gdb: resume ongoing step after handling fork or vfork
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2021 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bool assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bool swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bool elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bool
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return false;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return false;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return true;
255 }
256
257
258 bool
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bool
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return false;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bool
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return false;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return false;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return false;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return false;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return false;
833 }
834 return true;
835 }
836
837 bool
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bool result = true;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = false;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = false;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = false;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = false;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bool
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bool
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return true;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return false;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return false;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (startswith (name, ".debug")
1088 || startswith (name, ".gnu.debuglto_.debug_")
1089 || startswith (name, ".gnu.linkonce.wi.")
1090 || startswith (name, ".zdebug"))
1091 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1092 else if (startswith (name, GNU_BUILD_ATTRS_SECTION_NAME)
1093 || startswith (name, ".note.gnu"))
1094 {
1095 flags |= SEC_ELF_OCTETS;
1096 opb = 1;
1097 }
1098 else if (startswith (name, ".line")
1099 || startswith (name, ".stab")
1100 || strcmp (name, ".gdb_index") == 0)
1101 flags |= SEC_DEBUGGING;
1102 }
1103 }
1104
1105 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1106 || !bfd_set_section_size (newsect, hdr->sh_size)
1107 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1108 return false;
1109
1110 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1111 only link a single copy of the section. This is used to support
1112 g++. g++ will emit each template expansion in its own section.
1113 The symbols will be defined as weak, so that multiple definitions
1114 are permitted. The GNU linker extension is to actually discard
1115 all but one of the sections. */
1116 if (startswith (name, ".gnu.linkonce")
1117 && elf_next_in_group (newsect) == NULL)
1118 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1119
1120 if (!bfd_set_section_flags (newsect, flags))
1121 return false;
1122
1123 bed = get_elf_backend_data (abfd);
1124 if (bed->elf_backend_section_flags)
1125 if (!bed->elf_backend_section_flags (hdr))
1126 return false;
1127
1128 /* We do not parse the PT_NOTE segments as we are interested even in the
1129 separate debug info files which may have the segments offsets corrupted.
1130 PT_NOTEs from the core files are currently not parsed using BFD. */
1131 if (hdr->sh_type == SHT_NOTE)
1132 {
1133 bfd_byte *contents;
1134
1135 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1136 return false;
1137
1138 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1139 hdr->sh_offset, hdr->sh_addralign);
1140 free (contents);
1141 }
1142
1143 if ((newsect->flags & SEC_ALLOC) != 0)
1144 {
1145 Elf_Internal_Phdr *phdr;
1146 unsigned int i, nload;
1147
1148 /* Some ELF linkers produce binaries with all the program header
1149 p_paddr fields zero. If we have such a binary with more than
1150 one PT_LOAD header, then leave the section lma equal to vma
1151 so that we don't create sections with overlapping lma. */
1152 phdr = elf_tdata (abfd)->phdr;
1153 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1154 if (phdr->p_paddr != 0)
1155 break;
1156 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1157 ++nload;
1158 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1159 return true;
1160
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 {
1164 if (((phdr->p_type == PT_LOAD
1165 && (hdr->sh_flags & SHF_TLS) == 0)
1166 || phdr->p_type == PT_TLS)
1167 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1168 {
1169 if ((newsect->flags & SEC_LOAD) == 0)
1170 newsect->lma = (phdr->p_paddr
1171 + hdr->sh_addr - phdr->p_vaddr) / opb;
1172 else
1173 /* We used to use the same adjustment for SEC_LOAD
1174 sections, but that doesn't work if the segment
1175 is packed with code from multiple VMAs.
1176 Instead we calculate the section LMA based on
1177 the segment LMA. It is assumed that the
1178 segment will contain sections with contiguous
1179 LMAs, even if the VMAs are not. */
1180 newsect->lma = (phdr->p_paddr
1181 + hdr->sh_offset - phdr->p_offset) / opb;
1182
1183 /* With contiguous segments, we can't tell from file
1184 offsets whether a section with zero size should
1185 be placed at the end of one segment or the
1186 beginning of the next. Decide based on vaddr. */
1187 if (hdr->sh_addr >= phdr->p_vaddr
1188 && (hdr->sh_addr + hdr->sh_size
1189 <= phdr->p_vaddr + phdr->p_memsz))
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Compress/decompress DWARF debug sections with names: .debug_* and
1196 .zdebug_*, after the section flags is set. */
1197 if ((newsect->flags & SEC_DEBUGGING)
1198 && ((name[1] == 'd' && name[6] == '_')
1199 || (name[1] == 'z' && name[7] == '_')))
1200 {
1201 enum { nothing, compress, decompress } action = nothing;
1202 int compression_header_size;
1203 bfd_size_type uncompressed_size;
1204 unsigned int uncompressed_align_power;
1205 bool compressed
1206 = bfd_is_section_compressed_with_header (abfd, newsect,
1207 &compression_header_size,
1208 &uncompressed_size,
1209 &uncompressed_align_power);
1210 if (compressed)
1211 {
1212 /* Compressed section. Check if we should decompress. */
1213 if ((abfd->flags & BFD_DECOMPRESS))
1214 action = decompress;
1215 }
1216
1217 /* Compress the uncompressed section or convert from/to .zdebug*
1218 section. Check if we should compress. */
1219 if (action == nothing)
1220 {
1221 if (newsect->size != 0
1222 && (abfd->flags & BFD_COMPRESS)
1223 && compression_header_size >= 0
1224 && uncompressed_size > 0
1225 && (!compressed
1226 || ((compression_header_size > 0)
1227 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1228 action = compress;
1229 else
1230 return true;
1231 }
1232
1233 if (action == compress)
1234 {
1235 if (!bfd_init_section_compress_status (abfd, newsect))
1236 {
1237 _bfd_error_handler
1238 /* xgettext:c-format */
1239 (_("%pB: unable to initialize compress status for section %s"),
1240 abfd, name);
1241 return false;
1242 }
1243 }
1244 else
1245 {
1246 if (!bfd_init_section_decompress_status (abfd, newsect))
1247 {
1248 _bfd_error_handler
1249 /* xgettext:c-format */
1250 (_("%pB: unable to initialize decompress status for section %s"),
1251 abfd, name);
1252 return false;
1253 }
1254 }
1255
1256 if (abfd->is_linker_input)
1257 {
1258 if (name[1] == 'z'
1259 && (action == decompress
1260 || (action == compress
1261 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1262 {
1263 /* Convert section name from .zdebug_* to .debug_* so
1264 that linker will consider this section as a debug
1265 section. */
1266 char *new_name = convert_zdebug_to_debug (abfd, name);
1267 if (new_name == NULL)
1268 return false;
1269 bfd_rename_section (newsect, new_name);
1270 }
1271 }
1272 else
1273 /* For objdump, don't rename the section. For objcopy, delay
1274 section rename to elf_fake_sections. */
1275 newsect->flags |= SEC_ELF_RENAME;
1276 }
1277
1278 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1279 section. */
1280 if (startswith (name, ".gnu.lto_.lto."))
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return true;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function, or should call this function for relocatable output. */
1306
1307 bfd_reloc_status_type
1308 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1309 arelent *reloc_entry,
1310 asymbol *symbol,
1311 void *data ATTRIBUTE_UNUSED,
1312 asection *input_section,
1313 bfd *output_bfd,
1314 char **error_message ATTRIBUTE_UNUSED)
1315 {
1316 if (output_bfd != NULL
1317 && (symbol->flags & BSF_SECTION_SYM) == 0
1318 && (! reloc_entry->howto->partial_inplace
1319 || reloc_entry->addend == 0))
1320 {
1321 reloc_entry->address += input_section->output_offset;
1322 return bfd_reloc_ok;
1323 }
1324
1325 /* In some cases the relocation should be treated as output section
1326 relative, as when linking ELF DWARF into PE COFF. Many ELF
1327 targets lack section relative relocations and instead use
1328 ordinary absolute relocations for references between DWARF
1329 sections. That is arguably a bug in those targets but it happens
1330 to work for the usual case of linking to non-loaded ELF debug
1331 sections with VMAs forced to zero. PE COFF on the other hand
1332 doesn't allow a section VMA of zero. */
1333 if (output_bfd == NULL
1334 && !reloc_entry->howto->pc_relative
1335 && (symbol->section->flags & SEC_DEBUGGING) != 0
1336 && (input_section->flags & SEC_DEBUGGING) != 0)
1337 reloc_entry->addend -= symbol->section->output_section->vma;
1338
1339 return bfd_reloc_continue;
1340 }
1341 \f
1342 /* Returns TRUE if section A matches section B.
1343 Names, addresses and links may be different, but everything else
1344 should be the same. */
1345
1346 static bool
1347 section_match (const Elf_Internal_Shdr * a,
1348 const Elf_Internal_Shdr * b)
1349 {
1350 if (a->sh_type != b->sh_type
1351 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1352 || a->sh_addralign != b->sh_addralign
1353 || a->sh_entsize != b->sh_entsize)
1354 return false;
1355 if (a->sh_type == SHT_SYMTAB
1356 || a->sh_type == SHT_STRTAB)
1357 return true;
1358 return a->sh_size == b->sh_size;
1359 }
1360
1361 /* Find a section in OBFD that has the same characteristics
1362 as IHEADER. Return the index of this section or SHN_UNDEF if
1363 none can be found. Check's section HINT first, as this is likely
1364 to be the correct section. */
1365
1366 static unsigned int
1367 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1368 const unsigned int hint)
1369 {
1370 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1371 unsigned int i;
1372
1373 BFD_ASSERT (iheader != NULL);
1374
1375 /* See PR 20922 for a reproducer of the NULL test. */
1376 if (hint < elf_numsections (obfd)
1377 && oheaders[hint] != NULL
1378 && section_match (oheaders[hint], iheader))
1379 return hint;
1380
1381 for (i = 1; i < elf_numsections (obfd); i++)
1382 {
1383 Elf_Internal_Shdr * oheader = oheaders[i];
1384
1385 if (oheader == NULL)
1386 continue;
1387 if (section_match (oheader, iheader))
1388 /* FIXME: Do we care if there is a potential for
1389 multiple matches ? */
1390 return i;
1391 }
1392
1393 return SHN_UNDEF;
1394 }
1395
1396 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1397 Processor specific section, based upon a matching input section.
1398 Returns TRUE upon success, FALSE otherwise. */
1399
1400 static bool
1401 copy_special_section_fields (const bfd *ibfd,
1402 bfd *obfd,
1403 const Elf_Internal_Shdr *iheader,
1404 Elf_Internal_Shdr *oheader,
1405 const unsigned int secnum)
1406 {
1407 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1408 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1409 bool changed = false;
1410 unsigned int sh_link;
1411
1412 if (oheader->sh_type == SHT_NOBITS)
1413 {
1414 /* This is a feature for objcopy --only-keep-debug:
1415 When a section's type is changed to NOBITS, we preserve
1416 the sh_link and sh_info fields so that they can be
1417 matched up with the original.
1418
1419 Note: Strictly speaking these assignments are wrong.
1420 The sh_link and sh_info fields should point to the
1421 relevent sections in the output BFD, which may not be in
1422 the same location as they were in the input BFD. But
1423 the whole point of this action is to preserve the
1424 original values of the sh_link and sh_info fields, so
1425 that they can be matched up with the section headers in
1426 the original file. So strictly speaking we may be
1427 creating an invalid ELF file, but it is only for a file
1428 that just contains debug info and only for sections
1429 without any contents. */
1430 if (oheader->sh_link == 0)
1431 oheader->sh_link = iheader->sh_link;
1432 if (oheader->sh_info == 0)
1433 oheader->sh_info = iheader->sh_info;
1434 return true;
1435 }
1436
1437 /* Allow the target a chance to decide how these fields should be set. */
1438 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1439 iheader, oheader))
1440 return true;
1441
1442 /* We have an iheader which might match oheader, and which has non-zero
1443 sh_info and/or sh_link fields. Attempt to follow those links and find
1444 the section in the output bfd which corresponds to the linked section
1445 in the input bfd. */
1446 if (iheader->sh_link != SHN_UNDEF)
1447 {
1448 /* See PR 20931 for a reproducer. */
1449 if (iheader->sh_link >= elf_numsections (ibfd))
1450 {
1451 _bfd_error_handler
1452 /* xgettext:c-format */
1453 (_("%pB: invalid sh_link field (%d) in section number %d"),
1454 ibfd, iheader->sh_link, secnum);
1455 return false;
1456 }
1457
1458 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1459 if (sh_link != SHN_UNDEF)
1460 {
1461 oheader->sh_link = sh_link;
1462 changed = true;
1463 }
1464 else
1465 /* FIXME: Should we install iheader->sh_link
1466 if we could not find a match ? */
1467 _bfd_error_handler
1468 /* xgettext:c-format */
1469 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1470 }
1471
1472 if (iheader->sh_info)
1473 {
1474 /* The sh_info field can hold arbitrary information, but if the
1475 SHF_LINK_INFO flag is set then it should be interpreted as a
1476 section index. */
1477 if (iheader->sh_flags & SHF_INFO_LINK)
1478 {
1479 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1480 iheader->sh_info);
1481 if (sh_link != SHN_UNDEF)
1482 oheader->sh_flags |= SHF_INFO_LINK;
1483 }
1484 else
1485 /* No idea what it means - just copy it. */
1486 sh_link = iheader->sh_info;
1487
1488 if (sh_link != SHN_UNDEF)
1489 {
1490 oheader->sh_info = sh_link;
1491 changed = true;
1492 }
1493 else
1494 _bfd_error_handler
1495 /* xgettext:c-format */
1496 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1497 }
1498
1499 return changed;
1500 }
1501
1502 /* Copy the program header and other data from one object module to
1503 another. */
1504
1505 bool
1506 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1507 {
1508 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1509 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1510 const struct elf_backend_data *bed;
1511 unsigned int i;
1512
1513 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1514 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1515 return true;
1516
1517 if (!elf_flags_init (obfd))
1518 {
1519 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1520 elf_flags_init (obfd) = true;
1521 }
1522
1523 elf_gp (obfd) = elf_gp (ibfd);
1524
1525 /* Also copy the EI_OSABI field. */
1526 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1527 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1528
1529 /* If set, copy the EI_ABIVERSION field. */
1530 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1531 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1532 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1533
1534 /* Copy object attributes. */
1535 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1536
1537 if (iheaders == NULL || oheaders == NULL)
1538 return true;
1539
1540 bed = get_elf_backend_data (obfd);
1541
1542 /* Possibly copy other fields in the section header. */
1543 for (i = 1; i < elf_numsections (obfd); i++)
1544 {
1545 unsigned int j;
1546 Elf_Internal_Shdr * oheader = oheaders[i];
1547
1548 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1549 because of a special case need for generating separate debug info
1550 files. See below for more details. */
1551 if (oheader == NULL
1552 || (oheader->sh_type != SHT_NOBITS
1553 && oheader->sh_type < SHT_LOOS))
1554 continue;
1555
1556 /* Ignore empty sections, and sections whose
1557 fields have already been initialised. */
1558 if (oheader->sh_size == 0
1559 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1560 continue;
1561
1562 /* Scan for the matching section in the input bfd.
1563 First we try for a direct mapping between the input and output sections. */
1564 for (j = 1; j < elf_numsections (ibfd); j++)
1565 {
1566 const Elf_Internal_Shdr * iheader = iheaders[j];
1567
1568 if (iheader == NULL)
1569 continue;
1570
1571 if (oheader->bfd_section != NULL
1572 && iheader->bfd_section != NULL
1573 && iheader->bfd_section->output_section != NULL
1574 && iheader->bfd_section->output_section == oheader->bfd_section)
1575 {
1576 /* We have found a connection from the input section to the
1577 output section. Attempt to copy the header fields. If
1578 this fails then do not try any further sections - there
1579 should only be a one-to-one mapping between input and output. */
1580 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1581 j = elf_numsections (ibfd);
1582 break;
1583 }
1584 }
1585
1586 if (j < elf_numsections (ibfd))
1587 continue;
1588
1589 /* That failed. So try to deduce the corresponding input section.
1590 Unfortunately we cannot compare names as the output string table
1591 is empty, so instead we check size, address and type. */
1592 for (j = 1; j < elf_numsections (ibfd); j++)
1593 {
1594 const Elf_Internal_Shdr * iheader = iheaders[j];
1595
1596 if (iheader == NULL)
1597 continue;
1598
1599 /* Try matching fields in the input section's header.
1600 Since --only-keep-debug turns all non-debug sections into
1601 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1602 input type. */
1603 if ((oheader->sh_type == SHT_NOBITS
1604 || iheader->sh_type == oheader->sh_type)
1605 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1606 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1607 && iheader->sh_addralign == oheader->sh_addralign
1608 && iheader->sh_entsize == oheader->sh_entsize
1609 && iheader->sh_size == oheader->sh_size
1610 && iheader->sh_addr == oheader->sh_addr
1611 && (iheader->sh_info != oheader->sh_info
1612 || iheader->sh_link != oheader->sh_link))
1613 {
1614 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1615 break;
1616 }
1617 }
1618
1619 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1620 {
1621 /* Final attempt. Call the backend copy function
1622 with a NULL input section. */
1623 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1624 NULL, oheader);
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 static const char *
1632 get_segment_type (unsigned int p_type)
1633 {
1634 const char *pt;
1635 switch (p_type)
1636 {
1637 case PT_NULL: pt = "NULL"; break;
1638 case PT_LOAD: pt = "LOAD"; break;
1639 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1640 case PT_INTERP: pt = "INTERP"; break;
1641 case PT_NOTE: pt = "NOTE"; break;
1642 case PT_SHLIB: pt = "SHLIB"; break;
1643 case PT_PHDR: pt = "PHDR"; break;
1644 case PT_TLS: pt = "TLS"; break;
1645 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1646 case PT_GNU_STACK: pt = "STACK"; break;
1647 case PT_GNU_RELRO: pt = "RELRO"; break;
1648 default: pt = NULL; break;
1649 }
1650 return pt;
1651 }
1652
1653 /* Print out the program headers. */
1654
1655 bool
1656 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1657 {
1658 FILE *f = (FILE *) farg;
1659 Elf_Internal_Phdr *p;
1660 asection *s;
1661 bfd_byte *dynbuf = NULL;
1662
1663 p = elf_tdata (abfd)->phdr;
1664 if (p != NULL)
1665 {
1666 unsigned int i, c;
1667
1668 fprintf (f, _("\nProgram Header:\n"));
1669 c = elf_elfheader (abfd)->e_phnum;
1670 for (i = 0; i < c; i++, p++)
1671 {
1672 const char *pt = get_segment_type (p->p_type);
1673 char buf[20];
1674
1675 if (pt == NULL)
1676 {
1677 sprintf (buf, "0x%lx", p->p_type);
1678 pt = buf;
1679 }
1680 fprintf (f, "%8s off 0x", pt);
1681 bfd_fprintf_vma (abfd, f, p->p_offset);
1682 fprintf (f, " vaddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1684 fprintf (f, " paddr 0x");
1685 bfd_fprintf_vma (abfd, f, p->p_paddr);
1686 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1687 fprintf (f, " filesz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_filesz);
1689 fprintf (f, " memsz 0x");
1690 bfd_fprintf_vma (abfd, f, p->p_memsz);
1691 fprintf (f, " flags %c%c%c",
1692 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1693 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1694 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1695 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1696 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1697 fprintf (f, "\n");
1698 }
1699 }
1700
1701 s = bfd_get_section_by_name (abfd, ".dynamic");
1702 if (s != NULL)
1703 {
1704 unsigned int elfsec;
1705 unsigned long shlink;
1706 bfd_byte *extdyn, *extdynend;
1707 size_t extdynsize;
1708 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1709
1710 fprintf (f, _("\nDynamic Section:\n"));
1711
1712 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1713 goto error_return;
1714
1715 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1716 if (elfsec == SHN_BAD)
1717 goto error_return;
1718 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1719
1720 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1721 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1722
1723 extdyn = dynbuf;
1724 /* PR 17512: file: 6f427532. */
1725 if (s->size < extdynsize)
1726 goto error_return;
1727 extdynend = extdyn + s->size;
1728 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1729 Fix range check. */
1730 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1731 {
1732 Elf_Internal_Dyn dyn;
1733 const char *name = "";
1734 char ab[20];
1735 bool stringp;
1736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1737
1738 (*swap_dyn_in) (abfd, extdyn, &dyn);
1739
1740 if (dyn.d_tag == DT_NULL)
1741 break;
1742
1743 stringp = false;
1744 switch (dyn.d_tag)
1745 {
1746 default:
1747 if (bed->elf_backend_get_target_dtag)
1748 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1749
1750 if (!strcmp (name, ""))
1751 {
1752 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1753 name = ab;
1754 }
1755 break;
1756
1757 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1758 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1759 case DT_PLTGOT: name = "PLTGOT"; break;
1760 case DT_HASH: name = "HASH"; break;
1761 case DT_STRTAB: name = "STRTAB"; break;
1762 case DT_SYMTAB: name = "SYMTAB"; break;
1763 case DT_RELA: name = "RELA"; break;
1764 case DT_RELASZ: name = "RELASZ"; break;
1765 case DT_RELAENT: name = "RELAENT"; break;
1766 case DT_STRSZ: name = "STRSZ"; break;
1767 case DT_SYMENT: name = "SYMENT"; break;
1768 case DT_INIT: name = "INIT"; break;
1769 case DT_FINI: name = "FINI"; break;
1770 case DT_SONAME: name = "SONAME"; stringp = true; break;
1771 case DT_RPATH: name = "RPATH"; stringp = true; break;
1772 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1773 case DT_REL: name = "REL"; break;
1774 case DT_RELSZ: name = "RELSZ"; break;
1775 case DT_RELENT: name = "RELENT"; break;
1776 case DT_RELR: name = "RELR"; break;
1777 case DT_RELRSZ: name = "RELRSZ"; break;
1778 case DT_RELRENT: name = "RELRENT"; break;
1779 case DT_PLTREL: name = "PLTREL"; break;
1780 case DT_DEBUG: name = "DEBUG"; break;
1781 case DT_TEXTREL: name = "TEXTREL"; break;
1782 case DT_JMPREL: name = "JMPREL"; break;
1783 case DT_BIND_NOW: name = "BIND_NOW"; break;
1784 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1785 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1786 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1787 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1788 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1789 case DT_FLAGS: name = "FLAGS"; break;
1790 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1791 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1792 case DT_CHECKSUM: name = "CHECKSUM"; break;
1793 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1794 case DT_MOVEENT: name = "MOVEENT"; break;
1795 case DT_MOVESZ: name = "MOVESZ"; break;
1796 case DT_FEATURE: name = "FEATURE"; break;
1797 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1798 case DT_SYMINSZ: name = "SYMINSZ"; break;
1799 case DT_SYMINENT: name = "SYMINENT"; break;
1800 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1801 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1802 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1803 case DT_PLTPAD: name = "PLTPAD"; break;
1804 case DT_MOVETAB: name = "MOVETAB"; break;
1805 case DT_SYMINFO: name = "SYMINFO"; break;
1806 case DT_RELACOUNT: name = "RELACOUNT"; break;
1807 case DT_RELCOUNT: name = "RELCOUNT"; break;
1808 case DT_FLAGS_1: name = "FLAGS_1"; break;
1809 case DT_VERSYM: name = "VERSYM"; break;
1810 case DT_VERDEF: name = "VERDEF"; break;
1811 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1812 case DT_VERNEED: name = "VERNEED"; break;
1813 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1814 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1815 case DT_USED: name = "USED"; break;
1816 case DT_FILTER: name = "FILTER"; stringp = true; break;
1817 case DT_GNU_HASH: name = "GNU_HASH"; break;
1818 }
1819
1820 fprintf (f, " %-20s ", name);
1821 if (! stringp)
1822 {
1823 fprintf (f, "0x");
1824 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1825 }
1826 else
1827 {
1828 const char *string;
1829 unsigned int tagv = dyn.d_un.d_val;
1830
1831 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1832 if (string == NULL)
1833 goto error_return;
1834 fprintf (f, "%s", string);
1835 }
1836 fprintf (f, "\n");
1837 }
1838
1839 free (dynbuf);
1840 dynbuf = NULL;
1841 }
1842
1843 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1844 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1845 {
1846 if (! _bfd_elf_slurp_version_tables (abfd, false))
1847 return false;
1848 }
1849
1850 if (elf_dynverdef (abfd) != 0)
1851 {
1852 Elf_Internal_Verdef *t;
1853
1854 fprintf (f, _("\nVersion definitions:\n"));
1855 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1856 {
1857 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1858 t->vd_flags, t->vd_hash,
1859 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1860 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1861 {
1862 Elf_Internal_Verdaux *a;
1863
1864 fprintf (f, "\t");
1865 for (a = t->vd_auxptr->vda_nextptr;
1866 a != NULL;
1867 a = a->vda_nextptr)
1868 fprintf (f, "%s ",
1869 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1870 fprintf (f, "\n");
1871 }
1872 }
1873 }
1874
1875 if (elf_dynverref (abfd) != 0)
1876 {
1877 Elf_Internal_Verneed *t;
1878
1879 fprintf (f, _("\nVersion References:\n"));
1880 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1881 {
1882 Elf_Internal_Vernaux *a;
1883
1884 fprintf (f, _(" required from %s:\n"),
1885 t->vn_filename ? t->vn_filename : "<corrupt>");
1886 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1887 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1888 a->vna_flags, a->vna_other,
1889 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1890 }
1891 }
1892
1893 return true;
1894
1895 error_return:
1896 free (dynbuf);
1897 return false;
1898 }
1899
1900 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1901 and return symbol version for symbol version itself. */
1902
1903 const char *
1904 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1905 bool base_p,
1906 bool *hidden)
1907 {
1908 const char *version_string = NULL;
1909 if (elf_dynversym (abfd) != 0
1910 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1911 {
1912 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1913
1914 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1915 vernum &= VERSYM_VERSION;
1916
1917 if (vernum == 0)
1918 version_string = "";
1919 else if (vernum == 1
1920 && (vernum > elf_tdata (abfd)->cverdefs
1921 || (elf_tdata (abfd)->verdef[0].vd_flags
1922 == VER_FLG_BASE)))
1923 version_string = base_p ? "Base" : "";
1924 else if (vernum <= elf_tdata (abfd)->cverdefs)
1925 {
1926 const char *nodename
1927 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1928 version_string = "";
1929 if (base_p
1930 || nodename == NULL
1931 || symbol->name == NULL
1932 || strcmp (symbol->name, nodename) != 0)
1933 version_string = nodename;
1934 }
1935 else
1936 {
1937 Elf_Internal_Verneed *t;
1938
1939 version_string = _("<corrupt>");
1940 for (t = elf_tdata (abfd)->verref;
1941 t != NULL;
1942 t = t->vn_nextref)
1943 {
1944 Elf_Internal_Vernaux *a;
1945
1946 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1947 {
1948 if (a->vna_other == vernum)
1949 {
1950 version_string = a->vna_nodename;
1951 break;
1952 }
1953 }
1954 }
1955 }
1956 }
1957 return version_string;
1958 }
1959
1960 /* Display ELF-specific fields of a symbol. */
1961
1962 void
1963 bfd_elf_print_symbol (bfd *abfd,
1964 void *filep,
1965 asymbol *symbol,
1966 bfd_print_symbol_type how)
1967 {
1968 FILE *file = (FILE *) filep;
1969 switch (how)
1970 {
1971 case bfd_print_symbol_name:
1972 fprintf (file, "%s", symbol->name);
1973 break;
1974 case bfd_print_symbol_more:
1975 fprintf (file, "elf ");
1976 bfd_fprintf_vma (abfd, file, symbol->value);
1977 fprintf (file, " %x", symbol->flags);
1978 break;
1979 case bfd_print_symbol_all:
1980 {
1981 const char *section_name;
1982 const char *name = NULL;
1983 const struct elf_backend_data *bed;
1984 unsigned char st_other;
1985 bfd_vma val;
1986 const char *version_string;
1987 bool hidden;
1988
1989 section_name = symbol->section ? symbol->section->name : "(*none*)";
1990
1991 bed = get_elf_backend_data (abfd);
1992 if (bed->elf_backend_print_symbol_all)
1993 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1994
1995 if (name == NULL)
1996 {
1997 name = symbol->name;
1998 bfd_print_symbol_vandf (abfd, file, symbol);
1999 }
2000
2001 fprintf (file, " %s\t", section_name);
2002 /* Print the "other" value for a symbol. For common symbols,
2003 we've already printed the size; now print the alignment.
2004 For other symbols, we have no specified alignment, and
2005 we've printed the address; now print the size. */
2006 if (symbol->section && bfd_is_com_section (symbol->section))
2007 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2008 else
2009 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2010 bfd_fprintf_vma (abfd, file, val);
2011
2012 /* If we have version information, print it. */
2013 version_string = _bfd_elf_get_symbol_version_string (abfd,
2014 symbol,
2015 true,
2016 &hidden);
2017 if (version_string)
2018 {
2019 if (!hidden)
2020 fprintf (file, " %-11s", version_string);
2021 else
2022 {
2023 int i;
2024
2025 fprintf (file, " (%s)", version_string);
2026 for (i = 10 - strlen (version_string); i > 0; --i)
2027 putc (' ', file);
2028 }
2029 }
2030
2031 /* If the st_other field is not zero, print it. */
2032 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2033
2034 switch (st_other)
2035 {
2036 case 0: break;
2037 case STV_INTERNAL: fprintf (file, " .internal"); break;
2038 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2039 case STV_PROTECTED: fprintf (file, " .protected"); break;
2040 default:
2041 /* Some other non-defined flags are also present, so print
2042 everything hex. */
2043 fprintf (file, " 0x%02x", (unsigned int) st_other);
2044 }
2045
2046 fprintf (file, " %s", name);
2047 }
2048 break;
2049 }
2050 }
2051 \f
2052 /* ELF .o/exec file reading */
2053
2054 /* Create a new bfd section from an ELF section header. */
2055
2056 bool
2057 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2058 {
2059 Elf_Internal_Shdr *hdr;
2060 Elf_Internal_Ehdr *ehdr;
2061 const struct elf_backend_data *bed;
2062 const char *name;
2063 bool ret = true;
2064
2065 if (shindex >= elf_numsections (abfd))
2066 return false;
2067
2068 /* PR17512: A corrupt ELF binary might contain a loop of sections via
2069 sh_link or sh_info. Detect this here, by refusing to load a
2070 section that we are already in the process of loading. */
2071 if (elf_tdata (abfd)->being_created[shindex])
2072 {
2073 _bfd_error_handler
2074 (_("%pB: warning: loop in section dependencies detected"), abfd);
2075 return false;
2076 }
2077 elf_tdata (abfd)->being_created[shindex] = true;
2078
2079 hdr = elf_elfsections (abfd)[shindex];
2080 ehdr = elf_elfheader (abfd);
2081 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2082 hdr->sh_name);
2083 if (name == NULL)
2084 goto fail;
2085
2086 bed = get_elf_backend_data (abfd);
2087 switch (hdr->sh_type)
2088 {
2089 case SHT_NULL:
2090 /* Inactive section. Throw it away. */
2091 goto success;
2092
2093 case SHT_PROGBITS: /* Normal section with contents. */
2094 case SHT_NOBITS: /* .bss section. */
2095 case SHT_HASH: /* .hash section. */
2096 case SHT_NOTE: /* .note section. */
2097 case SHT_INIT_ARRAY: /* .init_array section. */
2098 case SHT_FINI_ARRAY: /* .fini_array section. */
2099 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2100 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2101 case SHT_GNU_HASH: /* .gnu.hash section. */
2102 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2103 goto success;
2104
2105 case SHT_DYNAMIC: /* Dynamic linking information. */
2106 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2107 goto fail;
2108
2109 if (hdr->sh_link > elf_numsections (abfd))
2110 {
2111 /* PR 10478: Accept Solaris binaries with a sh_link
2112 field set to SHN_BEFORE or SHN_AFTER. */
2113 switch (bfd_get_arch (abfd))
2114 {
2115 case bfd_arch_i386:
2116 case bfd_arch_sparc:
2117 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2118 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2119 break;
2120 /* Otherwise fall through. */
2121 default:
2122 goto fail;
2123 }
2124 }
2125 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2126 goto fail;
2127 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2128 {
2129 Elf_Internal_Shdr *dynsymhdr;
2130
2131 /* The shared libraries distributed with hpux11 have a bogus
2132 sh_link field for the ".dynamic" section. Find the
2133 string table for the ".dynsym" section instead. */
2134 if (elf_dynsymtab (abfd) != 0)
2135 {
2136 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2137 hdr->sh_link = dynsymhdr->sh_link;
2138 }
2139 else
2140 {
2141 unsigned int i, num_sec;
2142
2143 num_sec = elf_numsections (abfd);
2144 for (i = 1; i < num_sec; i++)
2145 {
2146 dynsymhdr = elf_elfsections (abfd)[i];
2147 if (dynsymhdr->sh_type == SHT_DYNSYM)
2148 {
2149 hdr->sh_link = dynsymhdr->sh_link;
2150 break;
2151 }
2152 }
2153 }
2154 }
2155 goto success;
2156
2157 case SHT_SYMTAB: /* A symbol table. */
2158 if (elf_onesymtab (abfd) == shindex)
2159 goto success;
2160
2161 if (hdr->sh_entsize != bed->s->sizeof_sym)
2162 goto fail;
2163
2164 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2165 {
2166 if (hdr->sh_size != 0)
2167 goto fail;
2168 /* Some assemblers erroneously set sh_info to one with a
2169 zero sh_size. ld sees this as a global symbol count
2170 of (unsigned) -1. Fix it here. */
2171 hdr->sh_info = 0;
2172 goto success;
2173 }
2174
2175 /* PR 18854: A binary might contain more than one symbol table.
2176 Unusual, but possible. Warn, but continue. */
2177 if (elf_onesymtab (abfd) != 0)
2178 {
2179 _bfd_error_handler
2180 /* xgettext:c-format */
2181 (_("%pB: warning: multiple symbol tables detected"
2182 " - ignoring the table in section %u"),
2183 abfd, shindex);
2184 goto success;
2185 }
2186 elf_onesymtab (abfd) = shindex;
2187 elf_symtab_hdr (abfd) = *hdr;
2188 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2189 abfd->flags |= HAS_SYMS;
2190
2191 /* Sometimes a shared object will map in the symbol table. If
2192 SHF_ALLOC is set, and this is a shared object, then we also
2193 treat this section as a BFD section. We can not base the
2194 decision purely on SHF_ALLOC, because that flag is sometimes
2195 set in a relocatable object file, which would confuse the
2196 linker. */
2197 if ((hdr->sh_flags & SHF_ALLOC) != 0
2198 && (abfd->flags & DYNAMIC) != 0
2199 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2200 shindex))
2201 goto fail;
2202
2203 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2204 can't read symbols without that section loaded as well. It
2205 is most likely specified by the next section header. */
2206 {
2207 elf_section_list * entry;
2208 unsigned int i, num_sec;
2209
2210 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2211 if (entry->hdr.sh_link == shindex)
2212 goto success;
2213
2214 num_sec = elf_numsections (abfd);
2215 for (i = shindex + 1; i < num_sec; i++)
2216 {
2217 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2218
2219 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2220 && hdr2->sh_link == shindex)
2221 break;
2222 }
2223
2224 if (i == num_sec)
2225 for (i = 1; i < shindex; i++)
2226 {
2227 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2228
2229 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2230 && hdr2->sh_link == shindex)
2231 break;
2232 }
2233
2234 if (i != shindex)
2235 ret = bfd_section_from_shdr (abfd, i);
2236 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2237 goto success;
2238 }
2239
2240 case SHT_DYNSYM: /* A dynamic symbol table. */
2241 if (elf_dynsymtab (abfd) == shindex)
2242 goto success;
2243
2244 if (hdr->sh_entsize != bed->s->sizeof_sym)
2245 goto fail;
2246
2247 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2248 {
2249 if (hdr->sh_size != 0)
2250 goto fail;
2251
2252 /* Some linkers erroneously set sh_info to one with a
2253 zero sh_size. ld sees this as a global symbol count
2254 of (unsigned) -1. Fix it here. */
2255 hdr->sh_info = 0;
2256 goto success;
2257 }
2258
2259 /* PR 18854: A binary might contain more than one dynamic symbol table.
2260 Unusual, but possible. Warn, but continue. */
2261 if (elf_dynsymtab (abfd) != 0)
2262 {
2263 _bfd_error_handler
2264 /* xgettext:c-format */
2265 (_("%pB: warning: multiple dynamic symbol tables detected"
2266 " - ignoring the table in section %u"),
2267 abfd, shindex);
2268 goto success;
2269 }
2270 elf_dynsymtab (abfd) = shindex;
2271 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2272 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2273 abfd->flags |= HAS_SYMS;
2274
2275 /* Besides being a symbol table, we also treat this as a regular
2276 section, so that objcopy can handle it. */
2277 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2278 goto success;
2279
2280 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2281 {
2282 elf_section_list * entry;
2283
2284 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2285 if (entry->ndx == shindex)
2286 goto success;
2287
2288 entry = bfd_alloc (abfd, sizeof (*entry));
2289 if (entry == NULL)
2290 goto fail;
2291 entry->ndx = shindex;
2292 entry->hdr = * hdr;
2293 entry->next = elf_symtab_shndx_list (abfd);
2294 elf_symtab_shndx_list (abfd) = entry;
2295 elf_elfsections (abfd)[shindex] = & entry->hdr;
2296 goto success;
2297 }
2298
2299 case SHT_STRTAB: /* A string table. */
2300 if (hdr->bfd_section != NULL)
2301 goto success;
2302
2303 if (ehdr->e_shstrndx == shindex)
2304 {
2305 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2306 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2307 goto success;
2308 }
2309
2310 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2311 {
2312 symtab_strtab:
2313 elf_tdata (abfd)->strtab_hdr = *hdr;
2314 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2315 goto success;
2316 }
2317
2318 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2319 {
2320 dynsymtab_strtab:
2321 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2322 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2323 elf_elfsections (abfd)[shindex] = hdr;
2324 /* We also treat this as a regular section, so that objcopy
2325 can handle it. */
2326 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2327 shindex);
2328 goto success;
2329 }
2330
2331 /* If the string table isn't one of the above, then treat it as a
2332 regular section. We need to scan all the headers to be sure,
2333 just in case this strtab section appeared before the above. */
2334 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2335 {
2336 unsigned int i, num_sec;
2337
2338 num_sec = elf_numsections (abfd);
2339 for (i = 1; i < num_sec; i++)
2340 {
2341 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2342 if (hdr2->sh_link == shindex)
2343 {
2344 /* Prevent endless recursion on broken objects. */
2345 if (i == shindex)
2346 goto fail;
2347 if (! bfd_section_from_shdr (abfd, i))
2348 goto fail;
2349 if (elf_onesymtab (abfd) == i)
2350 goto symtab_strtab;
2351 if (elf_dynsymtab (abfd) == i)
2352 goto dynsymtab_strtab;
2353 }
2354 }
2355 }
2356 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2357 goto success;
2358
2359 case SHT_REL:
2360 case SHT_RELA:
2361 case SHT_RELR:
2362 /* *These* do a lot of work -- but build no sections! */
2363 {
2364 asection *target_sect;
2365 Elf_Internal_Shdr *hdr2, **p_hdr;
2366 unsigned int num_sec = elf_numsections (abfd);
2367 struct bfd_elf_section_data *esdt;
2368 bfd_size_type size;
2369
2370 if (hdr->sh_type == SHT_REL)
2371 size = bed->s->sizeof_rel;
2372 else if (hdr->sh_type == SHT_RELA)
2373 size = bed->s->sizeof_rela;
2374 else
2375 size = bed->s->arch_size / 8;
2376 if (hdr->sh_entsize != size)
2377 goto fail;
2378
2379 /* Check for a bogus link to avoid crashing. */
2380 if (hdr->sh_link >= num_sec)
2381 {
2382 _bfd_error_handler
2383 /* xgettext:c-format */
2384 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2385 abfd, hdr->sh_link, name, shindex);
2386 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2387 shindex);
2388 goto success;
2389 }
2390
2391 /* For some incomprehensible reason Oracle distributes
2392 libraries for Solaris in which some of the objects have
2393 bogus sh_link fields. It would be nice if we could just
2394 reject them, but, unfortunately, some people need to use
2395 them. We scan through the section headers; if we find only
2396 one suitable symbol table, we clobber the sh_link to point
2397 to it. I hope this doesn't break anything.
2398
2399 Don't do it on executable nor shared library. */
2400 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2401 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2402 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2403 {
2404 unsigned int scan;
2405 int found;
2406
2407 found = 0;
2408 for (scan = 1; scan < num_sec; scan++)
2409 {
2410 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2411 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2412 {
2413 if (found != 0)
2414 {
2415 found = 0;
2416 break;
2417 }
2418 found = scan;
2419 }
2420 }
2421 if (found != 0)
2422 hdr->sh_link = found;
2423 }
2424
2425 /* Get the symbol table. */
2426 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2427 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2428 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2429 goto fail;
2430
2431 /* If this is an alloc section in an executable or shared
2432 library, or the reloc section does not use the main symbol
2433 table we don't treat it as a reloc section. BFD can't
2434 adequately represent such a section, so at least for now,
2435 we don't try. We just present it as a normal section. We
2436 also can't use it as a reloc section if it points to the
2437 null section, an invalid section, another reloc section, or
2438 its sh_link points to the null section. */
2439 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2440 && (hdr->sh_flags & SHF_ALLOC) != 0)
2441 || hdr->sh_link == SHN_UNDEF
2442 || hdr->sh_link != elf_onesymtab (abfd)
2443 || hdr->sh_info == SHN_UNDEF
2444 || hdr->sh_info >= num_sec
2445 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2446 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2447 {
2448 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2449 shindex);
2450 goto success;
2451 }
2452
2453 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2454 goto fail;
2455
2456 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2457 if (target_sect == NULL)
2458 goto fail;
2459
2460 esdt = elf_section_data (target_sect);
2461 if (hdr->sh_type == SHT_RELA)
2462 p_hdr = &esdt->rela.hdr;
2463 else
2464 p_hdr = &esdt->rel.hdr;
2465
2466 /* PR 17512: file: 0b4f81b7.
2467 Also see PR 24456, for a file which deliberately has two reloc
2468 sections. */
2469 if (*p_hdr != NULL)
2470 {
2471 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2472 {
2473 _bfd_error_handler
2474 /* xgettext:c-format */
2475 (_("%pB: warning: secondary relocation section '%s' "
2476 "for section %pA found - ignoring"),
2477 abfd, name, target_sect);
2478 }
2479 else
2480 esdt->has_secondary_relocs = true;
2481 goto success;
2482 }
2483
2484 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2485 if (hdr2 == NULL)
2486 goto fail;
2487 *hdr2 = *hdr;
2488 *p_hdr = hdr2;
2489 elf_elfsections (abfd)[shindex] = hdr2;
2490 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2491 * bed->s->int_rels_per_ext_rel);
2492 target_sect->flags |= SEC_RELOC;
2493 target_sect->relocation = NULL;
2494 target_sect->rel_filepos = hdr->sh_offset;
2495 /* In the section to which the relocations apply, mark whether
2496 its relocations are of the REL or RELA variety. */
2497 if (hdr->sh_size != 0)
2498 {
2499 if (hdr->sh_type == SHT_RELA)
2500 target_sect->use_rela_p = 1;
2501 }
2502 abfd->flags |= HAS_RELOC;
2503 goto success;
2504 }
2505
2506 case SHT_GNU_verdef:
2507 elf_dynverdef (abfd) = shindex;
2508 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2509 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2510 goto success;
2511
2512 case SHT_GNU_versym:
2513 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2514 goto fail;
2515
2516 elf_dynversym (abfd) = shindex;
2517 elf_tdata (abfd)->dynversym_hdr = *hdr;
2518 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2519 goto success;
2520
2521 case SHT_GNU_verneed:
2522 elf_dynverref (abfd) = shindex;
2523 elf_tdata (abfd)->dynverref_hdr = *hdr;
2524 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2525 goto success;
2526
2527 case SHT_SHLIB:
2528 goto success;
2529
2530 case SHT_GROUP:
2531 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2532 goto fail;
2533
2534 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2535 goto fail;
2536
2537 goto success;
2538
2539 default:
2540 /* Possibly an attributes section. */
2541 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2542 || hdr->sh_type == bed->obj_attrs_section_type)
2543 {
2544 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2545 goto fail;
2546 _bfd_elf_parse_attributes (abfd, hdr);
2547 goto success;
2548 }
2549
2550 /* Check for any processor-specific section types. */
2551 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2552 goto success;
2553
2554 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2555 {
2556 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2557 /* FIXME: How to properly handle allocated section reserved
2558 for applications? */
2559 _bfd_error_handler
2560 /* xgettext:c-format */
2561 (_("%pB: unknown type [%#x] section `%s'"),
2562 abfd, hdr->sh_type, name);
2563 else
2564 {
2565 /* Allow sections reserved for applications. */
2566 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2567 shindex);
2568 goto success;
2569 }
2570 }
2571 else if (hdr->sh_type >= SHT_LOPROC
2572 && hdr->sh_type <= SHT_HIPROC)
2573 /* FIXME: We should handle this section. */
2574 _bfd_error_handler
2575 /* xgettext:c-format */
2576 (_("%pB: unknown type [%#x] section `%s'"),
2577 abfd, hdr->sh_type, name);
2578 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2579 {
2580 /* Unrecognised OS-specific sections. */
2581 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2582 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2583 required to correctly process the section and the file should
2584 be rejected with an error message. */
2585 _bfd_error_handler
2586 /* xgettext:c-format */
2587 (_("%pB: unknown type [%#x] section `%s'"),
2588 abfd, hdr->sh_type, name);
2589 else
2590 {
2591 /* Otherwise it should be processed. */
2592 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2593 goto success;
2594 }
2595 }
2596 else
2597 /* FIXME: We should handle this section. */
2598 _bfd_error_handler
2599 /* xgettext:c-format */
2600 (_("%pB: unknown type [%#x] section `%s'"),
2601 abfd, hdr->sh_type, name);
2602
2603 goto fail;
2604 }
2605
2606 fail:
2607 ret = false;
2608 success:
2609 elf_tdata (abfd)->being_created[shindex] = false;
2610 return ret;
2611 }
2612
2613 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2614
2615 Elf_Internal_Sym *
2616 bfd_sym_from_r_symndx (struct sym_cache *cache,
2617 bfd *abfd,
2618 unsigned long r_symndx)
2619 {
2620 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2621
2622 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2623 {
2624 Elf_Internal_Shdr *symtab_hdr;
2625 unsigned char esym[sizeof (Elf64_External_Sym)];
2626 Elf_External_Sym_Shndx eshndx;
2627
2628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2629 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2630 &cache->sym[ent], esym, &eshndx) == NULL)
2631 return NULL;
2632
2633 if (cache->abfd != abfd)
2634 {
2635 memset (cache->indx, -1, sizeof (cache->indx));
2636 cache->abfd = abfd;
2637 }
2638 cache->indx[ent] = r_symndx;
2639 }
2640
2641 return &cache->sym[ent];
2642 }
2643
2644 /* Given an ELF section number, retrieve the corresponding BFD
2645 section. */
2646
2647 asection *
2648 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2649 {
2650 if (sec_index >= elf_numsections (abfd))
2651 return NULL;
2652 return elf_elfsections (abfd)[sec_index]->bfd_section;
2653 }
2654
2655 static const struct bfd_elf_special_section special_sections_b[] =
2656 {
2657 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2658 { NULL, 0, 0, 0, 0 }
2659 };
2660
2661 static const struct bfd_elf_special_section special_sections_c[] =
2662 {
2663 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2664 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2665 { NULL, 0, 0, 0, 0 }
2666 };
2667
2668 static const struct bfd_elf_special_section special_sections_d[] =
2669 {
2670 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2671 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2672 /* There are more DWARF sections than these, but they needn't be added here
2673 unless you have to cope with broken compilers that don't emit section
2674 attributes or you want to help the user writing assembler. */
2675 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2676 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2681 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2682 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2683 { NULL, 0, 0, 0, 0 }
2684 };
2685
2686 static const struct bfd_elf_special_section special_sections_f[] =
2687 {
2688 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2689 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2690 { NULL, 0 , 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_g[] =
2694 {
2695 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2696 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2697 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2698 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2699 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2700 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2701 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2702 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2703 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2704 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2705 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2706 { NULL, 0, 0, 0, 0 }
2707 };
2708
2709 static const struct bfd_elf_special_section special_sections_h[] =
2710 {
2711 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2712 { NULL, 0, 0, 0, 0 }
2713 };
2714
2715 static const struct bfd_elf_special_section special_sections_i[] =
2716 {
2717 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2718 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2719 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2720 { NULL, 0, 0, 0, 0 }
2721 };
2722
2723 static const struct bfd_elf_special_section special_sections_l[] =
2724 {
2725 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2726 { NULL, 0, 0, 0, 0 }
2727 };
2728
2729 static const struct bfd_elf_special_section special_sections_n[] =
2730 {
2731 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2732 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2733 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2734 { NULL, 0, 0, 0, 0 }
2735 };
2736
2737 static const struct bfd_elf_special_section special_sections_p[] =
2738 {
2739 { STRING_COMMA_LEN (".persistent.bss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2740 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2741 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2742 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2743 { NULL, 0, 0, 0, 0 }
2744 };
2745
2746 static const struct bfd_elf_special_section special_sections_r[] =
2747 {
2748 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2749 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2750 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2751 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2752 { NULL, 0, 0, 0, 0 }
2753 };
2754
2755 static const struct bfd_elf_special_section special_sections_s[] =
2756 {
2757 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2758 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2759 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2760 /* See struct bfd_elf_special_section declaration for the semantics of
2761 this special case where .prefix_length != strlen (.prefix). */
2762 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2763 { NULL, 0, 0, 0, 0 }
2764 };
2765
2766 static const struct bfd_elf_special_section special_sections_t[] =
2767 {
2768 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2769 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2770 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2771 { NULL, 0, 0, 0, 0 }
2772 };
2773
2774 static const struct bfd_elf_special_section special_sections_z[] =
2775 {
2776 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2777 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2778 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2779 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2780 { NULL, 0, 0, 0, 0 }
2781 };
2782
2783 static const struct bfd_elf_special_section * const special_sections[] =
2784 {
2785 special_sections_b, /* 'b' */
2786 special_sections_c, /* 'c' */
2787 special_sections_d, /* 'd' */
2788 NULL, /* 'e' */
2789 special_sections_f, /* 'f' */
2790 special_sections_g, /* 'g' */
2791 special_sections_h, /* 'h' */
2792 special_sections_i, /* 'i' */
2793 NULL, /* 'j' */
2794 NULL, /* 'k' */
2795 special_sections_l, /* 'l' */
2796 NULL, /* 'm' */
2797 special_sections_n, /* 'n' */
2798 NULL, /* 'o' */
2799 special_sections_p, /* 'p' */
2800 NULL, /* 'q' */
2801 special_sections_r, /* 'r' */
2802 special_sections_s, /* 's' */
2803 special_sections_t, /* 't' */
2804 NULL, /* 'u' */
2805 NULL, /* 'v' */
2806 NULL, /* 'w' */
2807 NULL, /* 'x' */
2808 NULL, /* 'y' */
2809 special_sections_z /* 'z' */
2810 };
2811
2812 const struct bfd_elf_special_section *
2813 _bfd_elf_get_special_section (const char *name,
2814 const struct bfd_elf_special_section *spec,
2815 unsigned int rela)
2816 {
2817 int i;
2818 int len;
2819
2820 len = strlen (name);
2821
2822 for (i = 0; spec[i].prefix != NULL; i++)
2823 {
2824 int suffix_len;
2825 int prefix_len = spec[i].prefix_length;
2826
2827 if (len < prefix_len)
2828 continue;
2829 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2830 continue;
2831
2832 suffix_len = spec[i].suffix_length;
2833 if (suffix_len <= 0)
2834 {
2835 if (name[prefix_len] != 0)
2836 {
2837 if (suffix_len == 0)
2838 continue;
2839 if (name[prefix_len] != '.'
2840 && (suffix_len == -2
2841 || (rela && spec[i].type == SHT_REL)))
2842 continue;
2843 }
2844 }
2845 else
2846 {
2847 if (len < prefix_len + suffix_len)
2848 continue;
2849 if (memcmp (name + len - suffix_len,
2850 spec[i].prefix + prefix_len,
2851 suffix_len) != 0)
2852 continue;
2853 }
2854 return &spec[i];
2855 }
2856
2857 return NULL;
2858 }
2859
2860 const struct bfd_elf_special_section *
2861 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2862 {
2863 int i;
2864 const struct bfd_elf_special_section *spec;
2865 const struct elf_backend_data *bed;
2866
2867 /* See if this is one of the special sections. */
2868 if (sec->name == NULL)
2869 return NULL;
2870
2871 bed = get_elf_backend_data (abfd);
2872 spec = bed->special_sections;
2873 if (spec)
2874 {
2875 spec = _bfd_elf_get_special_section (sec->name,
2876 bed->special_sections,
2877 sec->use_rela_p);
2878 if (spec != NULL)
2879 return spec;
2880 }
2881
2882 if (sec->name[0] != '.')
2883 return NULL;
2884
2885 i = sec->name[1] - 'b';
2886 if (i < 0 || i > 'z' - 'b')
2887 return NULL;
2888
2889 spec = special_sections[i];
2890
2891 if (spec == NULL)
2892 return NULL;
2893
2894 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2895 }
2896
2897 bool
2898 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2899 {
2900 struct bfd_elf_section_data *sdata;
2901 const struct elf_backend_data *bed;
2902 const struct bfd_elf_special_section *ssect;
2903
2904 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2905 if (sdata == NULL)
2906 {
2907 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2908 sizeof (*sdata));
2909 if (sdata == NULL)
2910 return false;
2911 sec->used_by_bfd = sdata;
2912 }
2913
2914 /* Indicate whether or not this section should use RELA relocations. */
2915 bed = get_elf_backend_data (abfd);
2916 sec->use_rela_p = bed->default_use_rela_p;
2917
2918 /* Set up ELF section type and flags for newly created sections, if
2919 there is an ABI mandated section. */
2920 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2921 if (ssect != NULL)
2922 {
2923 elf_section_type (sec) = ssect->type;
2924 elf_section_flags (sec) = ssect->attr;
2925 }
2926
2927 return _bfd_generic_new_section_hook (abfd, sec);
2928 }
2929
2930 /* Create a new bfd section from an ELF program header.
2931
2932 Since program segments have no names, we generate a synthetic name
2933 of the form segment<NUM>, where NUM is generally the index in the
2934 program header table. For segments that are split (see below) we
2935 generate the names segment<NUM>a and segment<NUM>b.
2936
2937 Note that some program segments may have a file size that is different than
2938 (less than) the memory size. All this means is that at execution the
2939 system must allocate the amount of memory specified by the memory size,
2940 but only initialize it with the first "file size" bytes read from the
2941 file. This would occur for example, with program segments consisting
2942 of combined data+bss.
2943
2944 To handle the above situation, this routine generates TWO bfd sections
2945 for the single program segment. The first has the length specified by
2946 the file size of the segment, and the second has the length specified
2947 by the difference between the two sizes. In effect, the segment is split
2948 into its initialized and uninitialized parts.
2949
2950 */
2951
2952 bool
2953 _bfd_elf_make_section_from_phdr (bfd *abfd,
2954 Elf_Internal_Phdr *hdr,
2955 int hdr_index,
2956 const char *type_name)
2957 {
2958 asection *newsect;
2959 char *name;
2960 char namebuf[64];
2961 size_t len;
2962 int split;
2963 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2964
2965 split = ((hdr->p_memsz > 0)
2966 && (hdr->p_filesz > 0)
2967 && (hdr->p_memsz > hdr->p_filesz));
2968
2969 if (hdr->p_filesz > 0)
2970 {
2971 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2972 len = strlen (namebuf) + 1;
2973 name = (char *) bfd_alloc (abfd, len);
2974 if (!name)
2975 return false;
2976 memcpy (name, namebuf, len);
2977 newsect = bfd_make_section (abfd, name);
2978 if (newsect == NULL)
2979 return false;
2980 newsect->vma = hdr->p_vaddr / opb;
2981 newsect->lma = hdr->p_paddr / opb;
2982 newsect->size = hdr->p_filesz;
2983 newsect->filepos = hdr->p_offset;
2984 newsect->flags |= SEC_HAS_CONTENTS;
2985 newsect->alignment_power = bfd_log2 (hdr->p_align);
2986 if (hdr->p_type == PT_LOAD)
2987 {
2988 newsect->flags |= SEC_ALLOC;
2989 newsect->flags |= SEC_LOAD;
2990 if (hdr->p_flags & PF_X)
2991 {
2992 /* FIXME: all we known is that it has execute PERMISSION,
2993 may be data. */
2994 newsect->flags |= SEC_CODE;
2995 }
2996 }
2997 if (!(hdr->p_flags & PF_W))
2998 {
2999 newsect->flags |= SEC_READONLY;
3000 }
3001 }
3002
3003 if (hdr->p_memsz > hdr->p_filesz)
3004 {
3005 bfd_vma align;
3006
3007 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3008 len = strlen (namebuf) + 1;
3009 name = (char *) bfd_alloc (abfd, len);
3010 if (!name)
3011 return false;
3012 memcpy (name, namebuf, len);
3013 newsect = bfd_make_section (abfd, name);
3014 if (newsect == NULL)
3015 return false;
3016 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3017 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3018 newsect->size = hdr->p_memsz - hdr->p_filesz;
3019 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3020 align = newsect->vma & -newsect->vma;
3021 if (align == 0 || align > hdr->p_align)
3022 align = hdr->p_align;
3023 newsect->alignment_power = bfd_log2 (align);
3024 if (hdr->p_type == PT_LOAD)
3025 {
3026 newsect->flags |= SEC_ALLOC;
3027 if (hdr->p_flags & PF_X)
3028 newsect->flags |= SEC_CODE;
3029 }
3030 if (!(hdr->p_flags & PF_W))
3031 newsect->flags |= SEC_READONLY;
3032 }
3033
3034 return true;
3035 }
3036
3037 static bool
3038 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3039 {
3040 /* The return value is ignored. Build-ids are considered optional. */
3041 if (templ->xvec->flavour == bfd_target_elf_flavour)
3042 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3043 (templ, offset);
3044 return false;
3045 }
3046
3047 bool
3048 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3049 {
3050 const struct elf_backend_data *bed;
3051
3052 switch (hdr->p_type)
3053 {
3054 case PT_NULL:
3055 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3056
3057 case PT_LOAD:
3058 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3059 return false;
3060 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3061 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3062 return true;
3063
3064 case PT_DYNAMIC:
3065 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3066
3067 case PT_INTERP:
3068 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3069
3070 case PT_NOTE:
3071 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3072 return false;
3073 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3074 hdr->p_align))
3075 return false;
3076 return true;
3077
3078 case PT_SHLIB:
3079 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3080
3081 case PT_PHDR:
3082 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3083
3084 case PT_GNU_EH_FRAME:
3085 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3086 "eh_frame_hdr");
3087
3088 case PT_GNU_STACK:
3089 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3090
3091 case PT_GNU_RELRO:
3092 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3093
3094 default:
3095 /* Check for any processor-specific program segment types. */
3096 bed = get_elf_backend_data (abfd);
3097 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3098 }
3099 }
3100
3101 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3102 REL or RELA. */
3103
3104 Elf_Internal_Shdr *
3105 _bfd_elf_single_rel_hdr (asection *sec)
3106 {
3107 if (elf_section_data (sec)->rel.hdr)
3108 {
3109 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3110 return elf_section_data (sec)->rel.hdr;
3111 }
3112 else
3113 return elf_section_data (sec)->rela.hdr;
3114 }
3115
3116 static bool
3117 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3118 Elf_Internal_Shdr *rel_hdr,
3119 const char *sec_name,
3120 bool use_rela_p)
3121 {
3122 char *name = (char *) bfd_alloc (abfd,
3123 sizeof ".rela" + strlen (sec_name));
3124 if (name == NULL)
3125 return false;
3126
3127 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3128 rel_hdr->sh_name =
3129 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3130 false);
3131 if (rel_hdr->sh_name == (unsigned int) -1)
3132 return false;
3133
3134 return true;
3135 }
3136
3137 /* Allocate and initialize a section-header for a new reloc section,
3138 containing relocations against ASECT. It is stored in RELDATA. If
3139 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3140 relocations. */
3141
3142 static bool
3143 _bfd_elf_init_reloc_shdr (bfd *abfd,
3144 struct bfd_elf_section_reloc_data *reldata,
3145 const char *sec_name,
3146 bool use_rela_p,
3147 bool delay_st_name_p)
3148 {
3149 Elf_Internal_Shdr *rel_hdr;
3150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3151
3152 BFD_ASSERT (reldata->hdr == NULL);
3153 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3154 reldata->hdr = rel_hdr;
3155
3156 if (delay_st_name_p)
3157 rel_hdr->sh_name = (unsigned int) -1;
3158 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3159 use_rela_p))
3160 return false;
3161 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3162 rel_hdr->sh_entsize = (use_rela_p
3163 ? bed->s->sizeof_rela
3164 : bed->s->sizeof_rel);
3165 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3166 rel_hdr->sh_flags = 0;
3167 rel_hdr->sh_addr = 0;
3168 rel_hdr->sh_size = 0;
3169 rel_hdr->sh_offset = 0;
3170
3171 return true;
3172 }
3173
3174 /* Return the default section type based on the passed in section flags. */
3175
3176 int
3177 bfd_elf_get_default_section_type (flagword flags)
3178 {
3179 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3180 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3181 return SHT_NOBITS;
3182 return SHT_PROGBITS;
3183 }
3184
3185 struct fake_section_arg
3186 {
3187 struct bfd_link_info *link_info;
3188 bool failed;
3189 };
3190
3191 /* Set up an ELF internal section header for a section. */
3192
3193 static void
3194 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3195 {
3196 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3198 struct bfd_elf_section_data *esd = elf_section_data (asect);
3199 Elf_Internal_Shdr *this_hdr;
3200 unsigned int sh_type;
3201 const char *name = asect->name;
3202 bool delay_st_name_p = false;
3203 bfd_vma mask;
3204
3205 if (arg->failed)
3206 {
3207 /* We already failed; just get out of the bfd_map_over_sections
3208 loop. */
3209 return;
3210 }
3211
3212 this_hdr = &esd->this_hdr;
3213
3214 if (arg->link_info)
3215 {
3216 /* ld: compress DWARF debug sections with names: .debug_*. */
3217 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3218 && (asect->flags & SEC_DEBUGGING)
3219 && name[1] == 'd'
3220 && name[6] == '_')
3221 {
3222 /* Set SEC_ELF_COMPRESS to indicate this section should be
3223 compressed. */
3224 asect->flags |= SEC_ELF_COMPRESS;
3225 /* If this section will be compressed, delay adding section
3226 name to section name section after it is compressed in
3227 _bfd_elf_assign_file_positions_for_non_load. */
3228 delay_st_name_p = true;
3229 }
3230 }
3231 else if ((asect->flags & SEC_ELF_RENAME))
3232 {
3233 /* objcopy: rename output DWARF debug section. */
3234 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3235 {
3236 /* When we decompress or compress with SHF_COMPRESSED,
3237 convert section name from .zdebug_* to .debug_* if
3238 needed. */
3239 if (name[1] == 'z')
3240 {
3241 char *new_name = convert_zdebug_to_debug (abfd, name);
3242 if (new_name == NULL)
3243 {
3244 arg->failed = true;
3245 return;
3246 }
3247 name = new_name;
3248 }
3249 }
3250 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3251 {
3252 /* PR binutils/18087: Compression does not always make a
3253 section smaller. So only rename the section when
3254 compression has actually taken place. If input section
3255 name is .zdebug_*, we should never compress it again. */
3256 char *new_name = convert_debug_to_zdebug (abfd, name);
3257 if (new_name == NULL)
3258 {
3259 arg->failed = true;
3260 return;
3261 }
3262 BFD_ASSERT (name[1] != 'z');
3263 name = new_name;
3264 }
3265 }
3266
3267 if (delay_st_name_p)
3268 this_hdr->sh_name = (unsigned int) -1;
3269 else
3270 {
3271 this_hdr->sh_name
3272 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3273 name, false);
3274 if (this_hdr->sh_name == (unsigned int) -1)
3275 {
3276 arg->failed = true;
3277 return;
3278 }
3279 }
3280
3281 /* Don't clear sh_flags. Assembler may set additional bits. */
3282
3283 if ((asect->flags & SEC_ALLOC) != 0
3284 || asect->user_set_vma)
3285 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3286 else
3287 this_hdr->sh_addr = 0;
3288
3289 this_hdr->sh_offset = 0;
3290 this_hdr->sh_size = asect->size;
3291 this_hdr->sh_link = 0;
3292 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3293 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3294 {
3295 _bfd_error_handler
3296 /* xgettext:c-format */
3297 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3298 abfd, asect->alignment_power, asect);
3299 arg->failed = true;
3300 return;
3301 }
3302 /* Set sh_addralign to the highest power of two given by alignment
3303 consistent with the section VMA. Linker scripts can force VMA. */
3304 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3305 this_hdr->sh_addralign = mask & -mask;
3306 /* The sh_entsize and sh_info fields may have been set already by
3307 copy_private_section_data. */
3308
3309 this_hdr->bfd_section = asect;
3310 this_hdr->contents = NULL;
3311
3312 /* If the section type is unspecified, we set it based on
3313 asect->flags. */
3314 if ((asect->flags & SEC_GROUP) != 0)
3315 sh_type = SHT_GROUP;
3316 else
3317 sh_type = bfd_elf_get_default_section_type (asect->flags);
3318
3319 if (this_hdr->sh_type == SHT_NULL)
3320 this_hdr->sh_type = sh_type;
3321 else if (this_hdr->sh_type == SHT_NOBITS
3322 && sh_type == SHT_PROGBITS
3323 && (asect->flags & SEC_ALLOC) != 0)
3324 {
3325 /* Warn if we are changing a NOBITS section to PROGBITS, but
3326 allow the link to proceed. This can happen when users link
3327 non-bss input sections to bss output sections, or emit data
3328 to a bss output section via a linker script. */
3329 _bfd_error_handler
3330 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3331 this_hdr->sh_type = sh_type;
3332 }
3333
3334 switch (this_hdr->sh_type)
3335 {
3336 default:
3337 break;
3338
3339 case SHT_STRTAB:
3340 case SHT_NOTE:
3341 case SHT_NOBITS:
3342 case SHT_PROGBITS:
3343 break;
3344
3345 case SHT_INIT_ARRAY:
3346 case SHT_FINI_ARRAY:
3347 case SHT_PREINIT_ARRAY:
3348 this_hdr->sh_entsize = bed->s->arch_size / 8;
3349 break;
3350
3351 case SHT_HASH:
3352 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3353 break;
3354
3355 case SHT_DYNSYM:
3356 this_hdr->sh_entsize = bed->s->sizeof_sym;
3357 break;
3358
3359 case SHT_DYNAMIC:
3360 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3361 break;
3362
3363 case SHT_RELA:
3364 if (get_elf_backend_data (abfd)->may_use_rela_p)
3365 this_hdr->sh_entsize = bed->s->sizeof_rela;
3366 break;
3367
3368 case SHT_REL:
3369 if (get_elf_backend_data (abfd)->may_use_rel_p)
3370 this_hdr->sh_entsize = bed->s->sizeof_rel;
3371 break;
3372
3373 case SHT_GNU_versym:
3374 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3375 break;
3376
3377 case SHT_GNU_verdef:
3378 this_hdr->sh_entsize = 0;
3379 /* objcopy or strip will copy over sh_info, but may not set
3380 cverdefs. The linker will set cverdefs, but sh_info will be
3381 zero. */
3382 if (this_hdr->sh_info == 0)
3383 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3384 else
3385 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3386 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3387 break;
3388
3389 case SHT_GNU_verneed:
3390 this_hdr->sh_entsize = 0;
3391 /* objcopy or strip will copy over sh_info, but may not set
3392 cverrefs. The linker will set cverrefs, but sh_info will be
3393 zero. */
3394 if (this_hdr->sh_info == 0)
3395 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3396 else
3397 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3398 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3399 break;
3400
3401 case SHT_GROUP:
3402 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3403 break;
3404
3405 case SHT_GNU_HASH:
3406 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3407 break;
3408 }
3409
3410 if ((asect->flags & SEC_ALLOC) != 0)
3411 this_hdr->sh_flags |= SHF_ALLOC;
3412 if ((asect->flags & SEC_READONLY) == 0)
3413 this_hdr->sh_flags |= SHF_WRITE;
3414 if ((asect->flags & SEC_CODE) != 0)
3415 this_hdr->sh_flags |= SHF_EXECINSTR;
3416 if ((asect->flags & SEC_MERGE) != 0)
3417 {
3418 this_hdr->sh_flags |= SHF_MERGE;
3419 this_hdr->sh_entsize = asect->entsize;
3420 }
3421 if ((asect->flags & SEC_STRINGS) != 0)
3422 this_hdr->sh_flags |= SHF_STRINGS;
3423 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3424 this_hdr->sh_flags |= SHF_GROUP;
3425 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3426 {
3427 this_hdr->sh_flags |= SHF_TLS;
3428 if (asect->size == 0
3429 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3430 {
3431 struct bfd_link_order *o = asect->map_tail.link_order;
3432
3433 this_hdr->sh_size = 0;
3434 if (o != NULL)
3435 {
3436 this_hdr->sh_size = o->offset + o->size;
3437 if (this_hdr->sh_size != 0)
3438 this_hdr->sh_type = SHT_NOBITS;
3439 }
3440 }
3441 }
3442 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3443 this_hdr->sh_flags |= SHF_EXCLUDE;
3444
3445 /* If the section has relocs, set up a section header for the
3446 SHT_REL[A] section. If two relocation sections are required for
3447 this section, it is up to the processor-specific back-end to
3448 create the other. */
3449 if ((asect->flags & SEC_RELOC) != 0)
3450 {
3451 /* When doing a relocatable link, create both REL and RELA sections if
3452 needed. */
3453 if (arg->link_info
3454 /* Do the normal setup if we wouldn't create any sections here. */
3455 && esd->rel.count + esd->rela.count > 0
3456 && (bfd_link_relocatable (arg->link_info)
3457 || arg->link_info->emitrelocations))
3458 {
3459 if (esd->rel.count && esd->rel.hdr == NULL
3460 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3461 false, delay_st_name_p))
3462 {
3463 arg->failed = true;
3464 return;
3465 }
3466 if (esd->rela.count && esd->rela.hdr == NULL
3467 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3468 true, delay_st_name_p))
3469 {
3470 arg->failed = true;
3471 return;
3472 }
3473 }
3474 else if (!_bfd_elf_init_reloc_shdr (abfd,
3475 (asect->use_rela_p
3476 ? &esd->rela : &esd->rel),
3477 name,
3478 asect->use_rela_p,
3479 delay_st_name_p))
3480 {
3481 arg->failed = true;
3482 return;
3483 }
3484 }
3485
3486 /* Check for processor-specific section types. */
3487 sh_type = this_hdr->sh_type;
3488 if (bed->elf_backend_fake_sections
3489 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3490 {
3491 arg->failed = true;
3492 return;
3493 }
3494
3495 if (sh_type == SHT_NOBITS && asect->size != 0)
3496 {
3497 /* Don't change the header type from NOBITS if we are being
3498 called for objcopy --only-keep-debug. */
3499 this_hdr->sh_type = sh_type;
3500 }
3501 }
3502
3503 /* Fill in the contents of a SHT_GROUP section. Called from
3504 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3505 when ELF targets use the generic linker, ld. Called for ld -r
3506 from bfd_elf_final_link. */
3507
3508 void
3509 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3510 {
3511 bool *failedptr = (bool *) failedptrarg;
3512 asection *elt, *first;
3513 unsigned char *loc;
3514 bool gas;
3515
3516 /* Ignore linker created group section. See elfNN_ia64_object_p in
3517 elfxx-ia64.c. */
3518 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3519 || sec->size == 0
3520 || *failedptr)
3521 return;
3522
3523 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3524 {
3525 unsigned long symindx = 0;
3526
3527 /* elf_group_id will have been set up by objcopy and the
3528 generic linker. */
3529 if (elf_group_id (sec) != NULL)
3530 symindx = elf_group_id (sec)->udata.i;
3531
3532 if (symindx == 0)
3533 {
3534 /* If called from the assembler, swap_out_syms will have set up
3535 elf_section_syms.
3536 PR 25699: A corrupt input file could contain bogus group info. */
3537 if (elf_section_syms (abfd) == NULL)
3538 {
3539 *failedptr = true;
3540 return;
3541 }
3542 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3543 }
3544 elf_section_data (sec)->this_hdr.sh_info = symindx;
3545 }
3546 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3547 {
3548 /* The ELF backend linker sets sh_info to -2 when the group
3549 signature symbol is global, and thus the index can't be
3550 set until all local symbols are output. */
3551 asection *igroup;
3552 struct bfd_elf_section_data *sec_data;
3553 unsigned long symndx;
3554 unsigned long extsymoff;
3555 struct elf_link_hash_entry *h;
3556
3557 /* The point of this little dance to the first SHF_GROUP section
3558 then back to the SHT_GROUP section is that this gets us to
3559 the SHT_GROUP in the input object. */
3560 igroup = elf_sec_group (elf_next_in_group (sec));
3561 sec_data = elf_section_data (igroup);
3562 symndx = sec_data->this_hdr.sh_info;
3563 extsymoff = 0;
3564 if (!elf_bad_symtab (igroup->owner))
3565 {
3566 Elf_Internal_Shdr *symtab_hdr;
3567
3568 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3569 extsymoff = symtab_hdr->sh_info;
3570 }
3571 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3572 while (h->root.type == bfd_link_hash_indirect
3573 || h->root.type == bfd_link_hash_warning)
3574 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3575
3576 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3577 }
3578
3579 /* The contents won't be allocated for "ld -r" or objcopy. */
3580 gas = true;
3581 if (sec->contents == NULL)
3582 {
3583 gas = false;
3584 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3585
3586 /* Arrange for the section to be written out. */
3587 elf_section_data (sec)->this_hdr.contents = sec->contents;
3588 if (sec->contents == NULL)
3589 {
3590 *failedptr = true;
3591 return;
3592 }
3593 }
3594
3595 loc = sec->contents + sec->size;
3596
3597 /* Get the pointer to the first section in the group that gas
3598 squirreled away here. objcopy arranges for this to be set to the
3599 start of the input section group. */
3600 first = elt = elf_next_in_group (sec);
3601
3602 /* First element is a flag word. Rest of section is elf section
3603 indices for all the sections of the group. Write them backwards
3604 just to keep the group in the same order as given in .section
3605 directives, not that it matters. */
3606 while (elt != NULL)
3607 {
3608 asection *s;
3609
3610 s = elt;
3611 if (!gas)
3612 s = s->output_section;
3613 if (s != NULL
3614 && !bfd_is_abs_section (s))
3615 {
3616 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3617 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3618
3619 if (elf_sec->rel.hdr != NULL
3620 && (gas
3621 || (input_elf_sec->rel.hdr != NULL
3622 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3623 {
3624 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3625 loc -= 4;
3626 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3627 }
3628 if (elf_sec->rela.hdr != NULL
3629 && (gas
3630 || (input_elf_sec->rela.hdr != NULL
3631 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3632 {
3633 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3634 loc -= 4;
3635 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3636 }
3637 loc -= 4;
3638 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3639 }
3640 elt = elf_next_in_group (elt);
3641 if (elt == first)
3642 break;
3643 }
3644
3645 loc -= 4;
3646 BFD_ASSERT (loc == sec->contents);
3647
3648 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3649 }
3650
3651 /* Given NAME, the name of a relocation section stripped of its
3652 .rel/.rela prefix, return the section in ABFD to which the
3653 relocations apply. */
3654
3655 asection *
3656 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3657 {
3658 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3659 section likely apply to .got.plt or .got section. */
3660 if (get_elf_backend_data (abfd)->want_got_plt
3661 && strcmp (name, ".plt") == 0)
3662 {
3663 asection *sec;
3664
3665 name = ".got.plt";
3666 sec = bfd_get_section_by_name (abfd, name);
3667 if (sec != NULL)
3668 return sec;
3669 name = ".got";
3670 }
3671
3672 return bfd_get_section_by_name (abfd, name);
3673 }
3674
3675 /* Return the section to which RELOC_SEC applies. */
3676
3677 static asection *
3678 elf_get_reloc_section (asection *reloc_sec)
3679 {
3680 const char *name;
3681 unsigned int type;
3682 bfd *abfd;
3683 const struct elf_backend_data *bed;
3684
3685 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3686 if (type != SHT_REL && type != SHT_RELA)
3687 return NULL;
3688
3689 /* We look up the section the relocs apply to by name. */
3690 name = reloc_sec->name;
3691 if (!startswith (name, ".rel"))
3692 return NULL;
3693 name += 4;
3694 if (type == SHT_RELA && *name++ != 'a')
3695 return NULL;
3696
3697 abfd = reloc_sec->owner;
3698 bed = get_elf_backend_data (abfd);
3699 return bed->get_reloc_section (abfd, name);
3700 }
3701
3702 /* Assign all ELF section numbers. The dummy first section is handled here
3703 too. The link/info pointers for the standard section types are filled
3704 in here too, while we're at it. LINK_INFO will be 0 when arriving
3705 here for objcopy, and when using the generic ELF linker. */
3706
3707 static bool
3708 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3709 {
3710 struct elf_obj_tdata *t = elf_tdata (abfd);
3711 asection *sec;
3712 unsigned int section_number;
3713 Elf_Internal_Shdr **i_shdrp;
3714 struct bfd_elf_section_data *d;
3715 bool need_symtab;
3716 size_t amt;
3717
3718 section_number = 1;
3719
3720 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3721
3722 /* SHT_GROUP sections are in relocatable files only. */
3723 if (link_info == NULL || !link_info->resolve_section_groups)
3724 {
3725 size_t reloc_count = 0;
3726
3727 /* Put SHT_GROUP sections first. */
3728 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3729 {
3730 d = elf_section_data (sec);
3731
3732 if (d->this_hdr.sh_type == SHT_GROUP)
3733 {
3734 if (sec->flags & SEC_LINKER_CREATED)
3735 {
3736 /* Remove the linker created SHT_GROUP sections. */
3737 bfd_section_list_remove (abfd, sec);
3738 abfd->section_count--;
3739 }
3740 else
3741 d->this_idx = section_number++;
3742 }
3743
3744 /* Count relocations. */
3745 reloc_count += sec->reloc_count;
3746 }
3747
3748 /* Clear HAS_RELOC if there are no relocations. */
3749 if (reloc_count == 0)
3750 abfd->flags &= ~HAS_RELOC;
3751 }
3752
3753 for (sec = abfd->sections; sec; sec = sec->next)
3754 {
3755 d = elf_section_data (sec);
3756
3757 if (d->this_hdr.sh_type != SHT_GROUP)
3758 d->this_idx = section_number++;
3759 if (d->this_hdr.sh_name != (unsigned int) -1)
3760 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3761 if (d->rel.hdr)
3762 {
3763 d->rel.idx = section_number++;
3764 if (d->rel.hdr->sh_name != (unsigned int) -1)
3765 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3766 }
3767 else
3768 d->rel.idx = 0;
3769
3770 if (d->rela.hdr)
3771 {
3772 d->rela.idx = section_number++;
3773 if (d->rela.hdr->sh_name != (unsigned int) -1)
3774 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3775 }
3776 else
3777 d->rela.idx = 0;
3778 }
3779
3780 need_symtab = (bfd_get_symcount (abfd) > 0
3781 || (link_info == NULL
3782 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3783 == HAS_RELOC)));
3784 if (need_symtab)
3785 {
3786 elf_onesymtab (abfd) = section_number++;
3787 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3788 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3789 {
3790 elf_section_list *entry;
3791
3792 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3793
3794 entry = bfd_zalloc (abfd, sizeof (*entry));
3795 entry->ndx = section_number++;
3796 elf_symtab_shndx_list (abfd) = entry;
3797 entry->hdr.sh_name
3798 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3799 ".symtab_shndx", false);
3800 if (entry->hdr.sh_name == (unsigned int) -1)
3801 return false;
3802 }
3803 elf_strtab_sec (abfd) = section_number++;
3804 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3805 }
3806
3807 elf_shstrtab_sec (abfd) = section_number++;
3808 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3809 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3810
3811 if (section_number >= SHN_LORESERVE)
3812 {
3813 /* xgettext:c-format */
3814 _bfd_error_handler (_("%pB: too many sections: %u"),
3815 abfd, section_number);
3816 return false;
3817 }
3818
3819 elf_numsections (abfd) = section_number;
3820 elf_elfheader (abfd)->e_shnum = section_number;
3821
3822 /* Set up the list of section header pointers, in agreement with the
3823 indices. */
3824 amt = section_number * sizeof (Elf_Internal_Shdr *);
3825 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3826 if (i_shdrp == NULL)
3827 return false;
3828
3829 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3830 sizeof (Elf_Internal_Shdr));
3831 if (i_shdrp[0] == NULL)
3832 {
3833 bfd_release (abfd, i_shdrp);
3834 return false;
3835 }
3836
3837 elf_elfsections (abfd) = i_shdrp;
3838
3839 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3840 if (need_symtab)
3841 {
3842 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3843 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3844 {
3845 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3846 BFD_ASSERT (entry != NULL);
3847 i_shdrp[entry->ndx] = & entry->hdr;
3848 entry->hdr.sh_link = elf_onesymtab (abfd);
3849 }
3850 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3851 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3852 }
3853
3854 for (sec = abfd->sections; sec; sec = sec->next)
3855 {
3856 asection *s;
3857
3858 d = elf_section_data (sec);
3859
3860 i_shdrp[d->this_idx] = &d->this_hdr;
3861 if (d->rel.idx != 0)
3862 i_shdrp[d->rel.idx] = d->rel.hdr;
3863 if (d->rela.idx != 0)
3864 i_shdrp[d->rela.idx] = d->rela.hdr;
3865
3866 /* Fill in the sh_link and sh_info fields while we're at it. */
3867
3868 /* sh_link of a reloc section is the section index of the symbol
3869 table. sh_info is the section index of the section to which
3870 the relocation entries apply. */
3871 if (d->rel.idx != 0)
3872 {
3873 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3874 d->rel.hdr->sh_info = d->this_idx;
3875 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3876 }
3877 if (d->rela.idx != 0)
3878 {
3879 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3880 d->rela.hdr->sh_info = d->this_idx;
3881 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3882 }
3883
3884 /* We need to set up sh_link for SHF_LINK_ORDER. */
3885 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3886 {
3887 s = elf_linked_to_section (sec);
3888 /* We can now have a NULL linked section pointer.
3889 This happens when the sh_link field is 0, which is done
3890 when a linked to section is discarded but the linking
3891 section has been retained for some reason. */
3892 if (s)
3893 {
3894 /* Check discarded linkonce section. */
3895 if (discarded_section (s))
3896 {
3897 asection *kept;
3898 _bfd_error_handler
3899 /* xgettext:c-format */
3900 (_("%pB: sh_link of section `%pA' points to"
3901 " discarded section `%pA' of `%pB'"),
3902 abfd, d->this_hdr.bfd_section, s, s->owner);
3903 /* Point to the kept section if it has the same
3904 size as the discarded one. */
3905 kept = _bfd_elf_check_kept_section (s, link_info);
3906 if (kept == NULL)
3907 {
3908 bfd_set_error (bfd_error_bad_value);
3909 return false;
3910 }
3911 s = kept;
3912 }
3913 /* Handle objcopy. */
3914 else if (s->output_section == NULL)
3915 {
3916 _bfd_error_handler
3917 /* xgettext:c-format */
3918 (_("%pB: sh_link of section `%pA' points to"
3919 " removed section `%pA' of `%pB'"),
3920 abfd, d->this_hdr.bfd_section, s, s->owner);
3921 bfd_set_error (bfd_error_bad_value);
3922 return false;
3923 }
3924 s = s->output_section;
3925 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3926 }
3927 }
3928
3929 switch (d->this_hdr.sh_type)
3930 {
3931 case SHT_REL:
3932 case SHT_RELA:
3933 /* A reloc section which we are treating as a normal BFD
3934 section. sh_link is the section index of the symbol
3935 table. sh_info is the section index of the section to
3936 which the relocation entries apply. We assume that an
3937 allocated reloc section uses the dynamic symbol table.
3938 FIXME: How can we be sure? */
3939 s = bfd_get_section_by_name (abfd, ".dynsym");
3940 if (s != NULL)
3941 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3942
3943 s = elf_get_reloc_section (sec);
3944 if (s != NULL)
3945 {
3946 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3947 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3948 }
3949 break;
3950
3951 case SHT_STRTAB:
3952 /* We assume that a section named .stab*str is a stabs
3953 string section. We look for a section with the same name
3954 but without the trailing ``str'', and set its sh_link
3955 field to point to this section. */
3956 if (startswith (sec->name, ".stab")
3957 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3958 {
3959 size_t len;
3960 char *alc;
3961
3962 len = strlen (sec->name);
3963 alc = (char *) bfd_malloc (len - 2);
3964 if (alc == NULL)
3965 return false;
3966 memcpy (alc, sec->name, len - 3);
3967 alc[len - 3] = '\0';
3968 s = bfd_get_section_by_name (abfd, alc);
3969 free (alc);
3970 if (s != NULL)
3971 {
3972 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3973
3974 /* This is a .stab section. */
3975 elf_section_data (s)->this_hdr.sh_entsize = 12;
3976 }
3977 }
3978 break;
3979
3980 case SHT_DYNAMIC:
3981 case SHT_DYNSYM:
3982 case SHT_GNU_verneed:
3983 case SHT_GNU_verdef:
3984 /* sh_link is the section header index of the string table
3985 used for the dynamic entries, or the symbol table, or the
3986 version strings. */
3987 s = bfd_get_section_by_name (abfd, ".dynstr");
3988 if (s != NULL)
3989 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3990 break;
3991
3992 case SHT_GNU_LIBLIST:
3993 /* sh_link is the section header index of the prelink library
3994 list used for the dynamic entries, or the symbol table, or
3995 the version strings. */
3996 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3997 ? ".dynstr" : ".gnu.libstr");
3998 if (s != NULL)
3999 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4000 break;
4001
4002 case SHT_HASH:
4003 case SHT_GNU_HASH:
4004 case SHT_GNU_versym:
4005 /* sh_link is the section header index of the symbol table
4006 this hash table or version table is for. */
4007 s = bfd_get_section_by_name (abfd, ".dynsym");
4008 if (s != NULL)
4009 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4010 break;
4011
4012 case SHT_GROUP:
4013 d->this_hdr.sh_link = elf_onesymtab (abfd);
4014 }
4015 }
4016
4017 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4018 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4019 debug section name from .debug_* to .zdebug_* if needed. */
4020
4021 return true;
4022 }
4023
4024 static bool
4025 sym_is_global (bfd *abfd, asymbol *sym)
4026 {
4027 /* If the backend has a special mapping, use it. */
4028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4029 if (bed->elf_backend_sym_is_global)
4030 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4031
4032 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4033 || bfd_is_und_section (bfd_asymbol_section (sym))
4034 || bfd_is_com_section (bfd_asymbol_section (sym)));
4035 }
4036
4037 /* Filter global symbols of ABFD to include in the import library. All
4038 SYMCOUNT symbols of ABFD can be examined from their pointers in
4039 SYMS. Pointers of symbols to keep should be stored contiguously at
4040 the beginning of that array.
4041
4042 Returns the number of symbols to keep. */
4043
4044 unsigned int
4045 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4046 asymbol **syms, long symcount)
4047 {
4048 long src_count, dst_count = 0;
4049
4050 for (src_count = 0; src_count < symcount; src_count++)
4051 {
4052 asymbol *sym = syms[src_count];
4053 char *name = (char *) bfd_asymbol_name (sym);
4054 struct bfd_link_hash_entry *h;
4055
4056 if (!sym_is_global (abfd, sym))
4057 continue;
4058
4059 h = bfd_link_hash_lookup (info->hash, name, false, false, false);
4060 if (h == NULL)
4061 continue;
4062 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4063 continue;
4064 if (h->linker_def || h->ldscript_def)
4065 continue;
4066
4067 syms[dst_count++] = sym;
4068 }
4069
4070 syms[dst_count] = NULL;
4071
4072 return dst_count;
4073 }
4074
4075 /* Don't output section symbols for sections that are not going to be
4076 output, that are duplicates or there is no BFD section. */
4077
4078 static bool
4079 ignore_section_sym (bfd *abfd, asymbol *sym)
4080 {
4081 elf_symbol_type *type_ptr;
4082
4083 if (sym == NULL)
4084 return false;
4085
4086 if ((sym->flags & BSF_SECTION_SYM) == 0)
4087 return false;
4088
4089 /* Ignore the section symbol if it isn't used. */
4090 if ((sym->flags & BSF_SECTION_SYM_USED) == 0)
4091 return true;
4092
4093 if (sym->section == NULL)
4094 return true;
4095
4096 type_ptr = elf_symbol_from (sym);
4097 return ((type_ptr != NULL
4098 && type_ptr->internal_elf_sym.st_shndx != 0
4099 && bfd_is_abs_section (sym->section))
4100 || !(sym->section->owner == abfd
4101 || (sym->section->output_section != NULL
4102 && sym->section->output_section->owner == abfd
4103 && sym->section->output_offset == 0)
4104 || bfd_is_abs_section (sym->section)));
4105 }
4106
4107 /* Map symbol from it's internal number to the external number, moving
4108 all local symbols to be at the head of the list. */
4109
4110 static bool
4111 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4112 {
4113 unsigned int symcount = bfd_get_symcount (abfd);
4114 asymbol **syms = bfd_get_outsymbols (abfd);
4115 asymbol **sect_syms;
4116 unsigned int num_locals = 0;
4117 unsigned int num_globals = 0;
4118 unsigned int num_locals2 = 0;
4119 unsigned int num_globals2 = 0;
4120 unsigned int max_index = 0;
4121 unsigned int idx;
4122 asection *asect;
4123 asymbol **new_syms;
4124 size_t amt;
4125
4126 #ifdef DEBUG
4127 fprintf (stderr, "elf_map_symbols\n");
4128 fflush (stderr);
4129 #endif
4130
4131 for (asect = abfd->sections; asect; asect = asect->next)
4132 {
4133 if (max_index < asect->index)
4134 max_index = asect->index;
4135 }
4136
4137 max_index++;
4138 amt = max_index * sizeof (asymbol *);
4139 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4140 if (sect_syms == NULL)
4141 return false;
4142 elf_section_syms (abfd) = sect_syms;
4143 elf_num_section_syms (abfd) = max_index;
4144
4145 /* Init sect_syms entries for any section symbols we have already
4146 decided to output. */
4147 for (idx = 0; idx < symcount; idx++)
4148 {
4149 asymbol *sym = syms[idx];
4150
4151 if ((sym->flags & BSF_SECTION_SYM) != 0
4152 && sym->value == 0
4153 && !ignore_section_sym (abfd, sym)
4154 && !bfd_is_abs_section (sym->section))
4155 {
4156 asection *sec = sym->section;
4157
4158 if (sec->owner != abfd)
4159 sec = sec->output_section;
4160
4161 sect_syms[sec->index] = syms[idx];
4162 }
4163 }
4164
4165 /* Classify all of the symbols. */
4166 for (idx = 0; idx < symcount; idx++)
4167 {
4168 if (sym_is_global (abfd, syms[idx]))
4169 num_globals++;
4170 else if (!ignore_section_sym (abfd, syms[idx]))
4171 num_locals++;
4172 }
4173
4174 /* We will be adding a section symbol for each normal BFD section. Most
4175 sections will already have a section symbol in outsymbols, but
4176 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4177 at least in that case. */
4178 for (asect = abfd->sections; asect; asect = asect->next)
4179 {
4180 asymbol *sym = asect->symbol;
4181 /* Don't include ignored section symbols. */
4182 if (!ignore_section_sym (abfd, sym)
4183 && sect_syms[asect->index] == NULL)
4184 {
4185 if (!sym_is_global (abfd, asect->symbol))
4186 num_locals++;
4187 else
4188 num_globals++;
4189 }
4190 }
4191
4192 /* Now sort the symbols so the local symbols are first. */
4193 amt = (num_locals + num_globals) * sizeof (asymbol *);
4194 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4195 if (new_syms == NULL)
4196 return false;
4197
4198 for (idx = 0; idx < symcount; idx++)
4199 {
4200 asymbol *sym = syms[idx];
4201 unsigned int i;
4202
4203 if (sym_is_global (abfd, sym))
4204 i = num_locals + num_globals2++;
4205 /* Don't include ignored section symbols. */
4206 else if (!ignore_section_sym (abfd, sym))
4207 i = num_locals2++;
4208 else
4209 continue;
4210 new_syms[i] = sym;
4211 sym->udata.i = i + 1;
4212 }
4213 for (asect = abfd->sections; asect; asect = asect->next)
4214 {
4215 asymbol *sym = asect->symbol;
4216 if (!ignore_section_sym (abfd, sym)
4217 && sect_syms[asect->index] == NULL)
4218 {
4219 unsigned int i;
4220
4221 sect_syms[asect->index] = sym;
4222 if (!sym_is_global (abfd, sym))
4223 i = num_locals2++;
4224 else
4225 i = num_locals + num_globals2++;
4226 new_syms[i] = sym;
4227 sym->udata.i = i + 1;
4228 }
4229 }
4230
4231 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4232
4233 *pnum_locals = num_locals;
4234 return true;
4235 }
4236
4237 /* Align to the maximum file alignment that could be required for any
4238 ELF data structure. */
4239
4240 static inline file_ptr
4241 align_file_position (file_ptr off, int align)
4242 {
4243 return (off + align - 1) & ~(align - 1);
4244 }
4245
4246 /* Assign a file position to a section, optionally aligning to the
4247 required section alignment. */
4248
4249 file_ptr
4250 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4251 file_ptr offset,
4252 bool align)
4253 {
4254 if (align && i_shdrp->sh_addralign > 1)
4255 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4256 i_shdrp->sh_offset = offset;
4257 if (i_shdrp->bfd_section != NULL)
4258 i_shdrp->bfd_section->filepos = offset;
4259 if (i_shdrp->sh_type != SHT_NOBITS)
4260 offset += i_shdrp->sh_size;
4261 return offset;
4262 }
4263
4264 /* Compute the file positions we are going to put the sections at, and
4265 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4266 is not NULL, this is being called by the ELF backend linker. */
4267
4268 bool
4269 _bfd_elf_compute_section_file_positions (bfd *abfd,
4270 struct bfd_link_info *link_info)
4271 {
4272 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4273 struct fake_section_arg fsargs;
4274 bool failed;
4275 struct elf_strtab_hash *strtab = NULL;
4276 Elf_Internal_Shdr *shstrtab_hdr;
4277 bool need_symtab;
4278
4279 if (abfd->output_has_begun)
4280 return true;
4281
4282 /* Do any elf backend specific processing first. */
4283 if (bed->elf_backend_begin_write_processing)
4284 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4285
4286 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4287 return false;
4288
4289 fsargs.failed = false;
4290 fsargs.link_info = link_info;
4291 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4292 if (fsargs.failed)
4293 return false;
4294
4295 if (!assign_section_numbers (abfd, link_info))
4296 return false;
4297
4298 /* The backend linker builds symbol table information itself. */
4299 need_symtab = (link_info == NULL
4300 && (bfd_get_symcount (abfd) > 0
4301 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4302 == HAS_RELOC)));
4303 if (need_symtab)
4304 {
4305 /* Non-zero if doing a relocatable link. */
4306 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4307
4308 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4309 return false;
4310 }
4311
4312 failed = false;
4313 if (link_info == NULL)
4314 {
4315 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4316 if (failed)
4317 return false;
4318 }
4319
4320 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4321 /* sh_name was set in init_file_header. */
4322 shstrtab_hdr->sh_type = SHT_STRTAB;
4323 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4324 shstrtab_hdr->sh_addr = 0;
4325 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4326 shstrtab_hdr->sh_entsize = 0;
4327 shstrtab_hdr->sh_link = 0;
4328 shstrtab_hdr->sh_info = 0;
4329 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4330 shstrtab_hdr->sh_addralign = 1;
4331
4332 if (!assign_file_positions_except_relocs (abfd, link_info))
4333 return false;
4334
4335 if (need_symtab)
4336 {
4337 file_ptr off;
4338 Elf_Internal_Shdr *hdr;
4339
4340 off = elf_next_file_pos (abfd);
4341
4342 hdr = & elf_symtab_hdr (abfd);
4343 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4344
4345 if (elf_symtab_shndx_list (abfd) != NULL)
4346 {
4347 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4348 if (hdr->sh_size != 0)
4349 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4350 /* FIXME: What about other symtab_shndx sections in the list ? */
4351 }
4352
4353 hdr = &elf_tdata (abfd)->strtab_hdr;
4354 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4355
4356 elf_next_file_pos (abfd) = off;
4357
4358 /* Now that we know where the .strtab section goes, write it
4359 out. */
4360 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4361 || ! _bfd_elf_strtab_emit (abfd, strtab))
4362 return false;
4363 _bfd_elf_strtab_free (strtab);
4364 }
4365
4366 abfd->output_has_begun = true;
4367
4368 return true;
4369 }
4370
4371 /* Make an initial estimate of the size of the program header. If we
4372 get the number wrong here, we'll redo section placement. */
4373
4374 static bfd_size_type
4375 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4376 {
4377 size_t segs;
4378 asection *s;
4379 const struct elf_backend_data *bed;
4380
4381 /* Assume we will need exactly two PT_LOAD segments: one for text
4382 and one for data. */
4383 segs = 2;
4384
4385 s = bfd_get_section_by_name (abfd, ".interp");
4386 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4387 {
4388 /* If we have a loadable interpreter section, we need a
4389 PT_INTERP segment. In this case, assume we also need a
4390 PT_PHDR segment, although that may not be true for all
4391 targets. */
4392 segs += 2;
4393 }
4394
4395 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4396 {
4397 /* We need a PT_DYNAMIC segment. */
4398 ++segs;
4399 }
4400
4401 if (info != NULL && info->relro)
4402 {
4403 /* We need a PT_GNU_RELRO segment. */
4404 ++segs;
4405 }
4406
4407 if (elf_eh_frame_hdr (abfd))
4408 {
4409 /* We need a PT_GNU_EH_FRAME segment. */
4410 ++segs;
4411 }
4412
4413 if (elf_stack_flags (abfd))
4414 {
4415 /* We need a PT_GNU_STACK segment. */
4416 ++segs;
4417 }
4418
4419 s = bfd_get_section_by_name (abfd,
4420 NOTE_GNU_PROPERTY_SECTION_NAME);
4421 if (s != NULL && s->size != 0)
4422 {
4423 /* We need a PT_GNU_PROPERTY segment. */
4424 ++segs;
4425 }
4426
4427 for (s = abfd->sections; s != NULL; s = s->next)
4428 {
4429 if ((s->flags & SEC_LOAD) != 0
4430 && elf_section_type (s) == SHT_NOTE)
4431 {
4432 unsigned int alignment_power;
4433 /* We need a PT_NOTE segment. */
4434 ++segs;
4435 /* Try to create just one PT_NOTE segment for all adjacent
4436 loadable SHT_NOTE sections. gABI requires that within a
4437 PT_NOTE segment (and also inside of each SHT_NOTE section)
4438 each note should have the same alignment. So we check
4439 whether the sections are correctly aligned. */
4440 alignment_power = s->alignment_power;
4441 while (s->next != NULL
4442 && s->next->alignment_power == alignment_power
4443 && (s->next->flags & SEC_LOAD) != 0
4444 && elf_section_type (s->next) == SHT_NOTE)
4445 s = s->next;
4446 }
4447 }
4448
4449 for (s = abfd->sections; s != NULL; s = s->next)
4450 {
4451 if (s->flags & SEC_THREAD_LOCAL)
4452 {
4453 /* We need a PT_TLS segment. */
4454 ++segs;
4455 break;
4456 }
4457 }
4458
4459 bed = get_elf_backend_data (abfd);
4460
4461 if ((abfd->flags & D_PAGED) != 0
4462 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4463 {
4464 /* Add a PT_GNU_MBIND segment for each mbind section. */
4465 bfd_vma commonpagesize;
4466 unsigned int page_align_power;
4467
4468 if (info != NULL)
4469 commonpagesize = info->commonpagesize;
4470 else
4471 commonpagesize = bed->commonpagesize;
4472 page_align_power = bfd_log2 (commonpagesize);
4473 for (s = abfd->sections; s != NULL; s = s->next)
4474 if (elf_section_flags (s) & SHF_GNU_MBIND)
4475 {
4476 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4477 {
4478 _bfd_error_handler
4479 /* xgettext:c-format */
4480 (_("%pB: GNU_MBIND section `%pA' has invalid "
4481 "sh_info field: %d"),
4482 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4483 continue;
4484 }
4485 /* Align mbind section to page size. */
4486 if (s->alignment_power < page_align_power)
4487 s->alignment_power = page_align_power;
4488 segs ++;
4489 }
4490 }
4491
4492 /* Let the backend count up any program headers it might need. */
4493 if (bed->elf_backend_additional_program_headers)
4494 {
4495 int a;
4496
4497 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4498 if (a == -1)
4499 abort ();
4500 segs += a;
4501 }
4502
4503 return segs * bed->s->sizeof_phdr;
4504 }
4505
4506 /* Find the segment that contains the output_section of section. */
4507
4508 Elf_Internal_Phdr *
4509 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4510 {
4511 struct elf_segment_map *m;
4512 Elf_Internal_Phdr *p;
4513
4514 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4515 m != NULL;
4516 m = m->next, p++)
4517 {
4518 int i;
4519
4520 for (i = m->count - 1; i >= 0; i--)
4521 if (m->sections[i] == section)
4522 return p;
4523 }
4524
4525 return NULL;
4526 }
4527
4528 /* Create a mapping from a set of sections to a program segment. */
4529
4530 static struct elf_segment_map *
4531 make_mapping (bfd *abfd,
4532 asection **sections,
4533 unsigned int from,
4534 unsigned int to,
4535 bool phdr)
4536 {
4537 struct elf_segment_map *m;
4538 unsigned int i;
4539 asection **hdrpp;
4540 size_t amt;
4541
4542 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4543 amt += (to - from) * sizeof (asection *);
4544 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4545 if (m == NULL)
4546 return NULL;
4547 m->next = NULL;
4548 m->p_type = PT_LOAD;
4549 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4550 m->sections[i - from] = *hdrpp;
4551 m->count = to - from;
4552
4553 if (from == 0 && phdr)
4554 {
4555 /* Include the headers in the first PT_LOAD segment. */
4556 m->includes_filehdr = 1;
4557 m->includes_phdrs = 1;
4558 }
4559
4560 return m;
4561 }
4562
4563 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4564 on failure. */
4565
4566 struct elf_segment_map *
4567 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4568 {
4569 struct elf_segment_map *m;
4570
4571 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4572 sizeof (struct elf_segment_map));
4573 if (m == NULL)
4574 return NULL;
4575 m->next = NULL;
4576 m->p_type = PT_DYNAMIC;
4577 m->count = 1;
4578 m->sections[0] = dynsec;
4579
4580 return m;
4581 }
4582
4583 /* Possibly add or remove segments from the segment map. */
4584
4585 static bool
4586 elf_modify_segment_map (bfd *abfd,
4587 struct bfd_link_info *info,
4588 bool remove_empty_load)
4589 {
4590 struct elf_segment_map **m;
4591 const struct elf_backend_data *bed;
4592
4593 /* The placement algorithm assumes that non allocated sections are
4594 not in PT_LOAD segments. We ensure this here by removing such
4595 sections from the segment map. We also remove excluded
4596 sections. Finally, any PT_LOAD segment without sections is
4597 removed. */
4598 m = &elf_seg_map (abfd);
4599 while (*m)
4600 {
4601 unsigned int i, new_count;
4602
4603 for (new_count = 0, i = 0; i < (*m)->count; i++)
4604 {
4605 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4606 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4607 || (*m)->p_type != PT_LOAD))
4608 {
4609 (*m)->sections[new_count] = (*m)->sections[i];
4610 new_count++;
4611 }
4612 }
4613 (*m)->count = new_count;
4614
4615 if (remove_empty_load
4616 && (*m)->p_type == PT_LOAD
4617 && (*m)->count == 0
4618 && !(*m)->includes_phdrs)
4619 *m = (*m)->next;
4620 else
4621 m = &(*m)->next;
4622 }
4623
4624 bed = get_elf_backend_data (abfd);
4625 if (bed->elf_backend_modify_segment_map != NULL)
4626 {
4627 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4628 return false;
4629 }
4630
4631 return true;
4632 }
4633
4634 #define IS_TBSS(s) \
4635 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4636
4637 /* Set up a mapping from BFD sections to program segments. */
4638
4639 bool
4640 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4641 {
4642 unsigned int count;
4643 struct elf_segment_map *m;
4644 asection **sections = NULL;
4645 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4646 bool no_user_phdrs;
4647
4648 no_user_phdrs = elf_seg_map (abfd) == NULL;
4649
4650 if (info != NULL)
4651 info->user_phdrs = !no_user_phdrs;
4652
4653 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4654 {
4655 asection *s;
4656 unsigned int i;
4657 struct elf_segment_map *mfirst;
4658 struct elf_segment_map **pm;
4659 asection *last_hdr;
4660 bfd_vma last_size;
4661 unsigned int hdr_index;
4662 bfd_vma maxpagesize;
4663 asection **hdrpp;
4664 bool phdr_in_segment;
4665 bool writable;
4666 bool executable;
4667 unsigned int tls_count = 0;
4668 asection *first_tls = NULL;
4669 asection *first_mbind = NULL;
4670 asection *dynsec, *eh_frame_hdr;
4671 size_t amt;
4672 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4673 bfd_size_type phdr_size; /* Octets/bytes. */
4674 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4675
4676 /* Select the allocated sections, and sort them. */
4677
4678 amt = bfd_count_sections (abfd) * sizeof (asection *);
4679 sections = (asection **) bfd_malloc (amt);
4680 if (sections == NULL)
4681 goto error_return;
4682
4683 /* Calculate top address, avoiding undefined behaviour of shift
4684 left operator when shift count is equal to size of type
4685 being shifted. */
4686 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4687 addr_mask = (addr_mask << 1) + 1;
4688
4689 i = 0;
4690 for (s = abfd->sections; s != NULL; s = s->next)
4691 {
4692 if ((s->flags & SEC_ALLOC) != 0)
4693 {
4694 /* target_index is unused until bfd_elf_final_link
4695 starts output of section symbols. Use it to make
4696 qsort stable. */
4697 s->target_index = i;
4698 sections[i] = s;
4699 ++i;
4700 /* A wrapping section potentially clashes with header. */
4701 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4702 wrap_to = (s->lma + s->size / opb) & addr_mask;
4703 }
4704 }
4705 BFD_ASSERT (i <= bfd_count_sections (abfd));
4706 count = i;
4707
4708 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4709
4710 phdr_size = elf_program_header_size (abfd);
4711 if (phdr_size == (bfd_size_type) -1)
4712 phdr_size = get_program_header_size (abfd, info);
4713 phdr_size += bed->s->sizeof_ehdr;
4714 /* phdr_size is compared to LMA values which are in bytes. */
4715 phdr_size /= opb;
4716 if (info != NULL)
4717 maxpagesize = info->maxpagesize;
4718 else
4719 maxpagesize = bed->maxpagesize;
4720 if (maxpagesize == 0)
4721 maxpagesize = 1;
4722 phdr_in_segment = info != NULL && info->load_phdrs;
4723 if (count != 0
4724 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4725 >= (phdr_size & (maxpagesize - 1))))
4726 /* For compatibility with old scripts that may not be using
4727 SIZEOF_HEADERS, add headers when it looks like space has
4728 been left for them. */
4729 phdr_in_segment = true;
4730
4731 /* Build the mapping. */
4732 mfirst = NULL;
4733 pm = &mfirst;
4734
4735 /* If we have a .interp section, then create a PT_PHDR segment for
4736 the program headers and a PT_INTERP segment for the .interp
4737 section. */
4738 s = bfd_get_section_by_name (abfd, ".interp");
4739 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4740 {
4741 amt = sizeof (struct elf_segment_map);
4742 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4743 if (m == NULL)
4744 goto error_return;
4745 m->next = NULL;
4746 m->p_type = PT_PHDR;
4747 m->p_flags = PF_R;
4748 m->p_flags_valid = 1;
4749 m->includes_phdrs = 1;
4750 phdr_in_segment = true;
4751 *pm = m;
4752 pm = &m->next;
4753
4754 amt = sizeof (struct elf_segment_map);
4755 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4756 if (m == NULL)
4757 goto error_return;
4758 m->next = NULL;
4759 m->p_type = PT_INTERP;
4760 m->count = 1;
4761 m->sections[0] = s;
4762
4763 *pm = m;
4764 pm = &m->next;
4765 }
4766
4767 /* Look through the sections. We put sections in the same program
4768 segment when the start of the second section can be placed within
4769 a few bytes of the end of the first section. */
4770 last_hdr = NULL;
4771 last_size = 0;
4772 hdr_index = 0;
4773 writable = false;
4774 executable = false;
4775 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4776 if (dynsec != NULL
4777 && (dynsec->flags & SEC_LOAD) == 0)
4778 dynsec = NULL;
4779
4780 if ((abfd->flags & D_PAGED) == 0)
4781 phdr_in_segment = false;
4782
4783 /* Deal with -Ttext or something similar such that the first section
4784 is not adjacent to the program headers. This is an
4785 approximation, since at this point we don't know exactly how many
4786 program headers we will need. */
4787 if (phdr_in_segment && count > 0)
4788 {
4789 bfd_vma phdr_lma; /* Bytes. */
4790 bool separate_phdr = false;
4791
4792 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4793 if (info != NULL
4794 && info->separate_code
4795 && (sections[0]->flags & SEC_CODE) != 0)
4796 {
4797 /* If data sections should be separate from code and
4798 thus not executable, and the first section is
4799 executable then put the file and program headers in
4800 their own PT_LOAD. */
4801 separate_phdr = true;
4802 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4803 == (sections[0]->lma & addr_mask & -maxpagesize)))
4804 {
4805 /* The file and program headers are currently on the
4806 same page as the first section. Put them on the
4807 previous page if we can. */
4808 if (phdr_lma >= maxpagesize)
4809 phdr_lma -= maxpagesize;
4810 else
4811 separate_phdr = false;
4812 }
4813 }
4814 if ((sections[0]->lma & addr_mask) < phdr_lma
4815 || (sections[0]->lma & addr_mask) < phdr_size)
4816 /* If file and program headers would be placed at the end
4817 of memory then it's probably better to omit them. */
4818 phdr_in_segment = false;
4819 else if (phdr_lma < wrap_to)
4820 /* If a section wraps around to where we'll be placing
4821 file and program headers, then the headers will be
4822 overwritten. */
4823 phdr_in_segment = false;
4824 else if (separate_phdr)
4825 {
4826 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4827 if (m == NULL)
4828 goto error_return;
4829 m->p_paddr = phdr_lma * opb;
4830 m->p_vaddr_offset
4831 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4832 m->p_paddr_valid = 1;
4833 *pm = m;
4834 pm = &m->next;
4835 phdr_in_segment = false;
4836 }
4837 }
4838
4839 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4840 {
4841 asection *hdr;
4842 bool new_segment;
4843
4844 hdr = *hdrpp;
4845
4846 /* See if this section and the last one will fit in the same
4847 segment. */
4848
4849 if (last_hdr == NULL)
4850 {
4851 /* If we don't have a segment yet, then we don't need a new
4852 one (we build the last one after this loop). */
4853 new_segment = false;
4854 }
4855 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4856 {
4857 /* If this section has a different relation between the
4858 virtual address and the load address, then we need a new
4859 segment. */
4860 new_segment = true;
4861 }
4862 else if (hdr->lma < last_hdr->lma + last_size
4863 || last_hdr->lma + last_size < last_hdr->lma)
4864 {
4865 /* If this section has a load address that makes it overlap
4866 the previous section, then we need a new segment. */
4867 new_segment = true;
4868 }
4869 else if ((abfd->flags & D_PAGED) != 0
4870 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4871 == (hdr->lma & -maxpagesize)))
4872 {
4873 /* If we are demand paged then we can't map two disk
4874 pages onto the same memory page. */
4875 new_segment = false;
4876 }
4877 /* In the next test we have to be careful when last_hdr->lma is close
4878 to the end of the address space. If the aligned address wraps
4879 around to the start of the address space, then there are no more
4880 pages left in memory and it is OK to assume that the current
4881 section can be included in the current segment. */
4882 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4883 + maxpagesize > last_hdr->lma)
4884 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4885 + maxpagesize <= hdr->lma))
4886 {
4887 /* If putting this section in this segment would force us to
4888 skip a page in the segment, then we need a new segment. */
4889 new_segment = true;
4890 }
4891 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4892 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4893 {
4894 /* We don't want to put a loaded section after a
4895 nonloaded (ie. bss style) section in the same segment
4896 as that will force the non-loaded section to be loaded.
4897 Consider .tbss sections as loaded for this purpose. */
4898 new_segment = true;
4899 }
4900 else if ((abfd->flags & D_PAGED) == 0)
4901 {
4902 /* If the file is not demand paged, which means that we
4903 don't require the sections to be correctly aligned in the
4904 file, then there is no other reason for a new segment. */
4905 new_segment = false;
4906 }
4907 else if (info != NULL
4908 && info->separate_code
4909 && executable != ((hdr->flags & SEC_CODE) != 0))
4910 {
4911 new_segment = true;
4912 }
4913 else if (! writable
4914 && (hdr->flags & SEC_READONLY) == 0)
4915 {
4916 /* We don't want to put a writable section in a read only
4917 segment. */
4918 new_segment = true;
4919 }
4920 else
4921 {
4922 /* Otherwise, we can use the same segment. */
4923 new_segment = false;
4924 }
4925
4926 /* Allow interested parties a chance to override our decision. */
4927 if (last_hdr != NULL
4928 && info != NULL
4929 && info->callbacks->override_segment_assignment != NULL)
4930 new_segment
4931 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4932 last_hdr,
4933 new_segment);
4934
4935 if (! new_segment)
4936 {
4937 if ((hdr->flags & SEC_READONLY) == 0)
4938 writable = true;
4939 if ((hdr->flags & SEC_CODE) != 0)
4940 executable = true;
4941 last_hdr = hdr;
4942 /* .tbss sections effectively have zero size. */
4943 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4944 continue;
4945 }
4946
4947 /* We need a new program segment. We must create a new program
4948 header holding all the sections from hdr_index until hdr. */
4949
4950 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4951 if (m == NULL)
4952 goto error_return;
4953
4954 *pm = m;
4955 pm = &m->next;
4956
4957 if ((hdr->flags & SEC_READONLY) == 0)
4958 writable = true;
4959 else
4960 writable = false;
4961
4962 if ((hdr->flags & SEC_CODE) == 0)
4963 executable = false;
4964 else
4965 executable = true;
4966
4967 last_hdr = hdr;
4968 /* .tbss sections effectively have zero size. */
4969 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4970 hdr_index = i;
4971 phdr_in_segment = false;
4972 }
4973
4974 /* Create a final PT_LOAD program segment, but not if it's just
4975 for .tbss. */
4976 if (last_hdr != NULL
4977 && (i - hdr_index != 1
4978 || !IS_TBSS (last_hdr)))
4979 {
4980 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4981 if (m == NULL)
4982 goto error_return;
4983
4984 *pm = m;
4985 pm = &m->next;
4986 }
4987
4988 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4989 if (dynsec != NULL)
4990 {
4991 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4992 if (m == NULL)
4993 goto error_return;
4994 *pm = m;
4995 pm = &m->next;
4996 }
4997
4998 /* For each batch of consecutive loadable SHT_NOTE sections,
4999 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5000 because if we link together nonloadable .note sections and
5001 loadable .note sections, we will generate two .note sections
5002 in the output file. */
5003 for (s = abfd->sections; s != NULL; s = s->next)
5004 {
5005 if ((s->flags & SEC_LOAD) != 0
5006 && elf_section_type (s) == SHT_NOTE)
5007 {
5008 asection *s2;
5009 unsigned int alignment_power = s->alignment_power;
5010
5011 count = 1;
5012 for (s2 = s; s2->next != NULL; s2 = s2->next)
5013 {
5014 if (s2->next->alignment_power == alignment_power
5015 && (s2->next->flags & SEC_LOAD) != 0
5016 && elf_section_type (s2->next) == SHT_NOTE
5017 && align_power (s2->lma + s2->size / opb,
5018 alignment_power)
5019 == s2->next->lma)
5020 count++;
5021 else
5022 break;
5023 }
5024 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5025 amt += count * sizeof (asection *);
5026 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5027 if (m == NULL)
5028 goto error_return;
5029 m->next = NULL;
5030 m->p_type = PT_NOTE;
5031 m->count = count;
5032 while (count > 1)
5033 {
5034 m->sections[m->count - count--] = s;
5035 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5036 s = s->next;
5037 }
5038 m->sections[m->count - 1] = s;
5039 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5040 *pm = m;
5041 pm = &m->next;
5042 }
5043 if (s->flags & SEC_THREAD_LOCAL)
5044 {
5045 if (! tls_count)
5046 first_tls = s;
5047 tls_count++;
5048 }
5049 if (first_mbind == NULL
5050 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5051 first_mbind = s;
5052 }
5053
5054 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5055 if (tls_count > 0)
5056 {
5057 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5058 amt += tls_count * sizeof (asection *);
5059 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5060 if (m == NULL)
5061 goto error_return;
5062 m->next = NULL;
5063 m->p_type = PT_TLS;
5064 m->count = tls_count;
5065 /* Mandated PF_R. */
5066 m->p_flags = PF_R;
5067 m->p_flags_valid = 1;
5068 s = first_tls;
5069 for (i = 0; i < tls_count; ++i)
5070 {
5071 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5072 {
5073 _bfd_error_handler
5074 (_("%pB: TLS sections are not adjacent:"), abfd);
5075 s = first_tls;
5076 i = 0;
5077 while (i < tls_count)
5078 {
5079 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5080 {
5081 _bfd_error_handler (_(" TLS: %pA"), s);
5082 i++;
5083 }
5084 else
5085 _bfd_error_handler (_(" non-TLS: %pA"), s);
5086 s = s->next;
5087 }
5088 bfd_set_error (bfd_error_bad_value);
5089 goto error_return;
5090 }
5091 m->sections[i] = s;
5092 s = s->next;
5093 }
5094
5095 *pm = m;
5096 pm = &m->next;
5097 }
5098
5099 if (first_mbind
5100 && (abfd->flags & D_PAGED) != 0
5101 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5102 for (s = first_mbind; s != NULL; s = s->next)
5103 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5104 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5105 {
5106 /* Mandated PF_R. */
5107 unsigned long p_flags = PF_R;
5108 if ((s->flags & SEC_READONLY) == 0)
5109 p_flags |= PF_W;
5110 if ((s->flags & SEC_CODE) != 0)
5111 p_flags |= PF_X;
5112
5113 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5114 m = bfd_zalloc (abfd, amt);
5115 if (m == NULL)
5116 goto error_return;
5117 m->next = NULL;
5118 m->p_type = (PT_GNU_MBIND_LO
5119 + elf_section_data (s)->this_hdr.sh_info);
5120 m->count = 1;
5121 m->p_flags_valid = 1;
5122 m->sections[0] = s;
5123 m->p_flags = p_flags;
5124
5125 *pm = m;
5126 pm = &m->next;
5127 }
5128
5129 s = bfd_get_section_by_name (abfd,
5130 NOTE_GNU_PROPERTY_SECTION_NAME);
5131 if (s != NULL && s->size != 0)
5132 {
5133 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5134 m = bfd_zalloc (abfd, amt);
5135 if (m == NULL)
5136 goto error_return;
5137 m->next = NULL;
5138 m->p_type = PT_GNU_PROPERTY;
5139 m->count = 1;
5140 m->p_flags_valid = 1;
5141 m->sections[0] = s;
5142 m->p_flags = PF_R;
5143 *pm = m;
5144 pm = &m->next;
5145 }
5146
5147 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5148 segment. */
5149 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5150 if (eh_frame_hdr != NULL
5151 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5152 {
5153 amt = sizeof (struct elf_segment_map);
5154 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5155 if (m == NULL)
5156 goto error_return;
5157 m->next = NULL;
5158 m->p_type = PT_GNU_EH_FRAME;
5159 m->count = 1;
5160 m->sections[0] = eh_frame_hdr->output_section;
5161
5162 *pm = m;
5163 pm = &m->next;
5164 }
5165
5166 if (elf_stack_flags (abfd))
5167 {
5168 amt = sizeof (struct elf_segment_map);
5169 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5170 if (m == NULL)
5171 goto error_return;
5172 m->next = NULL;
5173 m->p_type = PT_GNU_STACK;
5174 m->p_flags = elf_stack_flags (abfd);
5175 m->p_align = bed->stack_align;
5176 m->p_flags_valid = 1;
5177 m->p_align_valid = m->p_align != 0;
5178 if (info->stacksize > 0)
5179 {
5180 m->p_size = info->stacksize;
5181 m->p_size_valid = 1;
5182 }
5183
5184 *pm = m;
5185 pm = &m->next;
5186 }
5187
5188 if (info != NULL && info->relro)
5189 {
5190 for (m = mfirst; m != NULL; m = m->next)
5191 {
5192 if (m->p_type == PT_LOAD
5193 && m->count != 0
5194 && m->sections[0]->vma >= info->relro_start
5195 && m->sections[0]->vma < info->relro_end)
5196 {
5197 i = m->count;
5198 while (--i != (unsigned) -1)
5199 {
5200 if (m->sections[i]->size > 0
5201 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5202 == (SEC_LOAD | SEC_HAS_CONTENTS))
5203 break;
5204 }
5205
5206 if (i != (unsigned) -1)
5207 break;
5208 }
5209 }
5210
5211 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5212 if (m != NULL)
5213 {
5214 amt = sizeof (struct elf_segment_map);
5215 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5216 if (m == NULL)
5217 goto error_return;
5218 m->next = NULL;
5219 m->p_type = PT_GNU_RELRO;
5220 *pm = m;
5221 pm = &m->next;
5222 }
5223 }
5224
5225 free (sections);
5226 elf_seg_map (abfd) = mfirst;
5227 }
5228
5229 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5230 return false;
5231
5232 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5233 ++count;
5234 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5235
5236 return true;
5237
5238 error_return:
5239 free (sections);
5240 return false;
5241 }
5242
5243 /* Sort sections by address. */
5244
5245 static int
5246 elf_sort_sections (const void *arg1, const void *arg2)
5247 {
5248 const asection *sec1 = *(const asection **) arg1;
5249 const asection *sec2 = *(const asection **) arg2;
5250 bfd_size_type size1, size2;
5251
5252 /* Sort by LMA first, since this is the address used to
5253 place the section into a segment. */
5254 if (sec1->lma < sec2->lma)
5255 return -1;
5256 else if (sec1->lma > sec2->lma)
5257 return 1;
5258
5259 /* Then sort by VMA. Normally the LMA and the VMA will be
5260 the same, and this will do nothing. */
5261 if (sec1->vma < sec2->vma)
5262 return -1;
5263 else if (sec1->vma > sec2->vma)
5264 return 1;
5265
5266 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5267
5268 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \
5269 && (x)->size != 0)
5270
5271 if (TOEND (sec1))
5272 {
5273 if (!TOEND (sec2))
5274 return 1;
5275 }
5276 else if (TOEND (sec2))
5277 return -1;
5278
5279 #undef TOEND
5280
5281 /* Sort by size, to put zero sized sections
5282 before others at the same address. */
5283
5284 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5285 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5286
5287 if (size1 < size2)
5288 return -1;
5289 if (size1 > size2)
5290 return 1;
5291
5292 return sec1->target_index - sec2->target_index;
5293 }
5294
5295 /* This qsort comparison functions sorts PT_LOAD segments first and
5296 by p_paddr, for assign_file_positions_for_load_sections. */
5297
5298 static int
5299 elf_sort_segments (const void *arg1, const void *arg2)
5300 {
5301 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5302 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5303
5304 if (m1->p_type != m2->p_type)
5305 {
5306 if (m1->p_type == PT_NULL)
5307 return 1;
5308 if (m2->p_type == PT_NULL)
5309 return -1;
5310 return m1->p_type < m2->p_type ? -1 : 1;
5311 }
5312 if (m1->includes_filehdr != m2->includes_filehdr)
5313 return m1->includes_filehdr ? -1 : 1;
5314 if (m1->no_sort_lma != m2->no_sort_lma)
5315 return m1->no_sort_lma ? -1 : 1;
5316 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5317 {
5318 bfd_vma lma1, lma2; /* Octets. */
5319 lma1 = 0;
5320 if (m1->p_paddr_valid)
5321 lma1 = m1->p_paddr;
5322 else if (m1->count != 0)
5323 {
5324 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5325 m1->sections[0]);
5326 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5327 }
5328 lma2 = 0;
5329 if (m2->p_paddr_valid)
5330 lma2 = m2->p_paddr;
5331 else if (m2->count != 0)
5332 {
5333 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5334 m2->sections[0]);
5335 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5336 }
5337 if (lma1 != lma2)
5338 return lma1 < lma2 ? -1 : 1;
5339 }
5340 if (m1->idx != m2->idx)
5341 return m1->idx < m2->idx ? -1 : 1;
5342 return 0;
5343 }
5344
5345 /* Ian Lance Taylor writes:
5346
5347 We shouldn't be using % with a negative signed number. That's just
5348 not good. We have to make sure either that the number is not
5349 negative, or that the number has an unsigned type. When the types
5350 are all the same size they wind up as unsigned. When file_ptr is a
5351 larger signed type, the arithmetic winds up as signed long long,
5352 which is wrong.
5353
5354 What we're trying to say here is something like ``increase OFF by
5355 the least amount that will cause it to be equal to the VMA modulo
5356 the page size.'' */
5357 /* In other words, something like:
5358
5359 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5360 off_offset = off % bed->maxpagesize;
5361 if (vma_offset < off_offset)
5362 adjustment = vma_offset + bed->maxpagesize - off_offset;
5363 else
5364 adjustment = vma_offset - off_offset;
5365
5366 which can be collapsed into the expression below. */
5367
5368 static file_ptr
5369 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5370 {
5371 /* PR binutils/16199: Handle an alignment of zero. */
5372 if (maxpagesize == 0)
5373 maxpagesize = 1;
5374 return ((vma - off) % maxpagesize);
5375 }
5376
5377 static void
5378 print_segment_map (const struct elf_segment_map *m)
5379 {
5380 unsigned int j;
5381 const char *pt = get_segment_type (m->p_type);
5382 char buf[32];
5383
5384 if (pt == NULL)
5385 {
5386 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5387 sprintf (buf, "LOPROC+%7.7x",
5388 (unsigned int) (m->p_type - PT_LOPROC));
5389 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5390 sprintf (buf, "LOOS+%7.7x",
5391 (unsigned int) (m->p_type - PT_LOOS));
5392 else
5393 snprintf (buf, sizeof (buf), "%8.8x",
5394 (unsigned int) m->p_type);
5395 pt = buf;
5396 }
5397 fflush (stdout);
5398 fprintf (stderr, "%s:", pt);
5399 for (j = 0; j < m->count; j++)
5400 fprintf (stderr, " %s", m->sections [j]->name);
5401 putc ('\n',stderr);
5402 fflush (stderr);
5403 }
5404
5405 static bool
5406 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5407 {
5408 void *buf;
5409 bool ret;
5410
5411 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5412 return false;
5413 buf = bfd_zmalloc (len);
5414 if (buf == NULL)
5415 return false;
5416 ret = bfd_bwrite (buf, len, abfd) == len;
5417 free (buf);
5418 return ret;
5419 }
5420
5421 /* Assign file positions to the sections based on the mapping from
5422 sections to segments. This function also sets up some fields in
5423 the file header. */
5424
5425 static bool
5426 assign_file_positions_for_load_sections (bfd *abfd,
5427 struct bfd_link_info *link_info)
5428 {
5429 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5430 struct elf_segment_map *m;
5431 struct elf_segment_map *phdr_load_seg;
5432 Elf_Internal_Phdr *phdrs;
5433 Elf_Internal_Phdr *p;
5434 file_ptr off; /* Octets. */
5435 bfd_size_type maxpagesize;
5436 unsigned int alloc, actual;
5437 unsigned int i, j;
5438 struct elf_segment_map **sorted_seg_map;
5439 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5440
5441 if (link_info == NULL
5442 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5443 return false;
5444
5445 alloc = 0;
5446 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5447 m->idx = alloc++;
5448
5449 if (alloc)
5450 {
5451 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5452 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5453 }
5454 else
5455 {
5456 /* PR binutils/12467. */
5457 elf_elfheader (abfd)->e_phoff = 0;
5458 elf_elfheader (abfd)->e_phentsize = 0;
5459 }
5460
5461 elf_elfheader (abfd)->e_phnum = alloc;
5462
5463 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5464 {
5465 actual = alloc;
5466 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5467 }
5468 else
5469 {
5470 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5471 BFD_ASSERT (elf_program_header_size (abfd)
5472 == actual * bed->s->sizeof_phdr);
5473 BFD_ASSERT (actual >= alloc);
5474 }
5475
5476 if (alloc == 0)
5477 {
5478 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5479 return true;
5480 }
5481
5482 /* We're writing the size in elf_program_header_size (abfd),
5483 see assign_file_positions_except_relocs, so make sure we have
5484 that amount allocated, with trailing space cleared.
5485 The variable alloc contains the computed need, while
5486 elf_program_header_size (abfd) contains the size used for the
5487 layout.
5488 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5489 where the layout is forced to according to a larger size in the
5490 last iterations for the testcase ld-elf/header. */
5491 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5492 + alloc * sizeof (*sorted_seg_map)));
5493 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5494 elf_tdata (abfd)->phdr = phdrs;
5495 if (phdrs == NULL)
5496 return false;
5497
5498 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5499 {
5500 sorted_seg_map[j] = m;
5501 /* If elf_segment_map is not from map_sections_to_segments, the
5502 sections may not be correctly ordered. NOTE: sorting should
5503 not be done to the PT_NOTE section of a corefile, which may
5504 contain several pseudo-sections artificially created by bfd.
5505 Sorting these pseudo-sections breaks things badly. */
5506 if (m->count > 1
5507 && !(elf_elfheader (abfd)->e_type == ET_CORE
5508 && m->p_type == PT_NOTE))
5509 {
5510 for (i = 0; i < m->count; i++)
5511 m->sections[i]->target_index = i;
5512 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5513 elf_sort_sections);
5514 }
5515 }
5516 if (alloc > 1)
5517 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5518 elf_sort_segments);
5519
5520 maxpagesize = 1;
5521 if ((abfd->flags & D_PAGED) != 0)
5522 {
5523 if (link_info != NULL)
5524 maxpagesize = link_info->maxpagesize;
5525 else
5526 maxpagesize = bed->maxpagesize;
5527 }
5528
5529 /* Sections must map to file offsets past the ELF file header. */
5530 off = bed->s->sizeof_ehdr;
5531 /* And if one of the PT_LOAD headers doesn't include the program
5532 headers then we'll be mapping program headers in the usual
5533 position after the ELF file header. */
5534 phdr_load_seg = NULL;
5535 for (j = 0; j < alloc; j++)
5536 {
5537 m = sorted_seg_map[j];
5538 if (m->p_type != PT_LOAD)
5539 break;
5540 if (m->includes_phdrs)
5541 {
5542 phdr_load_seg = m;
5543 break;
5544 }
5545 }
5546 if (phdr_load_seg == NULL)
5547 off += actual * bed->s->sizeof_phdr;
5548
5549 for (j = 0; j < alloc; j++)
5550 {
5551 asection **secpp;
5552 bfd_vma off_adjust; /* Octets. */
5553 bool no_contents;
5554
5555 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5556 number of sections with contents contributing to both p_filesz
5557 and p_memsz, followed by a number of sections with no contents
5558 that just contribute to p_memsz. In this loop, OFF tracks next
5559 available file offset for PT_LOAD and PT_NOTE segments. */
5560 m = sorted_seg_map[j];
5561 p = phdrs + m->idx;
5562 p->p_type = m->p_type;
5563 p->p_flags = m->p_flags;
5564
5565 if (m->count == 0)
5566 p->p_vaddr = m->p_vaddr_offset * opb;
5567 else
5568 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5569
5570 if (m->p_paddr_valid)
5571 p->p_paddr = m->p_paddr;
5572 else if (m->count == 0)
5573 p->p_paddr = 0;
5574 else
5575 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5576
5577 if (p->p_type == PT_LOAD
5578 && (abfd->flags & D_PAGED) != 0)
5579 {
5580 /* p_align in demand paged PT_LOAD segments effectively stores
5581 the maximum page size. When copying an executable with
5582 objcopy, we set m->p_align from the input file. Use this
5583 value for maxpagesize rather than bed->maxpagesize, which
5584 may be different. Note that we use maxpagesize for PT_TLS
5585 segment alignment later in this function, so we are relying
5586 on at least one PT_LOAD segment appearing before a PT_TLS
5587 segment. */
5588 if (m->p_align_valid)
5589 maxpagesize = m->p_align;
5590
5591 p->p_align = maxpagesize;
5592 }
5593 else if (m->p_align_valid)
5594 p->p_align = m->p_align;
5595 else if (m->count == 0)
5596 p->p_align = 1 << bed->s->log_file_align;
5597
5598 if (m == phdr_load_seg)
5599 {
5600 if (!m->includes_filehdr)
5601 p->p_offset = off;
5602 off += actual * bed->s->sizeof_phdr;
5603 }
5604
5605 no_contents = false;
5606 off_adjust = 0;
5607 if (p->p_type == PT_LOAD
5608 && m->count > 0)
5609 {
5610 bfd_size_type align; /* Bytes. */
5611 unsigned int align_power = 0;
5612
5613 if (m->p_align_valid)
5614 align = p->p_align;
5615 else
5616 {
5617 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5618 {
5619 unsigned int secalign;
5620
5621 secalign = bfd_section_alignment (*secpp);
5622 if (secalign > align_power)
5623 align_power = secalign;
5624 }
5625 align = (bfd_size_type) 1 << align_power;
5626 if (align < maxpagesize)
5627 align = maxpagesize;
5628 }
5629
5630 for (i = 0; i < m->count; i++)
5631 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5632 /* If we aren't making room for this section, then
5633 it must be SHT_NOBITS regardless of what we've
5634 set via struct bfd_elf_special_section. */
5635 elf_section_type (m->sections[i]) = SHT_NOBITS;
5636
5637 /* Find out whether this segment contains any loadable
5638 sections. */
5639 no_contents = true;
5640 for (i = 0; i < m->count; i++)
5641 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5642 {
5643 no_contents = false;
5644 break;
5645 }
5646
5647 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5648
5649 /* Broken hardware and/or kernel require that files do not
5650 map the same page with different permissions on some hppa
5651 processors. */
5652 if (j != 0
5653 && (abfd->flags & D_PAGED) != 0
5654 && bed->no_page_alias
5655 && (off & (maxpagesize - 1)) != 0
5656 && ((off & -maxpagesize)
5657 == ((off + off_adjust) & -maxpagesize)))
5658 off_adjust += maxpagesize;
5659 off += off_adjust;
5660 if (no_contents)
5661 {
5662 /* We shouldn't need to align the segment on disk since
5663 the segment doesn't need file space, but the gABI
5664 arguably requires the alignment and glibc ld.so
5665 checks it. So to comply with the alignment
5666 requirement but not waste file space, we adjust
5667 p_offset for just this segment. (OFF_ADJUST is
5668 subtracted from OFF later.) This may put p_offset
5669 past the end of file, but that shouldn't matter. */
5670 }
5671 else
5672 off_adjust = 0;
5673 }
5674 /* Make sure the .dynamic section is the first section in the
5675 PT_DYNAMIC segment. */
5676 else if (p->p_type == PT_DYNAMIC
5677 && m->count > 1
5678 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5679 {
5680 _bfd_error_handler
5681 (_("%pB: The first section in the PT_DYNAMIC segment"
5682 " is not the .dynamic section"),
5683 abfd);
5684 bfd_set_error (bfd_error_bad_value);
5685 return false;
5686 }
5687 /* Set the note section type to SHT_NOTE. */
5688 else if (p->p_type == PT_NOTE)
5689 for (i = 0; i < m->count; i++)
5690 elf_section_type (m->sections[i]) = SHT_NOTE;
5691
5692 if (m->includes_filehdr)
5693 {
5694 if (!m->p_flags_valid)
5695 p->p_flags |= PF_R;
5696 p->p_filesz = bed->s->sizeof_ehdr;
5697 p->p_memsz = bed->s->sizeof_ehdr;
5698 if (p->p_type == PT_LOAD)
5699 {
5700 if (m->count > 0)
5701 {
5702 if (p->p_vaddr < (bfd_vma) off
5703 || (!m->p_paddr_valid
5704 && p->p_paddr < (bfd_vma) off))
5705 {
5706 _bfd_error_handler
5707 (_("%pB: not enough room for program headers,"
5708 " try linking with -N"),
5709 abfd);
5710 bfd_set_error (bfd_error_bad_value);
5711 return false;
5712 }
5713 p->p_vaddr -= off;
5714 if (!m->p_paddr_valid)
5715 p->p_paddr -= off;
5716 }
5717 }
5718 else if (sorted_seg_map[0]->includes_filehdr)
5719 {
5720 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5721 p->p_vaddr = filehdr->p_vaddr;
5722 if (!m->p_paddr_valid)
5723 p->p_paddr = filehdr->p_paddr;
5724 }
5725 }
5726
5727 if (m->includes_phdrs)
5728 {
5729 if (!m->p_flags_valid)
5730 p->p_flags |= PF_R;
5731 p->p_filesz += actual * bed->s->sizeof_phdr;
5732 p->p_memsz += actual * bed->s->sizeof_phdr;
5733 if (!m->includes_filehdr)
5734 {
5735 if (p->p_type == PT_LOAD)
5736 {
5737 elf_elfheader (abfd)->e_phoff = p->p_offset;
5738 if (m->count > 0)
5739 {
5740 p->p_vaddr -= off - p->p_offset;
5741 if (!m->p_paddr_valid)
5742 p->p_paddr -= off - p->p_offset;
5743 }
5744 }
5745 else if (phdr_load_seg != NULL)
5746 {
5747 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5748 bfd_vma phdr_off = 0; /* Octets. */
5749 if (phdr_load_seg->includes_filehdr)
5750 phdr_off = bed->s->sizeof_ehdr;
5751 p->p_vaddr = phdr->p_vaddr + phdr_off;
5752 if (!m->p_paddr_valid)
5753 p->p_paddr = phdr->p_paddr + phdr_off;
5754 p->p_offset = phdr->p_offset + phdr_off;
5755 }
5756 else
5757 p->p_offset = bed->s->sizeof_ehdr;
5758 }
5759 }
5760
5761 if (p->p_type == PT_LOAD
5762 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5763 {
5764 if (!m->includes_filehdr && !m->includes_phdrs)
5765 {
5766 p->p_offset = off;
5767 if (no_contents)
5768 {
5769 /* Put meaningless p_offset for PT_LOAD segments
5770 without file contents somewhere within the first
5771 page, in an attempt to not point past EOF. */
5772 bfd_size_type align = maxpagesize;
5773 if (align < p->p_align)
5774 align = p->p_align;
5775 if (align < 1)
5776 align = 1;
5777 p->p_offset = off % align;
5778 }
5779 }
5780 else
5781 {
5782 file_ptr adjust; /* Octets. */
5783
5784 adjust = off - (p->p_offset + p->p_filesz);
5785 if (!no_contents)
5786 p->p_filesz += adjust;
5787 p->p_memsz += adjust;
5788 }
5789 }
5790
5791 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5792 maps. Set filepos for sections in PT_LOAD segments, and in
5793 core files, for sections in PT_NOTE segments.
5794 assign_file_positions_for_non_load_sections will set filepos
5795 for other sections and update p_filesz for other segments. */
5796 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5797 {
5798 asection *sec;
5799 bfd_size_type align;
5800 Elf_Internal_Shdr *this_hdr;
5801
5802 sec = *secpp;
5803 this_hdr = &elf_section_data (sec)->this_hdr;
5804 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5805
5806 if ((p->p_type == PT_LOAD
5807 || p->p_type == PT_TLS)
5808 && (this_hdr->sh_type != SHT_NOBITS
5809 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5810 && ((this_hdr->sh_flags & SHF_TLS) == 0
5811 || p->p_type == PT_TLS))))
5812 {
5813 bfd_vma p_start = p->p_paddr; /* Octets. */
5814 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5815 bfd_vma s_start = sec->lma * opb; /* Octets. */
5816 bfd_vma adjust = s_start - p_end; /* Octets. */
5817
5818 if (adjust != 0
5819 && (s_start < p_end
5820 || p_end < p_start))
5821 {
5822 _bfd_error_handler
5823 /* xgettext:c-format */
5824 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5825 abfd, sec, (uint64_t) s_start / opb,
5826 (uint64_t) p_end / opb);
5827 adjust = 0;
5828 sec->lma = p_end / opb;
5829 }
5830 p->p_memsz += adjust;
5831
5832 if (p->p_type == PT_LOAD)
5833 {
5834 if (this_hdr->sh_type != SHT_NOBITS)
5835 {
5836 off_adjust = 0;
5837 if (p->p_filesz + adjust < p->p_memsz)
5838 {
5839 /* We have a PROGBITS section following NOBITS ones.
5840 Allocate file space for the NOBITS section(s) and
5841 zero it. */
5842 adjust = p->p_memsz - p->p_filesz;
5843 if (!write_zeros (abfd, off, adjust))
5844 return false;
5845 }
5846 }
5847 /* We only adjust sh_offset in SHT_NOBITS sections
5848 as would seem proper for their address when the
5849 section is first in the segment. sh_offset
5850 doesn't really have any significance for
5851 SHT_NOBITS anyway, apart from a notional position
5852 relative to other sections. Historically we
5853 didn't bother with adjusting sh_offset and some
5854 programs depend on it not being adjusted. See
5855 pr12921 and pr25662. */
5856 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5857 {
5858 off += adjust;
5859 if (this_hdr->sh_type == SHT_NOBITS)
5860 off_adjust += adjust;
5861 }
5862 }
5863 if (this_hdr->sh_type != SHT_NOBITS)
5864 p->p_filesz += adjust;
5865 }
5866
5867 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5868 {
5869 /* The section at i == 0 is the one that actually contains
5870 everything. */
5871 if (i == 0)
5872 {
5873 this_hdr->sh_offset = sec->filepos = off;
5874 off += this_hdr->sh_size;
5875 p->p_filesz = this_hdr->sh_size;
5876 p->p_memsz = 0;
5877 p->p_align = 1;
5878 }
5879 else
5880 {
5881 /* The rest are fake sections that shouldn't be written. */
5882 sec->filepos = 0;
5883 sec->size = 0;
5884 sec->flags = 0;
5885 continue;
5886 }
5887 }
5888 else
5889 {
5890 if (p->p_type == PT_LOAD)
5891 {
5892 this_hdr->sh_offset = sec->filepos = off;
5893 if (this_hdr->sh_type != SHT_NOBITS)
5894 off += this_hdr->sh_size;
5895 }
5896 else if (this_hdr->sh_type == SHT_NOBITS
5897 && (this_hdr->sh_flags & SHF_TLS) != 0
5898 && this_hdr->sh_offset == 0)
5899 {
5900 /* This is a .tbss section that didn't get a PT_LOAD.
5901 (See _bfd_elf_map_sections_to_segments "Create a
5902 final PT_LOAD".) Set sh_offset to the value it
5903 would have if we had created a zero p_filesz and
5904 p_memsz PT_LOAD header for the section. This
5905 also makes the PT_TLS header have the same
5906 p_offset value. */
5907 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5908 off, align);
5909 this_hdr->sh_offset = sec->filepos = off + adjust;
5910 }
5911
5912 if (this_hdr->sh_type != SHT_NOBITS)
5913 {
5914 p->p_filesz += this_hdr->sh_size;
5915 /* A load section without SHF_ALLOC is something like
5916 a note section in a PT_NOTE segment. These take
5917 file space but are not loaded into memory. */
5918 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5919 p->p_memsz += this_hdr->sh_size;
5920 }
5921 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5922 {
5923 if (p->p_type == PT_TLS)
5924 p->p_memsz += this_hdr->sh_size;
5925
5926 /* .tbss is special. It doesn't contribute to p_memsz of
5927 normal segments. */
5928 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5929 p->p_memsz += this_hdr->sh_size;
5930 }
5931
5932 if (align > p->p_align
5933 && !m->p_align_valid
5934 && (p->p_type != PT_LOAD
5935 || (abfd->flags & D_PAGED) == 0))
5936 p->p_align = align;
5937 }
5938
5939 if (!m->p_flags_valid)
5940 {
5941 p->p_flags |= PF_R;
5942 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5943 p->p_flags |= PF_X;
5944 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5945 p->p_flags |= PF_W;
5946 }
5947 }
5948
5949 off -= off_adjust;
5950
5951 /* PR ld/20815 - Check that the program header segment, if
5952 present, will be loaded into memory. */
5953 if (p->p_type == PT_PHDR
5954 && phdr_load_seg == NULL
5955 && !(bed->elf_backend_allow_non_load_phdr != NULL
5956 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5957 {
5958 /* The fix for this error is usually to edit the linker script being
5959 used and set up the program headers manually. Either that or
5960 leave room for the headers at the start of the SECTIONS. */
5961 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5962 " by LOAD segment"),
5963 abfd);
5964 if (link_info == NULL)
5965 return false;
5966 /* Arrange for the linker to exit with an error, deleting
5967 the output file unless --noinhibit-exec is given. */
5968 link_info->callbacks->info ("%X");
5969 }
5970
5971 /* Check that all sections are in a PT_LOAD segment.
5972 Don't check funky gdb generated core files. */
5973 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5974 {
5975 bool check_vma = true;
5976
5977 for (i = 1; i < m->count; i++)
5978 if (m->sections[i]->vma == m->sections[i - 1]->vma
5979 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5980 ->this_hdr), p) != 0
5981 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5982 ->this_hdr), p) != 0)
5983 {
5984 /* Looks like we have overlays packed into the segment. */
5985 check_vma = false;
5986 break;
5987 }
5988
5989 for (i = 0; i < m->count; i++)
5990 {
5991 Elf_Internal_Shdr *this_hdr;
5992 asection *sec;
5993
5994 sec = m->sections[i];
5995 this_hdr = &(elf_section_data(sec)->this_hdr);
5996 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5997 && !ELF_TBSS_SPECIAL (this_hdr, p))
5998 {
5999 _bfd_error_handler
6000 /* xgettext:c-format */
6001 (_("%pB: section `%pA' can't be allocated in segment %d"),
6002 abfd, sec, j);
6003 print_segment_map (m);
6004 }
6005 }
6006 }
6007 }
6008
6009 elf_next_file_pos (abfd) = off;
6010
6011 if (link_info != NULL
6012 && phdr_load_seg != NULL
6013 && phdr_load_seg->includes_filehdr)
6014 {
6015 /* There is a segment that contains both the file headers and the
6016 program headers, so provide a symbol __ehdr_start pointing there.
6017 A program can use this to examine itself robustly. */
6018
6019 struct elf_link_hash_entry *hash
6020 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6021 false, false, true);
6022 /* If the symbol was referenced and not defined, define it. */
6023 if (hash != NULL
6024 && (hash->root.type == bfd_link_hash_new
6025 || hash->root.type == bfd_link_hash_undefined
6026 || hash->root.type == bfd_link_hash_undefweak
6027 || hash->root.type == bfd_link_hash_common))
6028 {
6029 asection *s = NULL;
6030 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6031
6032 if (phdr_load_seg->count != 0)
6033 /* The segment contains sections, so use the first one. */
6034 s = phdr_load_seg->sections[0];
6035 else
6036 /* Use the first (i.e. lowest-addressed) section in any segment. */
6037 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6038 if (m->p_type == PT_LOAD && m->count != 0)
6039 {
6040 s = m->sections[0];
6041 break;
6042 }
6043
6044 if (s != NULL)
6045 {
6046 hash->root.u.def.value = filehdr_vaddr - s->vma;
6047 hash->root.u.def.section = s;
6048 }
6049 else
6050 {
6051 hash->root.u.def.value = filehdr_vaddr;
6052 hash->root.u.def.section = bfd_abs_section_ptr;
6053 }
6054
6055 hash->root.type = bfd_link_hash_defined;
6056 hash->def_regular = 1;
6057 hash->non_elf = 0;
6058 }
6059 }
6060
6061 return true;
6062 }
6063
6064 /* Determine if a bfd is a debuginfo file. Unfortunately there
6065 is no defined method for detecting such files, so we have to
6066 use heuristics instead. */
6067
6068 bool
6069 is_debuginfo_file (bfd *abfd)
6070 {
6071 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6072 return false;
6073
6074 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6075 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6076 Elf_Internal_Shdr **headerp;
6077
6078 for (headerp = start_headers; headerp < end_headers; headerp ++)
6079 {
6080 Elf_Internal_Shdr *header = * headerp;
6081
6082 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6083 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6084 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6085 && header->sh_type != SHT_NOBITS
6086 && header->sh_type != SHT_NOTE)
6087 return false;
6088 }
6089
6090 return true;
6091 }
6092
6093 /* Assign file positions for the other sections, except for compressed debugging
6094 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6095
6096 static bool
6097 assign_file_positions_for_non_load_sections (bfd *abfd,
6098 struct bfd_link_info *link_info)
6099 {
6100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6101 Elf_Internal_Shdr **i_shdrpp;
6102 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6103 Elf_Internal_Phdr *phdrs;
6104 Elf_Internal_Phdr *p;
6105 struct elf_segment_map *m;
6106 file_ptr off;
6107 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6108 bfd_vma maxpagesize;
6109
6110 if (link_info != NULL)
6111 maxpagesize = link_info->maxpagesize;
6112 else
6113 maxpagesize = bed->maxpagesize;
6114 i_shdrpp = elf_elfsections (abfd);
6115 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6116 off = elf_next_file_pos (abfd);
6117 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6118 {
6119 Elf_Internal_Shdr *hdr;
6120
6121 hdr = *hdrpp;
6122 if (hdr->bfd_section != NULL
6123 && (hdr->bfd_section->filepos != 0
6124 || (hdr->sh_type == SHT_NOBITS
6125 && hdr->contents == NULL)))
6126 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6127 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6128 {
6129 if (hdr->sh_size != 0
6130 /* PR 24717 - debuginfo files are known to be not strictly
6131 compliant with the ELF standard. In particular they often
6132 have .note.gnu.property sections that are outside of any
6133 loadable segment. This is not a problem for such files,
6134 so do not warn about them. */
6135 && ! is_debuginfo_file (abfd))
6136 _bfd_error_handler
6137 /* xgettext:c-format */
6138 (_("%pB: warning: allocated section `%s' not in segment"),
6139 abfd,
6140 (hdr->bfd_section == NULL
6141 ? "*unknown*"
6142 : hdr->bfd_section->name));
6143 /* We don't need to page align empty sections. */
6144 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6145 off += vma_page_aligned_bias (hdr->sh_addr, off,
6146 maxpagesize);
6147 else
6148 off += vma_page_aligned_bias (hdr->sh_addr, off,
6149 hdr->sh_addralign);
6150 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6151 false);
6152 }
6153 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6154 && hdr->bfd_section == NULL)
6155 /* We don't know the offset of these sections yet: their size has
6156 not been decided. */
6157 || (hdr->bfd_section != NULL
6158 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6159 || (bfd_section_is_ctf (hdr->bfd_section)
6160 && abfd->is_linker_output)))
6161 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6162 || (elf_symtab_shndx_list (abfd) != NULL
6163 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6164 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6165 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6166 hdr->sh_offset = -1;
6167 else
6168 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6169 }
6170 elf_next_file_pos (abfd) = off;
6171
6172 /* Now that we have set the section file positions, we can set up
6173 the file positions for the non PT_LOAD segments. */
6174 phdrs = elf_tdata (abfd)->phdr;
6175 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6176 {
6177 if (p->p_type == PT_GNU_RELRO)
6178 {
6179 bfd_vma start, end; /* Bytes. */
6180 bool ok;
6181
6182 if (link_info != NULL)
6183 {
6184 /* During linking the range of the RELRO segment is passed
6185 in link_info. Note that there may be padding between
6186 relro_start and the first RELRO section. */
6187 start = link_info->relro_start;
6188 end = link_info->relro_end;
6189 }
6190 else if (m->count != 0)
6191 {
6192 if (!m->p_size_valid)
6193 abort ();
6194 start = m->sections[0]->vma;
6195 end = start + m->p_size / opb;
6196 }
6197 else
6198 {
6199 start = 0;
6200 end = 0;
6201 }
6202
6203 ok = false;
6204 if (start < end)
6205 {
6206 struct elf_segment_map *lm;
6207 const Elf_Internal_Phdr *lp;
6208 unsigned int i;
6209
6210 /* Find a LOAD segment containing a section in the RELRO
6211 segment. */
6212 for (lm = elf_seg_map (abfd), lp = phdrs;
6213 lm != NULL;
6214 lm = lm->next, lp++)
6215 {
6216 if (lp->p_type == PT_LOAD
6217 && lm->count != 0
6218 && (lm->sections[lm->count - 1]->vma
6219 + (!IS_TBSS (lm->sections[lm->count - 1])
6220 ? lm->sections[lm->count - 1]->size / opb
6221 : 0)) > start
6222 && lm->sections[0]->vma < end)
6223 break;
6224 }
6225
6226 if (lm != NULL)
6227 {
6228 /* Find the section starting the RELRO segment. */
6229 for (i = 0; i < lm->count; i++)
6230 {
6231 asection *s = lm->sections[i];
6232 if (s->vma >= start
6233 && s->vma < end
6234 && s->size != 0)
6235 break;
6236 }
6237
6238 if (i < lm->count)
6239 {
6240 p->p_vaddr = lm->sections[i]->vma * opb;
6241 p->p_paddr = lm->sections[i]->lma * opb;
6242 p->p_offset = lm->sections[i]->filepos;
6243 p->p_memsz = end * opb - p->p_vaddr;
6244 p->p_filesz = p->p_memsz;
6245
6246 /* The RELRO segment typically ends a few bytes
6247 into .got.plt but other layouts are possible.
6248 In cases where the end does not match any
6249 loaded section (for instance is in file
6250 padding), trim p_filesz back to correspond to
6251 the end of loaded section contents. */
6252 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6253 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6254
6255 /* Preserve the alignment and flags if they are
6256 valid. The gold linker generates RW/4 for
6257 the PT_GNU_RELRO section. It is better for
6258 objcopy/strip to honor these attributes
6259 otherwise gdb will choke when using separate
6260 debug files. */
6261 if (!m->p_align_valid)
6262 p->p_align = 1;
6263 if (!m->p_flags_valid)
6264 p->p_flags = PF_R;
6265 ok = true;
6266 }
6267 }
6268 }
6269 if (link_info != NULL)
6270 BFD_ASSERT (ok);
6271 if (!ok)
6272 memset (p, 0, sizeof *p);
6273 }
6274 else if (p->p_type == PT_GNU_STACK)
6275 {
6276 if (m->p_size_valid)
6277 p->p_memsz = m->p_size;
6278 }
6279 else if (m->count != 0)
6280 {
6281 unsigned int i;
6282
6283 if (p->p_type != PT_LOAD
6284 && (p->p_type != PT_NOTE
6285 || bfd_get_format (abfd) != bfd_core))
6286 {
6287 /* A user specified segment layout may include a PHDR
6288 segment that overlaps with a LOAD segment... */
6289 if (p->p_type == PT_PHDR)
6290 {
6291 m->count = 0;
6292 continue;
6293 }
6294
6295 if (m->includes_filehdr || m->includes_phdrs)
6296 {
6297 /* PR 17512: file: 2195325e. */
6298 _bfd_error_handler
6299 (_("%pB: error: non-load segment %d includes file header "
6300 "and/or program header"),
6301 abfd, (int) (p - phdrs));
6302 return false;
6303 }
6304
6305 p->p_filesz = 0;
6306 p->p_offset = m->sections[0]->filepos;
6307 for (i = m->count; i-- != 0;)
6308 {
6309 asection *sect = m->sections[i];
6310 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6311 if (hdr->sh_type != SHT_NOBITS)
6312 {
6313 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6314 + hdr->sh_size);
6315 /* NB: p_memsz of the loadable PT_NOTE segment
6316 should be the same as p_filesz. */
6317 if (p->p_type == PT_NOTE
6318 && (hdr->sh_flags & SHF_ALLOC) != 0)
6319 p->p_memsz = p->p_filesz;
6320 break;
6321 }
6322 }
6323 }
6324 }
6325 }
6326
6327 return true;
6328 }
6329
6330 static elf_section_list *
6331 find_section_in_list (unsigned int i, elf_section_list * list)
6332 {
6333 for (;list != NULL; list = list->next)
6334 if (list->ndx == i)
6335 break;
6336 return list;
6337 }
6338
6339 /* Work out the file positions of all the sections. This is called by
6340 _bfd_elf_compute_section_file_positions. All the section sizes and
6341 VMAs must be known before this is called.
6342
6343 Reloc sections come in two flavours: Those processed specially as
6344 "side-channel" data attached to a section to which they apply, and those that
6345 bfd doesn't process as relocations. The latter sort are stored in a normal
6346 bfd section by bfd_section_from_shdr. We don't consider the former sort
6347 here, unless they form part of the loadable image. Reloc sections not
6348 assigned here (and compressed debugging sections and CTF sections which
6349 nothing else in the file can rely upon) will be handled later by
6350 assign_file_positions_for_relocs.
6351
6352 We also don't set the positions of the .symtab and .strtab here. */
6353
6354 static bool
6355 assign_file_positions_except_relocs (bfd *abfd,
6356 struct bfd_link_info *link_info)
6357 {
6358 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6359 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6361 unsigned int alloc;
6362
6363 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6364 && bfd_get_format (abfd) != bfd_core)
6365 {
6366 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6367 unsigned int num_sec = elf_numsections (abfd);
6368 Elf_Internal_Shdr **hdrpp;
6369 unsigned int i;
6370 file_ptr off;
6371
6372 /* Start after the ELF header. */
6373 off = i_ehdrp->e_ehsize;
6374
6375 /* We are not creating an executable, which means that we are
6376 not creating a program header, and that the actual order of
6377 the sections in the file is unimportant. */
6378 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6379 {
6380 Elf_Internal_Shdr *hdr;
6381
6382 hdr = *hdrpp;
6383 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6384 && hdr->bfd_section == NULL)
6385 /* Do not assign offsets for these sections yet: we don't know
6386 their sizes. */
6387 || (hdr->bfd_section != NULL
6388 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6389 || (bfd_section_is_ctf (hdr->bfd_section)
6390 && abfd->is_linker_output)))
6391 || i == elf_onesymtab (abfd)
6392 || (elf_symtab_shndx_list (abfd) != NULL
6393 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6394 || i == elf_strtab_sec (abfd)
6395 || i == elf_shstrtab_sec (abfd))
6396 {
6397 hdr->sh_offset = -1;
6398 }
6399 else
6400 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6401 }
6402
6403 elf_next_file_pos (abfd) = off;
6404 elf_program_header_size (abfd) = 0;
6405 }
6406 else
6407 {
6408 /* Assign file positions for the loaded sections based on the
6409 assignment of sections to segments. */
6410 if (!assign_file_positions_for_load_sections (abfd, link_info))
6411 return false;
6412
6413 /* And for non-load sections. */
6414 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6415 return false;
6416 }
6417
6418 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6419 return false;
6420
6421 /* Write out the program headers. */
6422 alloc = i_ehdrp->e_phnum;
6423 if (alloc != 0)
6424 {
6425 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6426 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6427 return false;
6428 }
6429
6430 return true;
6431 }
6432
6433 bool
6434 _bfd_elf_init_file_header (bfd *abfd,
6435 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6436 {
6437 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6438 struct elf_strtab_hash *shstrtab;
6439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6440
6441 i_ehdrp = elf_elfheader (abfd);
6442
6443 shstrtab = _bfd_elf_strtab_init ();
6444 if (shstrtab == NULL)
6445 return false;
6446
6447 elf_shstrtab (abfd) = shstrtab;
6448
6449 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6450 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6451 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6452 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6453
6454 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6455 i_ehdrp->e_ident[EI_DATA] =
6456 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6457 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6458
6459 if ((abfd->flags & DYNAMIC) != 0)
6460 i_ehdrp->e_type = ET_DYN;
6461 else if ((abfd->flags & EXEC_P) != 0)
6462 i_ehdrp->e_type = ET_EXEC;
6463 else if (bfd_get_format (abfd) == bfd_core)
6464 i_ehdrp->e_type = ET_CORE;
6465 else
6466 i_ehdrp->e_type = ET_REL;
6467
6468 switch (bfd_get_arch (abfd))
6469 {
6470 case bfd_arch_unknown:
6471 i_ehdrp->e_machine = EM_NONE;
6472 break;
6473
6474 /* There used to be a long list of cases here, each one setting
6475 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6476 in the corresponding bfd definition. To avoid duplication,
6477 the switch was removed. Machines that need special handling
6478 can generally do it in elf_backend_final_write_processing(),
6479 unless they need the information earlier than the final write.
6480 Such need can generally be supplied by replacing the tests for
6481 e_machine with the conditions used to determine it. */
6482 default:
6483 i_ehdrp->e_machine = bed->elf_machine_code;
6484 }
6485
6486 i_ehdrp->e_version = bed->s->ev_current;
6487 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6488
6489 /* No program header, for now. */
6490 i_ehdrp->e_phoff = 0;
6491 i_ehdrp->e_phentsize = 0;
6492 i_ehdrp->e_phnum = 0;
6493
6494 /* Each bfd section is section header entry. */
6495 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6496 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6497
6498 elf_tdata (abfd)->symtab_hdr.sh_name =
6499 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
6500 elf_tdata (abfd)->strtab_hdr.sh_name =
6501 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
6502 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6503 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
6504 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6505 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6506 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6507 return false;
6508
6509 return true;
6510 }
6511
6512 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6513
6514 FIXME: We used to have code here to sort the PT_LOAD segments into
6515 ascending order, as per the ELF spec. But this breaks some programs,
6516 including the Linux kernel. But really either the spec should be
6517 changed or the programs updated. */
6518
6519 bool
6520 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6521 {
6522 if (link_info != NULL && bfd_link_pie (link_info))
6523 {
6524 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6525 unsigned int num_segments = i_ehdrp->e_phnum;
6526 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6527 Elf_Internal_Phdr *segment = tdata->phdr;
6528 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6529
6530 /* Find the lowest p_vaddr in PT_LOAD segments. */
6531 bfd_vma p_vaddr = (bfd_vma) -1;
6532 for (; segment < end_segment; segment++)
6533 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6534 p_vaddr = segment->p_vaddr;
6535
6536 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6537 segments is non-zero. */
6538 if (p_vaddr)
6539 i_ehdrp->e_type = ET_EXEC;
6540 }
6541 return true;
6542 }
6543
6544 /* Assign file positions for all the reloc sections which are not part
6545 of the loadable file image, and the file position of section headers. */
6546
6547 static bool
6548 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6549 {
6550 file_ptr off;
6551 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6552 Elf_Internal_Shdr *shdrp;
6553 Elf_Internal_Ehdr *i_ehdrp;
6554 const struct elf_backend_data *bed;
6555
6556 off = elf_next_file_pos (abfd);
6557
6558 shdrpp = elf_elfsections (abfd);
6559 end_shdrpp = shdrpp + elf_numsections (abfd);
6560 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6561 {
6562 shdrp = *shdrpp;
6563 if (shdrp->sh_offset == -1)
6564 {
6565 asection *sec = shdrp->bfd_section;
6566 bool is_rel = (shdrp->sh_type == SHT_REL
6567 || shdrp->sh_type == SHT_RELA);
6568 bool is_ctf = sec && bfd_section_is_ctf (sec);
6569 if (is_rel
6570 || is_ctf
6571 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6572 {
6573 if (!is_rel && !is_ctf)
6574 {
6575 const char *name = sec->name;
6576 struct bfd_elf_section_data *d;
6577
6578 /* Compress DWARF debug sections. */
6579 if (!bfd_compress_section (abfd, sec,
6580 shdrp->contents))
6581 return false;
6582
6583 if (sec->compress_status == COMPRESS_SECTION_DONE
6584 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6585 {
6586 /* If section is compressed with zlib-gnu, convert
6587 section name from .debug_* to .zdebug_*. */
6588 char *new_name
6589 = convert_debug_to_zdebug (abfd, name);
6590 if (new_name == NULL)
6591 return false;
6592 name = new_name;
6593 }
6594 /* Add section name to section name section. */
6595 if (shdrp->sh_name != (unsigned int) -1)
6596 abort ();
6597 shdrp->sh_name
6598 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6599 name, false);
6600 d = elf_section_data (sec);
6601
6602 /* Add reloc section name to section name section. */
6603 if (d->rel.hdr
6604 && !_bfd_elf_set_reloc_sh_name (abfd,
6605 d->rel.hdr,
6606 name, false))
6607 return false;
6608 if (d->rela.hdr
6609 && !_bfd_elf_set_reloc_sh_name (abfd,
6610 d->rela.hdr,
6611 name, true))
6612 return false;
6613
6614 /* Update section size and contents. */
6615 shdrp->sh_size = sec->size;
6616 shdrp->contents = sec->contents;
6617 shdrp->bfd_section->contents = NULL;
6618 }
6619 else if (is_ctf)
6620 {
6621 /* Update section size and contents. */
6622 shdrp->sh_size = sec->size;
6623 shdrp->contents = sec->contents;
6624 }
6625
6626 off = _bfd_elf_assign_file_position_for_section (shdrp,
6627 off,
6628 true);
6629 }
6630 }
6631 }
6632
6633 /* Place section name section after DWARF debug sections have been
6634 compressed. */
6635 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6636 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6637 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6638 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
6639
6640 /* Place the section headers. */
6641 i_ehdrp = elf_elfheader (abfd);
6642 bed = get_elf_backend_data (abfd);
6643 off = align_file_position (off, 1 << bed->s->log_file_align);
6644 i_ehdrp->e_shoff = off;
6645 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6646 elf_next_file_pos (abfd) = off;
6647
6648 return true;
6649 }
6650
6651 bool
6652 _bfd_elf_write_object_contents (bfd *abfd)
6653 {
6654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6655 Elf_Internal_Shdr **i_shdrp;
6656 bool failed;
6657 unsigned int count, num_sec;
6658 struct elf_obj_tdata *t;
6659
6660 if (! abfd->output_has_begun
6661 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6662 return false;
6663 /* Do not rewrite ELF data when the BFD has been opened for update.
6664 abfd->output_has_begun was set to TRUE on opening, so creation of new
6665 sections, and modification of existing section sizes was restricted.
6666 This means the ELF header, program headers and section headers can't have
6667 changed.
6668 If the contents of any sections has been modified, then those changes have
6669 already been written to the BFD. */
6670 else if (abfd->direction == both_direction)
6671 {
6672 BFD_ASSERT (abfd->output_has_begun);
6673 return true;
6674 }
6675
6676 i_shdrp = elf_elfsections (abfd);
6677
6678 failed = false;
6679 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6680 if (failed)
6681 return false;
6682
6683 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6684 return false;
6685
6686 /* After writing the headers, we need to write the sections too... */
6687 num_sec = elf_numsections (abfd);
6688 for (count = 1; count < num_sec; count++)
6689 {
6690 i_shdrp[count]->sh_name
6691 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6692 i_shdrp[count]->sh_name);
6693 if (bed->elf_backend_section_processing)
6694 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6695 return false;
6696 if (i_shdrp[count]->contents)
6697 {
6698 bfd_size_type amt = i_shdrp[count]->sh_size;
6699
6700 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6701 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6702 return false;
6703 }
6704 }
6705
6706 /* Write out the section header names. */
6707 t = elf_tdata (abfd);
6708 if (elf_shstrtab (abfd) != NULL
6709 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6710 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6711 return false;
6712
6713 if (!(*bed->elf_backend_final_write_processing) (abfd))
6714 return false;
6715
6716 if (!bed->s->write_shdrs_and_ehdr (abfd))
6717 return false;
6718
6719 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6720 if (t->o->build_id.after_write_object_contents != NULL)
6721 return (*t->o->build_id.after_write_object_contents) (abfd);
6722
6723 return true;
6724 }
6725
6726 bool
6727 _bfd_elf_write_corefile_contents (bfd *abfd)
6728 {
6729 /* Hopefully this can be done just like an object file. */
6730 return _bfd_elf_write_object_contents (abfd);
6731 }
6732
6733 /* Given a section, search the header to find them. */
6734
6735 unsigned int
6736 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6737 {
6738 const struct elf_backend_data *bed;
6739 unsigned int sec_index;
6740
6741 if (elf_section_data (asect) != NULL
6742 && elf_section_data (asect)->this_idx != 0)
6743 return elf_section_data (asect)->this_idx;
6744
6745 if (bfd_is_abs_section (asect))
6746 sec_index = SHN_ABS;
6747 else if (bfd_is_com_section (asect))
6748 sec_index = SHN_COMMON;
6749 else if (bfd_is_und_section (asect))
6750 sec_index = SHN_UNDEF;
6751 else
6752 sec_index = SHN_BAD;
6753
6754 bed = get_elf_backend_data (abfd);
6755 if (bed->elf_backend_section_from_bfd_section)
6756 {
6757 int retval = sec_index;
6758
6759 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6760 return retval;
6761 }
6762
6763 if (sec_index == SHN_BAD)
6764 bfd_set_error (bfd_error_nonrepresentable_section);
6765
6766 return sec_index;
6767 }
6768
6769 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6770 on error. */
6771
6772 int
6773 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6774 {
6775 asymbol *asym_ptr = *asym_ptr_ptr;
6776 int idx;
6777 flagword flags = asym_ptr->flags;
6778
6779 /* When gas creates relocations against local labels, it creates its
6780 own symbol for the section, but does put the symbol into the
6781 symbol chain, so udata is 0. When the linker is generating
6782 relocatable output, this section symbol may be for one of the
6783 input sections rather than the output section. */
6784 if (asym_ptr->udata.i == 0
6785 && (flags & BSF_SECTION_SYM)
6786 && asym_ptr->section)
6787 {
6788 asection *sec;
6789 int indx;
6790
6791 sec = asym_ptr->section;
6792 if (sec->owner != abfd && sec->output_section != NULL)
6793 sec = sec->output_section;
6794 if (sec->owner == abfd
6795 && (indx = sec->index) < elf_num_section_syms (abfd)
6796 && elf_section_syms (abfd)[indx] != NULL)
6797 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6798 }
6799
6800 idx = asym_ptr->udata.i;
6801
6802 if (idx == 0)
6803 {
6804 /* This case can occur when using --strip-symbol on a symbol
6805 which is used in a relocation entry. */
6806 _bfd_error_handler
6807 /* xgettext:c-format */
6808 (_("%pB: symbol `%s' required but not present"),
6809 abfd, bfd_asymbol_name (asym_ptr));
6810 bfd_set_error (bfd_error_no_symbols);
6811 return -1;
6812 }
6813
6814 #if DEBUG & 4
6815 {
6816 fprintf (stderr,
6817 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6818 (long) asym_ptr, asym_ptr->name, idx, flags);
6819 fflush (stderr);
6820 }
6821 #endif
6822
6823 return idx;
6824 }
6825
6826 /* Rewrite program header information. */
6827
6828 static bool
6829 rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize)
6830 {
6831 Elf_Internal_Ehdr *iehdr;
6832 struct elf_segment_map *map;
6833 struct elf_segment_map *map_first;
6834 struct elf_segment_map **pointer_to_map;
6835 Elf_Internal_Phdr *segment;
6836 asection *section;
6837 unsigned int i;
6838 unsigned int num_segments;
6839 bool phdr_included = false;
6840 bool p_paddr_valid;
6841 struct elf_segment_map *phdr_adjust_seg = NULL;
6842 unsigned int phdr_adjust_num = 0;
6843 const struct elf_backend_data *bed;
6844 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6845
6846 bed = get_elf_backend_data (ibfd);
6847 iehdr = elf_elfheader (ibfd);
6848
6849 map_first = NULL;
6850 pointer_to_map = &map_first;
6851
6852 num_segments = elf_elfheader (ibfd)->e_phnum;
6853
6854 /* Returns the end address of the segment + 1. */
6855 #define SEGMENT_END(segment, start) \
6856 (start + (segment->p_memsz > segment->p_filesz \
6857 ? segment->p_memsz : segment->p_filesz))
6858
6859 #define SECTION_SIZE(section, segment) \
6860 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6861 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6862 ? section->size : 0)
6863
6864 /* Returns TRUE if the given section is contained within
6865 the given segment. VMA addresses are compared. */
6866 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6867 (section->vma * (opb) >= segment->p_vaddr \
6868 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6869 <= (SEGMENT_END (segment, segment->p_vaddr))))
6870
6871 /* Returns TRUE if the given section is contained within
6872 the given segment. LMA addresses are compared. */
6873 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6874 (section->lma * (opb) >= base \
6875 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6876 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6877 <= SEGMENT_END (segment, base)))
6878
6879 /* Handle PT_NOTE segment. */
6880 #define IS_NOTE(p, s) \
6881 (p->p_type == PT_NOTE \
6882 && elf_section_type (s) == SHT_NOTE \
6883 && (bfd_vma) s->filepos >= p->p_offset \
6884 && ((bfd_vma) s->filepos + s->size \
6885 <= p->p_offset + p->p_filesz))
6886
6887 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6888 etc. */
6889 #define IS_COREFILE_NOTE(p, s) \
6890 (IS_NOTE (p, s) \
6891 && bfd_get_format (ibfd) == bfd_core \
6892 && s->vma == 0 \
6893 && s->lma == 0)
6894
6895 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6896 linker, which generates a PT_INTERP section with p_vaddr and
6897 p_memsz set to 0. */
6898 #define IS_SOLARIS_PT_INTERP(p, s) \
6899 (p->p_vaddr == 0 \
6900 && p->p_paddr == 0 \
6901 && p->p_memsz == 0 \
6902 && p->p_filesz > 0 \
6903 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6904 && s->size > 0 \
6905 && (bfd_vma) s->filepos >= p->p_offset \
6906 && ((bfd_vma) s->filepos + s->size \
6907 <= p->p_offset + p->p_filesz))
6908
6909 /* Decide if the given section should be included in the given segment.
6910 A section will be included if:
6911 1. It is within the address space of the segment -- we use the LMA
6912 if that is set for the segment and the VMA otherwise,
6913 2. It is an allocated section or a NOTE section in a PT_NOTE
6914 segment.
6915 3. There is an output section associated with it,
6916 4. The section has not already been allocated to a previous segment.
6917 5. PT_GNU_STACK segments do not include any sections.
6918 6. PT_TLS segment includes only SHF_TLS sections.
6919 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6920 8. PT_DYNAMIC should not contain empty sections at the beginning
6921 (with the possible exception of .dynamic). */
6922 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6923 ((((segment->p_paddr \
6924 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6925 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6926 && (section->flags & SEC_ALLOC) != 0) \
6927 || IS_NOTE (segment, section)) \
6928 && segment->p_type != PT_GNU_STACK \
6929 && (segment->p_type != PT_TLS \
6930 || (section->flags & SEC_THREAD_LOCAL)) \
6931 && (segment->p_type == PT_LOAD \
6932 || segment->p_type == PT_TLS \
6933 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6934 && (segment->p_type != PT_DYNAMIC \
6935 || SECTION_SIZE (section, segment) > 0 \
6936 || (segment->p_paddr \
6937 ? segment->p_paddr != section->lma * (opb) \
6938 : segment->p_vaddr != section->vma * (opb)) \
6939 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6940 && (segment->p_type != PT_LOAD || !section->segment_mark))
6941
6942 /* If the output section of a section in the input segment is NULL,
6943 it is removed from the corresponding output segment. */
6944 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6945 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6946 && section->output_section != NULL)
6947
6948 /* Returns TRUE iff seg1 starts after the end of seg2. */
6949 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6950 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6951
6952 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6953 their VMA address ranges and their LMA address ranges overlap.
6954 It is possible to have overlapping VMA ranges without overlapping LMA
6955 ranges. RedBoot images for example can have both .data and .bss mapped
6956 to the same VMA range, but with the .data section mapped to a different
6957 LMA. */
6958 #define SEGMENT_OVERLAPS(seg1, seg2) \
6959 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6960 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6961 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6962 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6963
6964 /* Initialise the segment mark field. */
6965 for (section = ibfd->sections; section != NULL; section = section->next)
6966 section->segment_mark = false;
6967
6968 /* The Solaris linker creates program headers in which all the
6969 p_paddr fields are zero. When we try to objcopy or strip such a
6970 file, we get confused. Check for this case, and if we find it
6971 don't set the p_paddr_valid fields. */
6972 p_paddr_valid = false;
6973 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6974 i < num_segments;
6975 i++, segment++)
6976 if (segment->p_paddr != 0)
6977 {
6978 p_paddr_valid = true;
6979 break;
6980 }
6981
6982 /* Scan through the segments specified in the program header
6983 of the input BFD. For this first scan we look for overlaps
6984 in the loadable segments. These can be created by weird
6985 parameters to objcopy. Also, fix some solaris weirdness. */
6986 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6987 i < num_segments;
6988 i++, segment++)
6989 {
6990 unsigned int j;
6991 Elf_Internal_Phdr *segment2;
6992
6993 if (segment->p_type == PT_INTERP)
6994 for (section = ibfd->sections; section; section = section->next)
6995 if (IS_SOLARIS_PT_INTERP (segment, section))
6996 {
6997 /* Mininal change so that the normal section to segment
6998 assignment code will work. */
6999 segment->p_vaddr = section->vma * opb;
7000 break;
7001 }
7002
7003 if (segment->p_type != PT_LOAD)
7004 {
7005 /* Remove PT_GNU_RELRO segment. */
7006 if (segment->p_type == PT_GNU_RELRO)
7007 segment->p_type = PT_NULL;
7008 continue;
7009 }
7010
7011 /* Determine if this segment overlaps any previous segments. */
7012 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
7013 {
7014 bfd_signed_vma extra_length;
7015
7016 if (segment2->p_type != PT_LOAD
7017 || !SEGMENT_OVERLAPS (segment, segment2))
7018 continue;
7019
7020 /* Merge the two segments together. */
7021 if (segment2->p_vaddr < segment->p_vaddr)
7022 {
7023 /* Extend SEGMENT2 to include SEGMENT and then delete
7024 SEGMENT. */
7025 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7026 - SEGMENT_END (segment2, segment2->p_vaddr));
7027
7028 if (extra_length > 0)
7029 {
7030 segment2->p_memsz += extra_length;
7031 segment2->p_filesz += extra_length;
7032 }
7033
7034 segment->p_type = PT_NULL;
7035
7036 /* Since we have deleted P we must restart the outer loop. */
7037 i = 0;
7038 segment = elf_tdata (ibfd)->phdr;
7039 break;
7040 }
7041 else
7042 {
7043 /* Extend SEGMENT to include SEGMENT2 and then delete
7044 SEGMENT2. */
7045 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7046 - SEGMENT_END (segment, segment->p_vaddr));
7047
7048 if (extra_length > 0)
7049 {
7050 segment->p_memsz += extra_length;
7051 segment->p_filesz += extra_length;
7052 }
7053
7054 segment2->p_type = PT_NULL;
7055 }
7056 }
7057 }
7058
7059 /* The second scan attempts to assign sections to segments. */
7060 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7061 i < num_segments;
7062 i++, segment++)
7063 {
7064 unsigned int section_count;
7065 asection **sections;
7066 asection *output_section;
7067 unsigned int isec;
7068 asection *matching_lma;
7069 asection *suggested_lma;
7070 unsigned int j;
7071 size_t amt;
7072 asection *first_section;
7073
7074 if (segment->p_type == PT_NULL)
7075 continue;
7076
7077 first_section = NULL;
7078 /* Compute how many sections might be placed into this segment. */
7079 for (section = ibfd->sections, section_count = 0;
7080 section != NULL;
7081 section = section->next)
7082 {
7083 /* Find the first section in the input segment, which may be
7084 removed from the corresponding output segment. */
7085 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7086 {
7087 if (first_section == NULL)
7088 first_section = section;
7089 if (section->output_section != NULL)
7090 ++section_count;
7091 }
7092 }
7093
7094 /* Allocate a segment map big enough to contain
7095 all of the sections we have selected. */
7096 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7097 amt += section_count * sizeof (asection *);
7098 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7099 if (map == NULL)
7100 return false;
7101
7102 /* Initialise the fields of the segment map. Default to
7103 using the physical address of the segment in the input BFD. */
7104 map->next = NULL;
7105 map->p_type = segment->p_type;
7106 map->p_flags = segment->p_flags;
7107 map->p_flags_valid = 1;
7108
7109 if (map->p_type == PT_LOAD
7110 && (ibfd->flags & D_PAGED) != 0
7111 && maxpagesize > 1
7112 && segment->p_align > 1)
7113 {
7114 map->p_align = segment->p_align;
7115 if (segment->p_align > maxpagesize)
7116 map->p_align = maxpagesize;
7117 map->p_align_valid = 1;
7118 }
7119
7120 /* If the first section in the input segment is removed, there is
7121 no need to preserve segment physical address in the corresponding
7122 output segment. */
7123 if (!first_section || first_section->output_section != NULL)
7124 {
7125 map->p_paddr = segment->p_paddr;
7126 map->p_paddr_valid = p_paddr_valid;
7127 }
7128
7129 /* Determine if this segment contains the ELF file header
7130 and if it contains the program headers themselves. */
7131 map->includes_filehdr = (segment->p_offset == 0
7132 && segment->p_filesz >= iehdr->e_ehsize);
7133 map->includes_phdrs = 0;
7134
7135 if (!phdr_included || segment->p_type != PT_LOAD)
7136 {
7137 map->includes_phdrs =
7138 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7139 && (segment->p_offset + segment->p_filesz
7140 >= ((bfd_vma) iehdr->e_phoff
7141 + iehdr->e_phnum * iehdr->e_phentsize)));
7142
7143 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7144 phdr_included = true;
7145 }
7146
7147 if (section_count == 0)
7148 {
7149 /* Special segments, such as the PT_PHDR segment, may contain
7150 no sections, but ordinary, loadable segments should contain
7151 something. They are allowed by the ELF spec however, so only
7152 a warning is produced.
7153 There is however the valid use case of embedded systems which
7154 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7155 flash memory with zeros. No warning is shown for that case. */
7156 if (segment->p_type == PT_LOAD
7157 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7158 /* xgettext:c-format */
7159 _bfd_error_handler
7160 (_("%pB: warning: empty loadable segment detected"
7161 " at vaddr=%#" PRIx64 ", is this intentional?"),
7162 ibfd, (uint64_t) segment->p_vaddr);
7163
7164 map->p_vaddr_offset = segment->p_vaddr / opb;
7165 map->count = 0;
7166 *pointer_to_map = map;
7167 pointer_to_map = &map->next;
7168
7169 continue;
7170 }
7171
7172 /* Now scan the sections in the input BFD again and attempt
7173 to add their corresponding output sections to the segment map.
7174 The problem here is how to handle an output section which has
7175 been moved (ie had its LMA changed). There are four possibilities:
7176
7177 1. None of the sections have been moved.
7178 In this case we can continue to use the segment LMA from the
7179 input BFD.
7180
7181 2. All of the sections have been moved by the same amount.
7182 In this case we can change the segment's LMA to match the LMA
7183 of the first section.
7184
7185 3. Some of the sections have been moved, others have not.
7186 In this case those sections which have not been moved can be
7187 placed in the current segment which will have to have its size,
7188 and possibly its LMA changed, and a new segment or segments will
7189 have to be created to contain the other sections.
7190
7191 4. The sections have been moved, but not by the same amount.
7192 In this case we can change the segment's LMA to match the LMA
7193 of the first section and we will have to create a new segment
7194 or segments to contain the other sections.
7195
7196 In order to save time, we allocate an array to hold the section
7197 pointers that we are interested in. As these sections get assigned
7198 to a segment, they are removed from this array. */
7199
7200 amt = section_count * sizeof (asection *);
7201 sections = (asection **) bfd_malloc (amt);
7202 if (sections == NULL)
7203 return false;
7204
7205 /* Step One: Scan for segment vs section LMA conflicts.
7206 Also add the sections to the section array allocated above.
7207 Also add the sections to the current segment. In the common
7208 case, where the sections have not been moved, this means that
7209 we have completely filled the segment, and there is nothing
7210 more to do. */
7211 isec = 0;
7212 matching_lma = NULL;
7213 suggested_lma = NULL;
7214
7215 for (section = first_section, j = 0;
7216 section != NULL;
7217 section = section->next)
7218 {
7219 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7220 {
7221 output_section = section->output_section;
7222
7223 sections[j++] = section;
7224
7225 /* The Solaris native linker always sets p_paddr to 0.
7226 We try to catch that case here, and set it to the
7227 correct value. Note - some backends require that
7228 p_paddr be left as zero. */
7229 if (!p_paddr_valid
7230 && segment->p_vaddr != 0
7231 && !bed->want_p_paddr_set_to_zero
7232 && isec == 0
7233 && output_section->lma != 0
7234 && (align_power (segment->p_vaddr
7235 + (map->includes_filehdr
7236 ? iehdr->e_ehsize : 0)
7237 + (map->includes_phdrs
7238 ? iehdr->e_phnum * iehdr->e_phentsize
7239 : 0),
7240 output_section->alignment_power * opb)
7241 == (output_section->vma * opb)))
7242 map->p_paddr = segment->p_vaddr;
7243
7244 /* Match up the physical address of the segment with the
7245 LMA address of the output section. */
7246 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7247 opb)
7248 || IS_COREFILE_NOTE (segment, section)
7249 || (bed->want_p_paddr_set_to_zero
7250 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7251 {
7252 if (matching_lma == NULL
7253 || output_section->lma < matching_lma->lma)
7254 matching_lma = output_section;
7255
7256 /* We assume that if the section fits within the segment
7257 then it does not overlap any other section within that
7258 segment. */
7259 map->sections[isec++] = output_section;
7260 }
7261 else if (suggested_lma == NULL)
7262 suggested_lma = output_section;
7263
7264 if (j == section_count)
7265 break;
7266 }
7267 }
7268
7269 BFD_ASSERT (j == section_count);
7270
7271 /* Step Two: Adjust the physical address of the current segment,
7272 if necessary. */
7273 if (isec == section_count)
7274 {
7275 /* All of the sections fitted within the segment as currently
7276 specified. This is the default case. Add the segment to
7277 the list of built segments and carry on to process the next
7278 program header in the input BFD. */
7279 map->count = section_count;
7280 *pointer_to_map = map;
7281 pointer_to_map = &map->next;
7282
7283 if (p_paddr_valid
7284 && !bed->want_p_paddr_set_to_zero)
7285 {
7286 bfd_vma hdr_size = 0;
7287 if (map->includes_filehdr)
7288 hdr_size = iehdr->e_ehsize;
7289 if (map->includes_phdrs)
7290 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7291
7292 /* Account for padding before the first section in the
7293 segment. */
7294 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7295 - matching_lma->lma);
7296 }
7297
7298 free (sections);
7299 continue;
7300 }
7301 else
7302 {
7303 /* Change the current segment's physical address to match
7304 the LMA of the first section that fitted, or if no
7305 section fitted, the first section. */
7306 if (matching_lma == NULL)
7307 matching_lma = suggested_lma;
7308
7309 map->p_paddr = matching_lma->lma * opb;
7310
7311 /* Offset the segment physical address from the lma
7312 to allow for space taken up by elf headers. */
7313 if (map->includes_phdrs)
7314 {
7315 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7316
7317 /* iehdr->e_phnum is just an estimate of the number
7318 of program headers that we will need. Make a note
7319 here of the number we used and the segment we chose
7320 to hold these headers, so that we can adjust the
7321 offset when we know the correct value. */
7322 phdr_adjust_num = iehdr->e_phnum;
7323 phdr_adjust_seg = map;
7324 }
7325
7326 if (map->includes_filehdr)
7327 {
7328 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7329 map->p_paddr -= iehdr->e_ehsize;
7330 /* We've subtracted off the size of headers from the
7331 first section lma, but there may have been some
7332 alignment padding before that section too. Try to
7333 account for that by adjusting the segment lma down to
7334 the same alignment. */
7335 if (segment->p_align != 0 && segment->p_align < align)
7336 align = segment->p_align;
7337 map->p_paddr &= -(align * opb);
7338 }
7339 }
7340
7341 /* Step Three: Loop over the sections again, this time assigning
7342 those that fit to the current segment and removing them from the
7343 sections array; but making sure not to leave large gaps. Once all
7344 possible sections have been assigned to the current segment it is
7345 added to the list of built segments and if sections still remain
7346 to be assigned, a new segment is constructed before repeating
7347 the loop. */
7348 isec = 0;
7349 do
7350 {
7351 map->count = 0;
7352 suggested_lma = NULL;
7353
7354 /* Fill the current segment with sections that fit. */
7355 for (j = 0; j < section_count; j++)
7356 {
7357 section = sections[j];
7358
7359 if (section == NULL)
7360 continue;
7361
7362 output_section = section->output_section;
7363
7364 BFD_ASSERT (output_section != NULL);
7365
7366 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7367 opb)
7368 || IS_COREFILE_NOTE (segment, section))
7369 {
7370 if (map->count == 0)
7371 {
7372 /* If the first section in a segment does not start at
7373 the beginning of the segment, then something is
7374 wrong. */
7375 if (align_power (map->p_paddr
7376 + (map->includes_filehdr
7377 ? iehdr->e_ehsize : 0)
7378 + (map->includes_phdrs
7379 ? iehdr->e_phnum * iehdr->e_phentsize
7380 : 0),
7381 output_section->alignment_power * opb)
7382 != output_section->lma * opb)
7383 goto sorry;
7384 }
7385 else
7386 {
7387 asection *prev_sec;
7388
7389 prev_sec = map->sections[map->count - 1];
7390
7391 /* If the gap between the end of the previous section
7392 and the start of this section is more than
7393 maxpagesize then we need to start a new segment. */
7394 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7395 maxpagesize)
7396 < BFD_ALIGN (output_section->lma, maxpagesize))
7397 || (prev_sec->lma + prev_sec->size
7398 > output_section->lma))
7399 {
7400 if (suggested_lma == NULL)
7401 suggested_lma = output_section;
7402
7403 continue;
7404 }
7405 }
7406
7407 map->sections[map->count++] = output_section;
7408 ++isec;
7409 sections[j] = NULL;
7410 if (segment->p_type == PT_LOAD)
7411 section->segment_mark = true;
7412 }
7413 else if (suggested_lma == NULL)
7414 suggested_lma = output_section;
7415 }
7416
7417 /* PR 23932. A corrupt input file may contain sections that cannot
7418 be assigned to any segment - because for example they have a
7419 negative size - or segments that do not contain any sections.
7420 But there are also valid reasons why a segment can be empty.
7421 So allow a count of zero. */
7422
7423 /* Add the current segment to the list of built segments. */
7424 *pointer_to_map = map;
7425 pointer_to_map = &map->next;
7426
7427 if (isec < section_count)
7428 {
7429 /* We still have not allocated all of the sections to
7430 segments. Create a new segment here, initialise it
7431 and carry on looping. */
7432 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7433 amt += section_count * sizeof (asection *);
7434 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7435 if (map == NULL)
7436 {
7437 free (sections);
7438 return false;
7439 }
7440
7441 /* Initialise the fields of the segment map. Set the physical
7442 physical address to the LMA of the first section that has
7443 not yet been assigned. */
7444 map->next = NULL;
7445 map->p_type = segment->p_type;
7446 map->p_flags = segment->p_flags;
7447 map->p_flags_valid = 1;
7448 map->p_paddr = suggested_lma->lma * opb;
7449 map->p_paddr_valid = p_paddr_valid;
7450 map->includes_filehdr = 0;
7451 map->includes_phdrs = 0;
7452 }
7453
7454 continue;
7455 sorry:
7456 bfd_set_error (bfd_error_sorry);
7457 free (sections);
7458 return false;
7459 }
7460 while (isec < section_count);
7461
7462 free (sections);
7463 }
7464
7465 elf_seg_map (obfd) = map_first;
7466
7467 /* If we had to estimate the number of program headers that were
7468 going to be needed, then check our estimate now and adjust
7469 the offset if necessary. */
7470 if (phdr_adjust_seg != NULL)
7471 {
7472 unsigned int count;
7473
7474 for (count = 0, map = map_first; map != NULL; map = map->next)
7475 count++;
7476
7477 if (count > phdr_adjust_num)
7478 phdr_adjust_seg->p_paddr
7479 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7480
7481 for (map = map_first; map != NULL; map = map->next)
7482 if (map->p_type == PT_PHDR)
7483 {
7484 bfd_vma adjust
7485 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7486 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7487 break;
7488 }
7489 }
7490
7491 #undef SEGMENT_END
7492 #undef SECTION_SIZE
7493 #undef IS_CONTAINED_BY_VMA
7494 #undef IS_CONTAINED_BY_LMA
7495 #undef IS_NOTE
7496 #undef IS_COREFILE_NOTE
7497 #undef IS_SOLARIS_PT_INTERP
7498 #undef IS_SECTION_IN_INPUT_SEGMENT
7499 #undef INCLUDE_SECTION_IN_SEGMENT
7500 #undef SEGMENT_AFTER_SEGMENT
7501 #undef SEGMENT_OVERLAPS
7502 return true;
7503 }
7504
7505 /* Copy ELF program header information. */
7506
7507 static bool
7508 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7509 {
7510 Elf_Internal_Ehdr *iehdr;
7511 struct elf_segment_map *map;
7512 struct elf_segment_map *map_first;
7513 struct elf_segment_map **pointer_to_map;
7514 Elf_Internal_Phdr *segment;
7515 unsigned int i;
7516 unsigned int num_segments;
7517 bool phdr_included = false;
7518 bool p_paddr_valid;
7519 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7520
7521 iehdr = elf_elfheader (ibfd);
7522
7523 map_first = NULL;
7524 pointer_to_map = &map_first;
7525
7526 /* If all the segment p_paddr fields are zero, don't set
7527 map->p_paddr_valid. */
7528 p_paddr_valid = false;
7529 num_segments = elf_elfheader (ibfd)->e_phnum;
7530 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7531 i < num_segments;
7532 i++, segment++)
7533 if (segment->p_paddr != 0)
7534 {
7535 p_paddr_valid = true;
7536 break;
7537 }
7538
7539 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7540 i < num_segments;
7541 i++, segment++)
7542 {
7543 asection *section;
7544 unsigned int section_count;
7545 size_t amt;
7546 Elf_Internal_Shdr *this_hdr;
7547 asection *first_section = NULL;
7548 asection *lowest_section;
7549
7550 /* Compute how many sections are in this segment. */
7551 for (section = ibfd->sections, section_count = 0;
7552 section != NULL;
7553 section = section->next)
7554 {
7555 this_hdr = &(elf_section_data(section)->this_hdr);
7556 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7557 {
7558 if (first_section == NULL)
7559 first_section = section;
7560 section_count++;
7561 }
7562 }
7563
7564 /* Allocate a segment map big enough to contain
7565 all of the sections we have selected. */
7566 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7567 amt += section_count * sizeof (asection *);
7568 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7569 if (map == NULL)
7570 return false;
7571
7572 /* Initialize the fields of the output segment map with the
7573 input segment. */
7574 map->next = NULL;
7575 map->p_type = segment->p_type;
7576 map->p_flags = segment->p_flags;
7577 map->p_flags_valid = 1;
7578 map->p_paddr = segment->p_paddr;
7579 map->p_paddr_valid = p_paddr_valid;
7580 map->p_align = segment->p_align;
7581 map->p_align_valid = 1;
7582 map->p_vaddr_offset = 0;
7583
7584 if (map->p_type == PT_GNU_RELRO
7585 || map->p_type == PT_GNU_STACK)
7586 {
7587 /* The PT_GNU_RELRO segment may contain the first a few
7588 bytes in the .got.plt section even if the whole .got.plt
7589 section isn't in the PT_GNU_RELRO segment. We won't
7590 change the size of the PT_GNU_RELRO segment.
7591 Similarly, PT_GNU_STACK size is significant on uclinux
7592 systems. */
7593 map->p_size = segment->p_memsz;
7594 map->p_size_valid = 1;
7595 }
7596
7597 /* Determine if this segment contains the ELF file header
7598 and if it contains the program headers themselves. */
7599 map->includes_filehdr = (segment->p_offset == 0
7600 && segment->p_filesz >= iehdr->e_ehsize);
7601
7602 map->includes_phdrs = 0;
7603 if (! phdr_included || segment->p_type != PT_LOAD)
7604 {
7605 map->includes_phdrs =
7606 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7607 && (segment->p_offset + segment->p_filesz
7608 >= ((bfd_vma) iehdr->e_phoff
7609 + iehdr->e_phnum * iehdr->e_phentsize)));
7610
7611 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7612 phdr_included = true;
7613 }
7614
7615 lowest_section = NULL;
7616 if (section_count != 0)
7617 {
7618 unsigned int isec = 0;
7619
7620 for (section = first_section;
7621 section != NULL;
7622 section = section->next)
7623 {
7624 this_hdr = &(elf_section_data(section)->this_hdr);
7625 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7626 {
7627 map->sections[isec++] = section->output_section;
7628 if ((section->flags & SEC_ALLOC) != 0)
7629 {
7630 bfd_vma seg_off;
7631
7632 if (lowest_section == NULL
7633 || section->lma < lowest_section->lma)
7634 lowest_section = section;
7635
7636 /* Section lmas are set up from PT_LOAD header
7637 p_paddr in _bfd_elf_make_section_from_shdr.
7638 If this header has a p_paddr that disagrees
7639 with the section lma, flag the p_paddr as
7640 invalid. */
7641 if ((section->flags & SEC_LOAD) != 0)
7642 seg_off = this_hdr->sh_offset - segment->p_offset;
7643 else
7644 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7645 if (section->lma * opb - segment->p_paddr != seg_off)
7646 map->p_paddr_valid = false;
7647 }
7648 if (isec == section_count)
7649 break;
7650 }
7651 }
7652 }
7653
7654 if (section_count == 0)
7655 map->p_vaddr_offset = segment->p_vaddr / opb;
7656 else if (map->p_paddr_valid)
7657 {
7658 /* Account for padding before the first section in the segment. */
7659 bfd_vma hdr_size = 0;
7660 if (map->includes_filehdr)
7661 hdr_size = iehdr->e_ehsize;
7662 if (map->includes_phdrs)
7663 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7664
7665 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7666 - (lowest_section ? lowest_section->lma : 0));
7667 }
7668
7669 map->count = section_count;
7670 *pointer_to_map = map;
7671 pointer_to_map = &map->next;
7672 }
7673
7674 elf_seg_map (obfd) = map_first;
7675 return true;
7676 }
7677
7678 /* Copy private BFD data. This copies or rewrites ELF program header
7679 information. */
7680
7681 static bool
7682 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7683 {
7684 bfd_vma maxpagesize;
7685
7686 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7687 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7688 return true;
7689
7690 if (elf_tdata (ibfd)->phdr == NULL)
7691 return true;
7692
7693 if (ibfd->xvec == obfd->xvec)
7694 {
7695 /* Check to see if any sections in the input BFD
7696 covered by ELF program header have changed. */
7697 Elf_Internal_Phdr *segment;
7698 asection *section, *osec;
7699 unsigned int i, num_segments;
7700 Elf_Internal_Shdr *this_hdr;
7701 const struct elf_backend_data *bed;
7702
7703 bed = get_elf_backend_data (ibfd);
7704
7705 /* Regenerate the segment map if p_paddr is set to 0. */
7706 if (bed->want_p_paddr_set_to_zero)
7707 goto rewrite;
7708
7709 /* Initialize the segment mark field. */
7710 for (section = obfd->sections; section != NULL;
7711 section = section->next)
7712 section->segment_mark = false;
7713
7714 num_segments = elf_elfheader (ibfd)->e_phnum;
7715 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7716 i < num_segments;
7717 i++, segment++)
7718 {
7719 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7720 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7721 which severly confuses things, so always regenerate the segment
7722 map in this case. */
7723 if (segment->p_paddr == 0
7724 && segment->p_memsz == 0
7725 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7726 goto rewrite;
7727
7728 for (section = ibfd->sections;
7729 section != NULL; section = section->next)
7730 {
7731 /* We mark the output section so that we know it comes
7732 from the input BFD. */
7733 osec = section->output_section;
7734 if (osec)
7735 osec->segment_mark = true;
7736
7737 /* Check if this section is covered by the segment. */
7738 this_hdr = &(elf_section_data(section)->this_hdr);
7739 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7740 {
7741 /* FIXME: Check if its output section is changed or
7742 removed. What else do we need to check? */
7743 if (osec == NULL
7744 || section->flags != osec->flags
7745 || section->lma != osec->lma
7746 || section->vma != osec->vma
7747 || section->size != osec->size
7748 || section->rawsize != osec->rawsize
7749 || section->alignment_power != osec->alignment_power)
7750 goto rewrite;
7751 }
7752 }
7753 }
7754
7755 /* Check to see if any output section do not come from the
7756 input BFD. */
7757 for (section = obfd->sections; section != NULL;
7758 section = section->next)
7759 {
7760 if (!section->segment_mark)
7761 goto rewrite;
7762 else
7763 section->segment_mark = false;
7764 }
7765
7766 return copy_elf_program_header (ibfd, obfd);
7767 }
7768
7769 rewrite:
7770 maxpagesize = 0;
7771 if (ibfd->xvec == obfd->xvec)
7772 {
7773 /* When rewriting program header, set the output maxpagesize to
7774 the maximum alignment of input PT_LOAD segments. */
7775 Elf_Internal_Phdr *segment;
7776 unsigned int i;
7777 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7778
7779 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7780 i < num_segments;
7781 i++, segment++)
7782 if (segment->p_type == PT_LOAD
7783 && maxpagesize < segment->p_align)
7784 {
7785 /* PR 17512: file: f17299af. */
7786 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7787 /* xgettext:c-format */
7788 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7789 PRIx64 " is too large"),
7790 ibfd, (uint64_t) segment->p_align);
7791 else
7792 maxpagesize = segment->p_align;
7793 }
7794 }
7795 if (maxpagesize == 0)
7796 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
7797
7798 return rewrite_elf_program_header (ibfd, obfd, maxpagesize);
7799 }
7800
7801 /* Initialize private output section information from input section. */
7802
7803 bool
7804 _bfd_elf_init_private_section_data (bfd *ibfd,
7805 asection *isec,
7806 bfd *obfd,
7807 asection *osec,
7808 struct bfd_link_info *link_info)
7809
7810 {
7811 Elf_Internal_Shdr *ihdr, *ohdr;
7812 bool final_link = (link_info != NULL
7813 && !bfd_link_relocatable (link_info));
7814
7815 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7816 || obfd->xvec->flavour != bfd_target_elf_flavour)
7817 return true;
7818
7819 BFD_ASSERT (elf_section_data (osec) != NULL);
7820
7821 /* If this is a known ABI section, ELF section type and flags may
7822 have been set up when OSEC was created. For normal sections we
7823 allow the user to override the type and flags other than
7824 SHF_MASKOS and SHF_MASKPROC. */
7825 if (elf_section_type (osec) == SHT_PROGBITS
7826 || elf_section_type (osec) == SHT_NOTE
7827 || elf_section_type (osec) == SHT_NOBITS)
7828 elf_section_type (osec) = SHT_NULL;
7829 /* For objcopy and relocatable link, copy the ELF section type from
7830 the input file if the BFD section flags are the same. (If they
7831 are different the user may be doing something like
7832 "objcopy --set-section-flags .text=alloc,data".) For a final
7833 link allow some flags that the linker clears to differ. */
7834 if (elf_section_type (osec) == SHT_NULL
7835 && (osec->flags == isec->flags
7836 || (final_link
7837 && ((osec->flags ^ isec->flags)
7838 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7839 elf_section_type (osec) = elf_section_type (isec);
7840
7841 /* FIXME: Is this correct for all OS/PROC specific flags? */
7842 elf_section_flags (osec) = (elf_section_flags (isec)
7843 & (SHF_MASKOS | SHF_MASKPROC));
7844
7845 /* Copy sh_info from input for mbind section. */
7846 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7847 && elf_section_flags (isec) & SHF_GNU_MBIND)
7848 elf_section_data (osec)->this_hdr.sh_info
7849 = elf_section_data (isec)->this_hdr.sh_info;
7850
7851 /* Set things up for objcopy and relocatable link. The output
7852 SHT_GROUP section will have its elf_next_in_group pointing back
7853 to the input group members. Ignore linker created group section.
7854 See elfNN_ia64_object_p in elfxx-ia64.c. */
7855 if ((link_info == NULL
7856 || !link_info->resolve_section_groups)
7857 && (elf_sec_group (isec) == NULL
7858 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7859 {
7860 if (elf_section_flags (isec) & SHF_GROUP)
7861 elf_section_flags (osec) |= SHF_GROUP;
7862 elf_next_in_group (osec) = elf_next_in_group (isec);
7863 elf_section_data (osec)->group = elf_section_data (isec)->group;
7864 }
7865
7866 /* If not decompress, preserve SHF_COMPRESSED. */
7867 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7868 elf_section_flags (osec) |= (elf_section_flags (isec)
7869 & SHF_COMPRESSED);
7870
7871 ihdr = &elf_section_data (isec)->this_hdr;
7872
7873 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7874 don't use the output section of the linked-to section since it
7875 may be NULL at this point. */
7876 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7877 {
7878 ohdr = &elf_section_data (osec)->this_hdr;
7879 ohdr->sh_flags |= SHF_LINK_ORDER;
7880 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7881 }
7882
7883 osec->use_rela_p = isec->use_rela_p;
7884
7885 return true;
7886 }
7887
7888 /* Copy private section information. This copies over the entsize
7889 field, and sometimes the info field. */
7890
7891 bool
7892 _bfd_elf_copy_private_section_data (bfd *ibfd,
7893 asection *isec,
7894 bfd *obfd,
7895 asection *osec)
7896 {
7897 Elf_Internal_Shdr *ihdr, *ohdr;
7898
7899 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7900 || obfd->xvec->flavour != bfd_target_elf_flavour)
7901 return true;
7902
7903 ihdr = &elf_section_data (isec)->this_hdr;
7904 ohdr = &elf_section_data (osec)->this_hdr;
7905
7906 ohdr->sh_entsize = ihdr->sh_entsize;
7907
7908 if (ihdr->sh_type == SHT_SYMTAB
7909 || ihdr->sh_type == SHT_DYNSYM
7910 || ihdr->sh_type == SHT_GNU_verneed
7911 || ihdr->sh_type == SHT_GNU_verdef)
7912 ohdr->sh_info = ihdr->sh_info;
7913
7914 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7915 NULL);
7916 }
7917
7918 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7919 necessary if we are removing either the SHT_GROUP section or any of
7920 the group member sections. DISCARDED is the value that a section's
7921 output_section has if the section will be discarded, NULL when this
7922 function is called from objcopy, bfd_abs_section_ptr when called
7923 from the linker. */
7924
7925 bool
7926 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7927 {
7928 asection *isec;
7929
7930 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7931 if (elf_section_type (isec) == SHT_GROUP)
7932 {
7933 asection *first = elf_next_in_group (isec);
7934 asection *s = first;
7935 bfd_size_type removed = 0;
7936
7937 while (s != NULL)
7938 {
7939 /* If this member section is being output but the
7940 SHT_GROUP section is not, then clear the group info
7941 set up by _bfd_elf_copy_private_section_data. */
7942 if (s->output_section != discarded
7943 && isec->output_section == discarded)
7944 {
7945 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7946 elf_group_name (s->output_section) = NULL;
7947 }
7948 else
7949 {
7950 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7951 if (s->output_section == discarded
7952 && isec->output_section != discarded)
7953 {
7954 /* Conversely, if the member section is not being
7955 output but the SHT_GROUP section is, then adjust
7956 its size. */
7957 removed += 4;
7958 if (elf_sec->rel.hdr != NULL
7959 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7960 removed += 4;
7961 if (elf_sec->rela.hdr != NULL
7962 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7963 removed += 4;
7964 }
7965 else
7966 {
7967 /* Also adjust for zero-sized relocation member
7968 section. */
7969 if (elf_sec->rel.hdr != NULL
7970 && elf_sec->rel.hdr->sh_size == 0)
7971 removed += 4;
7972 if (elf_sec->rela.hdr != NULL
7973 && elf_sec->rela.hdr->sh_size == 0)
7974 removed += 4;
7975 }
7976 }
7977 s = elf_next_in_group (s);
7978 if (s == first)
7979 break;
7980 }
7981 if (removed != 0)
7982 {
7983 if (discarded != NULL)
7984 {
7985 /* If we've been called for ld -r, then we need to
7986 adjust the input section size. */
7987 if (isec->rawsize == 0)
7988 isec->rawsize = isec->size;
7989 isec->size = isec->rawsize - removed;
7990 if (isec->size <= 4)
7991 {
7992 isec->size = 0;
7993 isec->flags |= SEC_EXCLUDE;
7994 }
7995 }
7996 else
7997 {
7998 /* Adjust the output section size when called from
7999 objcopy. */
8000 isec->output_section->size -= removed;
8001 if (isec->output_section->size <= 4)
8002 {
8003 isec->output_section->size = 0;
8004 isec->output_section->flags |= SEC_EXCLUDE;
8005 }
8006 }
8007 }
8008 }
8009
8010 return true;
8011 }
8012
8013 /* Copy private header information. */
8014
8015 bool
8016 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
8017 {
8018 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8019 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8020 return true;
8021
8022 /* Copy over private BFD data if it has not already been copied.
8023 This must be done here, rather than in the copy_private_bfd_data
8024 entry point, because the latter is called after the section
8025 contents have been set, which means that the program headers have
8026 already been worked out. */
8027 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
8028 {
8029 if (! copy_private_bfd_data (ibfd, obfd))
8030 return false;
8031 }
8032
8033 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8034 }
8035
8036 /* Copy private symbol information. If this symbol is in a section
8037 which we did not map into a BFD section, try to map the section
8038 index correctly. We use special macro definitions for the mapped
8039 section indices; these definitions are interpreted by the
8040 swap_out_syms function. */
8041
8042 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8043 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8044 #define MAP_STRTAB (SHN_HIOS + 3)
8045 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8046 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8047
8048 bool
8049 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8050 asymbol *isymarg,
8051 bfd *obfd,
8052 asymbol *osymarg)
8053 {
8054 elf_symbol_type *isym, *osym;
8055
8056 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8057 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8058 return true;
8059
8060 isym = elf_symbol_from (isymarg);
8061 osym = elf_symbol_from (osymarg);
8062
8063 if (isym != NULL
8064 && isym->internal_elf_sym.st_shndx != 0
8065 && osym != NULL
8066 && bfd_is_abs_section (isym->symbol.section))
8067 {
8068 unsigned int shndx;
8069
8070 shndx = isym->internal_elf_sym.st_shndx;
8071 if (shndx == elf_onesymtab (ibfd))
8072 shndx = MAP_ONESYMTAB;
8073 else if (shndx == elf_dynsymtab (ibfd))
8074 shndx = MAP_DYNSYMTAB;
8075 else if (shndx == elf_strtab_sec (ibfd))
8076 shndx = MAP_STRTAB;
8077 else if (shndx == elf_shstrtab_sec (ibfd))
8078 shndx = MAP_SHSTRTAB;
8079 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8080 shndx = MAP_SYM_SHNDX;
8081 osym->internal_elf_sym.st_shndx = shndx;
8082 }
8083
8084 return true;
8085 }
8086
8087 /* Swap out the symbols. */
8088
8089 static bool
8090 swap_out_syms (bfd *abfd,
8091 struct elf_strtab_hash **sttp,
8092 int relocatable_p,
8093 struct bfd_link_info *info)
8094 {
8095 const struct elf_backend_data *bed;
8096 unsigned int symcount;
8097 asymbol **syms;
8098 struct elf_strtab_hash *stt;
8099 Elf_Internal_Shdr *symtab_hdr;
8100 Elf_Internal_Shdr *symtab_shndx_hdr;
8101 Elf_Internal_Shdr *symstrtab_hdr;
8102 struct elf_sym_strtab *symstrtab;
8103 bfd_byte *outbound_syms;
8104 bfd_byte *outbound_shndx;
8105 unsigned long outbound_syms_index;
8106 unsigned long outbound_shndx_index;
8107 unsigned int idx;
8108 unsigned int num_locals;
8109 size_t amt;
8110 bool name_local_sections;
8111
8112 if (!elf_map_symbols (abfd, &num_locals))
8113 return false;
8114
8115 /* Dump out the symtabs. */
8116 stt = _bfd_elf_strtab_init ();
8117 if (stt == NULL)
8118 return false;
8119
8120 bed = get_elf_backend_data (abfd);
8121 symcount = bfd_get_symcount (abfd);
8122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8123 symtab_hdr->sh_type = SHT_SYMTAB;
8124 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8125 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8126 symtab_hdr->sh_info = num_locals + 1;
8127 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8128
8129 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8130 symstrtab_hdr->sh_type = SHT_STRTAB;
8131
8132 /* Allocate buffer to swap out the .strtab section. */
8133 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8134 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8135 {
8136 bfd_set_error (bfd_error_no_memory);
8137 _bfd_elf_strtab_free (stt);
8138 return false;
8139 }
8140
8141 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8142 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8143 {
8144 error_no_mem:
8145 bfd_set_error (bfd_error_no_memory);
8146 error_return:
8147 free (symstrtab);
8148 _bfd_elf_strtab_free (stt);
8149 return false;
8150 }
8151 symtab_hdr->contents = outbound_syms;
8152 outbound_syms_index = 0;
8153
8154 outbound_shndx = NULL;
8155 outbound_shndx_index = 0;
8156
8157 if (elf_symtab_shndx_list (abfd))
8158 {
8159 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8160 if (symtab_shndx_hdr->sh_name != 0)
8161 {
8162 if (_bfd_mul_overflow (symcount + 1,
8163 sizeof (Elf_External_Sym_Shndx), &amt))
8164 goto error_no_mem;
8165 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8166 if (outbound_shndx == NULL)
8167 goto error_return;
8168
8169 symtab_shndx_hdr->contents = outbound_shndx;
8170 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8171 symtab_shndx_hdr->sh_size = amt;
8172 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8173 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8174 }
8175 /* FIXME: What about any other headers in the list ? */
8176 }
8177
8178 /* Now generate the data (for "contents"). */
8179 {
8180 /* Fill in zeroth symbol and swap it out. */
8181 Elf_Internal_Sym sym;
8182 sym.st_name = 0;
8183 sym.st_value = 0;
8184 sym.st_size = 0;
8185 sym.st_info = 0;
8186 sym.st_other = 0;
8187 sym.st_shndx = SHN_UNDEF;
8188 sym.st_target_internal = 0;
8189 symstrtab[0].sym = sym;
8190 symstrtab[0].dest_index = outbound_syms_index;
8191 symstrtab[0].destshndx_index = outbound_shndx_index;
8192 outbound_syms_index++;
8193 if (outbound_shndx != NULL)
8194 outbound_shndx_index++;
8195 }
8196
8197 name_local_sections
8198 = (bed->elf_backend_name_local_section_symbols
8199 && bed->elf_backend_name_local_section_symbols (abfd));
8200
8201 syms = bfd_get_outsymbols (abfd);
8202 for (idx = 0; idx < symcount;)
8203 {
8204 Elf_Internal_Sym sym;
8205 bfd_vma value = syms[idx]->value;
8206 elf_symbol_type *type_ptr;
8207 flagword flags = syms[idx]->flags;
8208 int type;
8209
8210 if (!name_local_sections
8211 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8212 {
8213 /* Local section symbols have no name. */
8214 sym.st_name = (unsigned long) -1;
8215 }
8216 else
8217 {
8218 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8219 to get the final offset for st_name. */
8220 sym.st_name
8221 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8222 false);
8223 if (sym.st_name == (unsigned long) -1)
8224 goto error_return;
8225 }
8226
8227 type_ptr = elf_symbol_from (syms[idx]);
8228
8229 if ((flags & BSF_SECTION_SYM) == 0
8230 && bfd_is_com_section (syms[idx]->section))
8231 {
8232 /* ELF common symbols put the alignment into the `value' field,
8233 and the size into the `size' field. This is backwards from
8234 how BFD handles it, so reverse it here. */
8235 sym.st_size = value;
8236 if (type_ptr == NULL
8237 || type_ptr->internal_elf_sym.st_value == 0)
8238 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8239 else
8240 sym.st_value = type_ptr->internal_elf_sym.st_value;
8241 sym.st_shndx = _bfd_elf_section_from_bfd_section
8242 (abfd, syms[idx]->section);
8243 }
8244 else
8245 {
8246 asection *sec = syms[idx]->section;
8247 unsigned int shndx;
8248
8249 if (sec->output_section)
8250 {
8251 value += sec->output_offset;
8252 sec = sec->output_section;
8253 }
8254
8255 /* Don't add in the section vma for relocatable output. */
8256 if (! relocatable_p)
8257 value += sec->vma;
8258 sym.st_value = value;
8259 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8260
8261 if (bfd_is_abs_section (sec)
8262 && type_ptr != NULL
8263 && type_ptr->internal_elf_sym.st_shndx != 0)
8264 {
8265 /* This symbol is in a real ELF section which we did
8266 not create as a BFD section. Undo the mapping done
8267 by copy_private_symbol_data. */
8268 shndx = type_ptr->internal_elf_sym.st_shndx;
8269 switch (shndx)
8270 {
8271 case MAP_ONESYMTAB:
8272 shndx = elf_onesymtab (abfd);
8273 break;
8274 case MAP_DYNSYMTAB:
8275 shndx = elf_dynsymtab (abfd);
8276 break;
8277 case MAP_STRTAB:
8278 shndx = elf_strtab_sec (abfd);
8279 break;
8280 case MAP_SHSTRTAB:
8281 shndx = elf_shstrtab_sec (abfd);
8282 break;
8283 case MAP_SYM_SHNDX:
8284 if (elf_symtab_shndx_list (abfd))
8285 shndx = elf_symtab_shndx_list (abfd)->ndx;
8286 break;
8287 case SHN_COMMON:
8288 case SHN_ABS:
8289 shndx = SHN_ABS;
8290 break;
8291 default:
8292 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8293 {
8294 if (bed->symbol_section_index)
8295 shndx = bed->symbol_section_index (abfd, type_ptr);
8296 /* Otherwise just leave the index alone. */
8297 }
8298 else
8299 {
8300 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8301 _bfd_error_handler (_("%pB: \
8302 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8303 abfd, shndx);
8304 shndx = SHN_ABS;
8305 }
8306 break;
8307 }
8308 }
8309 else
8310 {
8311 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8312
8313 if (shndx == SHN_BAD)
8314 {
8315 asection *sec2;
8316
8317 /* Writing this would be a hell of a lot easier if
8318 we had some decent documentation on bfd, and
8319 knew what to expect of the library, and what to
8320 demand of applications. For example, it
8321 appears that `objcopy' might not set the
8322 section of a symbol to be a section that is
8323 actually in the output file. */
8324 sec2 = bfd_get_section_by_name (abfd, sec->name);
8325 if (sec2 != NULL)
8326 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8327 if (shndx == SHN_BAD)
8328 {
8329 /* xgettext:c-format */
8330 _bfd_error_handler
8331 (_("unable to find equivalent output section"
8332 " for symbol '%s' from section '%s'"),
8333 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8334 sec->name);
8335 bfd_set_error (bfd_error_invalid_operation);
8336 goto error_return;
8337 }
8338 }
8339 }
8340
8341 sym.st_shndx = shndx;
8342 }
8343
8344 if ((flags & BSF_THREAD_LOCAL) != 0)
8345 type = STT_TLS;
8346 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8347 type = STT_GNU_IFUNC;
8348 else if ((flags & BSF_FUNCTION) != 0)
8349 type = STT_FUNC;
8350 else if ((flags & BSF_OBJECT) != 0)
8351 type = STT_OBJECT;
8352 else if ((flags & BSF_RELC) != 0)
8353 type = STT_RELC;
8354 else if ((flags & BSF_SRELC) != 0)
8355 type = STT_SRELC;
8356 else
8357 type = STT_NOTYPE;
8358
8359 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8360 type = STT_TLS;
8361
8362 /* Processor-specific types. */
8363 if (type_ptr != NULL
8364 && bed->elf_backend_get_symbol_type)
8365 type = ((*bed->elf_backend_get_symbol_type)
8366 (&type_ptr->internal_elf_sym, type));
8367
8368 if (flags & BSF_SECTION_SYM)
8369 {
8370 if (flags & BSF_GLOBAL)
8371 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8372 else
8373 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8374 }
8375 else if (bfd_is_com_section (syms[idx]->section))
8376 {
8377 if (type != STT_TLS)
8378 {
8379 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8380 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8381 ? STT_COMMON : STT_OBJECT);
8382 else
8383 type = ((flags & BSF_ELF_COMMON) != 0
8384 ? STT_COMMON : STT_OBJECT);
8385 }
8386 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8387 }
8388 else if (bfd_is_und_section (syms[idx]->section))
8389 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8390 ? STB_WEAK
8391 : STB_GLOBAL),
8392 type);
8393 else if (flags & BSF_FILE)
8394 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8395 else
8396 {
8397 int bind = STB_LOCAL;
8398
8399 if (flags & BSF_LOCAL)
8400 bind = STB_LOCAL;
8401 else if (flags & BSF_GNU_UNIQUE)
8402 bind = STB_GNU_UNIQUE;
8403 else if (flags & BSF_WEAK)
8404 bind = STB_WEAK;
8405 else if (flags & BSF_GLOBAL)
8406 bind = STB_GLOBAL;
8407
8408 sym.st_info = ELF_ST_INFO (bind, type);
8409 }
8410
8411 if (type_ptr != NULL)
8412 {
8413 sym.st_other = type_ptr->internal_elf_sym.st_other;
8414 sym.st_target_internal
8415 = type_ptr->internal_elf_sym.st_target_internal;
8416 }
8417 else
8418 {
8419 sym.st_other = 0;
8420 sym.st_target_internal = 0;
8421 }
8422
8423 idx++;
8424 symstrtab[idx].sym = sym;
8425 symstrtab[idx].dest_index = outbound_syms_index;
8426 symstrtab[idx].destshndx_index = outbound_shndx_index;
8427
8428 outbound_syms_index++;
8429 if (outbound_shndx != NULL)
8430 outbound_shndx_index++;
8431 }
8432
8433 /* Finalize the .strtab section. */
8434 _bfd_elf_strtab_finalize (stt);
8435
8436 /* Swap out the .strtab section. */
8437 for (idx = 0; idx <= symcount; idx++)
8438 {
8439 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8440 if (elfsym->sym.st_name == (unsigned long) -1)
8441 elfsym->sym.st_name = 0;
8442 else
8443 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8444 elfsym->sym.st_name);
8445 if (info && info->callbacks->ctf_new_symbol)
8446 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8447 &elfsym->sym);
8448
8449 /* Inform the linker of the addition of this symbol. */
8450
8451 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8452 (outbound_syms
8453 + (elfsym->dest_index
8454 * bed->s->sizeof_sym)),
8455 (outbound_shndx
8456 + (elfsym->destshndx_index
8457 * sizeof (Elf_External_Sym_Shndx))));
8458 }
8459 free (symstrtab);
8460
8461 *sttp = stt;
8462 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8463 symstrtab_hdr->sh_type = SHT_STRTAB;
8464 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8465 symstrtab_hdr->sh_addr = 0;
8466 symstrtab_hdr->sh_entsize = 0;
8467 symstrtab_hdr->sh_link = 0;
8468 symstrtab_hdr->sh_info = 0;
8469 symstrtab_hdr->sh_addralign = 1;
8470
8471 return true;
8472 }
8473
8474 /* Return the number of bytes required to hold the symtab vector.
8475
8476 Note that we base it on the count plus 1, since we will null terminate
8477 the vector allocated based on this size. However, the ELF symbol table
8478 always has a dummy entry as symbol #0, so it ends up even. */
8479
8480 long
8481 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8482 {
8483 bfd_size_type symcount;
8484 long symtab_size;
8485 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8486
8487 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8488 if (symcount > LONG_MAX / sizeof (asymbol *))
8489 {
8490 bfd_set_error (bfd_error_file_too_big);
8491 return -1;
8492 }
8493 symtab_size = symcount * (sizeof (asymbol *));
8494 if (symcount == 0)
8495 symtab_size = sizeof (asymbol *);
8496 else if (!bfd_write_p (abfd))
8497 {
8498 ufile_ptr filesize = bfd_get_file_size (abfd);
8499
8500 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8501 {
8502 bfd_set_error (bfd_error_file_truncated);
8503 return -1;
8504 }
8505 }
8506
8507 return symtab_size;
8508 }
8509
8510 long
8511 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8512 {
8513 bfd_size_type symcount;
8514 long symtab_size;
8515 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8516
8517 if (elf_dynsymtab (abfd) == 0)
8518 {
8519 bfd_set_error (bfd_error_invalid_operation);
8520 return -1;
8521 }
8522
8523 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8524 if (symcount > LONG_MAX / sizeof (asymbol *))
8525 {
8526 bfd_set_error (bfd_error_file_too_big);
8527 return -1;
8528 }
8529 symtab_size = symcount * (sizeof (asymbol *));
8530 if (symcount == 0)
8531 symtab_size = sizeof (asymbol *);
8532 else if (!bfd_write_p (abfd))
8533 {
8534 ufile_ptr filesize = bfd_get_file_size (abfd);
8535
8536 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8537 {
8538 bfd_set_error (bfd_error_file_truncated);
8539 return -1;
8540 }
8541 }
8542
8543 return symtab_size;
8544 }
8545
8546 long
8547 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8548 {
8549 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8550 {
8551 /* Sanity check reloc section size. */
8552 struct bfd_elf_section_data *d = elf_section_data (asect);
8553 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8554 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8555 ufile_ptr filesize = bfd_get_file_size (abfd);
8556
8557 if (filesize != 0 && ext_rel_size > filesize)
8558 {
8559 bfd_set_error (bfd_error_file_truncated);
8560 return -1;
8561 }
8562 }
8563
8564 #if SIZEOF_LONG == SIZEOF_INT
8565 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8566 {
8567 bfd_set_error (bfd_error_file_too_big);
8568 return -1;
8569 }
8570 #endif
8571 return (asect->reloc_count + 1) * sizeof (arelent *);
8572 }
8573
8574 /* Canonicalize the relocs. */
8575
8576 long
8577 _bfd_elf_canonicalize_reloc (bfd *abfd,
8578 sec_ptr section,
8579 arelent **relptr,
8580 asymbol **symbols)
8581 {
8582 arelent *tblptr;
8583 unsigned int i;
8584 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8585
8586 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
8587 return -1;
8588
8589 tblptr = section->relocation;
8590 for (i = 0; i < section->reloc_count; i++)
8591 *relptr++ = tblptr++;
8592
8593 *relptr = NULL;
8594
8595 return section->reloc_count;
8596 }
8597
8598 long
8599 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8600 {
8601 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8602 long symcount = bed->s->slurp_symbol_table (abfd, allocation, false);
8603
8604 if (symcount >= 0)
8605 abfd->symcount = symcount;
8606 return symcount;
8607 }
8608
8609 long
8610 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8611 asymbol **allocation)
8612 {
8613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8614 long symcount = bed->s->slurp_symbol_table (abfd, allocation, true);
8615
8616 if (symcount >= 0)
8617 abfd->dynsymcount = symcount;
8618 return symcount;
8619 }
8620
8621 /* Return the size required for the dynamic reloc entries. Any loadable
8622 section that was actually installed in the BFD, and has type SHT_REL
8623 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8624 dynamic reloc section. */
8625
8626 long
8627 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8628 {
8629 bfd_size_type count, ext_rel_size;
8630 asection *s;
8631
8632 if (elf_dynsymtab (abfd) == 0)
8633 {
8634 bfd_set_error (bfd_error_invalid_operation);
8635 return -1;
8636 }
8637
8638 count = 1;
8639 ext_rel_size = 0;
8640 for (s = abfd->sections; s != NULL; s = s->next)
8641 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8642 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8643 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8644 {
8645 ext_rel_size += s->size;
8646 if (ext_rel_size < s->size)
8647 {
8648 bfd_set_error (bfd_error_file_truncated);
8649 return -1;
8650 }
8651 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8652 if (count > LONG_MAX / sizeof (arelent *))
8653 {
8654 bfd_set_error (bfd_error_file_too_big);
8655 return -1;
8656 }
8657 }
8658 if (count > 1 && !bfd_write_p (abfd))
8659 {
8660 /* Sanity check reloc section sizes. */
8661 ufile_ptr filesize = bfd_get_file_size (abfd);
8662 if (filesize != 0 && ext_rel_size > filesize)
8663 {
8664 bfd_set_error (bfd_error_file_truncated);
8665 return -1;
8666 }
8667 }
8668 return count * sizeof (arelent *);
8669 }
8670
8671 /* Canonicalize the dynamic relocation entries. Note that we return the
8672 dynamic relocations as a single block, although they are actually
8673 associated with particular sections; the interface, which was
8674 designed for SunOS style shared libraries, expects that there is only
8675 one set of dynamic relocs. Any loadable section that was actually
8676 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8677 dynamic symbol table, is considered to be a dynamic reloc section. */
8678
8679 long
8680 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8681 arelent **storage,
8682 asymbol **syms)
8683 {
8684 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
8685 asection *s;
8686 long ret;
8687
8688 if (elf_dynsymtab (abfd) == 0)
8689 {
8690 bfd_set_error (bfd_error_invalid_operation);
8691 return -1;
8692 }
8693
8694 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8695 ret = 0;
8696 for (s = abfd->sections; s != NULL; s = s->next)
8697 {
8698 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8699 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8700 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8701 {
8702 arelent *p;
8703 long count, i;
8704
8705 if (! (*slurp_relocs) (abfd, s, syms, true))
8706 return -1;
8707 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8708 p = s->relocation;
8709 for (i = 0; i < count; i++)
8710 *storage++ = p++;
8711 ret += count;
8712 }
8713 }
8714
8715 *storage = NULL;
8716
8717 return ret;
8718 }
8719 \f
8720 /* Read in the version information. */
8721
8722 bool
8723 _bfd_elf_slurp_version_tables (bfd *abfd, bool default_imported_symver)
8724 {
8725 bfd_byte *contents = NULL;
8726 unsigned int freeidx = 0;
8727 size_t amt;
8728
8729 if (elf_dynverref (abfd) != 0)
8730 {
8731 Elf_Internal_Shdr *hdr;
8732 Elf_External_Verneed *everneed;
8733 Elf_Internal_Verneed *iverneed;
8734 unsigned int i;
8735 bfd_byte *contents_end;
8736
8737 hdr = &elf_tdata (abfd)->dynverref_hdr;
8738
8739 if (hdr->sh_info == 0
8740 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8741 {
8742 error_return_bad_verref:
8743 _bfd_error_handler
8744 (_("%pB: .gnu.version_r invalid entry"), abfd);
8745 bfd_set_error (bfd_error_bad_value);
8746 error_return_verref:
8747 elf_tdata (abfd)->verref = NULL;
8748 elf_tdata (abfd)->cverrefs = 0;
8749 goto error_return;
8750 }
8751
8752 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8753 goto error_return_verref;
8754 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8755 if (contents == NULL)
8756 goto error_return_verref;
8757
8758 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8759 {
8760 bfd_set_error (bfd_error_file_too_big);
8761 goto error_return_verref;
8762 }
8763 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8764 if (elf_tdata (abfd)->verref == NULL)
8765 goto error_return_verref;
8766
8767 BFD_ASSERT (sizeof (Elf_External_Verneed)
8768 == sizeof (Elf_External_Vernaux));
8769 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8770 everneed = (Elf_External_Verneed *) contents;
8771 iverneed = elf_tdata (abfd)->verref;
8772 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8773 {
8774 Elf_External_Vernaux *evernaux;
8775 Elf_Internal_Vernaux *ivernaux;
8776 unsigned int j;
8777
8778 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8779
8780 iverneed->vn_bfd = abfd;
8781
8782 iverneed->vn_filename =
8783 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8784 iverneed->vn_file);
8785 if (iverneed->vn_filename == NULL)
8786 goto error_return_bad_verref;
8787
8788 if (iverneed->vn_cnt == 0)
8789 iverneed->vn_auxptr = NULL;
8790 else
8791 {
8792 if (_bfd_mul_overflow (iverneed->vn_cnt,
8793 sizeof (Elf_Internal_Vernaux), &amt))
8794 {
8795 bfd_set_error (bfd_error_file_too_big);
8796 goto error_return_verref;
8797 }
8798 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8799 bfd_alloc (abfd, amt);
8800 if (iverneed->vn_auxptr == NULL)
8801 goto error_return_verref;
8802 }
8803
8804 if (iverneed->vn_aux
8805 > (size_t) (contents_end - (bfd_byte *) everneed))
8806 goto error_return_bad_verref;
8807
8808 evernaux = ((Elf_External_Vernaux *)
8809 ((bfd_byte *) everneed + iverneed->vn_aux));
8810 ivernaux = iverneed->vn_auxptr;
8811 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8812 {
8813 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8814
8815 ivernaux->vna_nodename =
8816 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8817 ivernaux->vna_name);
8818 if (ivernaux->vna_nodename == NULL)
8819 goto error_return_bad_verref;
8820
8821 if (ivernaux->vna_other > freeidx)
8822 freeidx = ivernaux->vna_other;
8823
8824 ivernaux->vna_nextptr = NULL;
8825 if (ivernaux->vna_next == 0)
8826 {
8827 iverneed->vn_cnt = j + 1;
8828 break;
8829 }
8830 if (j + 1 < iverneed->vn_cnt)
8831 ivernaux->vna_nextptr = ivernaux + 1;
8832
8833 if (ivernaux->vna_next
8834 > (size_t) (contents_end - (bfd_byte *) evernaux))
8835 goto error_return_bad_verref;
8836
8837 evernaux = ((Elf_External_Vernaux *)
8838 ((bfd_byte *) evernaux + ivernaux->vna_next));
8839 }
8840
8841 iverneed->vn_nextref = NULL;
8842 if (iverneed->vn_next == 0)
8843 break;
8844 if (i + 1 < hdr->sh_info)
8845 iverneed->vn_nextref = iverneed + 1;
8846
8847 if (iverneed->vn_next
8848 > (size_t) (contents_end - (bfd_byte *) everneed))
8849 goto error_return_bad_verref;
8850
8851 everneed = ((Elf_External_Verneed *)
8852 ((bfd_byte *) everneed + iverneed->vn_next));
8853 }
8854 elf_tdata (abfd)->cverrefs = i;
8855
8856 free (contents);
8857 contents = NULL;
8858 }
8859
8860 if (elf_dynverdef (abfd) != 0)
8861 {
8862 Elf_Internal_Shdr *hdr;
8863 Elf_External_Verdef *everdef;
8864 Elf_Internal_Verdef *iverdef;
8865 Elf_Internal_Verdef *iverdefarr;
8866 Elf_Internal_Verdef iverdefmem;
8867 unsigned int i;
8868 unsigned int maxidx;
8869 bfd_byte *contents_end_def, *contents_end_aux;
8870
8871 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8872
8873 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8874 {
8875 error_return_bad_verdef:
8876 _bfd_error_handler
8877 (_("%pB: .gnu.version_d invalid entry"), abfd);
8878 bfd_set_error (bfd_error_bad_value);
8879 error_return_verdef:
8880 elf_tdata (abfd)->verdef = NULL;
8881 elf_tdata (abfd)->cverdefs = 0;
8882 goto error_return;
8883 }
8884
8885 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8886 goto error_return_verdef;
8887 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8888 if (contents == NULL)
8889 goto error_return_verdef;
8890
8891 BFD_ASSERT (sizeof (Elf_External_Verdef)
8892 >= sizeof (Elf_External_Verdaux));
8893 contents_end_def = contents + hdr->sh_size
8894 - sizeof (Elf_External_Verdef);
8895 contents_end_aux = contents + hdr->sh_size
8896 - sizeof (Elf_External_Verdaux);
8897
8898 /* We know the number of entries in the section but not the maximum
8899 index. Therefore we have to run through all entries and find
8900 the maximum. */
8901 everdef = (Elf_External_Verdef *) contents;
8902 maxidx = 0;
8903 for (i = 0; i < hdr->sh_info; ++i)
8904 {
8905 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8906
8907 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8908 goto error_return_bad_verdef;
8909 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8910 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8911
8912 if (iverdefmem.vd_next == 0)
8913 break;
8914
8915 if (iverdefmem.vd_next
8916 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8917 goto error_return_bad_verdef;
8918
8919 everdef = ((Elf_External_Verdef *)
8920 ((bfd_byte *) everdef + iverdefmem.vd_next));
8921 }
8922
8923 if (default_imported_symver)
8924 {
8925 if (freeidx > maxidx)
8926 maxidx = ++freeidx;
8927 else
8928 freeidx = ++maxidx;
8929 }
8930 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8931 {
8932 bfd_set_error (bfd_error_file_too_big);
8933 goto error_return_verdef;
8934 }
8935 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8936 if (elf_tdata (abfd)->verdef == NULL)
8937 goto error_return_verdef;
8938
8939 elf_tdata (abfd)->cverdefs = maxidx;
8940
8941 everdef = (Elf_External_Verdef *) contents;
8942 iverdefarr = elf_tdata (abfd)->verdef;
8943 for (i = 0; i < hdr->sh_info; i++)
8944 {
8945 Elf_External_Verdaux *everdaux;
8946 Elf_Internal_Verdaux *iverdaux;
8947 unsigned int j;
8948
8949 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8950
8951 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8952 goto error_return_bad_verdef;
8953
8954 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8955 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8956
8957 iverdef->vd_bfd = abfd;
8958
8959 if (iverdef->vd_cnt == 0)
8960 iverdef->vd_auxptr = NULL;
8961 else
8962 {
8963 if (_bfd_mul_overflow (iverdef->vd_cnt,
8964 sizeof (Elf_Internal_Verdaux), &amt))
8965 {
8966 bfd_set_error (bfd_error_file_too_big);
8967 goto error_return_verdef;
8968 }
8969 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8970 bfd_alloc (abfd, amt);
8971 if (iverdef->vd_auxptr == NULL)
8972 goto error_return_verdef;
8973 }
8974
8975 if (iverdef->vd_aux
8976 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8977 goto error_return_bad_verdef;
8978
8979 everdaux = ((Elf_External_Verdaux *)
8980 ((bfd_byte *) everdef + iverdef->vd_aux));
8981 iverdaux = iverdef->vd_auxptr;
8982 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8983 {
8984 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8985
8986 iverdaux->vda_nodename =
8987 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8988 iverdaux->vda_name);
8989 if (iverdaux->vda_nodename == NULL)
8990 goto error_return_bad_verdef;
8991
8992 iverdaux->vda_nextptr = NULL;
8993 if (iverdaux->vda_next == 0)
8994 {
8995 iverdef->vd_cnt = j + 1;
8996 break;
8997 }
8998 if (j + 1 < iverdef->vd_cnt)
8999 iverdaux->vda_nextptr = iverdaux + 1;
9000
9001 if (iverdaux->vda_next
9002 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
9003 goto error_return_bad_verdef;
9004
9005 everdaux = ((Elf_External_Verdaux *)
9006 ((bfd_byte *) everdaux + iverdaux->vda_next));
9007 }
9008
9009 iverdef->vd_nodename = NULL;
9010 if (iverdef->vd_cnt)
9011 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
9012
9013 iverdef->vd_nextdef = NULL;
9014 if (iverdef->vd_next == 0)
9015 break;
9016 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
9017 iverdef->vd_nextdef = iverdef + 1;
9018
9019 everdef = ((Elf_External_Verdef *)
9020 ((bfd_byte *) everdef + iverdef->vd_next));
9021 }
9022
9023 free (contents);
9024 contents = NULL;
9025 }
9026 else if (default_imported_symver)
9027 {
9028 if (freeidx < 3)
9029 freeidx = 3;
9030 else
9031 freeidx++;
9032
9033 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
9034 {
9035 bfd_set_error (bfd_error_file_too_big);
9036 goto error_return;
9037 }
9038 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9039 if (elf_tdata (abfd)->verdef == NULL)
9040 goto error_return;
9041
9042 elf_tdata (abfd)->cverdefs = freeidx;
9043 }
9044
9045 /* Create a default version based on the soname. */
9046 if (default_imported_symver)
9047 {
9048 Elf_Internal_Verdef *iverdef;
9049 Elf_Internal_Verdaux *iverdaux;
9050
9051 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9052
9053 iverdef->vd_version = VER_DEF_CURRENT;
9054 iverdef->vd_flags = 0;
9055 iverdef->vd_ndx = freeidx;
9056 iverdef->vd_cnt = 1;
9057
9058 iverdef->vd_bfd = abfd;
9059
9060 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9061 if (iverdef->vd_nodename == NULL)
9062 goto error_return_verdef;
9063 iverdef->vd_nextdef = NULL;
9064 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9065 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9066 if (iverdef->vd_auxptr == NULL)
9067 goto error_return_verdef;
9068
9069 iverdaux = iverdef->vd_auxptr;
9070 iverdaux->vda_nodename = iverdef->vd_nodename;
9071 }
9072
9073 return true;
9074
9075 error_return:
9076 free (contents);
9077 return false;
9078 }
9079 \f
9080 asymbol *
9081 _bfd_elf_make_empty_symbol (bfd *abfd)
9082 {
9083 elf_symbol_type *newsym;
9084
9085 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9086 if (!newsym)
9087 return NULL;
9088 newsym->symbol.the_bfd = abfd;
9089 return &newsym->symbol;
9090 }
9091
9092 void
9093 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9094 asymbol *symbol,
9095 symbol_info *ret)
9096 {
9097 bfd_symbol_info (symbol, ret);
9098 }
9099
9100 /* Return whether a symbol name implies a local symbol. Most targets
9101 use this function for the is_local_label_name entry point, but some
9102 override it. */
9103
9104 bool
9105 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9106 const char *name)
9107 {
9108 /* Normal local symbols start with ``.L''. */
9109 if (name[0] == '.' && name[1] == 'L')
9110 return true;
9111
9112 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9113 DWARF debugging symbols starting with ``..''. */
9114 if (name[0] == '.' && name[1] == '.')
9115 return true;
9116
9117 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9118 emitting DWARF debugging output. I suspect this is actually a
9119 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9120 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9121 underscore to be emitted on some ELF targets). For ease of use,
9122 we treat such symbols as local. */
9123 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9124 return true;
9125
9126 /* Treat assembler generated fake symbols, dollar local labels and
9127 forward-backward labels (aka local labels) as locals.
9128 These labels have the form:
9129
9130 L0^A.* (fake symbols)
9131
9132 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9133
9134 Versions which start with .L will have already been matched above,
9135 so we only need to match the rest. */
9136 if (name[0] == 'L' && ISDIGIT (name[1]))
9137 {
9138 bool ret = false;
9139 const char * p;
9140 char c;
9141
9142 for (p = name + 2; (c = *p); p++)
9143 {
9144 if (c == 1 || c == 2)
9145 {
9146 if (c == 1 && p == name + 2)
9147 /* A fake symbol. */
9148 return true;
9149
9150 /* FIXME: We are being paranoid here and treating symbols like
9151 L0^Bfoo as if there were non-local, on the grounds that the
9152 assembler will never generate them. But can any symbol
9153 containing an ASCII value in the range 1-31 ever be anything
9154 other than some kind of local ? */
9155 ret = true;
9156 }
9157
9158 if (! ISDIGIT (c))
9159 {
9160 ret = false;
9161 break;
9162 }
9163 }
9164 return ret;
9165 }
9166
9167 return false;
9168 }
9169
9170 alent *
9171 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9172 asymbol *symbol ATTRIBUTE_UNUSED)
9173 {
9174 abort ();
9175 return NULL;
9176 }
9177
9178 bool
9179 _bfd_elf_set_arch_mach (bfd *abfd,
9180 enum bfd_architecture arch,
9181 unsigned long machine)
9182 {
9183 /* If this isn't the right architecture for this backend, and this
9184 isn't the generic backend, fail. */
9185 if (arch != get_elf_backend_data (abfd)->arch
9186 && arch != bfd_arch_unknown
9187 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9188 return false;
9189
9190 return bfd_default_set_arch_mach (abfd, arch, machine);
9191 }
9192
9193 /* Find the nearest line to a particular section and offset,
9194 for error reporting. */
9195
9196 bool
9197 _bfd_elf_find_nearest_line (bfd *abfd,
9198 asymbol **symbols,
9199 asection *section,
9200 bfd_vma offset,
9201 const char **filename_ptr,
9202 const char **functionname_ptr,
9203 unsigned int *line_ptr,
9204 unsigned int *discriminator_ptr)
9205 {
9206 bool found;
9207
9208 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9209 filename_ptr, functionname_ptr,
9210 line_ptr, discriminator_ptr,
9211 dwarf_debug_sections,
9212 &elf_tdata (abfd)->dwarf2_find_line_info))
9213 return true;
9214
9215 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9216 filename_ptr, functionname_ptr, line_ptr))
9217 {
9218 if (!*functionname_ptr)
9219 _bfd_elf_find_function (abfd, symbols, section, offset,
9220 *filename_ptr ? NULL : filename_ptr,
9221 functionname_ptr);
9222 return true;
9223 }
9224
9225 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9226 &found, filename_ptr,
9227 functionname_ptr, line_ptr,
9228 &elf_tdata (abfd)->line_info))
9229 return false;
9230 if (found && (*functionname_ptr || *line_ptr))
9231 return true;
9232
9233 if (symbols == NULL)
9234 return false;
9235
9236 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9237 filename_ptr, functionname_ptr))
9238 return false;
9239
9240 *line_ptr = 0;
9241 return true;
9242 }
9243
9244 /* Find the line for a symbol. */
9245
9246 bool
9247 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9248 const char **filename_ptr, unsigned int *line_ptr)
9249 {
9250 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9251 filename_ptr, NULL, line_ptr, NULL,
9252 dwarf_debug_sections,
9253 &elf_tdata (abfd)->dwarf2_find_line_info);
9254 }
9255
9256 /* After a call to bfd_find_nearest_line, successive calls to
9257 bfd_find_inliner_info can be used to get source information about
9258 each level of function inlining that terminated at the address
9259 passed to bfd_find_nearest_line. Currently this is only supported
9260 for DWARF2 with appropriate DWARF3 extensions. */
9261
9262 bool
9263 _bfd_elf_find_inliner_info (bfd *abfd,
9264 const char **filename_ptr,
9265 const char **functionname_ptr,
9266 unsigned int *line_ptr)
9267 {
9268 bool found;
9269 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9270 functionname_ptr, line_ptr,
9271 & elf_tdata (abfd)->dwarf2_find_line_info);
9272 return found;
9273 }
9274
9275 int
9276 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9277 {
9278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9279 int ret = bed->s->sizeof_ehdr;
9280
9281 if (!bfd_link_relocatable (info))
9282 {
9283 bfd_size_type phdr_size = elf_program_header_size (abfd);
9284
9285 if (phdr_size == (bfd_size_type) -1)
9286 {
9287 struct elf_segment_map *m;
9288
9289 phdr_size = 0;
9290 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9291 phdr_size += bed->s->sizeof_phdr;
9292
9293 if (phdr_size == 0)
9294 phdr_size = get_program_header_size (abfd, info);
9295 }
9296
9297 elf_program_header_size (abfd) = phdr_size;
9298 ret += phdr_size;
9299 }
9300
9301 return ret;
9302 }
9303
9304 bool
9305 _bfd_elf_set_section_contents (bfd *abfd,
9306 sec_ptr section,
9307 const void *location,
9308 file_ptr offset,
9309 bfd_size_type count)
9310 {
9311 Elf_Internal_Shdr *hdr;
9312 file_ptr pos;
9313
9314 if (! abfd->output_has_begun
9315 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9316 return false;
9317
9318 if (!count)
9319 return true;
9320
9321 hdr = &elf_section_data (section)->this_hdr;
9322 if (hdr->sh_offset == (file_ptr) -1)
9323 {
9324 unsigned char *contents;
9325
9326 if (bfd_section_is_ctf (section))
9327 /* Nothing to do with this section: the contents are generated
9328 later. */
9329 return true;
9330
9331 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9332 {
9333 _bfd_error_handler
9334 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9335 abfd, section);
9336 bfd_set_error (bfd_error_invalid_operation);
9337 return false;
9338 }
9339
9340 if ((offset + count) > hdr->sh_size)
9341 {
9342 _bfd_error_handler
9343 (_("%pB:%pA: error: attempting to write over the end of the section"),
9344 abfd, section);
9345
9346 bfd_set_error (bfd_error_invalid_operation);
9347 return false;
9348 }
9349
9350 contents = hdr->contents;
9351 if (contents == NULL)
9352 {
9353 _bfd_error_handler
9354 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9355 abfd, section);
9356
9357 bfd_set_error (bfd_error_invalid_operation);
9358 return false;
9359 }
9360
9361 memcpy (contents + offset, location, count);
9362 return true;
9363 }
9364
9365 pos = hdr->sh_offset + offset;
9366 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9367 || bfd_bwrite (location, count, abfd) != count)
9368 return false;
9369
9370 return true;
9371 }
9372
9373 bool
9374 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9375 arelent *cache_ptr ATTRIBUTE_UNUSED,
9376 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9377 {
9378 abort ();
9379 return false;
9380 }
9381
9382 /* Try to convert a non-ELF reloc into an ELF one. */
9383
9384 bool
9385 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9386 {
9387 /* Check whether we really have an ELF howto. */
9388
9389 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9390 {
9391 bfd_reloc_code_real_type code;
9392 reloc_howto_type *howto;
9393
9394 /* Alien reloc: Try to determine its type to replace it with an
9395 equivalent ELF reloc. */
9396
9397 if (areloc->howto->pc_relative)
9398 {
9399 switch (areloc->howto->bitsize)
9400 {
9401 case 8:
9402 code = BFD_RELOC_8_PCREL;
9403 break;
9404 case 12:
9405 code = BFD_RELOC_12_PCREL;
9406 break;
9407 case 16:
9408 code = BFD_RELOC_16_PCREL;
9409 break;
9410 case 24:
9411 code = BFD_RELOC_24_PCREL;
9412 break;
9413 case 32:
9414 code = BFD_RELOC_32_PCREL;
9415 break;
9416 case 64:
9417 code = BFD_RELOC_64_PCREL;
9418 break;
9419 default:
9420 goto fail;
9421 }
9422
9423 howto = bfd_reloc_type_lookup (abfd, code);
9424
9425 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9426 {
9427 if (howto->pcrel_offset)
9428 areloc->addend += areloc->address;
9429 else
9430 areloc->addend -= areloc->address; /* addend is unsigned!! */
9431 }
9432 }
9433 else
9434 {
9435 switch (areloc->howto->bitsize)
9436 {
9437 case 8:
9438 code = BFD_RELOC_8;
9439 break;
9440 case 14:
9441 code = BFD_RELOC_14;
9442 break;
9443 case 16:
9444 code = BFD_RELOC_16;
9445 break;
9446 case 26:
9447 code = BFD_RELOC_26;
9448 break;
9449 case 32:
9450 code = BFD_RELOC_32;
9451 break;
9452 case 64:
9453 code = BFD_RELOC_64;
9454 break;
9455 default:
9456 goto fail;
9457 }
9458
9459 howto = bfd_reloc_type_lookup (abfd, code);
9460 }
9461
9462 if (howto)
9463 areloc->howto = howto;
9464 else
9465 goto fail;
9466 }
9467
9468 return true;
9469
9470 fail:
9471 /* xgettext:c-format */
9472 _bfd_error_handler (_("%pB: %s unsupported"),
9473 abfd, areloc->howto->name);
9474 bfd_set_error (bfd_error_sorry);
9475 return false;
9476 }
9477
9478 bool
9479 _bfd_elf_close_and_cleanup (bfd *abfd)
9480 {
9481 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9482 if (tdata != NULL
9483 && (bfd_get_format (abfd) == bfd_object
9484 || bfd_get_format (abfd) == bfd_core))
9485 {
9486 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9487 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9488 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9489 }
9490
9491 return _bfd_generic_close_and_cleanup (abfd);
9492 }
9493
9494 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9495 in the relocation's offset. Thus we cannot allow any sort of sanity
9496 range-checking to interfere. There is nothing else to do in processing
9497 this reloc. */
9498
9499 bfd_reloc_status_type
9500 _bfd_elf_rel_vtable_reloc_fn
9501 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9502 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9503 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9504 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9505 {
9506 return bfd_reloc_ok;
9507 }
9508 \f
9509 /* Elf core file support. Much of this only works on native
9510 toolchains, since we rely on knowing the
9511 machine-dependent procfs structure in order to pick
9512 out details about the corefile. */
9513
9514 #ifdef HAVE_SYS_PROCFS_H
9515 # include <sys/procfs.h>
9516 #endif
9517
9518 /* Return a PID that identifies a "thread" for threaded cores, or the
9519 PID of the main process for non-threaded cores. */
9520
9521 static int
9522 elfcore_make_pid (bfd *abfd)
9523 {
9524 int pid;
9525
9526 pid = elf_tdata (abfd)->core->lwpid;
9527 if (pid == 0)
9528 pid = elf_tdata (abfd)->core->pid;
9529
9530 return pid;
9531 }
9532
9533 /* If there isn't a section called NAME, make one, using
9534 data from SECT. Note, this function will generate a
9535 reference to NAME, so you shouldn't deallocate or
9536 overwrite it. */
9537
9538 static bool
9539 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9540 {
9541 asection *sect2;
9542
9543 if (bfd_get_section_by_name (abfd, name) != NULL)
9544 return true;
9545
9546 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9547 if (sect2 == NULL)
9548 return false;
9549
9550 sect2->size = sect->size;
9551 sect2->filepos = sect->filepos;
9552 sect2->alignment_power = sect->alignment_power;
9553 return true;
9554 }
9555
9556 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9557 actually creates up to two pseudosections:
9558 - For the single-threaded case, a section named NAME, unless
9559 such a section already exists.
9560 - For the multi-threaded case, a section named "NAME/PID", where
9561 PID is elfcore_make_pid (abfd).
9562 Both pseudosections have identical contents. */
9563 bool
9564 _bfd_elfcore_make_pseudosection (bfd *abfd,
9565 char *name,
9566 size_t size,
9567 ufile_ptr filepos)
9568 {
9569 char buf[100];
9570 char *threaded_name;
9571 size_t len;
9572 asection *sect;
9573
9574 /* Build the section name. */
9575
9576 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9577 len = strlen (buf) + 1;
9578 threaded_name = (char *) bfd_alloc (abfd, len);
9579 if (threaded_name == NULL)
9580 return false;
9581 memcpy (threaded_name, buf, len);
9582
9583 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9584 SEC_HAS_CONTENTS);
9585 if (sect == NULL)
9586 return false;
9587 sect->size = size;
9588 sect->filepos = filepos;
9589 sect->alignment_power = 2;
9590
9591 return elfcore_maybe_make_sect (abfd, name, sect);
9592 }
9593
9594 static bool
9595 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9596 size_t offs)
9597 {
9598 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9599 SEC_HAS_CONTENTS);
9600
9601 if (sect == NULL)
9602 return false;
9603
9604 sect->size = note->descsz - offs;
9605 sect->filepos = note->descpos + offs;
9606 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9607
9608 return true;
9609 }
9610
9611 /* prstatus_t exists on:
9612 solaris 2.5+
9613 linux 2.[01] + glibc
9614 unixware 4.2
9615 */
9616
9617 #if defined (HAVE_PRSTATUS_T)
9618
9619 static bool
9620 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9621 {
9622 size_t size;
9623 int offset;
9624
9625 if (note->descsz == sizeof (prstatus_t))
9626 {
9627 prstatus_t prstat;
9628
9629 size = sizeof (prstat.pr_reg);
9630 offset = offsetof (prstatus_t, pr_reg);
9631 memcpy (&prstat, note->descdata, sizeof (prstat));
9632
9633 /* Do not overwrite the core signal if it
9634 has already been set by another thread. */
9635 if (elf_tdata (abfd)->core->signal == 0)
9636 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9637 if (elf_tdata (abfd)->core->pid == 0)
9638 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9639
9640 /* pr_who exists on:
9641 solaris 2.5+
9642 unixware 4.2
9643 pr_who doesn't exist on:
9644 linux 2.[01]
9645 */
9646 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9647 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9648 #else
9649 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9650 #endif
9651 }
9652 #if defined (HAVE_PRSTATUS32_T)
9653 else if (note->descsz == sizeof (prstatus32_t))
9654 {
9655 /* 64-bit host, 32-bit corefile */
9656 prstatus32_t prstat;
9657
9658 size = sizeof (prstat.pr_reg);
9659 offset = offsetof (prstatus32_t, pr_reg);
9660 memcpy (&prstat, note->descdata, sizeof (prstat));
9661
9662 /* Do not overwrite the core signal if it
9663 has already been set by another thread. */
9664 if (elf_tdata (abfd)->core->signal == 0)
9665 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9666 if (elf_tdata (abfd)->core->pid == 0)
9667 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9668
9669 /* pr_who exists on:
9670 solaris 2.5+
9671 unixware 4.2
9672 pr_who doesn't exist on:
9673 linux 2.[01]
9674 */
9675 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9676 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9677 #else
9678 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9679 #endif
9680 }
9681 #endif /* HAVE_PRSTATUS32_T */
9682 else
9683 {
9684 /* Fail - we don't know how to handle any other
9685 note size (ie. data object type). */
9686 return true;
9687 }
9688
9689 /* Make a ".reg/999" section and a ".reg" section. */
9690 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9691 size, note->descpos + offset);
9692 }
9693 #endif /* defined (HAVE_PRSTATUS_T) */
9694
9695 /* Create a pseudosection containing the exact contents of NOTE. */
9696 static bool
9697 elfcore_make_note_pseudosection (bfd *abfd,
9698 char *name,
9699 Elf_Internal_Note *note)
9700 {
9701 return _bfd_elfcore_make_pseudosection (abfd, name,
9702 note->descsz, note->descpos);
9703 }
9704
9705 /* There isn't a consistent prfpregset_t across platforms,
9706 but it doesn't matter, because we don't have to pick this
9707 data structure apart. */
9708
9709 static bool
9710 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9711 {
9712 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9713 }
9714
9715 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9716 type of NT_PRXFPREG. Just include the whole note's contents
9717 literally. */
9718
9719 static bool
9720 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9721 {
9722 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9723 }
9724
9725 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9726 with a note type of NT_X86_XSTATE. Just include the whole note's
9727 contents literally. */
9728
9729 static bool
9730 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9731 {
9732 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9733 }
9734
9735 static bool
9736 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9737 {
9738 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9739 }
9740
9741 static bool
9742 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9743 {
9744 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9745 }
9746
9747 static bool
9748 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9749 {
9750 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9751 }
9752
9753 static bool
9754 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9755 {
9756 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9757 }
9758
9759 static bool
9760 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9761 {
9762 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9763 }
9764
9765 static bool
9766 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9767 {
9768 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9769 }
9770
9771 static bool
9772 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9773 {
9774 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9775 }
9776
9777 static bool
9778 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9779 {
9780 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9781 }
9782
9783 static bool
9784 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9785 {
9786 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9787 }
9788
9789 static bool
9790 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9791 {
9792 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9793 }
9794
9795 static bool
9796 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9797 {
9798 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9799 }
9800
9801 static bool
9802 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9803 {
9804 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9805 }
9806
9807 static bool
9808 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9809 {
9810 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9811 }
9812
9813 static bool
9814 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9815 {
9816 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9817 }
9818
9819 static bool
9820 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9821 {
9822 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9823 }
9824
9825 static bool
9826 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9827 {
9828 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9829 }
9830
9831 static bool
9832 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9833 {
9834 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9835 }
9836
9837 static bool
9838 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9839 {
9840 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9841 }
9842
9843 static bool
9844 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9845 {
9846 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9847 }
9848
9849 static bool
9850 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9851 {
9852 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9853 }
9854
9855 static bool
9856 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9857 {
9858 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9859 }
9860
9861 static bool
9862 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9863 {
9864 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9865 }
9866
9867 static bool
9868 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9869 {
9870 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9871 }
9872
9873 static bool
9874 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9875 {
9876 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9877 }
9878
9879 static bool
9880 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9881 {
9882 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9883 }
9884
9885 static bool
9886 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9887 {
9888 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9889 }
9890
9891 static bool
9892 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9893 {
9894 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9895 }
9896
9897 static bool
9898 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9899 {
9900 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9901 }
9902
9903 static bool
9904 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9905 {
9906 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9907 }
9908
9909 static bool
9910 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9911 {
9912 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9913 }
9914
9915 static bool
9916 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9917 {
9918 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9919 }
9920
9921 static bool
9922 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9923 {
9924 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9925 }
9926
9927 static bool
9928 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9929 {
9930 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9931 }
9932
9933 static bool
9934 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9935 {
9936 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9937 }
9938
9939 static bool
9940 elfcore_grok_aarch_mte (bfd *abfd, Elf_Internal_Note *note)
9941 {
9942 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-mte",
9943 note);
9944 }
9945
9946 static bool
9947 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9948 {
9949 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9950 }
9951
9952 /* Convert NOTE into a bfd_section called ".reg-riscv-csr". Return TRUE if
9953 successful otherwise, return FALSE. */
9954
9955 static bool
9956 elfcore_grok_riscv_csr (bfd *abfd, Elf_Internal_Note *note)
9957 {
9958 return elfcore_make_note_pseudosection (abfd, ".reg-riscv-csr", note);
9959 }
9960
9961 /* Convert NOTE into a bfd_section called ".gdb-tdesc". Return TRUE if
9962 successful otherwise, return FALSE. */
9963
9964 static bool
9965 elfcore_grok_gdb_tdesc (bfd *abfd, Elf_Internal_Note *note)
9966 {
9967 return elfcore_make_note_pseudosection (abfd, ".gdb-tdesc", note);
9968 }
9969
9970 #if defined (HAVE_PRPSINFO_T)
9971 typedef prpsinfo_t elfcore_psinfo_t;
9972 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9973 typedef prpsinfo32_t elfcore_psinfo32_t;
9974 #endif
9975 #endif
9976
9977 #if defined (HAVE_PSINFO_T)
9978 typedef psinfo_t elfcore_psinfo_t;
9979 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9980 typedef psinfo32_t elfcore_psinfo32_t;
9981 #endif
9982 #endif
9983
9984 /* return a malloc'ed copy of a string at START which is at
9985 most MAX bytes long, possibly without a terminating '\0'.
9986 the copy will always have a terminating '\0'. */
9987
9988 char *
9989 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9990 {
9991 char *dups;
9992 char *end = (char *) memchr (start, '\0', max);
9993 size_t len;
9994
9995 if (end == NULL)
9996 len = max;
9997 else
9998 len = end - start;
9999
10000 dups = (char *) bfd_alloc (abfd, len + 1);
10001 if (dups == NULL)
10002 return NULL;
10003
10004 memcpy (dups, start, len);
10005 dups[len] = '\0';
10006
10007 return dups;
10008 }
10009
10010 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10011 static bool
10012 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
10013 {
10014 if (note->descsz == sizeof (elfcore_psinfo_t))
10015 {
10016 elfcore_psinfo_t psinfo;
10017
10018 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10019
10020 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
10021 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10022 #endif
10023 elf_tdata (abfd)->core->program
10024 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10025 sizeof (psinfo.pr_fname));
10026
10027 elf_tdata (abfd)->core->command
10028 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10029 sizeof (psinfo.pr_psargs));
10030 }
10031 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10032 else if (note->descsz == sizeof (elfcore_psinfo32_t))
10033 {
10034 /* 64-bit host, 32-bit corefile */
10035 elfcore_psinfo32_t psinfo;
10036
10037 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10038
10039 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
10040 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10041 #endif
10042 elf_tdata (abfd)->core->program
10043 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10044 sizeof (psinfo.pr_fname));
10045
10046 elf_tdata (abfd)->core->command
10047 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10048 sizeof (psinfo.pr_psargs));
10049 }
10050 #endif
10051
10052 else
10053 {
10054 /* Fail - we don't know how to handle any other
10055 note size (ie. data object type). */
10056 return true;
10057 }
10058
10059 /* Note that for some reason, a spurious space is tacked
10060 onto the end of the args in some (at least one anyway)
10061 implementations, so strip it off if it exists. */
10062
10063 {
10064 char *command = elf_tdata (abfd)->core->command;
10065 int n = strlen (command);
10066
10067 if (0 < n && command[n - 1] == ' ')
10068 command[n - 1] = '\0';
10069 }
10070
10071 return true;
10072 }
10073 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10074
10075 #if defined (HAVE_PSTATUS_T)
10076 static bool
10077 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10078 {
10079 if (note->descsz == sizeof (pstatus_t)
10080 #if defined (HAVE_PXSTATUS_T)
10081 || note->descsz == sizeof (pxstatus_t)
10082 #endif
10083 )
10084 {
10085 pstatus_t pstat;
10086
10087 memcpy (&pstat, note->descdata, sizeof (pstat));
10088
10089 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10090 }
10091 #if defined (HAVE_PSTATUS32_T)
10092 else if (note->descsz == sizeof (pstatus32_t))
10093 {
10094 /* 64-bit host, 32-bit corefile */
10095 pstatus32_t pstat;
10096
10097 memcpy (&pstat, note->descdata, sizeof (pstat));
10098
10099 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10100 }
10101 #endif
10102 /* Could grab some more details from the "representative"
10103 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10104 NT_LWPSTATUS note, presumably. */
10105
10106 return true;
10107 }
10108 #endif /* defined (HAVE_PSTATUS_T) */
10109
10110 #if defined (HAVE_LWPSTATUS_T)
10111 static bool
10112 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10113 {
10114 lwpstatus_t lwpstat;
10115 char buf[100];
10116 char *name;
10117 size_t len;
10118 asection *sect;
10119
10120 if (note->descsz != sizeof (lwpstat)
10121 #if defined (HAVE_LWPXSTATUS_T)
10122 && note->descsz != sizeof (lwpxstatus_t)
10123 #endif
10124 )
10125 return true;
10126
10127 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10128
10129 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10130 /* Do not overwrite the core signal if it has already been set by
10131 another thread. */
10132 if (elf_tdata (abfd)->core->signal == 0)
10133 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10134
10135 /* Make a ".reg/999" section. */
10136
10137 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10138 len = strlen (buf) + 1;
10139 name = bfd_alloc (abfd, len);
10140 if (name == NULL)
10141 return false;
10142 memcpy (name, buf, len);
10143
10144 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10145 if (sect == NULL)
10146 return false;
10147
10148 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10149 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10150 sect->filepos = note->descpos
10151 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10152 #endif
10153
10154 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10155 sect->size = sizeof (lwpstat.pr_reg);
10156 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10157 #endif
10158
10159 sect->alignment_power = 2;
10160
10161 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10162 return false;
10163
10164 /* Make a ".reg2/999" section */
10165
10166 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10167 len = strlen (buf) + 1;
10168 name = bfd_alloc (abfd, len);
10169 if (name == NULL)
10170 return false;
10171 memcpy (name, buf, len);
10172
10173 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10174 if (sect == NULL)
10175 return false;
10176
10177 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10178 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10179 sect->filepos = note->descpos
10180 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10181 #endif
10182
10183 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10184 sect->size = sizeof (lwpstat.pr_fpreg);
10185 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10186 #endif
10187
10188 sect->alignment_power = 2;
10189
10190 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10191 }
10192 #endif /* defined (HAVE_LWPSTATUS_T) */
10193
10194 /* These constants, and the structure offsets used below, are defined by
10195 Cygwin's core_dump.h */
10196 #define NOTE_INFO_PROCESS 1
10197 #define NOTE_INFO_THREAD 2
10198 #define NOTE_INFO_MODULE 3
10199 #define NOTE_INFO_MODULE64 4
10200
10201 static bool
10202 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10203 {
10204 char buf[30];
10205 char *name;
10206 size_t len;
10207 unsigned int name_size;
10208 asection *sect;
10209 unsigned int type;
10210 int is_active_thread;
10211 bfd_vma base_addr;
10212
10213 if (note->descsz < 4)
10214 return true;
10215
10216 if (! startswith (note->namedata, "win32"))
10217 return true;
10218
10219 type = bfd_get_32 (abfd, note->descdata);
10220
10221 struct
10222 {
10223 const char *type_name;
10224 unsigned long min_size;
10225 } size_check[] =
10226 {
10227 { "NOTE_INFO_PROCESS", 12 },
10228 { "NOTE_INFO_THREAD", 12 },
10229 { "NOTE_INFO_MODULE", 12 },
10230 { "NOTE_INFO_MODULE64", 16 },
10231 };
10232
10233 if (type == 0 || type > (sizeof(size_check)/sizeof(size_check[0])))
10234 return true;
10235
10236 if (note->descsz < size_check[type - 1].min_size)
10237 {
10238 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10239 abfd, size_check[type - 1].type_name, note->descsz);
10240 return true;
10241 }
10242
10243 switch (type)
10244 {
10245 case NOTE_INFO_PROCESS:
10246 /* FIXME: need to add ->core->command. */
10247 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10248 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10249 break;
10250
10251 case NOTE_INFO_THREAD:
10252 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10253 structure. */
10254 /* thread_info.tid */
10255 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10256
10257 len = strlen (buf) + 1;
10258 name = (char *) bfd_alloc (abfd, len);
10259 if (name == NULL)
10260 return false;
10261
10262 memcpy (name, buf, len);
10263
10264 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10265 if (sect == NULL)
10266 return false;
10267
10268 /* sizeof (thread_info.thread_context) */
10269 sect->size = note->descsz - 12;
10270 /* offsetof (thread_info.thread_context) */
10271 sect->filepos = note->descpos + 12;
10272 sect->alignment_power = 2;
10273
10274 /* thread_info.is_active_thread */
10275 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10276
10277 if (is_active_thread)
10278 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10279 return false;
10280 break;
10281
10282 case NOTE_INFO_MODULE:
10283 case NOTE_INFO_MODULE64:
10284 /* Make a ".module/xxxxxxxx" section. */
10285 if (type == NOTE_INFO_MODULE)
10286 {
10287 /* module_info.base_address */
10288 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10289 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10290 /* module_info.module_name_size */
10291 name_size = bfd_get_32 (abfd, note->descdata + 8);
10292 }
10293 else /* NOTE_INFO_MODULE64 */
10294 {
10295 /* module_info.base_address */
10296 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10297 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10298 /* module_info.module_name_size */
10299 name_size = bfd_get_32 (abfd, note->descdata + 12);
10300 }
10301
10302 len = strlen (buf) + 1;
10303 name = (char *) bfd_alloc (abfd, len);
10304 if (name == NULL)
10305 return false;
10306
10307 memcpy (name, buf, len);
10308
10309 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10310
10311 if (sect == NULL)
10312 return false;
10313
10314 if (note->descsz < 12 + name_size)
10315 {
10316 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10317 abfd, note->descsz, name_size);
10318 return true;
10319 }
10320
10321 sect->size = note->descsz;
10322 sect->filepos = note->descpos;
10323 sect->alignment_power = 2;
10324 break;
10325
10326 default:
10327 return true;
10328 }
10329
10330 return true;
10331 }
10332
10333 static bool
10334 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10335 {
10336 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10337
10338 switch (note->type)
10339 {
10340 default:
10341 return true;
10342
10343 case NT_PRSTATUS:
10344 if (bed->elf_backend_grok_prstatus)
10345 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10346 return true;
10347 #if defined (HAVE_PRSTATUS_T)
10348 return elfcore_grok_prstatus (abfd, note);
10349 #else
10350 return true;
10351 #endif
10352
10353 #if defined (HAVE_PSTATUS_T)
10354 case NT_PSTATUS:
10355 return elfcore_grok_pstatus (abfd, note);
10356 #endif
10357
10358 #if defined (HAVE_LWPSTATUS_T)
10359 case NT_LWPSTATUS:
10360 return elfcore_grok_lwpstatus (abfd, note);
10361 #endif
10362
10363 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10364 return elfcore_grok_prfpreg (abfd, note);
10365
10366 case NT_WIN32PSTATUS:
10367 return elfcore_grok_win32pstatus (abfd, note);
10368
10369 case NT_PRXFPREG: /* Linux SSE extension */
10370 if (note->namesz == 6
10371 && strcmp (note->namedata, "LINUX") == 0)
10372 return elfcore_grok_prxfpreg (abfd, note);
10373 else
10374 return true;
10375
10376 case NT_X86_XSTATE: /* Linux XSAVE extension */
10377 if (note->namesz == 6
10378 && strcmp (note->namedata, "LINUX") == 0)
10379 return elfcore_grok_xstatereg (abfd, note);
10380 else
10381 return true;
10382
10383 case NT_PPC_VMX:
10384 if (note->namesz == 6
10385 && strcmp (note->namedata, "LINUX") == 0)
10386 return elfcore_grok_ppc_vmx (abfd, note);
10387 else
10388 return true;
10389
10390 case NT_PPC_VSX:
10391 if (note->namesz == 6
10392 && strcmp (note->namedata, "LINUX") == 0)
10393 return elfcore_grok_ppc_vsx (abfd, note);
10394 else
10395 return true;
10396
10397 case NT_PPC_TAR:
10398 if (note->namesz == 6
10399 && strcmp (note->namedata, "LINUX") == 0)
10400 return elfcore_grok_ppc_tar (abfd, note);
10401 else
10402 return true;
10403
10404 case NT_PPC_PPR:
10405 if (note->namesz == 6
10406 && strcmp (note->namedata, "LINUX") == 0)
10407 return elfcore_grok_ppc_ppr (abfd, note);
10408 else
10409 return true;
10410
10411 case NT_PPC_DSCR:
10412 if (note->namesz == 6
10413 && strcmp (note->namedata, "LINUX") == 0)
10414 return elfcore_grok_ppc_dscr (abfd, note);
10415 else
10416 return true;
10417
10418 case NT_PPC_EBB:
10419 if (note->namesz == 6
10420 && strcmp (note->namedata, "LINUX") == 0)
10421 return elfcore_grok_ppc_ebb (abfd, note);
10422 else
10423 return true;
10424
10425 case NT_PPC_PMU:
10426 if (note->namesz == 6
10427 && strcmp (note->namedata, "LINUX") == 0)
10428 return elfcore_grok_ppc_pmu (abfd, note);
10429 else
10430 return true;
10431
10432 case NT_PPC_TM_CGPR:
10433 if (note->namesz == 6
10434 && strcmp (note->namedata, "LINUX") == 0)
10435 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10436 else
10437 return true;
10438
10439 case NT_PPC_TM_CFPR:
10440 if (note->namesz == 6
10441 && strcmp (note->namedata, "LINUX") == 0)
10442 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10443 else
10444 return true;
10445
10446 case NT_PPC_TM_CVMX:
10447 if (note->namesz == 6
10448 && strcmp (note->namedata, "LINUX") == 0)
10449 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10450 else
10451 return true;
10452
10453 case NT_PPC_TM_CVSX:
10454 if (note->namesz == 6
10455 && strcmp (note->namedata, "LINUX") == 0)
10456 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10457 else
10458 return true;
10459
10460 case NT_PPC_TM_SPR:
10461 if (note->namesz == 6
10462 && strcmp (note->namedata, "LINUX") == 0)
10463 return elfcore_grok_ppc_tm_spr (abfd, note);
10464 else
10465 return true;
10466
10467 case NT_PPC_TM_CTAR:
10468 if (note->namesz == 6
10469 && strcmp (note->namedata, "LINUX") == 0)
10470 return elfcore_grok_ppc_tm_ctar (abfd, note);
10471 else
10472 return true;
10473
10474 case NT_PPC_TM_CPPR:
10475 if (note->namesz == 6
10476 && strcmp (note->namedata, "LINUX") == 0)
10477 return elfcore_grok_ppc_tm_cppr (abfd, note);
10478 else
10479 return true;
10480
10481 case NT_PPC_TM_CDSCR:
10482 if (note->namesz == 6
10483 && strcmp (note->namedata, "LINUX") == 0)
10484 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10485 else
10486 return true;
10487
10488 case NT_S390_HIGH_GPRS:
10489 if (note->namesz == 6
10490 && strcmp (note->namedata, "LINUX") == 0)
10491 return elfcore_grok_s390_high_gprs (abfd, note);
10492 else
10493 return true;
10494
10495 case NT_S390_TIMER:
10496 if (note->namesz == 6
10497 && strcmp (note->namedata, "LINUX") == 0)
10498 return elfcore_grok_s390_timer (abfd, note);
10499 else
10500 return true;
10501
10502 case NT_S390_TODCMP:
10503 if (note->namesz == 6
10504 && strcmp (note->namedata, "LINUX") == 0)
10505 return elfcore_grok_s390_todcmp (abfd, note);
10506 else
10507 return true;
10508
10509 case NT_S390_TODPREG:
10510 if (note->namesz == 6
10511 && strcmp (note->namedata, "LINUX") == 0)
10512 return elfcore_grok_s390_todpreg (abfd, note);
10513 else
10514 return true;
10515
10516 case NT_S390_CTRS:
10517 if (note->namesz == 6
10518 && strcmp (note->namedata, "LINUX") == 0)
10519 return elfcore_grok_s390_ctrs (abfd, note);
10520 else
10521 return true;
10522
10523 case NT_S390_PREFIX:
10524 if (note->namesz == 6
10525 && strcmp (note->namedata, "LINUX") == 0)
10526 return elfcore_grok_s390_prefix (abfd, note);
10527 else
10528 return true;
10529
10530 case NT_S390_LAST_BREAK:
10531 if (note->namesz == 6
10532 && strcmp (note->namedata, "LINUX") == 0)
10533 return elfcore_grok_s390_last_break (abfd, note);
10534 else
10535 return true;
10536
10537 case NT_S390_SYSTEM_CALL:
10538 if (note->namesz == 6
10539 && strcmp (note->namedata, "LINUX") == 0)
10540 return elfcore_grok_s390_system_call (abfd, note);
10541 else
10542 return true;
10543
10544 case NT_S390_TDB:
10545 if (note->namesz == 6
10546 && strcmp (note->namedata, "LINUX") == 0)
10547 return elfcore_grok_s390_tdb (abfd, note);
10548 else
10549 return true;
10550
10551 case NT_S390_VXRS_LOW:
10552 if (note->namesz == 6
10553 && strcmp (note->namedata, "LINUX") == 0)
10554 return elfcore_grok_s390_vxrs_low (abfd, note);
10555 else
10556 return true;
10557
10558 case NT_S390_VXRS_HIGH:
10559 if (note->namesz == 6
10560 && strcmp (note->namedata, "LINUX") == 0)
10561 return elfcore_grok_s390_vxrs_high (abfd, note);
10562 else
10563 return true;
10564
10565 case NT_S390_GS_CB:
10566 if (note->namesz == 6
10567 && strcmp (note->namedata, "LINUX") == 0)
10568 return elfcore_grok_s390_gs_cb (abfd, note);
10569 else
10570 return true;
10571
10572 case NT_S390_GS_BC:
10573 if (note->namesz == 6
10574 && strcmp (note->namedata, "LINUX") == 0)
10575 return elfcore_grok_s390_gs_bc (abfd, note);
10576 else
10577 return true;
10578
10579 case NT_ARC_V2:
10580 if (note->namesz == 6
10581 && strcmp (note->namedata, "LINUX") == 0)
10582 return elfcore_grok_arc_v2 (abfd, note);
10583 else
10584 return true;
10585
10586 case NT_ARM_VFP:
10587 if (note->namesz == 6
10588 && strcmp (note->namedata, "LINUX") == 0)
10589 return elfcore_grok_arm_vfp (abfd, note);
10590 else
10591 return true;
10592
10593 case NT_ARM_TLS:
10594 if (note->namesz == 6
10595 && strcmp (note->namedata, "LINUX") == 0)
10596 return elfcore_grok_aarch_tls (abfd, note);
10597 else
10598 return true;
10599
10600 case NT_ARM_HW_BREAK:
10601 if (note->namesz == 6
10602 && strcmp (note->namedata, "LINUX") == 0)
10603 return elfcore_grok_aarch_hw_break (abfd, note);
10604 else
10605 return true;
10606
10607 case NT_ARM_HW_WATCH:
10608 if (note->namesz == 6
10609 && strcmp (note->namedata, "LINUX") == 0)
10610 return elfcore_grok_aarch_hw_watch (abfd, note);
10611 else
10612 return true;
10613
10614 case NT_ARM_SVE:
10615 if (note->namesz == 6
10616 && strcmp (note->namedata, "LINUX") == 0)
10617 return elfcore_grok_aarch_sve (abfd, note);
10618 else
10619 return true;
10620
10621 case NT_ARM_PAC_MASK:
10622 if (note->namesz == 6
10623 && strcmp (note->namedata, "LINUX") == 0)
10624 return elfcore_grok_aarch_pauth (abfd, note);
10625 else
10626 return true;
10627
10628 case NT_ARM_TAGGED_ADDR_CTRL:
10629 if (note->namesz == 6
10630 && strcmp (note->namedata, "LINUX") == 0)
10631 return elfcore_grok_aarch_mte (abfd, note);
10632 else
10633 return true;
10634
10635 case NT_GDB_TDESC:
10636 if (note->namesz == 4
10637 && strcmp (note->namedata, "GDB") == 0)
10638 return elfcore_grok_gdb_tdesc (abfd, note);
10639 else
10640 return true;
10641
10642 case NT_RISCV_CSR:
10643 if (note->namesz == 4
10644 && strcmp (note->namedata, "GDB") == 0)
10645 return elfcore_grok_riscv_csr (abfd, note);
10646 else
10647 return true;
10648
10649 case NT_PRPSINFO:
10650 case NT_PSINFO:
10651 if (bed->elf_backend_grok_psinfo)
10652 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10653 return true;
10654 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10655 return elfcore_grok_psinfo (abfd, note);
10656 #else
10657 return true;
10658 #endif
10659
10660 case NT_AUXV:
10661 return elfcore_make_auxv_note_section (abfd, note, 0);
10662
10663 case NT_FILE:
10664 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10665 note);
10666
10667 case NT_SIGINFO:
10668 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10669 note);
10670
10671 }
10672 }
10673
10674 static bool
10675 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10676 {
10677 struct bfd_build_id* build_id;
10678
10679 if (note->descsz == 0)
10680 return false;
10681
10682 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10683 if (build_id == NULL)
10684 return false;
10685
10686 build_id->size = note->descsz;
10687 memcpy (build_id->data, note->descdata, note->descsz);
10688 abfd->build_id = build_id;
10689
10690 return true;
10691 }
10692
10693 static bool
10694 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10695 {
10696 switch (note->type)
10697 {
10698 default:
10699 return true;
10700
10701 case NT_GNU_PROPERTY_TYPE_0:
10702 return _bfd_elf_parse_gnu_properties (abfd, note);
10703
10704 case NT_GNU_BUILD_ID:
10705 return elfobj_grok_gnu_build_id (abfd, note);
10706 }
10707 }
10708
10709 static bool
10710 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10711 {
10712 struct sdt_note *cur =
10713 (struct sdt_note *) bfd_alloc (abfd,
10714 sizeof (struct sdt_note) + note->descsz);
10715
10716 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10717 cur->size = (bfd_size_type) note->descsz;
10718 memcpy (cur->data, note->descdata, note->descsz);
10719
10720 elf_tdata (abfd)->sdt_note_head = cur;
10721
10722 return true;
10723 }
10724
10725 static bool
10726 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10727 {
10728 switch (note->type)
10729 {
10730 case NT_STAPSDT:
10731 return elfobj_grok_stapsdt_note_1 (abfd, note);
10732
10733 default:
10734 return true;
10735 }
10736 }
10737
10738 static bool
10739 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10740 {
10741 size_t offset;
10742
10743 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10744 {
10745 case ELFCLASS32:
10746 if (note->descsz < 108)
10747 return false;
10748 break;
10749
10750 case ELFCLASS64:
10751 if (note->descsz < 120)
10752 return false;
10753 break;
10754
10755 default:
10756 return false;
10757 }
10758
10759 /* Check for version 1 in pr_version. */
10760 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10761 return false;
10762
10763 offset = 4;
10764
10765 /* Skip over pr_psinfosz. */
10766 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10767 offset += 4;
10768 else
10769 {
10770 offset += 4; /* Padding before pr_psinfosz. */
10771 offset += 8;
10772 }
10773
10774 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10775 elf_tdata (abfd)->core->program
10776 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10777 offset += 17;
10778
10779 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10780 elf_tdata (abfd)->core->command
10781 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10782 offset += 81;
10783
10784 /* Padding before pr_pid. */
10785 offset += 2;
10786
10787 /* The pr_pid field was added in version "1a". */
10788 if (note->descsz < offset + 4)
10789 return true;
10790
10791 elf_tdata (abfd)->core->pid
10792 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10793
10794 return true;
10795 }
10796
10797 static bool
10798 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10799 {
10800 size_t offset;
10801 size_t size;
10802 size_t min_size;
10803
10804 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10805 Also compute minimum size of this note. */
10806 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10807 {
10808 case ELFCLASS32:
10809 offset = 4 + 4;
10810 min_size = offset + (4 * 2) + 4 + 4 + 4;
10811 break;
10812
10813 case ELFCLASS64:
10814 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10815 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10816 break;
10817
10818 default:
10819 return false;
10820 }
10821
10822 if (note->descsz < min_size)
10823 return false;
10824
10825 /* Check for version 1 in pr_version. */
10826 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10827 return false;
10828
10829 /* Extract size of pr_reg from pr_gregsetsz. */
10830 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10831 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10832 {
10833 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10834 offset += 4 * 2;
10835 }
10836 else
10837 {
10838 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10839 offset += 8 * 2;
10840 }
10841
10842 /* Skip over pr_osreldate. */
10843 offset += 4;
10844
10845 /* Read signal from pr_cursig. */
10846 if (elf_tdata (abfd)->core->signal == 0)
10847 elf_tdata (abfd)->core->signal
10848 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10849 offset += 4;
10850
10851 /* Read TID from pr_pid. */
10852 elf_tdata (abfd)->core->lwpid
10853 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10854 offset += 4;
10855
10856 /* Padding before pr_reg. */
10857 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10858 offset += 4;
10859
10860 /* Make sure that there is enough data remaining in the note. */
10861 if ((note->descsz - offset) < size)
10862 return false;
10863
10864 /* Make a ".reg/999" section and a ".reg" section. */
10865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10866 size, note->descpos + offset);
10867 }
10868
10869 static bool
10870 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10871 {
10872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10873
10874 switch (note->type)
10875 {
10876 case NT_PRSTATUS:
10877 if (bed->elf_backend_grok_freebsd_prstatus)
10878 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10879 return true;
10880 return elfcore_grok_freebsd_prstatus (abfd, note);
10881
10882 case NT_FPREGSET:
10883 return elfcore_grok_prfpreg (abfd, note);
10884
10885 case NT_PRPSINFO:
10886 return elfcore_grok_freebsd_psinfo (abfd, note);
10887
10888 case NT_FREEBSD_THRMISC:
10889 if (note->namesz == 8)
10890 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10891 else
10892 return true;
10893
10894 case NT_FREEBSD_PROCSTAT_PROC:
10895 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10896 note);
10897
10898 case NT_FREEBSD_PROCSTAT_FILES:
10899 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10900 note);
10901
10902 case NT_FREEBSD_PROCSTAT_VMMAP:
10903 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10904 note);
10905
10906 case NT_FREEBSD_PROCSTAT_AUXV:
10907 return elfcore_make_auxv_note_section (abfd, note, 4);
10908
10909 case NT_X86_XSTATE:
10910 if (note->namesz == 8)
10911 return elfcore_grok_xstatereg (abfd, note);
10912 else
10913 return true;
10914
10915 case NT_FREEBSD_PTLWPINFO:
10916 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10917 note);
10918
10919 case NT_ARM_VFP:
10920 return elfcore_grok_arm_vfp (abfd, note);
10921
10922 default:
10923 return true;
10924 }
10925 }
10926
10927 static bool
10928 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10929 {
10930 char *cp;
10931
10932 cp = strchr (note->namedata, '@');
10933 if (cp != NULL)
10934 {
10935 *lwpidp = atoi(cp + 1);
10936 return true;
10937 }
10938 return false;
10939 }
10940
10941 static bool
10942 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10943 {
10944 if (note->descsz <= 0x7c + 31)
10945 return false;
10946
10947 /* Signal number at offset 0x08. */
10948 elf_tdata (abfd)->core->signal
10949 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10950
10951 /* Process ID at offset 0x50. */
10952 elf_tdata (abfd)->core->pid
10953 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10954
10955 /* Command name at 0x7c (max 32 bytes, including nul). */
10956 elf_tdata (abfd)->core->command
10957 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10958
10959 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10960 note);
10961 }
10962
10963 static bool
10964 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10965 {
10966 int lwp;
10967
10968 if (elfcore_netbsd_get_lwpid (note, &lwp))
10969 elf_tdata (abfd)->core->lwpid = lwp;
10970
10971 switch (note->type)
10972 {
10973 case NT_NETBSDCORE_PROCINFO:
10974 /* NetBSD-specific core "procinfo". Note that we expect to
10975 find this note before any of the others, which is fine,
10976 since the kernel writes this note out first when it
10977 creates a core file. */
10978 return elfcore_grok_netbsd_procinfo (abfd, note);
10979 case NT_NETBSDCORE_AUXV:
10980 /* NetBSD-specific Elf Auxiliary Vector data. */
10981 return elfcore_make_auxv_note_section (abfd, note, 4);
10982 case NT_NETBSDCORE_LWPSTATUS:
10983 return elfcore_make_note_pseudosection (abfd,
10984 ".note.netbsdcore.lwpstatus",
10985 note);
10986 default:
10987 break;
10988 }
10989
10990 /* As of March 2020 there are no other machine-independent notes
10991 defined for NetBSD core files. If the note type is less
10992 than the start of the machine-dependent note types, we don't
10993 understand it. */
10994
10995 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10996 return true;
10997
10998
10999 switch (bfd_get_arch (abfd))
11000 {
11001 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
11002 PT_GETFPREGS == mach+2. */
11003
11004 case bfd_arch_aarch64:
11005 case bfd_arch_alpha:
11006 case bfd_arch_sparc:
11007 switch (note->type)
11008 {
11009 case NT_NETBSDCORE_FIRSTMACH+0:
11010 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11011
11012 case NT_NETBSDCORE_FIRSTMACH+2:
11013 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11014
11015 default:
11016 return true;
11017 }
11018
11019 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
11020 There's also old PT___GETREGS40 == mach + 1 for old reg
11021 structure which lacks GBR. */
11022
11023 case bfd_arch_sh:
11024 switch (note->type)
11025 {
11026 case NT_NETBSDCORE_FIRSTMACH+3:
11027 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11028
11029 case NT_NETBSDCORE_FIRSTMACH+5:
11030 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11031
11032 default:
11033 return true;
11034 }
11035
11036 /* On all other arch's, PT_GETREGS == mach+1 and
11037 PT_GETFPREGS == mach+3. */
11038
11039 default:
11040 switch (note->type)
11041 {
11042 case NT_NETBSDCORE_FIRSTMACH+1:
11043 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11044
11045 case NT_NETBSDCORE_FIRSTMACH+3:
11046 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11047
11048 default:
11049 return true;
11050 }
11051 }
11052 /* NOTREACHED */
11053 }
11054
11055 static bool
11056 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
11057 {
11058 if (note->descsz <= 0x48 + 31)
11059 return false;
11060
11061 /* Signal number at offset 0x08. */
11062 elf_tdata (abfd)->core->signal
11063 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
11064
11065 /* Process ID at offset 0x20. */
11066 elf_tdata (abfd)->core->pid
11067 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
11068
11069 /* Command name at 0x48 (max 32 bytes, including nul). */
11070 elf_tdata (abfd)->core->command
11071 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
11072
11073 return true;
11074 }
11075
11076 static bool
11077 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
11078 {
11079 if (note->type == NT_OPENBSD_PROCINFO)
11080 return elfcore_grok_openbsd_procinfo (abfd, note);
11081
11082 if (note->type == NT_OPENBSD_REGS)
11083 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11084
11085 if (note->type == NT_OPENBSD_FPREGS)
11086 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11087
11088 if (note->type == NT_OPENBSD_XFPREGS)
11089 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11090
11091 if (note->type == NT_OPENBSD_AUXV)
11092 return elfcore_make_auxv_note_section (abfd, note, 0);
11093
11094 if (note->type == NT_OPENBSD_WCOOKIE)
11095 {
11096 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11097 SEC_HAS_CONTENTS);
11098
11099 if (sect == NULL)
11100 return false;
11101 sect->size = note->descsz;
11102 sect->filepos = note->descpos;
11103 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11104
11105 return true;
11106 }
11107
11108 return true;
11109 }
11110
11111 static bool
11112 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11113 {
11114 void *ddata = note->descdata;
11115 char buf[100];
11116 char *name;
11117 asection *sect;
11118 short sig;
11119 unsigned flags;
11120
11121 if (note->descsz < 16)
11122 return false;
11123
11124 /* nto_procfs_status 'pid' field is at offset 0. */
11125 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11126
11127 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11128 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11129
11130 /* nto_procfs_status 'flags' field is at offset 8. */
11131 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11132
11133 /* nto_procfs_status 'what' field is at offset 14. */
11134 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11135 {
11136 elf_tdata (abfd)->core->signal = sig;
11137 elf_tdata (abfd)->core->lwpid = *tid;
11138 }
11139
11140 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11141 do not come from signals so we make sure we set the current
11142 thread just in case. */
11143 if (flags & 0x00000080)
11144 elf_tdata (abfd)->core->lwpid = *tid;
11145
11146 /* Make a ".qnx_core_status/%d" section. */
11147 sprintf (buf, ".qnx_core_status/%ld", *tid);
11148
11149 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11150 if (name == NULL)
11151 return false;
11152 strcpy (name, buf);
11153
11154 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11155 if (sect == NULL)
11156 return false;
11157
11158 sect->size = note->descsz;
11159 sect->filepos = note->descpos;
11160 sect->alignment_power = 2;
11161
11162 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11163 }
11164
11165 static bool
11166 elfcore_grok_nto_regs (bfd *abfd,
11167 Elf_Internal_Note *note,
11168 long tid,
11169 char *base)
11170 {
11171 char buf[100];
11172 char *name;
11173 asection *sect;
11174
11175 /* Make a "(base)/%d" section. */
11176 sprintf (buf, "%s/%ld", base, tid);
11177
11178 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11179 if (name == NULL)
11180 return false;
11181 strcpy (name, buf);
11182
11183 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11184 if (sect == NULL)
11185 return false;
11186
11187 sect->size = note->descsz;
11188 sect->filepos = note->descpos;
11189 sect->alignment_power = 2;
11190
11191 /* This is the current thread. */
11192 if (elf_tdata (abfd)->core->lwpid == tid)
11193 return elfcore_maybe_make_sect (abfd, base, sect);
11194
11195 return true;
11196 }
11197
11198 #define BFD_QNT_CORE_INFO 7
11199 #define BFD_QNT_CORE_STATUS 8
11200 #define BFD_QNT_CORE_GREG 9
11201 #define BFD_QNT_CORE_FPREG 10
11202
11203 static bool
11204 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11205 {
11206 /* Every GREG section has a STATUS section before it. Store the
11207 tid from the previous call to pass down to the next gregs
11208 function. */
11209 static long tid = 1;
11210
11211 switch (note->type)
11212 {
11213 case BFD_QNT_CORE_INFO:
11214 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11215 case BFD_QNT_CORE_STATUS:
11216 return elfcore_grok_nto_status (abfd, note, &tid);
11217 case BFD_QNT_CORE_GREG:
11218 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11219 case BFD_QNT_CORE_FPREG:
11220 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11221 default:
11222 return true;
11223 }
11224 }
11225
11226 static bool
11227 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11228 {
11229 char *name;
11230 asection *sect;
11231 size_t len;
11232
11233 /* Use note name as section name. */
11234 len = note->namesz;
11235 name = (char *) bfd_alloc (abfd, len);
11236 if (name == NULL)
11237 return false;
11238 memcpy (name, note->namedata, len);
11239 name[len - 1] = '\0';
11240
11241 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11242 if (sect == NULL)
11243 return false;
11244
11245 sect->size = note->descsz;
11246 sect->filepos = note->descpos;
11247 sect->alignment_power = 1;
11248
11249 return true;
11250 }
11251
11252 /* Function: elfcore_write_note
11253
11254 Inputs:
11255 buffer to hold note, and current size of buffer
11256 name of note
11257 type of note
11258 data for note
11259 size of data for note
11260
11261 Writes note to end of buffer. ELF64 notes are written exactly as
11262 for ELF32, despite the current (as of 2006) ELF gabi specifying
11263 that they ought to have 8-byte namesz and descsz field, and have
11264 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11265
11266 Return:
11267 Pointer to realloc'd buffer, *BUFSIZ updated. */
11268
11269 char *
11270 elfcore_write_note (bfd *abfd,
11271 char *buf,
11272 int *bufsiz,
11273 const char *name,
11274 int type,
11275 const void *input,
11276 int size)
11277 {
11278 Elf_External_Note *xnp;
11279 size_t namesz;
11280 size_t newspace;
11281 char *dest;
11282
11283 namesz = 0;
11284 if (name != NULL)
11285 namesz = strlen (name) + 1;
11286
11287 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11288
11289 buf = (char *) realloc (buf, *bufsiz + newspace);
11290 if (buf == NULL)
11291 return buf;
11292 dest = buf + *bufsiz;
11293 *bufsiz += newspace;
11294 xnp = (Elf_External_Note *) dest;
11295 H_PUT_32 (abfd, namesz, xnp->namesz);
11296 H_PUT_32 (abfd, size, xnp->descsz);
11297 H_PUT_32 (abfd, type, xnp->type);
11298 dest = xnp->name;
11299 if (name != NULL)
11300 {
11301 memcpy (dest, name, namesz);
11302 dest += namesz;
11303 while (namesz & 3)
11304 {
11305 *dest++ = '\0';
11306 ++namesz;
11307 }
11308 }
11309 memcpy (dest, input, size);
11310 dest += size;
11311 while (size & 3)
11312 {
11313 *dest++ = '\0';
11314 ++size;
11315 }
11316 return buf;
11317 }
11318
11319 /* gcc-8 warns (*) on all the strncpy calls in this function about
11320 possible string truncation. The "truncation" is not a bug. We
11321 have an external representation of structs with fields that are not
11322 necessarily NULL terminated and corresponding internal
11323 representation fields that are one larger so that they can always
11324 be NULL terminated.
11325 gcc versions between 4.2 and 4.6 do not allow pragma control of
11326 diagnostics inside functions, giving a hard error if you try to use
11327 the finer control available with later versions.
11328 gcc prior to 4.2 warns about diagnostic push and pop.
11329 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11330 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11331 (*) Depending on your system header files! */
11332 #if GCC_VERSION >= 8000
11333 # pragma GCC diagnostic push
11334 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11335 #endif
11336 char *
11337 elfcore_write_prpsinfo (bfd *abfd,
11338 char *buf,
11339 int *bufsiz,
11340 const char *fname,
11341 const char *psargs)
11342 {
11343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11344
11345 if (bed->elf_backend_write_core_note != NULL)
11346 {
11347 char *ret;
11348 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11349 NT_PRPSINFO, fname, psargs);
11350 if (ret != NULL)
11351 return ret;
11352 }
11353
11354 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11355 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11356 if (bed->s->elfclass == ELFCLASS32)
11357 {
11358 # if defined (HAVE_PSINFO32_T)
11359 psinfo32_t data;
11360 int note_type = NT_PSINFO;
11361 # else
11362 prpsinfo32_t data;
11363 int note_type = NT_PRPSINFO;
11364 # endif
11365
11366 memset (&data, 0, sizeof (data));
11367 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11368 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11369 return elfcore_write_note (abfd, buf, bufsiz,
11370 "CORE", note_type, &data, sizeof (data));
11371 }
11372 else
11373 # endif
11374 {
11375 # if defined (HAVE_PSINFO_T)
11376 psinfo_t data;
11377 int note_type = NT_PSINFO;
11378 # else
11379 prpsinfo_t data;
11380 int note_type = NT_PRPSINFO;
11381 # endif
11382
11383 memset (&data, 0, sizeof (data));
11384 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11385 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11386 return elfcore_write_note (abfd, buf, bufsiz,
11387 "CORE", note_type, &data, sizeof (data));
11388 }
11389 #endif /* PSINFO_T or PRPSINFO_T */
11390
11391 free (buf);
11392 return NULL;
11393 }
11394 #if GCC_VERSION >= 8000
11395 # pragma GCC diagnostic pop
11396 #endif
11397
11398 char *
11399 elfcore_write_linux_prpsinfo32
11400 (bfd *abfd, char *buf, int *bufsiz,
11401 const struct elf_internal_linux_prpsinfo *prpsinfo)
11402 {
11403 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11404 {
11405 struct elf_external_linux_prpsinfo32_ugid16 data;
11406
11407 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11408 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11409 &data, sizeof (data));
11410 }
11411 else
11412 {
11413 struct elf_external_linux_prpsinfo32_ugid32 data;
11414
11415 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11416 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11417 &data, sizeof (data));
11418 }
11419 }
11420
11421 char *
11422 elfcore_write_linux_prpsinfo64
11423 (bfd *abfd, char *buf, int *bufsiz,
11424 const struct elf_internal_linux_prpsinfo *prpsinfo)
11425 {
11426 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11427 {
11428 struct elf_external_linux_prpsinfo64_ugid16 data;
11429
11430 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11431 return elfcore_write_note (abfd, buf, bufsiz,
11432 "CORE", NT_PRPSINFO, &data, sizeof (data));
11433 }
11434 else
11435 {
11436 struct elf_external_linux_prpsinfo64_ugid32 data;
11437
11438 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11439 return elfcore_write_note (abfd, buf, bufsiz,
11440 "CORE", NT_PRPSINFO, &data, sizeof (data));
11441 }
11442 }
11443
11444 char *
11445 elfcore_write_prstatus (bfd *abfd,
11446 char *buf,
11447 int *bufsiz,
11448 long pid,
11449 int cursig,
11450 const void *gregs)
11451 {
11452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11453
11454 if (bed->elf_backend_write_core_note != NULL)
11455 {
11456 char *ret;
11457 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11458 NT_PRSTATUS,
11459 pid, cursig, gregs);
11460 if (ret != NULL)
11461 return ret;
11462 }
11463
11464 #if defined (HAVE_PRSTATUS_T)
11465 #if defined (HAVE_PRSTATUS32_T)
11466 if (bed->s->elfclass == ELFCLASS32)
11467 {
11468 prstatus32_t prstat;
11469
11470 memset (&prstat, 0, sizeof (prstat));
11471 prstat.pr_pid = pid;
11472 prstat.pr_cursig = cursig;
11473 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11474 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11475 NT_PRSTATUS, &prstat, sizeof (prstat));
11476 }
11477 else
11478 #endif
11479 {
11480 prstatus_t prstat;
11481
11482 memset (&prstat, 0, sizeof (prstat));
11483 prstat.pr_pid = pid;
11484 prstat.pr_cursig = cursig;
11485 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11486 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11487 NT_PRSTATUS, &prstat, sizeof (prstat));
11488 }
11489 #endif /* HAVE_PRSTATUS_T */
11490
11491 free (buf);
11492 return NULL;
11493 }
11494
11495 #if defined (HAVE_LWPSTATUS_T)
11496 char *
11497 elfcore_write_lwpstatus (bfd *abfd,
11498 char *buf,
11499 int *bufsiz,
11500 long pid,
11501 int cursig,
11502 const void *gregs)
11503 {
11504 lwpstatus_t lwpstat;
11505 const char *note_name = "CORE";
11506
11507 memset (&lwpstat, 0, sizeof (lwpstat));
11508 lwpstat.pr_lwpid = pid >> 16;
11509 lwpstat.pr_cursig = cursig;
11510 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11511 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11512 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11513 #if !defined(gregs)
11514 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11515 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11516 #else
11517 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11518 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11519 #endif
11520 #endif
11521 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11522 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11523 }
11524 #endif /* HAVE_LWPSTATUS_T */
11525
11526 #if defined (HAVE_PSTATUS_T)
11527 char *
11528 elfcore_write_pstatus (bfd *abfd,
11529 char *buf,
11530 int *bufsiz,
11531 long pid,
11532 int cursig ATTRIBUTE_UNUSED,
11533 const void *gregs ATTRIBUTE_UNUSED)
11534 {
11535 const char *note_name = "CORE";
11536 #if defined (HAVE_PSTATUS32_T)
11537 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11538
11539 if (bed->s->elfclass == ELFCLASS32)
11540 {
11541 pstatus32_t pstat;
11542
11543 memset (&pstat, 0, sizeof (pstat));
11544 pstat.pr_pid = pid & 0xffff;
11545 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11546 NT_PSTATUS, &pstat, sizeof (pstat));
11547 return buf;
11548 }
11549 else
11550 #endif
11551 {
11552 pstatus_t pstat;
11553
11554 memset (&pstat, 0, sizeof (pstat));
11555 pstat.pr_pid = pid & 0xffff;
11556 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11557 NT_PSTATUS, &pstat, sizeof (pstat));
11558 return buf;
11559 }
11560 }
11561 #endif /* HAVE_PSTATUS_T */
11562
11563 char *
11564 elfcore_write_prfpreg (bfd *abfd,
11565 char *buf,
11566 int *bufsiz,
11567 const void *fpregs,
11568 int size)
11569 {
11570 const char *note_name = "CORE";
11571 return elfcore_write_note (abfd, buf, bufsiz,
11572 note_name, NT_FPREGSET, fpregs, size);
11573 }
11574
11575 char *
11576 elfcore_write_prxfpreg (bfd *abfd,
11577 char *buf,
11578 int *bufsiz,
11579 const void *xfpregs,
11580 int size)
11581 {
11582 char *note_name = "LINUX";
11583 return elfcore_write_note (abfd, buf, bufsiz,
11584 note_name, NT_PRXFPREG, xfpregs, size);
11585 }
11586
11587 char *
11588 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11589 const void *xfpregs, int size)
11590 {
11591 char *note_name;
11592 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11593 note_name = "FreeBSD";
11594 else
11595 note_name = "LINUX";
11596 return elfcore_write_note (abfd, buf, bufsiz,
11597 note_name, NT_X86_XSTATE, xfpregs, size);
11598 }
11599
11600 char *
11601 elfcore_write_ppc_vmx (bfd *abfd,
11602 char *buf,
11603 int *bufsiz,
11604 const void *ppc_vmx,
11605 int size)
11606 {
11607 char *note_name = "LINUX";
11608 return elfcore_write_note (abfd, buf, bufsiz,
11609 note_name, NT_PPC_VMX, ppc_vmx, size);
11610 }
11611
11612 char *
11613 elfcore_write_ppc_vsx (bfd *abfd,
11614 char *buf,
11615 int *bufsiz,
11616 const void *ppc_vsx,
11617 int size)
11618 {
11619 char *note_name = "LINUX";
11620 return elfcore_write_note (abfd, buf, bufsiz,
11621 note_name, NT_PPC_VSX, ppc_vsx, size);
11622 }
11623
11624 char *
11625 elfcore_write_ppc_tar (bfd *abfd,
11626 char *buf,
11627 int *bufsiz,
11628 const void *ppc_tar,
11629 int size)
11630 {
11631 char *note_name = "LINUX";
11632 return elfcore_write_note (abfd, buf, bufsiz,
11633 note_name, NT_PPC_TAR, ppc_tar, size);
11634 }
11635
11636 char *
11637 elfcore_write_ppc_ppr (bfd *abfd,
11638 char *buf,
11639 int *bufsiz,
11640 const void *ppc_ppr,
11641 int size)
11642 {
11643 char *note_name = "LINUX";
11644 return elfcore_write_note (abfd, buf, bufsiz,
11645 note_name, NT_PPC_PPR, ppc_ppr, size);
11646 }
11647
11648 char *
11649 elfcore_write_ppc_dscr (bfd *abfd,
11650 char *buf,
11651 int *bufsiz,
11652 const void *ppc_dscr,
11653 int size)
11654 {
11655 char *note_name = "LINUX";
11656 return elfcore_write_note (abfd, buf, bufsiz,
11657 note_name, NT_PPC_DSCR, ppc_dscr, size);
11658 }
11659
11660 char *
11661 elfcore_write_ppc_ebb (bfd *abfd,
11662 char *buf,
11663 int *bufsiz,
11664 const void *ppc_ebb,
11665 int size)
11666 {
11667 char *note_name = "LINUX";
11668 return elfcore_write_note (abfd, buf, bufsiz,
11669 note_name, NT_PPC_EBB, ppc_ebb, size);
11670 }
11671
11672 char *
11673 elfcore_write_ppc_pmu (bfd *abfd,
11674 char *buf,
11675 int *bufsiz,
11676 const void *ppc_pmu,
11677 int size)
11678 {
11679 char *note_name = "LINUX";
11680 return elfcore_write_note (abfd, buf, bufsiz,
11681 note_name, NT_PPC_PMU, ppc_pmu, size);
11682 }
11683
11684 char *
11685 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11686 char *buf,
11687 int *bufsiz,
11688 const void *ppc_tm_cgpr,
11689 int size)
11690 {
11691 char *note_name = "LINUX";
11692 return elfcore_write_note (abfd, buf, bufsiz,
11693 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11694 }
11695
11696 char *
11697 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11698 char *buf,
11699 int *bufsiz,
11700 const void *ppc_tm_cfpr,
11701 int size)
11702 {
11703 char *note_name = "LINUX";
11704 return elfcore_write_note (abfd, buf, bufsiz,
11705 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11706 }
11707
11708 char *
11709 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11710 char *buf,
11711 int *bufsiz,
11712 const void *ppc_tm_cvmx,
11713 int size)
11714 {
11715 char *note_name = "LINUX";
11716 return elfcore_write_note (abfd, buf, bufsiz,
11717 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11718 }
11719
11720 char *
11721 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11722 char *buf,
11723 int *bufsiz,
11724 const void *ppc_tm_cvsx,
11725 int size)
11726 {
11727 char *note_name = "LINUX";
11728 return elfcore_write_note (abfd, buf, bufsiz,
11729 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11730 }
11731
11732 char *
11733 elfcore_write_ppc_tm_spr (bfd *abfd,
11734 char *buf,
11735 int *bufsiz,
11736 const void *ppc_tm_spr,
11737 int size)
11738 {
11739 char *note_name = "LINUX";
11740 return elfcore_write_note (abfd, buf, bufsiz,
11741 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11742 }
11743
11744 char *
11745 elfcore_write_ppc_tm_ctar (bfd *abfd,
11746 char *buf,
11747 int *bufsiz,
11748 const void *ppc_tm_ctar,
11749 int size)
11750 {
11751 char *note_name = "LINUX";
11752 return elfcore_write_note (abfd, buf, bufsiz,
11753 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11754 }
11755
11756 char *
11757 elfcore_write_ppc_tm_cppr (bfd *abfd,
11758 char *buf,
11759 int *bufsiz,
11760 const void *ppc_tm_cppr,
11761 int size)
11762 {
11763 char *note_name = "LINUX";
11764 return elfcore_write_note (abfd, buf, bufsiz,
11765 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11766 }
11767
11768 char *
11769 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11770 char *buf,
11771 int *bufsiz,
11772 const void *ppc_tm_cdscr,
11773 int size)
11774 {
11775 char *note_name = "LINUX";
11776 return elfcore_write_note (abfd, buf, bufsiz,
11777 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11778 }
11779
11780 static char *
11781 elfcore_write_s390_high_gprs (bfd *abfd,
11782 char *buf,
11783 int *bufsiz,
11784 const void *s390_high_gprs,
11785 int size)
11786 {
11787 char *note_name = "LINUX";
11788 return elfcore_write_note (abfd, buf, bufsiz,
11789 note_name, NT_S390_HIGH_GPRS,
11790 s390_high_gprs, size);
11791 }
11792
11793 char *
11794 elfcore_write_s390_timer (bfd *abfd,
11795 char *buf,
11796 int *bufsiz,
11797 const void *s390_timer,
11798 int size)
11799 {
11800 char *note_name = "LINUX";
11801 return elfcore_write_note (abfd, buf, bufsiz,
11802 note_name, NT_S390_TIMER, s390_timer, size);
11803 }
11804
11805 char *
11806 elfcore_write_s390_todcmp (bfd *abfd,
11807 char *buf,
11808 int *bufsiz,
11809 const void *s390_todcmp,
11810 int size)
11811 {
11812 char *note_name = "LINUX";
11813 return elfcore_write_note (abfd, buf, bufsiz,
11814 note_name, NT_S390_TODCMP, s390_todcmp, size);
11815 }
11816
11817 char *
11818 elfcore_write_s390_todpreg (bfd *abfd,
11819 char *buf,
11820 int *bufsiz,
11821 const void *s390_todpreg,
11822 int size)
11823 {
11824 char *note_name = "LINUX";
11825 return elfcore_write_note (abfd, buf, bufsiz,
11826 note_name, NT_S390_TODPREG, s390_todpreg, size);
11827 }
11828
11829 char *
11830 elfcore_write_s390_ctrs (bfd *abfd,
11831 char *buf,
11832 int *bufsiz,
11833 const void *s390_ctrs,
11834 int size)
11835 {
11836 char *note_name = "LINUX";
11837 return elfcore_write_note (abfd, buf, bufsiz,
11838 note_name, NT_S390_CTRS, s390_ctrs, size);
11839 }
11840
11841 char *
11842 elfcore_write_s390_prefix (bfd *abfd,
11843 char *buf,
11844 int *bufsiz,
11845 const void *s390_prefix,
11846 int size)
11847 {
11848 char *note_name = "LINUX";
11849 return elfcore_write_note (abfd, buf, bufsiz,
11850 note_name, NT_S390_PREFIX, s390_prefix, size);
11851 }
11852
11853 char *
11854 elfcore_write_s390_last_break (bfd *abfd,
11855 char *buf,
11856 int *bufsiz,
11857 const void *s390_last_break,
11858 int size)
11859 {
11860 char *note_name = "LINUX";
11861 return elfcore_write_note (abfd, buf, bufsiz,
11862 note_name, NT_S390_LAST_BREAK,
11863 s390_last_break, size);
11864 }
11865
11866 char *
11867 elfcore_write_s390_system_call (bfd *abfd,
11868 char *buf,
11869 int *bufsiz,
11870 const void *s390_system_call,
11871 int size)
11872 {
11873 char *note_name = "LINUX";
11874 return elfcore_write_note (abfd, buf, bufsiz,
11875 note_name, NT_S390_SYSTEM_CALL,
11876 s390_system_call, size);
11877 }
11878
11879 char *
11880 elfcore_write_s390_tdb (bfd *abfd,
11881 char *buf,
11882 int *bufsiz,
11883 const void *s390_tdb,
11884 int size)
11885 {
11886 char *note_name = "LINUX";
11887 return elfcore_write_note (abfd, buf, bufsiz,
11888 note_name, NT_S390_TDB, s390_tdb, size);
11889 }
11890
11891 char *
11892 elfcore_write_s390_vxrs_low (bfd *abfd,
11893 char *buf,
11894 int *bufsiz,
11895 const void *s390_vxrs_low,
11896 int size)
11897 {
11898 char *note_name = "LINUX";
11899 return elfcore_write_note (abfd, buf, bufsiz,
11900 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11901 }
11902
11903 char *
11904 elfcore_write_s390_vxrs_high (bfd *abfd,
11905 char *buf,
11906 int *bufsiz,
11907 const void *s390_vxrs_high,
11908 int size)
11909 {
11910 char *note_name = "LINUX";
11911 return elfcore_write_note (abfd, buf, bufsiz,
11912 note_name, NT_S390_VXRS_HIGH,
11913 s390_vxrs_high, size);
11914 }
11915
11916 char *
11917 elfcore_write_s390_gs_cb (bfd *abfd,
11918 char *buf,
11919 int *bufsiz,
11920 const void *s390_gs_cb,
11921 int size)
11922 {
11923 char *note_name = "LINUX";
11924 return elfcore_write_note (abfd, buf, bufsiz,
11925 note_name, NT_S390_GS_CB,
11926 s390_gs_cb, size);
11927 }
11928
11929 char *
11930 elfcore_write_s390_gs_bc (bfd *abfd,
11931 char *buf,
11932 int *bufsiz,
11933 const void *s390_gs_bc,
11934 int size)
11935 {
11936 char *note_name = "LINUX";
11937 return elfcore_write_note (abfd, buf, bufsiz,
11938 note_name, NT_S390_GS_BC,
11939 s390_gs_bc, size);
11940 }
11941
11942 char *
11943 elfcore_write_arm_vfp (bfd *abfd,
11944 char *buf,
11945 int *bufsiz,
11946 const void *arm_vfp,
11947 int size)
11948 {
11949 char *note_name = "LINUX";
11950 return elfcore_write_note (abfd, buf, bufsiz,
11951 note_name, NT_ARM_VFP, arm_vfp, size);
11952 }
11953
11954 char *
11955 elfcore_write_aarch_tls (bfd *abfd,
11956 char *buf,
11957 int *bufsiz,
11958 const void *aarch_tls,
11959 int size)
11960 {
11961 char *note_name = "LINUX";
11962 return elfcore_write_note (abfd, buf, bufsiz,
11963 note_name, NT_ARM_TLS, aarch_tls, size);
11964 }
11965
11966 char *
11967 elfcore_write_aarch_hw_break (bfd *abfd,
11968 char *buf,
11969 int *bufsiz,
11970 const void *aarch_hw_break,
11971 int size)
11972 {
11973 char *note_name = "LINUX";
11974 return elfcore_write_note (abfd, buf, bufsiz,
11975 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11976 }
11977
11978 char *
11979 elfcore_write_aarch_hw_watch (bfd *abfd,
11980 char *buf,
11981 int *bufsiz,
11982 const void *aarch_hw_watch,
11983 int size)
11984 {
11985 char *note_name = "LINUX";
11986 return elfcore_write_note (abfd, buf, bufsiz,
11987 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11988 }
11989
11990 char *
11991 elfcore_write_aarch_sve (bfd *abfd,
11992 char *buf,
11993 int *bufsiz,
11994 const void *aarch_sve,
11995 int size)
11996 {
11997 char *note_name = "LINUX";
11998 return elfcore_write_note (abfd, buf, bufsiz,
11999 note_name, NT_ARM_SVE, aarch_sve, size);
12000 }
12001
12002 char *
12003 elfcore_write_aarch_pauth (bfd *abfd,
12004 char *buf,
12005 int *bufsiz,
12006 const void *aarch_pauth,
12007 int size)
12008 {
12009 char *note_name = "LINUX";
12010 return elfcore_write_note (abfd, buf, bufsiz,
12011 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
12012 }
12013
12014 char *
12015 elfcore_write_aarch_mte (bfd *abfd,
12016 char *buf,
12017 int *bufsiz,
12018 const void *aarch_mte,
12019 int size)
12020 {
12021 char *note_name = "LINUX";
12022 return elfcore_write_note (abfd, buf, bufsiz,
12023 note_name, NT_ARM_TAGGED_ADDR_CTRL,
12024 aarch_mte,
12025 size);
12026 }
12027
12028 char *
12029 elfcore_write_arc_v2 (bfd *abfd,
12030 char *buf,
12031 int *bufsiz,
12032 const void *arc_v2,
12033 int size)
12034 {
12035 char *note_name = "LINUX";
12036 return elfcore_write_note (abfd, buf, bufsiz,
12037 note_name, NT_ARC_V2, arc_v2, size);
12038 }
12039
12040 /* Write the buffer of csr values in CSRS (length SIZE) into the note
12041 buffer BUF and update *BUFSIZ. ABFD is the bfd the note is being
12042 written into. Return a pointer to the new start of the note buffer, to
12043 replace BUF which may no longer be valid. */
12044
12045 char *
12046 elfcore_write_riscv_csr (bfd *abfd,
12047 char *buf,
12048 int *bufsiz,
12049 const void *csrs,
12050 int size)
12051 {
12052 const char *note_name = "GDB";
12053 return elfcore_write_note (abfd, buf, bufsiz,
12054 note_name, NT_RISCV_CSR, csrs, size);
12055 }
12056
12057 /* Write the target description (a string) pointed to by TDESC, length
12058 SIZE, into the note buffer BUF, and update *BUFSIZ. ABFD is the bfd the
12059 note is being written into. Return a pointer to the new start of the
12060 note buffer, to replace BUF which may no longer be valid. */
12061
12062 char *
12063 elfcore_write_gdb_tdesc (bfd *abfd,
12064 char *buf,
12065 int *bufsiz,
12066 const void *tdesc,
12067 int size)
12068 {
12069 const char *note_name = "GDB";
12070 return elfcore_write_note (abfd, buf, bufsiz,
12071 note_name, NT_GDB_TDESC, tdesc, size);
12072 }
12073
12074 char *
12075 elfcore_write_register_note (bfd *abfd,
12076 char *buf,
12077 int *bufsiz,
12078 const char *section,
12079 const void *data,
12080 int size)
12081 {
12082 if (strcmp (section, ".reg2") == 0)
12083 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
12084 if (strcmp (section, ".reg-xfp") == 0)
12085 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
12086 if (strcmp (section, ".reg-xstate") == 0)
12087 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
12088 if (strcmp (section, ".reg-ppc-vmx") == 0)
12089 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
12090 if (strcmp (section, ".reg-ppc-vsx") == 0)
12091 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
12092 if (strcmp (section, ".reg-ppc-tar") == 0)
12093 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
12094 if (strcmp (section, ".reg-ppc-ppr") == 0)
12095 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
12096 if (strcmp (section, ".reg-ppc-dscr") == 0)
12097 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
12098 if (strcmp (section, ".reg-ppc-ebb") == 0)
12099 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
12100 if (strcmp (section, ".reg-ppc-pmu") == 0)
12101 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
12102 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
12103 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
12104 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
12105 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
12106 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
12107 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
12108 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
12109 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
12110 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
12111 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
12112 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
12113 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
12114 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
12115 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
12116 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
12117 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
12118 if (strcmp (section, ".reg-s390-high-gprs") == 0)
12119 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
12120 if (strcmp (section, ".reg-s390-timer") == 0)
12121 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
12122 if (strcmp (section, ".reg-s390-todcmp") == 0)
12123 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
12124 if (strcmp (section, ".reg-s390-todpreg") == 0)
12125 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
12126 if (strcmp (section, ".reg-s390-ctrs") == 0)
12127 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
12128 if (strcmp (section, ".reg-s390-prefix") == 0)
12129 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12130 if (strcmp (section, ".reg-s390-last-break") == 0)
12131 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12132 if (strcmp (section, ".reg-s390-system-call") == 0)
12133 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12134 if (strcmp (section, ".reg-s390-tdb") == 0)
12135 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12136 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12137 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12138 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12139 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12140 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12141 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12142 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12143 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12144 if (strcmp (section, ".reg-arm-vfp") == 0)
12145 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12146 if (strcmp (section, ".reg-aarch-tls") == 0)
12147 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12148 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12149 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12150 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12151 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12152 if (strcmp (section, ".reg-aarch-sve") == 0)
12153 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12154 if (strcmp (section, ".reg-aarch-pauth") == 0)
12155 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12156 if (strcmp (section, ".reg-aarch-mte") == 0)
12157 return elfcore_write_aarch_mte (abfd, buf, bufsiz, data, size);
12158 if (strcmp (section, ".reg-arc-v2") == 0)
12159 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12160 if (strcmp (section, ".gdb-tdesc") == 0)
12161 return elfcore_write_gdb_tdesc (abfd, buf, bufsiz, data, size);
12162 if (strcmp (section, ".reg-riscv-csr") == 0)
12163 return elfcore_write_riscv_csr (abfd, buf, bufsiz, data, size);
12164 return NULL;
12165 }
12166
12167 char *
12168 elfcore_write_file_note (bfd *obfd, char *note_data, int *note_size,
12169 const void *buf, int bufsiz)
12170 {
12171 return elfcore_write_note (obfd, note_data, note_size,
12172 "CORE", NT_FILE, buf, bufsiz);
12173 }
12174
12175 static bool
12176 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12177 size_t align)
12178 {
12179 char *p;
12180
12181 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12182 gABI specifies that PT_NOTE alignment should be aligned to 4
12183 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12184 align is less than 4, we use 4 byte alignment. */
12185 if (align < 4)
12186 align = 4;
12187 if (align != 4 && align != 8)
12188 return false;
12189
12190 p = buf;
12191 while (p < buf + size)
12192 {
12193 Elf_External_Note *xnp = (Elf_External_Note *) p;
12194 Elf_Internal_Note in;
12195
12196 if (offsetof (Elf_External_Note, name) > buf - p + size)
12197 return false;
12198
12199 in.type = H_GET_32 (abfd, xnp->type);
12200
12201 in.namesz = H_GET_32 (abfd, xnp->namesz);
12202 in.namedata = xnp->name;
12203 if (in.namesz > buf - in.namedata + size)
12204 return false;
12205
12206 in.descsz = H_GET_32 (abfd, xnp->descsz);
12207 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12208 in.descpos = offset + (in.descdata - buf);
12209 if (in.descsz != 0
12210 && (in.descdata >= buf + size
12211 || in.descsz > buf - in.descdata + size))
12212 return false;
12213
12214 switch (bfd_get_format (abfd))
12215 {
12216 default:
12217 return true;
12218
12219 case bfd_core:
12220 {
12221 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12222 struct
12223 {
12224 const char * string;
12225 size_t len;
12226 bool (*func) (bfd *, Elf_Internal_Note *);
12227 }
12228 grokers[] =
12229 {
12230 GROKER_ELEMENT ("", elfcore_grok_note),
12231 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12232 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12233 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12234 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12235 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12236 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12237 };
12238 #undef GROKER_ELEMENT
12239 int i;
12240
12241 for (i = ARRAY_SIZE (grokers); i--;)
12242 {
12243 if (in.namesz >= grokers[i].len
12244 && strncmp (in.namedata, grokers[i].string,
12245 grokers[i].len) == 0)
12246 {
12247 if (! grokers[i].func (abfd, & in))
12248 return false;
12249 break;
12250 }
12251 }
12252 break;
12253 }
12254
12255 case bfd_object:
12256 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12257 {
12258 if (! elfobj_grok_gnu_note (abfd, &in))
12259 return false;
12260 }
12261 else if (in.namesz == sizeof "stapsdt"
12262 && strcmp (in.namedata, "stapsdt") == 0)
12263 {
12264 if (! elfobj_grok_stapsdt_note (abfd, &in))
12265 return false;
12266 }
12267 break;
12268 }
12269
12270 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12271 }
12272
12273 return true;
12274 }
12275
12276 bool
12277 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12278 size_t align)
12279 {
12280 char *buf;
12281
12282 if (size == 0 || (size + 1) == 0)
12283 return true;
12284
12285 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12286 return false;
12287
12288 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12289 if (buf == NULL)
12290 return false;
12291
12292 /* PR 17512: file: ec08f814
12293 0-termintate the buffer so that string searches will not overflow. */
12294 buf[size] = 0;
12295
12296 if (!elf_parse_notes (abfd, buf, size, offset, align))
12297 {
12298 free (buf);
12299 return false;
12300 }
12301
12302 free (buf);
12303 return true;
12304 }
12305 \f
12306 /* Providing external access to the ELF program header table. */
12307
12308 /* Return an upper bound on the number of bytes required to store a
12309 copy of ABFD's program header table entries. Return -1 if an error
12310 occurs; bfd_get_error will return an appropriate code. */
12311
12312 long
12313 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12314 {
12315 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12316 {
12317 bfd_set_error (bfd_error_wrong_format);
12318 return -1;
12319 }
12320
12321 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12322 }
12323
12324 /* Copy ABFD's program header table entries to *PHDRS. The entries
12325 will be stored as an array of Elf_Internal_Phdr structures, as
12326 defined in include/elf/internal.h. To find out how large the
12327 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12328
12329 Return the number of program header table entries read, or -1 if an
12330 error occurs; bfd_get_error will return an appropriate code. */
12331
12332 int
12333 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12334 {
12335 int num_phdrs;
12336
12337 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12338 {
12339 bfd_set_error (bfd_error_wrong_format);
12340 return -1;
12341 }
12342
12343 num_phdrs = elf_elfheader (abfd)->e_phnum;
12344 if (num_phdrs != 0)
12345 memcpy (phdrs, elf_tdata (abfd)->phdr,
12346 num_phdrs * sizeof (Elf_Internal_Phdr));
12347
12348 return num_phdrs;
12349 }
12350
12351 enum elf_reloc_type_class
12352 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12353 const asection *rel_sec ATTRIBUTE_UNUSED,
12354 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12355 {
12356 return reloc_class_normal;
12357 }
12358
12359 /* For RELA architectures, return the relocation value for a
12360 relocation against a local symbol. */
12361
12362 bfd_vma
12363 _bfd_elf_rela_local_sym (bfd *abfd,
12364 Elf_Internal_Sym *sym,
12365 asection **psec,
12366 Elf_Internal_Rela *rel)
12367 {
12368 asection *sec = *psec;
12369 bfd_vma relocation;
12370
12371 relocation = (sec->output_section->vma
12372 + sec->output_offset
12373 + sym->st_value);
12374 if ((sec->flags & SEC_MERGE)
12375 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12376 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12377 {
12378 rel->r_addend =
12379 _bfd_merged_section_offset (abfd, psec,
12380 elf_section_data (sec)->sec_info,
12381 sym->st_value + rel->r_addend);
12382 if (sec != *psec)
12383 {
12384 /* If we have changed the section, and our original section is
12385 marked with SEC_EXCLUDE, it means that the original
12386 SEC_MERGE section has been completely subsumed in some
12387 other SEC_MERGE section. In this case, we need to leave
12388 some info around for --emit-relocs. */
12389 if ((sec->flags & SEC_EXCLUDE) != 0)
12390 sec->kept_section = *psec;
12391 sec = *psec;
12392 }
12393 rel->r_addend -= relocation;
12394 rel->r_addend += sec->output_section->vma + sec->output_offset;
12395 }
12396 return relocation;
12397 }
12398
12399 bfd_vma
12400 _bfd_elf_rel_local_sym (bfd *abfd,
12401 Elf_Internal_Sym *sym,
12402 asection **psec,
12403 bfd_vma addend)
12404 {
12405 asection *sec = *psec;
12406
12407 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12408 return sym->st_value + addend;
12409
12410 return _bfd_merged_section_offset (abfd, psec,
12411 elf_section_data (sec)->sec_info,
12412 sym->st_value + addend);
12413 }
12414
12415 /* Adjust an address within a section. Given OFFSET within SEC, return
12416 the new offset within the section, based upon changes made to the
12417 section. Returns -1 if the offset is now invalid.
12418 The offset (in abnd out) is in target sized bytes, however big a
12419 byte may be. */
12420
12421 bfd_vma
12422 _bfd_elf_section_offset (bfd *abfd,
12423 struct bfd_link_info *info,
12424 asection *sec,
12425 bfd_vma offset)
12426 {
12427 switch (sec->sec_info_type)
12428 {
12429 case SEC_INFO_TYPE_STABS:
12430 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12431 offset);
12432 case SEC_INFO_TYPE_EH_FRAME:
12433 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12434
12435 default:
12436 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12437 {
12438 /* Reverse the offset. */
12439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12440 bfd_size_type address_size = bed->s->arch_size / 8;
12441
12442 /* address_size and sec->size are in octets. Convert
12443 to bytes before subtracting the original offset. */
12444 offset = ((sec->size - address_size)
12445 / bfd_octets_per_byte (abfd, sec) - offset);
12446 }
12447 return offset;
12448 }
12449 }
12450 \f
12451 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12452 reconstruct an ELF file by reading the segments out of remote memory
12453 based on the ELF file header at EHDR_VMA and the ELF program headers it
12454 points to. If not null, *LOADBASEP is filled in with the difference
12455 between the VMAs from which the segments were read, and the VMAs the
12456 file headers (and hence BFD's idea of each section's VMA) put them at.
12457
12458 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12459 remote memory at target address VMA into the local buffer at MYADDR; it
12460 should return zero on success or an `errno' code on failure. TEMPL must
12461 be a BFD for an ELF target with the word size and byte order found in
12462 the remote memory. */
12463
12464 bfd *
12465 bfd_elf_bfd_from_remote_memory
12466 (bfd *templ,
12467 bfd_vma ehdr_vma,
12468 bfd_size_type size,
12469 bfd_vma *loadbasep,
12470 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12471 {
12472 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12473 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12474 }
12475 \f
12476 long
12477 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12478 long symcount ATTRIBUTE_UNUSED,
12479 asymbol **syms ATTRIBUTE_UNUSED,
12480 long dynsymcount,
12481 asymbol **dynsyms,
12482 asymbol **ret)
12483 {
12484 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12485 asection *relplt;
12486 asymbol *s;
12487 const char *relplt_name;
12488 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
12489 arelent *p;
12490 long count, i, n;
12491 size_t size;
12492 Elf_Internal_Shdr *hdr;
12493 char *names;
12494 asection *plt;
12495
12496 *ret = NULL;
12497
12498 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12499 return 0;
12500
12501 if (dynsymcount <= 0)
12502 return 0;
12503
12504 if (!bed->plt_sym_val)
12505 return 0;
12506
12507 relplt_name = bed->relplt_name;
12508 if (relplt_name == NULL)
12509 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12510 relplt = bfd_get_section_by_name (abfd, relplt_name);
12511 if (relplt == NULL)
12512 return 0;
12513
12514 hdr = &elf_section_data (relplt)->this_hdr;
12515 if (hdr->sh_link != elf_dynsymtab (abfd)
12516 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12517 return 0;
12518
12519 plt = bfd_get_section_by_name (abfd, ".plt");
12520 if (plt == NULL)
12521 return 0;
12522
12523 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12524 if (! (*slurp_relocs) (abfd, relplt, dynsyms, true))
12525 return -1;
12526
12527 count = relplt->size / hdr->sh_entsize;
12528 size = count * sizeof (asymbol);
12529 p = relplt->relocation;
12530 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12531 {
12532 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12533 if (p->addend != 0)
12534 {
12535 #ifdef BFD64
12536 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12537 #else
12538 size += sizeof ("+0x") - 1 + 8;
12539 #endif
12540 }
12541 }
12542
12543 s = *ret = (asymbol *) bfd_malloc (size);
12544 if (s == NULL)
12545 return -1;
12546
12547 names = (char *) (s + count);
12548 p = relplt->relocation;
12549 n = 0;
12550 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12551 {
12552 size_t len;
12553 bfd_vma addr;
12554
12555 addr = bed->plt_sym_val (i, plt, p);
12556 if (addr == (bfd_vma) -1)
12557 continue;
12558
12559 *s = **p->sym_ptr_ptr;
12560 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12561 we are defining a symbol, ensure one of them is set. */
12562 if ((s->flags & BSF_LOCAL) == 0)
12563 s->flags |= BSF_GLOBAL;
12564 s->flags |= BSF_SYNTHETIC;
12565 s->section = plt;
12566 s->value = addr - plt->vma;
12567 s->name = names;
12568 s->udata.p = NULL;
12569 len = strlen ((*p->sym_ptr_ptr)->name);
12570 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12571 names += len;
12572 if (p->addend != 0)
12573 {
12574 char buf[30], *a;
12575
12576 memcpy (names, "+0x", sizeof ("+0x") - 1);
12577 names += sizeof ("+0x") - 1;
12578 bfd_sprintf_vma (abfd, buf, p->addend);
12579 for (a = buf; *a == '0'; ++a)
12580 ;
12581 len = strlen (a);
12582 memcpy (names, a, len);
12583 names += len;
12584 }
12585 memcpy (names, "@plt", sizeof ("@plt"));
12586 names += sizeof ("@plt");
12587 ++s, ++n;
12588 }
12589
12590 return n;
12591 }
12592
12593 /* It is only used by x86-64 so far.
12594 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12595 but current usage would allow all of _bfd_std_section to be zero. */
12596 static const asymbol lcomm_sym
12597 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12598 asection _bfd_elf_large_com_section
12599 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12600 "LARGE_COMMON", 0, SEC_IS_COMMON);
12601
12602 bool
12603 _bfd_elf_final_write_processing (bfd *abfd)
12604 {
12605 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12606
12607 i_ehdrp = elf_elfheader (abfd);
12608
12609 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12610 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12611
12612 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12613 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12614 or STB_GNU_UNIQUE binding. */
12615 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12616 {
12617 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12618 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12619 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12620 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12621 {
12622 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12623 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12624 "and FreeBSD targets"));
12625 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12626 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12627 "only by GNU and FreeBSD targets"));
12628 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12629 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12630 "only by GNU and FreeBSD targets"));
12631 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12632 _bfd_error_handler (_("GNU_RETAIN section is supported "
12633 "only by GNU and FreeBSD targets"));
12634 bfd_set_error (bfd_error_sorry);
12635 return false;
12636 }
12637 }
12638 return true;
12639 }
12640
12641
12642 /* Return TRUE for ELF symbol types that represent functions.
12643 This is the default version of this function, which is sufficient for
12644 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12645
12646 bool
12647 _bfd_elf_is_function_type (unsigned int type)
12648 {
12649 return (type == STT_FUNC
12650 || type == STT_GNU_IFUNC);
12651 }
12652
12653 /* If the ELF symbol SYM might be a function in SEC, return the
12654 function size and set *CODE_OFF to the function's entry point,
12655 otherwise return zero. */
12656
12657 bfd_size_type
12658 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12659 bfd_vma *code_off)
12660 {
12661 bfd_size_type size;
12662 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
12663
12664 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12665 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12666 || sym->section != sec)
12667 return 0;
12668
12669 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
12670
12671 /* In theory we should check that the symbol's type satisfies
12672 _bfd_elf_is_function_type(), but there are some function-like
12673 symbols which would fail this test. (eg _start). Instead
12674 we check for hidden, local, notype symbols with zero size.
12675 This type of symbol is generated by the annobin plugin for gcc
12676 and clang, and should not be considered to be a function symbol. */
12677 if (size == 0
12678 && ((sym->flags & (BSF_SYNTHETIC | BSF_LOCAL)) == BSF_LOCAL)
12679 && ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info) == STT_NOTYPE
12680 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
12681 return 0;
12682
12683 *code_off = sym->value;
12684 /* Do not return 0 for the function's size. */
12685 return size ? size : 1;
12686 }
12687
12688 /* Set to non-zero to enable some debug messages. */
12689 #define DEBUG_SECONDARY_RELOCS 0
12690
12691 /* An internal-to-the-bfd-library only section type
12692 used to indicate a cached secondary reloc section. */
12693 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12694
12695 /* Create a BFD section to hold a secondary reloc section. */
12696
12697 bool
12698 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12699 Elf_Internal_Shdr *hdr,
12700 const char * name,
12701 unsigned int shindex)
12702 {
12703 /* We only support RELA secondary relocs. */
12704 if (hdr->sh_type != SHT_RELA)
12705 return false;
12706
12707 #if DEBUG_SECONDARY_RELOCS
12708 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12709 #endif
12710 hdr->sh_type = SHT_SECONDARY_RELOC;
12711 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12712 }
12713
12714 /* Read in any secondary relocs associated with SEC. */
12715
12716 bool
12717 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12718 asection * sec,
12719 asymbol ** symbols,
12720 bool dynamic)
12721 {
12722 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12723 asection * relsec;
12724 bool result = true;
12725 bfd_vma (*r_sym) (bfd_vma);
12726
12727 #if BFD_DEFAULT_TARGET_SIZE > 32
12728 if (bfd_arch_bits_per_address (abfd) != 32)
12729 r_sym = elf64_r_sym;
12730 else
12731 #endif
12732 r_sym = elf32_r_sym;
12733
12734 if (!elf_section_data (sec)->has_secondary_relocs)
12735 return true;
12736
12737 /* Discover if there are any secondary reloc sections
12738 associated with SEC. */
12739 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12740 {
12741 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12742
12743 if (hdr->sh_type == SHT_SECONDARY_RELOC
12744 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
12745 && (hdr->sh_entsize == ebd->s->sizeof_rel
12746 || hdr->sh_entsize == ebd->s->sizeof_rela))
12747 {
12748 bfd_byte * native_relocs;
12749 bfd_byte * native_reloc;
12750 arelent * internal_relocs;
12751 arelent * internal_reloc;
12752 unsigned int i;
12753 unsigned int entsize;
12754 unsigned int symcount;
12755 unsigned int reloc_count;
12756 size_t amt;
12757
12758 if (ebd->elf_info_to_howto == NULL)
12759 return false;
12760
12761 #if DEBUG_SECONDARY_RELOCS
12762 fprintf (stderr, "read secondary relocs for %s from %s\n",
12763 sec->name, relsec->name);
12764 #endif
12765 entsize = hdr->sh_entsize;
12766
12767 native_relocs = bfd_malloc (hdr->sh_size);
12768 if (native_relocs == NULL)
12769 {
12770 result = false;
12771 continue;
12772 }
12773
12774 reloc_count = NUM_SHDR_ENTRIES (hdr);
12775 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12776 {
12777 free (native_relocs);
12778 bfd_set_error (bfd_error_file_too_big);
12779 result = false;
12780 continue;
12781 }
12782
12783 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12784 if (internal_relocs == NULL)
12785 {
12786 free (native_relocs);
12787 result = false;
12788 continue;
12789 }
12790
12791 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12792 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12793 != hdr->sh_size))
12794 {
12795 free (native_relocs);
12796 /* The internal_relocs will be freed when
12797 the memory for the bfd is released. */
12798 result = false;
12799 continue;
12800 }
12801
12802 if (dynamic)
12803 symcount = bfd_get_dynamic_symcount (abfd);
12804 else
12805 symcount = bfd_get_symcount (abfd);
12806
12807 for (i = 0, internal_reloc = internal_relocs,
12808 native_reloc = native_relocs;
12809 i < reloc_count;
12810 i++, internal_reloc++, native_reloc += entsize)
12811 {
12812 bool res;
12813 Elf_Internal_Rela rela;
12814
12815 if (entsize == ebd->s->sizeof_rel)
12816 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
12817 else /* entsize == ebd->s->sizeof_rela */
12818 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12819
12820 /* The address of an ELF reloc is section relative for an object
12821 file, and absolute for an executable file or shared library.
12822 The address of a normal BFD reloc is always section relative,
12823 and the address of a dynamic reloc is absolute.. */
12824 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12825 internal_reloc->address = rela.r_offset;
12826 else
12827 internal_reloc->address = rela.r_offset - sec->vma;
12828
12829 if (r_sym (rela.r_info) == STN_UNDEF)
12830 {
12831 /* FIXME: This and the error case below mean that we
12832 have a symbol on relocs that is not elf_symbol_type. */
12833 internal_reloc->sym_ptr_ptr =
12834 bfd_abs_section_ptr->symbol_ptr_ptr;
12835 }
12836 else if (r_sym (rela.r_info) > symcount)
12837 {
12838 _bfd_error_handler
12839 /* xgettext:c-format */
12840 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12841 abfd, sec, i, (long) r_sym (rela.r_info));
12842 bfd_set_error (bfd_error_bad_value);
12843 internal_reloc->sym_ptr_ptr =
12844 bfd_abs_section_ptr->symbol_ptr_ptr;
12845 result = false;
12846 }
12847 else
12848 {
12849 asymbol **ps;
12850
12851 ps = symbols + r_sym (rela.r_info) - 1;
12852 internal_reloc->sym_ptr_ptr = ps;
12853 /* Make sure that this symbol is not removed by strip. */
12854 (*ps)->flags |= BSF_KEEP;
12855 }
12856
12857 internal_reloc->addend = rela.r_addend;
12858
12859 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12860 if (! res || internal_reloc->howto == NULL)
12861 {
12862 #if DEBUG_SECONDARY_RELOCS
12863 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12864 rela.r_info);
12865 #endif
12866 result = false;
12867 }
12868 }
12869
12870 free (native_relocs);
12871 /* Store the internal relocs. */
12872 elf_section_data (relsec)->sec_info = internal_relocs;
12873 }
12874 }
12875
12876 return result;
12877 }
12878
12879 /* Set the ELF section header fields of an output secondary reloc section. */
12880
12881 bool
12882 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12883 bfd * obfd ATTRIBUTE_UNUSED,
12884 const Elf_Internal_Shdr * isection,
12885 Elf_Internal_Shdr * osection)
12886 {
12887 asection * isec;
12888 asection * osec;
12889 struct bfd_elf_section_data * esd;
12890
12891 if (isection == NULL)
12892 return false;
12893
12894 if (isection->sh_type != SHT_SECONDARY_RELOC)
12895 return true;
12896
12897 isec = isection->bfd_section;
12898 if (isec == NULL)
12899 return false;
12900
12901 osec = osection->bfd_section;
12902 if (osec == NULL)
12903 return false;
12904
12905 esd = elf_section_data (osec);
12906 BFD_ASSERT (esd->sec_info == NULL);
12907 esd->sec_info = elf_section_data (isec)->sec_info;
12908 osection->sh_type = SHT_RELA;
12909 osection->sh_link = elf_onesymtab (obfd);
12910 if (osection->sh_link == 0)
12911 {
12912 /* There is no symbol table - we are hosed... */
12913 _bfd_error_handler
12914 /* xgettext:c-format */
12915 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12916 obfd, osec);
12917 bfd_set_error (bfd_error_bad_value);
12918 return false;
12919 }
12920
12921 /* Find the output section that corresponds to the isection's sh_info link. */
12922 if (isection->sh_info == 0
12923 || isection->sh_info >= elf_numsections (ibfd))
12924 {
12925 _bfd_error_handler
12926 /* xgettext:c-format */
12927 (_("%pB(%pA): info section index is invalid"),
12928 obfd, osec);
12929 bfd_set_error (bfd_error_bad_value);
12930 return false;
12931 }
12932
12933 isection = elf_elfsections (ibfd)[isection->sh_info];
12934
12935 if (isection == NULL
12936 || isection->bfd_section == NULL
12937 || isection->bfd_section->output_section == NULL)
12938 {
12939 _bfd_error_handler
12940 /* xgettext:c-format */
12941 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12942 obfd, osec);
12943 bfd_set_error (bfd_error_bad_value);
12944 return false;
12945 }
12946
12947 esd = elf_section_data (isection->bfd_section->output_section);
12948 BFD_ASSERT (esd != NULL);
12949 osection->sh_info = esd->this_idx;
12950 esd->has_secondary_relocs = true;
12951 #if DEBUG_SECONDARY_RELOCS
12952 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12953 osec->name, osection->sh_link, osection->sh_info);
12954 fprintf (stderr, "mark section %s as having secondary relocs\n",
12955 bfd_section_name (isection->bfd_section->output_section));
12956 #endif
12957
12958 return true;
12959 }
12960
12961 /* Write out a secondary reloc section.
12962
12963 FIXME: Currently this function can result in a serious performance penalty
12964 for files with secondary relocs and lots of sections. The proper way to
12965 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
12966 relocs together and then to have this function just walk that chain. */
12967
12968 bool
12969 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12970 {
12971 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12972 bfd_vma addr_offset;
12973 asection * relsec;
12974 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12975 bool result = true;
12976
12977 if (sec == NULL)
12978 return false;
12979
12980 #if BFD_DEFAULT_TARGET_SIZE > 32
12981 if (bfd_arch_bits_per_address (abfd) != 32)
12982 r_info = elf64_r_info;
12983 else
12984 #endif
12985 r_info = elf32_r_info;
12986
12987 /* The address of an ELF reloc is section relative for an object
12988 file, and absolute for an executable file or shared library.
12989 The address of a BFD reloc is always section relative. */
12990 addr_offset = 0;
12991 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12992 addr_offset = sec->vma;
12993
12994 /* Discover if there are any secondary reloc sections
12995 associated with SEC. */
12996 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12997 {
12998 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12999 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
13000
13001 if (hdr->sh_type == SHT_RELA
13002 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
13003 {
13004 asymbol * last_sym;
13005 int last_sym_idx;
13006 unsigned int reloc_count;
13007 unsigned int idx;
13008 unsigned int entsize;
13009 arelent * src_irel;
13010 bfd_byte * dst_rela;
13011
13012 if (hdr->contents != NULL)
13013 {
13014 _bfd_error_handler
13015 /* xgettext:c-format */
13016 (_("%pB(%pA): error: secondary reloc section processed twice"),
13017 abfd, relsec);
13018 bfd_set_error (bfd_error_bad_value);
13019 result = false;
13020 continue;
13021 }
13022
13023 entsize = hdr->sh_entsize;
13024 if (entsize == 0)
13025 {
13026 _bfd_error_handler
13027 /* xgettext:c-format */
13028 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
13029 abfd, relsec);
13030 bfd_set_error (bfd_error_bad_value);
13031 result = false;
13032 continue;
13033 }
13034 else if (entsize != ebd->s->sizeof_rel
13035 && entsize != ebd->s->sizeof_rela)
13036 {
13037 _bfd_error_handler
13038 /* xgettext:c-format */
13039 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
13040 abfd, relsec);
13041 bfd_set_error (bfd_error_bad_value);
13042 result = false;
13043 continue;
13044 }
13045
13046 reloc_count = hdr->sh_size / entsize;
13047 if (reloc_count <= 0)
13048 {
13049 _bfd_error_handler
13050 /* xgettext:c-format */
13051 (_("%pB(%pA): error: secondary reloc section is empty!"),
13052 abfd, relsec);
13053 bfd_set_error (bfd_error_bad_value);
13054 result = false;
13055 continue;
13056 }
13057
13058 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
13059 if (hdr->contents == NULL)
13060 continue;
13061
13062 #if DEBUG_SECONDARY_RELOCS
13063 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
13064 reloc_count, sec->name, relsec->name);
13065 #endif
13066 last_sym = NULL;
13067 last_sym_idx = 0;
13068 dst_rela = hdr->contents;
13069 src_irel = (arelent *) esd->sec_info;
13070 if (src_irel == NULL)
13071 {
13072 _bfd_error_handler
13073 /* xgettext:c-format */
13074 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
13075 abfd, relsec);
13076 bfd_set_error (bfd_error_bad_value);
13077 result = false;
13078 continue;
13079 }
13080
13081 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
13082 {
13083 Elf_Internal_Rela src_rela;
13084 arelent *ptr;
13085 asymbol *sym;
13086 int n;
13087
13088 ptr = src_irel + idx;
13089 if (ptr == NULL)
13090 {
13091 _bfd_error_handler
13092 /* xgettext:c-format */
13093 (_("%pB(%pA): error: reloc table entry %u is empty"),
13094 abfd, relsec, idx);
13095 bfd_set_error (bfd_error_bad_value);
13096 result = false;
13097 break;
13098 }
13099
13100 if (ptr->sym_ptr_ptr == NULL)
13101 {
13102 /* FIXME: Is this an error ? */
13103 n = 0;
13104 }
13105 else
13106 {
13107 sym = *ptr->sym_ptr_ptr;
13108
13109 if (sym == last_sym)
13110 n = last_sym_idx;
13111 else
13112 {
13113 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
13114 if (n < 0)
13115 {
13116 _bfd_error_handler
13117 /* xgettext:c-format */
13118 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
13119 abfd, relsec, idx);
13120 bfd_set_error (bfd_error_bad_value);
13121 result = false;
13122 n = 0;
13123 }
13124
13125 last_sym = sym;
13126 last_sym_idx = n;
13127 }
13128
13129 if (sym->the_bfd != NULL
13130 && sym->the_bfd->xvec != abfd->xvec
13131 && ! _bfd_elf_validate_reloc (abfd, ptr))
13132 {
13133 _bfd_error_handler
13134 /* xgettext:c-format */
13135 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
13136 abfd, relsec, idx);
13137 bfd_set_error (bfd_error_bad_value);
13138 result = false;
13139 n = 0;
13140 }
13141 }
13142
13143 src_rela.r_offset = ptr->address + addr_offset;
13144 if (ptr->howto == NULL)
13145 {
13146 _bfd_error_handler
13147 /* xgettext:c-format */
13148 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
13149 abfd, relsec, idx);
13150 bfd_set_error (bfd_error_bad_value);
13151 result = false;
13152 src_rela.r_info = r_info (0, 0);
13153 }
13154 else
13155 src_rela.r_info = r_info (n, ptr->howto->type);
13156 src_rela.r_addend = ptr->addend;
13157
13158 if (entsize == ebd->s->sizeof_rel)
13159 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13160 else /* entsize == ebd->s->sizeof_rela */
13161 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13162 }
13163 }
13164 }
13165
13166 return result;
13167 }
This page took 0.317905 seconds and 4 git commands to generate.