Fix several mix up between octets and bytes in ELF program headers
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || bfd_seek (abfd, offset, SEEK_SET) != 0
300 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
301 shstrtabsize)) == NULL)
302 {
303 /* Once we've failed to read it, make sure we don't keep
304 trying. Otherwise, we'll keep allocating space for
305 the string table over and over. */
306 i_shdrp[shindex]->sh_size = 0;
307 }
308 else
309 shstrtab[shstrtabsize] = '\0';
310 i_shdrp[shindex]->contents = shstrtab;
311 }
312 return (char *) shstrtab;
313 }
314
315 char *
316 bfd_elf_string_from_elf_section (bfd *abfd,
317 unsigned int shindex,
318 unsigned int strindex)
319 {
320 Elf_Internal_Shdr *hdr;
321
322 if (strindex == 0)
323 return "";
324
325 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
326 return NULL;
327
328 hdr = elf_elfsections (abfd)[shindex];
329
330 if (hdr->contents == NULL)
331 {
332 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
333 {
334 /* PR 17512: file: f057ec89. */
335 /* xgettext:c-format */
336 _bfd_error_handler (_("%pB: attempt to load strings from"
337 " a non-string section (number %d)"),
338 abfd, shindex);
339 return NULL;
340 }
341
342 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
343 return NULL;
344 }
345 else
346 {
347 /* PR 24273: The string section's contents may have already
348 been loaded elsewhere, eg because a corrupt file has the
349 string section index in the ELF header pointing at a group
350 section. So be paranoid, and test that the last byte of
351 the section is zero. */
352 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
353 return NULL;
354 }
355
356 if (strindex >= hdr->sh_size)
357 {
358 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
359 _bfd_error_handler
360 /* xgettext:c-format */
361 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
362 abfd, strindex, (uint64_t) hdr->sh_size,
363 (shindex == shstrndx && strindex == hdr->sh_name
364 ? ".shstrtab"
365 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
366 return NULL;
367 }
368
369 return ((char *) hdr->contents) + strindex;
370 }
371
372 /* Read and convert symbols to internal format.
373 SYMCOUNT specifies the number of symbols to read, starting from
374 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
375 are non-NULL, they are used to store the internal symbols, external
376 symbols, and symbol section index extensions, respectively.
377 Returns a pointer to the internal symbol buffer (malloced if necessary)
378 or NULL if there were no symbols or some kind of problem. */
379
380 Elf_Internal_Sym *
381 bfd_elf_get_elf_syms (bfd *ibfd,
382 Elf_Internal_Shdr *symtab_hdr,
383 size_t symcount,
384 size_t symoffset,
385 Elf_Internal_Sym *intsym_buf,
386 void *extsym_buf,
387 Elf_External_Sym_Shndx *extshndx_buf)
388 {
389 Elf_Internal_Shdr *shndx_hdr;
390 void *alloc_ext;
391 const bfd_byte *esym;
392 Elf_External_Sym_Shndx *alloc_extshndx;
393 Elf_External_Sym_Shndx *shndx;
394 Elf_Internal_Sym *alloc_intsym;
395 Elf_Internal_Sym *isym;
396 Elf_Internal_Sym *isymend;
397 const struct elf_backend_data *bed;
398 size_t extsym_size;
399 size_t amt;
400 file_ptr pos;
401
402 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
403 abort ();
404
405 if (symcount == 0)
406 return intsym_buf;
407
408 /* Normal syms might have section extension entries. */
409 shndx_hdr = NULL;
410 if (elf_symtab_shndx_list (ibfd) != NULL)
411 {
412 elf_section_list * entry;
413 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
414
415 /* Find an index section that is linked to this symtab section. */
416 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
417 {
418 /* PR 20063. */
419 if (entry->hdr.sh_link >= elf_numsections (ibfd))
420 continue;
421
422 if (sections[entry->hdr.sh_link] == symtab_hdr)
423 {
424 shndx_hdr = & entry->hdr;
425 break;
426 };
427 }
428
429 if (shndx_hdr == NULL)
430 {
431 if (symtab_hdr == & elf_symtab_hdr (ibfd))
432 /* Not really accurate, but this was how the old code used to work. */
433 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
434 /* Otherwise we do nothing. The assumption is that
435 the index table will not be needed. */
436 }
437 }
438
439 /* Read the symbols. */
440 alloc_ext = NULL;
441 alloc_extshndx = NULL;
442 alloc_intsym = NULL;
443 bed = get_elf_backend_data (ibfd);
444 extsym_size = bed->s->sizeof_sym;
445 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
446 {
447 bfd_set_error (bfd_error_file_too_big);
448 intsym_buf = NULL;
449 goto out;
450 }
451 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
452 if (extsym_buf == NULL)
453 {
454 alloc_ext = bfd_malloc (amt);
455 extsym_buf = alloc_ext;
456 }
457 if (extsym_buf == NULL
458 || bfd_seek (ibfd, pos, SEEK_SET) != 0
459 || bfd_bread (extsym_buf, amt, ibfd) != amt)
460 {
461 intsym_buf = NULL;
462 goto out;
463 }
464
465 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
466 extshndx_buf = NULL;
467 else
468 {
469 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
470 {
471 bfd_set_error (bfd_error_file_too_big);
472 intsym_buf = NULL;
473 goto out;
474 }
475 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
476 if (extshndx_buf == NULL)
477 {
478 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
493 {
494 bfd_set_error (bfd_error_file_too_big);
495 goto out;
496 }
497 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
498 intsym_buf = alloc_intsym;
499 if (intsym_buf == NULL)
500 goto out;
501 }
502
503 /* Convert the symbols to internal form. */
504 isymend = intsym_buf + symcount;
505 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
506 shndx = extshndx_buf;
507 isym < isymend;
508 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
509 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
510 {
511 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
512 /* xgettext:c-format */
513 _bfd_error_handler (_("%pB symbol number %lu references"
514 " nonexistent SHT_SYMTAB_SHNDX section"),
515 ibfd, (unsigned long) symoffset);
516 if (alloc_intsym != NULL)
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 if (alloc_ext != NULL)
524 free (alloc_ext);
525 if (alloc_extshndx != NULL)
526 free (alloc_extshndx);
527
528 return intsym_buf;
529 }
530
531 /* Look up a symbol name. */
532 const char *
533 bfd_elf_sym_name (bfd *abfd,
534 Elf_Internal_Shdr *symtab_hdr,
535 Elf_Internal_Sym *isym,
536 asection *sym_sec)
537 {
538 const char *name;
539 unsigned int iname = isym->st_name;
540 unsigned int shindex = symtab_hdr->sh_link;
541
542 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
543 /* Check for a bogus st_shndx to avoid crashing. */
544 && isym->st_shndx < elf_numsections (abfd))
545 {
546 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
547 shindex = elf_elfheader (abfd)->e_shstrndx;
548 }
549
550 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
551 if (name == NULL)
552 name = "(null)";
553 else if (sym_sec && *name == '\0')
554 name = bfd_section_name (sym_sec);
555
556 return name;
557 }
558
559 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
560 sections. The first element is the flags, the rest are section
561 pointers. */
562
563 typedef union elf_internal_group {
564 Elf_Internal_Shdr *shdr;
565 unsigned int flags;
566 } Elf_Internal_Group;
567
568 /* Return the name of the group signature symbol. Why isn't the
569 signature just a string? */
570
571 static const char *
572 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
573 {
574 Elf_Internal_Shdr *hdr;
575 unsigned char esym[sizeof (Elf64_External_Sym)];
576 Elf_External_Sym_Shndx eshndx;
577 Elf_Internal_Sym isym;
578
579 /* First we need to ensure the symbol table is available. Make sure
580 that it is a symbol table section. */
581 if (ghdr->sh_link >= elf_numsections (abfd))
582 return NULL;
583 hdr = elf_elfsections (abfd) [ghdr->sh_link];
584 if (hdr->sh_type != SHT_SYMTAB
585 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
586 return NULL;
587
588 /* Go read the symbol. */
589 hdr = &elf_tdata (abfd)->symtab_hdr;
590 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
591 &isym, esym, &eshndx) == NULL)
592 return NULL;
593
594 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
595 }
596
597 /* Set next_in_group list pointer, and group name for NEWSECT. */
598
599 static bfd_boolean
600 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
601 {
602 unsigned int num_group = elf_tdata (abfd)->num_group;
603
604 /* If num_group is zero, read in all SHT_GROUP sections. The count
605 is set to -1 if there are no SHT_GROUP sections. */
606 if (num_group == 0)
607 {
608 unsigned int i, shnum;
609
610 /* First count the number of groups. If we have a SHT_GROUP
611 section with just a flag word (ie. sh_size is 4), ignore it. */
612 shnum = elf_numsections (abfd);
613 num_group = 0;
614
615 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
616 ( (shdr)->sh_type == SHT_GROUP \
617 && (shdr)->sh_size >= minsize \
618 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
619 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
620
621 for (i = 0; i < shnum; i++)
622 {
623 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
624
625 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
626 num_group += 1;
627 }
628
629 if (num_group == 0)
630 {
631 num_group = (unsigned) -1;
632 elf_tdata (abfd)->num_group = num_group;
633 elf_tdata (abfd)->group_sect_ptr = NULL;
634 }
635 else
636 {
637 /* We keep a list of elf section headers for group sections,
638 so we can find them quickly. */
639 size_t amt;
640
641 elf_tdata (abfd)->num_group = num_group;
642 amt = num_group * sizeof (Elf_Internal_Shdr *);
643 elf_tdata (abfd)->group_sect_ptr
644 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
645 if (elf_tdata (abfd)->group_sect_ptr == NULL)
646 return FALSE;
647 num_group = 0;
648
649 for (i = 0; i < shnum; i++)
650 {
651 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
652
653 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
654 {
655 unsigned char *src;
656 Elf_Internal_Group *dest;
657
658 /* Make sure the group section has a BFD section
659 attached to it. */
660 if (!bfd_section_from_shdr (abfd, i))
661 return FALSE;
662
663 /* Add to list of sections. */
664 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
665 num_group += 1;
666
667 /* Read the raw contents. */
668 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
669 shdr->contents = NULL;
670 if (_bfd_mul_overflow (shdr->sh_size,
671 sizeof (*dest) / 4, &amt)
672 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
673 || !(shdr->contents
674 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
675 {
676 _bfd_error_handler
677 /* xgettext:c-format */
678 (_("%pB: invalid size field in group section"
679 " header: %#" PRIx64 ""),
680 abfd, (uint64_t) shdr->sh_size);
681 bfd_set_error (bfd_error_bad_value);
682 -- num_group;
683 continue;
684 }
685
686 /* Translate raw contents, a flag word followed by an
687 array of elf section indices all in target byte order,
688 to the flag word followed by an array of elf section
689 pointers. */
690 src = shdr->contents + shdr->sh_size;
691 dest = (Elf_Internal_Group *) (shdr->contents + amt);
692
693 while (1)
694 {
695 unsigned int idx;
696
697 src -= 4;
698 --dest;
699 idx = H_GET_32 (abfd, src);
700 if (src == shdr->contents)
701 {
702 dest->shdr = NULL;
703 dest->flags = idx;
704 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
705 shdr->bfd_section->flags
706 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
707 break;
708 }
709 if (idx < shnum)
710 {
711 dest->shdr = elf_elfsections (abfd)[idx];
712 /* PR binutils/23199: All sections in a
713 section group should be marked with
714 SHF_GROUP. But some tools generate
715 broken objects without SHF_GROUP. Fix
716 them up here. */
717 dest->shdr->sh_flags |= SHF_GROUP;
718 }
719 if (idx >= shnum
720 || dest->shdr->sh_type == SHT_GROUP)
721 {
722 _bfd_error_handler
723 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
724 abfd, i);
725 dest->shdr = NULL;
726 }
727 }
728 }
729 }
730
731 /* PR 17510: Corrupt binaries might contain invalid groups. */
732 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
733 {
734 elf_tdata (abfd)->num_group = num_group;
735
736 /* If all groups are invalid then fail. */
737 if (num_group == 0)
738 {
739 elf_tdata (abfd)->group_sect_ptr = NULL;
740 elf_tdata (abfd)->num_group = num_group = -1;
741 _bfd_error_handler
742 (_("%pB: no valid group sections found"), abfd);
743 bfd_set_error (bfd_error_bad_value);
744 }
745 }
746 }
747 }
748
749 if (num_group != (unsigned) -1)
750 {
751 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
752 unsigned int j;
753
754 for (j = 0; j < num_group; j++)
755 {
756 /* Begin search from previous found group. */
757 unsigned i = (j + search_offset) % num_group;
758
759 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
760 Elf_Internal_Group *idx;
761 bfd_size_type n_elt;
762
763 if (shdr == NULL)
764 continue;
765
766 idx = (Elf_Internal_Group *) shdr->contents;
767 if (idx == NULL || shdr->sh_size < 4)
768 {
769 /* See PR 21957 for a reproducer. */
770 /* xgettext:c-format */
771 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
772 abfd, shdr->bfd_section);
773 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
774 bfd_set_error (bfd_error_bad_value);
775 return FALSE;
776 }
777 n_elt = shdr->sh_size / 4;
778
779 /* Look through this group's sections to see if current
780 section is a member. */
781 while (--n_elt != 0)
782 if ((++idx)->shdr == hdr)
783 {
784 asection *s = NULL;
785
786 /* We are a member of this group. Go looking through
787 other members to see if any others are linked via
788 next_in_group. */
789 idx = (Elf_Internal_Group *) shdr->contents;
790 n_elt = shdr->sh_size / 4;
791 while (--n_elt != 0)
792 if ((++idx)->shdr != NULL
793 && (s = idx->shdr->bfd_section) != NULL
794 && elf_next_in_group (s) != NULL)
795 break;
796 if (n_elt != 0)
797 {
798 /* Snarf the group name from other member, and
799 insert current section in circular list. */
800 elf_group_name (newsect) = elf_group_name (s);
801 elf_next_in_group (newsect) = elf_next_in_group (s);
802 elf_next_in_group (s) = newsect;
803 }
804 else
805 {
806 const char *gname;
807
808 gname = group_signature (abfd, shdr);
809 if (gname == NULL)
810 return FALSE;
811 elf_group_name (newsect) = gname;
812
813 /* Start a circular list with one element. */
814 elf_next_in_group (newsect) = newsect;
815 }
816
817 /* If the group section has been created, point to the
818 new member. */
819 if (shdr->bfd_section != NULL)
820 elf_next_in_group (shdr->bfd_section) = newsect;
821
822 elf_tdata (abfd)->group_search_offset = i;
823 j = num_group - 1;
824 break;
825 }
826 }
827 }
828
829 if (elf_group_name (newsect) == NULL)
830 {
831 /* xgettext:c-format */
832 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
833 abfd, newsect);
834 return FALSE;
835 }
836 return TRUE;
837 }
838
839 bfd_boolean
840 _bfd_elf_setup_sections (bfd *abfd)
841 {
842 unsigned int i;
843 unsigned int num_group = elf_tdata (abfd)->num_group;
844 bfd_boolean result = TRUE;
845 asection *s;
846
847 /* Process SHF_LINK_ORDER. */
848 for (s = abfd->sections; s != NULL; s = s->next)
849 {
850 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
851 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
852 {
853 unsigned int elfsec = this_hdr->sh_link;
854 /* FIXME: The old Intel compiler and old strip/objcopy may
855 not set the sh_link or sh_info fields. Hence we could
856 get the situation where elfsec is 0. */
857 if (elfsec == 0)
858 {
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
860 if (bed->link_order_error_handler)
861 bed->link_order_error_handler
862 /* xgettext:c-format */
863 (_("%pB: warning: sh_link not set for section `%pA'"),
864 abfd, s);
865 }
866 else
867 {
868 asection *linksec = NULL;
869
870 if (elfsec < elf_numsections (abfd))
871 {
872 this_hdr = elf_elfsections (abfd)[elfsec];
873 linksec = this_hdr->bfd_section;
874 }
875
876 /* PR 1991, 2008:
877 Some strip/objcopy may leave an incorrect value in
878 sh_link. We don't want to proceed. */
879 if (linksec == NULL)
880 {
881 _bfd_error_handler
882 /* xgettext:c-format */
883 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
884 s->owner, elfsec, s);
885 result = FALSE;
886 }
887
888 elf_linked_to_section (s) = linksec;
889 }
890 }
891 else if (this_hdr->sh_type == SHT_GROUP
892 && elf_next_in_group (s) == NULL)
893 {
894 _bfd_error_handler
895 /* xgettext:c-format */
896 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
897 abfd, elf_section_data (s)->this_idx);
898 result = FALSE;
899 }
900 }
901
902 /* Process section groups. */
903 if (num_group == (unsigned) -1)
904 return result;
905
906 for (i = 0; i < num_group; i++)
907 {
908 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
909 Elf_Internal_Group *idx;
910 unsigned int n_elt;
911
912 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
913 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
914 {
915 _bfd_error_handler
916 /* xgettext:c-format */
917 (_("%pB: section group entry number %u is corrupt"),
918 abfd, i);
919 result = FALSE;
920 continue;
921 }
922
923 idx = (Elf_Internal_Group *) shdr->contents;
924 n_elt = shdr->sh_size / 4;
925
926 while (--n_elt != 0)
927 {
928 ++ idx;
929
930 if (idx->shdr == NULL)
931 continue;
932 else if (idx->shdr->bfd_section)
933 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
934 else if (idx->shdr->sh_type != SHT_RELA
935 && idx->shdr->sh_type != SHT_REL)
936 {
937 /* There are some unknown sections in the group. */
938 _bfd_error_handler
939 /* xgettext:c-format */
940 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
941 abfd,
942 idx->shdr->sh_type,
943 bfd_elf_string_from_elf_section (abfd,
944 (elf_elfheader (abfd)
945 ->e_shstrndx),
946 idx->shdr->sh_name),
947 shdr->bfd_section);
948 result = FALSE;
949 }
950 }
951 }
952
953 return result;
954 }
955
956 bfd_boolean
957 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
958 {
959 return elf_next_in_group (sec) != NULL;
960 }
961
962 const char *
963 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
964 {
965 if (elf_sec_group (sec) != NULL)
966 return elf_group_name (sec);
967 return NULL;
968 }
969
970 static char *
971 convert_debug_to_zdebug (bfd *abfd, const char *name)
972 {
973 unsigned int len = strlen (name);
974 char *new_name = bfd_alloc (abfd, len + 2);
975 if (new_name == NULL)
976 return NULL;
977 new_name[0] = '.';
978 new_name[1] = 'z';
979 memcpy (new_name + 2, name + 1, len);
980 return new_name;
981 }
982
983 static char *
984 convert_zdebug_to_debug (bfd *abfd, const char *name)
985 {
986 unsigned int len = strlen (name);
987 char *new_name = bfd_alloc (abfd, len);
988 if (new_name == NULL)
989 return NULL;
990 new_name[0] = '.';
991 memcpy (new_name + 1, name + 2, len - 1);
992 return new_name;
993 }
994
995 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
996
997 struct lto_section
998 {
999 int16_t major_version;
1000 int16_t minor_version;
1001 unsigned char slim_object;
1002
1003 /* Flags is a private field that is not defined publicly. */
1004 uint16_t flags;
1005 };
1006
1007 /* Make a BFD section from an ELF section. We store a pointer to the
1008 BFD section in the bfd_section field of the header. */
1009
1010 bfd_boolean
1011 _bfd_elf_make_section_from_shdr (bfd *abfd,
1012 Elf_Internal_Shdr *hdr,
1013 const char *name,
1014 int shindex)
1015 {
1016 asection *newsect;
1017 flagword flags;
1018 const struct elf_backend_data *bed;
1019 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1020
1021 if (hdr->bfd_section != NULL)
1022 return TRUE;
1023
1024 newsect = bfd_make_section_anyway (abfd, name);
1025 if (newsect == NULL)
1026 return FALSE;
1027
1028 hdr->bfd_section = newsect;
1029 elf_section_data (newsect)->this_hdr = *hdr;
1030 elf_section_data (newsect)->this_idx = shindex;
1031
1032 /* Always use the real type/flags. */
1033 elf_section_type (newsect) = hdr->sh_type;
1034 elf_section_flags (newsect) = hdr->sh_flags;
1035
1036 newsect->filepos = hdr->sh_offset;
1037
1038 flags = SEC_NO_FLAGS;
1039 if (hdr->sh_type != SHT_NOBITS)
1040 flags |= SEC_HAS_CONTENTS;
1041 if (hdr->sh_type == SHT_GROUP)
1042 flags |= SEC_GROUP;
1043 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1044 {
1045 flags |= SEC_ALLOC;
1046 if (hdr->sh_type != SHT_NOBITS)
1047 flags |= SEC_LOAD;
1048 }
1049 if ((hdr->sh_flags & SHF_WRITE) == 0)
1050 flags |= SEC_READONLY;
1051 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1052 flags |= SEC_CODE;
1053 else if ((flags & SEC_LOAD) != 0)
1054 flags |= SEC_DATA;
1055 if ((hdr->sh_flags & SHF_MERGE) != 0)
1056 {
1057 flags |= SEC_MERGE;
1058 newsect->entsize = hdr->sh_entsize;
1059 }
1060 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1061 flags |= SEC_STRINGS;
1062 if (hdr->sh_flags & SHF_GROUP)
1063 if (!setup_group (abfd, hdr, newsect))
1064 return FALSE;
1065 if ((hdr->sh_flags & SHF_TLS) != 0)
1066 flags |= SEC_THREAD_LOCAL;
1067 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1068 flags |= SEC_EXCLUDE;
1069
1070 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1071 {
1072 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1073 but binutils as of 2019-07-23 did not set the EI_OSABI header
1074 byte. */
1075 case ELFOSABI_NONE:
1076 case ELFOSABI_GNU:
1077 case ELFOSABI_FREEBSD:
1078 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1079 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1080 break;
1081 }
1082
1083 if ((flags & SEC_ALLOC) == 0)
1084 {
1085 /* The debugging sections appear to be recognized only by name,
1086 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1087 if (name [0] == '.')
1088 {
1089 if (strncmp (name, ".debug", 6) == 0
1090 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1091 || strncmp (name, ".zdebug", 7) == 0)
1092 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1093 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1094 || strncmp (name, ".note.gnu", 9) == 0)
1095 {
1096 flags |= SEC_ELF_OCTETS;
1097 opb = 1;
1098 }
1099 else if (strncmp (name, ".line", 5) == 0
1100 || strncmp (name, ".stab", 5) == 0
1101 || strcmp (name, ".gdb_index") == 0)
1102 flags |= SEC_DEBUGGING;
1103 }
1104 }
1105
1106 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1107 || !bfd_set_section_size (newsect, hdr->sh_size)
1108 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1109 return FALSE;
1110
1111 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1112 only link a single copy of the section. This is used to support
1113 g++. g++ will emit each template expansion in its own section.
1114 The symbols will be defined as weak, so that multiple definitions
1115 are permitted. The GNU linker extension is to actually discard
1116 all but one of the sections. */
1117 if (CONST_STRNEQ (name, ".gnu.linkonce")
1118 && elf_next_in_group (newsect) == NULL)
1119 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1120
1121 if (!bfd_set_section_flags (newsect, flags))
1122 return FALSE;
1123
1124 bed = get_elf_backend_data (abfd);
1125 if (bed->elf_backend_section_flags)
1126 if (!bed->elf_backend_section_flags (hdr))
1127 return FALSE;
1128
1129 /* We do not parse the PT_NOTE segments as we are interested even in the
1130 separate debug info files which may have the segments offsets corrupted.
1131 PT_NOTEs from the core files are currently not parsed using BFD. */
1132 if (hdr->sh_type == SHT_NOTE)
1133 {
1134 bfd_byte *contents;
1135
1136 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1137 return FALSE;
1138
1139 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1140 hdr->sh_offset, hdr->sh_addralign);
1141 free (contents);
1142 }
1143
1144 if ((newsect->flags & SEC_ALLOC) != 0)
1145 {
1146 Elf_Internal_Phdr *phdr;
1147 unsigned int i, nload;
1148
1149 /* Some ELF linkers produce binaries with all the program header
1150 p_paddr fields zero. If we have such a binary with more than
1151 one PT_LOAD header, then leave the section lma equal to vma
1152 so that we don't create sections with overlapping lma. */
1153 phdr = elf_tdata (abfd)->phdr;
1154 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1155 if (phdr->p_paddr != 0)
1156 break;
1157 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1158 ++nload;
1159 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1160 return TRUE;
1161
1162 phdr = elf_tdata (abfd)->phdr;
1163 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1164 {
1165 if (((phdr->p_type == PT_LOAD
1166 && (hdr->sh_flags & SHF_TLS) == 0)
1167 || phdr->p_type == PT_TLS)
1168 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1169 {
1170 if ((newsect->flags & SEC_LOAD) == 0)
1171 newsect->lma = (phdr->p_paddr
1172 + hdr->sh_addr - phdr->p_vaddr) / opb;
1173 else
1174 /* We used to use the same adjustment for SEC_LOAD
1175 sections, but that doesn't work if the segment
1176 is packed with code from multiple VMAs.
1177 Instead we calculate the section LMA based on
1178 the segment LMA. It is assumed that the
1179 segment will contain sections with contiguous
1180 LMAs, even if the VMAs are not. */
1181 newsect->lma = (phdr->p_paddr
1182 + hdr->sh_offset - phdr->p_offset) / opb;
1183
1184 /* With contiguous segments, we can't tell from file
1185 offsets whether a section with zero size should
1186 be placed at the end of one segment or the
1187 beginning of the next. Decide based on vaddr. */
1188 if (hdr->sh_addr >= phdr->p_vaddr
1189 && (hdr->sh_addr + hdr->sh_size
1190 <= phdr->p_vaddr + phdr->p_memsz))
1191 break;
1192 }
1193 }
1194 }
1195
1196 /* Compress/decompress DWARF debug sections with names: .debug_* and
1197 .zdebug_*, after the section flags is set. */
1198 if ((newsect->flags & SEC_DEBUGGING)
1199 && ((name[1] == 'd' && name[6] == '_')
1200 || (name[1] == 'z' && name[7] == '_')))
1201 {
1202 enum { nothing, compress, decompress } action = nothing;
1203 int compression_header_size;
1204 bfd_size_type uncompressed_size;
1205 unsigned int uncompressed_align_power;
1206 bfd_boolean compressed
1207 = bfd_is_section_compressed_with_header (abfd, newsect,
1208 &compression_header_size,
1209 &uncompressed_size,
1210 &uncompressed_align_power);
1211 if (compressed)
1212 {
1213 /* Compressed section. Check if we should decompress. */
1214 if ((abfd->flags & BFD_DECOMPRESS))
1215 action = decompress;
1216 }
1217
1218 /* Compress the uncompressed section or convert from/to .zdebug*
1219 section. Check if we should compress. */
1220 if (action == nothing)
1221 {
1222 if (newsect->size != 0
1223 && (abfd->flags & BFD_COMPRESS)
1224 && compression_header_size >= 0
1225 && uncompressed_size > 0
1226 && (!compressed
1227 || ((compression_header_size > 0)
1228 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1229 action = compress;
1230 else
1231 return TRUE;
1232 }
1233
1234 if (action == compress)
1235 {
1236 if (!bfd_init_section_compress_status (abfd, newsect))
1237 {
1238 _bfd_error_handler
1239 /* xgettext:c-format */
1240 (_("%pB: unable to initialize compress status for section %s"),
1241 abfd, name);
1242 return FALSE;
1243 }
1244 }
1245 else
1246 {
1247 if (!bfd_init_section_decompress_status (abfd, newsect))
1248 {
1249 _bfd_error_handler
1250 /* xgettext:c-format */
1251 (_("%pB: unable to initialize decompress status for section %s"),
1252 abfd, name);
1253 return FALSE;
1254 }
1255 }
1256
1257 if (abfd->is_linker_input)
1258 {
1259 if (name[1] == 'z'
1260 && (action == decompress
1261 || (action == compress
1262 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1263 {
1264 /* Convert section name from .zdebug_* to .debug_* so
1265 that linker will consider this section as a debug
1266 section. */
1267 char *new_name = convert_zdebug_to_debug (abfd, name);
1268 if (new_name == NULL)
1269 return FALSE;
1270 bfd_rename_section (newsect, new_name);
1271 }
1272 }
1273 else
1274 /* For objdump, don't rename the section. For objcopy, delay
1275 section rename to elf_fake_sections. */
1276 newsect->flags |= SEC_ELF_RENAME;
1277 }
1278
1279 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1280 section. */
1281 const char *lto_section_name = ".gnu.lto_.lto.";
1282 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1283 {
1284 struct lto_section lsection;
1285 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1286 sizeof (struct lto_section)))
1287 abfd->lto_slim_object = lsection.slim_object;
1288 }
1289
1290 return TRUE;
1291 }
1292
1293 const char *const bfd_elf_section_type_names[] =
1294 {
1295 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1296 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1297 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1298 };
1299
1300 /* ELF relocs are against symbols. If we are producing relocatable
1301 output, and the reloc is against an external symbol, and nothing
1302 has given us any additional addend, the resulting reloc will also
1303 be against the same symbol. In such a case, we don't want to
1304 change anything about the way the reloc is handled, since it will
1305 all be done at final link time. Rather than put special case code
1306 into bfd_perform_relocation, all the reloc types use this howto
1307 function. It just short circuits the reloc if producing
1308 relocatable output against an external symbol. */
1309
1310 bfd_reloc_status_type
1311 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1312 arelent *reloc_entry,
1313 asymbol *symbol,
1314 void *data ATTRIBUTE_UNUSED,
1315 asection *input_section,
1316 bfd *output_bfd,
1317 char **error_message ATTRIBUTE_UNUSED)
1318 {
1319 if (output_bfd != NULL
1320 && (symbol->flags & BSF_SECTION_SYM) == 0
1321 && (! reloc_entry->howto->partial_inplace
1322 || reloc_entry->addend == 0))
1323 {
1324 reloc_entry->address += input_section->output_offset;
1325 return bfd_reloc_ok;
1326 }
1327
1328 return bfd_reloc_continue;
1329 }
1330 \f
1331 /* Returns TRUE if section A matches section B.
1332 Names, addresses and links may be different, but everything else
1333 should be the same. */
1334
1335 static bfd_boolean
1336 section_match (const Elf_Internal_Shdr * a,
1337 const Elf_Internal_Shdr * b)
1338 {
1339 if (a->sh_type != b->sh_type
1340 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1341 || a->sh_addralign != b->sh_addralign
1342 || a->sh_entsize != b->sh_entsize)
1343 return FALSE;
1344 if (a->sh_type == SHT_SYMTAB
1345 || a->sh_type == SHT_STRTAB)
1346 return TRUE;
1347 return a->sh_size == b->sh_size;
1348 }
1349
1350 /* Find a section in OBFD that has the same characteristics
1351 as IHEADER. Return the index of this section or SHN_UNDEF if
1352 none can be found. Check's section HINT first, as this is likely
1353 to be the correct section. */
1354
1355 static unsigned int
1356 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1357 const unsigned int hint)
1358 {
1359 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1360 unsigned int i;
1361
1362 BFD_ASSERT (iheader != NULL);
1363
1364 /* See PR 20922 for a reproducer of the NULL test. */
1365 if (hint < elf_numsections (obfd)
1366 && oheaders[hint] != NULL
1367 && section_match (oheaders[hint], iheader))
1368 return hint;
1369
1370 for (i = 1; i < elf_numsections (obfd); i++)
1371 {
1372 Elf_Internal_Shdr * oheader = oheaders[i];
1373
1374 if (oheader == NULL)
1375 continue;
1376 if (section_match (oheader, iheader))
1377 /* FIXME: Do we care if there is a potential for
1378 multiple matches ? */
1379 return i;
1380 }
1381
1382 return SHN_UNDEF;
1383 }
1384
1385 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1386 Processor specific section, based upon a matching input section.
1387 Returns TRUE upon success, FALSE otherwise. */
1388
1389 static bfd_boolean
1390 copy_special_section_fields (const bfd *ibfd,
1391 bfd *obfd,
1392 const Elf_Internal_Shdr *iheader,
1393 Elf_Internal_Shdr *oheader,
1394 const unsigned int secnum)
1395 {
1396 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1397 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1398 bfd_boolean changed = FALSE;
1399 unsigned int sh_link;
1400
1401 if (oheader->sh_type == SHT_NOBITS)
1402 {
1403 /* This is a feature for objcopy --only-keep-debug:
1404 When a section's type is changed to NOBITS, we preserve
1405 the sh_link and sh_info fields so that they can be
1406 matched up with the original.
1407
1408 Note: Strictly speaking these assignments are wrong.
1409 The sh_link and sh_info fields should point to the
1410 relevent sections in the output BFD, which may not be in
1411 the same location as they were in the input BFD. But
1412 the whole point of this action is to preserve the
1413 original values of the sh_link and sh_info fields, so
1414 that they can be matched up with the section headers in
1415 the original file. So strictly speaking we may be
1416 creating an invalid ELF file, but it is only for a file
1417 that just contains debug info and only for sections
1418 without any contents. */
1419 if (oheader->sh_link == 0)
1420 oheader->sh_link = iheader->sh_link;
1421 if (oheader->sh_info == 0)
1422 oheader->sh_info = iheader->sh_info;
1423 return TRUE;
1424 }
1425
1426 /* Allow the target a chance to decide how these fields should be set. */
1427 if (bed->elf_backend_copy_special_section_fields != NULL
1428 && bed->elf_backend_copy_special_section_fields
1429 (ibfd, obfd, iheader, oheader))
1430 return TRUE;
1431
1432 /* We have an iheader which might match oheader, and which has non-zero
1433 sh_info and/or sh_link fields. Attempt to follow those links and find
1434 the section in the output bfd which corresponds to the linked section
1435 in the input bfd. */
1436 if (iheader->sh_link != SHN_UNDEF)
1437 {
1438 /* See PR 20931 for a reproducer. */
1439 if (iheader->sh_link >= elf_numsections (ibfd))
1440 {
1441 _bfd_error_handler
1442 /* xgettext:c-format */
1443 (_("%pB: invalid sh_link field (%d) in section number %d"),
1444 ibfd, iheader->sh_link, secnum);
1445 return FALSE;
1446 }
1447
1448 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1449 if (sh_link != SHN_UNDEF)
1450 {
1451 oheader->sh_link = sh_link;
1452 changed = TRUE;
1453 }
1454 else
1455 /* FIXME: Should we install iheader->sh_link
1456 if we could not find a match ? */
1457 _bfd_error_handler
1458 /* xgettext:c-format */
1459 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1460 }
1461
1462 if (iheader->sh_info)
1463 {
1464 /* The sh_info field can hold arbitrary information, but if the
1465 SHF_LINK_INFO flag is set then it should be interpreted as a
1466 section index. */
1467 if (iheader->sh_flags & SHF_INFO_LINK)
1468 {
1469 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1470 iheader->sh_info);
1471 if (sh_link != SHN_UNDEF)
1472 oheader->sh_flags |= SHF_INFO_LINK;
1473 }
1474 else
1475 /* No idea what it means - just copy it. */
1476 sh_link = iheader->sh_info;
1477
1478 if (sh_link != SHN_UNDEF)
1479 {
1480 oheader->sh_info = sh_link;
1481 changed = TRUE;
1482 }
1483 else
1484 _bfd_error_handler
1485 /* xgettext:c-format */
1486 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1487 }
1488
1489 return changed;
1490 }
1491
1492 /* Copy the program header and other data from one object module to
1493 another. */
1494
1495 bfd_boolean
1496 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1497 {
1498 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1499 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1500 const struct elf_backend_data *bed;
1501 unsigned int i;
1502
1503 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1504 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1505 return TRUE;
1506
1507 if (!elf_flags_init (obfd))
1508 {
1509 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1510 elf_flags_init (obfd) = TRUE;
1511 }
1512
1513 elf_gp (obfd) = elf_gp (ibfd);
1514
1515 /* Also copy the EI_OSABI field. */
1516 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1517 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1518
1519 /* If set, copy the EI_ABIVERSION field. */
1520 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1521 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1522 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1523
1524 /* Copy object attributes. */
1525 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1526
1527 if (iheaders == NULL || oheaders == NULL)
1528 return TRUE;
1529
1530 bed = get_elf_backend_data (obfd);
1531
1532 /* Possibly copy other fields in the section header. */
1533 for (i = 1; i < elf_numsections (obfd); i++)
1534 {
1535 unsigned int j;
1536 Elf_Internal_Shdr * oheader = oheaders[i];
1537
1538 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1539 because of a special case need for generating separate debug info
1540 files. See below for more details. */
1541 if (oheader == NULL
1542 || (oheader->sh_type != SHT_NOBITS
1543 && oheader->sh_type < SHT_LOOS))
1544 continue;
1545
1546 /* Ignore empty sections, and sections whose
1547 fields have already been initialised. */
1548 if (oheader->sh_size == 0
1549 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1550 continue;
1551
1552 /* Scan for the matching section in the input bfd.
1553 First we try for a direct mapping between the input and output sections. */
1554 for (j = 1; j < elf_numsections (ibfd); j++)
1555 {
1556 const Elf_Internal_Shdr * iheader = iheaders[j];
1557
1558 if (iheader == NULL)
1559 continue;
1560
1561 if (oheader->bfd_section != NULL
1562 && iheader->bfd_section != NULL
1563 && iheader->bfd_section->output_section != NULL
1564 && iheader->bfd_section->output_section == oheader->bfd_section)
1565 {
1566 /* We have found a connection from the input section to the
1567 output section. Attempt to copy the header fields. If
1568 this fails then do not try any further sections - there
1569 should only be a one-to-one mapping between input and output. */
1570 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1571 j = elf_numsections (ibfd);
1572 break;
1573 }
1574 }
1575
1576 if (j < elf_numsections (ibfd))
1577 continue;
1578
1579 /* That failed. So try to deduce the corresponding input section.
1580 Unfortunately we cannot compare names as the output string table
1581 is empty, so instead we check size, address and type. */
1582 for (j = 1; j < elf_numsections (ibfd); j++)
1583 {
1584 const Elf_Internal_Shdr * iheader = iheaders[j];
1585
1586 if (iheader == NULL)
1587 continue;
1588
1589 /* Try matching fields in the input section's header.
1590 Since --only-keep-debug turns all non-debug sections into
1591 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1592 input type. */
1593 if ((oheader->sh_type == SHT_NOBITS
1594 || iheader->sh_type == oheader->sh_type)
1595 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1596 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1597 && iheader->sh_addralign == oheader->sh_addralign
1598 && iheader->sh_entsize == oheader->sh_entsize
1599 && iheader->sh_size == oheader->sh_size
1600 && iheader->sh_addr == oheader->sh_addr
1601 && (iheader->sh_info != oheader->sh_info
1602 || iheader->sh_link != oheader->sh_link))
1603 {
1604 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1605 break;
1606 }
1607 }
1608
1609 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1610 {
1611 /* Final attempt. Call the backend copy function
1612 with a NULL input section. */
1613 if (bed->elf_backend_copy_special_section_fields != NULL)
1614 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1615 }
1616 }
1617
1618 return TRUE;
1619 }
1620
1621 static const char *
1622 get_segment_type (unsigned int p_type)
1623 {
1624 const char *pt;
1625 switch (p_type)
1626 {
1627 case PT_NULL: pt = "NULL"; break;
1628 case PT_LOAD: pt = "LOAD"; break;
1629 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1630 case PT_INTERP: pt = "INTERP"; break;
1631 case PT_NOTE: pt = "NOTE"; break;
1632 case PT_SHLIB: pt = "SHLIB"; break;
1633 case PT_PHDR: pt = "PHDR"; break;
1634 case PT_TLS: pt = "TLS"; break;
1635 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1636 case PT_GNU_STACK: pt = "STACK"; break;
1637 case PT_GNU_RELRO: pt = "RELRO"; break;
1638 default: pt = NULL; break;
1639 }
1640 return pt;
1641 }
1642
1643 /* Print out the program headers. */
1644
1645 bfd_boolean
1646 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1647 {
1648 FILE *f = (FILE *) farg;
1649 Elf_Internal_Phdr *p;
1650 asection *s;
1651 bfd_byte *dynbuf = NULL;
1652
1653 p = elf_tdata (abfd)->phdr;
1654 if (p != NULL)
1655 {
1656 unsigned int i, c;
1657
1658 fprintf (f, _("\nProgram Header:\n"));
1659 c = elf_elfheader (abfd)->e_phnum;
1660 for (i = 0; i < c; i++, p++)
1661 {
1662 const char *pt = get_segment_type (p->p_type);
1663 char buf[20];
1664
1665 if (pt == NULL)
1666 {
1667 sprintf (buf, "0x%lx", p->p_type);
1668 pt = buf;
1669 }
1670 fprintf (f, "%8s off 0x", pt);
1671 bfd_fprintf_vma (abfd, f, p->p_offset);
1672 fprintf (f, " vaddr 0x");
1673 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1674 fprintf (f, " paddr 0x");
1675 bfd_fprintf_vma (abfd, f, p->p_paddr);
1676 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1677 fprintf (f, " filesz 0x");
1678 bfd_fprintf_vma (abfd, f, p->p_filesz);
1679 fprintf (f, " memsz 0x");
1680 bfd_fprintf_vma (abfd, f, p->p_memsz);
1681 fprintf (f, " flags %c%c%c",
1682 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1683 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1684 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1685 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1686 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1687 fprintf (f, "\n");
1688 }
1689 }
1690
1691 s = bfd_get_section_by_name (abfd, ".dynamic");
1692 if (s != NULL)
1693 {
1694 unsigned int elfsec;
1695 unsigned long shlink;
1696 bfd_byte *extdyn, *extdynend;
1697 size_t extdynsize;
1698 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1699
1700 fprintf (f, _("\nDynamic Section:\n"));
1701
1702 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1703 goto error_return;
1704
1705 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1706 if (elfsec == SHN_BAD)
1707 goto error_return;
1708 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1709
1710 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1711 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1712
1713 extdyn = dynbuf;
1714 /* PR 17512: file: 6f427532. */
1715 if (s->size < extdynsize)
1716 goto error_return;
1717 extdynend = extdyn + s->size;
1718 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1719 Fix range check. */
1720 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1721 {
1722 Elf_Internal_Dyn dyn;
1723 const char *name = "";
1724 char ab[20];
1725 bfd_boolean stringp;
1726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1727
1728 (*swap_dyn_in) (abfd, extdyn, &dyn);
1729
1730 if (dyn.d_tag == DT_NULL)
1731 break;
1732
1733 stringp = FALSE;
1734 switch (dyn.d_tag)
1735 {
1736 default:
1737 if (bed->elf_backend_get_target_dtag)
1738 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1739
1740 if (!strcmp (name, ""))
1741 {
1742 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1743 name = ab;
1744 }
1745 break;
1746
1747 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1748 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1749 case DT_PLTGOT: name = "PLTGOT"; break;
1750 case DT_HASH: name = "HASH"; break;
1751 case DT_STRTAB: name = "STRTAB"; break;
1752 case DT_SYMTAB: name = "SYMTAB"; break;
1753 case DT_RELA: name = "RELA"; break;
1754 case DT_RELASZ: name = "RELASZ"; break;
1755 case DT_RELAENT: name = "RELAENT"; break;
1756 case DT_STRSZ: name = "STRSZ"; break;
1757 case DT_SYMENT: name = "SYMENT"; break;
1758 case DT_INIT: name = "INIT"; break;
1759 case DT_FINI: name = "FINI"; break;
1760 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1761 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1762 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1763 case DT_REL: name = "REL"; break;
1764 case DT_RELSZ: name = "RELSZ"; break;
1765 case DT_RELENT: name = "RELENT"; break;
1766 case DT_PLTREL: name = "PLTREL"; break;
1767 case DT_DEBUG: name = "DEBUG"; break;
1768 case DT_TEXTREL: name = "TEXTREL"; break;
1769 case DT_JMPREL: name = "JMPREL"; break;
1770 case DT_BIND_NOW: name = "BIND_NOW"; break;
1771 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1772 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1773 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1774 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1775 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1776 case DT_FLAGS: name = "FLAGS"; break;
1777 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1778 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1779 case DT_CHECKSUM: name = "CHECKSUM"; break;
1780 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1781 case DT_MOVEENT: name = "MOVEENT"; break;
1782 case DT_MOVESZ: name = "MOVESZ"; break;
1783 case DT_FEATURE: name = "FEATURE"; break;
1784 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1785 case DT_SYMINSZ: name = "SYMINSZ"; break;
1786 case DT_SYMINENT: name = "SYMINENT"; break;
1787 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1788 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1789 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1790 case DT_PLTPAD: name = "PLTPAD"; break;
1791 case DT_MOVETAB: name = "MOVETAB"; break;
1792 case DT_SYMINFO: name = "SYMINFO"; break;
1793 case DT_RELACOUNT: name = "RELACOUNT"; break;
1794 case DT_RELCOUNT: name = "RELCOUNT"; break;
1795 case DT_FLAGS_1: name = "FLAGS_1"; break;
1796 case DT_VERSYM: name = "VERSYM"; break;
1797 case DT_VERDEF: name = "VERDEF"; break;
1798 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1799 case DT_VERNEED: name = "VERNEED"; break;
1800 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1801 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1802 case DT_USED: name = "USED"; break;
1803 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1804 case DT_GNU_HASH: name = "GNU_HASH"; break;
1805 }
1806
1807 fprintf (f, " %-20s ", name);
1808 if (! stringp)
1809 {
1810 fprintf (f, "0x");
1811 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1812 }
1813 else
1814 {
1815 const char *string;
1816 unsigned int tagv = dyn.d_un.d_val;
1817
1818 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1819 if (string == NULL)
1820 goto error_return;
1821 fprintf (f, "%s", string);
1822 }
1823 fprintf (f, "\n");
1824 }
1825
1826 free (dynbuf);
1827 dynbuf = NULL;
1828 }
1829
1830 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1831 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1832 {
1833 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1834 return FALSE;
1835 }
1836
1837 if (elf_dynverdef (abfd) != 0)
1838 {
1839 Elf_Internal_Verdef *t;
1840
1841 fprintf (f, _("\nVersion definitions:\n"));
1842 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1843 {
1844 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1845 t->vd_flags, t->vd_hash,
1846 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1847 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1848 {
1849 Elf_Internal_Verdaux *a;
1850
1851 fprintf (f, "\t");
1852 for (a = t->vd_auxptr->vda_nextptr;
1853 a != NULL;
1854 a = a->vda_nextptr)
1855 fprintf (f, "%s ",
1856 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1857 fprintf (f, "\n");
1858 }
1859 }
1860 }
1861
1862 if (elf_dynverref (abfd) != 0)
1863 {
1864 Elf_Internal_Verneed *t;
1865
1866 fprintf (f, _("\nVersion References:\n"));
1867 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1868 {
1869 Elf_Internal_Vernaux *a;
1870
1871 fprintf (f, _(" required from %s:\n"),
1872 t->vn_filename ? t->vn_filename : "<corrupt>");
1873 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1874 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1875 a->vna_flags, a->vna_other,
1876 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1877 }
1878 }
1879
1880 return TRUE;
1881
1882 error_return:
1883 if (dynbuf != NULL)
1884 free (dynbuf);
1885 return FALSE;
1886 }
1887
1888 /* Get version string. */
1889
1890 const char *
1891 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1892 bfd_boolean *hidden)
1893 {
1894 const char *version_string = NULL;
1895 if (elf_dynversym (abfd) != 0
1896 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1897 {
1898 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1899
1900 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1901 vernum &= VERSYM_VERSION;
1902
1903 if (vernum == 0)
1904 version_string = "";
1905 else if (vernum == 1
1906 && (vernum > elf_tdata (abfd)->cverdefs
1907 || (elf_tdata (abfd)->verdef[0].vd_flags
1908 == VER_FLG_BASE)))
1909 version_string = "Base";
1910 else if (vernum <= elf_tdata (abfd)->cverdefs)
1911 version_string =
1912 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1913 else
1914 {
1915 Elf_Internal_Verneed *t;
1916
1917 version_string = _("<corrupt>");
1918 for (t = elf_tdata (abfd)->verref;
1919 t != NULL;
1920 t = t->vn_nextref)
1921 {
1922 Elf_Internal_Vernaux *a;
1923
1924 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1925 {
1926 if (a->vna_other == vernum)
1927 {
1928 version_string = a->vna_nodename;
1929 break;
1930 }
1931 }
1932 }
1933 }
1934 }
1935 return version_string;
1936 }
1937
1938 /* Display ELF-specific fields of a symbol. */
1939
1940 void
1941 bfd_elf_print_symbol (bfd *abfd,
1942 void *filep,
1943 asymbol *symbol,
1944 bfd_print_symbol_type how)
1945 {
1946 FILE *file = (FILE *) filep;
1947 switch (how)
1948 {
1949 case bfd_print_symbol_name:
1950 fprintf (file, "%s", symbol->name);
1951 break;
1952 case bfd_print_symbol_more:
1953 fprintf (file, "elf ");
1954 bfd_fprintf_vma (abfd, file, symbol->value);
1955 fprintf (file, " %x", symbol->flags);
1956 break;
1957 case bfd_print_symbol_all:
1958 {
1959 const char *section_name;
1960 const char *name = NULL;
1961 const struct elf_backend_data *bed;
1962 unsigned char st_other;
1963 bfd_vma val;
1964 const char *version_string;
1965 bfd_boolean hidden;
1966
1967 section_name = symbol->section ? symbol->section->name : "(*none*)";
1968
1969 bed = get_elf_backend_data (abfd);
1970 if (bed->elf_backend_print_symbol_all)
1971 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1972
1973 if (name == NULL)
1974 {
1975 name = symbol->name;
1976 bfd_print_symbol_vandf (abfd, file, symbol);
1977 }
1978
1979 fprintf (file, " %s\t", section_name);
1980 /* Print the "other" value for a symbol. For common symbols,
1981 we've already printed the size; now print the alignment.
1982 For other symbols, we have no specified alignment, and
1983 we've printed the address; now print the size. */
1984 if (symbol->section && bfd_is_com_section (symbol->section))
1985 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1986 else
1987 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1988 bfd_fprintf_vma (abfd, file, val);
1989
1990 /* If we have version information, print it. */
1991 version_string = _bfd_elf_get_symbol_version_string (abfd,
1992 symbol,
1993 &hidden);
1994 if (version_string)
1995 {
1996 if (!hidden)
1997 fprintf (file, " %-11s", version_string);
1998 else
1999 {
2000 int i;
2001
2002 fprintf (file, " (%s)", version_string);
2003 for (i = 10 - strlen (version_string); i > 0; --i)
2004 putc (' ', file);
2005 }
2006 }
2007
2008 /* If the st_other field is not zero, print it. */
2009 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2010
2011 switch (st_other)
2012 {
2013 case 0: break;
2014 case STV_INTERNAL: fprintf (file, " .internal"); break;
2015 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2016 case STV_PROTECTED: fprintf (file, " .protected"); break;
2017 default:
2018 /* Some other non-defined flags are also present, so print
2019 everything hex. */
2020 fprintf (file, " 0x%02x", (unsigned int) st_other);
2021 }
2022
2023 fprintf (file, " %s", name);
2024 }
2025 break;
2026 }
2027 }
2028 \f
2029 /* ELF .o/exec file reading */
2030
2031 /* Create a new bfd section from an ELF section header. */
2032
2033 bfd_boolean
2034 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2035 {
2036 Elf_Internal_Shdr *hdr;
2037 Elf_Internal_Ehdr *ehdr;
2038 const struct elf_backend_data *bed;
2039 const char *name;
2040 bfd_boolean ret = TRUE;
2041 static bfd_boolean * sections_being_created = NULL;
2042 static bfd * sections_being_created_abfd = NULL;
2043 static unsigned int nesting = 0;
2044
2045 if (shindex >= elf_numsections (abfd))
2046 return FALSE;
2047
2048 if (++ nesting > 3)
2049 {
2050 /* PR17512: A corrupt ELF binary might contain a recursive group of
2051 sections, with each the string indices pointing to the next in the
2052 loop. Detect this here, by refusing to load a section that we are
2053 already in the process of loading. We only trigger this test if
2054 we have nested at least three sections deep as normal ELF binaries
2055 can expect to recurse at least once.
2056
2057 FIXME: It would be better if this array was attached to the bfd,
2058 rather than being held in a static pointer. */
2059
2060 if (sections_being_created_abfd != abfd)
2061 sections_being_created = NULL;
2062 if (sections_being_created == NULL)
2063 {
2064 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2065 sections_being_created = (bfd_boolean *) bfd_zalloc (abfd, amt);
2066 if (sections_being_created == NULL)
2067 return FALSE;
2068 sections_being_created_abfd = abfd;
2069 }
2070 if (sections_being_created [shindex])
2071 {
2072 _bfd_error_handler
2073 (_("%pB: warning: loop in section dependencies detected"), abfd);
2074 return FALSE;
2075 }
2076 sections_being_created [shindex] = TRUE;
2077 }
2078
2079 hdr = elf_elfsections (abfd)[shindex];
2080 ehdr = elf_elfheader (abfd);
2081 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2082 hdr->sh_name);
2083 if (name == NULL)
2084 goto fail;
2085
2086 bed = get_elf_backend_data (abfd);
2087 switch (hdr->sh_type)
2088 {
2089 case SHT_NULL:
2090 /* Inactive section. Throw it away. */
2091 goto success;
2092
2093 case SHT_PROGBITS: /* Normal section with contents. */
2094 case SHT_NOBITS: /* .bss section. */
2095 case SHT_HASH: /* .hash section. */
2096 case SHT_NOTE: /* .note section. */
2097 case SHT_INIT_ARRAY: /* .init_array section. */
2098 case SHT_FINI_ARRAY: /* .fini_array section. */
2099 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2100 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2101 case SHT_GNU_HASH: /* .gnu.hash section. */
2102 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2103 goto success;
2104
2105 case SHT_DYNAMIC: /* Dynamic linking information. */
2106 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2107 goto fail;
2108
2109 if (hdr->sh_link > elf_numsections (abfd))
2110 {
2111 /* PR 10478: Accept Solaris binaries with a sh_link
2112 field set to SHN_BEFORE or SHN_AFTER. */
2113 switch (bfd_get_arch (abfd))
2114 {
2115 case bfd_arch_i386:
2116 case bfd_arch_sparc:
2117 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2118 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2119 break;
2120 /* Otherwise fall through. */
2121 default:
2122 goto fail;
2123 }
2124 }
2125 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2126 goto fail;
2127 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2128 {
2129 Elf_Internal_Shdr *dynsymhdr;
2130
2131 /* The shared libraries distributed with hpux11 have a bogus
2132 sh_link field for the ".dynamic" section. Find the
2133 string table for the ".dynsym" section instead. */
2134 if (elf_dynsymtab (abfd) != 0)
2135 {
2136 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2137 hdr->sh_link = dynsymhdr->sh_link;
2138 }
2139 else
2140 {
2141 unsigned int i, num_sec;
2142
2143 num_sec = elf_numsections (abfd);
2144 for (i = 1; i < num_sec; i++)
2145 {
2146 dynsymhdr = elf_elfsections (abfd)[i];
2147 if (dynsymhdr->sh_type == SHT_DYNSYM)
2148 {
2149 hdr->sh_link = dynsymhdr->sh_link;
2150 break;
2151 }
2152 }
2153 }
2154 }
2155 goto success;
2156
2157 case SHT_SYMTAB: /* A symbol table. */
2158 if (elf_onesymtab (abfd) == shindex)
2159 goto success;
2160
2161 if (hdr->sh_entsize != bed->s->sizeof_sym)
2162 goto fail;
2163
2164 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2165 {
2166 if (hdr->sh_size != 0)
2167 goto fail;
2168 /* Some assemblers erroneously set sh_info to one with a
2169 zero sh_size. ld sees this as a global symbol count
2170 of (unsigned) -1. Fix it here. */
2171 hdr->sh_info = 0;
2172 goto success;
2173 }
2174
2175 /* PR 18854: A binary might contain more than one symbol table.
2176 Unusual, but possible. Warn, but continue. */
2177 if (elf_onesymtab (abfd) != 0)
2178 {
2179 _bfd_error_handler
2180 /* xgettext:c-format */
2181 (_("%pB: warning: multiple symbol tables detected"
2182 " - ignoring the table in section %u"),
2183 abfd, shindex);
2184 goto success;
2185 }
2186 elf_onesymtab (abfd) = shindex;
2187 elf_symtab_hdr (abfd) = *hdr;
2188 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2189 abfd->flags |= HAS_SYMS;
2190
2191 /* Sometimes a shared object will map in the symbol table. If
2192 SHF_ALLOC is set, and this is a shared object, then we also
2193 treat this section as a BFD section. We can not base the
2194 decision purely on SHF_ALLOC, because that flag is sometimes
2195 set in a relocatable object file, which would confuse the
2196 linker. */
2197 if ((hdr->sh_flags & SHF_ALLOC) != 0
2198 && (abfd->flags & DYNAMIC) != 0
2199 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2200 shindex))
2201 goto fail;
2202
2203 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2204 can't read symbols without that section loaded as well. It
2205 is most likely specified by the next section header. */
2206 {
2207 elf_section_list * entry;
2208 unsigned int i, num_sec;
2209
2210 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2211 if (entry->hdr.sh_link == shindex)
2212 goto success;
2213
2214 num_sec = elf_numsections (abfd);
2215 for (i = shindex + 1; i < num_sec; i++)
2216 {
2217 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2218
2219 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2220 && hdr2->sh_link == shindex)
2221 break;
2222 }
2223
2224 if (i == num_sec)
2225 for (i = 1; i < shindex; i++)
2226 {
2227 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2228
2229 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2230 && hdr2->sh_link == shindex)
2231 break;
2232 }
2233
2234 if (i != shindex)
2235 ret = bfd_section_from_shdr (abfd, i);
2236 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2237 goto success;
2238 }
2239
2240 case SHT_DYNSYM: /* A dynamic symbol table. */
2241 if (elf_dynsymtab (abfd) == shindex)
2242 goto success;
2243
2244 if (hdr->sh_entsize != bed->s->sizeof_sym)
2245 goto fail;
2246
2247 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2248 {
2249 if (hdr->sh_size != 0)
2250 goto fail;
2251
2252 /* Some linkers erroneously set sh_info to one with a
2253 zero sh_size. ld sees this as a global symbol count
2254 of (unsigned) -1. Fix it here. */
2255 hdr->sh_info = 0;
2256 goto success;
2257 }
2258
2259 /* PR 18854: A binary might contain more than one dynamic symbol table.
2260 Unusual, but possible. Warn, but continue. */
2261 if (elf_dynsymtab (abfd) != 0)
2262 {
2263 _bfd_error_handler
2264 /* xgettext:c-format */
2265 (_("%pB: warning: multiple dynamic symbol tables detected"
2266 " - ignoring the table in section %u"),
2267 abfd, shindex);
2268 goto success;
2269 }
2270 elf_dynsymtab (abfd) = shindex;
2271 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2272 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2273 abfd->flags |= HAS_SYMS;
2274
2275 /* Besides being a symbol table, we also treat this as a regular
2276 section, so that objcopy can handle it. */
2277 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2278 goto success;
2279
2280 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2281 {
2282 elf_section_list * entry;
2283
2284 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2285 if (entry->ndx == shindex)
2286 goto success;
2287
2288 entry = bfd_alloc (abfd, sizeof (*entry));
2289 if (entry == NULL)
2290 goto fail;
2291 entry->ndx = shindex;
2292 entry->hdr = * hdr;
2293 entry->next = elf_symtab_shndx_list (abfd);
2294 elf_symtab_shndx_list (abfd) = entry;
2295 elf_elfsections (abfd)[shindex] = & entry->hdr;
2296 goto success;
2297 }
2298
2299 case SHT_STRTAB: /* A string table. */
2300 if (hdr->bfd_section != NULL)
2301 goto success;
2302
2303 if (ehdr->e_shstrndx == shindex)
2304 {
2305 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2306 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2307 goto success;
2308 }
2309
2310 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2311 {
2312 symtab_strtab:
2313 elf_tdata (abfd)->strtab_hdr = *hdr;
2314 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2315 goto success;
2316 }
2317
2318 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2319 {
2320 dynsymtab_strtab:
2321 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2322 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2323 elf_elfsections (abfd)[shindex] = hdr;
2324 /* We also treat this as a regular section, so that objcopy
2325 can handle it. */
2326 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2327 shindex);
2328 goto success;
2329 }
2330
2331 /* If the string table isn't one of the above, then treat it as a
2332 regular section. We need to scan all the headers to be sure,
2333 just in case this strtab section appeared before the above. */
2334 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2335 {
2336 unsigned int i, num_sec;
2337
2338 num_sec = elf_numsections (abfd);
2339 for (i = 1; i < num_sec; i++)
2340 {
2341 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2342 if (hdr2->sh_link == shindex)
2343 {
2344 /* Prevent endless recursion on broken objects. */
2345 if (i == shindex)
2346 goto fail;
2347 if (! bfd_section_from_shdr (abfd, i))
2348 goto fail;
2349 if (elf_onesymtab (abfd) == i)
2350 goto symtab_strtab;
2351 if (elf_dynsymtab (abfd) == i)
2352 goto dynsymtab_strtab;
2353 }
2354 }
2355 }
2356 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2357 goto success;
2358
2359 case SHT_REL:
2360 case SHT_RELA:
2361 /* *These* do a lot of work -- but build no sections! */
2362 {
2363 asection *target_sect;
2364 Elf_Internal_Shdr *hdr2, **p_hdr;
2365 unsigned int num_sec = elf_numsections (abfd);
2366 struct bfd_elf_section_data *esdt;
2367
2368 if (hdr->sh_entsize
2369 != (bfd_size_type) (hdr->sh_type == SHT_REL
2370 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2371 goto fail;
2372
2373 /* Check for a bogus link to avoid crashing. */
2374 if (hdr->sh_link >= num_sec)
2375 {
2376 _bfd_error_handler
2377 /* xgettext:c-format */
2378 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2379 abfd, hdr->sh_link, name, shindex);
2380 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2381 shindex);
2382 goto success;
2383 }
2384
2385 /* For some incomprehensible reason Oracle distributes
2386 libraries for Solaris in which some of the objects have
2387 bogus sh_link fields. It would be nice if we could just
2388 reject them, but, unfortunately, some people need to use
2389 them. We scan through the section headers; if we find only
2390 one suitable symbol table, we clobber the sh_link to point
2391 to it. I hope this doesn't break anything.
2392
2393 Don't do it on executable nor shared library. */
2394 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2395 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2396 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2397 {
2398 unsigned int scan;
2399 int found;
2400
2401 found = 0;
2402 for (scan = 1; scan < num_sec; scan++)
2403 {
2404 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2405 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2406 {
2407 if (found != 0)
2408 {
2409 found = 0;
2410 break;
2411 }
2412 found = scan;
2413 }
2414 }
2415 if (found != 0)
2416 hdr->sh_link = found;
2417 }
2418
2419 /* Get the symbol table. */
2420 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2421 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2422 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2423 goto fail;
2424
2425 /* If this is an alloc section in an executable or shared
2426 library, or the reloc section does not use the main symbol
2427 table we don't treat it as a reloc section. BFD can't
2428 adequately represent such a section, so at least for now,
2429 we don't try. We just present it as a normal section. We
2430 also can't use it as a reloc section if it points to the
2431 null section, an invalid section, another reloc section, or
2432 its sh_link points to the null section. */
2433 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2434 && (hdr->sh_flags & SHF_ALLOC) != 0)
2435 || hdr->sh_link == SHN_UNDEF
2436 || hdr->sh_link != elf_onesymtab (abfd)
2437 || hdr->sh_info == SHN_UNDEF
2438 || hdr->sh_info >= num_sec
2439 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2440 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2441 {
2442 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2443 shindex);
2444 goto success;
2445 }
2446
2447 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2448 goto fail;
2449
2450 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2451 if (target_sect == NULL)
2452 goto fail;
2453
2454 esdt = elf_section_data (target_sect);
2455 if (hdr->sh_type == SHT_RELA)
2456 p_hdr = &esdt->rela.hdr;
2457 else
2458 p_hdr = &esdt->rel.hdr;
2459
2460 /* PR 17512: file: 0b4f81b7.
2461 Also see PR 24456, for a file which deliberately has two reloc
2462 sections. */
2463 if (*p_hdr != NULL)
2464 {
2465 if (bed->init_secondary_reloc_section == NULL
2466 || ! bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2467 {
2468 _bfd_error_handler
2469 /* xgettext:c-format */
2470 (_("%pB: warning: secondary relocation section '%s' for section %pA found - ignoring"),
2471 abfd, name, target_sect);
2472 }
2473 goto success;
2474 }
2475
2476 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2477 if (hdr2 == NULL)
2478 goto fail;
2479 *hdr2 = *hdr;
2480 *p_hdr = hdr2;
2481 elf_elfsections (abfd)[shindex] = hdr2;
2482 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2483 * bed->s->int_rels_per_ext_rel);
2484 target_sect->flags |= SEC_RELOC;
2485 target_sect->relocation = NULL;
2486 target_sect->rel_filepos = hdr->sh_offset;
2487 /* In the section to which the relocations apply, mark whether
2488 its relocations are of the REL or RELA variety. */
2489 if (hdr->sh_size != 0)
2490 {
2491 if (hdr->sh_type == SHT_RELA)
2492 target_sect->use_rela_p = 1;
2493 }
2494 abfd->flags |= HAS_RELOC;
2495 goto success;
2496 }
2497
2498 case SHT_GNU_verdef:
2499 elf_dynverdef (abfd) = shindex;
2500 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2501 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2502 goto success;
2503
2504 case SHT_GNU_versym:
2505 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2506 goto fail;
2507
2508 elf_dynversym (abfd) = shindex;
2509 elf_tdata (abfd)->dynversym_hdr = *hdr;
2510 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2511 goto success;
2512
2513 case SHT_GNU_verneed:
2514 elf_dynverref (abfd) = shindex;
2515 elf_tdata (abfd)->dynverref_hdr = *hdr;
2516 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2517 goto success;
2518
2519 case SHT_SHLIB:
2520 goto success;
2521
2522 case SHT_GROUP:
2523 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2524 goto fail;
2525
2526 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2527 goto fail;
2528
2529 goto success;
2530
2531 default:
2532 /* Possibly an attributes section. */
2533 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2534 || hdr->sh_type == bed->obj_attrs_section_type)
2535 {
2536 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2537 goto fail;
2538 _bfd_elf_parse_attributes (abfd, hdr);
2539 goto success;
2540 }
2541
2542 /* Check for any processor-specific section types. */
2543 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2544 goto success;
2545
2546 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2547 {
2548 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2549 /* FIXME: How to properly handle allocated section reserved
2550 for applications? */
2551 _bfd_error_handler
2552 /* xgettext:c-format */
2553 (_("%pB: unknown type [%#x] section `%s'"),
2554 abfd, hdr->sh_type, name);
2555 else
2556 {
2557 /* Allow sections reserved for applications. */
2558 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2559 shindex);
2560 goto success;
2561 }
2562 }
2563 else if (hdr->sh_type >= SHT_LOPROC
2564 && hdr->sh_type <= SHT_HIPROC)
2565 /* FIXME: We should handle this section. */
2566 _bfd_error_handler
2567 /* xgettext:c-format */
2568 (_("%pB: unknown type [%#x] section `%s'"),
2569 abfd, hdr->sh_type, name);
2570 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2571 {
2572 /* Unrecognised OS-specific sections. */
2573 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2574 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2575 required to correctly process the section and the file should
2576 be rejected with an error message. */
2577 _bfd_error_handler
2578 /* xgettext:c-format */
2579 (_("%pB: unknown type [%#x] section `%s'"),
2580 abfd, hdr->sh_type, name);
2581 else
2582 {
2583 /* Otherwise it should be processed. */
2584 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2585 goto success;
2586 }
2587 }
2588 else
2589 /* FIXME: We should handle this section. */
2590 _bfd_error_handler
2591 /* xgettext:c-format */
2592 (_("%pB: unknown type [%#x] section `%s'"),
2593 abfd, hdr->sh_type, name);
2594
2595 goto fail;
2596 }
2597
2598 fail:
2599 ret = FALSE;
2600 success:
2601 if (sections_being_created && sections_being_created_abfd == abfd)
2602 sections_being_created [shindex] = FALSE;
2603 if (-- nesting == 0)
2604 {
2605 sections_being_created = NULL;
2606 sections_being_created_abfd = abfd;
2607 }
2608 return ret;
2609 }
2610
2611 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2612
2613 Elf_Internal_Sym *
2614 bfd_sym_from_r_symndx (struct sym_cache *cache,
2615 bfd *abfd,
2616 unsigned long r_symndx)
2617 {
2618 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2619
2620 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2621 {
2622 Elf_Internal_Shdr *symtab_hdr;
2623 unsigned char esym[sizeof (Elf64_External_Sym)];
2624 Elf_External_Sym_Shndx eshndx;
2625
2626 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2627 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2628 &cache->sym[ent], esym, &eshndx) == NULL)
2629 return NULL;
2630
2631 if (cache->abfd != abfd)
2632 {
2633 memset (cache->indx, -1, sizeof (cache->indx));
2634 cache->abfd = abfd;
2635 }
2636 cache->indx[ent] = r_symndx;
2637 }
2638
2639 return &cache->sym[ent];
2640 }
2641
2642 /* Given an ELF section number, retrieve the corresponding BFD
2643 section. */
2644
2645 asection *
2646 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2647 {
2648 if (sec_index >= elf_numsections (abfd))
2649 return NULL;
2650 return elf_elfsections (abfd)[sec_index]->bfd_section;
2651 }
2652
2653 static const struct bfd_elf_special_section special_sections_b[] =
2654 {
2655 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2656 { NULL, 0, 0, 0, 0 }
2657 };
2658
2659 static const struct bfd_elf_special_section special_sections_c[] =
2660 {
2661 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2662 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2663 { NULL, 0, 0, 0, 0 }
2664 };
2665
2666 static const struct bfd_elf_special_section special_sections_d[] =
2667 {
2668 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2669 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2670 /* There are more DWARF sections than these, but they needn't be added here
2671 unless you have to cope with broken compilers that don't emit section
2672 attributes or you want to help the user writing assembler. */
2673 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2674 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2675 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2676 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2679 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2680 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2681 { NULL, 0, 0, 0, 0 }
2682 };
2683
2684 static const struct bfd_elf_special_section special_sections_f[] =
2685 {
2686 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2687 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2688 { NULL, 0 , 0, 0, 0 }
2689 };
2690
2691 static const struct bfd_elf_special_section special_sections_g[] =
2692 {
2693 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2694 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2695 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2696 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2697 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2698 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2699 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2700 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2701 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2702 { NULL, 0, 0, 0, 0 }
2703 };
2704
2705 static const struct bfd_elf_special_section special_sections_h[] =
2706 {
2707 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2708 { NULL, 0, 0, 0, 0 }
2709 };
2710
2711 static const struct bfd_elf_special_section special_sections_i[] =
2712 {
2713 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2714 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2715 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2716 { NULL, 0, 0, 0, 0 }
2717 };
2718
2719 static const struct bfd_elf_special_section special_sections_l[] =
2720 {
2721 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2722 { NULL, 0, 0, 0, 0 }
2723 };
2724
2725 static const struct bfd_elf_special_section special_sections_n[] =
2726 {
2727 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2728 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2729 { NULL, 0, 0, 0, 0 }
2730 };
2731
2732 static const struct bfd_elf_special_section special_sections_p[] =
2733 {
2734 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2735 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2736 { NULL, 0, 0, 0, 0 }
2737 };
2738
2739 static const struct bfd_elf_special_section special_sections_r[] =
2740 {
2741 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2742 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2743 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2744 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2745 { NULL, 0, 0, 0, 0 }
2746 };
2747
2748 static const struct bfd_elf_special_section special_sections_s[] =
2749 {
2750 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2751 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2752 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2753 /* See struct bfd_elf_special_section declaration for the semantics of
2754 this special case where .prefix_length != strlen (.prefix). */
2755 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2756 { NULL, 0, 0, 0, 0 }
2757 };
2758
2759 static const struct bfd_elf_special_section special_sections_t[] =
2760 {
2761 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2762 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2763 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2764 { NULL, 0, 0, 0, 0 }
2765 };
2766
2767 static const struct bfd_elf_special_section special_sections_z[] =
2768 {
2769 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2770 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2771 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2772 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2773 { NULL, 0, 0, 0, 0 }
2774 };
2775
2776 static const struct bfd_elf_special_section * const special_sections[] =
2777 {
2778 special_sections_b, /* 'b' */
2779 special_sections_c, /* 'c' */
2780 special_sections_d, /* 'd' */
2781 NULL, /* 'e' */
2782 special_sections_f, /* 'f' */
2783 special_sections_g, /* 'g' */
2784 special_sections_h, /* 'h' */
2785 special_sections_i, /* 'i' */
2786 NULL, /* 'j' */
2787 NULL, /* 'k' */
2788 special_sections_l, /* 'l' */
2789 NULL, /* 'm' */
2790 special_sections_n, /* 'n' */
2791 NULL, /* 'o' */
2792 special_sections_p, /* 'p' */
2793 NULL, /* 'q' */
2794 special_sections_r, /* 'r' */
2795 special_sections_s, /* 's' */
2796 special_sections_t, /* 't' */
2797 NULL, /* 'u' */
2798 NULL, /* 'v' */
2799 NULL, /* 'w' */
2800 NULL, /* 'x' */
2801 NULL, /* 'y' */
2802 special_sections_z /* 'z' */
2803 };
2804
2805 const struct bfd_elf_special_section *
2806 _bfd_elf_get_special_section (const char *name,
2807 const struct bfd_elf_special_section *spec,
2808 unsigned int rela)
2809 {
2810 int i;
2811 int len;
2812
2813 len = strlen (name);
2814
2815 for (i = 0; spec[i].prefix != NULL; i++)
2816 {
2817 int suffix_len;
2818 int prefix_len = spec[i].prefix_length;
2819
2820 if (len < prefix_len)
2821 continue;
2822 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2823 continue;
2824
2825 suffix_len = spec[i].suffix_length;
2826 if (suffix_len <= 0)
2827 {
2828 if (name[prefix_len] != 0)
2829 {
2830 if (suffix_len == 0)
2831 continue;
2832 if (name[prefix_len] != '.'
2833 && (suffix_len == -2
2834 || (rela && spec[i].type == SHT_REL)))
2835 continue;
2836 }
2837 }
2838 else
2839 {
2840 if (len < prefix_len + suffix_len)
2841 continue;
2842 if (memcmp (name + len - suffix_len,
2843 spec[i].prefix + prefix_len,
2844 suffix_len) != 0)
2845 continue;
2846 }
2847 return &spec[i];
2848 }
2849
2850 return NULL;
2851 }
2852
2853 const struct bfd_elf_special_section *
2854 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2855 {
2856 int i;
2857 const struct bfd_elf_special_section *spec;
2858 const struct elf_backend_data *bed;
2859
2860 /* See if this is one of the special sections. */
2861 if (sec->name == NULL)
2862 return NULL;
2863
2864 bed = get_elf_backend_data (abfd);
2865 spec = bed->special_sections;
2866 if (spec)
2867 {
2868 spec = _bfd_elf_get_special_section (sec->name,
2869 bed->special_sections,
2870 sec->use_rela_p);
2871 if (spec != NULL)
2872 return spec;
2873 }
2874
2875 if (sec->name[0] != '.')
2876 return NULL;
2877
2878 i = sec->name[1] - 'b';
2879 if (i < 0 || i > 'z' - 'b')
2880 return NULL;
2881
2882 spec = special_sections[i];
2883
2884 if (spec == NULL)
2885 return NULL;
2886
2887 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2888 }
2889
2890 bfd_boolean
2891 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2892 {
2893 struct bfd_elf_section_data *sdata;
2894 const struct elf_backend_data *bed;
2895 const struct bfd_elf_special_section *ssect;
2896
2897 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2898 if (sdata == NULL)
2899 {
2900 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2901 sizeof (*sdata));
2902 if (sdata == NULL)
2903 return FALSE;
2904 sec->used_by_bfd = sdata;
2905 }
2906
2907 /* Indicate whether or not this section should use RELA relocations. */
2908 bed = get_elf_backend_data (abfd);
2909 sec->use_rela_p = bed->default_use_rela_p;
2910
2911 /* Set up ELF section type and flags for newly created sections, if
2912 there is an ABI mandated section. */
2913 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2914 if (ssect != NULL)
2915 {
2916 elf_section_type (sec) = ssect->type;
2917 elf_section_flags (sec) = ssect->attr;
2918 }
2919
2920 return _bfd_generic_new_section_hook (abfd, sec);
2921 }
2922
2923 /* Create a new bfd section from an ELF program header.
2924
2925 Since program segments have no names, we generate a synthetic name
2926 of the form segment<NUM>, where NUM is generally the index in the
2927 program header table. For segments that are split (see below) we
2928 generate the names segment<NUM>a and segment<NUM>b.
2929
2930 Note that some program segments may have a file size that is different than
2931 (less than) the memory size. All this means is that at execution the
2932 system must allocate the amount of memory specified by the memory size,
2933 but only initialize it with the first "file size" bytes read from the
2934 file. This would occur for example, with program segments consisting
2935 of combined data+bss.
2936
2937 To handle the above situation, this routine generates TWO bfd sections
2938 for the single program segment. The first has the length specified by
2939 the file size of the segment, and the second has the length specified
2940 by the difference between the two sizes. In effect, the segment is split
2941 into its initialized and uninitialized parts.
2942
2943 */
2944
2945 bfd_boolean
2946 _bfd_elf_make_section_from_phdr (bfd *abfd,
2947 Elf_Internal_Phdr *hdr,
2948 int hdr_index,
2949 const char *type_name)
2950 {
2951 asection *newsect;
2952 char *name;
2953 char namebuf[64];
2954 size_t len;
2955 int split;
2956 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2957
2958 split = ((hdr->p_memsz > 0)
2959 && (hdr->p_filesz > 0)
2960 && (hdr->p_memsz > hdr->p_filesz));
2961
2962 if (hdr->p_filesz > 0)
2963 {
2964 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2965 len = strlen (namebuf) + 1;
2966 name = (char *) bfd_alloc (abfd, len);
2967 if (!name)
2968 return FALSE;
2969 memcpy (name, namebuf, len);
2970 newsect = bfd_make_section (abfd, name);
2971 if (newsect == NULL)
2972 return FALSE;
2973 newsect->vma = hdr->p_vaddr / opb;
2974 newsect->lma = hdr->p_paddr / opb;
2975 newsect->size = hdr->p_filesz;
2976 newsect->filepos = hdr->p_offset;
2977 newsect->flags |= SEC_HAS_CONTENTS;
2978 newsect->alignment_power = bfd_log2 (hdr->p_align);
2979 if (hdr->p_type == PT_LOAD)
2980 {
2981 newsect->flags |= SEC_ALLOC;
2982 newsect->flags |= SEC_LOAD;
2983 if (hdr->p_flags & PF_X)
2984 {
2985 /* FIXME: all we known is that it has execute PERMISSION,
2986 may be data. */
2987 newsect->flags |= SEC_CODE;
2988 }
2989 }
2990 if (!(hdr->p_flags & PF_W))
2991 {
2992 newsect->flags |= SEC_READONLY;
2993 }
2994 }
2995
2996 if (hdr->p_memsz > hdr->p_filesz)
2997 {
2998 bfd_vma align;
2999
3000 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3001 len = strlen (namebuf) + 1;
3002 name = (char *) bfd_alloc (abfd, len);
3003 if (!name)
3004 return FALSE;
3005 memcpy (name, namebuf, len);
3006 newsect = bfd_make_section (abfd, name);
3007 if (newsect == NULL)
3008 return FALSE;
3009 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3010 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3011 newsect->size = hdr->p_memsz - hdr->p_filesz;
3012 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3013 align = newsect->vma & -newsect->vma;
3014 if (align == 0 || align > hdr->p_align)
3015 align = hdr->p_align;
3016 newsect->alignment_power = bfd_log2 (align);
3017 if (hdr->p_type == PT_LOAD)
3018 {
3019 /* Hack for gdb. Segments that have not been modified do
3020 not have their contents written to a core file, on the
3021 assumption that a debugger can find the contents in the
3022 executable. We flag this case by setting the fake
3023 section size to zero. Note that "real" bss sections will
3024 always have their contents dumped to the core file. */
3025 if (bfd_get_format (abfd) == bfd_core)
3026 newsect->size = 0;
3027 newsect->flags |= SEC_ALLOC;
3028 if (hdr->p_flags & PF_X)
3029 newsect->flags |= SEC_CODE;
3030 }
3031 if (!(hdr->p_flags & PF_W))
3032 newsect->flags |= SEC_READONLY;
3033 }
3034
3035 return TRUE;
3036 }
3037
3038 static bfd_boolean
3039 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3040 {
3041 /* The return value is ignored. Build-ids are considered optional. */
3042 if (templ->xvec->flavour == bfd_target_elf_flavour)
3043 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3044 (templ, offset);
3045 return FALSE;
3046 }
3047
3048 bfd_boolean
3049 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3050 {
3051 const struct elf_backend_data *bed;
3052
3053 switch (hdr->p_type)
3054 {
3055 case PT_NULL:
3056 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3057
3058 case PT_LOAD:
3059 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3060 return FALSE;
3061 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3062 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3063 return TRUE;
3064
3065 case PT_DYNAMIC:
3066 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3067
3068 case PT_INTERP:
3069 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3070
3071 case PT_NOTE:
3072 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3073 return FALSE;
3074 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3075 hdr->p_align))
3076 return FALSE;
3077 return TRUE;
3078
3079 case PT_SHLIB:
3080 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3081
3082 case PT_PHDR:
3083 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3084
3085 case PT_GNU_EH_FRAME:
3086 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3087 "eh_frame_hdr");
3088
3089 case PT_GNU_STACK:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3091
3092 case PT_GNU_RELRO:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3094
3095 default:
3096 /* Check for any processor-specific program segment types. */
3097 bed = get_elf_backend_data (abfd);
3098 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3099 }
3100 }
3101
3102 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3103 REL or RELA. */
3104
3105 Elf_Internal_Shdr *
3106 _bfd_elf_single_rel_hdr (asection *sec)
3107 {
3108 if (elf_section_data (sec)->rel.hdr)
3109 {
3110 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3111 return elf_section_data (sec)->rel.hdr;
3112 }
3113 else
3114 return elf_section_data (sec)->rela.hdr;
3115 }
3116
3117 static bfd_boolean
3118 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3119 Elf_Internal_Shdr *rel_hdr,
3120 const char *sec_name,
3121 bfd_boolean use_rela_p)
3122 {
3123 char *name = (char *) bfd_alloc (abfd,
3124 sizeof ".rela" + strlen (sec_name));
3125 if (name == NULL)
3126 return FALSE;
3127
3128 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3129 rel_hdr->sh_name =
3130 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3131 FALSE);
3132 if (rel_hdr->sh_name == (unsigned int) -1)
3133 return FALSE;
3134
3135 return TRUE;
3136 }
3137
3138 /* Allocate and initialize a section-header for a new reloc section,
3139 containing relocations against ASECT. It is stored in RELDATA. If
3140 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3141 relocations. */
3142
3143 static bfd_boolean
3144 _bfd_elf_init_reloc_shdr (bfd *abfd,
3145 struct bfd_elf_section_reloc_data *reldata,
3146 const char *sec_name,
3147 bfd_boolean use_rela_p,
3148 bfd_boolean delay_st_name_p)
3149 {
3150 Elf_Internal_Shdr *rel_hdr;
3151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3152
3153 BFD_ASSERT (reldata->hdr == NULL);
3154 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3155 reldata->hdr = rel_hdr;
3156
3157 if (delay_st_name_p)
3158 rel_hdr->sh_name = (unsigned int) -1;
3159 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3160 use_rela_p))
3161 return FALSE;
3162 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3163 rel_hdr->sh_entsize = (use_rela_p
3164 ? bed->s->sizeof_rela
3165 : bed->s->sizeof_rel);
3166 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3167 rel_hdr->sh_flags = 0;
3168 rel_hdr->sh_addr = 0;
3169 rel_hdr->sh_size = 0;
3170 rel_hdr->sh_offset = 0;
3171
3172 return TRUE;
3173 }
3174
3175 /* Return the default section type based on the passed in section flags. */
3176
3177 int
3178 bfd_elf_get_default_section_type (flagword flags)
3179 {
3180 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3181 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3182 return SHT_NOBITS;
3183 return SHT_PROGBITS;
3184 }
3185
3186 struct fake_section_arg
3187 {
3188 struct bfd_link_info *link_info;
3189 bfd_boolean failed;
3190 };
3191
3192 /* Set up an ELF internal section header for a section. */
3193
3194 static void
3195 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3196 {
3197 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3199 struct bfd_elf_section_data *esd = elf_section_data (asect);
3200 Elf_Internal_Shdr *this_hdr;
3201 unsigned int sh_type;
3202 const char *name = asect->name;
3203 bfd_boolean delay_st_name_p = FALSE;
3204 bfd_vma mask;
3205
3206 if (arg->failed)
3207 {
3208 /* We already failed; just get out of the bfd_map_over_sections
3209 loop. */
3210 return;
3211 }
3212
3213 this_hdr = &esd->this_hdr;
3214
3215 if (arg->link_info)
3216 {
3217 /* ld: compress DWARF debug sections with names: .debug_*. */
3218 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3219 && (asect->flags & SEC_DEBUGGING)
3220 && name[1] == 'd'
3221 && name[6] == '_')
3222 {
3223 /* Set SEC_ELF_COMPRESS to indicate this section should be
3224 compressed. */
3225 asect->flags |= SEC_ELF_COMPRESS;
3226 /* If this section will be compressed, delay adding section
3227 name to section name section after it is compressed in
3228 _bfd_elf_assign_file_positions_for_non_load. */
3229 delay_st_name_p = TRUE;
3230 }
3231 }
3232 else if ((asect->flags & SEC_ELF_RENAME))
3233 {
3234 /* objcopy: rename output DWARF debug section. */
3235 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3236 {
3237 /* When we decompress or compress with SHF_COMPRESSED,
3238 convert section name from .zdebug_* to .debug_* if
3239 needed. */
3240 if (name[1] == 'z')
3241 {
3242 char *new_name = convert_zdebug_to_debug (abfd, name);
3243 if (new_name == NULL)
3244 {
3245 arg->failed = TRUE;
3246 return;
3247 }
3248 name = new_name;
3249 }
3250 }
3251 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3252 {
3253 /* PR binutils/18087: Compression does not always make a
3254 section smaller. So only rename the section when
3255 compression has actually taken place. If input section
3256 name is .zdebug_*, we should never compress it again. */
3257 char *new_name = convert_debug_to_zdebug (abfd, name);
3258 if (new_name == NULL)
3259 {
3260 arg->failed = TRUE;
3261 return;
3262 }
3263 BFD_ASSERT (name[1] != 'z');
3264 name = new_name;
3265 }
3266 }
3267
3268 if (delay_st_name_p)
3269 this_hdr->sh_name = (unsigned int) -1;
3270 else
3271 {
3272 this_hdr->sh_name
3273 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3274 name, FALSE);
3275 if (this_hdr->sh_name == (unsigned int) -1)
3276 {
3277 arg->failed = TRUE;
3278 return;
3279 }
3280 }
3281
3282 /* Don't clear sh_flags. Assembler may set additional bits. */
3283
3284 if ((asect->flags & SEC_ALLOC) != 0
3285 || asect->user_set_vma)
3286 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3287 else
3288 this_hdr->sh_addr = 0;
3289
3290 this_hdr->sh_offset = 0;
3291 this_hdr->sh_size = asect->size;
3292 this_hdr->sh_link = 0;
3293 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3294 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3295 {
3296 _bfd_error_handler
3297 /* xgettext:c-format */
3298 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3299 abfd, asect->alignment_power, asect);
3300 arg->failed = TRUE;
3301 return;
3302 }
3303 /* Set sh_addralign to the highest power of two given by alignment
3304 consistent with the section VMA. Linker scripts can force VMA. */
3305 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3306 this_hdr->sh_addralign = mask & -mask;
3307 /* The sh_entsize and sh_info fields may have been set already by
3308 copy_private_section_data. */
3309
3310 this_hdr->bfd_section = asect;
3311 this_hdr->contents = NULL;
3312
3313 /* If the section type is unspecified, we set it based on
3314 asect->flags. */
3315 if ((asect->flags & SEC_GROUP) != 0)
3316 sh_type = SHT_GROUP;
3317 else
3318 sh_type = bfd_elf_get_default_section_type (asect->flags);
3319
3320 if (this_hdr->sh_type == SHT_NULL)
3321 this_hdr->sh_type = sh_type;
3322 else if (this_hdr->sh_type == SHT_NOBITS
3323 && sh_type == SHT_PROGBITS
3324 && (asect->flags & SEC_ALLOC) != 0)
3325 {
3326 /* Warn if we are changing a NOBITS section to PROGBITS, but
3327 allow the link to proceed. This can happen when users link
3328 non-bss input sections to bss output sections, or emit data
3329 to a bss output section via a linker script. */
3330 _bfd_error_handler
3331 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3332 this_hdr->sh_type = sh_type;
3333 }
3334
3335 switch (this_hdr->sh_type)
3336 {
3337 default:
3338 break;
3339
3340 case SHT_STRTAB:
3341 case SHT_NOTE:
3342 case SHT_NOBITS:
3343 case SHT_PROGBITS:
3344 break;
3345
3346 case SHT_INIT_ARRAY:
3347 case SHT_FINI_ARRAY:
3348 case SHT_PREINIT_ARRAY:
3349 this_hdr->sh_entsize = bed->s->arch_size / 8;
3350 break;
3351
3352 case SHT_HASH:
3353 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3354 break;
3355
3356 case SHT_DYNSYM:
3357 this_hdr->sh_entsize = bed->s->sizeof_sym;
3358 break;
3359
3360 case SHT_DYNAMIC:
3361 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3362 break;
3363
3364 case SHT_RELA:
3365 if (get_elf_backend_data (abfd)->may_use_rela_p)
3366 this_hdr->sh_entsize = bed->s->sizeof_rela;
3367 break;
3368
3369 case SHT_REL:
3370 if (get_elf_backend_data (abfd)->may_use_rel_p)
3371 this_hdr->sh_entsize = bed->s->sizeof_rel;
3372 break;
3373
3374 case SHT_GNU_versym:
3375 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3376 break;
3377
3378 case SHT_GNU_verdef:
3379 this_hdr->sh_entsize = 0;
3380 /* objcopy or strip will copy over sh_info, but may not set
3381 cverdefs. The linker will set cverdefs, but sh_info will be
3382 zero. */
3383 if (this_hdr->sh_info == 0)
3384 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3385 else
3386 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3387 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3388 break;
3389
3390 case SHT_GNU_verneed:
3391 this_hdr->sh_entsize = 0;
3392 /* objcopy or strip will copy over sh_info, but may not set
3393 cverrefs. The linker will set cverrefs, but sh_info will be
3394 zero. */
3395 if (this_hdr->sh_info == 0)
3396 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3397 else
3398 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3399 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3400 break;
3401
3402 case SHT_GROUP:
3403 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3404 break;
3405
3406 case SHT_GNU_HASH:
3407 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3408 break;
3409 }
3410
3411 if ((asect->flags & SEC_ALLOC) != 0)
3412 this_hdr->sh_flags |= SHF_ALLOC;
3413 if ((asect->flags & SEC_READONLY) == 0)
3414 this_hdr->sh_flags |= SHF_WRITE;
3415 if ((asect->flags & SEC_CODE) != 0)
3416 this_hdr->sh_flags |= SHF_EXECINSTR;
3417 if ((asect->flags & SEC_MERGE) != 0)
3418 {
3419 this_hdr->sh_flags |= SHF_MERGE;
3420 this_hdr->sh_entsize = asect->entsize;
3421 }
3422 if ((asect->flags & SEC_STRINGS) != 0)
3423 this_hdr->sh_flags |= SHF_STRINGS;
3424 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3425 this_hdr->sh_flags |= SHF_GROUP;
3426 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3427 {
3428 this_hdr->sh_flags |= SHF_TLS;
3429 if (asect->size == 0
3430 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3431 {
3432 struct bfd_link_order *o = asect->map_tail.link_order;
3433
3434 this_hdr->sh_size = 0;
3435 if (o != NULL)
3436 {
3437 this_hdr->sh_size = o->offset + o->size;
3438 if (this_hdr->sh_size != 0)
3439 this_hdr->sh_type = SHT_NOBITS;
3440 }
3441 }
3442 }
3443 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3444 this_hdr->sh_flags |= SHF_EXCLUDE;
3445
3446 /* If the section has relocs, set up a section header for the
3447 SHT_REL[A] section. If two relocation sections are required for
3448 this section, it is up to the processor-specific back-end to
3449 create the other. */
3450 if ((asect->flags & SEC_RELOC) != 0)
3451 {
3452 /* When doing a relocatable link, create both REL and RELA sections if
3453 needed. */
3454 if (arg->link_info
3455 /* Do the normal setup if we wouldn't create any sections here. */
3456 && esd->rel.count + esd->rela.count > 0
3457 && (bfd_link_relocatable (arg->link_info)
3458 || arg->link_info->emitrelocations))
3459 {
3460 if (esd->rel.count && esd->rel.hdr == NULL
3461 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3462 FALSE, delay_st_name_p))
3463 {
3464 arg->failed = TRUE;
3465 return;
3466 }
3467 if (esd->rela.count && esd->rela.hdr == NULL
3468 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3469 TRUE, delay_st_name_p))
3470 {
3471 arg->failed = TRUE;
3472 return;
3473 }
3474 }
3475 else if (!_bfd_elf_init_reloc_shdr (abfd,
3476 (asect->use_rela_p
3477 ? &esd->rela : &esd->rel),
3478 name,
3479 asect->use_rela_p,
3480 delay_st_name_p))
3481 {
3482 arg->failed = TRUE;
3483 return;
3484 }
3485 }
3486
3487 /* Check for processor-specific section types. */
3488 sh_type = this_hdr->sh_type;
3489 if (bed->elf_backend_fake_sections
3490 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3491 {
3492 arg->failed = TRUE;
3493 return;
3494 }
3495
3496 if (sh_type == SHT_NOBITS && asect->size != 0)
3497 {
3498 /* Don't change the header type from NOBITS if we are being
3499 called for objcopy --only-keep-debug. */
3500 this_hdr->sh_type = sh_type;
3501 }
3502 }
3503
3504 /* Fill in the contents of a SHT_GROUP section. Called from
3505 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3506 when ELF targets use the generic linker, ld. Called for ld -r
3507 from bfd_elf_final_link. */
3508
3509 void
3510 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3511 {
3512 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3513 asection *elt, *first;
3514 unsigned char *loc;
3515 bfd_boolean gas;
3516
3517 /* Ignore linker created group section. See elfNN_ia64_object_p in
3518 elfxx-ia64.c. */
3519 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3520 || sec->size == 0
3521 || *failedptr)
3522 return;
3523
3524 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3525 {
3526 unsigned long symindx = 0;
3527
3528 /* elf_group_id will have been set up by objcopy and the
3529 generic linker. */
3530 if (elf_group_id (sec) != NULL)
3531 symindx = elf_group_id (sec)->udata.i;
3532
3533 if (symindx == 0)
3534 {
3535 /* If called from the assembler, swap_out_syms will have set up
3536 elf_section_syms. */
3537 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3538 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3539 }
3540 elf_section_data (sec)->this_hdr.sh_info = symindx;
3541 }
3542 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3543 {
3544 /* The ELF backend linker sets sh_info to -2 when the group
3545 signature symbol is global, and thus the index can't be
3546 set until all local symbols are output. */
3547 asection *igroup;
3548 struct bfd_elf_section_data *sec_data;
3549 unsigned long symndx;
3550 unsigned long extsymoff;
3551 struct elf_link_hash_entry *h;
3552
3553 /* The point of this little dance to the first SHF_GROUP section
3554 then back to the SHT_GROUP section is that this gets us to
3555 the SHT_GROUP in the input object. */
3556 igroup = elf_sec_group (elf_next_in_group (sec));
3557 sec_data = elf_section_data (igroup);
3558 symndx = sec_data->this_hdr.sh_info;
3559 extsymoff = 0;
3560 if (!elf_bad_symtab (igroup->owner))
3561 {
3562 Elf_Internal_Shdr *symtab_hdr;
3563
3564 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3565 extsymoff = symtab_hdr->sh_info;
3566 }
3567 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3568 while (h->root.type == bfd_link_hash_indirect
3569 || h->root.type == bfd_link_hash_warning)
3570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3571
3572 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3573 }
3574
3575 /* The contents won't be allocated for "ld -r" or objcopy. */
3576 gas = TRUE;
3577 if (sec->contents == NULL)
3578 {
3579 gas = FALSE;
3580 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3581
3582 /* Arrange for the section to be written out. */
3583 elf_section_data (sec)->this_hdr.contents = sec->contents;
3584 if (sec->contents == NULL)
3585 {
3586 *failedptr = TRUE;
3587 return;
3588 }
3589 }
3590
3591 loc = sec->contents + sec->size;
3592
3593 /* Get the pointer to the first section in the group that gas
3594 squirreled away here. objcopy arranges for this to be set to the
3595 start of the input section group. */
3596 first = elt = elf_next_in_group (sec);
3597
3598 /* First element is a flag word. Rest of section is elf section
3599 indices for all the sections of the group. Write them backwards
3600 just to keep the group in the same order as given in .section
3601 directives, not that it matters. */
3602 while (elt != NULL)
3603 {
3604 asection *s;
3605
3606 s = elt;
3607 if (!gas)
3608 s = s->output_section;
3609 if (s != NULL
3610 && !bfd_is_abs_section (s))
3611 {
3612 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3613 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3614
3615 if (elf_sec->rel.hdr != NULL
3616 && (gas
3617 || (input_elf_sec->rel.hdr != NULL
3618 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3619 {
3620 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3621 loc -= 4;
3622 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3623 }
3624 if (elf_sec->rela.hdr != NULL
3625 && (gas
3626 || (input_elf_sec->rela.hdr != NULL
3627 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3628 {
3629 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3630 loc -= 4;
3631 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3632 }
3633 loc -= 4;
3634 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3635 }
3636 elt = elf_next_in_group (elt);
3637 if (elt == first)
3638 break;
3639 }
3640
3641 loc -= 4;
3642 BFD_ASSERT (loc == sec->contents);
3643
3644 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3645 }
3646
3647 /* Given NAME, the name of a relocation section stripped of its
3648 .rel/.rela prefix, return the section in ABFD to which the
3649 relocations apply. */
3650
3651 asection *
3652 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3653 {
3654 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3655 section likely apply to .got.plt or .got section. */
3656 if (get_elf_backend_data (abfd)->want_got_plt
3657 && strcmp (name, ".plt") == 0)
3658 {
3659 asection *sec;
3660
3661 name = ".got.plt";
3662 sec = bfd_get_section_by_name (abfd, name);
3663 if (sec != NULL)
3664 return sec;
3665 name = ".got";
3666 }
3667
3668 return bfd_get_section_by_name (abfd, name);
3669 }
3670
3671 /* Return the section to which RELOC_SEC applies. */
3672
3673 static asection *
3674 elf_get_reloc_section (asection *reloc_sec)
3675 {
3676 const char *name;
3677 unsigned int type;
3678 bfd *abfd;
3679 const struct elf_backend_data *bed;
3680
3681 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3682 if (type != SHT_REL && type != SHT_RELA)
3683 return NULL;
3684
3685 /* We look up the section the relocs apply to by name. */
3686 name = reloc_sec->name;
3687 if (strncmp (name, ".rel", 4) != 0)
3688 return NULL;
3689 name += 4;
3690 if (type == SHT_RELA && *name++ != 'a')
3691 return NULL;
3692
3693 abfd = reloc_sec->owner;
3694 bed = get_elf_backend_data (abfd);
3695 return bed->get_reloc_section (abfd, name);
3696 }
3697
3698 /* Assign all ELF section numbers. The dummy first section is handled here
3699 too. The link/info pointers for the standard section types are filled
3700 in here too, while we're at it. */
3701
3702 static bfd_boolean
3703 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3704 {
3705 struct elf_obj_tdata *t = elf_tdata (abfd);
3706 asection *sec;
3707 unsigned int section_number;
3708 Elf_Internal_Shdr **i_shdrp;
3709 struct bfd_elf_section_data *d;
3710 bfd_boolean need_symtab;
3711 size_t amt;
3712
3713 section_number = 1;
3714
3715 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3716
3717 /* SHT_GROUP sections are in relocatable files only. */
3718 if (link_info == NULL || !link_info->resolve_section_groups)
3719 {
3720 size_t reloc_count = 0;
3721
3722 /* Put SHT_GROUP sections first. */
3723 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3724 {
3725 d = elf_section_data (sec);
3726
3727 if (d->this_hdr.sh_type == SHT_GROUP)
3728 {
3729 if (sec->flags & SEC_LINKER_CREATED)
3730 {
3731 /* Remove the linker created SHT_GROUP sections. */
3732 bfd_section_list_remove (abfd, sec);
3733 abfd->section_count--;
3734 }
3735 else
3736 d->this_idx = section_number++;
3737 }
3738
3739 /* Count relocations. */
3740 reloc_count += sec->reloc_count;
3741 }
3742
3743 /* Clear HAS_RELOC if there are no relocations. */
3744 if (reloc_count == 0)
3745 abfd->flags &= ~HAS_RELOC;
3746 }
3747
3748 for (sec = abfd->sections; sec; sec = sec->next)
3749 {
3750 d = elf_section_data (sec);
3751
3752 if (d->this_hdr.sh_type != SHT_GROUP)
3753 d->this_idx = section_number++;
3754 if (d->this_hdr.sh_name != (unsigned int) -1)
3755 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3756 if (d->rel.hdr)
3757 {
3758 d->rel.idx = section_number++;
3759 if (d->rel.hdr->sh_name != (unsigned int) -1)
3760 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3761 }
3762 else
3763 d->rel.idx = 0;
3764
3765 if (d->rela.hdr)
3766 {
3767 d->rela.idx = section_number++;
3768 if (d->rela.hdr->sh_name != (unsigned int) -1)
3769 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3770 }
3771 else
3772 d->rela.idx = 0;
3773 }
3774
3775 need_symtab = (bfd_get_symcount (abfd) > 0
3776 || (link_info == NULL
3777 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3778 == HAS_RELOC)));
3779 if (need_symtab)
3780 {
3781 elf_onesymtab (abfd) = section_number++;
3782 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3783 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3784 {
3785 elf_section_list *entry;
3786
3787 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3788
3789 entry = bfd_zalloc (abfd, sizeof (*entry));
3790 entry->ndx = section_number++;
3791 elf_symtab_shndx_list (abfd) = entry;
3792 entry->hdr.sh_name
3793 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3794 ".symtab_shndx", FALSE);
3795 if (entry->hdr.sh_name == (unsigned int) -1)
3796 return FALSE;
3797 }
3798 elf_strtab_sec (abfd) = section_number++;
3799 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3800 }
3801
3802 elf_shstrtab_sec (abfd) = section_number++;
3803 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3804 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3805
3806 if (section_number >= SHN_LORESERVE)
3807 {
3808 /* xgettext:c-format */
3809 _bfd_error_handler (_("%pB: too many sections: %u"),
3810 abfd, section_number);
3811 return FALSE;
3812 }
3813
3814 elf_numsections (abfd) = section_number;
3815 elf_elfheader (abfd)->e_shnum = section_number;
3816
3817 /* Set up the list of section header pointers, in agreement with the
3818 indices. */
3819 amt = section_number * sizeof (Elf_Internal_Shdr *);
3820 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3821 if (i_shdrp == NULL)
3822 return FALSE;
3823
3824 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3825 sizeof (Elf_Internal_Shdr));
3826 if (i_shdrp[0] == NULL)
3827 {
3828 bfd_release (abfd, i_shdrp);
3829 return FALSE;
3830 }
3831
3832 elf_elfsections (abfd) = i_shdrp;
3833
3834 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3835 if (need_symtab)
3836 {
3837 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3838 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3839 {
3840 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3841 BFD_ASSERT (entry != NULL);
3842 i_shdrp[entry->ndx] = & entry->hdr;
3843 entry->hdr.sh_link = elf_onesymtab (abfd);
3844 }
3845 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3846 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3847 }
3848
3849 for (sec = abfd->sections; sec; sec = sec->next)
3850 {
3851 asection *s;
3852
3853 d = elf_section_data (sec);
3854
3855 i_shdrp[d->this_idx] = &d->this_hdr;
3856 if (d->rel.idx != 0)
3857 i_shdrp[d->rel.idx] = d->rel.hdr;
3858 if (d->rela.idx != 0)
3859 i_shdrp[d->rela.idx] = d->rela.hdr;
3860
3861 /* Fill in the sh_link and sh_info fields while we're at it. */
3862
3863 /* sh_link of a reloc section is the section index of the symbol
3864 table. sh_info is the section index of the section to which
3865 the relocation entries apply. */
3866 if (d->rel.idx != 0)
3867 {
3868 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3869 d->rel.hdr->sh_info = d->this_idx;
3870 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3871 }
3872 if (d->rela.idx != 0)
3873 {
3874 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3875 d->rela.hdr->sh_info = d->this_idx;
3876 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3877 }
3878
3879 /* We need to set up sh_link for SHF_LINK_ORDER. */
3880 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3881 {
3882 s = elf_linked_to_section (sec);
3883 if (s)
3884 {
3885 /* elf_linked_to_section points to the input section. */
3886 if (link_info != NULL)
3887 {
3888 /* Check discarded linkonce section. */
3889 if (discarded_section (s))
3890 {
3891 asection *kept;
3892 _bfd_error_handler
3893 /* xgettext:c-format */
3894 (_("%pB: sh_link of section `%pA' points to"
3895 " discarded section `%pA' of `%pB'"),
3896 abfd, d->this_hdr.bfd_section,
3897 s, s->owner);
3898 /* Point to the kept section if it has the same
3899 size as the discarded one. */
3900 kept = _bfd_elf_check_kept_section (s, link_info);
3901 if (kept == NULL)
3902 {
3903 bfd_set_error (bfd_error_bad_value);
3904 return FALSE;
3905 }
3906 s = kept;
3907 }
3908
3909 s = s->output_section;
3910 BFD_ASSERT (s != NULL);
3911 }
3912 else
3913 {
3914 /* Handle objcopy. */
3915 if (s->output_section == NULL)
3916 {
3917 _bfd_error_handler
3918 /* xgettext:c-format */
3919 (_("%pB: sh_link of section `%pA' points to"
3920 " removed section `%pA' of `%pB'"),
3921 abfd, d->this_hdr.bfd_section, s, s->owner);
3922 bfd_set_error (bfd_error_bad_value);
3923 return FALSE;
3924 }
3925 s = s->output_section;
3926 }
3927 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3928 }
3929 else
3930 {
3931 /* PR 290:
3932 The Intel C compiler generates SHT_IA_64_UNWIND with
3933 SHF_LINK_ORDER. But it doesn't set the sh_link or
3934 sh_info fields. Hence we could get the situation
3935 where s is NULL. */
3936 const struct elf_backend_data *bed
3937 = get_elf_backend_data (abfd);
3938 if (bed->link_order_error_handler)
3939 bed->link_order_error_handler
3940 /* xgettext:c-format */
3941 (_("%pB: warning: sh_link not set for section `%pA'"),
3942 abfd, sec);
3943 }
3944 }
3945
3946 switch (d->this_hdr.sh_type)
3947 {
3948 case SHT_REL:
3949 case SHT_RELA:
3950 /* A reloc section which we are treating as a normal BFD
3951 section. sh_link is the section index of the symbol
3952 table. sh_info is the section index of the section to
3953 which the relocation entries apply. We assume that an
3954 allocated reloc section uses the dynamic symbol table.
3955 FIXME: How can we be sure? */
3956 s = bfd_get_section_by_name (abfd, ".dynsym");
3957 if (s != NULL)
3958 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3959
3960 s = elf_get_reloc_section (sec);
3961 if (s != NULL)
3962 {
3963 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3964 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3965 }
3966 break;
3967
3968 case SHT_STRTAB:
3969 /* We assume that a section named .stab*str is a stabs
3970 string section. We look for a section with the same name
3971 but without the trailing ``str'', and set its sh_link
3972 field to point to this section. */
3973 if (CONST_STRNEQ (sec->name, ".stab")
3974 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3975 {
3976 size_t len;
3977 char *alc;
3978
3979 len = strlen (sec->name);
3980 alc = (char *) bfd_malloc (len - 2);
3981 if (alc == NULL)
3982 return FALSE;
3983 memcpy (alc, sec->name, len - 3);
3984 alc[len - 3] = '\0';
3985 s = bfd_get_section_by_name (abfd, alc);
3986 free (alc);
3987 if (s != NULL)
3988 {
3989 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3990
3991 /* This is a .stab section. */
3992 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3993 elf_section_data (s)->this_hdr.sh_entsize
3994 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3995 }
3996 }
3997 break;
3998
3999 case SHT_DYNAMIC:
4000 case SHT_DYNSYM:
4001 case SHT_GNU_verneed:
4002 case SHT_GNU_verdef:
4003 /* sh_link is the section header index of the string table
4004 used for the dynamic entries, or the symbol table, or the
4005 version strings. */
4006 s = bfd_get_section_by_name (abfd, ".dynstr");
4007 if (s != NULL)
4008 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4009 break;
4010
4011 case SHT_GNU_LIBLIST:
4012 /* sh_link is the section header index of the prelink library
4013 list used for the dynamic entries, or the symbol table, or
4014 the version strings. */
4015 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4016 ? ".dynstr" : ".gnu.libstr");
4017 if (s != NULL)
4018 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4019 break;
4020
4021 case SHT_HASH:
4022 case SHT_GNU_HASH:
4023 case SHT_GNU_versym:
4024 /* sh_link is the section header index of the symbol table
4025 this hash table or version table is for. */
4026 s = bfd_get_section_by_name (abfd, ".dynsym");
4027 if (s != NULL)
4028 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4029 break;
4030
4031 case SHT_GROUP:
4032 d->this_hdr.sh_link = elf_onesymtab (abfd);
4033 }
4034 }
4035
4036 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4037 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4038 debug section name from .debug_* to .zdebug_* if needed. */
4039
4040 return TRUE;
4041 }
4042
4043 static bfd_boolean
4044 sym_is_global (bfd *abfd, asymbol *sym)
4045 {
4046 /* If the backend has a special mapping, use it. */
4047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4048 if (bed->elf_backend_sym_is_global)
4049 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4050
4051 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4052 || bfd_is_und_section (bfd_asymbol_section (sym))
4053 || bfd_is_com_section (bfd_asymbol_section (sym)));
4054 }
4055
4056 /* Filter global symbols of ABFD to include in the import library. All
4057 SYMCOUNT symbols of ABFD can be examined from their pointers in
4058 SYMS. Pointers of symbols to keep should be stored contiguously at
4059 the beginning of that array.
4060
4061 Returns the number of symbols to keep. */
4062
4063 unsigned int
4064 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4065 asymbol **syms, long symcount)
4066 {
4067 long src_count, dst_count = 0;
4068
4069 for (src_count = 0; src_count < symcount; src_count++)
4070 {
4071 asymbol *sym = syms[src_count];
4072 char *name = (char *) bfd_asymbol_name (sym);
4073 struct bfd_link_hash_entry *h;
4074
4075 if (!sym_is_global (abfd, sym))
4076 continue;
4077
4078 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4079 if (h == NULL)
4080 continue;
4081 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4082 continue;
4083 if (h->linker_def || h->ldscript_def)
4084 continue;
4085
4086 syms[dst_count++] = sym;
4087 }
4088
4089 syms[dst_count] = NULL;
4090
4091 return dst_count;
4092 }
4093
4094 /* Don't output section symbols for sections that are not going to be
4095 output, that are duplicates or there is no BFD section. */
4096
4097 static bfd_boolean
4098 ignore_section_sym (bfd *abfd, asymbol *sym)
4099 {
4100 elf_symbol_type *type_ptr;
4101
4102 if (sym == NULL)
4103 return FALSE;
4104
4105 if ((sym->flags & BSF_SECTION_SYM) == 0)
4106 return FALSE;
4107
4108 if (sym->section == NULL)
4109 return TRUE;
4110
4111 type_ptr = elf_symbol_from (abfd, sym);
4112 return ((type_ptr != NULL
4113 && type_ptr->internal_elf_sym.st_shndx != 0
4114 && bfd_is_abs_section (sym->section))
4115 || !(sym->section->owner == abfd
4116 || (sym->section->output_section != NULL
4117 && sym->section->output_section->owner == abfd
4118 && sym->section->output_offset == 0)
4119 || bfd_is_abs_section (sym->section)));
4120 }
4121
4122 /* Map symbol from it's internal number to the external number, moving
4123 all local symbols to be at the head of the list. */
4124
4125 static bfd_boolean
4126 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4127 {
4128 unsigned int symcount = bfd_get_symcount (abfd);
4129 asymbol **syms = bfd_get_outsymbols (abfd);
4130 asymbol **sect_syms;
4131 unsigned int num_locals = 0;
4132 unsigned int num_globals = 0;
4133 unsigned int num_locals2 = 0;
4134 unsigned int num_globals2 = 0;
4135 unsigned int max_index = 0;
4136 unsigned int idx;
4137 asection *asect;
4138 asymbol **new_syms;
4139 size_t amt;
4140
4141 #ifdef DEBUG
4142 fprintf (stderr, "elf_map_symbols\n");
4143 fflush (stderr);
4144 #endif
4145
4146 for (asect = abfd->sections; asect; asect = asect->next)
4147 {
4148 if (max_index < asect->index)
4149 max_index = asect->index;
4150 }
4151
4152 max_index++;
4153 amt = max_index * sizeof (asymbol *);
4154 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4155 if (sect_syms == NULL)
4156 return FALSE;
4157 elf_section_syms (abfd) = sect_syms;
4158 elf_num_section_syms (abfd) = max_index;
4159
4160 /* Init sect_syms entries for any section symbols we have already
4161 decided to output. */
4162 for (idx = 0; idx < symcount; idx++)
4163 {
4164 asymbol *sym = syms[idx];
4165
4166 if ((sym->flags & BSF_SECTION_SYM) != 0
4167 && sym->value == 0
4168 && !ignore_section_sym (abfd, sym)
4169 && !bfd_is_abs_section (sym->section))
4170 {
4171 asection *sec = sym->section;
4172
4173 if (sec->owner != abfd)
4174 sec = sec->output_section;
4175
4176 sect_syms[sec->index] = syms[idx];
4177 }
4178 }
4179
4180 /* Classify all of the symbols. */
4181 for (idx = 0; idx < symcount; idx++)
4182 {
4183 if (sym_is_global (abfd, syms[idx]))
4184 num_globals++;
4185 else if (!ignore_section_sym (abfd, syms[idx]))
4186 num_locals++;
4187 }
4188
4189 /* We will be adding a section symbol for each normal BFD section. Most
4190 sections will already have a section symbol in outsymbols, but
4191 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4192 at least in that case. */
4193 for (asect = abfd->sections; asect; asect = asect->next)
4194 {
4195 if (sect_syms[asect->index] == NULL)
4196 {
4197 if (!sym_is_global (abfd, asect->symbol))
4198 num_locals++;
4199 else
4200 num_globals++;
4201 }
4202 }
4203
4204 /* Now sort the symbols so the local symbols are first. */
4205 amt = (num_locals + num_globals) * sizeof (asymbol *);
4206 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4207 if (new_syms == NULL)
4208 return FALSE;
4209
4210 for (idx = 0; idx < symcount; idx++)
4211 {
4212 asymbol *sym = syms[idx];
4213 unsigned int i;
4214
4215 if (sym_is_global (abfd, sym))
4216 i = num_locals + num_globals2++;
4217 else if (!ignore_section_sym (abfd, sym))
4218 i = num_locals2++;
4219 else
4220 continue;
4221 new_syms[i] = sym;
4222 sym->udata.i = i + 1;
4223 }
4224 for (asect = abfd->sections; asect; asect = asect->next)
4225 {
4226 if (sect_syms[asect->index] == NULL)
4227 {
4228 asymbol *sym = asect->symbol;
4229 unsigned int i;
4230
4231 sect_syms[asect->index] = sym;
4232 if (!sym_is_global (abfd, sym))
4233 i = num_locals2++;
4234 else
4235 i = num_locals + num_globals2++;
4236 new_syms[i] = sym;
4237 sym->udata.i = i + 1;
4238 }
4239 }
4240
4241 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4242
4243 *pnum_locals = num_locals;
4244 return TRUE;
4245 }
4246
4247 /* Align to the maximum file alignment that could be required for any
4248 ELF data structure. */
4249
4250 static inline file_ptr
4251 align_file_position (file_ptr off, int align)
4252 {
4253 return (off + align - 1) & ~(align - 1);
4254 }
4255
4256 /* Assign a file position to a section, optionally aligning to the
4257 required section alignment. */
4258
4259 file_ptr
4260 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4261 file_ptr offset,
4262 bfd_boolean align)
4263 {
4264 if (align && i_shdrp->sh_addralign > 1)
4265 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4266 i_shdrp->sh_offset = offset;
4267 if (i_shdrp->bfd_section != NULL)
4268 i_shdrp->bfd_section->filepos = offset;
4269 if (i_shdrp->sh_type != SHT_NOBITS)
4270 offset += i_shdrp->sh_size;
4271 return offset;
4272 }
4273
4274 /* Compute the file positions we are going to put the sections at, and
4275 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4276 is not NULL, this is being called by the ELF backend linker. */
4277
4278 bfd_boolean
4279 _bfd_elf_compute_section_file_positions (bfd *abfd,
4280 struct bfd_link_info *link_info)
4281 {
4282 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4283 struct fake_section_arg fsargs;
4284 bfd_boolean failed;
4285 struct elf_strtab_hash *strtab = NULL;
4286 Elf_Internal_Shdr *shstrtab_hdr;
4287 bfd_boolean need_symtab;
4288
4289 if (abfd->output_has_begun)
4290 return TRUE;
4291
4292 /* Do any elf backend specific processing first. */
4293 if (bed->elf_backend_begin_write_processing)
4294 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4295
4296 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4297 return FALSE;
4298
4299 fsargs.failed = FALSE;
4300 fsargs.link_info = link_info;
4301 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4302 if (fsargs.failed)
4303 return FALSE;
4304
4305 if (!assign_section_numbers (abfd, link_info))
4306 return FALSE;
4307
4308 /* The backend linker builds symbol table information itself. */
4309 need_symtab = (link_info == NULL
4310 && (bfd_get_symcount (abfd) > 0
4311 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4312 == HAS_RELOC)));
4313 if (need_symtab)
4314 {
4315 /* Non-zero if doing a relocatable link. */
4316 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4317
4318 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4319 return FALSE;
4320 }
4321
4322 failed = FALSE;
4323 if (link_info == NULL)
4324 {
4325 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4326 if (failed)
4327 return FALSE;
4328 }
4329
4330 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4331 /* sh_name was set in init_file_header. */
4332 shstrtab_hdr->sh_type = SHT_STRTAB;
4333 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4334 shstrtab_hdr->sh_addr = 0;
4335 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4336 shstrtab_hdr->sh_entsize = 0;
4337 shstrtab_hdr->sh_link = 0;
4338 shstrtab_hdr->sh_info = 0;
4339 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4340 shstrtab_hdr->sh_addralign = 1;
4341
4342 if (!assign_file_positions_except_relocs (abfd, link_info))
4343 return FALSE;
4344
4345 if (need_symtab)
4346 {
4347 file_ptr off;
4348 Elf_Internal_Shdr *hdr;
4349
4350 off = elf_next_file_pos (abfd);
4351
4352 hdr = & elf_symtab_hdr (abfd);
4353 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4354
4355 if (elf_symtab_shndx_list (abfd) != NULL)
4356 {
4357 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4358 if (hdr->sh_size != 0)
4359 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4360 /* FIXME: What about other symtab_shndx sections in the list ? */
4361 }
4362
4363 hdr = &elf_tdata (abfd)->strtab_hdr;
4364 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4365
4366 elf_next_file_pos (abfd) = off;
4367
4368 /* Now that we know where the .strtab section goes, write it
4369 out. */
4370 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4371 || ! _bfd_elf_strtab_emit (abfd, strtab))
4372 return FALSE;
4373 _bfd_elf_strtab_free (strtab);
4374 }
4375
4376 abfd->output_has_begun = TRUE;
4377
4378 return TRUE;
4379 }
4380
4381 /* Make an initial estimate of the size of the program header. If we
4382 get the number wrong here, we'll redo section placement. */
4383
4384 static bfd_size_type
4385 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4386 {
4387 size_t segs;
4388 asection *s;
4389 const struct elf_backend_data *bed;
4390
4391 /* Assume we will need exactly two PT_LOAD segments: one for text
4392 and one for data. */
4393 segs = 2;
4394
4395 s = bfd_get_section_by_name (abfd, ".interp");
4396 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4397 {
4398 /* If we have a loadable interpreter section, we need a
4399 PT_INTERP segment. In this case, assume we also need a
4400 PT_PHDR segment, although that may not be true for all
4401 targets. */
4402 segs += 2;
4403 }
4404
4405 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4406 {
4407 /* We need a PT_DYNAMIC segment. */
4408 ++segs;
4409 }
4410
4411 if (info != NULL && info->relro)
4412 {
4413 /* We need a PT_GNU_RELRO segment. */
4414 ++segs;
4415 }
4416
4417 if (elf_eh_frame_hdr (abfd))
4418 {
4419 /* We need a PT_GNU_EH_FRAME segment. */
4420 ++segs;
4421 }
4422
4423 if (elf_stack_flags (abfd))
4424 {
4425 /* We need a PT_GNU_STACK segment. */
4426 ++segs;
4427 }
4428
4429 s = bfd_get_section_by_name (abfd,
4430 NOTE_GNU_PROPERTY_SECTION_NAME);
4431 if (s != NULL && s->size != 0)
4432 {
4433 /* We need a PT_GNU_PROPERTY segment. */
4434 ++segs;
4435 }
4436
4437 for (s = abfd->sections; s != NULL; s = s->next)
4438 {
4439 if ((s->flags & SEC_LOAD) != 0
4440 && elf_section_type (s) == SHT_NOTE)
4441 {
4442 unsigned int alignment_power;
4443 /* We need a PT_NOTE segment. */
4444 ++segs;
4445 /* Try to create just one PT_NOTE segment for all adjacent
4446 loadable SHT_NOTE sections. gABI requires that within a
4447 PT_NOTE segment (and also inside of each SHT_NOTE section)
4448 each note should have the same alignment. So we check
4449 whether the sections are correctly aligned. */
4450 alignment_power = s->alignment_power;
4451 while (s->next != NULL
4452 && s->next->alignment_power == alignment_power
4453 && (s->next->flags & SEC_LOAD) != 0
4454 && elf_section_type (s->next) == SHT_NOTE)
4455 s = s->next;
4456 }
4457 }
4458
4459 for (s = abfd->sections; s != NULL; s = s->next)
4460 {
4461 if (s->flags & SEC_THREAD_LOCAL)
4462 {
4463 /* We need a PT_TLS segment. */
4464 ++segs;
4465 break;
4466 }
4467 }
4468
4469 bed = get_elf_backend_data (abfd);
4470
4471 if ((abfd->flags & D_PAGED) != 0
4472 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4473 {
4474 /* Add a PT_GNU_MBIND segment for each mbind section. */
4475 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4476 for (s = abfd->sections; s != NULL; s = s->next)
4477 if (elf_section_flags (s) & SHF_GNU_MBIND)
4478 {
4479 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4480 {
4481 _bfd_error_handler
4482 /* xgettext:c-format */
4483 (_("%pB: GNU_MBIND section `%pA' has invalid "
4484 "sh_info field: %d"),
4485 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4486 continue;
4487 }
4488 /* Align mbind section to page size. */
4489 if (s->alignment_power < page_align_power)
4490 s->alignment_power = page_align_power;
4491 segs ++;
4492 }
4493 }
4494
4495 /* Let the backend count up any program headers it might need. */
4496 if (bed->elf_backend_additional_program_headers)
4497 {
4498 int a;
4499
4500 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4501 if (a == -1)
4502 abort ();
4503 segs += a;
4504 }
4505
4506 return segs * bed->s->sizeof_phdr;
4507 }
4508
4509 /* Find the segment that contains the output_section of section. */
4510
4511 Elf_Internal_Phdr *
4512 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4513 {
4514 struct elf_segment_map *m;
4515 Elf_Internal_Phdr *p;
4516
4517 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4518 m != NULL;
4519 m = m->next, p++)
4520 {
4521 int i;
4522
4523 for (i = m->count - 1; i >= 0; i--)
4524 if (m->sections[i] == section)
4525 return p;
4526 }
4527
4528 return NULL;
4529 }
4530
4531 /* Create a mapping from a set of sections to a program segment. */
4532
4533 static struct elf_segment_map *
4534 make_mapping (bfd *abfd,
4535 asection **sections,
4536 unsigned int from,
4537 unsigned int to,
4538 bfd_boolean phdr)
4539 {
4540 struct elf_segment_map *m;
4541 unsigned int i;
4542 asection **hdrpp;
4543 size_t amt;
4544
4545 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4546 amt += (to - from) * sizeof (asection *);
4547 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4548 if (m == NULL)
4549 return NULL;
4550 m->next = NULL;
4551 m->p_type = PT_LOAD;
4552 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4553 m->sections[i - from] = *hdrpp;
4554 m->count = to - from;
4555
4556 if (from == 0 && phdr)
4557 {
4558 /* Include the headers in the first PT_LOAD segment. */
4559 m->includes_filehdr = 1;
4560 m->includes_phdrs = 1;
4561 }
4562
4563 return m;
4564 }
4565
4566 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4567 on failure. */
4568
4569 struct elf_segment_map *
4570 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4571 {
4572 struct elf_segment_map *m;
4573
4574 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4575 sizeof (struct elf_segment_map));
4576 if (m == NULL)
4577 return NULL;
4578 m->next = NULL;
4579 m->p_type = PT_DYNAMIC;
4580 m->count = 1;
4581 m->sections[0] = dynsec;
4582
4583 return m;
4584 }
4585
4586 /* Possibly add or remove segments from the segment map. */
4587
4588 static bfd_boolean
4589 elf_modify_segment_map (bfd *abfd,
4590 struct bfd_link_info *info,
4591 bfd_boolean remove_empty_load)
4592 {
4593 struct elf_segment_map **m;
4594 const struct elf_backend_data *bed;
4595
4596 /* The placement algorithm assumes that non allocated sections are
4597 not in PT_LOAD segments. We ensure this here by removing such
4598 sections from the segment map. We also remove excluded
4599 sections. Finally, any PT_LOAD segment without sections is
4600 removed. */
4601 m = &elf_seg_map (abfd);
4602 while (*m)
4603 {
4604 unsigned int i, new_count;
4605
4606 for (new_count = 0, i = 0; i < (*m)->count; i++)
4607 {
4608 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4609 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4610 || (*m)->p_type != PT_LOAD))
4611 {
4612 (*m)->sections[new_count] = (*m)->sections[i];
4613 new_count++;
4614 }
4615 }
4616 (*m)->count = new_count;
4617
4618 if (remove_empty_load
4619 && (*m)->p_type == PT_LOAD
4620 && (*m)->count == 0
4621 && !(*m)->includes_phdrs)
4622 *m = (*m)->next;
4623 else
4624 m = &(*m)->next;
4625 }
4626
4627 bed = get_elf_backend_data (abfd);
4628 if (bed->elf_backend_modify_segment_map != NULL)
4629 {
4630 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4631 return FALSE;
4632 }
4633
4634 return TRUE;
4635 }
4636
4637 #define IS_TBSS(s) \
4638 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4639
4640 /* Set up a mapping from BFD sections to program segments. */
4641
4642 bfd_boolean
4643 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4644 {
4645 unsigned int count;
4646 struct elf_segment_map *m;
4647 asection **sections = NULL;
4648 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4649 bfd_boolean no_user_phdrs;
4650
4651 no_user_phdrs = elf_seg_map (abfd) == NULL;
4652
4653 if (info != NULL)
4654 info->user_phdrs = !no_user_phdrs;
4655
4656 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4657 {
4658 asection *s;
4659 unsigned int i;
4660 struct elf_segment_map *mfirst;
4661 struct elf_segment_map **pm;
4662 asection *last_hdr;
4663 bfd_vma last_size;
4664 unsigned int hdr_index;
4665 bfd_vma maxpagesize;
4666 asection **hdrpp;
4667 bfd_boolean phdr_in_segment;
4668 bfd_boolean writable;
4669 bfd_boolean executable;
4670 unsigned int tls_count = 0;
4671 asection *first_tls = NULL;
4672 asection *first_mbind = NULL;
4673 asection *dynsec, *eh_frame_hdr;
4674 size_t amt;
4675 bfd_vma addr_mask, wrap_to = 0;
4676 bfd_size_type phdr_size;
4677 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4678
4679 /* Select the allocated sections, and sort them. */
4680
4681 amt = bfd_count_sections (abfd) * sizeof (asection *);
4682 sections = (asection **) bfd_malloc (amt);
4683 if (sections == NULL)
4684 goto error_return;
4685
4686 /* Calculate top address, avoiding undefined behaviour of shift
4687 left operator when shift count is equal to size of type
4688 being shifted. */
4689 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4690 addr_mask = (addr_mask << 1) + 1;
4691
4692 i = 0;
4693 for (s = abfd->sections; s != NULL; s = s->next)
4694 {
4695 if ((s->flags & SEC_ALLOC) != 0)
4696 {
4697 /* target_index is unused until bfd_elf_final_link
4698 starts output of section symbols. Use it to make
4699 qsort stable. */
4700 s->target_index = i;
4701 sections[i] = s;
4702 ++i;
4703 /* A wrapping section potentially clashes with header. */
4704 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4705 wrap_to = (s->lma + s->size) & addr_mask;
4706 }
4707 }
4708 BFD_ASSERT (i <= bfd_count_sections (abfd));
4709 count = i;
4710
4711 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4712
4713 phdr_size = elf_program_header_size (abfd);
4714 if (phdr_size == (bfd_size_type) -1)
4715 phdr_size = get_program_header_size (abfd, info);
4716 phdr_size += bed->s->sizeof_ehdr;
4717 /* phdr_size is compared to LMA values which are in bytes. */
4718 phdr_size /= opb;
4719 maxpagesize = bed->maxpagesize;
4720 if (maxpagesize == 0)
4721 maxpagesize = 1;
4722 phdr_in_segment = info != NULL && info->load_phdrs;
4723 if (count != 0
4724 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4725 >= (phdr_size & (maxpagesize - 1))))
4726 /* For compatibility with old scripts that may not be using
4727 SIZEOF_HEADERS, add headers when it looks like space has
4728 been left for them. */
4729 phdr_in_segment = TRUE;
4730
4731 /* Build the mapping. */
4732 mfirst = NULL;
4733 pm = &mfirst;
4734
4735 /* If we have a .interp section, then create a PT_PHDR segment for
4736 the program headers and a PT_INTERP segment for the .interp
4737 section. */
4738 s = bfd_get_section_by_name (abfd, ".interp");
4739 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4740 {
4741 amt = sizeof (struct elf_segment_map);
4742 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4743 if (m == NULL)
4744 goto error_return;
4745 m->next = NULL;
4746 m->p_type = PT_PHDR;
4747 m->p_flags = PF_R;
4748 m->p_flags_valid = 1;
4749 m->includes_phdrs = 1;
4750 phdr_in_segment = TRUE;
4751 *pm = m;
4752 pm = &m->next;
4753
4754 amt = sizeof (struct elf_segment_map);
4755 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4756 if (m == NULL)
4757 goto error_return;
4758 m->next = NULL;
4759 m->p_type = PT_INTERP;
4760 m->count = 1;
4761 m->sections[0] = s;
4762
4763 *pm = m;
4764 pm = &m->next;
4765 }
4766
4767 /* Look through the sections. We put sections in the same program
4768 segment when the start of the second section can be placed within
4769 a few bytes of the end of the first section. */
4770 last_hdr = NULL;
4771 last_size = 0;
4772 hdr_index = 0;
4773 writable = FALSE;
4774 executable = FALSE;
4775 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4776 if (dynsec != NULL
4777 && (dynsec->flags & SEC_LOAD) == 0)
4778 dynsec = NULL;
4779
4780 if ((abfd->flags & D_PAGED) == 0)
4781 phdr_in_segment = FALSE;
4782
4783 /* Deal with -Ttext or something similar such that the first section
4784 is not adjacent to the program headers. This is an
4785 approximation, since at this point we don't know exactly how many
4786 program headers we will need. */
4787 if (phdr_in_segment && count > 0)
4788 {
4789 bfd_vma phdr_lma;
4790 bfd_boolean separate_phdr = FALSE;
4791
4792 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4793 if (info != NULL
4794 && info->separate_code
4795 && (sections[0]->flags & SEC_CODE) != 0)
4796 {
4797 /* If data sections should be separate from code and
4798 thus not executable, and the first section is
4799 executable then put the file and program headers in
4800 their own PT_LOAD. */
4801 separate_phdr = TRUE;
4802 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4803 == (sections[0]->lma & addr_mask & -maxpagesize)))
4804 {
4805 /* The file and program headers are currently on the
4806 same page as the first section. Put them on the
4807 previous page if we can. */
4808 if (phdr_lma >= maxpagesize)
4809 phdr_lma -= maxpagesize;
4810 else
4811 separate_phdr = FALSE;
4812 }
4813 }
4814 if ((sections[0]->lma & addr_mask) < phdr_lma
4815 || (sections[0]->lma & addr_mask) < phdr_size)
4816 /* If file and program headers would be placed at the end
4817 of memory then it's probably better to omit them. */
4818 phdr_in_segment = FALSE;
4819 else if (phdr_lma < wrap_to)
4820 /* If a section wraps around to where we'll be placing
4821 file and program headers, then the headers will be
4822 overwritten. */
4823 phdr_in_segment = FALSE;
4824 else if (separate_phdr)
4825 {
4826 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4827 if (m == NULL)
4828 goto error_return;
4829 m->p_paddr = phdr_lma;
4830 m->p_vaddr_offset
4831 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4832 m->p_paddr_valid = 1;
4833 *pm = m;
4834 pm = &m->next;
4835 phdr_in_segment = FALSE;
4836 }
4837 }
4838
4839 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4840 {
4841 asection *hdr;
4842 bfd_boolean new_segment;
4843
4844 hdr = *hdrpp;
4845
4846 /* See if this section and the last one will fit in the same
4847 segment. */
4848
4849 if (last_hdr == NULL)
4850 {
4851 /* If we don't have a segment yet, then we don't need a new
4852 one (we build the last one after this loop). */
4853 new_segment = FALSE;
4854 }
4855 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4856 {
4857 /* If this section has a different relation between the
4858 virtual address and the load address, then we need a new
4859 segment. */
4860 new_segment = TRUE;
4861 }
4862 else if (hdr->lma < last_hdr->lma + last_size
4863 || last_hdr->lma + last_size < last_hdr->lma)
4864 {
4865 /* If this section has a load address that makes it overlap
4866 the previous section, then we need a new segment. */
4867 new_segment = TRUE;
4868 }
4869 else if ((abfd->flags & D_PAGED) != 0
4870 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4871 == (hdr->lma & -maxpagesize)))
4872 {
4873 /* If we are demand paged then we can't map two disk
4874 pages onto the same memory page. */
4875 new_segment = FALSE;
4876 }
4877 /* In the next test we have to be careful when last_hdr->lma is close
4878 to the end of the address space. If the aligned address wraps
4879 around to the start of the address space, then there are no more
4880 pages left in memory and it is OK to assume that the current
4881 section can be included in the current segment. */
4882 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4883 + maxpagesize > last_hdr->lma)
4884 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4885 + maxpagesize <= hdr->lma))
4886 {
4887 /* If putting this section in this segment would force us to
4888 skip a page in the segment, then we need a new segment. */
4889 new_segment = TRUE;
4890 }
4891 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4892 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4893 {
4894 /* We don't want to put a loaded section after a
4895 nonloaded (ie. bss style) section in the same segment
4896 as that will force the non-loaded section to be loaded.
4897 Consider .tbss sections as loaded for this purpose. */
4898 new_segment = TRUE;
4899 }
4900 else if ((abfd->flags & D_PAGED) == 0)
4901 {
4902 /* If the file is not demand paged, which means that we
4903 don't require the sections to be correctly aligned in the
4904 file, then there is no other reason for a new segment. */
4905 new_segment = FALSE;
4906 }
4907 else if (info != NULL
4908 && info->separate_code
4909 && executable != ((hdr->flags & SEC_CODE) != 0))
4910 {
4911 new_segment = TRUE;
4912 }
4913 else if (! writable
4914 && (hdr->flags & SEC_READONLY) == 0)
4915 {
4916 /* We don't want to put a writable section in a read only
4917 segment. */
4918 new_segment = TRUE;
4919 }
4920 else
4921 {
4922 /* Otherwise, we can use the same segment. */
4923 new_segment = FALSE;
4924 }
4925
4926 /* Allow interested parties a chance to override our decision. */
4927 if (last_hdr != NULL
4928 && info != NULL
4929 && info->callbacks->override_segment_assignment != NULL)
4930 new_segment
4931 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4932 last_hdr,
4933 new_segment);
4934
4935 if (! new_segment)
4936 {
4937 if ((hdr->flags & SEC_READONLY) == 0)
4938 writable = TRUE;
4939 if ((hdr->flags & SEC_CODE) != 0)
4940 executable = TRUE;
4941 last_hdr = hdr;
4942 /* .tbss sections effectively have zero size. */
4943 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4944 continue;
4945 }
4946
4947 /* We need a new program segment. We must create a new program
4948 header holding all the sections from hdr_index until hdr. */
4949
4950 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4951 if (m == NULL)
4952 goto error_return;
4953
4954 *pm = m;
4955 pm = &m->next;
4956
4957 if ((hdr->flags & SEC_READONLY) == 0)
4958 writable = TRUE;
4959 else
4960 writable = FALSE;
4961
4962 if ((hdr->flags & SEC_CODE) == 0)
4963 executable = FALSE;
4964 else
4965 executable = TRUE;
4966
4967 last_hdr = hdr;
4968 /* .tbss sections effectively have zero size. */
4969 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4970 hdr_index = i;
4971 phdr_in_segment = FALSE;
4972 }
4973
4974 /* Create a final PT_LOAD program segment, but not if it's just
4975 for .tbss. */
4976 if (last_hdr != NULL
4977 && (i - hdr_index != 1
4978 || !IS_TBSS (last_hdr)))
4979 {
4980 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4981 if (m == NULL)
4982 goto error_return;
4983
4984 *pm = m;
4985 pm = &m->next;
4986 }
4987
4988 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4989 if (dynsec != NULL)
4990 {
4991 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4992 if (m == NULL)
4993 goto error_return;
4994 *pm = m;
4995 pm = &m->next;
4996 }
4997
4998 /* For each batch of consecutive loadable SHT_NOTE sections,
4999 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5000 because if we link together nonloadable .note sections and
5001 loadable .note sections, we will generate two .note sections
5002 in the output file. */
5003 for (s = abfd->sections; s != NULL; s = s->next)
5004 {
5005 if ((s->flags & SEC_LOAD) != 0
5006 && elf_section_type (s) == SHT_NOTE)
5007 {
5008 asection *s2;
5009 unsigned int alignment_power = s->alignment_power;
5010
5011 count = 1;
5012 for (s2 = s; s2->next != NULL; s2 = s2->next)
5013 {
5014 if (s2->next->alignment_power == alignment_power
5015 && (s2->next->flags & SEC_LOAD) != 0
5016 && elf_section_type (s2->next) == SHT_NOTE
5017 && align_power (s2->lma + s2->size,
5018 alignment_power)
5019 == s2->next->lma)
5020 count++;
5021 else
5022 break;
5023 }
5024 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5025 amt += count * sizeof (asection *);
5026 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5027 if (m == NULL)
5028 goto error_return;
5029 m->next = NULL;
5030 m->p_type = PT_NOTE;
5031 m->count = count;
5032 while (count > 1)
5033 {
5034 m->sections[m->count - count--] = s;
5035 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5036 s = s->next;
5037 }
5038 m->sections[m->count - 1] = s;
5039 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5040 *pm = m;
5041 pm = &m->next;
5042 }
5043 if (s->flags & SEC_THREAD_LOCAL)
5044 {
5045 if (! tls_count)
5046 first_tls = s;
5047 tls_count++;
5048 }
5049 if (first_mbind == NULL
5050 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5051 first_mbind = s;
5052 }
5053
5054 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5055 if (tls_count > 0)
5056 {
5057 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5058 amt += tls_count * sizeof (asection *);
5059 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5060 if (m == NULL)
5061 goto error_return;
5062 m->next = NULL;
5063 m->p_type = PT_TLS;
5064 m->count = tls_count;
5065 /* Mandated PF_R. */
5066 m->p_flags = PF_R;
5067 m->p_flags_valid = 1;
5068 s = first_tls;
5069 for (i = 0; i < tls_count; ++i)
5070 {
5071 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5072 {
5073 _bfd_error_handler
5074 (_("%pB: TLS sections are not adjacent:"), abfd);
5075 s = first_tls;
5076 i = 0;
5077 while (i < tls_count)
5078 {
5079 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5080 {
5081 _bfd_error_handler (_(" TLS: %pA"), s);
5082 i++;
5083 }
5084 else
5085 _bfd_error_handler (_(" non-TLS: %pA"), s);
5086 s = s->next;
5087 }
5088 bfd_set_error (bfd_error_bad_value);
5089 goto error_return;
5090 }
5091 m->sections[i] = s;
5092 s = s->next;
5093 }
5094
5095 *pm = m;
5096 pm = &m->next;
5097 }
5098
5099 if (first_mbind
5100 && (abfd->flags & D_PAGED) != 0
5101 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5102 for (s = first_mbind; s != NULL; s = s->next)
5103 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5104 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5105 {
5106 /* Mandated PF_R. */
5107 unsigned long p_flags = PF_R;
5108 if ((s->flags & SEC_READONLY) == 0)
5109 p_flags |= PF_W;
5110 if ((s->flags & SEC_CODE) != 0)
5111 p_flags |= PF_X;
5112
5113 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5114 m = bfd_zalloc (abfd, amt);
5115 if (m == NULL)
5116 goto error_return;
5117 m->next = NULL;
5118 m->p_type = (PT_GNU_MBIND_LO
5119 + elf_section_data (s)->this_hdr.sh_info);
5120 m->count = 1;
5121 m->p_flags_valid = 1;
5122 m->sections[0] = s;
5123 m->p_flags = p_flags;
5124
5125 *pm = m;
5126 pm = &m->next;
5127 }
5128
5129 s = bfd_get_section_by_name (abfd,
5130 NOTE_GNU_PROPERTY_SECTION_NAME);
5131 if (s != NULL && s->size != 0)
5132 {
5133 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5134 m = bfd_zalloc (abfd, amt);
5135 if (m == NULL)
5136 goto error_return;
5137 m->next = NULL;
5138 m->p_type = PT_GNU_PROPERTY;
5139 m->count = 1;
5140 m->p_flags_valid = 1;
5141 m->sections[0] = s;
5142 m->p_flags = PF_R;
5143 *pm = m;
5144 pm = &m->next;
5145 }
5146
5147 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5148 segment. */
5149 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5150 if (eh_frame_hdr != NULL
5151 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5152 {
5153 amt = sizeof (struct elf_segment_map);
5154 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5155 if (m == NULL)
5156 goto error_return;
5157 m->next = NULL;
5158 m->p_type = PT_GNU_EH_FRAME;
5159 m->count = 1;
5160 m->sections[0] = eh_frame_hdr->output_section;
5161
5162 *pm = m;
5163 pm = &m->next;
5164 }
5165
5166 if (elf_stack_flags (abfd))
5167 {
5168 amt = sizeof (struct elf_segment_map);
5169 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5170 if (m == NULL)
5171 goto error_return;
5172 m->next = NULL;
5173 m->p_type = PT_GNU_STACK;
5174 m->p_flags = elf_stack_flags (abfd);
5175 m->p_align = bed->stack_align;
5176 m->p_flags_valid = 1;
5177 m->p_align_valid = m->p_align != 0;
5178 if (info->stacksize > 0)
5179 {
5180 m->p_size = info->stacksize;
5181 m->p_size_valid = 1;
5182 }
5183
5184 *pm = m;
5185 pm = &m->next;
5186 }
5187
5188 if (info != NULL && info->relro)
5189 {
5190 for (m = mfirst; m != NULL; m = m->next)
5191 {
5192 if (m->p_type == PT_LOAD
5193 && m->count != 0
5194 && m->sections[0]->vma >= info->relro_start
5195 && m->sections[0]->vma < info->relro_end)
5196 {
5197 i = m->count;
5198 while (--i != (unsigned) -1)
5199 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5200 == (SEC_LOAD | SEC_HAS_CONTENTS))
5201 break;
5202
5203 if (i != (unsigned) -1)
5204 break;
5205 }
5206 }
5207
5208 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5209 if (m != NULL)
5210 {
5211 amt = sizeof (struct elf_segment_map);
5212 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5213 if (m == NULL)
5214 goto error_return;
5215 m->next = NULL;
5216 m->p_type = PT_GNU_RELRO;
5217 *pm = m;
5218 pm = &m->next;
5219 }
5220 }
5221
5222 free (sections);
5223 elf_seg_map (abfd) = mfirst;
5224 }
5225
5226 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5227 return FALSE;
5228
5229 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5230 ++count;
5231 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5232
5233 return TRUE;
5234
5235 error_return:
5236 if (sections != NULL)
5237 free (sections);
5238 return FALSE;
5239 }
5240
5241 /* Sort sections by address. */
5242
5243 static int
5244 elf_sort_sections (const void *arg1, const void *arg2)
5245 {
5246 const asection *sec1 = *(const asection **) arg1;
5247 const asection *sec2 = *(const asection **) arg2;
5248 bfd_size_type size1, size2;
5249
5250 /* Sort by LMA first, since this is the address used to
5251 place the section into a segment. */
5252 if (sec1->lma < sec2->lma)
5253 return -1;
5254 else if (sec1->lma > sec2->lma)
5255 return 1;
5256
5257 /* Then sort by VMA. Normally the LMA and the VMA will be
5258 the same, and this will do nothing. */
5259 if (sec1->vma < sec2->vma)
5260 return -1;
5261 else if (sec1->vma > sec2->vma)
5262 return 1;
5263
5264 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5265
5266 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5267
5268 if (TOEND (sec1))
5269 {
5270 if (!TOEND (sec2))
5271 return 1;
5272 }
5273 else if (TOEND (sec2))
5274 return -1;
5275
5276 #undef TOEND
5277
5278 /* Sort by size, to put zero sized sections
5279 before others at the same address. */
5280
5281 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5282 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5283
5284 if (size1 < size2)
5285 return -1;
5286 if (size1 > size2)
5287 return 1;
5288
5289 return sec1->target_index - sec2->target_index;
5290 }
5291
5292 /* This qsort comparison functions sorts PT_LOAD segments first and
5293 by p_paddr, for assign_file_positions_for_load_sections. */
5294
5295 static int
5296 elf_sort_segments (const void *arg1, const void *arg2)
5297 {
5298 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5299 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5300
5301 if (m1->p_type != m2->p_type)
5302 {
5303 if (m1->p_type == PT_NULL)
5304 return 1;
5305 if (m2->p_type == PT_NULL)
5306 return -1;
5307 return m1->p_type < m2->p_type ? -1 : 1;
5308 }
5309 if (m1->includes_filehdr != m2->includes_filehdr)
5310 return m1->includes_filehdr ? -1 : 1;
5311 if (m1->no_sort_lma != m2->no_sort_lma)
5312 return m1->no_sort_lma ? -1 : 1;
5313 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5314 {
5315 bfd_vma lma1, lma2;
5316 lma1 = 0;
5317 if (m1->p_paddr_valid)
5318 lma1 = m1->p_paddr;
5319 else if (m1->count != 0)
5320 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5321 lma2 = 0;
5322 if (m2->p_paddr_valid)
5323 lma2 = m2->p_paddr;
5324 else if (m2->count != 0)
5325 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5326 if (lma1 != lma2)
5327 return lma1 < lma2 ? -1 : 1;
5328 }
5329 if (m1->idx != m2->idx)
5330 return m1->idx < m2->idx ? -1 : 1;
5331 return 0;
5332 }
5333
5334 /* Ian Lance Taylor writes:
5335
5336 We shouldn't be using % with a negative signed number. That's just
5337 not good. We have to make sure either that the number is not
5338 negative, or that the number has an unsigned type. When the types
5339 are all the same size they wind up as unsigned. When file_ptr is a
5340 larger signed type, the arithmetic winds up as signed long long,
5341 which is wrong.
5342
5343 What we're trying to say here is something like ``increase OFF by
5344 the least amount that will cause it to be equal to the VMA modulo
5345 the page size.'' */
5346 /* In other words, something like:
5347
5348 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5349 off_offset = off % bed->maxpagesize;
5350 if (vma_offset < off_offset)
5351 adjustment = vma_offset + bed->maxpagesize - off_offset;
5352 else
5353 adjustment = vma_offset - off_offset;
5354
5355 which can be collapsed into the expression below. */
5356
5357 static file_ptr
5358 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5359 {
5360 /* PR binutils/16199: Handle an alignment of zero. */
5361 if (maxpagesize == 0)
5362 maxpagesize = 1;
5363 return ((vma - off) % maxpagesize);
5364 }
5365
5366 static void
5367 print_segment_map (const struct elf_segment_map *m)
5368 {
5369 unsigned int j;
5370 const char *pt = get_segment_type (m->p_type);
5371 char buf[32];
5372
5373 if (pt == NULL)
5374 {
5375 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5376 sprintf (buf, "LOPROC+%7.7x",
5377 (unsigned int) (m->p_type - PT_LOPROC));
5378 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5379 sprintf (buf, "LOOS+%7.7x",
5380 (unsigned int) (m->p_type - PT_LOOS));
5381 else
5382 snprintf (buf, sizeof (buf), "%8.8x",
5383 (unsigned int) m->p_type);
5384 pt = buf;
5385 }
5386 fflush (stdout);
5387 fprintf (stderr, "%s:", pt);
5388 for (j = 0; j < m->count; j++)
5389 fprintf (stderr, " %s", m->sections [j]->name);
5390 putc ('\n',stderr);
5391 fflush (stderr);
5392 }
5393
5394 static bfd_boolean
5395 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5396 {
5397 void *buf;
5398 bfd_boolean ret;
5399
5400 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5401 return FALSE;
5402 buf = bfd_zmalloc (len);
5403 if (buf == NULL)
5404 return FALSE;
5405 ret = bfd_bwrite (buf, len, abfd) == len;
5406 free (buf);
5407 return ret;
5408 }
5409
5410 /* Assign file positions to the sections based on the mapping from
5411 sections to segments. This function also sets up some fields in
5412 the file header. */
5413
5414 static bfd_boolean
5415 assign_file_positions_for_load_sections (bfd *abfd,
5416 struct bfd_link_info *link_info)
5417 {
5418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5419 struct elf_segment_map *m;
5420 struct elf_segment_map *phdr_load_seg;
5421 Elf_Internal_Phdr *phdrs;
5422 Elf_Internal_Phdr *p;
5423 file_ptr off; /* Octets. */
5424 bfd_size_type maxpagesize;
5425 unsigned int alloc, actual;
5426 unsigned int i, j;
5427 struct elf_segment_map **sorted_seg_map;
5428 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5429
5430 if (link_info == NULL
5431 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5432 return FALSE;
5433
5434 alloc = 0;
5435 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5436 m->idx = alloc++;
5437
5438 if (alloc)
5439 {
5440 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5441 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5442 }
5443 else
5444 {
5445 /* PR binutils/12467. */
5446 elf_elfheader (abfd)->e_phoff = 0;
5447 elf_elfheader (abfd)->e_phentsize = 0;
5448 }
5449
5450 elf_elfheader (abfd)->e_phnum = alloc;
5451
5452 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5453 {
5454 actual = alloc;
5455 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5456 }
5457 else
5458 {
5459 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5460 BFD_ASSERT (elf_program_header_size (abfd)
5461 == actual * bed->s->sizeof_phdr);
5462 BFD_ASSERT (actual >= alloc);
5463 }
5464
5465 if (alloc == 0)
5466 {
5467 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5468 return TRUE;
5469 }
5470
5471 /* We're writing the size in elf_program_header_size (abfd),
5472 see assign_file_positions_except_relocs, so make sure we have
5473 that amount allocated, with trailing space cleared.
5474 The variable alloc contains the computed need, while
5475 elf_program_header_size (abfd) contains the size used for the
5476 layout.
5477 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5478 where the layout is forced to according to a larger size in the
5479 last iterations for the testcase ld-elf/header. */
5480 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5481 + alloc * sizeof (*sorted_seg_map)));
5482 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5483 elf_tdata (abfd)->phdr = phdrs;
5484 if (phdrs == NULL)
5485 return FALSE;
5486
5487 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5488 {
5489 sorted_seg_map[j] = m;
5490 /* If elf_segment_map is not from map_sections_to_segments, the
5491 sections may not be correctly ordered. NOTE: sorting should
5492 not be done to the PT_NOTE section of a corefile, which may
5493 contain several pseudo-sections artificially created by bfd.
5494 Sorting these pseudo-sections breaks things badly. */
5495 if (m->count > 1
5496 && !(elf_elfheader (abfd)->e_type == ET_CORE
5497 && m->p_type == PT_NOTE))
5498 {
5499 for (i = 0; i < m->count; i++)
5500 m->sections[i]->target_index = i;
5501 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5502 elf_sort_sections);
5503 }
5504 }
5505 if (alloc > 1)
5506 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5507 elf_sort_segments);
5508
5509 maxpagesize = 1;
5510 if ((abfd->flags & D_PAGED) != 0)
5511 maxpagesize = bed->maxpagesize;
5512
5513 /* Sections must map to file offsets past the ELF file header. */
5514 off = bed->s->sizeof_ehdr;
5515 /* And if one of the PT_LOAD headers doesn't include the program
5516 headers then we'll be mapping program headers in the usual
5517 position after the ELF file header. */
5518 phdr_load_seg = NULL;
5519 for (j = 0; j < alloc; j++)
5520 {
5521 m = sorted_seg_map[j];
5522 if (m->p_type != PT_LOAD)
5523 break;
5524 if (m->includes_phdrs)
5525 {
5526 phdr_load_seg = m;
5527 break;
5528 }
5529 }
5530 if (phdr_load_seg == NULL)
5531 off += actual * bed->s->sizeof_phdr;
5532
5533 for (j = 0; j < alloc; j++)
5534 {
5535 asection **secpp;
5536 bfd_vma off_adjust; /* Octets. */
5537 bfd_boolean no_contents;
5538
5539 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5540 number of sections with contents contributing to both p_filesz
5541 and p_memsz, followed by a number of sections with no contents
5542 that just contribute to p_memsz. In this loop, OFF tracks next
5543 available file offset for PT_LOAD and PT_NOTE segments. */
5544 m = sorted_seg_map[j];
5545 p = phdrs + m->idx;
5546 p->p_type = m->p_type;
5547 p->p_flags = m->p_flags;
5548
5549 if (m->count == 0)
5550 p->p_vaddr = m->p_vaddr_offset * opb;
5551 else
5552 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5553
5554 if (m->p_paddr_valid)
5555 p->p_paddr = m->p_paddr;
5556 else if (m->count == 0)
5557 p->p_paddr = 0;
5558 else
5559 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5560
5561 if (p->p_type == PT_LOAD
5562 && (abfd->flags & D_PAGED) != 0)
5563 {
5564 /* p_align in demand paged PT_LOAD segments effectively stores
5565 the maximum page size. When copying an executable with
5566 objcopy, we set m->p_align from the input file. Use this
5567 value for maxpagesize rather than bed->maxpagesize, which
5568 may be different. Note that we use maxpagesize for PT_TLS
5569 segment alignment later in this function, so we are relying
5570 on at least one PT_LOAD segment appearing before a PT_TLS
5571 segment. */
5572 if (m->p_align_valid)
5573 maxpagesize = m->p_align;
5574
5575 p->p_align = maxpagesize;
5576 }
5577 else if (m->p_align_valid)
5578 p->p_align = m->p_align;
5579 else if (m->count == 0)
5580 p->p_align = 1 << bed->s->log_file_align;
5581
5582 if (m == phdr_load_seg)
5583 {
5584 if (!m->includes_filehdr)
5585 p->p_offset = off;
5586 off += actual * bed->s->sizeof_phdr;
5587 }
5588
5589 no_contents = FALSE;
5590 off_adjust = 0;
5591 if (p->p_type == PT_LOAD
5592 && m->count > 0)
5593 {
5594 bfd_size_type align;
5595 unsigned int align_power = 0;
5596
5597 if (m->p_align_valid)
5598 align = p->p_align;
5599 else
5600 {
5601 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5602 {
5603 unsigned int secalign;
5604
5605 secalign = bfd_section_alignment (*secpp);
5606 if (secalign > align_power)
5607 align_power = secalign;
5608 }
5609 align = (bfd_size_type) 1 << align_power;
5610 if (align < maxpagesize)
5611 align = maxpagesize;
5612 }
5613
5614 for (i = 0; i < m->count; i++)
5615 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5616 /* If we aren't making room for this section, then
5617 it must be SHT_NOBITS regardless of what we've
5618 set via struct bfd_elf_special_section. */
5619 elf_section_type (m->sections[i]) = SHT_NOBITS;
5620
5621 /* Find out whether this segment contains any loadable
5622 sections. */
5623 no_contents = TRUE;
5624 for (i = 0; i < m->count; i++)
5625 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5626 {
5627 no_contents = FALSE;
5628 break;
5629 }
5630
5631 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5632
5633 /* Broken hardware and/or kernel require that files do not
5634 map the same page with different permissions on some hppa
5635 processors. */
5636 if (j != 0
5637 && (abfd->flags & D_PAGED) != 0
5638 && bed->no_page_alias
5639 && (off & (maxpagesize - 1)) != 0
5640 && ((off & -maxpagesize)
5641 == ((off + off_adjust) & -maxpagesize)))
5642 off_adjust += maxpagesize;
5643 off += off_adjust;
5644 if (no_contents)
5645 {
5646 /* We shouldn't need to align the segment on disk since
5647 the segment doesn't need file space, but the gABI
5648 arguably requires the alignment and glibc ld.so
5649 checks it. So to comply with the alignment
5650 requirement but not waste file space, we adjust
5651 p_offset for just this segment. (OFF_ADJUST is
5652 subtracted from OFF later.) This may put p_offset
5653 past the end of file, but that shouldn't matter. */
5654 }
5655 else
5656 off_adjust = 0;
5657 }
5658 /* Make sure the .dynamic section is the first section in the
5659 PT_DYNAMIC segment. */
5660 else if (p->p_type == PT_DYNAMIC
5661 && m->count > 1
5662 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5663 {
5664 _bfd_error_handler
5665 (_("%pB: The first section in the PT_DYNAMIC segment"
5666 " is not the .dynamic section"),
5667 abfd);
5668 bfd_set_error (bfd_error_bad_value);
5669 return FALSE;
5670 }
5671 /* Set the note section type to SHT_NOTE. */
5672 else if (p->p_type == PT_NOTE)
5673 for (i = 0; i < m->count; i++)
5674 elf_section_type (m->sections[i]) = SHT_NOTE;
5675
5676 if (m->includes_filehdr)
5677 {
5678 if (!m->p_flags_valid)
5679 p->p_flags |= PF_R;
5680 p->p_filesz = bed->s->sizeof_ehdr;
5681 p->p_memsz = bed->s->sizeof_ehdr;
5682 if (p->p_type == PT_LOAD)
5683 {
5684 if (m->count > 0)
5685 {
5686 if (p->p_vaddr < (bfd_vma) off
5687 || (!m->p_paddr_valid
5688 && p->p_paddr < (bfd_vma) off))
5689 {
5690 _bfd_error_handler
5691 (_("%pB: not enough room for program headers,"
5692 " try linking with -N"),
5693 abfd);
5694 bfd_set_error (bfd_error_bad_value);
5695 return FALSE;
5696 }
5697 p->p_vaddr -= off;
5698 if (!m->p_paddr_valid)
5699 p->p_paddr -= off;
5700 }
5701 }
5702 else if (sorted_seg_map[0]->includes_filehdr)
5703 {
5704 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5705 p->p_vaddr = filehdr->p_vaddr;
5706 if (!m->p_paddr_valid)
5707 p->p_paddr = filehdr->p_paddr;
5708 }
5709 }
5710
5711 if (m->includes_phdrs)
5712 {
5713 if (!m->p_flags_valid)
5714 p->p_flags |= PF_R;
5715 p->p_filesz += actual * bed->s->sizeof_phdr;
5716 p->p_memsz += actual * bed->s->sizeof_phdr;
5717 if (!m->includes_filehdr)
5718 {
5719 if (p->p_type == PT_LOAD)
5720 {
5721 elf_elfheader (abfd)->e_phoff = p->p_offset;
5722 if (m->count > 0)
5723 {
5724 p->p_vaddr -= off - p->p_offset;
5725 if (!m->p_paddr_valid)
5726 p->p_paddr -= off - p->p_offset;
5727 }
5728 }
5729 else if (phdr_load_seg != NULL)
5730 {
5731 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5732 bfd_vma phdr_off = 0; /* Octets. */
5733 if (phdr_load_seg->includes_filehdr)
5734 phdr_off = bed->s->sizeof_ehdr;
5735 p->p_vaddr = phdr->p_vaddr + phdr_off;
5736 if (!m->p_paddr_valid)
5737 p->p_paddr = phdr->p_paddr + phdr_off;
5738 p->p_offset = phdr->p_offset + phdr_off;
5739 }
5740 else
5741 p->p_offset = bed->s->sizeof_ehdr;
5742 }
5743 }
5744
5745 if (p->p_type == PT_LOAD
5746 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5747 {
5748 if (!m->includes_filehdr && !m->includes_phdrs)
5749 {
5750 p->p_offset = off;
5751 if (no_contents)
5752 {
5753 /* Put meaningless p_offset for PT_LOAD segments
5754 without file contents somewhere within the first
5755 page, in an attempt to not point past EOF. */
5756 bfd_size_type align = maxpagesize;
5757 if (align < p->p_align)
5758 align = p->p_align;
5759 if (align < 1)
5760 align = 1;
5761 p->p_offset = off % align;
5762 }
5763 }
5764 else
5765 {
5766 file_ptr adjust; /* Octets. */
5767
5768 adjust = off - (p->p_offset + p->p_filesz);
5769 if (!no_contents)
5770 p->p_filesz += adjust;
5771 p->p_memsz += adjust;
5772 }
5773 }
5774
5775 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5776 maps. Set filepos for sections in PT_LOAD segments, and in
5777 core files, for sections in PT_NOTE segments.
5778 assign_file_positions_for_non_load_sections will set filepos
5779 for other sections and update p_filesz for other segments. */
5780 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5781 {
5782 asection *sec;
5783 bfd_size_type align;
5784 Elf_Internal_Shdr *this_hdr;
5785
5786 sec = *secpp;
5787 this_hdr = &elf_section_data (sec)->this_hdr;
5788 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5789
5790 if ((p->p_type == PT_LOAD
5791 || p->p_type == PT_TLS)
5792 && (this_hdr->sh_type != SHT_NOBITS
5793 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5794 && ((this_hdr->sh_flags & SHF_TLS) == 0
5795 || p->p_type == PT_TLS))))
5796 {
5797 bfd_vma p_start = p->p_paddr; /* Octets. */
5798 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5799 bfd_vma s_start = sec->lma * opb; /* Octets. */
5800 bfd_vma adjust = s_start - p_end; /* Octets. */
5801
5802 if (adjust != 0
5803 && (s_start < p_end
5804 || p_end < p_start))
5805 {
5806 _bfd_error_handler
5807 /* xgettext:c-format */
5808 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5809 abfd, sec, (uint64_t) s_start / opb,
5810 (uint64_t) p_end / opb);
5811 adjust = 0;
5812 sec->lma = p_end / opb;
5813 }
5814 p->p_memsz += adjust;
5815
5816 if (this_hdr->sh_type != SHT_NOBITS)
5817 {
5818 if (p->p_type == PT_LOAD)
5819 {
5820 if (p->p_filesz + adjust < p->p_memsz)
5821 {
5822 /* We have a PROGBITS section following NOBITS ones.
5823 Allocate file space for the NOBITS section(s) and
5824 zero it. */
5825 adjust = p->p_memsz - p->p_filesz;
5826 if (!write_zeros (abfd, off, adjust))
5827 return FALSE;
5828 }
5829 off += adjust;
5830 }
5831 p->p_filesz += adjust;
5832 }
5833 }
5834
5835 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5836 {
5837 /* The section at i == 0 is the one that actually contains
5838 everything. */
5839 if (i == 0)
5840 {
5841 this_hdr->sh_offset = sec->filepos = off;
5842 off += this_hdr->sh_size;
5843 p->p_filesz = this_hdr->sh_size;
5844 p->p_memsz = 0;
5845 p->p_align = 1;
5846 }
5847 else
5848 {
5849 /* The rest are fake sections that shouldn't be written. */
5850 sec->filepos = 0;
5851 sec->size = 0;
5852 sec->flags = 0;
5853 continue;
5854 }
5855 }
5856 else
5857 {
5858 if (p->p_type == PT_LOAD)
5859 {
5860 this_hdr->sh_offset = sec->filepos = off;
5861 if (this_hdr->sh_type != SHT_NOBITS)
5862 off += this_hdr->sh_size;
5863 }
5864 else if (this_hdr->sh_type == SHT_NOBITS
5865 && (this_hdr->sh_flags & SHF_TLS) != 0
5866 && this_hdr->sh_offset == 0)
5867 {
5868 /* This is a .tbss section that didn't get a PT_LOAD.
5869 (See _bfd_elf_map_sections_to_segments "Create a
5870 final PT_LOAD".) Set sh_offset to the value it
5871 would have if we had created a zero p_filesz and
5872 p_memsz PT_LOAD header for the section. This
5873 also makes the PT_TLS header have the same
5874 p_offset value. */
5875 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5876 off, align);
5877 this_hdr->sh_offset = sec->filepos = off + adjust;
5878 }
5879
5880 if (this_hdr->sh_type != SHT_NOBITS)
5881 {
5882 p->p_filesz += this_hdr->sh_size;
5883 /* A load section without SHF_ALLOC is something like
5884 a note section in a PT_NOTE segment. These take
5885 file space but are not loaded into memory. */
5886 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5887 p->p_memsz += this_hdr->sh_size;
5888 }
5889 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5890 {
5891 if (p->p_type == PT_TLS)
5892 p->p_memsz += this_hdr->sh_size;
5893
5894 /* .tbss is special. It doesn't contribute to p_memsz of
5895 normal segments. */
5896 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5897 p->p_memsz += this_hdr->sh_size;
5898 }
5899
5900 if (align > p->p_align
5901 && !m->p_align_valid
5902 && (p->p_type != PT_LOAD
5903 || (abfd->flags & D_PAGED) == 0))
5904 p->p_align = align;
5905 }
5906
5907 if (!m->p_flags_valid)
5908 {
5909 p->p_flags |= PF_R;
5910 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5911 p->p_flags |= PF_X;
5912 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5913 p->p_flags |= PF_W;
5914 }
5915 }
5916
5917 off -= off_adjust;
5918
5919 /* PR ld/20815 - Check that the program header segment, if
5920 present, will be loaded into memory. */
5921 if (p->p_type == PT_PHDR
5922 && phdr_load_seg == NULL
5923 && !(bed->elf_backend_allow_non_load_phdr != NULL
5924 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5925 {
5926 /* The fix for this error is usually to edit the linker script being
5927 used and set up the program headers manually. Either that or
5928 leave room for the headers at the start of the SECTIONS. */
5929 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5930 " by LOAD segment"),
5931 abfd);
5932 if (link_info == NULL)
5933 return FALSE;
5934 /* Arrange for the linker to exit with an error, deleting
5935 the output file unless --noinhibit-exec is given. */
5936 link_info->callbacks->info ("%X");
5937 }
5938
5939 /* Check that all sections are in a PT_LOAD segment.
5940 Don't check funky gdb generated core files. */
5941 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5942 {
5943 bfd_boolean check_vma = TRUE;
5944
5945 for (i = 1; i < m->count; i++)
5946 if (m->sections[i]->vma == m->sections[i - 1]->vma
5947 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5948 ->this_hdr), p) != 0
5949 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5950 ->this_hdr), p) != 0)
5951 {
5952 /* Looks like we have overlays packed into the segment. */
5953 check_vma = FALSE;
5954 break;
5955 }
5956
5957 for (i = 0; i < m->count; i++)
5958 {
5959 Elf_Internal_Shdr *this_hdr;
5960 asection *sec;
5961
5962 sec = m->sections[i];
5963 this_hdr = &(elf_section_data(sec)->this_hdr);
5964 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5965 && !ELF_TBSS_SPECIAL (this_hdr, p))
5966 {
5967 _bfd_error_handler
5968 /* xgettext:c-format */
5969 (_("%pB: section `%pA' can't be allocated in segment %d"),
5970 abfd, sec, j);
5971 print_segment_map (m);
5972 }
5973 }
5974 }
5975 }
5976
5977 elf_next_file_pos (abfd) = off;
5978
5979 if (link_info != NULL
5980 && phdr_load_seg != NULL
5981 && phdr_load_seg->includes_filehdr)
5982 {
5983 /* There is a segment that contains both the file headers and the
5984 program headers, so provide a symbol __ehdr_start pointing there.
5985 A program can use this to examine itself robustly. */
5986
5987 struct elf_link_hash_entry *hash
5988 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5989 FALSE, FALSE, TRUE);
5990 /* If the symbol was referenced and not defined, define it. */
5991 if (hash != NULL
5992 && (hash->root.type == bfd_link_hash_new
5993 || hash->root.type == bfd_link_hash_undefined
5994 || hash->root.type == bfd_link_hash_undefweak
5995 || hash->root.type == bfd_link_hash_common))
5996 {
5997 asection *s = NULL;
5998 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
5999
6000 if (phdr_load_seg->count != 0)
6001 /* The segment contains sections, so use the first one. */
6002 s = phdr_load_seg->sections[0];
6003 else
6004 /* Use the first (i.e. lowest-addressed) section in any segment. */
6005 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6006 if (m->p_type == PT_LOAD && m->count != 0)
6007 {
6008 s = m->sections[0];
6009 break;
6010 }
6011
6012 if (s != NULL)
6013 {
6014 hash->root.u.def.value = filehdr_vaddr - s->vma;
6015 hash->root.u.def.section = s;
6016 }
6017 else
6018 {
6019 hash->root.u.def.value = filehdr_vaddr;
6020 hash->root.u.def.section = bfd_abs_section_ptr;
6021 }
6022
6023 hash->root.type = bfd_link_hash_defined;
6024 hash->def_regular = 1;
6025 hash->non_elf = 0;
6026 }
6027 }
6028
6029 return TRUE;
6030 }
6031
6032 /* Determine if a bfd is a debuginfo file. Unfortunately there
6033 is no defined method for detecting such files, so we have to
6034 use heuristics instead. */
6035
6036 bfd_boolean
6037 is_debuginfo_file (bfd *abfd)
6038 {
6039 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6040 return FALSE;
6041
6042 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6043 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6044 Elf_Internal_Shdr **headerp;
6045
6046 for (headerp = start_headers; headerp < end_headers; headerp ++)
6047 {
6048 Elf_Internal_Shdr *header = * headerp;
6049
6050 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6051 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6052 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6053 && header->sh_type != SHT_NOBITS
6054 && header->sh_type != SHT_NOTE)
6055 return FALSE;
6056 }
6057
6058 return TRUE;
6059 }
6060
6061 /* Assign file positions for the other sections, except for compressed debugging
6062 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6063
6064 static bfd_boolean
6065 assign_file_positions_for_non_load_sections (bfd *abfd,
6066 struct bfd_link_info *link_info)
6067 {
6068 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6069 Elf_Internal_Shdr **i_shdrpp;
6070 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6071 Elf_Internal_Phdr *phdrs;
6072 Elf_Internal_Phdr *p;
6073 struct elf_segment_map *m;
6074 file_ptr off;
6075
6076 i_shdrpp = elf_elfsections (abfd);
6077 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6078 off = elf_next_file_pos (abfd);
6079 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6080 {
6081 Elf_Internal_Shdr *hdr;
6082
6083 hdr = *hdrpp;
6084 if (hdr->bfd_section != NULL
6085 && (hdr->bfd_section->filepos != 0
6086 || (hdr->sh_type == SHT_NOBITS
6087 && hdr->contents == NULL)))
6088 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6089 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6090 {
6091 if (hdr->sh_size != 0
6092 /* PR 24717 - debuginfo files are known to be not strictly
6093 compliant with the ELF standard. In particular they often
6094 have .note.gnu.property sections that are outside of any
6095 loadable segment. This is not a problem for such files,
6096 so do not warn about them. */
6097 && ! is_debuginfo_file (abfd))
6098 _bfd_error_handler
6099 /* xgettext:c-format */
6100 (_("%pB: warning: allocated section `%s' not in segment"),
6101 abfd,
6102 (hdr->bfd_section == NULL
6103 ? "*unknown*"
6104 : hdr->bfd_section->name));
6105 /* We don't need to page align empty sections. */
6106 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6107 off += vma_page_aligned_bias (hdr->sh_addr, off,
6108 bed->maxpagesize);
6109 else
6110 off += vma_page_aligned_bias (hdr->sh_addr, off,
6111 hdr->sh_addralign);
6112 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6113 FALSE);
6114 }
6115 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6116 && hdr->bfd_section == NULL)
6117 /* We don't know the offset of these sections yet: their size has
6118 not been decided. */
6119 || (hdr->bfd_section != NULL
6120 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6121 || (bfd_section_is_ctf (hdr->bfd_section)
6122 && abfd->is_linker_output)))
6123 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6124 || (elf_symtab_shndx_list (abfd) != NULL
6125 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6126 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6127 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6128 hdr->sh_offset = -1;
6129 else
6130 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6131 }
6132 elf_next_file_pos (abfd) = off;
6133
6134 /* Now that we have set the section file positions, we can set up
6135 the file positions for the non PT_LOAD segments. */
6136 phdrs = elf_tdata (abfd)->phdr;
6137 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6138 {
6139 if (p->p_type == PT_GNU_RELRO)
6140 {
6141 bfd_vma start, end;
6142 bfd_boolean ok;
6143
6144 if (link_info != NULL)
6145 {
6146 /* During linking the range of the RELRO segment is passed
6147 in link_info. Note that there may be padding between
6148 relro_start and the first RELRO section. */
6149 start = link_info->relro_start;
6150 end = link_info->relro_end;
6151 }
6152 else if (m->count != 0)
6153 {
6154 if (!m->p_size_valid)
6155 abort ();
6156 start = m->sections[0]->vma;
6157 end = start + m->p_size;
6158 }
6159 else
6160 {
6161 start = 0;
6162 end = 0;
6163 }
6164
6165 ok = FALSE;
6166 if (start < end)
6167 {
6168 struct elf_segment_map *lm;
6169 const Elf_Internal_Phdr *lp;
6170 unsigned int i;
6171
6172 /* Find a LOAD segment containing a section in the RELRO
6173 segment. */
6174 for (lm = elf_seg_map (abfd), lp = phdrs;
6175 lm != NULL;
6176 lm = lm->next, lp++)
6177 {
6178 if (lp->p_type == PT_LOAD
6179 && lm->count != 0
6180 && (lm->sections[lm->count - 1]->vma
6181 + (!IS_TBSS (lm->sections[lm->count - 1])
6182 ? lm->sections[lm->count - 1]->size
6183 : 0)) > start
6184 && lm->sections[0]->vma < end)
6185 break;
6186 }
6187
6188 if (lm != NULL)
6189 {
6190 /* Find the section starting the RELRO segment. */
6191 for (i = 0; i < lm->count; i++)
6192 {
6193 asection *s = lm->sections[i];
6194 if (s->vma >= start
6195 && s->vma < end
6196 && s->size != 0)
6197 break;
6198 }
6199
6200 if (i < lm->count)
6201 {
6202 unsigned int opb = bfd_octets_per_byte (abfd,
6203 lm->sections[i]);
6204
6205 p->p_vaddr = lm->sections[i]->vma * opb;
6206 p->p_paddr = lm->sections[i]->lma * opb;
6207 p->p_offset = lm->sections[i]->filepos;
6208 p->p_memsz = end - p->p_vaddr;
6209 p->p_filesz = p->p_memsz;
6210
6211 /* The RELRO segment typically ends a few bytes
6212 into .got.plt but other layouts are possible.
6213 In cases where the end does not match any
6214 loaded section (for instance is in file
6215 padding), trim p_filesz back to correspond to
6216 the end of loaded section contents. */
6217 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6218 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6219
6220 /* Preserve the alignment and flags if they are
6221 valid. The gold linker generates RW/4 for
6222 the PT_GNU_RELRO section. It is better for
6223 objcopy/strip to honor these attributes
6224 otherwise gdb will choke when using separate
6225 debug files. */
6226 if (!m->p_align_valid)
6227 p->p_align = 1;
6228 if (!m->p_flags_valid)
6229 p->p_flags = PF_R;
6230 ok = TRUE;
6231 }
6232 }
6233 }
6234 if (link_info != NULL)
6235 BFD_ASSERT (ok);
6236 if (!ok)
6237 memset (p, 0, sizeof *p);
6238 }
6239 else if (p->p_type == PT_GNU_STACK)
6240 {
6241 if (m->p_size_valid)
6242 p->p_memsz = m->p_size;
6243 }
6244 else if (m->count != 0)
6245 {
6246 unsigned int i;
6247
6248 if (p->p_type != PT_LOAD
6249 && (p->p_type != PT_NOTE
6250 || bfd_get_format (abfd) != bfd_core))
6251 {
6252 /* A user specified segment layout may include a PHDR
6253 segment that overlaps with a LOAD segment... */
6254 if (p->p_type == PT_PHDR)
6255 {
6256 m->count = 0;
6257 continue;
6258 }
6259
6260 if (m->includes_filehdr || m->includes_phdrs)
6261 {
6262 /* PR 17512: file: 2195325e. */
6263 _bfd_error_handler
6264 (_("%pB: error: non-load segment %d includes file header "
6265 "and/or program header"),
6266 abfd, (int) (p - phdrs));
6267 return FALSE;
6268 }
6269
6270 p->p_filesz = 0;
6271 p->p_offset = m->sections[0]->filepos;
6272 for (i = m->count; i-- != 0;)
6273 {
6274 asection *sect = m->sections[i];
6275 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6276 if (hdr->sh_type != SHT_NOBITS)
6277 {
6278 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6279 + hdr->sh_size);
6280 break;
6281 }
6282 }
6283 }
6284 }
6285 }
6286
6287 return TRUE;
6288 }
6289
6290 static elf_section_list *
6291 find_section_in_list (unsigned int i, elf_section_list * list)
6292 {
6293 for (;list != NULL; list = list->next)
6294 if (list->ndx == i)
6295 break;
6296 return list;
6297 }
6298
6299 /* Work out the file positions of all the sections. This is called by
6300 _bfd_elf_compute_section_file_positions. All the section sizes and
6301 VMAs must be known before this is called.
6302
6303 Reloc sections come in two flavours: Those processed specially as
6304 "side-channel" data attached to a section to which they apply, and those that
6305 bfd doesn't process as relocations. The latter sort are stored in a normal
6306 bfd section by bfd_section_from_shdr. We don't consider the former sort
6307 here, unless they form part of the loadable image. Reloc sections not
6308 assigned here (and compressed debugging sections and CTF sections which
6309 nothing else in the file can rely upon) will be handled later by
6310 assign_file_positions_for_relocs.
6311
6312 We also don't set the positions of the .symtab and .strtab here. */
6313
6314 static bfd_boolean
6315 assign_file_positions_except_relocs (bfd *abfd,
6316 struct bfd_link_info *link_info)
6317 {
6318 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6319 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6320 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6321 unsigned int alloc;
6322
6323 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6324 && bfd_get_format (abfd) != bfd_core)
6325 {
6326 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6327 unsigned int num_sec = elf_numsections (abfd);
6328 Elf_Internal_Shdr **hdrpp;
6329 unsigned int i;
6330 file_ptr off;
6331
6332 /* Start after the ELF header. */
6333 off = i_ehdrp->e_ehsize;
6334
6335 /* We are not creating an executable, which means that we are
6336 not creating a program header, and that the actual order of
6337 the sections in the file is unimportant. */
6338 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6339 {
6340 Elf_Internal_Shdr *hdr;
6341
6342 hdr = *hdrpp;
6343 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6344 && hdr->bfd_section == NULL)
6345 /* Do not assign offsets for these sections yet: we don't know
6346 their sizes. */
6347 || (hdr->bfd_section != NULL
6348 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6349 || (bfd_section_is_ctf (hdr->bfd_section)
6350 && abfd->is_linker_output)))
6351 || i == elf_onesymtab (abfd)
6352 || (elf_symtab_shndx_list (abfd) != NULL
6353 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6354 || i == elf_strtab_sec (abfd)
6355 || i == elf_shstrtab_sec (abfd))
6356 {
6357 hdr->sh_offset = -1;
6358 }
6359 else
6360 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6361 }
6362
6363 elf_next_file_pos (abfd) = off;
6364 elf_program_header_size (abfd) = 0;
6365 }
6366 else
6367 {
6368 /* Assign file positions for the loaded sections based on the
6369 assignment of sections to segments. */
6370 if (!assign_file_positions_for_load_sections (abfd, link_info))
6371 return FALSE;
6372
6373 /* And for non-load sections. */
6374 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6375 return FALSE;
6376 }
6377
6378 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6379 return FALSE;
6380
6381 /* Write out the program headers. */
6382 alloc = i_ehdrp->e_phnum;
6383 if (alloc != 0)
6384 {
6385 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6386 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6387 return FALSE;
6388 }
6389
6390 return TRUE;
6391 }
6392
6393 bfd_boolean
6394 _bfd_elf_init_file_header (bfd *abfd,
6395 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6396 {
6397 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6398 struct elf_strtab_hash *shstrtab;
6399 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6400
6401 i_ehdrp = elf_elfheader (abfd);
6402
6403 shstrtab = _bfd_elf_strtab_init ();
6404 if (shstrtab == NULL)
6405 return FALSE;
6406
6407 elf_shstrtab (abfd) = shstrtab;
6408
6409 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6410 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6411 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6412 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6413
6414 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6415 i_ehdrp->e_ident[EI_DATA] =
6416 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6417 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6418
6419 if ((abfd->flags & DYNAMIC) != 0)
6420 i_ehdrp->e_type = ET_DYN;
6421 else if ((abfd->flags & EXEC_P) != 0)
6422 i_ehdrp->e_type = ET_EXEC;
6423 else if (bfd_get_format (abfd) == bfd_core)
6424 i_ehdrp->e_type = ET_CORE;
6425 else
6426 i_ehdrp->e_type = ET_REL;
6427
6428 switch (bfd_get_arch (abfd))
6429 {
6430 case bfd_arch_unknown:
6431 i_ehdrp->e_machine = EM_NONE;
6432 break;
6433
6434 /* There used to be a long list of cases here, each one setting
6435 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6436 in the corresponding bfd definition. To avoid duplication,
6437 the switch was removed. Machines that need special handling
6438 can generally do it in elf_backend_final_write_processing(),
6439 unless they need the information earlier than the final write.
6440 Such need can generally be supplied by replacing the tests for
6441 e_machine with the conditions used to determine it. */
6442 default:
6443 i_ehdrp->e_machine = bed->elf_machine_code;
6444 }
6445
6446 i_ehdrp->e_version = bed->s->ev_current;
6447 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6448
6449 /* No program header, for now. */
6450 i_ehdrp->e_phoff = 0;
6451 i_ehdrp->e_phentsize = 0;
6452 i_ehdrp->e_phnum = 0;
6453
6454 /* Each bfd section is section header entry. */
6455 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6456 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6457
6458 elf_tdata (abfd)->symtab_hdr.sh_name =
6459 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6460 elf_tdata (abfd)->strtab_hdr.sh_name =
6461 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6462 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6463 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6464 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6465 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6466 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6467 return FALSE;
6468
6469 return TRUE;
6470 }
6471
6472 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6473
6474 FIXME: We used to have code here to sort the PT_LOAD segments into
6475 ascending order, as per the ELF spec. But this breaks some programs,
6476 including the Linux kernel. But really either the spec should be
6477 changed or the programs updated. */
6478
6479 bfd_boolean
6480 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6481 {
6482 if (link_info != NULL && bfd_link_pie (link_info))
6483 {
6484 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6485 unsigned int num_segments = i_ehdrp->e_phnum;
6486 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6487 Elf_Internal_Phdr *segment = tdata->phdr;
6488 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6489
6490 /* Find the lowest p_vaddr in PT_LOAD segments. */
6491 bfd_vma p_vaddr = (bfd_vma) -1;
6492 for (; segment < end_segment; segment++)
6493 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6494 p_vaddr = segment->p_vaddr;
6495
6496 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6497 segments is non-zero. */
6498 if (p_vaddr)
6499 i_ehdrp->e_type = ET_EXEC;
6500 }
6501 return TRUE;
6502 }
6503
6504 /* Assign file positions for all the reloc sections which are not part
6505 of the loadable file image, and the file position of section headers. */
6506
6507 static bfd_boolean
6508 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6509 {
6510 file_ptr off;
6511 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6512 Elf_Internal_Shdr *shdrp;
6513 Elf_Internal_Ehdr *i_ehdrp;
6514 const struct elf_backend_data *bed;
6515
6516 off = elf_next_file_pos (abfd);
6517
6518 shdrpp = elf_elfsections (abfd);
6519 end_shdrpp = shdrpp + elf_numsections (abfd);
6520 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6521 {
6522 shdrp = *shdrpp;
6523 if (shdrp->sh_offset == -1)
6524 {
6525 asection *sec = shdrp->bfd_section;
6526 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6527 || shdrp->sh_type == SHT_RELA);
6528 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6529 if (is_rel
6530 || is_ctf
6531 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6532 {
6533 if (!is_rel && !is_ctf)
6534 {
6535 const char *name = sec->name;
6536 struct bfd_elf_section_data *d;
6537
6538 /* Compress DWARF debug sections. */
6539 if (!bfd_compress_section (abfd, sec,
6540 shdrp->contents))
6541 return FALSE;
6542
6543 if (sec->compress_status == COMPRESS_SECTION_DONE
6544 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6545 {
6546 /* If section is compressed with zlib-gnu, convert
6547 section name from .debug_* to .zdebug_*. */
6548 char *new_name
6549 = convert_debug_to_zdebug (abfd, name);
6550 if (new_name == NULL)
6551 return FALSE;
6552 name = new_name;
6553 }
6554 /* Add section name to section name section. */
6555 if (shdrp->sh_name != (unsigned int) -1)
6556 abort ();
6557 shdrp->sh_name
6558 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6559 name, FALSE);
6560 d = elf_section_data (sec);
6561
6562 /* Add reloc section name to section name section. */
6563 if (d->rel.hdr
6564 && !_bfd_elf_set_reloc_sh_name (abfd,
6565 d->rel.hdr,
6566 name, FALSE))
6567 return FALSE;
6568 if (d->rela.hdr
6569 && !_bfd_elf_set_reloc_sh_name (abfd,
6570 d->rela.hdr,
6571 name, TRUE))
6572 return FALSE;
6573
6574 /* Update section size and contents. */
6575 shdrp->sh_size = sec->size;
6576 shdrp->contents = sec->contents;
6577 shdrp->bfd_section->contents = NULL;
6578 }
6579 else if (is_ctf)
6580 {
6581 /* Update section size and contents. */
6582 shdrp->sh_size = sec->size;
6583 shdrp->contents = sec->contents;
6584 }
6585
6586 off = _bfd_elf_assign_file_position_for_section (shdrp,
6587 off,
6588 TRUE);
6589 }
6590 }
6591 }
6592
6593 /* Place section name section after DWARF debug sections have been
6594 compressed. */
6595 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6596 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6597 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6598 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6599
6600 /* Place the section headers. */
6601 i_ehdrp = elf_elfheader (abfd);
6602 bed = get_elf_backend_data (abfd);
6603 off = align_file_position (off, 1 << bed->s->log_file_align);
6604 i_ehdrp->e_shoff = off;
6605 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6606 elf_next_file_pos (abfd) = off;
6607
6608 return TRUE;
6609 }
6610
6611 bfd_boolean
6612 _bfd_elf_write_object_contents (bfd *abfd)
6613 {
6614 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6615 Elf_Internal_Shdr **i_shdrp;
6616 bfd_boolean failed;
6617 unsigned int count, num_sec;
6618 struct elf_obj_tdata *t;
6619
6620 if (! abfd->output_has_begun
6621 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6622 return FALSE;
6623 /* Do not rewrite ELF data when the BFD has been opened for update.
6624 abfd->output_has_begun was set to TRUE on opening, so creation of new
6625 sections, and modification of existing section sizes was restricted.
6626 This means the ELF header, program headers and section headers can't have
6627 changed.
6628 If the contents of any sections has been modified, then those changes have
6629 already been written to the BFD. */
6630 else if (abfd->direction == both_direction)
6631 {
6632 BFD_ASSERT (abfd->output_has_begun);
6633 return TRUE;
6634 }
6635
6636 i_shdrp = elf_elfsections (abfd);
6637
6638 failed = FALSE;
6639 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6640 if (failed)
6641 return FALSE;
6642
6643 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6644 return FALSE;
6645
6646 /* After writing the headers, we need to write the sections too... */
6647 num_sec = elf_numsections (abfd);
6648 for (count = 1; count < num_sec; count++)
6649 {
6650 i_shdrp[count]->sh_name
6651 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6652 i_shdrp[count]->sh_name);
6653 if (bed->elf_backend_section_processing)
6654 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6655 return FALSE;
6656 if (i_shdrp[count]->contents)
6657 {
6658 bfd_size_type amt = i_shdrp[count]->sh_size;
6659
6660 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6661 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6662 return FALSE;
6663 }
6664 }
6665
6666 /* Write out the section header names. */
6667 t = elf_tdata (abfd);
6668 if (elf_shstrtab (abfd) != NULL
6669 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6670 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6671 return FALSE;
6672
6673 if (!(*bed->elf_backend_final_write_processing) (abfd))
6674 return FALSE;
6675
6676 if (!bed->s->write_shdrs_and_ehdr (abfd))
6677 return FALSE;
6678
6679 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6680 if (t->o->build_id.after_write_object_contents != NULL)
6681 return (*t->o->build_id.after_write_object_contents) (abfd);
6682
6683 return TRUE;
6684 }
6685
6686 bfd_boolean
6687 _bfd_elf_write_corefile_contents (bfd *abfd)
6688 {
6689 /* Hopefully this can be done just like an object file. */
6690 return _bfd_elf_write_object_contents (abfd);
6691 }
6692
6693 /* Given a section, search the header to find them. */
6694
6695 unsigned int
6696 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6697 {
6698 const struct elf_backend_data *bed;
6699 unsigned int sec_index;
6700
6701 if (elf_section_data (asect) != NULL
6702 && elf_section_data (asect)->this_idx != 0)
6703 return elf_section_data (asect)->this_idx;
6704
6705 if (bfd_is_abs_section (asect))
6706 sec_index = SHN_ABS;
6707 else if (bfd_is_com_section (asect))
6708 sec_index = SHN_COMMON;
6709 else if (bfd_is_und_section (asect))
6710 sec_index = SHN_UNDEF;
6711 else
6712 sec_index = SHN_BAD;
6713
6714 bed = get_elf_backend_data (abfd);
6715 if (bed->elf_backend_section_from_bfd_section)
6716 {
6717 int retval = sec_index;
6718
6719 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6720 return retval;
6721 }
6722
6723 if (sec_index == SHN_BAD)
6724 bfd_set_error (bfd_error_nonrepresentable_section);
6725
6726 return sec_index;
6727 }
6728
6729 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6730 on error. */
6731
6732 int
6733 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6734 {
6735 asymbol *asym_ptr = *asym_ptr_ptr;
6736 int idx;
6737 flagword flags = asym_ptr->flags;
6738
6739 /* When gas creates relocations against local labels, it creates its
6740 own symbol for the section, but does put the symbol into the
6741 symbol chain, so udata is 0. When the linker is generating
6742 relocatable output, this section symbol may be for one of the
6743 input sections rather than the output section. */
6744 if (asym_ptr->udata.i == 0
6745 && (flags & BSF_SECTION_SYM)
6746 && asym_ptr->section)
6747 {
6748 asection *sec;
6749 int indx;
6750
6751 sec = asym_ptr->section;
6752 if (sec->owner != abfd && sec->output_section != NULL)
6753 sec = sec->output_section;
6754 if (sec->owner == abfd
6755 && (indx = sec->index) < elf_num_section_syms (abfd)
6756 && elf_section_syms (abfd)[indx] != NULL)
6757 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6758 }
6759
6760 idx = asym_ptr->udata.i;
6761
6762 if (idx == 0)
6763 {
6764 /* This case can occur when using --strip-symbol on a symbol
6765 which is used in a relocation entry. */
6766 _bfd_error_handler
6767 /* xgettext:c-format */
6768 (_("%pB: symbol `%s' required but not present"),
6769 abfd, bfd_asymbol_name (asym_ptr));
6770 bfd_set_error (bfd_error_no_symbols);
6771 return -1;
6772 }
6773
6774 #if DEBUG & 4
6775 {
6776 fprintf (stderr,
6777 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6778 (long) asym_ptr, asym_ptr->name, idx, flags);
6779 fflush (stderr);
6780 }
6781 #endif
6782
6783 return idx;
6784 }
6785
6786 /* Rewrite program header information. */
6787
6788 static bfd_boolean
6789 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6790 {
6791 Elf_Internal_Ehdr *iehdr;
6792 struct elf_segment_map *map;
6793 struct elf_segment_map *map_first;
6794 struct elf_segment_map **pointer_to_map;
6795 Elf_Internal_Phdr *segment;
6796 asection *section;
6797 unsigned int i;
6798 unsigned int num_segments;
6799 bfd_boolean phdr_included = FALSE;
6800 bfd_boolean p_paddr_valid;
6801 bfd_vma maxpagesize;
6802 struct elf_segment_map *phdr_adjust_seg = NULL;
6803 unsigned int phdr_adjust_num = 0;
6804 const struct elf_backend_data *bed;
6805 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6806
6807 bed = get_elf_backend_data (ibfd);
6808 iehdr = elf_elfheader (ibfd);
6809
6810 map_first = NULL;
6811 pointer_to_map = &map_first;
6812
6813 num_segments = elf_elfheader (ibfd)->e_phnum;
6814 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6815
6816 /* Returns the end address of the segment + 1. */
6817 #define SEGMENT_END(segment, start) \
6818 (start + (segment->p_memsz > segment->p_filesz \
6819 ? segment->p_memsz : segment->p_filesz))
6820
6821 #define SECTION_SIZE(section, segment) \
6822 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6823 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6824 ? section->size : 0)
6825
6826 /* Returns TRUE if the given section is contained within
6827 the given segment. VMA addresses are compared. */
6828 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6829 (section->vma * (opb) >= segment->p_vaddr \
6830 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6831 <= (SEGMENT_END (segment, segment->p_vaddr))))
6832
6833 /* Returns TRUE if the given section is contained within
6834 the given segment. LMA addresses are compared. */
6835 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6836 (section->lma * (opb) >= base \
6837 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6838 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6839 <= SEGMENT_END (segment, base)))
6840
6841 /* Handle PT_NOTE segment. */
6842 #define IS_NOTE(p, s) \
6843 (p->p_type == PT_NOTE \
6844 && elf_section_type (s) == SHT_NOTE \
6845 && (bfd_vma) s->filepos >= p->p_offset \
6846 && ((bfd_vma) s->filepos + s->size \
6847 <= p->p_offset + p->p_filesz))
6848
6849 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6850 etc. */
6851 #define IS_COREFILE_NOTE(p, s) \
6852 (IS_NOTE (p, s) \
6853 && bfd_get_format (ibfd) == bfd_core \
6854 && s->vma == 0 \
6855 && s->lma == 0)
6856
6857 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6858 linker, which generates a PT_INTERP section with p_vaddr and
6859 p_memsz set to 0. */
6860 #define IS_SOLARIS_PT_INTERP(p, s) \
6861 (p->p_vaddr == 0 \
6862 && p->p_paddr == 0 \
6863 && p->p_memsz == 0 \
6864 && p->p_filesz > 0 \
6865 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6866 && s->size > 0 \
6867 && (bfd_vma) s->filepos >= p->p_offset \
6868 && ((bfd_vma) s->filepos + s->size \
6869 <= p->p_offset + p->p_filesz))
6870
6871 /* Decide if the given section should be included in the given segment.
6872 A section will be included if:
6873 1. It is within the address space of the segment -- we use the LMA
6874 if that is set for the segment and the VMA otherwise,
6875 2. It is an allocated section or a NOTE section in a PT_NOTE
6876 segment.
6877 3. There is an output section associated with it,
6878 4. The section has not already been allocated to a previous segment.
6879 5. PT_GNU_STACK segments do not include any sections.
6880 6. PT_TLS segment includes only SHF_TLS sections.
6881 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6882 8. PT_DYNAMIC should not contain empty sections at the beginning
6883 (with the possible exception of .dynamic). */
6884 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6885 ((((segment->p_paddr \
6886 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6887 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6888 && (section->flags & SEC_ALLOC) != 0) \
6889 || IS_NOTE (segment, section)) \
6890 && segment->p_type != PT_GNU_STACK \
6891 && (segment->p_type != PT_TLS \
6892 || (section->flags & SEC_THREAD_LOCAL)) \
6893 && (segment->p_type == PT_LOAD \
6894 || segment->p_type == PT_TLS \
6895 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6896 && (segment->p_type != PT_DYNAMIC \
6897 || SECTION_SIZE (section, segment) > 0 \
6898 || (segment->p_paddr \
6899 ? segment->p_paddr != section->lma * (opb) \
6900 : segment->p_vaddr != section->vma * (opb)) \
6901 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6902 && (segment->p_type != PT_LOAD || !section->segment_mark))
6903
6904 /* If the output section of a section in the input segment is NULL,
6905 it is removed from the corresponding output segment. */
6906 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6907 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6908 && section->output_section != NULL)
6909
6910 /* Returns TRUE iff seg1 starts after the end of seg2. */
6911 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6912 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6913
6914 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6915 their VMA address ranges and their LMA address ranges overlap.
6916 It is possible to have overlapping VMA ranges without overlapping LMA
6917 ranges. RedBoot images for example can have both .data and .bss mapped
6918 to the same VMA range, but with the .data section mapped to a different
6919 LMA. */
6920 #define SEGMENT_OVERLAPS(seg1, seg2) \
6921 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6922 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6923 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6924 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6925
6926 /* Initialise the segment mark field. */
6927 for (section = ibfd->sections; section != NULL; section = section->next)
6928 section->segment_mark = FALSE;
6929
6930 /* The Solaris linker creates program headers in which all the
6931 p_paddr fields are zero. When we try to objcopy or strip such a
6932 file, we get confused. Check for this case, and if we find it
6933 don't set the p_paddr_valid fields. */
6934 p_paddr_valid = FALSE;
6935 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6936 i < num_segments;
6937 i++, segment++)
6938 if (segment->p_paddr != 0)
6939 {
6940 p_paddr_valid = TRUE;
6941 break;
6942 }
6943
6944 /* Scan through the segments specified in the program header
6945 of the input BFD. For this first scan we look for overlaps
6946 in the loadable segments. These can be created by weird
6947 parameters to objcopy. Also, fix some solaris weirdness. */
6948 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6949 i < num_segments;
6950 i++, segment++)
6951 {
6952 unsigned int j;
6953 Elf_Internal_Phdr *segment2;
6954
6955 if (segment->p_type == PT_INTERP)
6956 for (section = ibfd->sections; section; section = section->next)
6957 if (IS_SOLARIS_PT_INTERP (segment, section))
6958 {
6959 /* Mininal change so that the normal section to segment
6960 assignment code will work. */
6961 segment->p_vaddr = section->vma * opb;
6962 break;
6963 }
6964
6965 if (segment->p_type != PT_LOAD)
6966 {
6967 /* Remove PT_GNU_RELRO segment. */
6968 if (segment->p_type == PT_GNU_RELRO)
6969 segment->p_type = PT_NULL;
6970 continue;
6971 }
6972
6973 /* Determine if this segment overlaps any previous segments. */
6974 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6975 {
6976 bfd_signed_vma extra_length;
6977
6978 if (segment2->p_type != PT_LOAD
6979 || !SEGMENT_OVERLAPS (segment, segment2))
6980 continue;
6981
6982 /* Merge the two segments together. */
6983 if (segment2->p_vaddr < segment->p_vaddr)
6984 {
6985 /* Extend SEGMENT2 to include SEGMENT and then delete
6986 SEGMENT. */
6987 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6988 - SEGMENT_END (segment2, segment2->p_vaddr));
6989
6990 if (extra_length > 0)
6991 {
6992 segment2->p_memsz += extra_length;
6993 segment2->p_filesz += extra_length;
6994 }
6995
6996 segment->p_type = PT_NULL;
6997
6998 /* Since we have deleted P we must restart the outer loop. */
6999 i = 0;
7000 segment = elf_tdata (ibfd)->phdr;
7001 break;
7002 }
7003 else
7004 {
7005 /* Extend SEGMENT to include SEGMENT2 and then delete
7006 SEGMENT2. */
7007 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7008 - SEGMENT_END (segment, segment->p_vaddr));
7009
7010 if (extra_length > 0)
7011 {
7012 segment->p_memsz += extra_length;
7013 segment->p_filesz += extra_length;
7014 }
7015
7016 segment2->p_type = PT_NULL;
7017 }
7018 }
7019 }
7020
7021 /* The second scan attempts to assign sections to segments. */
7022 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7023 i < num_segments;
7024 i++, segment++)
7025 {
7026 unsigned int section_count;
7027 asection **sections;
7028 asection *output_section;
7029 unsigned int isec;
7030 asection *matching_lma;
7031 asection *suggested_lma;
7032 unsigned int j;
7033 size_t amt;
7034 asection *first_section;
7035
7036 if (segment->p_type == PT_NULL)
7037 continue;
7038
7039 first_section = NULL;
7040 /* Compute how many sections might be placed into this segment. */
7041 for (section = ibfd->sections, section_count = 0;
7042 section != NULL;
7043 section = section->next)
7044 {
7045 /* Find the first section in the input segment, which may be
7046 removed from the corresponding output segment. */
7047 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7048 {
7049 if (first_section == NULL)
7050 first_section = section;
7051 if (section->output_section != NULL)
7052 ++section_count;
7053 }
7054 }
7055
7056 /* Allocate a segment map big enough to contain
7057 all of the sections we have selected. */
7058 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7059 amt += section_count * sizeof (asection *);
7060 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7061 if (map == NULL)
7062 return FALSE;
7063
7064 /* Initialise the fields of the segment map. Default to
7065 using the physical address of the segment in the input BFD. */
7066 map->next = NULL;
7067 map->p_type = segment->p_type;
7068 map->p_flags = segment->p_flags;
7069 map->p_flags_valid = 1;
7070
7071 /* If the first section in the input segment is removed, there is
7072 no need to preserve segment physical address in the corresponding
7073 output segment. */
7074 if (!first_section || first_section->output_section != NULL)
7075 {
7076 map->p_paddr = segment->p_paddr;
7077 map->p_paddr_valid = p_paddr_valid;
7078 }
7079
7080 /* Determine if this segment contains the ELF file header
7081 and if it contains the program headers themselves. */
7082 map->includes_filehdr = (segment->p_offset == 0
7083 && segment->p_filesz >= iehdr->e_ehsize);
7084 map->includes_phdrs = 0;
7085
7086 if (!phdr_included || segment->p_type != PT_LOAD)
7087 {
7088 map->includes_phdrs =
7089 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7090 && (segment->p_offset + segment->p_filesz
7091 >= ((bfd_vma) iehdr->e_phoff
7092 + iehdr->e_phnum * iehdr->e_phentsize)));
7093
7094 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7095 phdr_included = TRUE;
7096 }
7097
7098 if (section_count == 0)
7099 {
7100 /* Special segments, such as the PT_PHDR segment, may contain
7101 no sections, but ordinary, loadable segments should contain
7102 something. They are allowed by the ELF spec however, so only
7103 a warning is produced.
7104 There is however the valid use case of embedded systems which
7105 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7106 flash memory with zeros. No warning is shown for that case. */
7107 if (segment->p_type == PT_LOAD
7108 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7109 /* xgettext:c-format */
7110 _bfd_error_handler
7111 (_("%pB: warning: empty loadable segment detected"
7112 " at vaddr=%#" PRIx64 ", is this intentional?"),
7113 ibfd, (uint64_t) segment->p_vaddr);
7114
7115 map->p_vaddr_offset = segment->p_vaddr / opb;
7116 map->count = 0;
7117 *pointer_to_map = map;
7118 pointer_to_map = &map->next;
7119
7120 continue;
7121 }
7122
7123 /* Now scan the sections in the input BFD again and attempt
7124 to add their corresponding output sections to the segment map.
7125 The problem here is how to handle an output section which has
7126 been moved (ie had its LMA changed). There are four possibilities:
7127
7128 1. None of the sections have been moved.
7129 In this case we can continue to use the segment LMA from the
7130 input BFD.
7131
7132 2. All of the sections have been moved by the same amount.
7133 In this case we can change the segment's LMA to match the LMA
7134 of the first section.
7135
7136 3. Some of the sections have been moved, others have not.
7137 In this case those sections which have not been moved can be
7138 placed in the current segment which will have to have its size,
7139 and possibly its LMA changed, and a new segment or segments will
7140 have to be created to contain the other sections.
7141
7142 4. The sections have been moved, but not by the same amount.
7143 In this case we can change the segment's LMA to match the LMA
7144 of the first section and we will have to create a new segment
7145 or segments to contain the other sections.
7146
7147 In order to save time, we allocate an array to hold the section
7148 pointers that we are interested in. As these sections get assigned
7149 to a segment, they are removed from this array. */
7150
7151 amt = section_count * sizeof (asection *);
7152 sections = (asection **) bfd_malloc (amt);
7153 if (sections == NULL)
7154 return FALSE;
7155
7156 /* Step One: Scan for segment vs section LMA conflicts.
7157 Also add the sections to the section array allocated above.
7158 Also add the sections to the current segment. In the common
7159 case, where the sections have not been moved, this means that
7160 we have completely filled the segment, and there is nothing
7161 more to do. */
7162 isec = 0;
7163 matching_lma = NULL;
7164 suggested_lma = NULL;
7165
7166 for (section = first_section, j = 0;
7167 section != NULL;
7168 section = section->next)
7169 {
7170 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7171 {
7172 output_section = section->output_section;
7173
7174 sections[j++] = section;
7175
7176 /* The Solaris native linker always sets p_paddr to 0.
7177 We try to catch that case here, and set it to the
7178 correct value. Note - some backends require that
7179 p_paddr be left as zero. */
7180 if (!p_paddr_valid
7181 && segment->p_vaddr != 0
7182 && !bed->want_p_paddr_set_to_zero
7183 && isec == 0
7184 && output_section->lma != 0
7185 && (align_power (segment->p_vaddr
7186 + (map->includes_filehdr
7187 ? iehdr->e_ehsize : 0)
7188 + (map->includes_phdrs
7189 ? iehdr->e_phnum * iehdr->e_phentsize
7190 : 0),
7191 output_section->alignment_power)
7192 == output_section->vma))
7193 map->p_paddr = segment->p_vaddr;
7194
7195 /* Match up the physical address of the segment with the
7196 LMA address of the output section. */
7197 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7198 opb)
7199 || IS_COREFILE_NOTE (segment, section)
7200 || (bed->want_p_paddr_set_to_zero
7201 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7202 {
7203 if (matching_lma == NULL
7204 || output_section->lma < matching_lma->lma)
7205 matching_lma = output_section;
7206
7207 /* We assume that if the section fits within the segment
7208 then it does not overlap any other section within that
7209 segment. */
7210 map->sections[isec++] = output_section;
7211 }
7212 else if (suggested_lma == NULL)
7213 suggested_lma = output_section;
7214
7215 if (j == section_count)
7216 break;
7217 }
7218 }
7219
7220 BFD_ASSERT (j == section_count);
7221
7222 /* Step Two: Adjust the physical address of the current segment,
7223 if necessary. */
7224 if (isec == section_count)
7225 {
7226 /* All of the sections fitted within the segment as currently
7227 specified. This is the default case. Add the segment to
7228 the list of built segments and carry on to process the next
7229 program header in the input BFD. */
7230 map->count = section_count;
7231 *pointer_to_map = map;
7232 pointer_to_map = &map->next;
7233
7234 if (p_paddr_valid
7235 && !bed->want_p_paddr_set_to_zero)
7236 {
7237 bfd_vma hdr_size = 0;
7238 if (map->includes_filehdr)
7239 hdr_size = iehdr->e_ehsize;
7240 if (map->includes_phdrs)
7241 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7242
7243 /* Account for padding before the first section in the
7244 segment. */
7245 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7246 - matching_lma->lma);
7247 }
7248
7249 free (sections);
7250 continue;
7251 }
7252 else
7253 {
7254 /* Change the current segment's physical address to match
7255 the LMA of the first section that fitted, or if no
7256 section fitted, the first section. */
7257 if (matching_lma == NULL)
7258 matching_lma = suggested_lma;
7259
7260 map->p_paddr = matching_lma->lma;
7261
7262 /* Offset the segment physical address from the lma
7263 to allow for space taken up by elf headers. */
7264 if (map->includes_phdrs)
7265 {
7266 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7267
7268 /* iehdr->e_phnum is just an estimate of the number
7269 of program headers that we will need. Make a note
7270 here of the number we used and the segment we chose
7271 to hold these headers, so that we can adjust the
7272 offset when we know the correct value. */
7273 phdr_adjust_num = iehdr->e_phnum;
7274 phdr_adjust_seg = map;
7275 }
7276
7277 if (map->includes_filehdr)
7278 {
7279 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7280 map->p_paddr -= iehdr->e_ehsize;
7281 /* We've subtracted off the size of headers from the
7282 first section lma, but there may have been some
7283 alignment padding before that section too. Try to
7284 account for that by adjusting the segment lma down to
7285 the same alignment. */
7286 if (segment->p_align != 0 && segment->p_align < align)
7287 align = segment->p_align;
7288 map->p_paddr &= -align;
7289 }
7290 }
7291
7292 /* Step Three: Loop over the sections again, this time assigning
7293 those that fit to the current segment and removing them from the
7294 sections array; but making sure not to leave large gaps. Once all
7295 possible sections have been assigned to the current segment it is
7296 added to the list of built segments and if sections still remain
7297 to be assigned, a new segment is constructed before repeating
7298 the loop. */
7299 isec = 0;
7300 do
7301 {
7302 map->count = 0;
7303 suggested_lma = NULL;
7304
7305 /* Fill the current segment with sections that fit. */
7306 for (j = 0; j < section_count; j++)
7307 {
7308 section = sections[j];
7309
7310 if (section == NULL)
7311 continue;
7312
7313 output_section = section->output_section;
7314
7315 BFD_ASSERT (output_section != NULL);
7316
7317 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7318 opb)
7319 || IS_COREFILE_NOTE (segment, section))
7320 {
7321 if (map->count == 0)
7322 {
7323 /* If the first section in a segment does not start at
7324 the beginning of the segment, then something is
7325 wrong. */
7326 if (align_power (map->p_paddr
7327 + (map->includes_filehdr
7328 ? iehdr->e_ehsize : 0)
7329 + (map->includes_phdrs
7330 ? iehdr->e_phnum * iehdr->e_phentsize
7331 : 0),
7332 output_section->alignment_power)
7333 != output_section->lma)
7334 goto sorry;
7335 }
7336 else
7337 {
7338 asection *prev_sec;
7339
7340 prev_sec = map->sections[map->count - 1];
7341
7342 /* If the gap between the end of the previous section
7343 and the start of this section is more than
7344 maxpagesize then we need to start a new segment. */
7345 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7346 maxpagesize)
7347 < BFD_ALIGN (output_section->lma, maxpagesize))
7348 || (prev_sec->lma + prev_sec->size
7349 > output_section->lma))
7350 {
7351 if (suggested_lma == NULL)
7352 suggested_lma = output_section;
7353
7354 continue;
7355 }
7356 }
7357
7358 map->sections[map->count++] = output_section;
7359 ++isec;
7360 sections[j] = NULL;
7361 if (segment->p_type == PT_LOAD)
7362 section->segment_mark = TRUE;
7363 }
7364 else if (suggested_lma == NULL)
7365 suggested_lma = output_section;
7366 }
7367
7368 /* PR 23932. A corrupt input file may contain sections that cannot
7369 be assigned to any segment - because for example they have a
7370 negative size - or segments that do not contain any sections.
7371 But there are also valid reasons why a segment can be empty.
7372 So allow a count of zero. */
7373
7374 /* Add the current segment to the list of built segments. */
7375 *pointer_to_map = map;
7376 pointer_to_map = &map->next;
7377
7378 if (isec < section_count)
7379 {
7380 /* We still have not allocated all of the sections to
7381 segments. Create a new segment here, initialise it
7382 and carry on looping. */
7383 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7384 amt += section_count * sizeof (asection *);
7385 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7386 if (map == NULL)
7387 {
7388 free (sections);
7389 return FALSE;
7390 }
7391
7392 /* Initialise the fields of the segment map. Set the physical
7393 physical address to the LMA of the first section that has
7394 not yet been assigned. */
7395 map->next = NULL;
7396 map->p_type = segment->p_type;
7397 map->p_flags = segment->p_flags;
7398 map->p_flags_valid = 1;
7399 map->p_paddr = suggested_lma->lma;
7400 map->p_paddr_valid = p_paddr_valid;
7401 map->includes_filehdr = 0;
7402 map->includes_phdrs = 0;
7403 }
7404
7405 continue;
7406 sorry:
7407 bfd_set_error (bfd_error_sorry);
7408 free (sections);
7409 return FALSE;
7410 }
7411 while (isec < section_count);
7412
7413 free (sections);
7414 }
7415
7416 elf_seg_map (obfd) = map_first;
7417
7418 /* If we had to estimate the number of program headers that were
7419 going to be needed, then check our estimate now and adjust
7420 the offset if necessary. */
7421 if (phdr_adjust_seg != NULL)
7422 {
7423 unsigned int count;
7424
7425 for (count = 0, map = map_first; map != NULL; map = map->next)
7426 count++;
7427
7428 if (count > phdr_adjust_num)
7429 phdr_adjust_seg->p_paddr
7430 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7431
7432 for (map = map_first; map != NULL; map = map->next)
7433 if (map->p_type == PT_PHDR)
7434 {
7435 bfd_vma adjust
7436 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7437 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7438 break;
7439 }
7440 }
7441
7442 #undef SEGMENT_END
7443 #undef SECTION_SIZE
7444 #undef IS_CONTAINED_BY_VMA
7445 #undef IS_CONTAINED_BY_LMA
7446 #undef IS_NOTE
7447 #undef IS_COREFILE_NOTE
7448 #undef IS_SOLARIS_PT_INTERP
7449 #undef IS_SECTION_IN_INPUT_SEGMENT
7450 #undef INCLUDE_SECTION_IN_SEGMENT
7451 #undef SEGMENT_AFTER_SEGMENT
7452 #undef SEGMENT_OVERLAPS
7453 return TRUE;
7454 }
7455
7456 /* Copy ELF program header information. */
7457
7458 static bfd_boolean
7459 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7460 {
7461 Elf_Internal_Ehdr *iehdr;
7462 struct elf_segment_map *map;
7463 struct elf_segment_map *map_first;
7464 struct elf_segment_map **pointer_to_map;
7465 Elf_Internal_Phdr *segment;
7466 unsigned int i;
7467 unsigned int num_segments;
7468 bfd_boolean phdr_included = FALSE;
7469 bfd_boolean p_paddr_valid;
7470 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7471
7472 iehdr = elf_elfheader (ibfd);
7473
7474 map_first = NULL;
7475 pointer_to_map = &map_first;
7476
7477 /* If all the segment p_paddr fields are zero, don't set
7478 map->p_paddr_valid. */
7479 p_paddr_valid = FALSE;
7480 num_segments = elf_elfheader (ibfd)->e_phnum;
7481 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7482 i < num_segments;
7483 i++, segment++)
7484 if (segment->p_paddr != 0)
7485 {
7486 p_paddr_valid = TRUE;
7487 break;
7488 }
7489
7490 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7491 i < num_segments;
7492 i++, segment++)
7493 {
7494 asection *section;
7495 unsigned int section_count;
7496 size_t amt;
7497 Elf_Internal_Shdr *this_hdr;
7498 asection *first_section = NULL;
7499 asection *lowest_section;
7500
7501 /* Compute how many sections are in this segment. */
7502 for (section = ibfd->sections, section_count = 0;
7503 section != NULL;
7504 section = section->next)
7505 {
7506 this_hdr = &(elf_section_data(section)->this_hdr);
7507 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7508 {
7509 if (first_section == NULL)
7510 first_section = section;
7511 section_count++;
7512 }
7513 }
7514
7515 /* Allocate a segment map big enough to contain
7516 all of the sections we have selected. */
7517 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7518 amt += section_count * sizeof (asection *);
7519 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7520 if (map == NULL)
7521 return FALSE;
7522
7523 /* Initialize the fields of the output segment map with the
7524 input segment. */
7525 map->next = NULL;
7526 map->p_type = segment->p_type;
7527 map->p_flags = segment->p_flags;
7528 map->p_flags_valid = 1;
7529 map->p_paddr = segment->p_paddr;
7530 map->p_paddr_valid = p_paddr_valid;
7531 map->p_align = segment->p_align;
7532 map->p_align_valid = 1;
7533 map->p_vaddr_offset = 0;
7534
7535 if (map->p_type == PT_GNU_RELRO
7536 || map->p_type == PT_GNU_STACK)
7537 {
7538 /* The PT_GNU_RELRO segment may contain the first a few
7539 bytes in the .got.plt section even if the whole .got.plt
7540 section isn't in the PT_GNU_RELRO segment. We won't
7541 change the size of the PT_GNU_RELRO segment.
7542 Similarly, PT_GNU_STACK size is significant on uclinux
7543 systems. */
7544 map->p_size = segment->p_memsz;
7545 map->p_size_valid = 1;
7546 }
7547
7548 /* Determine if this segment contains the ELF file header
7549 and if it contains the program headers themselves. */
7550 map->includes_filehdr = (segment->p_offset == 0
7551 && segment->p_filesz >= iehdr->e_ehsize);
7552
7553 map->includes_phdrs = 0;
7554 if (! phdr_included || segment->p_type != PT_LOAD)
7555 {
7556 map->includes_phdrs =
7557 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7558 && (segment->p_offset + segment->p_filesz
7559 >= ((bfd_vma) iehdr->e_phoff
7560 + iehdr->e_phnum * iehdr->e_phentsize)));
7561
7562 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7563 phdr_included = TRUE;
7564 }
7565
7566 lowest_section = NULL;
7567 if (section_count != 0)
7568 {
7569 unsigned int isec = 0;
7570
7571 for (section = first_section;
7572 section != NULL;
7573 section = section->next)
7574 {
7575 this_hdr = &(elf_section_data(section)->this_hdr);
7576 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7577 {
7578 map->sections[isec++] = section->output_section;
7579 if ((section->flags & SEC_ALLOC) != 0)
7580 {
7581 bfd_vma seg_off;
7582
7583 if (lowest_section == NULL
7584 || section->lma < lowest_section->lma)
7585 lowest_section = section;
7586
7587 /* Section lmas are set up from PT_LOAD header
7588 p_paddr in _bfd_elf_make_section_from_shdr.
7589 If this header has a p_paddr that disagrees
7590 with the section lma, flag the p_paddr as
7591 invalid. */
7592 if ((section->flags & SEC_LOAD) != 0)
7593 seg_off = this_hdr->sh_offset - segment->p_offset;
7594 else
7595 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7596 if (section->lma * opb - segment->p_paddr != seg_off)
7597 map->p_paddr_valid = FALSE;
7598 }
7599 if (isec == section_count)
7600 break;
7601 }
7602 }
7603 }
7604
7605 if (section_count == 0)
7606 map->p_vaddr_offset = segment->p_vaddr / opb;
7607 else if (map->p_paddr_valid)
7608 {
7609 /* Account for padding before the first section in the segment. */
7610 bfd_vma hdr_size = 0;
7611 if (map->includes_filehdr)
7612 hdr_size = iehdr->e_ehsize;
7613 if (map->includes_phdrs)
7614 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7615
7616 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7617 - (lowest_section ? lowest_section->lma : 0));
7618 }
7619
7620 map->count = section_count;
7621 *pointer_to_map = map;
7622 pointer_to_map = &map->next;
7623 }
7624
7625 elf_seg_map (obfd) = map_first;
7626 return TRUE;
7627 }
7628
7629 /* Copy private BFD data. This copies or rewrites ELF program header
7630 information. */
7631
7632 static bfd_boolean
7633 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7634 {
7635 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7636 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7637 return TRUE;
7638
7639 if (elf_tdata (ibfd)->phdr == NULL)
7640 return TRUE;
7641
7642 if (ibfd->xvec == obfd->xvec)
7643 {
7644 /* Check to see if any sections in the input BFD
7645 covered by ELF program header have changed. */
7646 Elf_Internal_Phdr *segment;
7647 asection *section, *osec;
7648 unsigned int i, num_segments;
7649 Elf_Internal_Shdr *this_hdr;
7650 const struct elf_backend_data *bed;
7651
7652 bed = get_elf_backend_data (ibfd);
7653
7654 /* Regenerate the segment map if p_paddr is set to 0. */
7655 if (bed->want_p_paddr_set_to_zero)
7656 goto rewrite;
7657
7658 /* Initialize the segment mark field. */
7659 for (section = obfd->sections; section != NULL;
7660 section = section->next)
7661 section->segment_mark = FALSE;
7662
7663 num_segments = elf_elfheader (ibfd)->e_phnum;
7664 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7665 i < num_segments;
7666 i++, segment++)
7667 {
7668 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7669 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7670 which severly confuses things, so always regenerate the segment
7671 map in this case. */
7672 if (segment->p_paddr == 0
7673 && segment->p_memsz == 0
7674 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7675 goto rewrite;
7676
7677 for (section = ibfd->sections;
7678 section != NULL; section = section->next)
7679 {
7680 /* We mark the output section so that we know it comes
7681 from the input BFD. */
7682 osec = section->output_section;
7683 if (osec)
7684 osec->segment_mark = TRUE;
7685
7686 /* Check if this section is covered by the segment. */
7687 this_hdr = &(elf_section_data(section)->this_hdr);
7688 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7689 {
7690 /* FIXME: Check if its output section is changed or
7691 removed. What else do we need to check? */
7692 if (osec == NULL
7693 || section->flags != osec->flags
7694 || section->lma != osec->lma
7695 || section->vma != osec->vma
7696 || section->size != osec->size
7697 || section->rawsize != osec->rawsize
7698 || section->alignment_power != osec->alignment_power)
7699 goto rewrite;
7700 }
7701 }
7702 }
7703
7704 /* Check to see if any output section do not come from the
7705 input BFD. */
7706 for (section = obfd->sections; section != NULL;
7707 section = section->next)
7708 {
7709 if (!section->segment_mark)
7710 goto rewrite;
7711 else
7712 section->segment_mark = FALSE;
7713 }
7714
7715 return copy_elf_program_header (ibfd, obfd);
7716 }
7717
7718 rewrite:
7719 if (ibfd->xvec == obfd->xvec)
7720 {
7721 /* When rewriting program header, set the output maxpagesize to
7722 the maximum alignment of input PT_LOAD segments. */
7723 Elf_Internal_Phdr *segment;
7724 unsigned int i;
7725 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7726 bfd_vma maxpagesize = 0;
7727
7728 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7729 i < num_segments;
7730 i++, segment++)
7731 if (segment->p_type == PT_LOAD
7732 && maxpagesize < segment->p_align)
7733 {
7734 /* PR 17512: file: f17299af. */
7735 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7736 /* xgettext:c-format */
7737 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7738 PRIx64 " is too large"),
7739 ibfd, (uint64_t) segment->p_align);
7740 else
7741 maxpagesize = segment->p_align;
7742 }
7743
7744 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7745 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7746 }
7747
7748 return rewrite_elf_program_header (ibfd, obfd);
7749 }
7750
7751 /* Initialize private output section information from input section. */
7752
7753 bfd_boolean
7754 _bfd_elf_init_private_section_data (bfd *ibfd,
7755 asection *isec,
7756 bfd *obfd,
7757 asection *osec,
7758 struct bfd_link_info *link_info)
7759
7760 {
7761 Elf_Internal_Shdr *ihdr, *ohdr;
7762 bfd_boolean final_link = (link_info != NULL
7763 && !bfd_link_relocatable (link_info));
7764
7765 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7766 || obfd->xvec->flavour != bfd_target_elf_flavour)
7767 return TRUE;
7768
7769 BFD_ASSERT (elf_section_data (osec) != NULL);
7770
7771 /* If this is a known ABI section, ELF section type and flags may
7772 have been set up when OSEC was created. For normal sections we
7773 allow the user to override the type and flags other than
7774 SHF_MASKOS and SHF_MASKPROC. */
7775 if (elf_section_type (osec) == SHT_PROGBITS
7776 || elf_section_type (osec) == SHT_NOTE
7777 || elf_section_type (osec) == SHT_NOBITS)
7778 elf_section_type (osec) = SHT_NULL;
7779 /* For objcopy and relocatable link, copy the ELF section type from
7780 the input file if the BFD section flags are the same. (If they
7781 are different the user may be doing something like
7782 "objcopy --set-section-flags .text=alloc,data".) For a final
7783 link allow some flags that the linker clears to differ. */
7784 if (elf_section_type (osec) == SHT_NULL
7785 && (osec->flags == isec->flags
7786 || (final_link
7787 && ((osec->flags ^ isec->flags)
7788 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7789 elf_section_type (osec) = elf_section_type (isec);
7790
7791 /* FIXME: Is this correct for all OS/PROC specific flags? */
7792 elf_section_flags (osec) = (elf_section_flags (isec)
7793 & (SHF_MASKOS | SHF_MASKPROC));
7794
7795 /* Copy sh_info from input for mbind section. */
7796 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7797 && elf_section_flags (isec) & SHF_GNU_MBIND)
7798 elf_section_data (osec)->this_hdr.sh_info
7799 = elf_section_data (isec)->this_hdr.sh_info;
7800
7801 /* Set things up for objcopy and relocatable link. The output
7802 SHT_GROUP section will have its elf_next_in_group pointing back
7803 to the input group members. Ignore linker created group section.
7804 See elfNN_ia64_object_p in elfxx-ia64.c. */
7805 if ((link_info == NULL
7806 || !link_info->resolve_section_groups)
7807 && (elf_sec_group (isec) == NULL
7808 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7809 {
7810 if (elf_section_flags (isec) & SHF_GROUP)
7811 elf_section_flags (osec) |= SHF_GROUP;
7812 elf_next_in_group (osec) = elf_next_in_group (isec);
7813 elf_section_data (osec)->group = elf_section_data (isec)->group;
7814 }
7815
7816 /* If not decompress, preserve SHF_COMPRESSED. */
7817 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7818 elf_section_flags (osec) |= (elf_section_flags (isec)
7819 & SHF_COMPRESSED);
7820
7821 ihdr = &elf_section_data (isec)->this_hdr;
7822
7823 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7824 don't use the output section of the linked-to section since it
7825 may be NULL at this point. */
7826 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7827 {
7828 ohdr = &elf_section_data (osec)->this_hdr;
7829 ohdr->sh_flags |= SHF_LINK_ORDER;
7830 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7831 }
7832
7833 osec->use_rela_p = isec->use_rela_p;
7834
7835 return TRUE;
7836 }
7837
7838 /* Copy private section information. This copies over the entsize
7839 field, and sometimes the info field. */
7840
7841 bfd_boolean
7842 _bfd_elf_copy_private_section_data (bfd *ibfd,
7843 asection *isec,
7844 bfd *obfd,
7845 asection *osec)
7846 {
7847 Elf_Internal_Shdr *ihdr, *ohdr;
7848
7849 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7850 || obfd->xvec->flavour != bfd_target_elf_flavour)
7851 return TRUE;
7852
7853 ihdr = &elf_section_data (isec)->this_hdr;
7854 ohdr = &elf_section_data (osec)->this_hdr;
7855
7856 ohdr->sh_entsize = ihdr->sh_entsize;
7857
7858 if (ihdr->sh_type == SHT_SYMTAB
7859 || ihdr->sh_type == SHT_DYNSYM
7860 || ihdr->sh_type == SHT_GNU_verneed
7861 || ihdr->sh_type == SHT_GNU_verdef)
7862 ohdr->sh_info = ihdr->sh_info;
7863
7864 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7865 NULL);
7866 }
7867
7868 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7869 necessary if we are removing either the SHT_GROUP section or any of
7870 the group member sections. DISCARDED is the value that a section's
7871 output_section has if the section will be discarded, NULL when this
7872 function is called from objcopy, bfd_abs_section_ptr when called
7873 from the linker. */
7874
7875 bfd_boolean
7876 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7877 {
7878 asection *isec;
7879
7880 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7881 if (elf_section_type (isec) == SHT_GROUP)
7882 {
7883 asection *first = elf_next_in_group (isec);
7884 asection *s = first;
7885 bfd_size_type removed = 0;
7886
7887 while (s != NULL)
7888 {
7889 /* If this member section is being output but the
7890 SHT_GROUP section is not, then clear the group info
7891 set up by _bfd_elf_copy_private_section_data. */
7892 if (s->output_section != discarded
7893 && isec->output_section == discarded)
7894 {
7895 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7896 elf_group_name (s->output_section) = NULL;
7897 }
7898 /* Conversely, if the member section is not being output
7899 but the SHT_GROUP section is, then adjust its size. */
7900 else if (s->output_section == discarded
7901 && isec->output_section != discarded)
7902 {
7903 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7904 removed += 4;
7905 if (elf_sec->rel.hdr != NULL
7906 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7907 removed += 4;
7908 if (elf_sec->rela.hdr != NULL
7909 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7910 removed += 4;
7911 }
7912 s = elf_next_in_group (s);
7913 if (s == first)
7914 break;
7915 }
7916 if (removed != 0)
7917 {
7918 if (discarded != NULL)
7919 {
7920 /* If we've been called for ld -r, then we need to
7921 adjust the input section size. */
7922 if (isec->rawsize == 0)
7923 isec->rawsize = isec->size;
7924 isec->size = isec->rawsize - removed;
7925 if (isec->size <= 4)
7926 {
7927 isec->size = 0;
7928 isec->flags |= SEC_EXCLUDE;
7929 }
7930 }
7931 else
7932 {
7933 /* Adjust the output section size when called from
7934 objcopy. */
7935 isec->output_section->size -= removed;
7936 if (isec->output_section->size <= 4)
7937 {
7938 isec->output_section->size = 0;
7939 isec->output_section->flags |= SEC_EXCLUDE;
7940 }
7941 }
7942 }
7943 }
7944
7945 return TRUE;
7946 }
7947
7948 /* Copy private header information. */
7949
7950 bfd_boolean
7951 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7952 {
7953 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7954 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7955 return TRUE;
7956
7957 /* Copy over private BFD data if it has not already been copied.
7958 This must be done here, rather than in the copy_private_bfd_data
7959 entry point, because the latter is called after the section
7960 contents have been set, which means that the program headers have
7961 already been worked out. */
7962 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7963 {
7964 if (! copy_private_bfd_data (ibfd, obfd))
7965 return FALSE;
7966 }
7967
7968 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7969 }
7970
7971 /* Copy private symbol information. If this symbol is in a section
7972 which we did not map into a BFD section, try to map the section
7973 index correctly. We use special macro definitions for the mapped
7974 section indices; these definitions are interpreted by the
7975 swap_out_syms function. */
7976
7977 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7978 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7979 #define MAP_STRTAB (SHN_HIOS + 3)
7980 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7981 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7982
7983 bfd_boolean
7984 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7985 asymbol *isymarg,
7986 bfd *obfd,
7987 asymbol *osymarg)
7988 {
7989 elf_symbol_type *isym, *osym;
7990
7991 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7992 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7993 return TRUE;
7994
7995 isym = elf_symbol_from (ibfd, isymarg);
7996 osym = elf_symbol_from (obfd, osymarg);
7997
7998 if (isym != NULL
7999 && isym->internal_elf_sym.st_shndx != 0
8000 && osym != NULL
8001 && bfd_is_abs_section (isym->symbol.section))
8002 {
8003 unsigned int shndx;
8004
8005 shndx = isym->internal_elf_sym.st_shndx;
8006 if (shndx == elf_onesymtab (ibfd))
8007 shndx = MAP_ONESYMTAB;
8008 else if (shndx == elf_dynsymtab (ibfd))
8009 shndx = MAP_DYNSYMTAB;
8010 else if (shndx == elf_strtab_sec (ibfd))
8011 shndx = MAP_STRTAB;
8012 else if (shndx == elf_shstrtab_sec (ibfd))
8013 shndx = MAP_SHSTRTAB;
8014 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8015 shndx = MAP_SYM_SHNDX;
8016 osym->internal_elf_sym.st_shndx = shndx;
8017 }
8018
8019 return TRUE;
8020 }
8021
8022 /* Swap out the symbols. */
8023
8024 static bfd_boolean
8025 swap_out_syms (bfd *abfd,
8026 struct elf_strtab_hash **sttp,
8027 int relocatable_p)
8028 {
8029 const struct elf_backend_data *bed;
8030 unsigned int symcount;
8031 asymbol **syms;
8032 struct elf_strtab_hash *stt;
8033 Elf_Internal_Shdr *symtab_hdr;
8034 Elf_Internal_Shdr *symtab_shndx_hdr;
8035 Elf_Internal_Shdr *symstrtab_hdr;
8036 struct elf_sym_strtab *symstrtab;
8037 bfd_byte *outbound_syms;
8038 bfd_byte *outbound_shndx;
8039 unsigned long outbound_syms_index;
8040 unsigned long outbound_shndx_index;
8041 unsigned int idx;
8042 unsigned int num_locals;
8043 size_t amt;
8044 bfd_boolean name_local_sections;
8045
8046 if (!elf_map_symbols (abfd, &num_locals))
8047 return FALSE;
8048
8049 /* Dump out the symtabs. */
8050 stt = _bfd_elf_strtab_init ();
8051 if (stt == NULL)
8052 return FALSE;
8053
8054 bed = get_elf_backend_data (abfd);
8055 symcount = bfd_get_symcount (abfd);
8056 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8057 symtab_hdr->sh_type = SHT_SYMTAB;
8058 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8059 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8060 symtab_hdr->sh_info = num_locals + 1;
8061 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8062
8063 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8064 symstrtab_hdr->sh_type = SHT_STRTAB;
8065
8066 /* Allocate buffer to swap out the .strtab section. */
8067 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8068 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8069 {
8070 bfd_set_error (bfd_error_no_memory);
8071 _bfd_elf_strtab_free (stt);
8072 return FALSE;
8073 }
8074
8075 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8076 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8077 {
8078 error_no_mem:
8079 bfd_set_error (bfd_error_no_memory);
8080 error_return:
8081 free (symstrtab);
8082 _bfd_elf_strtab_free (stt);
8083 return FALSE;
8084 }
8085 symtab_hdr->contents = outbound_syms;
8086 outbound_syms_index = 0;
8087
8088 outbound_shndx = NULL;
8089 outbound_shndx_index = 0;
8090
8091 if (elf_symtab_shndx_list (abfd))
8092 {
8093 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8094 if (symtab_shndx_hdr->sh_name != 0)
8095 {
8096 if (_bfd_mul_overflow (symcount + 1,
8097 sizeof (Elf_External_Sym_Shndx), &amt))
8098 goto error_no_mem;
8099 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8100 if (outbound_shndx == NULL)
8101 goto error_return;
8102
8103 symtab_shndx_hdr->contents = outbound_shndx;
8104 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8105 symtab_shndx_hdr->sh_size = amt;
8106 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8107 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8108 }
8109 /* FIXME: What about any other headers in the list ? */
8110 }
8111
8112 /* Now generate the data (for "contents"). */
8113 {
8114 /* Fill in zeroth symbol and swap it out. */
8115 Elf_Internal_Sym sym;
8116 sym.st_name = 0;
8117 sym.st_value = 0;
8118 sym.st_size = 0;
8119 sym.st_info = 0;
8120 sym.st_other = 0;
8121 sym.st_shndx = SHN_UNDEF;
8122 sym.st_target_internal = 0;
8123 symstrtab[0].sym = sym;
8124 symstrtab[0].dest_index = outbound_syms_index;
8125 symstrtab[0].destshndx_index = outbound_shndx_index;
8126 outbound_syms_index++;
8127 if (outbound_shndx != NULL)
8128 outbound_shndx_index++;
8129 }
8130
8131 name_local_sections
8132 = (bed->elf_backend_name_local_section_symbols
8133 && bed->elf_backend_name_local_section_symbols (abfd));
8134
8135 syms = bfd_get_outsymbols (abfd);
8136 for (idx = 0; idx < symcount;)
8137 {
8138 Elf_Internal_Sym sym;
8139 bfd_vma value = syms[idx]->value;
8140 elf_symbol_type *type_ptr;
8141 flagword flags = syms[idx]->flags;
8142 int type;
8143
8144 if (!name_local_sections
8145 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8146 {
8147 /* Local section symbols have no name. */
8148 sym.st_name = (unsigned long) -1;
8149 }
8150 else
8151 {
8152 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8153 to get the final offset for st_name. */
8154 sym.st_name
8155 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8156 FALSE);
8157 if (sym.st_name == (unsigned long) -1)
8158 goto error_return;
8159 }
8160
8161 type_ptr = elf_symbol_from (abfd, syms[idx]);
8162
8163 if ((flags & BSF_SECTION_SYM) == 0
8164 && bfd_is_com_section (syms[idx]->section))
8165 {
8166 /* ELF common symbols put the alignment into the `value' field,
8167 and the size into the `size' field. This is backwards from
8168 how BFD handles it, so reverse it here. */
8169 sym.st_size = value;
8170 if (type_ptr == NULL
8171 || type_ptr->internal_elf_sym.st_value == 0)
8172 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8173 else
8174 sym.st_value = type_ptr->internal_elf_sym.st_value;
8175 sym.st_shndx = _bfd_elf_section_from_bfd_section
8176 (abfd, syms[idx]->section);
8177 }
8178 else
8179 {
8180 asection *sec = syms[idx]->section;
8181 unsigned int shndx;
8182
8183 if (sec->output_section)
8184 {
8185 value += sec->output_offset;
8186 sec = sec->output_section;
8187 }
8188
8189 /* Don't add in the section vma for relocatable output. */
8190 if (! relocatable_p)
8191 value += sec->vma;
8192 sym.st_value = value;
8193 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8194
8195 if (bfd_is_abs_section (sec)
8196 && type_ptr != NULL
8197 && type_ptr->internal_elf_sym.st_shndx != 0)
8198 {
8199 /* This symbol is in a real ELF section which we did
8200 not create as a BFD section. Undo the mapping done
8201 by copy_private_symbol_data. */
8202 shndx = type_ptr->internal_elf_sym.st_shndx;
8203 switch (shndx)
8204 {
8205 case MAP_ONESYMTAB:
8206 shndx = elf_onesymtab (abfd);
8207 break;
8208 case MAP_DYNSYMTAB:
8209 shndx = elf_dynsymtab (abfd);
8210 break;
8211 case MAP_STRTAB:
8212 shndx = elf_strtab_sec (abfd);
8213 break;
8214 case MAP_SHSTRTAB:
8215 shndx = elf_shstrtab_sec (abfd);
8216 break;
8217 case MAP_SYM_SHNDX:
8218 if (elf_symtab_shndx_list (abfd))
8219 shndx = elf_symtab_shndx_list (abfd)->ndx;
8220 break;
8221 case SHN_COMMON:
8222 case SHN_ABS:
8223 shndx = SHN_ABS;
8224 break;
8225 default:
8226 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8227 {
8228 if (bed->symbol_section_index)
8229 shndx = bed->symbol_section_index (abfd, type_ptr);
8230 /* Otherwise just leave the index alone. */
8231 }
8232 else
8233 {
8234 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8235 _bfd_error_handler (_("%pB: \
8236 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8237 abfd, shndx);
8238 shndx = SHN_ABS;
8239 }
8240 break;
8241 }
8242 }
8243 else
8244 {
8245 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8246
8247 if (shndx == SHN_BAD)
8248 {
8249 asection *sec2;
8250
8251 /* Writing this would be a hell of a lot easier if
8252 we had some decent documentation on bfd, and
8253 knew what to expect of the library, and what to
8254 demand of applications. For example, it
8255 appears that `objcopy' might not set the
8256 section of a symbol to be a section that is
8257 actually in the output file. */
8258 sec2 = bfd_get_section_by_name (abfd, sec->name);
8259 if (sec2 != NULL)
8260 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8261 if (shndx == SHN_BAD)
8262 {
8263 /* xgettext:c-format */
8264 _bfd_error_handler
8265 (_("unable to find equivalent output section"
8266 " for symbol '%s' from section '%s'"),
8267 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8268 sec->name);
8269 bfd_set_error (bfd_error_invalid_operation);
8270 goto error_return;
8271 }
8272 }
8273 }
8274
8275 sym.st_shndx = shndx;
8276 }
8277
8278 if ((flags & BSF_THREAD_LOCAL) != 0)
8279 type = STT_TLS;
8280 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8281 type = STT_GNU_IFUNC;
8282 else if ((flags & BSF_FUNCTION) != 0)
8283 type = STT_FUNC;
8284 else if ((flags & BSF_OBJECT) != 0)
8285 type = STT_OBJECT;
8286 else if ((flags & BSF_RELC) != 0)
8287 type = STT_RELC;
8288 else if ((flags & BSF_SRELC) != 0)
8289 type = STT_SRELC;
8290 else
8291 type = STT_NOTYPE;
8292
8293 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8294 type = STT_TLS;
8295
8296 /* Processor-specific types. */
8297 if (type_ptr != NULL
8298 && bed->elf_backend_get_symbol_type)
8299 type = ((*bed->elf_backend_get_symbol_type)
8300 (&type_ptr->internal_elf_sym, type));
8301
8302 if (flags & BSF_SECTION_SYM)
8303 {
8304 if (flags & BSF_GLOBAL)
8305 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8306 else
8307 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8308 }
8309 else if (bfd_is_com_section (syms[idx]->section))
8310 {
8311 if (type != STT_TLS)
8312 {
8313 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8314 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8315 ? STT_COMMON : STT_OBJECT);
8316 else
8317 type = ((flags & BSF_ELF_COMMON) != 0
8318 ? STT_COMMON : STT_OBJECT);
8319 }
8320 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8321 }
8322 else if (bfd_is_und_section (syms[idx]->section))
8323 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8324 ? STB_WEAK
8325 : STB_GLOBAL),
8326 type);
8327 else if (flags & BSF_FILE)
8328 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8329 else
8330 {
8331 int bind = STB_LOCAL;
8332
8333 if (flags & BSF_LOCAL)
8334 bind = STB_LOCAL;
8335 else if (flags & BSF_GNU_UNIQUE)
8336 bind = STB_GNU_UNIQUE;
8337 else if (flags & BSF_WEAK)
8338 bind = STB_WEAK;
8339 else if (flags & BSF_GLOBAL)
8340 bind = STB_GLOBAL;
8341
8342 sym.st_info = ELF_ST_INFO (bind, type);
8343 }
8344
8345 if (type_ptr != NULL)
8346 {
8347 sym.st_other = type_ptr->internal_elf_sym.st_other;
8348 sym.st_target_internal
8349 = type_ptr->internal_elf_sym.st_target_internal;
8350 }
8351 else
8352 {
8353 sym.st_other = 0;
8354 sym.st_target_internal = 0;
8355 }
8356
8357 idx++;
8358 symstrtab[idx].sym = sym;
8359 symstrtab[idx].dest_index = outbound_syms_index;
8360 symstrtab[idx].destshndx_index = outbound_shndx_index;
8361
8362 outbound_syms_index++;
8363 if (outbound_shndx != NULL)
8364 outbound_shndx_index++;
8365 }
8366
8367 /* Finalize the .strtab section. */
8368 _bfd_elf_strtab_finalize (stt);
8369
8370 /* Swap out the .strtab section. */
8371 for (idx = 0; idx <= symcount; idx++)
8372 {
8373 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8374 if (elfsym->sym.st_name == (unsigned long) -1)
8375 elfsym->sym.st_name = 0;
8376 else
8377 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8378 elfsym->sym.st_name);
8379 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8380 (outbound_syms
8381 + (elfsym->dest_index
8382 * bed->s->sizeof_sym)),
8383 (outbound_shndx
8384 + (elfsym->destshndx_index
8385 * sizeof (Elf_External_Sym_Shndx))));
8386 }
8387 free (symstrtab);
8388
8389 *sttp = stt;
8390 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8391 symstrtab_hdr->sh_type = SHT_STRTAB;
8392 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8393 symstrtab_hdr->sh_addr = 0;
8394 symstrtab_hdr->sh_entsize = 0;
8395 symstrtab_hdr->sh_link = 0;
8396 symstrtab_hdr->sh_info = 0;
8397 symstrtab_hdr->sh_addralign = 1;
8398
8399 return TRUE;
8400 }
8401
8402 /* Return the number of bytes required to hold the symtab vector.
8403
8404 Note that we base it on the count plus 1, since we will null terminate
8405 the vector allocated based on this size. However, the ELF symbol table
8406 always has a dummy entry as symbol #0, so it ends up even. */
8407
8408 long
8409 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8410 {
8411 bfd_size_type symcount;
8412 long symtab_size;
8413 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8414
8415 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8416 if (symcount >= LONG_MAX / sizeof (asymbol *))
8417 {
8418 bfd_set_error (bfd_error_file_too_big);
8419 return -1;
8420 }
8421 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8422 if (symcount > 0)
8423 symtab_size -= sizeof (asymbol *);
8424
8425 return symtab_size;
8426 }
8427
8428 long
8429 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8430 {
8431 bfd_size_type symcount;
8432 long symtab_size;
8433 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8434
8435 if (elf_dynsymtab (abfd) == 0)
8436 {
8437 bfd_set_error (bfd_error_invalid_operation);
8438 return -1;
8439 }
8440
8441 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8442 if (symcount >= LONG_MAX / sizeof (asymbol *))
8443 {
8444 bfd_set_error (bfd_error_file_too_big);
8445 return -1;
8446 }
8447 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8448 if (symcount > 0)
8449 symtab_size -= sizeof (asymbol *);
8450
8451 return symtab_size;
8452 }
8453
8454 long
8455 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8456 sec_ptr asect)
8457 {
8458 #if SIZEOF_LONG == SIZEOF_INT
8459 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8460 {
8461 bfd_set_error (bfd_error_file_too_big);
8462 return -1;
8463 }
8464 #endif
8465 return (asect->reloc_count + 1) * sizeof (arelent *);
8466 }
8467
8468 /* Canonicalize the relocs. */
8469
8470 long
8471 _bfd_elf_canonicalize_reloc (bfd *abfd,
8472 sec_ptr section,
8473 arelent **relptr,
8474 asymbol **symbols)
8475 {
8476 arelent *tblptr;
8477 unsigned int i;
8478 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8479
8480 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8481 return -1;
8482
8483 tblptr = section->relocation;
8484 for (i = 0; i < section->reloc_count; i++)
8485 *relptr++ = tblptr++;
8486
8487 *relptr = NULL;
8488
8489 return section->reloc_count;
8490 }
8491
8492 long
8493 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8494 {
8495 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8496 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8497
8498 if (symcount >= 0)
8499 abfd->symcount = symcount;
8500 return symcount;
8501 }
8502
8503 long
8504 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8505 asymbol **allocation)
8506 {
8507 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8508 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8509
8510 if (symcount >= 0)
8511 abfd->dynsymcount = symcount;
8512 return symcount;
8513 }
8514
8515 /* Return the size required for the dynamic reloc entries. Any loadable
8516 section that was actually installed in the BFD, and has type SHT_REL
8517 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8518 dynamic reloc section. */
8519
8520 long
8521 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8522 {
8523 bfd_size_type count;
8524 asection *s;
8525
8526 if (elf_dynsymtab (abfd) == 0)
8527 {
8528 bfd_set_error (bfd_error_invalid_operation);
8529 return -1;
8530 }
8531
8532 count = 1;
8533 for (s = abfd->sections; s != NULL; s = s->next)
8534 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8535 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8536 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8537 {
8538 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8539 if (count > LONG_MAX / sizeof (arelent *))
8540 {
8541 bfd_set_error (bfd_error_file_too_big);
8542 return -1;
8543 }
8544 }
8545 return count * sizeof (arelent *);
8546 }
8547
8548 /* Canonicalize the dynamic relocation entries. Note that we return the
8549 dynamic relocations as a single block, although they are actually
8550 associated with particular sections; the interface, which was
8551 designed for SunOS style shared libraries, expects that there is only
8552 one set of dynamic relocs. Any loadable section that was actually
8553 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8554 dynamic symbol table, is considered to be a dynamic reloc section. */
8555
8556 long
8557 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8558 arelent **storage,
8559 asymbol **syms)
8560 {
8561 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8562 asection *s;
8563 long ret;
8564
8565 if (elf_dynsymtab (abfd) == 0)
8566 {
8567 bfd_set_error (bfd_error_invalid_operation);
8568 return -1;
8569 }
8570
8571 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8572 ret = 0;
8573 for (s = abfd->sections; s != NULL; s = s->next)
8574 {
8575 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8576 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8577 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8578 {
8579 arelent *p;
8580 long count, i;
8581
8582 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8583 return -1;
8584 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8585 p = s->relocation;
8586 for (i = 0; i < count; i++)
8587 *storage++ = p++;
8588 ret += count;
8589 }
8590 }
8591
8592 *storage = NULL;
8593
8594 return ret;
8595 }
8596 \f
8597 /* Read in the version information. */
8598
8599 bfd_boolean
8600 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8601 {
8602 bfd_byte *contents = NULL;
8603 unsigned int freeidx = 0;
8604 size_t amt;
8605
8606 if (elf_dynverref (abfd) != 0)
8607 {
8608 Elf_Internal_Shdr *hdr;
8609 Elf_External_Verneed *everneed;
8610 Elf_Internal_Verneed *iverneed;
8611 unsigned int i;
8612 bfd_byte *contents_end;
8613
8614 hdr = &elf_tdata (abfd)->dynverref_hdr;
8615
8616 if (hdr->sh_info == 0
8617 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8618 {
8619 error_return_bad_verref:
8620 _bfd_error_handler
8621 (_("%pB: .gnu.version_r invalid entry"), abfd);
8622 bfd_set_error (bfd_error_bad_value);
8623 error_return_verref:
8624 elf_tdata (abfd)->verref = NULL;
8625 elf_tdata (abfd)->cverrefs = 0;
8626 goto error_return;
8627 }
8628
8629 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8630 goto error_return_verref;
8631 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8632 if (contents == NULL)
8633 goto error_return_verref;
8634
8635 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8636 {
8637 bfd_set_error (bfd_error_file_too_big);
8638 goto error_return_verref;
8639 }
8640 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8641 if (elf_tdata (abfd)->verref == NULL)
8642 goto error_return_verref;
8643
8644 BFD_ASSERT (sizeof (Elf_External_Verneed)
8645 == sizeof (Elf_External_Vernaux));
8646 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8647 everneed = (Elf_External_Verneed *) contents;
8648 iverneed = elf_tdata (abfd)->verref;
8649 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8650 {
8651 Elf_External_Vernaux *evernaux;
8652 Elf_Internal_Vernaux *ivernaux;
8653 unsigned int j;
8654
8655 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8656
8657 iverneed->vn_bfd = abfd;
8658
8659 iverneed->vn_filename =
8660 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8661 iverneed->vn_file);
8662 if (iverneed->vn_filename == NULL)
8663 goto error_return_bad_verref;
8664
8665 if (iverneed->vn_cnt == 0)
8666 iverneed->vn_auxptr = NULL;
8667 else
8668 {
8669 if (_bfd_mul_overflow (iverneed->vn_cnt,
8670 sizeof (Elf_Internal_Vernaux), &amt))
8671 {
8672 bfd_set_error (bfd_error_file_too_big);
8673 goto error_return_verref;
8674 }
8675 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8676 bfd_alloc (abfd, amt);
8677 if (iverneed->vn_auxptr == NULL)
8678 goto error_return_verref;
8679 }
8680
8681 if (iverneed->vn_aux
8682 > (size_t) (contents_end - (bfd_byte *) everneed))
8683 goto error_return_bad_verref;
8684
8685 evernaux = ((Elf_External_Vernaux *)
8686 ((bfd_byte *) everneed + iverneed->vn_aux));
8687 ivernaux = iverneed->vn_auxptr;
8688 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8689 {
8690 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8691
8692 ivernaux->vna_nodename =
8693 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8694 ivernaux->vna_name);
8695 if (ivernaux->vna_nodename == NULL)
8696 goto error_return_bad_verref;
8697
8698 if (ivernaux->vna_other > freeidx)
8699 freeidx = ivernaux->vna_other;
8700
8701 ivernaux->vna_nextptr = NULL;
8702 if (ivernaux->vna_next == 0)
8703 {
8704 iverneed->vn_cnt = j + 1;
8705 break;
8706 }
8707 if (j + 1 < iverneed->vn_cnt)
8708 ivernaux->vna_nextptr = ivernaux + 1;
8709
8710 if (ivernaux->vna_next
8711 > (size_t) (contents_end - (bfd_byte *) evernaux))
8712 goto error_return_bad_verref;
8713
8714 evernaux = ((Elf_External_Vernaux *)
8715 ((bfd_byte *) evernaux + ivernaux->vna_next));
8716 }
8717
8718 iverneed->vn_nextref = NULL;
8719 if (iverneed->vn_next == 0)
8720 break;
8721 if (i + 1 < hdr->sh_info)
8722 iverneed->vn_nextref = iverneed + 1;
8723
8724 if (iverneed->vn_next
8725 > (size_t) (contents_end - (bfd_byte *) everneed))
8726 goto error_return_bad_verref;
8727
8728 everneed = ((Elf_External_Verneed *)
8729 ((bfd_byte *) everneed + iverneed->vn_next));
8730 }
8731 elf_tdata (abfd)->cverrefs = i;
8732
8733 free (contents);
8734 contents = NULL;
8735 }
8736
8737 if (elf_dynverdef (abfd) != 0)
8738 {
8739 Elf_Internal_Shdr *hdr;
8740 Elf_External_Verdef *everdef;
8741 Elf_Internal_Verdef *iverdef;
8742 Elf_Internal_Verdef *iverdefarr;
8743 Elf_Internal_Verdef iverdefmem;
8744 unsigned int i;
8745 unsigned int maxidx;
8746 bfd_byte *contents_end_def, *contents_end_aux;
8747
8748 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8749
8750 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8751 {
8752 error_return_bad_verdef:
8753 _bfd_error_handler
8754 (_("%pB: .gnu.version_d invalid entry"), abfd);
8755 bfd_set_error (bfd_error_bad_value);
8756 error_return_verdef:
8757 elf_tdata (abfd)->verdef = NULL;
8758 elf_tdata (abfd)->cverdefs = 0;
8759 goto error_return;
8760 }
8761
8762 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8763 goto error_return_verdef;
8764 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8765 if (contents == NULL)
8766 goto error_return_verdef;
8767
8768 BFD_ASSERT (sizeof (Elf_External_Verdef)
8769 >= sizeof (Elf_External_Verdaux));
8770 contents_end_def = contents + hdr->sh_size
8771 - sizeof (Elf_External_Verdef);
8772 contents_end_aux = contents + hdr->sh_size
8773 - sizeof (Elf_External_Verdaux);
8774
8775 /* We know the number of entries in the section but not the maximum
8776 index. Therefore we have to run through all entries and find
8777 the maximum. */
8778 everdef = (Elf_External_Verdef *) contents;
8779 maxidx = 0;
8780 for (i = 0; i < hdr->sh_info; ++i)
8781 {
8782 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8783
8784 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8785 goto error_return_bad_verdef;
8786 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8787 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8788
8789 if (iverdefmem.vd_next == 0)
8790 break;
8791
8792 if (iverdefmem.vd_next
8793 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8794 goto error_return_bad_verdef;
8795
8796 everdef = ((Elf_External_Verdef *)
8797 ((bfd_byte *) everdef + iverdefmem.vd_next));
8798 }
8799
8800 if (default_imported_symver)
8801 {
8802 if (freeidx > maxidx)
8803 maxidx = ++freeidx;
8804 else
8805 freeidx = ++maxidx;
8806 }
8807 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8808 {
8809 bfd_set_error (bfd_error_file_too_big);
8810 goto error_return_verdef;
8811 }
8812 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8813 if (elf_tdata (abfd)->verdef == NULL)
8814 goto error_return_verdef;
8815
8816 elf_tdata (abfd)->cverdefs = maxidx;
8817
8818 everdef = (Elf_External_Verdef *) contents;
8819 iverdefarr = elf_tdata (abfd)->verdef;
8820 for (i = 0; i < hdr->sh_info; i++)
8821 {
8822 Elf_External_Verdaux *everdaux;
8823 Elf_Internal_Verdaux *iverdaux;
8824 unsigned int j;
8825
8826 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8827
8828 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8829 goto error_return_bad_verdef;
8830
8831 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8832 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8833
8834 iverdef->vd_bfd = abfd;
8835
8836 if (iverdef->vd_cnt == 0)
8837 iverdef->vd_auxptr = NULL;
8838 else
8839 {
8840 if (_bfd_mul_overflow (iverdef->vd_cnt,
8841 sizeof (Elf_Internal_Verdaux), &amt))
8842 {
8843 bfd_set_error (bfd_error_file_too_big);
8844 goto error_return_verdef;
8845 }
8846 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8847 bfd_alloc (abfd, amt);
8848 if (iverdef->vd_auxptr == NULL)
8849 goto error_return_verdef;
8850 }
8851
8852 if (iverdef->vd_aux
8853 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8854 goto error_return_bad_verdef;
8855
8856 everdaux = ((Elf_External_Verdaux *)
8857 ((bfd_byte *) everdef + iverdef->vd_aux));
8858 iverdaux = iverdef->vd_auxptr;
8859 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8860 {
8861 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8862
8863 iverdaux->vda_nodename =
8864 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8865 iverdaux->vda_name);
8866 if (iverdaux->vda_nodename == NULL)
8867 goto error_return_bad_verdef;
8868
8869 iverdaux->vda_nextptr = NULL;
8870 if (iverdaux->vda_next == 0)
8871 {
8872 iverdef->vd_cnt = j + 1;
8873 break;
8874 }
8875 if (j + 1 < iverdef->vd_cnt)
8876 iverdaux->vda_nextptr = iverdaux + 1;
8877
8878 if (iverdaux->vda_next
8879 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8880 goto error_return_bad_verdef;
8881
8882 everdaux = ((Elf_External_Verdaux *)
8883 ((bfd_byte *) everdaux + iverdaux->vda_next));
8884 }
8885
8886 iverdef->vd_nodename = NULL;
8887 if (iverdef->vd_cnt)
8888 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8889
8890 iverdef->vd_nextdef = NULL;
8891 if (iverdef->vd_next == 0)
8892 break;
8893 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8894 iverdef->vd_nextdef = iverdef + 1;
8895
8896 everdef = ((Elf_External_Verdef *)
8897 ((bfd_byte *) everdef + iverdef->vd_next));
8898 }
8899
8900 free (contents);
8901 contents = NULL;
8902 }
8903 else if (default_imported_symver)
8904 {
8905 if (freeidx < 3)
8906 freeidx = 3;
8907 else
8908 freeidx++;
8909
8910 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
8911 {
8912 bfd_set_error (bfd_error_file_too_big);
8913 goto error_return;
8914 }
8915 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8916 if (elf_tdata (abfd)->verdef == NULL)
8917 goto error_return;
8918
8919 elf_tdata (abfd)->cverdefs = freeidx;
8920 }
8921
8922 /* Create a default version based on the soname. */
8923 if (default_imported_symver)
8924 {
8925 Elf_Internal_Verdef *iverdef;
8926 Elf_Internal_Verdaux *iverdaux;
8927
8928 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8929
8930 iverdef->vd_version = VER_DEF_CURRENT;
8931 iverdef->vd_flags = 0;
8932 iverdef->vd_ndx = freeidx;
8933 iverdef->vd_cnt = 1;
8934
8935 iverdef->vd_bfd = abfd;
8936
8937 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8938 if (iverdef->vd_nodename == NULL)
8939 goto error_return_verdef;
8940 iverdef->vd_nextdef = NULL;
8941 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8942 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8943 if (iverdef->vd_auxptr == NULL)
8944 goto error_return_verdef;
8945
8946 iverdaux = iverdef->vd_auxptr;
8947 iverdaux->vda_nodename = iverdef->vd_nodename;
8948 }
8949
8950 return TRUE;
8951
8952 error_return:
8953 if (contents != NULL)
8954 free (contents);
8955 return FALSE;
8956 }
8957 \f
8958 asymbol *
8959 _bfd_elf_make_empty_symbol (bfd *abfd)
8960 {
8961 elf_symbol_type *newsym;
8962
8963 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8964 if (!newsym)
8965 return NULL;
8966 newsym->symbol.the_bfd = abfd;
8967 return &newsym->symbol;
8968 }
8969
8970 void
8971 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8972 asymbol *symbol,
8973 symbol_info *ret)
8974 {
8975 bfd_symbol_info (symbol, ret);
8976 }
8977
8978 /* Return whether a symbol name implies a local symbol. Most targets
8979 use this function for the is_local_label_name entry point, but some
8980 override it. */
8981
8982 bfd_boolean
8983 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8984 const char *name)
8985 {
8986 /* Normal local symbols start with ``.L''. */
8987 if (name[0] == '.' && name[1] == 'L')
8988 return TRUE;
8989
8990 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8991 DWARF debugging symbols starting with ``..''. */
8992 if (name[0] == '.' && name[1] == '.')
8993 return TRUE;
8994
8995 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8996 emitting DWARF debugging output. I suspect this is actually a
8997 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8998 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8999 underscore to be emitted on some ELF targets). For ease of use,
9000 we treat such symbols as local. */
9001 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9002 return TRUE;
9003
9004 /* Treat assembler generated fake symbols, dollar local labels and
9005 forward-backward labels (aka local labels) as locals.
9006 These labels have the form:
9007
9008 L0^A.* (fake symbols)
9009
9010 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9011
9012 Versions which start with .L will have already been matched above,
9013 so we only need to match the rest. */
9014 if (name[0] == 'L' && ISDIGIT (name[1]))
9015 {
9016 bfd_boolean ret = FALSE;
9017 const char * p;
9018 char c;
9019
9020 for (p = name + 2; (c = *p); p++)
9021 {
9022 if (c == 1 || c == 2)
9023 {
9024 if (c == 1 && p == name + 2)
9025 /* A fake symbol. */
9026 return TRUE;
9027
9028 /* FIXME: We are being paranoid here and treating symbols like
9029 L0^Bfoo as if there were non-local, on the grounds that the
9030 assembler will never generate them. But can any symbol
9031 containing an ASCII value in the range 1-31 ever be anything
9032 other than some kind of local ? */
9033 ret = TRUE;
9034 }
9035
9036 if (! ISDIGIT (c))
9037 {
9038 ret = FALSE;
9039 break;
9040 }
9041 }
9042 return ret;
9043 }
9044
9045 return FALSE;
9046 }
9047
9048 alent *
9049 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9050 asymbol *symbol ATTRIBUTE_UNUSED)
9051 {
9052 abort ();
9053 return NULL;
9054 }
9055
9056 bfd_boolean
9057 _bfd_elf_set_arch_mach (bfd *abfd,
9058 enum bfd_architecture arch,
9059 unsigned long machine)
9060 {
9061 /* If this isn't the right architecture for this backend, and this
9062 isn't the generic backend, fail. */
9063 if (arch != get_elf_backend_data (abfd)->arch
9064 && arch != bfd_arch_unknown
9065 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9066 return FALSE;
9067
9068 return bfd_default_set_arch_mach (abfd, arch, machine);
9069 }
9070
9071 /* Find the nearest line to a particular section and offset,
9072 for error reporting. */
9073
9074 bfd_boolean
9075 _bfd_elf_find_nearest_line (bfd *abfd,
9076 asymbol **symbols,
9077 asection *section,
9078 bfd_vma offset,
9079 const char **filename_ptr,
9080 const char **functionname_ptr,
9081 unsigned int *line_ptr,
9082 unsigned int *discriminator_ptr)
9083 {
9084 bfd_boolean found;
9085
9086 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9087 filename_ptr, functionname_ptr,
9088 line_ptr, discriminator_ptr,
9089 dwarf_debug_sections,
9090 &elf_tdata (abfd)->dwarf2_find_line_info))
9091 return TRUE;
9092
9093 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9094 filename_ptr, functionname_ptr, line_ptr))
9095 {
9096 if (!*functionname_ptr)
9097 _bfd_elf_find_function (abfd, symbols, section, offset,
9098 *filename_ptr ? NULL : filename_ptr,
9099 functionname_ptr);
9100 return TRUE;
9101 }
9102
9103 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9104 &found, filename_ptr,
9105 functionname_ptr, line_ptr,
9106 &elf_tdata (abfd)->line_info))
9107 return FALSE;
9108 if (found && (*functionname_ptr || *line_ptr))
9109 return TRUE;
9110
9111 if (symbols == NULL)
9112 return FALSE;
9113
9114 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9115 filename_ptr, functionname_ptr))
9116 return FALSE;
9117
9118 *line_ptr = 0;
9119 return TRUE;
9120 }
9121
9122 /* Find the line for a symbol. */
9123
9124 bfd_boolean
9125 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9126 const char **filename_ptr, unsigned int *line_ptr)
9127 {
9128 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9129 filename_ptr, NULL, line_ptr, NULL,
9130 dwarf_debug_sections,
9131 &elf_tdata (abfd)->dwarf2_find_line_info);
9132 }
9133
9134 /* After a call to bfd_find_nearest_line, successive calls to
9135 bfd_find_inliner_info can be used to get source information about
9136 each level of function inlining that terminated at the address
9137 passed to bfd_find_nearest_line. Currently this is only supported
9138 for DWARF2 with appropriate DWARF3 extensions. */
9139
9140 bfd_boolean
9141 _bfd_elf_find_inliner_info (bfd *abfd,
9142 const char **filename_ptr,
9143 const char **functionname_ptr,
9144 unsigned int *line_ptr)
9145 {
9146 bfd_boolean found;
9147 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9148 functionname_ptr, line_ptr,
9149 & elf_tdata (abfd)->dwarf2_find_line_info);
9150 return found;
9151 }
9152
9153 int
9154 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9155 {
9156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9157 int ret = bed->s->sizeof_ehdr;
9158
9159 if (!bfd_link_relocatable (info))
9160 {
9161 bfd_size_type phdr_size = elf_program_header_size (abfd);
9162
9163 if (phdr_size == (bfd_size_type) -1)
9164 {
9165 struct elf_segment_map *m;
9166
9167 phdr_size = 0;
9168 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9169 phdr_size += bed->s->sizeof_phdr;
9170
9171 if (phdr_size == 0)
9172 phdr_size = get_program_header_size (abfd, info);
9173 }
9174
9175 elf_program_header_size (abfd) = phdr_size;
9176 ret += phdr_size;
9177 }
9178
9179 return ret;
9180 }
9181
9182 bfd_boolean
9183 _bfd_elf_set_section_contents (bfd *abfd,
9184 sec_ptr section,
9185 const void *location,
9186 file_ptr offset,
9187 bfd_size_type count)
9188 {
9189 Elf_Internal_Shdr *hdr;
9190 file_ptr pos;
9191
9192 if (! abfd->output_has_begun
9193 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9194 return FALSE;
9195
9196 if (!count)
9197 return TRUE;
9198
9199 hdr = &elf_section_data (section)->this_hdr;
9200 if (hdr->sh_offset == (file_ptr) -1)
9201 {
9202 unsigned char *contents;
9203
9204 if (bfd_section_is_ctf (section))
9205 /* Nothing to do with this section: the contents are generated
9206 later. */
9207 return TRUE;
9208
9209 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9210 {
9211 _bfd_error_handler
9212 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9213 abfd, section);
9214 bfd_set_error (bfd_error_invalid_operation);
9215 return FALSE;
9216 }
9217
9218 if ((offset + count) > hdr->sh_size)
9219 {
9220 _bfd_error_handler
9221 (_("%pB:%pA: error: attempting to write over the end of the section"),
9222 abfd, section);
9223
9224 bfd_set_error (bfd_error_invalid_operation);
9225 return FALSE;
9226 }
9227
9228 contents = hdr->contents;
9229 if (contents == NULL)
9230 {
9231 _bfd_error_handler
9232 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9233 abfd, section);
9234
9235 bfd_set_error (bfd_error_invalid_operation);
9236 return FALSE;
9237 }
9238
9239 memcpy (contents + offset, location, count);
9240 return TRUE;
9241 }
9242
9243 pos = hdr->sh_offset + offset;
9244 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9245 || bfd_bwrite (location, count, abfd) != count)
9246 return FALSE;
9247
9248 return TRUE;
9249 }
9250
9251 bfd_boolean
9252 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9253 arelent *cache_ptr ATTRIBUTE_UNUSED,
9254 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9255 {
9256 abort ();
9257 return FALSE;
9258 }
9259
9260 /* Try to convert a non-ELF reloc into an ELF one. */
9261
9262 bfd_boolean
9263 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9264 {
9265 /* Check whether we really have an ELF howto. */
9266
9267 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9268 {
9269 bfd_reloc_code_real_type code;
9270 reloc_howto_type *howto;
9271
9272 /* Alien reloc: Try to determine its type to replace it with an
9273 equivalent ELF reloc. */
9274
9275 if (areloc->howto->pc_relative)
9276 {
9277 switch (areloc->howto->bitsize)
9278 {
9279 case 8:
9280 code = BFD_RELOC_8_PCREL;
9281 break;
9282 case 12:
9283 code = BFD_RELOC_12_PCREL;
9284 break;
9285 case 16:
9286 code = BFD_RELOC_16_PCREL;
9287 break;
9288 case 24:
9289 code = BFD_RELOC_24_PCREL;
9290 break;
9291 case 32:
9292 code = BFD_RELOC_32_PCREL;
9293 break;
9294 case 64:
9295 code = BFD_RELOC_64_PCREL;
9296 break;
9297 default:
9298 goto fail;
9299 }
9300
9301 howto = bfd_reloc_type_lookup (abfd, code);
9302
9303 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9304 {
9305 if (howto->pcrel_offset)
9306 areloc->addend += areloc->address;
9307 else
9308 areloc->addend -= areloc->address; /* addend is unsigned!! */
9309 }
9310 }
9311 else
9312 {
9313 switch (areloc->howto->bitsize)
9314 {
9315 case 8:
9316 code = BFD_RELOC_8;
9317 break;
9318 case 14:
9319 code = BFD_RELOC_14;
9320 break;
9321 case 16:
9322 code = BFD_RELOC_16;
9323 break;
9324 case 26:
9325 code = BFD_RELOC_26;
9326 break;
9327 case 32:
9328 code = BFD_RELOC_32;
9329 break;
9330 case 64:
9331 code = BFD_RELOC_64;
9332 break;
9333 default:
9334 goto fail;
9335 }
9336
9337 howto = bfd_reloc_type_lookup (abfd, code);
9338 }
9339
9340 if (howto)
9341 areloc->howto = howto;
9342 else
9343 goto fail;
9344 }
9345
9346 return TRUE;
9347
9348 fail:
9349 /* xgettext:c-format */
9350 _bfd_error_handler (_("%pB: %s unsupported"),
9351 abfd, areloc->howto->name);
9352 bfd_set_error (bfd_error_sorry);
9353 return FALSE;
9354 }
9355
9356 bfd_boolean
9357 _bfd_elf_close_and_cleanup (bfd *abfd)
9358 {
9359 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9360 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9361 {
9362 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9363 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9364 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9365 }
9366
9367 return _bfd_generic_close_and_cleanup (abfd);
9368 }
9369
9370 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9371 in the relocation's offset. Thus we cannot allow any sort of sanity
9372 range-checking to interfere. There is nothing else to do in processing
9373 this reloc. */
9374
9375 bfd_reloc_status_type
9376 _bfd_elf_rel_vtable_reloc_fn
9377 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9378 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9379 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9380 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9381 {
9382 return bfd_reloc_ok;
9383 }
9384 \f
9385 /* Elf core file support. Much of this only works on native
9386 toolchains, since we rely on knowing the
9387 machine-dependent procfs structure in order to pick
9388 out details about the corefile. */
9389
9390 #ifdef HAVE_SYS_PROCFS_H
9391 /* Needed for new procfs interface on sparc-solaris. */
9392 # define _STRUCTURED_PROC 1
9393 # include <sys/procfs.h>
9394 #endif
9395
9396 /* Return a PID that identifies a "thread" for threaded cores, or the
9397 PID of the main process for non-threaded cores. */
9398
9399 static int
9400 elfcore_make_pid (bfd *abfd)
9401 {
9402 int pid;
9403
9404 pid = elf_tdata (abfd)->core->lwpid;
9405 if (pid == 0)
9406 pid = elf_tdata (abfd)->core->pid;
9407
9408 return pid;
9409 }
9410
9411 /* If there isn't a section called NAME, make one, using
9412 data from SECT. Note, this function will generate a
9413 reference to NAME, so you shouldn't deallocate or
9414 overwrite it. */
9415
9416 static bfd_boolean
9417 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9418 {
9419 asection *sect2;
9420
9421 if (bfd_get_section_by_name (abfd, name) != NULL)
9422 return TRUE;
9423
9424 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9425 if (sect2 == NULL)
9426 return FALSE;
9427
9428 sect2->size = sect->size;
9429 sect2->filepos = sect->filepos;
9430 sect2->alignment_power = sect->alignment_power;
9431 return TRUE;
9432 }
9433
9434 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9435 actually creates up to two pseudosections:
9436 - For the single-threaded case, a section named NAME, unless
9437 such a section already exists.
9438 - For the multi-threaded case, a section named "NAME/PID", where
9439 PID is elfcore_make_pid (abfd).
9440 Both pseudosections have identical contents. */
9441 bfd_boolean
9442 _bfd_elfcore_make_pseudosection (bfd *abfd,
9443 char *name,
9444 size_t size,
9445 ufile_ptr filepos)
9446 {
9447 char buf[100];
9448 char *threaded_name;
9449 size_t len;
9450 asection *sect;
9451
9452 /* Build the section name. */
9453
9454 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9455 len = strlen (buf) + 1;
9456 threaded_name = (char *) bfd_alloc (abfd, len);
9457 if (threaded_name == NULL)
9458 return FALSE;
9459 memcpy (threaded_name, buf, len);
9460
9461 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9462 SEC_HAS_CONTENTS);
9463 if (sect == NULL)
9464 return FALSE;
9465 sect->size = size;
9466 sect->filepos = filepos;
9467 sect->alignment_power = 2;
9468
9469 return elfcore_maybe_make_sect (abfd, name, sect);
9470 }
9471
9472 static bfd_boolean
9473 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9474 size_t offs)
9475 {
9476 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9477 SEC_HAS_CONTENTS);
9478
9479 if (sect == NULL)
9480 return FALSE;
9481
9482 sect->size = note->descsz - offs;
9483 sect->filepos = note->descpos + offs;
9484 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9485
9486 return TRUE;
9487 }
9488
9489 /* prstatus_t exists on:
9490 solaris 2.5+
9491 linux 2.[01] + glibc
9492 unixware 4.2
9493 */
9494
9495 #if defined (HAVE_PRSTATUS_T)
9496
9497 static bfd_boolean
9498 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9499 {
9500 size_t size;
9501 int offset;
9502
9503 if (note->descsz == sizeof (prstatus_t))
9504 {
9505 prstatus_t prstat;
9506
9507 size = sizeof (prstat.pr_reg);
9508 offset = offsetof (prstatus_t, pr_reg);
9509 memcpy (&prstat, note->descdata, sizeof (prstat));
9510
9511 /* Do not overwrite the core signal if it
9512 has already been set by another thread. */
9513 if (elf_tdata (abfd)->core->signal == 0)
9514 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9515 if (elf_tdata (abfd)->core->pid == 0)
9516 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9517
9518 /* pr_who exists on:
9519 solaris 2.5+
9520 unixware 4.2
9521 pr_who doesn't exist on:
9522 linux 2.[01]
9523 */
9524 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9525 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9526 #else
9527 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9528 #endif
9529 }
9530 #if defined (HAVE_PRSTATUS32_T)
9531 else if (note->descsz == sizeof (prstatus32_t))
9532 {
9533 /* 64-bit host, 32-bit corefile */
9534 prstatus32_t prstat;
9535
9536 size = sizeof (prstat.pr_reg);
9537 offset = offsetof (prstatus32_t, pr_reg);
9538 memcpy (&prstat, note->descdata, sizeof (prstat));
9539
9540 /* Do not overwrite the core signal if it
9541 has already been set by another thread. */
9542 if (elf_tdata (abfd)->core->signal == 0)
9543 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9544 if (elf_tdata (abfd)->core->pid == 0)
9545 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9546
9547 /* pr_who exists on:
9548 solaris 2.5+
9549 unixware 4.2
9550 pr_who doesn't exist on:
9551 linux 2.[01]
9552 */
9553 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9554 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9555 #else
9556 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9557 #endif
9558 }
9559 #endif /* HAVE_PRSTATUS32_T */
9560 else
9561 {
9562 /* Fail - we don't know how to handle any other
9563 note size (ie. data object type). */
9564 return TRUE;
9565 }
9566
9567 /* Make a ".reg/999" section and a ".reg" section. */
9568 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9569 size, note->descpos + offset);
9570 }
9571 #endif /* defined (HAVE_PRSTATUS_T) */
9572
9573 /* Create a pseudosection containing the exact contents of NOTE. */
9574 static bfd_boolean
9575 elfcore_make_note_pseudosection (bfd *abfd,
9576 char *name,
9577 Elf_Internal_Note *note)
9578 {
9579 return _bfd_elfcore_make_pseudosection (abfd, name,
9580 note->descsz, note->descpos);
9581 }
9582
9583 /* There isn't a consistent prfpregset_t across platforms,
9584 but it doesn't matter, because we don't have to pick this
9585 data structure apart. */
9586
9587 static bfd_boolean
9588 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9589 {
9590 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9591 }
9592
9593 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9594 type of NT_PRXFPREG. Just include the whole note's contents
9595 literally. */
9596
9597 static bfd_boolean
9598 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9599 {
9600 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9601 }
9602
9603 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9604 with a note type of NT_X86_XSTATE. Just include the whole note's
9605 contents literally. */
9606
9607 static bfd_boolean
9608 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9609 {
9610 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9611 }
9612
9613 static bfd_boolean
9614 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9615 {
9616 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9617 }
9618
9619 static bfd_boolean
9620 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9621 {
9622 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9623 }
9624
9625 static bfd_boolean
9626 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9627 {
9628 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9629 }
9630
9631 static bfd_boolean
9632 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9633 {
9634 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9635 }
9636
9637 static bfd_boolean
9638 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9639 {
9640 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9641 }
9642
9643 static bfd_boolean
9644 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9645 {
9646 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9647 }
9648
9649 static bfd_boolean
9650 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9651 {
9652 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9653 }
9654
9655 static bfd_boolean
9656 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9657 {
9658 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9659 }
9660
9661 static bfd_boolean
9662 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9663 {
9664 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9665 }
9666
9667 static bfd_boolean
9668 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9669 {
9670 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9671 }
9672
9673 static bfd_boolean
9674 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9675 {
9676 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9677 }
9678
9679 static bfd_boolean
9680 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9681 {
9682 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9683 }
9684
9685 static bfd_boolean
9686 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9687 {
9688 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9689 }
9690
9691 static bfd_boolean
9692 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9693 {
9694 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9695 }
9696
9697 static bfd_boolean
9698 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9699 {
9700 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9701 }
9702
9703 static bfd_boolean
9704 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9705 {
9706 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9707 }
9708
9709 static bfd_boolean
9710 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9711 {
9712 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9713 }
9714
9715 static bfd_boolean
9716 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9717 {
9718 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9719 }
9720
9721 static bfd_boolean
9722 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9723 {
9724 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9725 }
9726
9727 static bfd_boolean
9728 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9729 {
9730 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9731 }
9732
9733 static bfd_boolean
9734 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9735 {
9736 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9737 }
9738
9739 static bfd_boolean
9740 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9741 {
9742 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9743 }
9744
9745 static bfd_boolean
9746 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9747 {
9748 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9749 }
9750
9751 static bfd_boolean
9752 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9753 {
9754 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9755 }
9756
9757 static bfd_boolean
9758 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9759 {
9760 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9761 }
9762
9763 static bfd_boolean
9764 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9765 {
9766 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9767 }
9768
9769 static bfd_boolean
9770 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9771 {
9772 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9773 }
9774
9775 static bfd_boolean
9776 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9777 {
9778 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9779 }
9780
9781 static bfd_boolean
9782 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9783 {
9784 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9785 }
9786
9787 static bfd_boolean
9788 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9789 {
9790 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9791 }
9792
9793 static bfd_boolean
9794 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9795 {
9796 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9797 }
9798
9799 static bfd_boolean
9800 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9801 {
9802 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9803 }
9804
9805 static bfd_boolean
9806 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9807 {
9808 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9809 }
9810
9811 static bfd_boolean
9812 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9813 {
9814 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9815 }
9816
9817 #if defined (HAVE_PRPSINFO_T)
9818 typedef prpsinfo_t elfcore_psinfo_t;
9819 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9820 typedef prpsinfo32_t elfcore_psinfo32_t;
9821 #endif
9822 #endif
9823
9824 #if defined (HAVE_PSINFO_T)
9825 typedef psinfo_t elfcore_psinfo_t;
9826 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9827 typedef psinfo32_t elfcore_psinfo32_t;
9828 #endif
9829 #endif
9830
9831 /* return a malloc'ed copy of a string at START which is at
9832 most MAX bytes long, possibly without a terminating '\0'.
9833 the copy will always have a terminating '\0'. */
9834
9835 char *
9836 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9837 {
9838 char *dups;
9839 char *end = (char *) memchr (start, '\0', max);
9840 size_t len;
9841
9842 if (end == NULL)
9843 len = max;
9844 else
9845 len = end - start;
9846
9847 dups = (char *) bfd_alloc (abfd, len + 1);
9848 if (dups == NULL)
9849 return NULL;
9850
9851 memcpy (dups, start, len);
9852 dups[len] = '\0';
9853
9854 return dups;
9855 }
9856
9857 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9858 static bfd_boolean
9859 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9860 {
9861 if (note->descsz == sizeof (elfcore_psinfo_t))
9862 {
9863 elfcore_psinfo_t psinfo;
9864
9865 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9866
9867 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9868 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9869 #endif
9870 elf_tdata (abfd)->core->program
9871 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9872 sizeof (psinfo.pr_fname));
9873
9874 elf_tdata (abfd)->core->command
9875 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9876 sizeof (psinfo.pr_psargs));
9877 }
9878 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9879 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9880 {
9881 /* 64-bit host, 32-bit corefile */
9882 elfcore_psinfo32_t psinfo;
9883
9884 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9885
9886 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9887 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9888 #endif
9889 elf_tdata (abfd)->core->program
9890 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9891 sizeof (psinfo.pr_fname));
9892
9893 elf_tdata (abfd)->core->command
9894 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9895 sizeof (psinfo.pr_psargs));
9896 }
9897 #endif
9898
9899 else
9900 {
9901 /* Fail - we don't know how to handle any other
9902 note size (ie. data object type). */
9903 return TRUE;
9904 }
9905
9906 /* Note that for some reason, a spurious space is tacked
9907 onto the end of the args in some (at least one anyway)
9908 implementations, so strip it off if it exists. */
9909
9910 {
9911 char *command = elf_tdata (abfd)->core->command;
9912 int n = strlen (command);
9913
9914 if (0 < n && command[n - 1] == ' ')
9915 command[n - 1] = '\0';
9916 }
9917
9918 return TRUE;
9919 }
9920 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9921
9922 #if defined (HAVE_PSTATUS_T)
9923 static bfd_boolean
9924 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9925 {
9926 if (note->descsz == sizeof (pstatus_t)
9927 #if defined (HAVE_PXSTATUS_T)
9928 || note->descsz == sizeof (pxstatus_t)
9929 #endif
9930 )
9931 {
9932 pstatus_t pstat;
9933
9934 memcpy (&pstat, note->descdata, sizeof (pstat));
9935
9936 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9937 }
9938 #if defined (HAVE_PSTATUS32_T)
9939 else if (note->descsz == sizeof (pstatus32_t))
9940 {
9941 /* 64-bit host, 32-bit corefile */
9942 pstatus32_t pstat;
9943
9944 memcpy (&pstat, note->descdata, sizeof (pstat));
9945
9946 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9947 }
9948 #endif
9949 /* Could grab some more details from the "representative"
9950 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9951 NT_LWPSTATUS note, presumably. */
9952
9953 return TRUE;
9954 }
9955 #endif /* defined (HAVE_PSTATUS_T) */
9956
9957 #if defined (HAVE_LWPSTATUS_T)
9958 static bfd_boolean
9959 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9960 {
9961 lwpstatus_t lwpstat;
9962 char buf[100];
9963 char *name;
9964 size_t len;
9965 asection *sect;
9966
9967 if (note->descsz != sizeof (lwpstat)
9968 #if defined (HAVE_LWPXSTATUS_T)
9969 && note->descsz != sizeof (lwpxstatus_t)
9970 #endif
9971 )
9972 return TRUE;
9973
9974 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9975
9976 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9977 /* Do not overwrite the core signal if it has already been set by
9978 another thread. */
9979 if (elf_tdata (abfd)->core->signal == 0)
9980 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9981
9982 /* Make a ".reg/999" section. */
9983
9984 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9985 len = strlen (buf) + 1;
9986 name = bfd_alloc (abfd, len);
9987 if (name == NULL)
9988 return FALSE;
9989 memcpy (name, buf, len);
9990
9991 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9992 if (sect == NULL)
9993 return FALSE;
9994
9995 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9996 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9997 sect->filepos = note->descpos
9998 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9999 #endif
10000
10001 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10002 sect->size = sizeof (lwpstat.pr_reg);
10003 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10004 #endif
10005
10006 sect->alignment_power = 2;
10007
10008 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10009 return FALSE;
10010
10011 /* Make a ".reg2/999" section */
10012
10013 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10014 len = strlen (buf) + 1;
10015 name = bfd_alloc (abfd, len);
10016 if (name == NULL)
10017 return FALSE;
10018 memcpy (name, buf, len);
10019
10020 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10021 if (sect == NULL)
10022 return FALSE;
10023
10024 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10025 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10026 sect->filepos = note->descpos
10027 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10028 #endif
10029
10030 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10031 sect->size = sizeof (lwpstat.pr_fpreg);
10032 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10033 #endif
10034
10035 sect->alignment_power = 2;
10036
10037 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10038 }
10039 #endif /* defined (HAVE_LWPSTATUS_T) */
10040
10041 static bfd_boolean
10042 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10043 {
10044 char buf[30];
10045 char *name;
10046 size_t len;
10047 asection *sect;
10048 int type;
10049 int is_active_thread;
10050 bfd_vma base_addr;
10051
10052 if (note->descsz < 728)
10053 return TRUE;
10054
10055 if (! CONST_STRNEQ (note->namedata, "win32"))
10056 return TRUE;
10057
10058 type = bfd_get_32 (abfd, note->descdata);
10059
10060 switch (type)
10061 {
10062 case 1 /* NOTE_INFO_PROCESS */:
10063 /* FIXME: need to add ->core->command. */
10064 /* process_info.pid */
10065 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
10066 /* process_info.signal */
10067 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
10068 break;
10069
10070 case 2 /* NOTE_INFO_THREAD */:
10071 /* Make a ".reg/999" section. */
10072 /* thread_info.tid */
10073 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10074
10075 len = strlen (buf) + 1;
10076 name = (char *) bfd_alloc (abfd, len);
10077 if (name == NULL)
10078 return FALSE;
10079
10080 memcpy (name, buf, len);
10081
10082 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10083 if (sect == NULL)
10084 return FALSE;
10085
10086 /* sizeof (thread_info.thread_context) */
10087 sect->size = 716;
10088 /* offsetof (thread_info.thread_context) */
10089 sect->filepos = note->descpos + 12;
10090 sect->alignment_power = 2;
10091
10092 /* thread_info.is_active_thread */
10093 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10094
10095 if (is_active_thread)
10096 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10097 return FALSE;
10098 break;
10099
10100 case 3 /* NOTE_INFO_MODULE */:
10101 /* Make a ".module/xxxxxxxx" section. */
10102 /* module_info.base_address */
10103 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10104 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10105
10106 len = strlen (buf) + 1;
10107 name = (char *) bfd_alloc (abfd, len);
10108 if (name == NULL)
10109 return FALSE;
10110
10111 memcpy (name, buf, len);
10112
10113 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10114
10115 if (sect == NULL)
10116 return FALSE;
10117
10118 sect->size = note->descsz;
10119 sect->filepos = note->descpos;
10120 sect->alignment_power = 2;
10121 break;
10122
10123 default:
10124 return TRUE;
10125 }
10126
10127 return TRUE;
10128 }
10129
10130 static bfd_boolean
10131 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10132 {
10133 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10134
10135 switch (note->type)
10136 {
10137 default:
10138 return TRUE;
10139
10140 case NT_PRSTATUS:
10141 if (bed->elf_backend_grok_prstatus)
10142 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10143 return TRUE;
10144 #if defined (HAVE_PRSTATUS_T)
10145 return elfcore_grok_prstatus (abfd, note);
10146 #else
10147 return TRUE;
10148 #endif
10149
10150 #if defined (HAVE_PSTATUS_T)
10151 case NT_PSTATUS:
10152 return elfcore_grok_pstatus (abfd, note);
10153 #endif
10154
10155 #if defined (HAVE_LWPSTATUS_T)
10156 case NT_LWPSTATUS:
10157 return elfcore_grok_lwpstatus (abfd, note);
10158 #endif
10159
10160 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10161 return elfcore_grok_prfpreg (abfd, note);
10162
10163 case NT_WIN32PSTATUS:
10164 return elfcore_grok_win32pstatus (abfd, note);
10165
10166 case NT_PRXFPREG: /* Linux SSE extension */
10167 if (note->namesz == 6
10168 && strcmp (note->namedata, "LINUX") == 0)
10169 return elfcore_grok_prxfpreg (abfd, note);
10170 else
10171 return TRUE;
10172
10173 case NT_X86_XSTATE: /* Linux XSAVE extension */
10174 if (note->namesz == 6
10175 && strcmp (note->namedata, "LINUX") == 0)
10176 return elfcore_grok_xstatereg (abfd, note);
10177 else
10178 return TRUE;
10179
10180 case NT_PPC_VMX:
10181 if (note->namesz == 6
10182 && strcmp (note->namedata, "LINUX") == 0)
10183 return elfcore_grok_ppc_vmx (abfd, note);
10184 else
10185 return TRUE;
10186
10187 case NT_PPC_VSX:
10188 if (note->namesz == 6
10189 && strcmp (note->namedata, "LINUX") == 0)
10190 return elfcore_grok_ppc_vsx (abfd, note);
10191 else
10192 return TRUE;
10193
10194 case NT_PPC_TAR:
10195 if (note->namesz == 6
10196 && strcmp (note->namedata, "LINUX") == 0)
10197 return elfcore_grok_ppc_tar (abfd, note);
10198 else
10199 return TRUE;
10200
10201 case NT_PPC_PPR:
10202 if (note->namesz == 6
10203 && strcmp (note->namedata, "LINUX") == 0)
10204 return elfcore_grok_ppc_ppr (abfd, note);
10205 else
10206 return TRUE;
10207
10208 case NT_PPC_DSCR:
10209 if (note->namesz == 6
10210 && strcmp (note->namedata, "LINUX") == 0)
10211 return elfcore_grok_ppc_dscr (abfd, note);
10212 else
10213 return TRUE;
10214
10215 case NT_PPC_EBB:
10216 if (note->namesz == 6
10217 && strcmp (note->namedata, "LINUX") == 0)
10218 return elfcore_grok_ppc_ebb (abfd, note);
10219 else
10220 return TRUE;
10221
10222 case NT_PPC_PMU:
10223 if (note->namesz == 6
10224 && strcmp (note->namedata, "LINUX") == 0)
10225 return elfcore_grok_ppc_pmu (abfd, note);
10226 else
10227 return TRUE;
10228
10229 case NT_PPC_TM_CGPR:
10230 if (note->namesz == 6
10231 && strcmp (note->namedata, "LINUX") == 0)
10232 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10233 else
10234 return TRUE;
10235
10236 case NT_PPC_TM_CFPR:
10237 if (note->namesz == 6
10238 && strcmp (note->namedata, "LINUX") == 0)
10239 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10240 else
10241 return TRUE;
10242
10243 case NT_PPC_TM_CVMX:
10244 if (note->namesz == 6
10245 && strcmp (note->namedata, "LINUX") == 0)
10246 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10247 else
10248 return TRUE;
10249
10250 case NT_PPC_TM_CVSX:
10251 if (note->namesz == 6
10252 && strcmp (note->namedata, "LINUX") == 0)
10253 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10254 else
10255 return TRUE;
10256
10257 case NT_PPC_TM_SPR:
10258 if (note->namesz == 6
10259 && strcmp (note->namedata, "LINUX") == 0)
10260 return elfcore_grok_ppc_tm_spr (abfd, note);
10261 else
10262 return TRUE;
10263
10264 case NT_PPC_TM_CTAR:
10265 if (note->namesz == 6
10266 && strcmp (note->namedata, "LINUX") == 0)
10267 return elfcore_grok_ppc_tm_ctar (abfd, note);
10268 else
10269 return TRUE;
10270
10271 case NT_PPC_TM_CPPR:
10272 if (note->namesz == 6
10273 && strcmp (note->namedata, "LINUX") == 0)
10274 return elfcore_grok_ppc_tm_cppr (abfd, note);
10275 else
10276 return TRUE;
10277
10278 case NT_PPC_TM_CDSCR:
10279 if (note->namesz == 6
10280 && strcmp (note->namedata, "LINUX") == 0)
10281 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10282 else
10283 return TRUE;
10284
10285 case NT_S390_HIGH_GPRS:
10286 if (note->namesz == 6
10287 && strcmp (note->namedata, "LINUX") == 0)
10288 return elfcore_grok_s390_high_gprs (abfd, note);
10289 else
10290 return TRUE;
10291
10292 case NT_S390_TIMER:
10293 if (note->namesz == 6
10294 && strcmp (note->namedata, "LINUX") == 0)
10295 return elfcore_grok_s390_timer (abfd, note);
10296 else
10297 return TRUE;
10298
10299 case NT_S390_TODCMP:
10300 if (note->namesz == 6
10301 && strcmp (note->namedata, "LINUX") == 0)
10302 return elfcore_grok_s390_todcmp (abfd, note);
10303 else
10304 return TRUE;
10305
10306 case NT_S390_TODPREG:
10307 if (note->namesz == 6
10308 && strcmp (note->namedata, "LINUX") == 0)
10309 return elfcore_grok_s390_todpreg (abfd, note);
10310 else
10311 return TRUE;
10312
10313 case NT_S390_CTRS:
10314 if (note->namesz == 6
10315 && strcmp (note->namedata, "LINUX") == 0)
10316 return elfcore_grok_s390_ctrs (abfd, note);
10317 else
10318 return TRUE;
10319
10320 case NT_S390_PREFIX:
10321 if (note->namesz == 6
10322 && strcmp (note->namedata, "LINUX") == 0)
10323 return elfcore_grok_s390_prefix (abfd, note);
10324 else
10325 return TRUE;
10326
10327 case NT_S390_LAST_BREAK:
10328 if (note->namesz == 6
10329 && strcmp (note->namedata, "LINUX") == 0)
10330 return elfcore_grok_s390_last_break (abfd, note);
10331 else
10332 return TRUE;
10333
10334 case NT_S390_SYSTEM_CALL:
10335 if (note->namesz == 6
10336 && strcmp (note->namedata, "LINUX") == 0)
10337 return elfcore_grok_s390_system_call (abfd, note);
10338 else
10339 return TRUE;
10340
10341 case NT_S390_TDB:
10342 if (note->namesz == 6
10343 && strcmp (note->namedata, "LINUX") == 0)
10344 return elfcore_grok_s390_tdb (abfd, note);
10345 else
10346 return TRUE;
10347
10348 case NT_S390_VXRS_LOW:
10349 if (note->namesz == 6
10350 && strcmp (note->namedata, "LINUX") == 0)
10351 return elfcore_grok_s390_vxrs_low (abfd, note);
10352 else
10353 return TRUE;
10354
10355 case NT_S390_VXRS_HIGH:
10356 if (note->namesz == 6
10357 && strcmp (note->namedata, "LINUX") == 0)
10358 return elfcore_grok_s390_vxrs_high (abfd, note);
10359 else
10360 return TRUE;
10361
10362 case NT_S390_GS_CB:
10363 if (note->namesz == 6
10364 && strcmp (note->namedata, "LINUX") == 0)
10365 return elfcore_grok_s390_gs_cb (abfd, note);
10366 else
10367 return TRUE;
10368
10369 case NT_S390_GS_BC:
10370 if (note->namesz == 6
10371 && strcmp (note->namedata, "LINUX") == 0)
10372 return elfcore_grok_s390_gs_bc (abfd, note);
10373 else
10374 return TRUE;
10375
10376 case NT_ARM_VFP:
10377 if (note->namesz == 6
10378 && strcmp (note->namedata, "LINUX") == 0)
10379 return elfcore_grok_arm_vfp (abfd, note);
10380 else
10381 return TRUE;
10382
10383 case NT_ARM_TLS:
10384 if (note->namesz == 6
10385 && strcmp (note->namedata, "LINUX") == 0)
10386 return elfcore_grok_aarch_tls (abfd, note);
10387 else
10388 return TRUE;
10389
10390 case NT_ARM_HW_BREAK:
10391 if (note->namesz == 6
10392 && strcmp (note->namedata, "LINUX") == 0)
10393 return elfcore_grok_aarch_hw_break (abfd, note);
10394 else
10395 return TRUE;
10396
10397 case NT_ARM_HW_WATCH:
10398 if (note->namesz == 6
10399 && strcmp (note->namedata, "LINUX") == 0)
10400 return elfcore_grok_aarch_hw_watch (abfd, note);
10401 else
10402 return TRUE;
10403
10404 case NT_ARM_SVE:
10405 if (note->namesz == 6
10406 && strcmp (note->namedata, "LINUX") == 0)
10407 return elfcore_grok_aarch_sve (abfd, note);
10408 else
10409 return TRUE;
10410
10411 case NT_ARM_PAC_MASK:
10412 if (note->namesz == 6
10413 && strcmp (note->namedata, "LINUX") == 0)
10414 return elfcore_grok_aarch_pauth (abfd, note);
10415 else
10416 return TRUE;
10417
10418 case NT_PRPSINFO:
10419 case NT_PSINFO:
10420 if (bed->elf_backend_grok_psinfo)
10421 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10422 return TRUE;
10423 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10424 return elfcore_grok_psinfo (abfd, note);
10425 #else
10426 return TRUE;
10427 #endif
10428
10429 case NT_AUXV:
10430 return elfcore_make_auxv_note_section (abfd, note, 0);
10431
10432 case NT_FILE:
10433 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10434 note);
10435
10436 case NT_SIGINFO:
10437 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10438 note);
10439
10440 }
10441 }
10442
10443 static bfd_boolean
10444 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10445 {
10446 struct bfd_build_id* build_id;
10447
10448 if (note->descsz == 0)
10449 return FALSE;
10450
10451 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10452 if (build_id == NULL)
10453 return FALSE;
10454
10455 build_id->size = note->descsz;
10456 memcpy (build_id->data, note->descdata, note->descsz);
10457 abfd->build_id = build_id;
10458
10459 return TRUE;
10460 }
10461
10462 static bfd_boolean
10463 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10464 {
10465 switch (note->type)
10466 {
10467 default:
10468 return TRUE;
10469
10470 case NT_GNU_PROPERTY_TYPE_0:
10471 return _bfd_elf_parse_gnu_properties (abfd, note);
10472
10473 case NT_GNU_BUILD_ID:
10474 return elfobj_grok_gnu_build_id (abfd, note);
10475 }
10476 }
10477
10478 static bfd_boolean
10479 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10480 {
10481 struct sdt_note *cur =
10482 (struct sdt_note *) bfd_alloc (abfd,
10483 sizeof (struct sdt_note) + note->descsz);
10484
10485 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10486 cur->size = (bfd_size_type) note->descsz;
10487 memcpy (cur->data, note->descdata, note->descsz);
10488
10489 elf_tdata (abfd)->sdt_note_head = cur;
10490
10491 return TRUE;
10492 }
10493
10494 static bfd_boolean
10495 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10496 {
10497 switch (note->type)
10498 {
10499 case NT_STAPSDT:
10500 return elfobj_grok_stapsdt_note_1 (abfd, note);
10501
10502 default:
10503 return TRUE;
10504 }
10505 }
10506
10507 static bfd_boolean
10508 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10509 {
10510 size_t offset;
10511
10512 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10513 {
10514 case ELFCLASS32:
10515 if (note->descsz < 108)
10516 return FALSE;
10517 break;
10518
10519 case ELFCLASS64:
10520 if (note->descsz < 120)
10521 return FALSE;
10522 break;
10523
10524 default:
10525 return FALSE;
10526 }
10527
10528 /* Check for version 1 in pr_version. */
10529 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10530 return FALSE;
10531
10532 offset = 4;
10533
10534 /* Skip over pr_psinfosz. */
10535 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10536 offset += 4;
10537 else
10538 {
10539 offset += 4; /* Padding before pr_psinfosz. */
10540 offset += 8;
10541 }
10542
10543 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10544 elf_tdata (abfd)->core->program
10545 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10546 offset += 17;
10547
10548 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10549 elf_tdata (abfd)->core->command
10550 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10551 offset += 81;
10552
10553 /* Padding before pr_pid. */
10554 offset += 2;
10555
10556 /* The pr_pid field was added in version "1a". */
10557 if (note->descsz < offset + 4)
10558 return TRUE;
10559
10560 elf_tdata (abfd)->core->pid
10561 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10562
10563 return TRUE;
10564 }
10565
10566 static bfd_boolean
10567 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10568 {
10569 size_t offset;
10570 size_t size;
10571 size_t min_size;
10572
10573 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10574 Also compute minimum size of this note. */
10575 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10576 {
10577 case ELFCLASS32:
10578 offset = 4 + 4;
10579 min_size = offset + (4 * 2) + 4 + 4 + 4;
10580 break;
10581
10582 case ELFCLASS64:
10583 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10584 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10585 break;
10586
10587 default:
10588 return FALSE;
10589 }
10590
10591 if (note->descsz < min_size)
10592 return FALSE;
10593
10594 /* Check for version 1 in pr_version. */
10595 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10596 return FALSE;
10597
10598 /* Extract size of pr_reg from pr_gregsetsz. */
10599 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10600 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10601 {
10602 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10603 offset += 4 * 2;
10604 }
10605 else
10606 {
10607 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10608 offset += 8 * 2;
10609 }
10610
10611 /* Skip over pr_osreldate. */
10612 offset += 4;
10613
10614 /* Read signal from pr_cursig. */
10615 if (elf_tdata (abfd)->core->signal == 0)
10616 elf_tdata (abfd)->core->signal
10617 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10618 offset += 4;
10619
10620 /* Read TID from pr_pid. */
10621 elf_tdata (abfd)->core->lwpid
10622 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10623 offset += 4;
10624
10625 /* Padding before pr_reg. */
10626 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10627 offset += 4;
10628
10629 /* Make sure that there is enough data remaining in the note. */
10630 if ((note->descsz - offset) < size)
10631 return FALSE;
10632
10633 /* Make a ".reg/999" section and a ".reg" section. */
10634 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10635 size, note->descpos + offset);
10636 }
10637
10638 static bfd_boolean
10639 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10640 {
10641 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10642
10643 switch (note->type)
10644 {
10645 case NT_PRSTATUS:
10646 if (bed->elf_backend_grok_freebsd_prstatus)
10647 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10648 return TRUE;
10649 return elfcore_grok_freebsd_prstatus (abfd, note);
10650
10651 case NT_FPREGSET:
10652 return elfcore_grok_prfpreg (abfd, note);
10653
10654 case NT_PRPSINFO:
10655 return elfcore_grok_freebsd_psinfo (abfd, note);
10656
10657 case NT_FREEBSD_THRMISC:
10658 if (note->namesz == 8)
10659 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10660 else
10661 return TRUE;
10662
10663 case NT_FREEBSD_PROCSTAT_PROC:
10664 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10665 note);
10666
10667 case NT_FREEBSD_PROCSTAT_FILES:
10668 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10669 note);
10670
10671 case NT_FREEBSD_PROCSTAT_VMMAP:
10672 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10673 note);
10674
10675 case NT_FREEBSD_PROCSTAT_AUXV:
10676 return elfcore_make_auxv_note_section (abfd, note, 4);
10677
10678 case NT_X86_XSTATE:
10679 if (note->namesz == 8)
10680 return elfcore_grok_xstatereg (abfd, note);
10681 else
10682 return TRUE;
10683
10684 case NT_FREEBSD_PTLWPINFO:
10685 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10686 note);
10687
10688 case NT_ARM_VFP:
10689 return elfcore_grok_arm_vfp (abfd, note);
10690
10691 default:
10692 return TRUE;
10693 }
10694 }
10695
10696 static bfd_boolean
10697 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10698 {
10699 char *cp;
10700
10701 cp = strchr (note->namedata, '@');
10702 if (cp != NULL)
10703 {
10704 *lwpidp = atoi(cp + 1);
10705 return TRUE;
10706 }
10707 return FALSE;
10708 }
10709
10710 static bfd_boolean
10711 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10712 {
10713 if (note->descsz <= 0x7c + 31)
10714 return FALSE;
10715
10716 /* Signal number at offset 0x08. */
10717 elf_tdata (abfd)->core->signal
10718 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10719
10720 /* Process ID at offset 0x50. */
10721 elf_tdata (abfd)->core->pid
10722 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10723
10724 /* Command name at 0x7c (max 32 bytes, including nul). */
10725 elf_tdata (abfd)->core->command
10726 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10727
10728 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10729 note);
10730 }
10731
10732 static bfd_boolean
10733 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10734 {
10735 int lwp;
10736
10737 if (elfcore_netbsd_get_lwpid (note, &lwp))
10738 elf_tdata (abfd)->core->lwpid = lwp;
10739
10740 switch (note->type)
10741 {
10742 case NT_NETBSDCORE_PROCINFO:
10743 /* NetBSD-specific core "procinfo". Note that we expect to
10744 find this note before any of the others, which is fine,
10745 since the kernel writes this note out first when it
10746 creates a core file. */
10747 return elfcore_grok_netbsd_procinfo (abfd, note);
10748 #ifdef NT_NETBSDCORE_AUXV
10749 case NT_NETBSDCORE_AUXV:
10750 /* NetBSD-specific Elf Auxiliary Vector data. */
10751 return elfcore_make_auxv_note_section (abfd, note, 4);
10752 #endif
10753 default:
10754 break;
10755 }
10756
10757 /* As of March 2017 there are no other machine-independent notes
10758 defined for NetBSD core files. If the note type is less
10759 than the start of the machine-dependent note types, we don't
10760 understand it. */
10761
10762 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10763 return TRUE;
10764
10765
10766 switch (bfd_get_arch (abfd))
10767 {
10768 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10769 PT_GETFPREGS == mach+2. */
10770
10771 case bfd_arch_alpha:
10772 case bfd_arch_sparc:
10773 switch (note->type)
10774 {
10775 case NT_NETBSDCORE_FIRSTMACH+0:
10776 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10777
10778 case NT_NETBSDCORE_FIRSTMACH+2:
10779 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10780
10781 default:
10782 return TRUE;
10783 }
10784
10785 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10786 There's also old PT___GETREGS40 == mach + 1 for old reg
10787 structure which lacks GBR. */
10788
10789 case bfd_arch_sh:
10790 switch (note->type)
10791 {
10792 case NT_NETBSDCORE_FIRSTMACH+3:
10793 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10794
10795 case NT_NETBSDCORE_FIRSTMACH+5:
10796 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10797
10798 default:
10799 return TRUE;
10800 }
10801
10802 /* On all other arch's, PT_GETREGS == mach+1 and
10803 PT_GETFPREGS == mach+3. */
10804
10805 default:
10806 switch (note->type)
10807 {
10808 case NT_NETBSDCORE_FIRSTMACH+1:
10809 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10810
10811 case NT_NETBSDCORE_FIRSTMACH+3:
10812 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10813
10814 default:
10815 return TRUE;
10816 }
10817 }
10818 /* NOTREACHED */
10819 }
10820
10821 static bfd_boolean
10822 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10823 {
10824 if (note->descsz <= 0x48 + 31)
10825 return FALSE;
10826
10827 /* Signal number at offset 0x08. */
10828 elf_tdata (abfd)->core->signal
10829 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10830
10831 /* Process ID at offset 0x20. */
10832 elf_tdata (abfd)->core->pid
10833 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10834
10835 /* Command name at 0x48 (max 32 bytes, including nul). */
10836 elf_tdata (abfd)->core->command
10837 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10838
10839 return TRUE;
10840 }
10841
10842 static bfd_boolean
10843 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10844 {
10845 if (note->type == NT_OPENBSD_PROCINFO)
10846 return elfcore_grok_openbsd_procinfo (abfd, note);
10847
10848 if (note->type == NT_OPENBSD_REGS)
10849 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10850
10851 if (note->type == NT_OPENBSD_FPREGS)
10852 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10853
10854 if (note->type == NT_OPENBSD_XFPREGS)
10855 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10856
10857 if (note->type == NT_OPENBSD_AUXV)
10858 return elfcore_make_auxv_note_section (abfd, note, 0);
10859
10860 if (note->type == NT_OPENBSD_WCOOKIE)
10861 {
10862 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10863 SEC_HAS_CONTENTS);
10864
10865 if (sect == NULL)
10866 return FALSE;
10867 sect->size = note->descsz;
10868 sect->filepos = note->descpos;
10869 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10870
10871 return TRUE;
10872 }
10873
10874 return TRUE;
10875 }
10876
10877 static bfd_boolean
10878 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10879 {
10880 void *ddata = note->descdata;
10881 char buf[100];
10882 char *name;
10883 asection *sect;
10884 short sig;
10885 unsigned flags;
10886
10887 if (note->descsz < 16)
10888 return FALSE;
10889
10890 /* nto_procfs_status 'pid' field is at offset 0. */
10891 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10892
10893 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10894 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10895
10896 /* nto_procfs_status 'flags' field is at offset 8. */
10897 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10898
10899 /* nto_procfs_status 'what' field is at offset 14. */
10900 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10901 {
10902 elf_tdata (abfd)->core->signal = sig;
10903 elf_tdata (abfd)->core->lwpid = *tid;
10904 }
10905
10906 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10907 do not come from signals so we make sure we set the current
10908 thread just in case. */
10909 if (flags & 0x00000080)
10910 elf_tdata (abfd)->core->lwpid = *tid;
10911
10912 /* Make a ".qnx_core_status/%d" section. */
10913 sprintf (buf, ".qnx_core_status/%ld", *tid);
10914
10915 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10916 if (name == NULL)
10917 return FALSE;
10918 strcpy (name, buf);
10919
10920 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10921 if (sect == NULL)
10922 return FALSE;
10923
10924 sect->size = note->descsz;
10925 sect->filepos = note->descpos;
10926 sect->alignment_power = 2;
10927
10928 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10929 }
10930
10931 static bfd_boolean
10932 elfcore_grok_nto_regs (bfd *abfd,
10933 Elf_Internal_Note *note,
10934 long tid,
10935 char *base)
10936 {
10937 char buf[100];
10938 char *name;
10939 asection *sect;
10940
10941 /* Make a "(base)/%d" section. */
10942 sprintf (buf, "%s/%ld", base, tid);
10943
10944 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10945 if (name == NULL)
10946 return FALSE;
10947 strcpy (name, buf);
10948
10949 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10950 if (sect == NULL)
10951 return FALSE;
10952
10953 sect->size = note->descsz;
10954 sect->filepos = note->descpos;
10955 sect->alignment_power = 2;
10956
10957 /* This is the current thread. */
10958 if (elf_tdata (abfd)->core->lwpid == tid)
10959 return elfcore_maybe_make_sect (abfd, base, sect);
10960
10961 return TRUE;
10962 }
10963
10964 #define BFD_QNT_CORE_INFO 7
10965 #define BFD_QNT_CORE_STATUS 8
10966 #define BFD_QNT_CORE_GREG 9
10967 #define BFD_QNT_CORE_FPREG 10
10968
10969 static bfd_boolean
10970 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10971 {
10972 /* Every GREG section has a STATUS section before it. Store the
10973 tid from the previous call to pass down to the next gregs
10974 function. */
10975 static long tid = 1;
10976
10977 switch (note->type)
10978 {
10979 case BFD_QNT_CORE_INFO:
10980 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10981 case BFD_QNT_CORE_STATUS:
10982 return elfcore_grok_nto_status (abfd, note, &tid);
10983 case BFD_QNT_CORE_GREG:
10984 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10985 case BFD_QNT_CORE_FPREG:
10986 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10987 default:
10988 return TRUE;
10989 }
10990 }
10991
10992 static bfd_boolean
10993 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10994 {
10995 char *name;
10996 asection *sect;
10997 size_t len;
10998
10999 /* Use note name as section name. */
11000 len = note->namesz;
11001 name = (char *) bfd_alloc (abfd, len);
11002 if (name == NULL)
11003 return FALSE;
11004 memcpy (name, note->namedata, len);
11005 name[len - 1] = '\0';
11006
11007 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11008 if (sect == NULL)
11009 return FALSE;
11010
11011 sect->size = note->descsz;
11012 sect->filepos = note->descpos;
11013 sect->alignment_power = 1;
11014
11015 return TRUE;
11016 }
11017
11018 /* Function: elfcore_write_note
11019
11020 Inputs:
11021 buffer to hold note, and current size of buffer
11022 name of note
11023 type of note
11024 data for note
11025 size of data for note
11026
11027 Writes note to end of buffer. ELF64 notes are written exactly as
11028 for ELF32, despite the current (as of 2006) ELF gabi specifying
11029 that they ought to have 8-byte namesz and descsz field, and have
11030 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11031
11032 Return:
11033 Pointer to realloc'd buffer, *BUFSIZ updated. */
11034
11035 char *
11036 elfcore_write_note (bfd *abfd,
11037 char *buf,
11038 int *bufsiz,
11039 const char *name,
11040 int type,
11041 const void *input,
11042 int size)
11043 {
11044 Elf_External_Note *xnp;
11045 size_t namesz;
11046 size_t newspace;
11047 char *dest;
11048
11049 namesz = 0;
11050 if (name != NULL)
11051 namesz = strlen (name) + 1;
11052
11053 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11054
11055 buf = (char *) realloc (buf, *bufsiz + newspace);
11056 if (buf == NULL)
11057 return buf;
11058 dest = buf + *bufsiz;
11059 *bufsiz += newspace;
11060 xnp = (Elf_External_Note *) dest;
11061 H_PUT_32 (abfd, namesz, xnp->namesz);
11062 H_PUT_32 (abfd, size, xnp->descsz);
11063 H_PUT_32 (abfd, type, xnp->type);
11064 dest = xnp->name;
11065 if (name != NULL)
11066 {
11067 memcpy (dest, name, namesz);
11068 dest += namesz;
11069 while (namesz & 3)
11070 {
11071 *dest++ = '\0';
11072 ++namesz;
11073 }
11074 }
11075 memcpy (dest, input, size);
11076 dest += size;
11077 while (size & 3)
11078 {
11079 *dest++ = '\0';
11080 ++size;
11081 }
11082 return buf;
11083 }
11084
11085 /* gcc-8 warns (*) on all the strncpy calls in this function about
11086 possible string truncation. The "truncation" is not a bug. We
11087 have an external representation of structs with fields that are not
11088 necessarily NULL terminated and corresponding internal
11089 representation fields that are one larger so that they can always
11090 be NULL terminated.
11091 gcc versions between 4.2 and 4.6 do not allow pragma control of
11092 diagnostics inside functions, giving a hard error if you try to use
11093 the finer control available with later versions.
11094 gcc prior to 4.2 warns about diagnostic push and pop.
11095 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11096 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11097 (*) Depending on your system header files! */
11098 #if GCC_VERSION >= 8000
11099 # pragma GCC diagnostic push
11100 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11101 #endif
11102 char *
11103 elfcore_write_prpsinfo (bfd *abfd,
11104 char *buf,
11105 int *bufsiz,
11106 const char *fname,
11107 const char *psargs)
11108 {
11109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11110
11111 if (bed->elf_backend_write_core_note != NULL)
11112 {
11113 char *ret;
11114 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11115 NT_PRPSINFO, fname, psargs);
11116 if (ret != NULL)
11117 return ret;
11118 }
11119
11120 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11121 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11122 if (bed->s->elfclass == ELFCLASS32)
11123 {
11124 # if defined (HAVE_PSINFO32_T)
11125 psinfo32_t data;
11126 int note_type = NT_PSINFO;
11127 # else
11128 prpsinfo32_t data;
11129 int note_type = NT_PRPSINFO;
11130 # endif
11131
11132 memset (&data, 0, sizeof (data));
11133 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11134 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11135 return elfcore_write_note (abfd, buf, bufsiz,
11136 "CORE", note_type, &data, sizeof (data));
11137 }
11138 else
11139 # endif
11140 {
11141 # if defined (HAVE_PSINFO_T)
11142 psinfo_t data;
11143 int note_type = NT_PSINFO;
11144 # else
11145 prpsinfo_t data;
11146 int note_type = NT_PRPSINFO;
11147 # endif
11148
11149 memset (&data, 0, sizeof (data));
11150 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11151 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11152 return elfcore_write_note (abfd, buf, bufsiz,
11153 "CORE", note_type, &data, sizeof (data));
11154 }
11155 #endif /* PSINFO_T or PRPSINFO_T */
11156
11157 free (buf);
11158 return NULL;
11159 }
11160 #if GCC_VERSION >= 8000
11161 # pragma GCC diagnostic pop
11162 #endif
11163
11164 char *
11165 elfcore_write_linux_prpsinfo32
11166 (bfd *abfd, char *buf, int *bufsiz,
11167 const struct elf_internal_linux_prpsinfo *prpsinfo)
11168 {
11169 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11170 {
11171 struct elf_external_linux_prpsinfo32_ugid16 data;
11172
11173 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11174 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11175 &data, sizeof (data));
11176 }
11177 else
11178 {
11179 struct elf_external_linux_prpsinfo32_ugid32 data;
11180
11181 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11182 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11183 &data, sizeof (data));
11184 }
11185 }
11186
11187 char *
11188 elfcore_write_linux_prpsinfo64
11189 (bfd *abfd, char *buf, int *bufsiz,
11190 const struct elf_internal_linux_prpsinfo *prpsinfo)
11191 {
11192 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11193 {
11194 struct elf_external_linux_prpsinfo64_ugid16 data;
11195
11196 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11197 return elfcore_write_note (abfd, buf, bufsiz,
11198 "CORE", NT_PRPSINFO, &data, sizeof (data));
11199 }
11200 else
11201 {
11202 struct elf_external_linux_prpsinfo64_ugid32 data;
11203
11204 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11205 return elfcore_write_note (abfd, buf, bufsiz,
11206 "CORE", NT_PRPSINFO, &data, sizeof (data));
11207 }
11208 }
11209
11210 char *
11211 elfcore_write_prstatus (bfd *abfd,
11212 char *buf,
11213 int *bufsiz,
11214 long pid,
11215 int cursig,
11216 const void *gregs)
11217 {
11218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11219
11220 if (bed->elf_backend_write_core_note != NULL)
11221 {
11222 char *ret;
11223 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11224 NT_PRSTATUS,
11225 pid, cursig, gregs);
11226 if (ret != NULL)
11227 return ret;
11228 }
11229
11230 #if defined (HAVE_PRSTATUS_T)
11231 #if defined (HAVE_PRSTATUS32_T)
11232 if (bed->s->elfclass == ELFCLASS32)
11233 {
11234 prstatus32_t prstat;
11235
11236 memset (&prstat, 0, sizeof (prstat));
11237 prstat.pr_pid = pid;
11238 prstat.pr_cursig = cursig;
11239 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11240 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11241 NT_PRSTATUS, &prstat, sizeof (prstat));
11242 }
11243 else
11244 #endif
11245 {
11246 prstatus_t prstat;
11247
11248 memset (&prstat, 0, sizeof (prstat));
11249 prstat.pr_pid = pid;
11250 prstat.pr_cursig = cursig;
11251 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11252 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11253 NT_PRSTATUS, &prstat, sizeof (prstat));
11254 }
11255 #endif /* HAVE_PRSTATUS_T */
11256
11257 free (buf);
11258 return NULL;
11259 }
11260
11261 #if defined (HAVE_LWPSTATUS_T)
11262 char *
11263 elfcore_write_lwpstatus (bfd *abfd,
11264 char *buf,
11265 int *bufsiz,
11266 long pid,
11267 int cursig,
11268 const void *gregs)
11269 {
11270 lwpstatus_t lwpstat;
11271 const char *note_name = "CORE";
11272
11273 memset (&lwpstat, 0, sizeof (lwpstat));
11274 lwpstat.pr_lwpid = pid >> 16;
11275 lwpstat.pr_cursig = cursig;
11276 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11277 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11278 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11279 #if !defined(gregs)
11280 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11281 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11282 #else
11283 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11284 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11285 #endif
11286 #endif
11287 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11288 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11289 }
11290 #endif /* HAVE_LWPSTATUS_T */
11291
11292 #if defined (HAVE_PSTATUS_T)
11293 char *
11294 elfcore_write_pstatus (bfd *abfd,
11295 char *buf,
11296 int *bufsiz,
11297 long pid,
11298 int cursig ATTRIBUTE_UNUSED,
11299 const void *gregs ATTRIBUTE_UNUSED)
11300 {
11301 const char *note_name = "CORE";
11302 #if defined (HAVE_PSTATUS32_T)
11303 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11304
11305 if (bed->s->elfclass == ELFCLASS32)
11306 {
11307 pstatus32_t pstat;
11308
11309 memset (&pstat, 0, sizeof (pstat));
11310 pstat.pr_pid = pid & 0xffff;
11311 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11312 NT_PSTATUS, &pstat, sizeof (pstat));
11313 return buf;
11314 }
11315 else
11316 #endif
11317 {
11318 pstatus_t pstat;
11319
11320 memset (&pstat, 0, sizeof (pstat));
11321 pstat.pr_pid = pid & 0xffff;
11322 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11323 NT_PSTATUS, &pstat, sizeof (pstat));
11324 return buf;
11325 }
11326 }
11327 #endif /* HAVE_PSTATUS_T */
11328
11329 char *
11330 elfcore_write_prfpreg (bfd *abfd,
11331 char *buf,
11332 int *bufsiz,
11333 const void *fpregs,
11334 int size)
11335 {
11336 const char *note_name = "CORE";
11337 return elfcore_write_note (abfd, buf, bufsiz,
11338 note_name, NT_FPREGSET, fpregs, size);
11339 }
11340
11341 char *
11342 elfcore_write_prxfpreg (bfd *abfd,
11343 char *buf,
11344 int *bufsiz,
11345 const void *xfpregs,
11346 int size)
11347 {
11348 char *note_name = "LINUX";
11349 return elfcore_write_note (abfd, buf, bufsiz,
11350 note_name, NT_PRXFPREG, xfpregs, size);
11351 }
11352
11353 char *
11354 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11355 const void *xfpregs, int size)
11356 {
11357 char *note_name;
11358 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11359 note_name = "FreeBSD";
11360 else
11361 note_name = "LINUX";
11362 return elfcore_write_note (abfd, buf, bufsiz,
11363 note_name, NT_X86_XSTATE, xfpregs, size);
11364 }
11365
11366 char *
11367 elfcore_write_ppc_vmx (bfd *abfd,
11368 char *buf,
11369 int *bufsiz,
11370 const void *ppc_vmx,
11371 int size)
11372 {
11373 char *note_name = "LINUX";
11374 return elfcore_write_note (abfd, buf, bufsiz,
11375 note_name, NT_PPC_VMX, ppc_vmx, size);
11376 }
11377
11378 char *
11379 elfcore_write_ppc_vsx (bfd *abfd,
11380 char *buf,
11381 int *bufsiz,
11382 const void *ppc_vsx,
11383 int size)
11384 {
11385 char *note_name = "LINUX";
11386 return elfcore_write_note (abfd, buf, bufsiz,
11387 note_name, NT_PPC_VSX, ppc_vsx, size);
11388 }
11389
11390 char *
11391 elfcore_write_ppc_tar (bfd *abfd,
11392 char *buf,
11393 int *bufsiz,
11394 const void *ppc_tar,
11395 int size)
11396 {
11397 char *note_name = "LINUX";
11398 return elfcore_write_note (abfd, buf, bufsiz,
11399 note_name, NT_PPC_TAR, ppc_tar, size);
11400 }
11401
11402 char *
11403 elfcore_write_ppc_ppr (bfd *abfd,
11404 char *buf,
11405 int *bufsiz,
11406 const void *ppc_ppr,
11407 int size)
11408 {
11409 char *note_name = "LINUX";
11410 return elfcore_write_note (abfd, buf, bufsiz,
11411 note_name, NT_PPC_PPR, ppc_ppr, size);
11412 }
11413
11414 char *
11415 elfcore_write_ppc_dscr (bfd *abfd,
11416 char *buf,
11417 int *bufsiz,
11418 const void *ppc_dscr,
11419 int size)
11420 {
11421 char *note_name = "LINUX";
11422 return elfcore_write_note (abfd, buf, bufsiz,
11423 note_name, NT_PPC_DSCR, ppc_dscr, size);
11424 }
11425
11426 char *
11427 elfcore_write_ppc_ebb (bfd *abfd,
11428 char *buf,
11429 int *bufsiz,
11430 const void *ppc_ebb,
11431 int size)
11432 {
11433 char *note_name = "LINUX";
11434 return elfcore_write_note (abfd, buf, bufsiz,
11435 note_name, NT_PPC_EBB, ppc_ebb, size);
11436 }
11437
11438 char *
11439 elfcore_write_ppc_pmu (bfd *abfd,
11440 char *buf,
11441 int *bufsiz,
11442 const void *ppc_pmu,
11443 int size)
11444 {
11445 char *note_name = "LINUX";
11446 return elfcore_write_note (abfd, buf, bufsiz,
11447 note_name, NT_PPC_PMU, ppc_pmu, size);
11448 }
11449
11450 char *
11451 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11452 char *buf,
11453 int *bufsiz,
11454 const void *ppc_tm_cgpr,
11455 int size)
11456 {
11457 char *note_name = "LINUX";
11458 return elfcore_write_note (abfd, buf, bufsiz,
11459 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11460 }
11461
11462 char *
11463 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11464 char *buf,
11465 int *bufsiz,
11466 const void *ppc_tm_cfpr,
11467 int size)
11468 {
11469 char *note_name = "LINUX";
11470 return elfcore_write_note (abfd, buf, bufsiz,
11471 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11472 }
11473
11474 char *
11475 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11476 char *buf,
11477 int *bufsiz,
11478 const void *ppc_tm_cvmx,
11479 int size)
11480 {
11481 char *note_name = "LINUX";
11482 return elfcore_write_note (abfd, buf, bufsiz,
11483 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11484 }
11485
11486 char *
11487 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11488 char *buf,
11489 int *bufsiz,
11490 const void *ppc_tm_cvsx,
11491 int size)
11492 {
11493 char *note_name = "LINUX";
11494 return elfcore_write_note (abfd, buf, bufsiz,
11495 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11496 }
11497
11498 char *
11499 elfcore_write_ppc_tm_spr (bfd *abfd,
11500 char *buf,
11501 int *bufsiz,
11502 const void *ppc_tm_spr,
11503 int size)
11504 {
11505 char *note_name = "LINUX";
11506 return elfcore_write_note (abfd, buf, bufsiz,
11507 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11508 }
11509
11510 char *
11511 elfcore_write_ppc_tm_ctar (bfd *abfd,
11512 char *buf,
11513 int *bufsiz,
11514 const void *ppc_tm_ctar,
11515 int size)
11516 {
11517 char *note_name = "LINUX";
11518 return elfcore_write_note (abfd, buf, bufsiz,
11519 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11520 }
11521
11522 char *
11523 elfcore_write_ppc_tm_cppr (bfd *abfd,
11524 char *buf,
11525 int *bufsiz,
11526 const void *ppc_tm_cppr,
11527 int size)
11528 {
11529 char *note_name = "LINUX";
11530 return elfcore_write_note (abfd, buf, bufsiz,
11531 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11532 }
11533
11534 char *
11535 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11536 char *buf,
11537 int *bufsiz,
11538 const void *ppc_tm_cdscr,
11539 int size)
11540 {
11541 char *note_name = "LINUX";
11542 return elfcore_write_note (abfd, buf, bufsiz,
11543 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11544 }
11545
11546 static char *
11547 elfcore_write_s390_high_gprs (bfd *abfd,
11548 char *buf,
11549 int *bufsiz,
11550 const void *s390_high_gprs,
11551 int size)
11552 {
11553 char *note_name = "LINUX";
11554 return elfcore_write_note (abfd, buf, bufsiz,
11555 note_name, NT_S390_HIGH_GPRS,
11556 s390_high_gprs, size);
11557 }
11558
11559 char *
11560 elfcore_write_s390_timer (bfd *abfd,
11561 char *buf,
11562 int *bufsiz,
11563 const void *s390_timer,
11564 int size)
11565 {
11566 char *note_name = "LINUX";
11567 return elfcore_write_note (abfd, buf, bufsiz,
11568 note_name, NT_S390_TIMER, s390_timer, size);
11569 }
11570
11571 char *
11572 elfcore_write_s390_todcmp (bfd *abfd,
11573 char *buf,
11574 int *bufsiz,
11575 const void *s390_todcmp,
11576 int size)
11577 {
11578 char *note_name = "LINUX";
11579 return elfcore_write_note (abfd, buf, bufsiz,
11580 note_name, NT_S390_TODCMP, s390_todcmp, size);
11581 }
11582
11583 char *
11584 elfcore_write_s390_todpreg (bfd *abfd,
11585 char *buf,
11586 int *bufsiz,
11587 const void *s390_todpreg,
11588 int size)
11589 {
11590 char *note_name = "LINUX";
11591 return elfcore_write_note (abfd, buf, bufsiz,
11592 note_name, NT_S390_TODPREG, s390_todpreg, size);
11593 }
11594
11595 char *
11596 elfcore_write_s390_ctrs (bfd *abfd,
11597 char *buf,
11598 int *bufsiz,
11599 const void *s390_ctrs,
11600 int size)
11601 {
11602 char *note_name = "LINUX";
11603 return elfcore_write_note (abfd, buf, bufsiz,
11604 note_name, NT_S390_CTRS, s390_ctrs, size);
11605 }
11606
11607 char *
11608 elfcore_write_s390_prefix (bfd *abfd,
11609 char *buf,
11610 int *bufsiz,
11611 const void *s390_prefix,
11612 int size)
11613 {
11614 char *note_name = "LINUX";
11615 return elfcore_write_note (abfd, buf, bufsiz,
11616 note_name, NT_S390_PREFIX, s390_prefix, size);
11617 }
11618
11619 char *
11620 elfcore_write_s390_last_break (bfd *abfd,
11621 char *buf,
11622 int *bufsiz,
11623 const void *s390_last_break,
11624 int size)
11625 {
11626 char *note_name = "LINUX";
11627 return elfcore_write_note (abfd, buf, bufsiz,
11628 note_name, NT_S390_LAST_BREAK,
11629 s390_last_break, size);
11630 }
11631
11632 char *
11633 elfcore_write_s390_system_call (bfd *abfd,
11634 char *buf,
11635 int *bufsiz,
11636 const void *s390_system_call,
11637 int size)
11638 {
11639 char *note_name = "LINUX";
11640 return elfcore_write_note (abfd, buf, bufsiz,
11641 note_name, NT_S390_SYSTEM_CALL,
11642 s390_system_call, size);
11643 }
11644
11645 char *
11646 elfcore_write_s390_tdb (bfd *abfd,
11647 char *buf,
11648 int *bufsiz,
11649 const void *s390_tdb,
11650 int size)
11651 {
11652 char *note_name = "LINUX";
11653 return elfcore_write_note (abfd, buf, bufsiz,
11654 note_name, NT_S390_TDB, s390_tdb, size);
11655 }
11656
11657 char *
11658 elfcore_write_s390_vxrs_low (bfd *abfd,
11659 char *buf,
11660 int *bufsiz,
11661 const void *s390_vxrs_low,
11662 int size)
11663 {
11664 char *note_name = "LINUX";
11665 return elfcore_write_note (abfd, buf, bufsiz,
11666 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11667 }
11668
11669 char *
11670 elfcore_write_s390_vxrs_high (bfd *abfd,
11671 char *buf,
11672 int *bufsiz,
11673 const void *s390_vxrs_high,
11674 int size)
11675 {
11676 char *note_name = "LINUX";
11677 return elfcore_write_note (abfd, buf, bufsiz,
11678 note_name, NT_S390_VXRS_HIGH,
11679 s390_vxrs_high, size);
11680 }
11681
11682 char *
11683 elfcore_write_s390_gs_cb (bfd *abfd,
11684 char *buf,
11685 int *bufsiz,
11686 const void *s390_gs_cb,
11687 int size)
11688 {
11689 char *note_name = "LINUX";
11690 return elfcore_write_note (abfd, buf, bufsiz,
11691 note_name, NT_S390_GS_CB,
11692 s390_gs_cb, size);
11693 }
11694
11695 char *
11696 elfcore_write_s390_gs_bc (bfd *abfd,
11697 char *buf,
11698 int *bufsiz,
11699 const void *s390_gs_bc,
11700 int size)
11701 {
11702 char *note_name = "LINUX";
11703 return elfcore_write_note (abfd, buf, bufsiz,
11704 note_name, NT_S390_GS_BC,
11705 s390_gs_bc, size);
11706 }
11707
11708 char *
11709 elfcore_write_arm_vfp (bfd *abfd,
11710 char *buf,
11711 int *bufsiz,
11712 const void *arm_vfp,
11713 int size)
11714 {
11715 char *note_name = "LINUX";
11716 return elfcore_write_note (abfd, buf, bufsiz,
11717 note_name, NT_ARM_VFP, arm_vfp, size);
11718 }
11719
11720 char *
11721 elfcore_write_aarch_tls (bfd *abfd,
11722 char *buf,
11723 int *bufsiz,
11724 const void *aarch_tls,
11725 int size)
11726 {
11727 char *note_name = "LINUX";
11728 return elfcore_write_note (abfd, buf, bufsiz,
11729 note_name, NT_ARM_TLS, aarch_tls, size);
11730 }
11731
11732 char *
11733 elfcore_write_aarch_hw_break (bfd *abfd,
11734 char *buf,
11735 int *bufsiz,
11736 const void *aarch_hw_break,
11737 int size)
11738 {
11739 char *note_name = "LINUX";
11740 return elfcore_write_note (abfd, buf, bufsiz,
11741 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11742 }
11743
11744 char *
11745 elfcore_write_aarch_hw_watch (bfd *abfd,
11746 char *buf,
11747 int *bufsiz,
11748 const void *aarch_hw_watch,
11749 int size)
11750 {
11751 char *note_name = "LINUX";
11752 return elfcore_write_note (abfd, buf, bufsiz,
11753 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11754 }
11755
11756 char *
11757 elfcore_write_aarch_sve (bfd *abfd,
11758 char *buf,
11759 int *bufsiz,
11760 const void *aarch_sve,
11761 int size)
11762 {
11763 char *note_name = "LINUX";
11764 return elfcore_write_note (abfd, buf, bufsiz,
11765 note_name, NT_ARM_SVE, aarch_sve, size);
11766 }
11767
11768 char *
11769 elfcore_write_aarch_pauth (bfd *abfd,
11770 char *buf,
11771 int *bufsiz,
11772 const void *aarch_pauth,
11773 int size)
11774 {
11775 char *note_name = "LINUX";
11776 return elfcore_write_note (abfd, buf, bufsiz,
11777 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11778 }
11779
11780 char *
11781 elfcore_write_register_note (bfd *abfd,
11782 char *buf,
11783 int *bufsiz,
11784 const char *section,
11785 const void *data,
11786 int size)
11787 {
11788 if (strcmp (section, ".reg2") == 0)
11789 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11790 if (strcmp (section, ".reg-xfp") == 0)
11791 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11792 if (strcmp (section, ".reg-xstate") == 0)
11793 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11794 if (strcmp (section, ".reg-ppc-vmx") == 0)
11795 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11796 if (strcmp (section, ".reg-ppc-vsx") == 0)
11797 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11798 if (strcmp (section, ".reg-ppc-tar") == 0)
11799 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11800 if (strcmp (section, ".reg-ppc-ppr") == 0)
11801 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11802 if (strcmp (section, ".reg-ppc-dscr") == 0)
11803 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11804 if (strcmp (section, ".reg-ppc-ebb") == 0)
11805 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11806 if (strcmp (section, ".reg-ppc-pmu") == 0)
11807 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11808 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11809 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11810 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11811 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11812 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11813 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11814 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11815 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11816 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11817 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11818 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11819 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11820 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11821 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11822 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11823 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11824 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11825 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11826 if (strcmp (section, ".reg-s390-timer") == 0)
11827 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11828 if (strcmp (section, ".reg-s390-todcmp") == 0)
11829 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11830 if (strcmp (section, ".reg-s390-todpreg") == 0)
11831 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11832 if (strcmp (section, ".reg-s390-ctrs") == 0)
11833 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11834 if (strcmp (section, ".reg-s390-prefix") == 0)
11835 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11836 if (strcmp (section, ".reg-s390-last-break") == 0)
11837 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11838 if (strcmp (section, ".reg-s390-system-call") == 0)
11839 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11840 if (strcmp (section, ".reg-s390-tdb") == 0)
11841 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11842 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11843 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11844 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11845 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11846 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11847 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11848 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11849 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11850 if (strcmp (section, ".reg-arm-vfp") == 0)
11851 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11852 if (strcmp (section, ".reg-aarch-tls") == 0)
11853 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11854 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11855 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11856 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11857 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11858 if (strcmp (section, ".reg-aarch-sve") == 0)
11859 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11860 if (strcmp (section, ".reg-aarch-pauth") == 0)
11861 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11862 return NULL;
11863 }
11864
11865 static bfd_boolean
11866 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11867 size_t align)
11868 {
11869 char *p;
11870
11871 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11872 gABI specifies that PT_NOTE alignment should be aligned to 4
11873 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11874 align is less than 4, we use 4 byte alignment. */
11875 if (align < 4)
11876 align = 4;
11877 if (align != 4 && align != 8)
11878 return FALSE;
11879
11880 p = buf;
11881 while (p < buf + size)
11882 {
11883 Elf_External_Note *xnp = (Elf_External_Note *) p;
11884 Elf_Internal_Note in;
11885
11886 if (offsetof (Elf_External_Note, name) > buf - p + size)
11887 return FALSE;
11888
11889 in.type = H_GET_32 (abfd, xnp->type);
11890
11891 in.namesz = H_GET_32 (abfd, xnp->namesz);
11892 in.namedata = xnp->name;
11893 if (in.namesz > buf - in.namedata + size)
11894 return FALSE;
11895
11896 in.descsz = H_GET_32 (abfd, xnp->descsz);
11897 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11898 in.descpos = offset + (in.descdata - buf);
11899 if (in.descsz != 0
11900 && (in.descdata >= buf + size
11901 || in.descsz > buf - in.descdata + size))
11902 return FALSE;
11903
11904 switch (bfd_get_format (abfd))
11905 {
11906 default:
11907 return TRUE;
11908
11909 case bfd_core:
11910 {
11911 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11912 struct
11913 {
11914 const char * string;
11915 size_t len;
11916 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11917 }
11918 grokers[] =
11919 {
11920 GROKER_ELEMENT ("", elfcore_grok_note),
11921 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11922 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11923 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11924 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11925 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11926 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11927 };
11928 #undef GROKER_ELEMENT
11929 int i;
11930
11931 for (i = ARRAY_SIZE (grokers); i--;)
11932 {
11933 if (in.namesz >= grokers[i].len
11934 && strncmp (in.namedata, grokers[i].string,
11935 grokers[i].len) == 0)
11936 {
11937 if (! grokers[i].func (abfd, & in))
11938 return FALSE;
11939 break;
11940 }
11941 }
11942 break;
11943 }
11944
11945 case bfd_object:
11946 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11947 {
11948 if (! elfobj_grok_gnu_note (abfd, &in))
11949 return FALSE;
11950 }
11951 else if (in.namesz == sizeof "stapsdt"
11952 && strcmp (in.namedata, "stapsdt") == 0)
11953 {
11954 if (! elfobj_grok_stapsdt_note (abfd, &in))
11955 return FALSE;
11956 }
11957 break;
11958 }
11959
11960 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11961 }
11962
11963 return TRUE;
11964 }
11965
11966 bfd_boolean
11967 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11968 size_t align)
11969 {
11970 char *buf;
11971
11972 if (size == 0 || (size + 1) == 0)
11973 return TRUE;
11974
11975 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11976 return FALSE;
11977
11978 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
11979 if (buf == NULL)
11980 return FALSE;
11981
11982 /* PR 17512: file: ec08f814
11983 0-termintate the buffer so that string searches will not overflow. */
11984 buf[size] = 0;
11985
11986 if (!elf_parse_notes (abfd, buf, size, offset, align))
11987 {
11988 free (buf);
11989 return FALSE;
11990 }
11991
11992 free (buf);
11993 return TRUE;
11994 }
11995 \f
11996 /* Providing external access to the ELF program header table. */
11997
11998 /* Return an upper bound on the number of bytes required to store a
11999 copy of ABFD's program header table entries. Return -1 if an error
12000 occurs; bfd_get_error will return an appropriate code. */
12001
12002 long
12003 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12004 {
12005 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12006 {
12007 bfd_set_error (bfd_error_wrong_format);
12008 return -1;
12009 }
12010
12011 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12012 }
12013
12014 /* Copy ABFD's program header table entries to *PHDRS. The entries
12015 will be stored as an array of Elf_Internal_Phdr structures, as
12016 defined in include/elf/internal.h. To find out how large the
12017 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12018
12019 Return the number of program header table entries read, or -1 if an
12020 error occurs; bfd_get_error will return an appropriate code. */
12021
12022 int
12023 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12024 {
12025 int num_phdrs;
12026
12027 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12028 {
12029 bfd_set_error (bfd_error_wrong_format);
12030 return -1;
12031 }
12032
12033 num_phdrs = elf_elfheader (abfd)->e_phnum;
12034 if (num_phdrs != 0)
12035 memcpy (phdrs, elf_tdata (abfd)->phdr,
12036 num_phdrs * sizeof (Elf_Internal_Phdr));
12037
12038 return num_phdrs;
12039 }
12040
12041 enum elf_reloc_type_class
12042 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12043 const asection *rel_sec ATTRIBUTE_UNUSED,
12044 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12045 {
12046 return reloc_class_normal;
12047 }
12048
12049 /* For RELA architectures, return the relocation value for a
12050 relocation against a local symbol. */
12051
12052 bfd_vma
12053 _bfd_elf_rela_local_sym (bfd *abfd,
12054 Elf_Internal_Sym *sym,
12055 asection **psec,
12056 Elf_Internal_Rela *rel)
12057 {
12058 asection *sec = *psec;
12059 bfd_vma relocation;
12060
12061 relocation = (sec->output_section->vma
12062 + sec->output_offset
12063 + sym->st_value);
12064 if ((sec->flags & SEC_MERGE)
12065 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12066 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12067 {
12068 rel->r_addend =
12069 _bfd_merged_section_offset (abfd, psec,
12070 elf_section_data (sec)->sec_info,
12071 sym->st_value + rel->r_addend);
12072 if (sec != *psec)
12073 {
12074 /* If we have changed the section, and our original section is
12075 marked with SEC_EXCLUDE, it means that the original
12076 SEC_MERGE section has been completely subsumed in some
12077 other SEC_MERGE section. In this case, we need to leave
12078 some info around for --emit-relocs. */
12079 if ((sec->flags & SEC_EXCLUDE) != 0)
12080 sec->kept_section = *psec;
12081 sec = *psec;
12082 }
12083 rel->r_addend -= relocation;
12084 rel->r_addend += sec->output_section->vma + sec->output_offset;
12085 }
12086 return relocation;
12087 }
12088
12089 bfd_vma
12090 _bfd_elf_rel_local_sym (bfd *abfd,
12091 Elf_Internal_Sym *sym,
12092 asection **psec,
12093 bfd_vma addend)
12094 {
12095 asection *sec = *psec;
12096
12097 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12098 return sym->st_value + addend;
12099
12100 return _bfd_merged_section_offset (abfd, psec,
12101 elf_section_data (sec)->sec_info,
12102 sym->st_value + addend);
12103 }
12104
12105 /* Adjust an address within a section. Given OFFSET within SEC, return
12106 the new offset within the section, based upon changes made to the
12107 section. Returns -1 if the offset is now invalid.
12108 The offset (in abnd out) is in target sized bytes, however big a
12109 byte may be. */
12110
12111 bfd_vma
12112 _bfd_elf_section_offset (bfd *abfd,
12113 struct bfd_link_info *info,
12114 asection *sec,
12115 bfd_vma offset)
12116 {
12117 switch (sec->sec_info_type)
12118 {
12119 case SEC_INFO_TYPE_STABS:
12120 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12121 offset);
12122 case SEC_INFO_TYPE_EH_FRAME:
12123 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12124
12125 default:
12126 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12127 {
12128 /* Reverse the offset. */
12129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12130 bfd_size_type address_size = bed->s->arch_size / 8;
12131
12132 /* address_size and sec->size are in octets. Convert
12133 to bytes before subtracting the original offset. */
12134 offset = ((sec->size - address_size)
12135 / bfd_octets_per_byte (abfd, sec) - offset);
12136 }
12137 return offset;
12138 }
12139 }
12140 \f
12141 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12142 reconstruct an ELF file by reading the segments out of remote memory
12143 based on the ELF file header at EHDR_VMA and the ELF program headers it
12144 points to. If not null, *LOADBASEP is filled in with the difference
12145 between the VMAs from which the segments were read, and the VMAs the
12146 file headers (and hence BFD's idea of each section's VMA) put them at.
12147
12148 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12149 remote memory at target address VMA into the local buffer at MYADDR; it
12150 should return zero on success or an `errno' code on failure. TEMPL must
12151 be a BFD for an ELF target with the word size and byte order found in
12152 the remote memory. */
12153
12154 bfd *
12155 bfd_elf_bfd_from_remote_memory
12156 (bfd *templ,
12157 bfd_vma ehdr_vma,
12158 bfd_size_type size,
12159 bfd_vma *loadbasep,
12160 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12161 {
12162 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12163 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12164 }
12165 \f
12166 long
12167 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12168 long symcount ATTRIBUTE_UNUSED,
12169 asymbol **syms ATTRIBUTE_UNUSED,
12170 long dynsymcount,
12171 asymbol **dynsyms,
12172 asymbol **ret)
12173 {
12174 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12175 asection *relplt;
12176 asymbol *s;
12177 const char *relplt_name;
12178 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12179 arelent *p;
12180 long count, i, n;
12181 size_t size;
12182 Elf_Internal_Shdr *hdr;
12183 char *names;
12184 asection *plt;
12185
12186 *ret = NULL;
12187
12188 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12189 return 0;
12190
12191 if (dynsymcount <= 0)
12192 return 0;
12193
12194 if (!bed->plt_sym_val)
12195 return 0;
12196
12197 relplt_name = bed->relplt_name;
12198 if (relplt_name == NULL)
12199 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12200 relplt = bfd_get_section_by_name (abfd, relplt_name);
12201 if (relplt == NULL)
12202 return 0;
12203
12204 hdr = &elf_section_data (relplt)->this_hdr;
12205 if (hdr->sh_link != elf_dynsymtab (abfd)
12206 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12207 return 0;
12208
12209 plt = bfd_get_section_by_name (abfd, ".plt");
12210 if (plt == NULL)
12211 return 0;
12212
12213 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12214 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12215 return -1;
12216
12217 count = relplt->size / hdr->sh_entsize;
12218 size = count * sizeof (asymbol);
12219 p = relplt->relocation;
12220 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12221 {
12222 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12223 if (p->addend != 0)
12224 {
12225 #ifdef BFD64
12226 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12227 #else
12228 size += sizeof ("+0x") - 1 + 8;
12229 #endif
12230 }
12231 }
12232
12233 s = *ret = (asymbol *) bfd_malloc (size);
12234 if (s == NULL)
12235 return -1;
12236
12237 names = (char *) (s + count);
12238 p = relplt->relocation;
12239 n = 0;
12240 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12241 {
12242 size_t len;
12243 bfd_vma addr;
12244
12245 addr = bed->plt_sym_val (i, plt, p);
12246 if (addr == (bfd_vma) -1)
12247 continue;
12248
12249 *s = **p->sym_ptr_ptr;
12250 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12251 we are defining a symbol, ensure one of them is set. */
12252 if ((s->flags & BSF_LOCAL) == 0)
12253 s->flags |= BSF_GLOBAL;
12254 s->flags |= BSF_SYNTHETIC;
12255 s->section = plt;
12256 s->value = addr - plt->vma;
12257 s->name = names;
12258 s->udata.p = NULL;
12259 len = strlen ((*p->sym_ptr_ptr)->name);
12260 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12261 names += len;
12262 if (p->addend != 0)
12263 {
12264 char buf[30], *a;
12265
12266 memcpy (names, "+0x", sizeof ("+0x") - 1);
12267 names += sizeof ("+0x") - 1;
12268 bfd_sprintf_vma (abfd, buf, p->addend);
12269 for (a = buf; *a == '0'; ++a)
12270 ;
12271 len = strlen (a);
12272 memcpy (names, a, len);
12273 names += len;
12274 }
12275 memcpy (names, "@plt", sizeof ("@plt"));
12276 names += sizeof ("@plt");
12277 ++s, ++n;
12278 }
12279
12280 return n;
12281 }
12282
12283 /* It is only used by x86-64 so far.
12284 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12285 but current usage would allow all of _bfd_std_section to be zero. */
12286 static const asymbol lcomm_sym
12287 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12288 asection _bfd_elf_large_com_section
12289 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12290 "LARGE_COMMON", 0, SEC_IS_COMMON);
12291
12292 bfd_boolean
12293 _bfd_elf_final_write_processing (bfd *abfd)
12294 {
12295 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12296
12297 i_ehdrp = elf_elfheader (abfd);
12298
12299 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12300 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12301
12302 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12303 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12304 STB_GNU_UNIQUE binding. */
12305 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12306 {
12307 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12308 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12309 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12310 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12311 {
12312 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12313 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12314 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12315 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12316 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12317 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12318 bfd_set_error (bfd_error_sorry);
12319 return FALSE;
12320 }
12321 }
12322 return TRUE;
12323 }
12324
12325
12326 /* Return TRUE for ELF symbol types that represent functions.
12327 This is the default version of this function, which is sufficient for
12328 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12329
12330 bfd_boolean
12331 _bfd_elf_is_function_type (unsigned int type)
12332 {
12333 return (type == STT_FUNC
12334 || type == STT_GNU_IFUNC);
12335 }
12336
12337 /* If the ELF symbol SYM might be a function in SEC, return the
12338 function size and set *CODE_OFF to the function's entry point,
12339 otherwise return zero. */
12340
12341 bfd_size_type
12342 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12343 bfd_vma *code_off)
12344 {
12345 bfd_size_type size;
12346
12347 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12348 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12349 || sym->section != sec)
12350 return 0;
12351
12352 *code_off = sym->value;
12353 size = 0;
12354 if (!(sym->flags & BSF_SYNTHETIC))
12355 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12356 if (size == 0)
12357 size = 1;
12358 return size;
12359 }
12360
12361 /* Set to non-zero to enable some debug messages. */
12362 #define DEBUG_SECONDARY_RELOCS 0
12363
12364 /* An internal-to-the-bfd-library only section type
12365 used to indicate a cached secondary reloc section. */
12366 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12367
12368 /* Create a BFD section to hold a secondary reloc section. */
12369
12370 bfd_boolean
12371 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12372 Elf_Internal_Shdr *hdr,
12373 const char * name,
12374 unsigned int shindex)
12375 {
12376 /* We only support RELA secondary relocs. */
12377 if (hdr->sh_type != SHT_RELA)
12378 return FALSE;
12379
12380 #if DEBUG_SECONDARY_RELOCS
12381 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12382 #endif
12383 hdr->sh_type = SHT_SECONDARY_RELOC;
12384 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12385 }
12386
12387 /* Read in any secondary relocs associated with SEC. */
12388
12389 bfd_boolean
12390 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12391 asection * sec,
12392 asymbol ** symbols)
12393 {
12394 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12395 asection * relsec;
12396 bfd_boolean result = TRUE;
12397 bfd_vma (*r_sym) (bfd_vma);
12398
12399 #if BFD_DEFAULT_TARGET_SIZE > 32
12400 if (bfd_arch_bits_per_address (abfd) != 32)
12401 r_sym = elf64_r_sym;
12402 else
12403 #endif
12404 r_sym = elf32_r_sym;
12405
12406 /* Discover if there are any secondary reloc sections
12407 associated with SEC. */
12408 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12409 {
12410 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12411
12412 if (hdr->sh_type == SHT_SECONDARY_RELOC
12413 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12414 {
12415 bfd_byte * native_relocs;
12416 bfd_byte * native_reloc;
12417 arelent * internal_relocs;
12418 arelent * internal_reloc;
12419 unsigned int i;
12420 unsigned int entsize;
12421 unsigned int symcount;
12422 unsigned int reloc_count;
12423 size_t amt;
12424
12425 if (ebd->elf_info_to_howto == NULL)
12426 return FALSE;
12427
12428 #if DEBUG_SECONDARY_RELOCS
12429 fprintf (stderr, "read secondary relocs for %s from %s\n",
12430 sec->name, relsec->name);
12431 #endif
12432 entsize = hdr->sh_entsize;
12433
12434 native_relocs = bfd_malloc (hdr->sh_size);
12435 if (native_relocs == NULL)
12436 {
12437 result = FALSE;
12438 continue;
12439 }
12440
12441 reloc_count = NUM_SHDR_ENTRIES (hdr);
12442 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12443 {
12444 bfd_set_error (bfd_error_file_too_big);
12445 result = FALSE;
12446 continue;
12447 }
12448
12449 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12450 if (internal_relocs == NULL)
12451 {
12452 free (native_relocs);
12453 result = FALSE;
12454 continue;
12455 }
12456
12457 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12458 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12459 != hdr->sh_size))
12460 {
12461 free (native_relocs);
12462 free (internal_relocs);
12463 result = FALSE;
12464 continue;
12465 }
12466
12467 symcount = bfd_get_symcount (abfd);
12468
12469 for (i = 0, internal_reloc = internal_relocs,
12470 native_reloc = native_relocs;
12471 i < reloc_count;
12472 i++, internal_reloc++, native_reloc += entsize)
12473 {
12474 bfd_boolean res;
12475 Elf_Internal_Rela rela;
12476
12477 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12478
12479 /* The address of an ELF reloc is section relative for an object
12480 file, and absolute for an executable file or shared library.
12481 The address of a normal BFD reloc is always section relative,
12482 and the address of a dynamic reloc is absolute.. */
12483 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12484 internal_reloc->address = rela.r_offset;
12485 else
12486 internal_reloc->address = rela.r_offset - sec->vma;
12487
12488 if (r_sym (rela.r_info) == STN_UNDEF)
12489 {
12490 /* FIXME: This and the error case below mean that we
12491 have a symbol on relocs that is not elf_symbol_type. */
12492 internal_reloc->sym_ptr_ptr =
12493 bfd_abs_section_ptr->symbol_ptr_ptr;
12494 }
12495 else if (r_sym (rela.r_info) > symcount)
12496 {
12497 _bfd_error_handler
12498 /* xgettext:c-format */
12499 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12500 abfd, sec, i, (long) r_sym (rela.r_info));
12501 bfd_set_error (bfd_error_bad_value);
12502 internal_reloc->sym_ptr_ptr =
12503 bfd_abs_section_ptr->symbol_ptr_ptr;
12504 result = FALSE;
12505 }
12506 else
12507 {
12508 asymbol **ps;
12509
12510 ps = symbols + r_sym (rela.r_info) - 1;
12511
12512 internal_reloc->sym_ptr_ptr = ps;
12513 /* Make sure that this symbol is not removed by strip. */
12514 (*ps)->flags |= BSF_KEEP;
12515 }
12516
12517 internal_reloc->addend = rela.r_addend;
12518
12519 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12520 if (! res || internal_reloc->howto == NULL)
12521 {
12522 #if DEBUG_SECONDARY_RELOCS
12523 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12524 rela.r_info);
12525 #endif
12526 result = FALSE;
12527 }
12528 }
12529
12530 free (native_relocs);
12531 /* Store the internal relocs. */
12532 elf_section_data (relsec)->sec_info = internal_relocs;
12533 }
12534 }
12535
12536 return result;
12537 }
12538
12539 /* Set the ELF section header fields of an output secondary reloc section. */
12540
12541 bfd_boolean
12542 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12543 bfd * obfd ATTRIBUTE_UNUSED,
12544 const Elf_Internal_Shdr * isection,
12545 Elf_Internal_Shdr * osection)
12546 {
12547 asection * isec;
12548 asection * osec;
12549
12550 if (isection == NULL)
12551 return FALSE;
12552
12553 if (isection->sh_type != SHT_SECONDARY_RELOC)
12554 return TRUE;
12555
12556 isec = isection->bfd_section;
12557 if (isec == NULL)
12558 return FALSE;
12559
12560 osec = osection->bfd_section;
12561 if (osec == NULL)
12562 return FALSE;
12563
12564 BFD_ASSERT (elf_section_data (osec)->sec_info == NULL);
12565 elf_section_data (osec)->sec_info = elf_section_data (isec)->sec_info;
12566 osection->sh_type = SHT_RELA;
12567 osection->sh_link = elf_onesymtab (obfd);
12568 if (osection->sh_link == 0)
12569 {
12570 /* There is no symbol table - we are hosed... */
12571 _bfd_error_handler
12572 /* xgettext:c-format */
12573 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12574 obfd, osec);
12575 bfd_set_error (bfd_error_bad_value);
12576 return FALSE;
12577 }
12578
12579 /* Find the output section that corresponds to the isection's sh_info link. */
12580 BFD_ASSERT (isection->sh_info > 0
12581 && isection->sh_info < elf_numsections (ibfd));
12582 isection = elf_elfsections (ibfd)[isection->sh_info];
12583
12584 BFD_ASSERT (isection != NULL);
12585 BFD_ASSERT (isection->bfd_section != NULL);
12586 BFD_ASSERT (isection->bfd_section->output_section != NULL);
12587 osection->sh_info =
12588 elf_section_data (isection->bfd_section->output_section)->this_idx;
12589
12590 #if DEBUG_SECONDARY_RELOCS
12591 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12592 osec->name, osection->sh_link, osection->sh_info);
12593 #endif
12594
12595 return TRUE;
12596 }
12597
12598 /* Write out a secondary reloc section. */
12599
12600 bfd_boolean
12601 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12602 {
12603 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12604 bfd_vma addr_offset;
12605 asection * relsec;
12606 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12607
12608 #if BFD_DEFAULT_TARGET_SIZE > 32
12609 if (bfd_arch_bits_per_address (abfd) != 32)
12610 r_info = elf64_r_info;
12611 else
12612 #endif
12613 r_info = elf32_r_info;
12614
12615 if (sec == NULL)
12616 return FALSE;
12617
12618 /* The address of an ELF reloc is section relative for an object
12619 file, and absolute for an executable file or shared library.
12620 The address of a BFD reloc is always section relative. */
12621 addr_offset = 0;
12622 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12623 addr_offset = sec->vma;
12624
12625 /* Discover if there are any secondary reloc sections
12626 associated with SEC. */
12627 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12628 {
12629 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12630 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
12631
12632 if (hdr->sh_type == SHT_RELA
12633 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12634 {
12635 asymbol * last_sym;
12636 int last_sym_idx;
12637 unsigned int reloc_count;
12638 unsigned int idx;
12639 arelent * src_irel;
12640 bfd_byte * dst_rela;
12641
12642 BFD_ASSERT (hdr->contents == NULL);
12643
12644 reloc_count = hdr->sh_size / hdr->sh_entsize;
12645 BFD_ASSERT (reloc_count > 0);
12646
12647 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
12648 if (hdr->contents == NULL)
12649 continue;
12650
12651 #if DEBUG_SECONDARY_RELOCS
12652 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
12653 reloc_count, sec->name, relsec->name);
12654 #endif
12655 last_sym = NULL;
12656 last_sym_idx = 0;
12657 dst_rela = hdr->contents;
12658 src_irel = (arelent *) esd->sec_info;
12659 BFD_ASSERT (src_irel != NULL);
12660
12661 for (idx = 0; idx < reloc_count; idx++, dst_rela += hdr->sh_entsize)
12662 {
12663 Elf_Internal_Rela src_rela;
12664 arelent *ptr;
12665 asymbol *sym;
12666 int n;
12667
12668 ptr = src_irel + idx;
12669 sym = *ptr->sym_ptr_ptr;
12670
12671 if (sym == last_sym)
12672 n = last_sym_idx;
12673 else
12674 {
12675 last_sym = sym;
12676 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
12677 if (n < 0)
12678 {
12679 #if DEBUG_SECONDARY_RELOCS
12680 fprintf (stderr, "failed to find symbol %s whilst rewriting relocs\n",
12681 sym->name);
12682 #endif
12683 /* FIXME: Signal failure somehow. */
12684 n = 0;
12685 }
12686 last_sym_idx = n;
12687 }
12688
12689 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
12690 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
12691 && ! _bfd_elf_validate_reloc (abfd, ptr))
12692 {
12693 #if DEBUG_SECONDARY_RELOCS
12694 fprintf (stderr, "symbol %s is not in the output bfd\n",
12695 sym->name);
12696 #endif
12697 /* FIXME: Signal failure somehow. */
12698 n = 0;
12699 }
12700
12701 if (ptr->howto == NULL)
12702 {
12703 #if DEBUG_SECONDARY_RELOCS
12704 fprintf (stderr, "reloc for symbol %s does not have a howto associated with it\n",
12705 sym->name);
12706 #endif
12707 /* FIXME: Signal failure somehow. */
12708 n = 0;
12709 }
12710
12711 src_rela.r_offset = ptr->address + addr_offset;
12712 src_rela.r_info = r_info (n, ptr->howto->type);
12713 src_rela.r_addend = ptr->addend;
12714 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
12715 }
12716 }
12717 }
12718
12719 return TRUE;
12720 }
This page took 0.302341 seconds and 4 git commands to generate.