1088 if (hdr_info->offsets_adjusted)
1089 offset += sec->output_offset;
1090
1091 lo = 0;
1092 hi = sec_info->count;
1093 mid = 0;
1094 while (lo < hi)
1095 {
1096 mid = (lo + hi) / 2;
1097 if (offset < sec_info->entry[mid].offset)
1098 hi = mid;
1099 else if (offset
1100 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1101 lo = mid + 1;
1102 else
1103 break;
1104 }
1105
1106 BFD_ASSERT (lo < hi);
1107
1108 /* FDE or CIE was removed. */
1109 if (sec_info->entry[mid].removed)
1110 return (bfd_vma) -1;
1111
1112 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1113 relocation against FDE's initial_location field. */
1114 if (!sec_info->entry[mid].cie
1115 && sec_info->entry[mid].cie_inf->make_relative
1116 && offset == sec_info->entry[mid].offset + 8)
1117 return (bfd_vma) -2;
1118
1119 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1120 for run-time relocation against LSDA field. */
1121 if (!sec_info->entry[mid].cie
1122 && sec_info->entry[mid].cie_inf->make_lsda_relative
1123 && (offset == (sec_info->entry[mid].offset + 8
1124 + sec_info->entry[mid].lsda_offset))
1125 && (sec_info->entry[mid].cie_inf->need_lsda_relative
1126 || !hdr_info->offsets_adjusted))
1127 {
1128 sec_info->entry[mid].cie_inf->need_lsda_relative = 1;
1129 return (bfd_vma) -2;
1130 }
1131
1132 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1133 relocation against DW_CFA_set_loc's arguments. */
1134 if (sec_info->entry[mid].set_loc
1135 && (sec_info->entry[mid].cie
1136 ? sec_info->entry[mid].make_relative
1137 : sec_info->entry[mid].cie_inf->make_relative)
1138 && (offset >= sec_info->entry[mid].offset + 8
1139 + sec_info->entry[mid].set_loc[1]))
1140 {
1141 unsigned int cnt;
1142
1143 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1144 if (offset == sec_info->entry[mid].offset + 8
1145 + sec_info->entry[mid].set_loc[cnt])
1146 return (bfd_vma) -2;
1147 }
1148
1149 if (hdr_info->offsets_adjusted)
1150 offset -= sec->output_offset;
1151 /* Any new augmentation bytes go before the first relocation. */
1152 return (offset + sec_info->entry[mid].new_offset
1153 - sec_info->entry[mid].offset
1154 + extra_augmentation_string_bytes (sec_info->entry + mid)
1155 + extra_augmentation_data_bytes (sec_info->entry + mid));
1156 }
1157
1158 /* Write out .eh_frame section. This is called with the relocated
1159 contents. */
1160
1161 bfd_boolean
1162 _bfd_elf_write_section_eh_frame (bfd *abfd,
1163 struct bfd_link_info *info,
1164 asection *sec,
1165 bfd_byte *contents)
1166 {
1167 struct eh_frame_sec_info *sec_info;
1168 struct elf_link_hash_table *htab;
1169 struct eh_frame_hdr_info *hdr_info;
1170 unsigned int ptr_size;
1171 struct eh_cie_fde *ent;
1172
1173 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1174 return bfd_set_section_contents (abfd, sec->output_section, contents,
1175 sec->output_offset, sec->size);
1176
1177 ptr_size = (get_elf_backend_data (abfd)
1178 ->elf_backend_eh_frame_address_size (abfd, sec));
1179 BFD_ASSERT (ptr_size != 0);
1180
1181 sec_info = elf_section_data (sec)->sec_info;
1182 htab = elf_hash_table (info);
1183 hdr_info = &htab->eh_info;
1184
1185 /* First convert all offsets to output section offsets, so that a
1186 CIE offset is valid if the CIE is used by a FDE from some other
1187 section. This can happen when duplicate CIEs are deleted in
1188 _bfd_elf_discard_section_eh_frame. We do all sections here because
1189 this function might not be called on sections in the same order as
1190 _bfd_elf_discard_section_eh_frame. */
1191 if (!hdr_info->offsets_adjusted)
1192 {
1193 bfd *ibfd;
1194 asection *eh;
1195 struct eh_frame_sec_info *eh_inf;
1196
1197 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1198 {
1199 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1200 || (ibfd->flags & DYNAMIC) != 0)
1201 continue;
1202
1203 eh = bfd_get_section_by_name (ibfd, ".eh_frame");
1204 if (eh == NULL || eh->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1205 continue;
1206
1207 eh_inf = elf_section_data (eh)->sec_info;
1208 for (ent = eh_inf->entry; ent < eh_inf->entry + eh_inf->count; ++ent)
1209 {
1210 ent->offset += eh->output_offset;
1211 ent->new_offset += eh->output_offset;
1212 }
1213 }
1214 hdr_info->offsets_adjusted = TRUE;
1215 }
1216
1217 if (hdr_info->table && hdr_info->array == NULL)
1218 hdr_info->array
1219 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1220 if (hdr_info->array == NULL)
1221 hdr_info = NULL;
1222
1223 /* The new offsets can be bigger or smaller than the original offsets.
1224 We therefore need to make two passes over the section: one backward
1225 pass to move entries up and one forward pass to move entries down.
1226 The two passes won't interfere with each other because entries are
1227 not reordered */
1228 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1229 if (!ent->removed && ent->new_offset > ent->offset)
1230 memmove (contents + ent->new_offset - sec->output_offset,
1231 contents + ent->offset - sec->output_offset, ent->size);
1232
1233 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1234 if (!ent->removed && ent->new_offset < ent->offset)
1235 memmove (contents + ent->new_offset - sec->output_offset,
1236 contents + ent->offset - sec->output_offset, ent->size);
1237
1238 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1239 {
1240 unsigned char *buf, *end;
1241 unsigned int new_size;
1242
1243 if (ent->removed)
1244 continue;
1245
1246 if (ent->size == 4)
1247 {
1248 /* Any terminating FDE must be at the end of the section. */
1249 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1250 continue;
1251 }
1252
1253 buf = contents + ent->new_offset - sec->output_offset;
1254 end = buf + ent->size;
1255 new_size = size_of_output_cie_fde (ent, ptr_size);
1256
1257 /* Update the size. It may be shrinked. */
1258 bfd_put_32 (abfd, new_size - 4, buf);
1259
1260 /* Filling the extra bytes with DW_CFA_nops. */
1261 if (new_size != ent->size)
1262 memset (end, 0, new_size - ent->size);
1263
1264 if (ent->cie)
1265 {
1266 /* CIE */
1267 if (ent->make_relative
1268 || ent->need_lsda_relative
1269 || ent->per_encoding_relative)
1270 {
1271 char *aug;
1272 unsigned int action, extra_string, extra_data;
1273 unsigned int per_width, per_encoding;
1274
1275 /* Need to find 'R' or 'L' augmentation's argument and modify
1276 DW_EH_PE_* value. */
1277 action = ((ent->make_relative ? 1 : 0)
1278 | (ent->need_lsda_relative ? 2 : 0)
1279 | (ent->per_encoding_relative ? 4 : 0));
1280 extra_string = extra_augmentation_string_bytes (ent);
1281 extra_data = extra_augmentation_data_bytes (ent);
1282
1283 /* Skip length, id and version. */
1284 buf += 9;
1285 aug = (char *) buf;
1286 buf += strlen (aug) + 1;
1287 skip_leb128 (&buf, end);
1288 skip_leb128 (&buf, end);
1289 skip_leb128 (&buf, end);
1290 if (*aug == 'z')
1291 {
1292 /* The uleb128 will always be a single byte for the kind
1293 of augmentation strings that we're prepared to handle. */
1294 *buf++ += extra_data;
1295 aug++;
1296 }
1297
1298 /* Make room for the new augmentation string and data bytes. */
1299 memmove (buf + extra_string + extra_data, buf, end - buf);
1300 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1301 buf += extra_string;
1302 end += extra_string + extra_data;
1303
1304 if (ent->add_augmentation_size)
1305 {
1306 *aug++ = 'z';
1307 *buf++ = extra_data - 1;
1308 }
1309 if (ent->add_fde_encoding)
1310 {
1311 BFD_ASSERT (action & 1);
1312 *aug++ = 'R';
1313 *buf++ = DW_EH_PE_pcrel;
1314 action &= ~1;
1315 }
1316
1317 while (action)
1318 switch (*aug++)
1319 {
1320 case 'L':
1321 if (action & 2)
1322 {
1323 BFD_ASSERT (*buf == ent->lsda_encoding);
1324 *buf |= DW_EH_PE_pcrel;
1325 action &= ~2;
1326 }
1327 buf++;
1328 break;
1329 case 'P':
1330 per_encoding = *buf++;
1331 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1332 BFD_ASSERT (per_width != 0);
1333 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1334 == ent->per_encoding_relative);
1335 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1336 buf = (contents
1337 + ((buf - contents + per_width - 1)
1338 & ~((bfd_size_type) per_width - 1)));
1339 if (action & 4)
1340 {
1341 bfd_vma val;
1342
1343 val = read_value (abfd, buf, per_width,
1344 get_DW_EH_PE_signed (per_encoding));
1345 val += ent->offset - ent->new_offset;
1346 val -= extra_string + extra_data;
1347 write_value (abfd, buf, val, per_width);
1348 action &= ~4;
1349 }
1350 buf += per_width;
1351 break;
1352 case 'R':
1353 if (action & 1)
1354 {
1355 BFD_ASSERT (*buf == ent->fde_encoding);
1356 *buf |= DW_EH_PE_pcrel;
1357 action &= ~1;
1358 }
1359 buf++;
1360 break;
1361 case 'S':
1362 break;
1363 default:
1364 BFD_FAIL ();
1365 }
1366 }
1367 }
1368 else
1369 {
1370 /* FDE */
1371 bfd_vma value, address;
1372 unsigned int width;
1373 bfd_byte *start;
1374
1375 /* Skip length. */
1376 buf += 4;
1377 value = ent->new_offset + 4 - ent->cie_inf->new_offset;
1378 bfd_put_32 (abfd, value, buf);
1379 buf += 4;
1380 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1381 value = read_value (abfd, buf, width,
1382 get_DW_EH_PE_signed (ent->fde_encoding));
1383 address = value;
1384 if (value)
1385 {
1386 switch (ent->fde_encoding & 0xf0)
1387 {
1388 case DW_EH_PE_indirect:
1389 case DW_EH_PE_textrel:
1390 BFD_ASSERT (hdr_info == NULL);
1391 break;
1392 case DW_EH_PE_datarel:
1393 {
1394 asection *got = bfd_get_section_by_name (abfd, ".got");
1395
1396 BFD_ASSERT (got != NULL);
1397 address += got->vma;
1398 }
1399 break;
1400 case DW_EH_PE_pcrel:
1401 value += ent->offset - ent->new_offset;
1402 address += sec->output_section->vma + ent->offset + 8;
1403 break;
1404 }
1405 if (ent->cie_inf->make_relative)
1406 value -= sec->output_section->vma + ent->new_offset + 8;
1407 write_value (abfd, buf, value, width);
1408 }
1409
1410 start = buf;
1411
1412 if (hdr_info)
1413 {
1414 hdr_info->array[hdr_info->array_count].initial_loc = address;
1415 hdr_info->array[hdr_info->array_count++].fde
1416 = sec->output_section->vma + ent->new_offset;
1417 }
1418
1419 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1420 || ent->cie_inf->need_lsda_relative)
1421 {
1422 buf += ent->lsda_offset;
1423 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1424 value = read_value (abfd, buf, width,
1425 get_DW_EH_PE_signed (ent->lsda_encoding));
1426 if (value)
1427 {
1428 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1429 value += ent->offset - ent->new_offset;
1430 else if (ent->cie_inf->need_lsda_relative)
1431 value -= (sec->output_section->vma + ent->new_offset + 8
1432 + ent->lsda_offset);
1433 write_value (abfd, buf, value, width);
1434 }
1435 }
1436 else if (ent->cie_inf->add_augmentation_size)
1437 {
1438 /* Skip the PC and length and insert a zero byte for the
1439 augmentation size. */
1440 buf += width * 2;
1441 memmove (buf + 1, buf, end - buf);
1442 *buf = 0;
1443 }
1444
1445 if (ent->set_loc)
1446 {
1447 /* Adjust DW_CFA_set_loc. */
1448 unsigned int cnt, width;
1449 bfd_vma new_offset;
1450
1451 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1452 new_offset = ent->new_offset + 8
1453 + extra_augmentation_string_bytes (ent)
1454 + extra_augmentation_data_bytes (ent);
1455
1456 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
1457 {
1458 bfd_vma value;
1459 buf = start + ent->set_loc[cnt];
1460
1461 value = read_value (abfd, buf, width,
1462 get_DW_EH_PE_signed (ent->fde_encoding));
1463 if (!value)
1464 continue;
1465
1466 if ((ent->fde_encoding & 0xf0) == DW_EH_PE_pcrel)
1467 value += ent->offset + 8 - new_offset;
1468 if (ent->cie_inf->make_relative)
1469 value -= sec->output_section->vma + new_offset
1470 + ent->set_loc[cnt];
1471 write_value (abfd, buf, value, width);
1472 }
1473 }
1474 }
1475 }
1476
1477 /* We don't align the section to its section alignment since the
1478 runtime library only expects all CIE/FDE records aligned at
1479 the pointer size. _bfd_elf_discard_section_eh_frame should
1480 have padded CIE/FDE records to multiple of pointer size with
1481 size_of_output_cie_fde. */
1482 if ((sec->size % ptr_size) != 0)
1483 abort ();
1484
1485 return bfd_set_section_contents (abfd, sec->output_section,
1486 contents, (file_ptr) sec->output_offset,
1487 sec->size);
1488 }
1489
1490 /* Helper function used to sort .eh_frame_hdr search table by increasing
1491 VMA of FDE initial location. */
1492
1493 static int
1494 vma_compare (const void *a, const void *b)
1495 {
1496 const struct eh_frame_array_ent *p = a;
1497 const struct eh_frame_array_ent *q = b;
1498 if (p->initial_loc > q->initial_loc)
1499 return 1;
1500 if (p->initial_loc < q->initial_loc)
1501 return -1;
1502 return 0;
1503 }
1504
1505 /* Write out .eh_frame_hdr section. This must be called after
1506 _bfd_elf_write_section_eh_frame has been called on all input
1507 .eh_frame sections.
1508 .eh_frame_hdr format:
1509 ubyte version (currently 1)
1510 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1511 .eh_frame section)
1512 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1513 number (or DW_EH_PE_omit if there is no
1514 binary search table computed))
1515 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1516 or DW_EH_PE_omit if not present.
1517 DW_EH_PE_datarel is using address of
1518 .eh_frame_hdr section start as base)
1519 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1520 optionally followed by:
1521 [encoded] fde_count (total number of FDEs in .eh_frame section)
1522 fde_count x [encoded] initial_loc, fde
1523 (array of encoded pairs containing
1524 FDE initial_location field and FDE address,
1525 sorted by increasing initial_loc). */
1526
1527 bfd_boolean
1528 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1529 {
1530 struct elf_link_hash_table *htab;
1531 struct eh_frame_hdr_info *hdr_info;
1532 asection *sec;
1533 bfd_byte *contents;
1534 asection *eh_frame_sec;
1535 bfd_size_type size;
1536 bfd_boolean retval;
1537 bfd_vma encoded_eh_frame;
1538
1539 htab = elf_hash_table (info);
1540 hdr_info = &htab->eh_info;
1541 sec = hdr_info->hdr_sec;
1542 if (sec == NULL)
1543 return TRUE;
1544
1545 size = EH_FRAME_HDR_SIZE;
1546 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1547 size += 4 + hdr_info->fde_count * 8;
1548 contents = bfd_malloc (size);
1549 if (contents == NULL)
1550 return FALSE;
1551
1552 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1553 if (eh_frame_sec == NULL)
1554 {
1555 free (contents);
1556 return FALSE;
1557 }
1558
1559 memset (contents, 0, EH_FRAME_HDR_SIZE);
1560 contents[0] = 1; /* Version. */
1561 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1562 (abfd, info, eh_frame_sec, 0, sec, 4,
1563 &encoded_eh_frame); /* .eh_frame offset. */
1564
1565 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1566 {
1567 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1568 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1569 }
1570 else
1571 {
1572 contents[2] = DW_EH_PE_omit;
1573 contents[3] = DW_EH_PE_omit;
1574 }
1575 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1576
1577 if (contents[2] != DW_EH_PE_omit)
1578 {
1579 unsigned int i;
1580
1581 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1582 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1583 vma_compare);
1584 for (i = 0; i < hdr_info->fde_count; i++)
1585 {
1586 bfd_put_32 (abfd,
1587 hdr_info->array[i].initial_loc
1588 - sec->output_section->vma,
1589 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1590 bfd_put_32 (abfd,
1591 hdr_info->array[i].fde - sec->output_section->vma,
1592 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1593 }
1594 }
1595
1596 retval = bfd_set_section_contents (abfd, sec->output_section,
1597 contents, (file_ptr) sec->output_offset,
1598 sec->size);
1599 free (contents);
1600 return retval;
1601 }
1602
1603 /* Return the width of FDE addresses. This is the default implementation. */
1604
1605 unsigned int
1606 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1607 {
1608 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1609 }
1610
1611 /* Decide whether we can use a PC-relative encoding within the given
1612 EH frame section. This is the default implementation. */
1613
1614 bfd_boolean
1615 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1616 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1617 asection *eh_frame_section ATTRIBUTE_UNUSED)
1618 {
1619 return TRUE;
1620 }
1621
1622 /* Select an encoding for the given address. Preference is given to
1623 PC-relative addressing modes. */
1624
1625 bfd_byte
1626 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1627 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1628 asection *osec, bfd_vma offset,
1629 asection *loc_sec, bfd_vma loc_offset,
1630 bfd_vma *encoded)
1631 {
1632 *encoded = osec->vma + offset -
1633 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1634 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1635 }
This page took 0.081166 seconds and 5 git commands to generate.