Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || shstrtabsize > bfd_get_file_size (abfd)
301 || bfd_seek (abfd, offset, SEEK_SET) != 0
302 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
303 shstrtab = NULL;
304 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
305 {
306 if (bfd_get_error () != bfd_error_system_call)
307 bfd_set_error (bfd_error_file_truncated);
308 bfd_release (abfd, shstrtab);
309 shstrtab = NULL;
310 /* Once we've failed to read it, make sure we don't keep
311 trying. Otherwise, we'll keep allocating space for
312 the string table over and over. */
313 i_shdrp[shindex]->sh_size = 0;
314 }
315 else
316 shstrtab[shstrtabsize] = '\0';
317 i_shdrp[shindex]->contents = shstrtab;
318 }
319 return (char *) shstrtab;
320 }
321
322 char *
323 bfd_elf_string_from_elf_section (bfd *abfd,
324 unsigned int shindex,
325 unsigned int strindex)
326 {
327 Elf_Internal_Shdr *hdr;
328
329 if (strindex == 0)
330 return "";
331
332 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
333 return NULL;
334
335 hdr = elf_elfsections (abfd)[shindex];
336
337 if (hdr->contents == NULL)
338 {
339 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
340 {
341 /* PR 17512: file: f057ec89. */
342 /* xgettext:c-format */
343 _bfd_error_handler (_("%pB: attempt to load strings from"
344 " a non-string section (number %d)"),
345 abfd, shindex);
346 return NULL;
347 }
348
349 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
350 return NULL;
351 }
352 else
353 {
354 /* PR 24273: The string section's contents may have already
355 been loaded elsewhere, eg because a corrupt file has the
356 string section index in the ELF header pointing at a group
357 section. So be paranoid, and test that the last byte of
358 the section is zero. */
359 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
360 return NULL;
361 }
362
363 if (strindex >= hdr->sh_size)
364 {
365 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
366 _bfd_error_handler
367 /* xgettext:c-format */
368 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
369 abfd, strindex, (uint64_t) hdr->sh_size,
370 (shindex == shstrndx && strindex == hdr->sh_name
371 ? ".shstrtab"
372 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
373 return NULL;
374 }
375
376 return ((char *) hdr->contents) + strindex;
377 }
378
379 /* Read and convert symbols to internal format.
380 SYMCOUNT specifies the number of symbols to read, starting from
381 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
382 are non-NULL, they are used to store the internal symbols, external
383 symbols, and symbol section index extensions, respectively.
384 Returns a pointer to the internal symbol buffer (malloced if necessary)
385 or NULL if there were no symbols or some kind of problem. */
386
387 Elf_Internal_Sym *
388 bfd_elf_get_elf_syms (bfd *ibfd,
389 Elf_Internal_Shdr *symtab_hdr,
390 size_t symcount,
391 size_t symoffset,
392 Elf_Internal_Sym *intsym_buf,
393 void *extsym_buf,
394 Elf_External_Sym_Shndx *extshndx_buf)
395 {
396 Elf_Internal_Shdr *shndx_hdr;
397 void *alloc_ext;
398 const bfd_byte *esym;
399 Elf_External_Sym_Shndx *alloc_extshndx;
400 Elf_External_Sym_Shndx *shndx;
401 Elf_Internal_Sym *alloc_intsym;
402 Elf_Internal_Sym *isym;
403 Elf_Internal_Sym *isymend;
404 const struct elf_backend_data *bed;
405 size_t extsym_size;
406 bfd_size_type amt;
407 file_ptr pos;
408
409 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
410 abort ();
411
412 if (symcount == 0)
413 return intsym_buf;
414
415 /* Normal syms might have section extension entries. */
416 shndx_hdr = NULL;
417 if (elf_symtab_shndx_list (ibfd) != NULL)
418 {
419 elf_section_list * entry;
420 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
421
422 /* Find an index section that is linked to this symtab section. */
423 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
424 {
425 /* PR 20063. */
426 if (entry->hdr.sh_link >= elf_numsections (ibfd))
427 continue;
428
429 if (sections[entry->hdr.sh_link] == symtab_hdr)
430 {
431 shndx_hdr = & entry->hdr;
432 break;
433 };
434 }
435
436 if (shndx_hdr == NULL)
437 {
438 if (symtab_hdr == & elf_symtab_hdr (ibfd))
439 /* Not really accurate, but this was how the old code used to work. */
440 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
441 /* Otherwise we do nothing. The assumption is that
442 the index table will not be needed. */
443 }
444 }
445
446 /* Read the symbols. */
447 alloc_ext = NULL;
448 alloc_extshndx = NULL;
449 alloc_intsym = NULL;
450 bed = get_elf_backend_data (ibfd);
451 extsym_size = bed->s->sizeof_sym;
452 amt = (bfd_size_type) symcount * extsym_size;
453 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
454 if (extsym_buf == NULL)
455 {
456 alloc_ext = bfd_malloc2 (symcount, extsym_size);
457 extsym_buf = alloc_ext;
458 }
459 if (extsym_buf == NULL
460 || bfd_seek (ibfd, pos, SEEK_SET) != 0
461 || bfd_bread (extsym_buf, amt, ibfd) != amt)
462 {
463 intsym_buf = NULL;
464 goto out;
465 }
466
467 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
468 extshndx_buf = NULL;
469 else
470 {
471 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
472 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
473 if (extshndx_buf == NULL)
474 {
475 alloc_extshndx = (Elf_External_Sym_Shndx *)
476 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
477 extshndx_buf = alloc_extshndx;
478 }
479 if (extshndx_buf == NULL
480 || bfd_seek (ibfd, pos, SEEK_SET) != 0
481 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
482 {
483 intsym_buf = NULL;
484 goto out;
485 }
486 }
487
488 if (intsym_buf == NULL)
489 {
490 alloc_intsym = (Elf_Internal_Sym *)
491 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
492 intsym_buf = alloc_intsym;
493 if (intsym_buf == NULL)
494 goto out;
495 }
496
497 /* Convert the symbols to internal form. */
498 isymend = intsym_buf + symcount;
499 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
500 shndx = extshndx_buf;
501 isym < isymend;
502 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
503 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
504 {
505 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
506 /* xgettext:c-format */
507 _bfd_error_handler (_("%pB symbol number %lu references"
508 " nonexistent SHT_SYMTAB_SHNDX section"),
509 ibfd, (unsigned long) symoffset);
510 if (alloc_intsym != NULL)
511 free (alloc_intsym);
512 intsym_buf = NULL;
513 goto out;
514 }
515
516 out:
517 if (alloc_ext != NULL)
518 free (alloc_ext);
519 if (alloc_extshndx != NULL)
520 free (alloc_extshndx);
521
522 return intsym_buf;
523 }
524
525 /* Look up a symbol name. */
526 const char *
527 bfd_elf_sym_name (bfd *abfd,
528 Elf_Internal_Shdr *symtab_hdr,
529 Elf_Internal_Sym *isym,
530 asection *sym_sec)
531 {
532 const char *name;
533 unsigned int iname = isym->st_name;
534 unsigned int shindex = symtab_hdr->sh_link;
535
536 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
537 /* Check for a bogus st_shndx to avoid crashing. */
538 && isym->st_shndx < elf_numsections (abfd))
539 {
540 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
541 shindex = elf_elfheader (abfd)->e_shstrndx;
542 }
543
544 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
545 if (name == NULL)
546 name = "(null)";
547 else if (sym_sec && *name == '\0')
548 name = bfd_section_name (sym_sec);
549
550 return name;
551 }
552
553 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
554 sections. The first element is the flags, the rest are section
555 pointers. */
556
557 typedef union elf_internal_group {
558 Elf_Internal_Shdr *shdr;
559 unsigned int flags;
560 } Elf_Internal_Group;
561
562 /* Return the name of the group signature symbol. Why isn't the
563 signature just a string? */
564
565 static const char *
566 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
567 {
568 Elf_Internal_Shdr *hdr;
569 unsigned char esym[sizeof (Elf64_External_Sym)];
570 Elf_External_Sym_Shndx eshndx;
571 Elf_Internal_Sym isym;
572
573 /* First we need to ensure the symbol table is available. Make sure
574 that it is a symbol table section. */
575 if (ghdr->sh_link >= elf_numsections (abfd))
576 return NULL;
577 hdr = elf_elfsections (abfd) [ghdr->sh_link];
578 if (hdr->sh_type != SHT_SYMTAB
579 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
580 return NULL;
581
582 /* Go read the symbol. */
583 hdr = &elf_tdata (abfd)->symtab_hdr;
584 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
585 &isym, esym, &eshndx) == NULL)
586 return NULL;
587
588 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
589 }
590
591 /* Set next_in_group list pointer, and group name for NEWSECT. */
592
593 static bfd_boolean
594 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
595 {
596 unsigned int num_group = elf_tdata (abfd)->num_group;
597
598 /* If num_group is zero, read in all SHT_GROUP sections. The count
599 is set to -1 if there are no SHT_GROUP sections. */
600 if (num_group == 0)
601 {
602 unsigned int i, shnum;
603
604 /* First count the number of groups. If we have a SHT_GROUP
605 section with just a flag word (ie. sh_size is 4), ignore it. */
606 shnum = elf_numsections (abfd);
607 num_group = 0;
608
609 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
610 ( (shdr)->sh_type == SHT_GROUP \
611 && (shdr)->sh_size >= minsize \
612 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
613 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
614
615 for (i = 0; i < shnum; i++)
616 {
617 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
618
619 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
620 num_group += 1;
621 }
622
623 if (num_group == 0)
624 {
625 num_group = (unsigned) -1;
626 elf_tdata (abfd)->num_group = num_group;
627 elf_tdata (abfd)->group_sect_ptr = NULL;
628 }
629 else
630 {
631 /* We keep a list of elf section headers for group sections,
632 so we can find them quickly. */
633 bfd_size_type amt;
634
635 elf_tdata (abfd)->num_group = num_group;
636 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
637 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
638 if (elf_tdata (abfd)->group_sect_ptr == NULL)
639 return FALSE;
640 memset (elf_tdata (abfd)->group_sect_ptr, 0,
641 num_group * sizeof (Elf_Internal_Shdr *));
642 num_group = 0;
643
644 for (i = 0; i < shnum; i++)
645 {
646 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
647
648 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
649 {
650 unsigned char *src;
651 Elf_Internal_Group *dest;
652
653 /* Make sure the group section has a BFD section
654 attached to it. */
655 if (!bfd_section_from_shdr (abfd, i))
656 return FALSE;
657
658 /* Add to list of sections. */
659 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
660 num_group += 1;
661
662 /* Read the raw contents. */
663 BFD_ASSERT (sizeof (*dest) >= 4);
664 amt = shdr->sh_size * sizeof (*dest) / 4;
665 shdr->contents = (unsigned char *)
666 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
667 /* PR binutils/4110: Handle corrupt group headers. */
668 if (shdr->contents == NULL)
669 {
670 _bfd_error_handler
671 /* xgettext:c-format */
672 (_("%pB: corrupt size field in group section"
673 " header: %#" PRIx64),
674 abfd, (uint64_t) shdr->sh_size);
675 bfd_set_error (bfd_error_bad_value);
676 -- num_group;
677 continue;
678 }
679
680 memset (shdr->contents, 0, amt);
681
682 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
683 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
684 != shdr->sh_size))
685 {
686 _bfd_error_handler
687 /* xgettext:c-format */
688 (_("%pB: invalid size field in group section"
689 " header: %#" PRIx64 ""),
690 abfd, (uint64_t) shdr->sh_size);
691 bfd_set_error (bfd_error_bad_value);
692 -- num_group;
693 /* PR 17510: If the group contents are even
694 partially corrupt, do not allow any of the
695 contents to be used. */
696 memset (shdr->contents, 0, amt);
697 continue;
698 }
699
700 /* Translate raw contents, a flag word followed by an
701 array of elf section indices all in target byte order,
702 to the flag word followed by an array of elf section
703 pointers. */
704 src = shdr->contents + shdr->sh_size;
705 dest = (Elf_Internal_Group *) (shdr->contents + amt);
706
707 while (1)
708 {
709 unsigned int idx;
710
711 src -= 4;
712 --dest;
713 idx = H_GET_32 (abfd, src);
714 if (src == shdr->contents)
715 {
716 dest->flags = idx;
717 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
718 shdr->bfd_section->flags
719 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
720 break;
721 }
722 if (idx < shnum)
723 {
724 dest->shdr = elf_elfsections (abfd)[idx];
725 /* PR binutils/23199: All sections in a
726 section group should be marked with
727 SHF_GROUP. But some tools generate
728 broken objects without SHF_GROUP. Fix
729 them up here. */
730 dest->shdr->sh_flags |= SHF_GROUP;
731 }
732 if (idx >= shnum
733 || dest->shdr->sh_type == SHT_GROUP)
734 {
735 _bfd_error_handler
736 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
737 abfd, i);
738 dest->shdr = NULL;
739 }
740 }
741 }
742 }
743
744 /* PR 17510: Corrupt binaries might contain invalid groups. */
745 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
746 {
747 elf_tdata (abfd)->num_group = num_group;
748
749 /* If all groups are invalid then fail. */
750 if (num_group == 0)
751 {
752 elf_tdata (abfd)->group_sect_ptr = NULL;
753 elf_tdata (abfd)->num_group = num_group = -1;
754 _bfd_error_handler
755 (_("%pB: no valid group sections found"), abfd);
756 bfd_set_error (bfd_error_bad_value);
757 }
758 }
759 }
760 }
761
762 if (num_group != (unsigned) -1)
763 {
764 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
765 unsigned int j;
766
767 for (j = 0; j < num_group; j++)
768 {
769 /* Begin search from previous found group. */
770 unsigned i = (j + search_offset) % num_group;
771
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx;
774 bfd_size_type n_elt;
775
776 if (shdr == NULL)
777 continue;
778
779 idx = (Elf_Internal_Group *) shdr->contents;
780 if (idx == NULL || shdr->sh_size < 4)
781 {
782 /* See PR 21957 for a reproducer. */
783 /* xgettext:c-format */
784 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
785 abfd, shdr->bfd_section);
786 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
787 bfd_set_error (bfd_error_bad_value);
788 return FALSE;
789 }
790 n_elt = shdr->sh_size / 4;
791
792 /* Look through this group's sections to see if current
793 section is a member. */
794 while (--n_elt != 0)
795 if ((++idx)->shdr == hdr)
796 {
797 asection *s = NULL;
798
799 /* We are a member of this group. Go looking through
800 other members to see if any others are linked via
801 next_in_group. */
802 idx = (Elf_Internal_Group *) shdr->contents;
803 n_elt = shdr->sh_size / 4;
804 while (--n_elt != 0)
805 if ((++idx)->shdr != NULL
806 && (s = idx->shdr->bfd_section) != NULL
807 && elf_next_in_group (s) != NULL)
808 break;
809 if (n_elt != 0)
810 {
811 /* Snarf the group name from other member, and
812 insert current section in circular list. */
813 elf_group_name (newsect) = elf_group_name (s);
814 elf_next_in_group (newsect) = elf_next_in_group (s);
815 elf_next_in_group (s) = newsect;
816 }
817 else
818 {
819 const char *gname;
820
821 gname = group_signature (abfd, shdr);
822 if (gname == NULL)
823 return FALSE;
824 elf_group_name (newsect) = gname;
825
826 /* Start a circular list with one element. */
827 elf_next_in_group (newsect) = newsect;
828 }
829
830 /* If the group section has been created, point to the
831 new member. */
832 if (shdr->bfd_section != NULL)
833 elf_next_in_group (shdr->bfd_section) = newsect;
834
835 elf_tdata (abfd)->group_search_offset = i;
836 j = num_group - 1;
837 break;
838 }
839 }
840 }
841
842 if (elf_group_name (newsect) == NULL)
843 {
844 /* xgettext:c-format */
845 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
846 abfd, newsect);
847 return FALSE;
848 }
849 return TRUE;
850 }
851
852 bfd_boolean
853 _bfd_elf_setup_sections (bfd *abfd)
854 {
855 unsigned int i;
856 unsigned int num_group = elf_tdata (abfd)->num_group;
857 bfd_boolean result = TRUE;
858 asection *s;
859
860 /* Process SHF_LINK_ORDER. */
861 for (s = abfd->sections; s != NULL; s = s->next)
862 {
863 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
864 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
865 {
866 unsigned int elfsec = this_hdr->sh_link;
867 /* FIXME: The old Intel compiler and old strip/objcopy may
868 not set the sh_link or sh_info fields. Hence we could
869 get the situation where elfsec is 0. */
870 if (elfsec == 0)
871 {
872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
873 if (bed->link_order_error_handler)
874 bed->link_order_error_handler
875 /* xgettext:c-format */
876 (_("%pB: warning: sh_link not set for section `%pA'"),
877 abfd, s);
878 }
879 else
880 {
881 asection *linksec = NULL;
882
883 if (elfsec < elf_numsections (abfd))
884 {
885 this_hdr = elf_elfsections (abfd)[elfsec];
886 linksec = this_hdr->bfd_section;
887 }
888
889 /* PR 1991, 2008:
890 Some strip/objcopy may leave an incorrect value in
891 sh_link. We don't want to proceed. */
892 if (linksec == NULL)
893 {
894 _bfd_error_handler
895 /* xgettext:c-format */
896 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
897 s->owner, elfsec, s);
898 result = FALSE;
899 }
900
901 elf_linked_to_section (s) = linksec;
902 }
903 }
904 else if (this_hdr->sh_type == SHT_GROUP
905 && elf_next_in_group (s) == NULL)
906 {
907 _bfd_error_handler
908 /* xgettext:c-format */
909 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
910 abfd, elf_section_data (s)->this_idx);
911 result = FALSE;
912 }
913 }
914
915 /* Process section groups. */
916 if (num_group == (unsigned) -1)
917 return result;
918
919 for (i = 0; i < num_group; i++)
920 {
921 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
922 Elf_Internal_Group *idx;
923 unsigned int n_elt;
924
925 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
926 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
927 {
928 _bfd_error_handler
929 /* xgettext:c-format */
930 (_("%pB: section group entry number %u is corrupt"),
931 abfd, i);
932 result = FALSE;
933 continue;
934 }
935
936 idx = (Elf_Internal_Group *) shdr->contents;
937 n_elt = shdr->sh_size / 4;
938
939 while (--n_elt != 0)
940 {
941 ++ idx;
942
943 if (idx->shdr == NULL)
944 continue;
945 else if (idx->shdr->bfd_section)
946 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
947 else if (idx->shdr->sh_type != SHT_RELA
948 && idx->shdr->sh_type != SHT_REL)
949 {
950 /* There are some unknown sections in the group. */
951 _bfd_error_handler
952 /* xgettext:c-format */
953 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
954 abfd,
955 idx->shdr->sh_type,
956 bfd_elf_string_from_elf_section (abfd,
957 (elf_elfheader (abfd)
958 ->e_shstrndx),
959 idx->shdr->sh_name),
960 shdr->bfd_section);
961 result = FALSE;
962 }
963 }
964 }
965
966 return result;
967 }
968
969 bfd_boolean
970 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
971 {
972 return elf_next_in_group (sec) != NULL;
973 }
974
975 const char *
976 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
977 {
978 if (elf_sec_group (sec) != NULL)
979 return elf_group_name (sec);
980 return NULL;
981 }
982
983 static char *
984 convert_debug_to_zdebug (bfd *abfd, const char *name)
985 {
986 unsigned int len = strlen (name);
987 char *new_name = bfd_alloc (abfd, len + 2);
988 if (new_name == NULL)
989 return NULL;
990 new_name[0] = '.';
991 new_name[1] = 'z';
992 memcpy (new_name + 2, name + 1, len);
993 return new_name;
994 }
995
996 static char *
997 convert_zdebug_to_debug (bfd *abfd, const char *name)
998 {
999 unsigned int len = strlen (name);
1000 char *new_name = bfd_alloc (abfd, len);
1001 if (new_name == NULL)
1002 return NULL;
1003 new_name[0] = '.';
1004 memcpy (new_name + 1, name + 2, len - 1);
1005 return new_name;
1006 }
1007
1008 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1009
1010 struct lto_section
1011 {
1012 int16_t major_version;
1013 int16_t minor_version;
1014 unsigned char slim_object;
1015
1016 /* Flags is a private field that is not defined publicly. */
1017 uint16_t flags;
1018 };
1019
1020 /* Make a BFD section from an ELF section. We store a pointer to the
1021 BFD section in the bfd_section field of the header. */
1022
1023 bfd_boolean
1024 _bfd_elf_make_section_from_shdr (bfd *abfd,
1025 Elf_Internal_Shdr *hdr,
1026 const char *name,
1027 int shindex)
1028 {
1029 asection *newsect;
1030 flagword flags;
1031 const struct elf_backend_data *bed;
1032
1033 if (hdr->bfd_section != NULL)
1034 return TRUE;
1035
1036 newsect = bfd_make_section_anyway (abfd, name);
1037 if (newsect == NULL)
1038 return FALSE;
1039
1040 hdr->bfd_section = newsect;
1041 elf_section_data (newsect)->this_hdr = *hdr;
1042 elf_section_data (newsect)->this_idx = shindex;
1043
1044 /* Always use the real type/flags. */
1045 elf_section_type (newsect) = hdr->sh_type;
1046 elf_section_flags (newsect) = hdr->sh_flags;
1047
1048 newsect->filepos = hdr->sh_offset;
1049
1050 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1051 || !bfd_set_section_size (newsect, hdr->sh_size)
1052 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1053 return FALSE;
1054
1055 flags = SEC_NO_FLAGS;
1056 if (hdr->sh_type != SHT_NOBITS)
1057 flags |= SEC_HAS_CONTENTS;
1058 if (hdr->sh_type == SHT_GROUP)
1059 flags |= SEC_GROUP;
1060 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1061 {
1062 flags |= SEC_ALLOC;
1063 if (hdr->sh_type != SHT_NOBITS)
1064 flags |= SEC_LOAD;
1065 }
1066 if ((hdr->sh_flags & SHF_WRITE) == 0)
1067 flags |= SEC_READONLY;
1068 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1069 flags |= SEC_CODE;
1070 else if ((flags & SEC_LOAD) != 0)
1071 flags |= SEC_DATA;
1072 if ((hdr->sh_flags & SHF_MERGE) != 0)
1073 {
1074 flags |= SEC_MERGE;
1075 newsect->entsize = hdr->sh_entsize;
1076 }
1077 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1078 flags |= SEC_STRINGS;
1079 if (hdr->sh_flags & SHF_GROUP)
1080 if (!setup_group (abfd, hdr, newsect))
1081 return FALSE;
1082 if ((hdr->sh_flags & SHF_TLS) != 0)
1083 flags |= SEC_THREAD_LOCAL;
1084 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1085 flags |= SEC_EXCLUDE;
1086
1087 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1088 {
1089 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1090 but binutils as of 2019-07-23 did not set the EI_OSABI header
1091 byte. */
1092 case ELFOSABI_NONE:
1093 case ELFOSABI_GNU:
1094 case ELFOSABI_FREEBSD:
1095 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1096 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1097 break;
1098 }
1099
1100 if ((flags & SEC_ALLOC) == 0)
1101 {
1102 /* The debugging sections appear to be recognized only by name,
1103 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1104 if (name [0] == '.')
1105 {
1106 const char *p;
1107 int n;
1108 if (name[1] == 'd')
1109 p = ".debug", n = 6;
1110 else if (name[1] == 'g' && name[2] == 'n')
1111 p = ".gnu.linkonce.wi.", n = 17;
1112 else if (name[1] == 'g' && name[2] == 'd')
1113 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1114 else if (name[1] == 'l')
1115 p = ".line", n = 5;
1116 else if (name[1] == 's')
1117 p = ".stab", n = 5;
1118 else if (name[1] == 'z')
1119 p = ".zdebug", n = 7;
1120 else
1121 p = NULL, n = 0;
1122 if (p != NULL && strncmp (name, p, n) == 0)
1123 flags |= SEC_DEBUGGING;
1124 }
1125 }
1126
1127 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1128 only link a single copy of the section. This is used to support
1129 g++. g++ will emit each template expansion in its own section.
1130 The symbols will be defined as weak, so that multiple definitions
1131 are permitted. The GNU linker extension is to actually discard
1132 all but one of the sections. */
1133 if (CONST_STRNEQ (name, ".gnu.linkonce")
1134 && elf_next_in_group (newsect) == NULL)
1135 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1136
1137 bed = get_elf_backend_data (abfd);
1138 if (bed->elf_backend_section_flags)
1139 if (! bed->elf_backend_section_flags (&flags, hdr))
1140 return FALSE;
1141
1142 if (!bfd_set_section_flags (newsect, flags))
1143 return FALSE;
1144
1145 /* We do not parse the PT_NOTE segments as we are interested even in the
1146 separate debug info files which may have the segments offsets corrupted.
1147 PT_NOTEs from the core files are currently not parsed using BFD. */
1148 if (hdr->sh_type == SHT_NOTE)
1149 {
1150 bfd_byte *contents;
1151
1152 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1153 return FALSE;
1154
1155 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1156 hdr->sh_offset, hdr->sh_addralign);
1157 free (contents);
1158 }
1159
1160 if ((flags & SEC_ALLOC) != 0)
1161 {
1162 Elf_Internal_Phdr *phdr;
1163 unsigned int i, nload;
1164
1165 /* Some ELF linkers produce binaries with all the program header
1166 p_paddr fields zero. If we have such a binary with more than
1167 one PT_LOAD header, then leave the section lma equal to vma
1168 so that we don't create sections with overlapping lma. */
1169 phdr = elf_tdata (abfd)->phdr;
1170 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1171 if (phdr->p_paddr != 0)
1172 break;
1173 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1174 ++nload;
1175 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1176 return TRUE;
1177
1178 phdr = elf_tdata (abfd)->phdr;
1179 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1180 {
1181 if (((phdr->p_type == PT_LOAD
1182 && (hdr->sh_flags & SHF_TLS) == 0)
1183 || phdr->p_type == PT_TLS)
1184 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1185 {
1186 if ((flags & SEC_LOAD) == 0)
1187 newsect->lma = (phdr->p_paddr
1188 + hdr->sh_addr - phdr->p_vaddr);
1189 else
1190 /* We used to use the same adjustment for SEC_LOAD
1191 sections, but that doesn't work if the segment
1192 is packed with code from multiple VMAs.
1193 Instead we calculate the section LMA based on
1194 the segment LMA. It is assumed that the
1195 segment will contain sections with contiguous
1196 LMAs, even if the VMAs are not. */
1197 newsect->lma = (phdr->p_paddr
1198 + hdr->sh_offset - phdr->p_offset);
1199
1200 /* With contiguous segments, we can't tell from file
1201 offsets whether a section with zero size should
1202 be placed at the end of one segment or the
1203 beginning of the next. Decide based on vaddr. */
1204 if (hdr->sh_addr >= phdr->p_vaddr
1205 && (hdr->sh_addr + hdr->sh_size
1206 <= phdr->p_vaddr + phdr->p_memsz))
1207 break;
1208 }
1209 }
1210 }
1211
1212 /* Compress/decompress DWARF debug sections with names: .debug_* and
1213 .zdebug_*, after the section flags is set. */
1214 if ((flags & SEC_DEBUGGING)
1215 && ((name[1] == 'd' && name[6] == '_')
1216 || (name[1] == 'z' && name[7] == '_')))
1217 {
1218 enum { nothing, compress, decompress } action = nothing;
1219 int compression_header_size;
1220 bfd_size_type uncompressed_size;
1221 unsigned int uncompressed_align_power;
1222 bfd_boolean compressed
1223 = bfd_is_section_compressed_with_header (abfd, newsect,
1224 &compression_header_size,
1225 &uncompressed_size,
1226 &uncompressed_align_power);
1227 if (compressed)
1228 {
1229 /* Compressed section. Check if we should decompress. */
1230 if ((abfd->flags & BFD_DECOMPRESS))
1231 action = decompress;
1232 }
1233
1234 /* Compress the uncompressed section or convert from/to .zdebug*
1235 section. Check if we should compress. */
1236 if (action == nothing)
1237 {
1238 if (newsect->size != 0
1239 && (abfd->flags & BFD_COMPRESS)
1240 && compression_header_size >= 0
1241 && uncompressed_size > 0
1242 && (!compressed
1243 || ((compression_header_size > 0)
1244 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1245 action = compress;
1246 else
1247 return TRUE;
1248 }
1249
1250 if (action == compress)
1251 {
1252 if (!bfd_init_section_compress_status (abfd, newsect))
1253 {
1254 _bfd_error_handler
1255 /* xgettext:c-format */
1256 (_("%pB: unable to initialize compress status for section %s"),
1257 abfd, name);
1258 return FALSE;
1259 }
1260 }
1261 else
1262 {
1263 if (!bfd_init_section_decompress_status (abfd, newsect))
1264 {
1265 _bfd_error_handler
1266 /* xgettext:c-format */
1267 (_("%pB: unable to initialize decompress status for section %s"),
1268 abfd, name);
1269 return FALSE;
1270 }
1271 }
1272
1273 if (abfd->is_linker_input)
1274 {
1275 if (name[1] == 'z'
1276 && (action == decompress
1277 || (action == compress
1278 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1279 {
1280 /* Convert section name from .zdebug_* to .debug_* so
1281 that linker will consider this section as a debug
1282 section. */
1283 char *new_name = convert_zdebug_to_debug (abfd, name);
1284 if (new_name == NULL)
1285 return FALSE;
1286 bfd_rename_section (newsect, new_name);
1287 }
1288 }
1289 else
1290 /* For objdump, don't rename the section. For objcopy, delay
1291 section rename to elf_fake_sections. */
1292 newsect->flags |= SEC_ELF_RENAME;
1293 }
1294
1295 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1296 section. */
1297 const char *lto_section_name = ".gnu.lto_.lto.";
1298 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1299 {
1300 struct lto_section lsection;
1301 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1302 sizeof (struct lto_section)))
1303 abfd->lto_slim_object = lsection.slim_object;
1304 }
1305
1306 return TRUE;
1307 }
1308
1309 const char *const bfd_elf_section_type_names[] =
1310 {
1311 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1312 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1313 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1314 };
1315
1316 /* ELF relocs are against symbols. If we are producing relocatable
1317 output, and the reloc is against an external symbol, and nothing
1318 has given us any additional addend, the resulting reloc will also
1319 be against the same symbol. In such a case, we don't want to
1320 change anything about the way the reloc is handled, since it will
1321 all be done at final link time. Rather than put special case code
1322 into bfd_perform_relocation, all the reloc types use this howto
1323 function. It just short circuits the reloc if producing
1324 relocatable output against an external symbol. */
1325
1326 bfd_reloc_status_type
1327 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1328 arelent *reloc_entry,
1329 asymbol *symbol,
1330 void *data ATTRIBUTE_UNUSED,
1331 asection *input_section,
1332 bfd *output_bfd,
1333 char **error_message ATTRIBUTE_UNUSED)
1334 {
1335 if (output_bfd != NULL
1336 && (symbol->flags & BSF_SECTION_SYM) == 0
1337 && (! reloc_entry->howto->partial_inplace
1338 || reloc_entry->addend == 0))
1339 {
1340 reloc_entry->address += input_section->output_offset;
1341 return bfd_reloc_ok;
1342 }
1343
1344 return bfd_reloc_continue;
1345 }
1346 \f
1347 /* Returns TRUE if section A matches section B.
1348 Names, addresses and links may be different, but everything else
1349 should be the same. */
1350
1351 static bfd_boolean
1352 section_match (const Elf_Internal_Shdr * a,
1353 const Elf_Internal_Shdr * b)
1354 {
1355 if (a->sh_type != b->sh_type
1356 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1357 || a->sh_addralign != b->sh_addralign
1358 || a->sh_entsize != b->sh_entsize)
1359 return FALSE;
1360 if (a->sh_type == SHT_SYMTAB
1361 || a->sh_type == SHT_STRTAB)
1362 return TRUE;
1363 return a->sh_size == b->sh_size;
1364 }
1365
1366 /* Find a section in OBFD that has the same characteristics
1367 as IHEADER. Return the index of this section or SHN_UNDEF if
1368 none can be found. Check's section HINT first, as this is likely
1369 to be the correct section. */
1370
1371 static unsigned int
1372 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1373 const unsigned int hint)
1374 {
1375 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1376 unsigned int i;
1377
1378 BFD_ASSERT (iheader != NULL);
1379
1380 /* See PR 20922 for a reproducer of the NULL test. */
1381 if (hint < elf_numsections (obfd)
1382 && oheaders[hint] != NULL
1383 && section_match (oheaders[hint], iheader))
1384 return hint;
1385
1386 for (i = 1; i < elf_numsections (obfd); i++)
1387 {
1388 Elf_Internal_Shdr * oheader = oheaders[i];
1389
1390 if (oheader == NULL)
1391 continue;
1392 if (section_match (oheader, iheader))
1393 /* FIXME: Do we care if there is a potential for
1394 multiple matches ? */
1395 return i;
1396 }
1397
1398 return SHN_UNDEF;
1399 }
1400
1401 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1402 Processor specific section, based upon a matching input section.
1403 Returns TRUE upon success, FALSE otherwise. */
1404
1405 static bfd_boolean
1406 copy_special_section_fields (const bfd *ibfd,
1407 bfd *obfd,
1408 const Elf_Internal_Shdr *iheader,
1409 Elf_Internal_Shdr *oheader,
1410 const unsigned int secnum)
1411 {
1412 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1413 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1414 bfd_boolean changed = FALSE;
1415 unsigned int sh_link;
1416
1417 if (oheader->sh_type == SHT_NOBITS)
1418 {
1419 /* This is a feature for objcopy --only-keep-debug:
1420 When a section's type is changed to NOBITS, we preserve
1421 the sh_link and sh_info fields so that they can be
1422 matched up with the original.
1423
1424 Note: Strictly speaking these assignments are wrong.
1425 The sh_link and sh_info fields should point to the
1426 relevent sections in the output BFD, which may not be in
1427 the same location as they were in the input BFD. But
1428 the whole point of this action is to preserve the
1429 original values of the sh_link and sh_info fields, so
1430 that they can be matched up with the section headers in
1431 the original file. So strictly speaking we may be
1432 creating an invalid ELF file, but it is only for a file
1433 that just contains debug info and only for sections
1434 without any contents. */
1435 if (oheader->sh_link == 0)
1436 oheader->sh_link = iheader->sh_link;
1437 if (oheader->sh_info == 0)
1438 oheader->sh_info = iheader->sh_info;
1439 return TRUE;
1440 }
1441
1442 /* Allow the target a chance to decide how these fields should be set. */
1443 if (bed->elf_backend_copy_special_section_fields != NULL
1444 && bed->elf_backend_copy_special_section_fields
1445 (ibfd, obfd, iheader, oheader))
1446 return TRUE;
1447
1448 /* We have an iheader which might match oheader, and which has non-zero
1449 sh_info and/or sh_link fields. Attempt to follow those links and find
1450 the section in the output bfd which corresponds to the linked section
1451 in the input bfd. */
1452 if (iheader->sh_link != SHN_UNDEF)
1453 {
1454 /* See PR 20931 for a reproducer. */
1455 if (iheader->sh_link >= elf_numsections (ibfd))
1456 {
1457 _bfd_error_handler
1458 /* xgettext:c-format */
1459 (_("%pB: invalid sh_link field (%d) in section number %d"),
1460 ibfd, iheader->sh_link, secnum);
1461 return FALSE;
1462 }
1463
1464 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1465 if (sh_link != SHN_UNDEF)
1466 {
1467 oheader->sh_link = sh_link;
1468 changed = TRUE;
1469 }
1470 else
1471 /* FIXME: Should we install iheader->sh_link
1472 if we could not find a match ? */
1473 _bfd_error_handler
1474 /* xgettext:c-format */
1475 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1476 }
1477
1478 if (iheader->sh_info)
1479 {
1480 /* The sh_info field can hold arbitrary information, but if the
1481 SHF_LINK_INFO flag is set then it should be interpreted as a
1482 section index. */
1483 if (iheader->sh_flags & SHF_INFO_LINK)
1484 {
1485 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1486 iheader->sh_info);
1487 if (sh_link != SHN_UNDEF)
1488 oheader->sh_flags |= SHF_INFO_LINK;
1489 }
1490 else
1491 /* No idea what it means - just copy it. */
1492 sh_link = iheader->sh_info;
1493
1494 if (sh_link != SHN_UNDEF)
1495 {
1496 oheader->sh_info = sh_link;
1497 changed = TRUE;
1498 }
1499 else
1500 _bfd_error_handler
1501 /* xgettext:c-format */
1502 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1503 }
1504
1505 return changed;
1506 }
1507
1508 /* Copy the program header and other data from one object module to
1509 another. */
1510
1511 bfd_boolean
1512 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1513 {
1514 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1515 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1516 const struct elf_backend_data *bed;
1517 unsigned int i;
1518
1519 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1520 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1521 return TRUE;
1522
1523 if (!elf_flags_init (obfd))
1524 {
1525 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1526 elf_flags_init (obfd) = TRUE;
1527 }
1528
1529 elf_gp (obfd) = elf_gp (ibfd);
1530
1531 /* Also copy the EI_OSABI field. */
1532 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1533 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1534
1535 /* If set, copy the EI_ABIVERSION field. */
1536 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1537 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1538 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1539
1540 /* Copy object attributes. */
1541 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1542
1543 if (iheaders == NULL || oheaders == NULL)
1544 return TRUE;
1545
1546 bed = get_elf_backend_data (obfd);
1547
1548 /* Possibly copy other fields in the section header. */
1549 for (i = 1; i < elf_numsections (obfd); i++)
1550 {
1551 unsigned int j;
1552 Elf_Internal_Shdr * oheader = oheaders[i];
1553
1554 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1555 because of a special case need for generating separate debug info
1556 files. See below for more details. */
1557 if (oheader == NULL
1558 || (oheader->sh_type != SHT_NOBITS
1559 && oheader->sh_type < SHT_LOOS))
1560 continue;
1561
1562 /* Ignore empty sections, and sections whose
1563 fields have already been initialised. */
1564 if (oheader->sh_size == 0
1565 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1566 continue;
1567
1568 /* Scan for the matching section in the input bfd.
1569 First we try for a direct mapping between the input and output sections. */
1570 for (j = 1; j < elf_numsections (ibfd); j++)
1571 {
1572 const Elf_Internal_Shdr * iheader = iheaders[j];
1573
1574 if (iheader == NULL)
1575 continue;
1576
1577 if (oheader->bfd_section != NULL
1578 && iheader->bfd_section != NULL
1579 && iheader->bfd_section->output_section != NULL
1580 && iheader->bfd_section->output_section == oheader->bfd_section)
1581 {
1582 /* We have found a connection from the input section to the
1583 output section. Attempt to copy the header fields. If
1584 this fails then do not try any further sections - there
1585 should only be a one-to-one mapping between input and output. */
1586 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1587 j = elf_numsections (ibfd);
1588 break;
1589 }
1590 }
1591
1592 if (j < elf_numsections (ibfd))
1593 continue;
1594
1595 /* That failed. So try to deduce the corresponding input section.
1596 Unfortunately we cannot compare names as the output string table
1597 is empty, so instead we check size, address and type. */
1598 for (j = 1; j < elf_numsections (ibfd); j++)
1599 {
1600 const Elf_Internal_Shdr * iheader = iheaders[j];
1601
1602 if (iheader == NULL)
1603 continue;
1604
1605 /* Try matching fields in the input section's header.
1606 Since --only-keep-debug turns all non-debug sections into
1607 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1608 input type. */
1609 if ((oheader->sh_type == SHT_NOBITS
1610 || iheader->sh_type == oheader->sh_type)
1611 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1612 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1613 && iheader->sh_addralign == oheader->sh_addralign
1614 && iheader->sh_entsize == oheader->sh_entsize
1615 && iheader->sh_size == oheader->sh_size
1616 && iheader->sh_addr == oheader->sh_addr
1617 && (iheader->sh_info != oheader->sh_info
1618 || iheader->sh_link != oheader->sh_link))
1619 {
1620 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1621 break;
1622 }
1623 }
1624
1625 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1626 {
1627 /* Final attempt. Call the backend copy function
1628 with a NULL input section. */
1629 if (bed->elf_backend_copy_special_section_fields != NULL)
1630 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1631 }
1632 }
1633
1634 return TRUE;
1635 }
1636
1637 static const char *
1638 get_segment_type (unsigned int p_type)
1639 {
1640 const char *pt;
1641 switch (p_type)
1642 {
1643 case PT_NULL: pt = "NULL"; break;
1644 case PT_LOAD: pt = "LOAD"; break;
1645 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1646 case PT_INTERP: pt = "INTERP"; break;
1647 case PT_NOTE: pt = "NOTE"; break;
1648 case PT_SHLIB: pt = "SHLIB"; break;
1649 case PT_PHDR: pt = "PHDR"; break;
1650 case PT_TLS: pt = "TLS"; break;
1651 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1652 case PT_GNU_STACK: pt = "STACK"; break;
1653 case PT_GNU_RELRO: pt = "RELRO"; break;
1654 default: pt = NULL; break;
1655 }
1656 return pt;
1657 }
1658
1659 /* Print out the program headers. */
1660
1661 bfd_boolean
1662 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1663 {
1664 FILE *f = (FILE *) farg;
1665 Elf_Internal_Phdr *p;
1666 asection *s;
1667 bfd_byte *dynbuf = NULL;
1668
1669 p = elf_tdata (abfd)->phdr;
1670 if (p != NULL)
1671 {
1672 unsigned int i, c;
1673
1674 fprintf (f, _("\nProgram Header:\n"));
1675 c = elf_elfheader (abfd)->e_phnum;
1676 for (i = 0; i < c; i++, p++)
1677 {
1678 const char *pt = get_segment_type (p->p_type);
1679 char buf[20];
1680
1681 if (pt == NULL)
1682 {
1683 sprintf (buf, "0x%lx", p->p_type);
1684 pt = buf;
1685 }
1686 fprintf (f, "%8s off 0x", pt);
1687 bfd_fprintf_vma (abfd, f, p->p_offset);
1688 fprintf (f, " vaddr 0x");
1689 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1690 fprintf (f, " paddr 0x");
1691 bfd_fprintf_vma (abfd, f, p->p_paddr);
1692 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1693 fprintf (f, " filesz 0x");
1694 bfd_fprintf_vma (abfd, f, p->p_filesz);
1695 fprintf (f, " memsz 0x");
1696 bfd_fprintf_vma (abfd, f, p->p_memsz);
1697 fprintf (f, " flags %c%c%c",
1698 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1699 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1700 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1701 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1702 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1703 fprintf (f, "\n");
1704 }
1705 }
1706
1707 s = bfd_get_section_by_name (abfd, ".dynamic");
1708 if (s != NULL)
1709 {
1710 unsigned int elfsec;
1711 unsigned long shlink;
1712 bfd_byte *extdyn, *extdynend;
1713 size_t extdynsize;
1714 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1715
1716 fprintf (f, _("\nDynamic Section:\n"));
1717
1718 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1719 goto error_return;
1720
1721 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1722 if (elfsec == SHN_BAD)
1723 goto error_return;
1724 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1725
1726 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1727 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1728
1729 extdyn = dynbuf;
1730 /* PR 17512: file: 6f427532. */
1731 if (s->size < extdynsize)
1732 goto error_return;
1733 extdynend = extdyn + s->size;
1734 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1735 Fix range check. */
1736 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1737 {
1738 Elf_Internal_Dyn dyn;
1739 const char *name = "";
1740 char ab[20];
1741 bfd_boolean stringp;
1742 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1743
1744 (*swap_dyn_in) (abfd, extdyn, &dyn);
1745
1746 if (dyn.d_tag == DT_NULL)
1747 break;
1748
1749 stringp = FALSE;
1750 switch (dyn.d_tag)
1751 {
1752 default:
1753 if (bed->elf_backend_get_target_dtag)
1754 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1755
1756 if (!strcmp (name, ""))
1757 {
1758 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1759 name = ab;
1760 }
1761 break;
1762
1763 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1764 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1765 case DT_PLTGOT: name = "PLTGOT"; break;
1766 case DT_HASH: name = "HASH"; break;
1767 case DT_STRTAB: name = "STRTAB"; break;
1768 case DT_SYMTAB: name = "SYMTAB"; break;
1769 case DT_RELA: name = "RELA"; break;
1770 case DT_RELASZ: name = "RELASZ"; break;
1771 case DT_RELAENT: name = "RELAENT"; break;
1772 case DT_STRSZ: name = "STRSZ"; break;
1773 case DT_SYMENT: name = "SYMENT"; break;
1774 case DT_INIT: name = "INIT"; break;
1775 case DT_FINI: name = "FINI"; break;
1776 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1777 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1778 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1779 case DT_REL: name = "REL"; break;
1780 case DT_RELSZ: name = "RELSZ"; break;
1781 case DT_RELENT: name = "RELENT"; break;
1782 case DT_PLTREL: name = "PLTREL"; break;
1783 case DT_DEBUG: name = "DEBUG"; break;
1784 case DT_TEXTREL: name = "TEXTREL"; break;
1785 case DT_JMPREL: name = "JMPREL"; break;
1786 case DT_BIND_NOW: name = "BIND_NOW"; break;
1787 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1788 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1789 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1790 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1791 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1792 case DT_FLAGS: name = "FLAGS"; break;
1793 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1794 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1795 case DT_CHECKSUM: name = "CHECKSUM"; break;
1796 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1797 case DT_MOVEENT: name = "MOVEENT"; break;
1798 case DT_MOVESZ: name = "MOVESZ"; break;
1799 case DT_FEATURE: name = "FEATURE"; break;
1800 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1801 case DT_SYMINSZ: name = "SYMINSZ"; break;
1802 case DT_SYMINENT: name = "SYMINENT"; break;
1803 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1804 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1805 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1806 case DT_PLTPAD: name = "PLTPAD"; break;
1807 case DT_MOVETAB: name = "MOVETAB"; break;
1808 case DT_SYMINFO: name = "SYMINFO"; break;
1809 case DT_RELACOUNT: name = "RELACOUNT"; break;
1810 case DT_RELCOUNT: name = "RELCOUNT"; break;
1811 case DT_FLAGS_1: name = "FLAGS_1"; break;
1812 case DT_VERSYM: name = "VERSYM"; break;
1813 case DT_VERDEF: name = "VERDEF"; break;
1814 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1815 case DT_VERNEED: name = "VERNEED"; break;
1816 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1817 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1818 case DT_USED: name = "USED"; break;
1819 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1820 case DT_GNU_HASH: name = "GNU_HASH"; break;
1821 }
1822
1823 fprintf (f, " %-20s ", name);
1824 if (! stringp)
1825 {
1826 fprintf (f, "0x");
1827 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1828 }
1829 else
1830 {
1831 const char *string;
1832 unsigned int tagv = dyn.d_un.d_val;
1833
1834 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1835 if (string == NULL)
1836 goto error_return;
1837 fprintf (f, "%s", string);
1838 }
1839 fprintf (f, "\n");
1840 }
1841
1842 free (dynbuf);
1843 dynbuf = NULL;
1844 }
1845
1846 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1847 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1848 {
1849 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1850 return FALSE;
1851 }
1852
1853 if (elf_dynverdef (abfd) != 0)
1854 {
1855 Elf_Internal_Verdef *t;
1856
1857 fprintf (f, _("\nVersion definitions:\n"));
1858 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1859 {
1860 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1861 t->vd_flags, t->vd_hash,
1862 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1863 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1864 {
1865 Elf_Internal_Verdaux *a;
1866
1867 fprintf (f, "\t");
1868 for (a = t->vd_auxptr->vda_nextptr;
1869 a != NULL;
1870 a = a->vda_nextptr)
1871 fprintf (f, "%s ",
1872 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1873 fprintf (f, "\n");
1874 }
1875 }
1876 }
1877
1878 if (elf_dynverref (abfd) != 0)
1879 {
1880 Elf_Internal_Verneed *t;
1881
1882 fprintf (f, _("\nVersion References:\n"));
1883 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1884 {
1885 Elf_Internal_Vernaux *a;
1886
1887 fprintf (f, _(" required from %s:\n"),
1888 t->vn_filename ? t->vn_filename : "<corrupt>");
1889 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1890 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1891 a->vna_flags, a->vna_other,
1892 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1893 }
1894 }
1895
1896 return TRUE;
1897
1898 error_return:
1899 if (dynbuf != NULL)
1900 free (dynbuf);
1901 return FALSE;
1902 }
1903
1904 /* Get version string. */
1905
1906 const char *
1907 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1908 bfd_boolean *hidden)
1909 {
1910 const char *version_string = NULL;
1911 if (elf_dynversym (abfd) != 0
1912 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1913 {
1914 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1915
1916 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1917 vernum &= VERSYM_VERSION;
1918
1919 if (vernum == 0)
1920 version_string = "";
1921 else if (vernum == 1
1922 && (vernum > elf_tdata (abfd)->cverdefs
1923 || (elf_tdata (abfd)->verdef[0].vd_flags
1924 == VER_FLG_BASE)))
1925 version_string = "Base";
1926 else if (vernum <= elf_tdata (abfd)->cverdefs)
1927 version_string =
1928 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1929 else
1930 {
1931 Elf_Internal_Verneed *t;
1932
1933 version_string = _("<corrupt>");
1934 for (t = elf_tdata (abfd)->verref;
1935 t != NULL;
1936 t = t->vn_nextref)
1937 {
1938 Elf_Internal_Vernaux *a;
1939
1940 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1941 {
1942 if (a->vna_other == vernum)
1943 {
1944 version_string = a->vna_nodename;
1945 break;
1946 }
1947 }
1948 }
1949 }
1950 }
1951 return version_string;
1952 }
1953
1954 /* Display ELF-specific fields of a symbol. */
1955
1956 void
1957 bfd_elf_print_symbol (bfd *abfd,
1958 void *filep,
1959 asymbol *symbol,
1960 bfd_print_symbol_type how)
1961 {
1962 FILE *file = (FILE *) filep;
1963 switch (how)
1964 {
1965 case bfd_print_symbol_name:
1966 fprintf (file, "%s", symbol->name);
1967 break;
1968 case bfd_print_symbol_more:
1969 fprintf (file, "elf ");
1970 bfd_fprintf_vma (abfd, file, symbol->value);
1971 fprintf (file, " %x", symbol->flags);
1972 break;
1973 case bfd_print_symbol_all:
1974 {
1975 const char *section_name;
1976 const char *name = NULL;
1977 const struct elf_backend_data *bed;
1978 unsigned char st_other;
1979 bfd_vma val;
1980 const char *version_string;
1981 bfd_boolean hidden;
1982
1983 section_name = symbol->section ? symbol->section->name : "(*none*)";
1984
1985 bed = get_elf_backend_data (abfd);
1986 if (bed->elf_backend_print_symbol_all)
1987 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1988
1989 if (name == NULL)
1990 {
1991 name = symbol->name;
1992 bfd_print_symbol_vandf (abfd, file, symbol);
1993 }
1994
1995 fprintf (file, " %s\t", section_name);
1996 /* Print the "other" value for a symbol. For common symbols,
1997 we've already printed the size; now print the alignment.
1998 For other symbols, we have no specified alignment, and
1999 we've printed the address; now print the size. */
2000 if (symbol->section && bfd_is_com_section (symbol->section))
2001 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2002 else
2003 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2004 bfd_fprintf_vma (abfd, file, val);
2005
2006 /* If we have version information, print it. */
2007 version_string = _bfd_elf_get_symbol_version_string (abfd,
2008 symbol,
2009 &hidden);
2010 if (version_string)
2011 {
2012 if (!hidden)
2013 fprintf (file, " %-11s", version_string);
2014 else
2015 {
2016 int i;
2017
2018 fprintf (file, " (%s)", version_string);
2019 for (i = 10 - strlen (version_string); i > 0; --i)
2020 putc (' ', file);
2021 }
2022 }
2023
2024 /* If the st_other field is not zero, print it. */
2025 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2026
2027 switch (st_other)
2028 {
2029 case 0: break;
2030 case STV_INTERNAL: fprintf (file, " .internal"); break;
2031 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2032 case STV_PROTECTED: fprintf (file, " .protected"); break;
2033 default:
2034 /* Some other non-defined flags are also present, so print
2035 everything hex. */
2036 fprintf (file, " 0x%02x", (unsigned int) st_other);
2037 }
2038
2039 fprintf (file, " %s", name);
2040 }
2041 break;
2042 }
2043 }
2044 \f
2045 /* ELF .o/exec file reading */
2046
2047 /* Create a new bfd section from an ELF section header. */
2048
2049 bfd_boolean
2050 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2051 {
2052 Elf_Internal_Shdr *hdr;
2053 Elf_Internal_Ehdr *ehdr;
2054 const struct elf_backend_data *bed;
2055 const char *name;
2056 bfd_boolean ret = TRUE;
2057 static bfd_boolean * sections_being_created = NULL;
2058 static bfd * sections_being_created_abfd = NULL;
2059 static unsigned int nesting = 0;
2060
2061 if (shindex >= elf_numsections (abfd))
2062 return FALSE;
2063
2064 if (++ nesting > 3)
2065 {
2066 /* PR17512: A corrupt ELF binary might contain a recursive group of
2067 sections, with each the string indices pointing to the next in the
2068 loop. Detect this here, by refusing to load a section that we are
2069 already in the process of loading. We only trigger this test if
2070 we have nested at least three sections deep as normal ELF binaries
2071 can expect to recurse at least once.
2072
2073 FIXME: It would be better if this array was attached to the bfd,
2074 rather than being held in a static pointer. */
2075
2076 if (sections_being_created_abfd != abfd)
2077 sections_being_created = NULL;
2078 if (sections_being_created == NULL)
2079 {
2080 sections_being_created = (bfd_boolean *)
2081 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2082 sections_being_created_abfd = abfd;
2083 }
2084 if (sections_being_created [shindex])
2085 {
2086 _bfd_error_handler
2087 (_("%pB: warning: loop in section dependencies detected"), abfd);
2088 return FALSE;
2089 }
2090 sections_being_created [shindex] = TRUE;
2091 }
2092
2093 hdr = elf_elfsections (abfd)[shindex];
2094 ehdr = elf_elfheader (abfd);
2095 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2096 hdr->sh_name);
2097 if (name == NULL)
2098 goto fail;
2099
2100 bed = get_elf_backend_data (abfd);
2101 switch (hdr->sh_type)
2102 {
2103 case SHT_NULL:
2104 /* Inactive section. Throw it away. */
2105 goto success;
2106
2107 case SHT_PROGBITS: /* Normal section with contents. */
2108 case SHT_NOBITS: /* .bss section. */
2109 case SHT_HASH: /* .hash section. */
2110 case SHT_NOTE: /* .note section. */
2111 case SHT_INIT_ARRAY: /* .init_array section. */
2112 case SHT_FINI_ARRAY: /* .fini_array section. */
2113 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2114 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2115 case SHT_GNU_HASH: /* .gnu.hash section. */
2116 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2117 goto success;
2118
2119 case SHT_DYNAMIC: /* Dynamic linking information. */
2120 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2121 goto fail;
2122
2123 if (hdr->sh_link > elf_numsections (abfd))
2124 {
2125 /* PR 10478: Accept Solaris binaries with a sh_link
2126 field set to SHN_BEFORE or SHN_AFTER. */
2127 switch (bfd_get_arch (abfd))
2128 {
2129 case bfd_arch_i386:
2130 case bfd_arch_sparc:
2131 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2132 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2133 break;
2134 /* Otherwise fall through. */
2135 default:
2136 goto fail;
2137 }
2138 }
2139 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2140 goto fail;
2141 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2142 {
2143 Elf_Internal_Shdr *dynsymhdr;
2144
2145 /* The shared libraries distributed with hpux11 have a bogus
2146 sh_link field for the ".dynamic" section. Find the
2147 string table for the ".dynsym" section instead. */
2148 if (elf_dynsymtab (abfd) != 0)
2149 {
2150 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2151 hdr->sh_link = dynsymhdr->sh_link;
2152 }
2153 else
2154 {
2155 unsigned int i, num_sec;
2156
2157 num_sec = elf_numsections (abfd);
2158 for (i = 1; i < num_sec; i++)
2159 {
2160 dynsymhdr = elf_elfsections (abfd)[i];
2161 if (dynsymhdr->sh_type == SHT_DYNSYM)
2162 {
2163 hdr->sh_link = dynsymhdr->sh_link;
2164 break;
2165 }
2166 }
2167 }
2168 }
2169 goto success;
2170
2171 case SHT_SYMTAB: /* A symbol table. */
2172 if (elf_onesymtab (abfd) == shindex)
2173 goto success;
2174
2175 if (hdr->sh_entsize != bed->s->sizeof_sym)
2176 goto fail;
2177
2178 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2179 {
2180 if (hdr->sh_size != 0)
2181 goto fail;
2182 /* Some assemblers erroneously set sh_info to one with a
2183 zero sh_size. ld sees this as a global symbol count
2184 of (unsigned) -1. Fix it here. */
2185 hdr->sh_info = 0;
2186 goto success;
2187 }
2188
2189 /* PR 18854: A binary might contain more than one symbol table.
2190 Unusual, but possible. Warn, but continue. */
2191 if (elf_onesymtab (abfd) != 0)
2192 {
2193 _bfd_error_handler
2194 /* xgettext:c-format */
2195 (_("%pB: warning: multiple symbol tables detected"
2196 " - ignoring the table in section %u"),
2197 abfd, shindex);
2198 goto success;
2199 }
2200 elf_onesymtab (abfd) = shindex;
2201 elf_symtab_hdr (abfd) = *hdr;
2202 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2203 abfd->flags |= HAS_SYMS;
2204
2205 /* Sometimes a shared object will map in the symbol table. If
2206 SHF_ALLOC is set, and this is a shared object, then we also
2207 treat this section as a BFD section. We can not base the
2208 decision purely on SHF_ALLOC, because that flag is sometimes
2209 set in a relocatable object file, which would confuse the
2210 linker. */
2211 if ((hdr->sh_flags & SHF_ALLOC) != 0
2212 && (abfd->flags & DYNAMIC) != 0
2213 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2214 shindex))
2215 goto fail;
2216
2217 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2218 can't read symbols without that section loaded as well. It
2219 is most likely specified by the next section header. */
2220 {
2221 elf_section_list * entry;
2222 unsigned int i, num_sec;
2223
2224 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2225 if (entry->hdr.sh_link == shindex)
2226 goto success;
2227
2228 num_sec = elf_numsections (abfd);
2229 for (i = shindex + 1; i < num_sec; i++)
2230 {
2231 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2232
2233 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2234 && hdr2->sh_link == shindex)
2235 break;
2236 }
2237
2238 if (i == num_sec)
2239 for (i = 1; i < shindex; i++)
2240 {
2241 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2242
2243 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2244 && hdr2->sh_link == shindex)
2245 break;
2246 }
2247
2248 if (i != shindex)
2249 ret = bfd_section_from_shdr (abfd, i);
2250 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2251 goto success;
2252 }
2253
2254 case SHT_DYNSYM: /* A dynamic symbol table. */
2255 if (elf_dynsymtab (abfd) == shindex)
2256 goto success;
2257
2258 if (hdr->sh_entsize != bed->s->sizeof_sym)
2259 goto fail;
2260
2261 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2262 {
2263 if (hdr->sh_size != 0)
2264 goto fail;
2265
2266 /* Some linkers erroneously set sh_info to one with a
2267 zero sh_size. ld sees this as a global symbol count
2268 of (unsigned) -1. Fix it here. */
2269 hdr->sh_info = 0;
2270 goto success;
2271 }
2272
2273 /* PR 18854: A binary might contain more than one dynamic symbol table.
2274 Unusual, but possible. Warn, but continue. */
2275 if (elf_dynsymtab (abfd) != 0)
2276 {
2277 _bfd_error_handler
2278 /* xgettext:c-format */
2279 (_("%pB: warning: multiple dynamic symbol tables detected"
2280 " - ignoring the table in section %u"),
2281 abfd, shindex);
2282 goto success;
2283 }
2284 elf_dynsymtab (abfd) = shindex;
2285 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2286 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2287 abfd->flags |= HAS_SYMS;
2288
2289 /* Besides being a symbol table, we also treat this as a regular
2290 section, so that objcopy can handle it. */
2291 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2292 goto success;
2293
2294 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2295 {
2296 elf_section_list * entry;
2297
2298 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2299 if (entry->ndx == shindex)
2300 goto success;
2301
2302 entry = bfd_alloc (abfd, sizeof (*entry));
2303 if (entry == NULL)
2304 goto fail;
2305 entry->ndx = shindex;
2306 entry->hdr = * hdr;
2307 entry->next = elf_symtab_shndx_list (abfd);
2308 elf_symtab_shndx_list (abfd) = entry;
2309 elf_elfsections (abfd)[shindex] = & entry->hdr;
2310 goto success;
2311 }
2312
2313 case SHT_STRTAB: /* A string table. */
2314 if (hdr->bfd_section != NULL)
2315 goto success;
2316
2317 if (ehdr->e_shstrndx == shindex)
2318 {
2319 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2320 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2321 goto success;
2322 }
2323
2324 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2325 {
2326 symtab_strtab:
2327 elf_tdata (abfd)->strtab_hdr = *hdr;
2328 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2329 goto success;
2330 }
2331
2332 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2333 {
2334 dynsymtab_strtab:
2335 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2336 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2337 elf_elfsections (abfd)[shindex] = hdr;
2338 /* We also treat this as a regular section, so that objcopy
2339 can handle it. */
2340 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2341 shindex);
2342 goto success;
2343 }
2344
2345 /* If the string table isn't one of the above, then treat it as a
2346 regular section. We need to scan all the headers to be sure,
2347 just in case this strtab section appeared before the above. */
2348 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2349 {
2350 unsigned int i, num_sec;
2351
2352 num_sec = elf_numsections (abfd);
2353 for (i = 1; i < num_sec; i++)
2354 {
2355 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2356 if (hdr2->sh_link == shindex)
2357 {
2358 /* Prevent endless recursion on broken objects. */
2359 if (i == shindex)
2360 goto fail;
2361 if (! bfd_section_from_shdr (abfd, i))
2362 goto fail;
2363 if (elf_onesymtab (abfd) == i)
2364 goto symtab_strtab;
2365 if (elf_dynsymtab (abfd) == i)
2366 goto dynsymtab_strtab;
2367 }
2368 }
2369 }
2370 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2371 goto success;
2372
2373 case SHT_REL:
2374 case SHT_RELA:
2375 /* *These* do a lot of work -- but build no sections! */
2376 {
2377 asection *target_sect;
2378 Elf_Internal_Shdr *hdr2, **p_hdr;
2379 unsigned int num_sec = elf_numsections (abfd);
2380 struct bfd_elf_section_data *esdt;
2381
2382 if (hdr->sh_entsize
2383 != (bfd_size_type) (hdr->sh_type == SHT_REL
2384 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2385 goto fail;
2386
2387 /* Check for a bogus link to avoid crashing. */
2388 if (hdr->sh_link >= num_sec)
2389 {
2390 _bfd_error_handler
2391 /* xgettext:c-format */
2392 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2393 abfd, hdr->sh_link, name, shindex);
2394 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2395 shindex);
2396 goto success;
2397 }
2398
2399 /* For some incomprehensible reason Oracle distributes
2400 libraries for Solaris in which some of the objects have
2401 bogus sh_link fields. It would be nice if we could just
2402 reject them, but, unfortunately, some people need to use
2403 them. We scan through the section headers; if we find only
2404 one suitable symbol table, we clobber the sh_link to point
2405 to it. I hope this doesn't break anything.
2406
2407 Don't do it on executable nor shared library. */
2408 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2409 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2410 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2411 {
2412 unsigned int scan;
2413 int found;
2414
2415 found = 0;
2416 for (scan = 1; scan < num_sec; scan++)
2417 {
2418 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2419 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2420 {
2421 if (found != 0)
2422 {
2423 found = 0;
2424 break;
2425 }
2426 found = scan;
2427 }
2428 }
2429 if (found != 0)
2430 hdr->sh_link = found;
2431 }
2432
2433 /* Get the symbol table. */
2434 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2435 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2436 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2437 goto fail;
2438
2439 /* If this is an alloc section in an executable or shared
2440 library, or the reloc section does not use the main symbol
2441 table we don't treat it as a reloc section. BFD can't
2442 adequately represent such a section, so at least for now,
2443 we don't try. We just present it as a normal section. We
2444 also can't use it as a reloc section if it points to the
2445 null section, an invalid section, another reloc section, or
2446 its sh_link points to the null section. */
2447 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2448 && (hdr->sh_flags & SHF_ALLOC) != 0)
2449 || hdr->sh_link == SHN_UNDEF
2450 || hdr->sh_link != elf_onesymtab (abfd)
2451 || hdr->sh_info == SHN_UNDEF
2452 || hdr->sh_info >= num_sec
2453 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2454 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2455 {
2456 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2457 shindex);
2458 goto success;
2459 }
2460
2461 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2462 goto fail;
2463
2464 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2465 if (target_sect == NULL)
2466 goto fail;
2467
2468 esdt = elf_section_data (target_sect);
2469 if (hdr->sh_type == SHT_RELA)
2470 p_hdr = &esdt->rela.hdr;
2471 else
2472 p_hdr = &esdt->rel.hdr;
2473
2474 /* PR 17512: file: 0b4f81b7.
2475 Also see PR 24456, for a file which deliberately has two reloc
2476 sections. */
2477 if (*p_hdr != NULL)
2478 {
2479 _bfd_error_handler
2480 /* xgettext:c-format */
2481 (_("%pB: warning: multiple relocation sections for section %pA \
2482 found - ignoring all but the first"),
2483 abfd, target_sect);
2484 goto success;
2485 }
2486 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2487 if (hdr2 == NULL)
2488 goto fail;
2489 *hdr2 = *hdr;
2490 *p_hdr = hdr2;
2491 elf_elfsections (abfd)[shindex] = hdr2;
2492 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2493 * bed->s->int_rels_per_ext_rel);
2494 target_sect->flags |= SEC_RELOC;
2495 target_sect->relocation = NULL;
2496 target_sect->rel_filepos = hdr->sh_offset;
2497 /* In the section to which the relocations apply, mark whether
2498 its relocations are of the REL or RELA variety. */
2499 if (hdr->sh_size != 0)
2500 {
2501 if (hdr->sh_type == SHT_RELA)
2502 target_sect->use_rela_p = 1;
2503 }
2504 abfd->flags |= HAS_RELOC;
2505 goto success;
2506 }
2507
2508 case SHT_GNU_verdef:
2509 elf_dynverdef (abfd) = shindex;
2510 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2511 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2512 goto success;
2513
2514 case SHT_GNU_versym:
2515 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2516 goto fail;
2517
2518 elf_dynversym (abfd) = shindex;
2519 elf_tdata (abfd)->dynversym_hdr = *hdr;
2520 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2521 goto success;
2522
2523 case SHT_GNU_verneed:
2524 elf_dynverref (abfd) = shindex;
2525 elf_tdata (abfd)->dynverref_hdr = *hdr;
2526 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2527 goto success;
2528
2529 case SHT_SHLIB:
2530 goto success;
2531
2532 case SHT_GROUP:
2533 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2534 goto fail;
2535
2536 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2537 goto fail;
2538
2539 goto success;
2540
2541 default:
2542 /* Possibly an attributes section. */
2543 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2544 || hdr->sh_type == bed->obj_attrs_section_type)
2545 {
2546 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2547 goto fail;
2548 _bfd_elf_parse_attributes (abfd, hdr);
2549 goto success;
2550 }
2551
2552 /* Check for any processor-specific section types. */
2553 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2554 goto success;
2555
2556 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2557 {
2558 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2559 /* FIXME: How to properly handle allocated section reserved
2560 for applications? */
2561 _bfd_error_handler
2562 /* xgettext:c-format */
2563 (_("%pB: unknown type [%#x] section `%s'"),
2564 abfd, hdr->sh_type, name);
2565 else
2566 {
2567 /* Allow sections reserved for applications. */
2568 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2569 shindex);
2570 goto success;
2571 }
2572 }
2573 else if (hdr->sh_type >= SHT_LOPROC
2574 && hdr->sh_type <= SHT_HIPROC)
2575 /* FIXME: We should handle this section. */
2576 _bfd_error_handler
2577 /* xgettext:c-format */
2578 (_("%pB: unknown type [%#x] section `%s'"),
2579 abfd, hdr->sh_type, name);
2580 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2581 {
2582 /* Unrecognised OS-specific sections. */
2583 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2584 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2585 required to correctly process the section and the file should
2586 be rejected with an error message. */
2587 _bfd_error_handler
2588 /* xgettext:c-format */
2589 (_("%pB: unknown type [%#x] section `%s'"),
2590 abfd, hdr->sh_type, name);
2591 else
2592 {
2593 /* Otherwise it should be processed. */
2594 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2595 goto success;
2596 }
2597 }
2598 else
2599 /* FIXME: We should handle this section. */
2600 _bfd_error_handler
2601 /* xgettext:c-format */
2602 (_("%pB: unknown type [%#x] section `%s'"),
2603 abfd, hdr->sh_type, name);
2604
2605 goto fail;
2606 }
2607
2608 fail:
2609 ret = FALSE;
2610 success:
2611 if (sections_being_created && sections_being_created_abfd == abfd)
2612 sections_being_created [shindex] = FALSE;
2613 if (-- nesting == 0)
2614 {
2615 sections_being_created = NULL;
2616 sections_being_created_abfd = abfd;
2617 }
2618 return ret;
2619 }
2620
2621 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2622
2623 Elf_Internal_Sym *
2624 bfd_sym_from_r_symndx (struct sym_cache *cache,
2625 bfd *abfd,
2626 unsigned long r_symndx)
2627 {
2628 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2629
2630 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2631 {
2632 Elf_Internal_Shdr *symtab_hdr;
2633 unsigned char esym[sizeof (Elf64_External_Sym)];
2634 Elf_External_Sym_Shndx eshndx;
2635
2636 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2637 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2638 &cache->sym[ent], esym, &eshndx) == NULL)
2639 return NULL;
2640
2641 if (cache->abfd != abfd)
2642 {
2643 memset (cache->indx, -1, sizeof (cache->indx));
2644 cache->abfd = abfd;
2645 }
2646 cache->indx[ent] = r_symndx;
2647 }
2648
2649 return &cache->sym[ent];
2650 }
2651
2652 /* Given an ELF section number, retrieve the corresponding BFD
2653 section. */
2654
2655 asection *
2656 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2657 {
2658 if (sec_index >= elf_numsections (abfd))
2659 return NULL;
2660 return elf_elfsections (abfd)[sec_index]->bfd_section;
2661 }
2662
2663 static const struct bfd_elf_special_section special_sections_b[] =
2664 {
2665 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_c[] =
2670 {
2671 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2672 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_d[] =
2677 {
2678 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2679 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2680 /* There are more DWARF sections than these, but they needn't be added here
2681 unless you have to cope with broken compilers that don't emit section
2682 attributes or you want to help the user writing assembler. */
2683 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2684 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2685 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2686 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2689 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2690 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2691 { NULL, 0, 0, 0, 0 }
2692 };
2693
2694 static const struct bfd_elf_special_section special_sections_f[] =
2695 {
2696 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2697 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2698 { NULL, 0 , 0, 0, 0 }
2699 };
2700
2701 static const struct bfd_elf_special_section special_sections_g[] =
2702 {
2703 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2704 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2705 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2706 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2707 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2708 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2709 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2710 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2711 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2712 { NULL, 0, 0, 0, 0 }
2713 };
2714
2715 static const struct bfd_elf_special_section special_sections_h[] =
2716 {
2717 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_i[] =
2722 {
2723 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2724 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2725 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2726 { NULL, 0, 0, 0, 0 }
2727 };
2728
2729 static const struct bfd_elf_special_section special_sections_l[] =
2730 {
2731 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section special_sections_n[] =
2736 {
2737 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2738 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2739 { NULL, 0, 0, 0, 0 }
2740 };
2741
2742 static const struct bfd_elf_special_section special_sections_p[] =
2743 {
2744 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2745 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2746 { NULL, 0, 0, 0, 0 }
2747 };
2748
2749 static const struct bfd_elf_special_section special_sections_r[] =
2750 {
2751 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2752 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2753 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2754 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2755 { NULL, 0, 0, 0, 0 }
2756 };
2757
2758 static const struct bfd_elf_special_section special_sections_s[] =
2759 {
2760 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2761 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2762 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2763 /* See struct bfd_elf_special_section declaration for the semantics of
2764 this special case where .prefix_length != strlen (.prefix). */
2765 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2766 { NULL, 0, 0, 0, 0 }
2767 };
2768
2769 static const struct bfd_elf_special_section special_sections_t[] =
2770 {
2771 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2772 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2773 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2774 { NULL, 0, 0, 0, 0 }
2775 };
2776
2777 static const struct bfd_elf_special_section special_sections_z[] =
2778 {
2779 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2780 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2781 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2782 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2783 { NULL, 0, 0, 0, 0 }
2784 };
2785
2786 static const struct bfd_elf_special_section * const special_sections[] =
2787 {
2788 special_sections_b, /* 'b' */
2789 special_sections_c, /* 'c' */
2790 special_sections_d, /* 'd' */
2791 NULL, /* 'e' */
2792 special_sections_f, /* 'f' */
2793 special_sections_g, /* 'g' */
2794 special_sections_h, /* 'h' */
2795 special_sections_i, /* 'i' */
2796 NULL, /* 'j' */
2797 NULL, /* 'k' */
2798 special_sections_l, /* 'l' */
2799 NULL, /* 'm' */
2800 special_sections_n, /* 'n' */
2801 NULL, /* 'o' */
2802 special_sections_p, /* 'p' */
2803 NULL, /* 'q' */
2804 special_sections_r, /* 'r' */
2805 special_sections_s, /* 's' */
2806 special_sections_t, /* 't' */
2807 NULL, /* 'u' */
2808 NULL, /* 'v' */
2809 NULL, /* 'w' */
2810 NULL, /* 'x' */
2811 NULL, /* 'y' */
2812 special_sections_z /* 'z' */
2813 };
2814
2815 const struct bfd_elf_special_section *
2816 _bfd_elf_get_special_section (const char *name,
2817 const struct bfd_elf_special_section *spec,
2818 unsigned int rela)
2819 {
2820 int i;
2821 int len;
2822
2823 len = strlen (name);
2824
2825 for (i = 0; spec[i].prefix != NULL; i++)
2826 {
2827 int suffix_len;
2828 int prefix_len = spec[i].prefix_length;
2829
2830 if (len < prefix_len)
2831 continue;
2832 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2833 continue;
2834
2835 suffix_len = spec[i].suffix_length;
2836 if (suffix_len <= 0)
2837 {
2838 if (name[prefix_len] != 0)
2839 {
2840 if (suffix_len == 0)
2841 continue;
2842 if (name[prefix_len] != '.'
2843 && (suffix_len == -2
2844 || (rela && spec[i].type == SHT_REL)))
2845 continue;
2846 }
2847 }
2848 else
2849 {
2850 if (len < prefix_len + suffix_len)
2851 continue;
2852 if (memcmp (name + len - suffix_len,
2853 spec[i].prefix + prefix_len,
2854 suffix_len) != 0)
2855 continue;
2856 }
2857 return &spec[i];
2858 }
2859
2860 return NULL;
2861 }
2862
2863 const struct bfd_elf_special_section *
2864 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2865 {
2866 int i;
2867 const struct bfd_elf_special_section *spec;
2868 const struct elf_backend_data *bed;
2869
2870 /* See if this is one of the special sections. */
2871 if (sec->name == NULL)
2872 return NULL;
2873
2874 bed = get_elf_backend_data (abfd);
2875 spec = bed->special_sections;
2876 if (spec)
2877 {
2878 spec = _bfd_elf_get_special_section (sec->name,
2879 bed->special_sections,
2880 sec->use_rela_p);
2881 if (spec != NULL)
2882 return spec;
2883 }
2884
2885 if (sec->name[0] != '.')
2886 return NULL;
2887
2888 i = sec->name[1] - 'b';
2889 if (i < 0 || i > 'z' - 'b')
2890 return NULL;
2891
2892 spec = special_sections[i];
2893
2894 if (spec == NULL)
2895 return NULL;
2896
2897 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2898 }
2899
2900 bfd_boolean
2901 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2902 {
2903 struct bfd_elf_section_data *sdata;
2904 const struct elf_backend_data *bed;
2905 const struct bfd_elf_special_section *ssect;
2906
2907 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2908 if (sdata == NULL)
2909 {
2910 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2911 sizeof (*sdata));
2912 if (sdata == NULL)
2913 return FALSE;
2914 sec->used_by_bfd = sdata;
2915 }
2916
2917 /* Indicate whether or not this section should use RELA relocations. */
2918 bed = get_elf_backend_data (abfd);
2919 sec->use_rela_p = bed->default_use_rela_p;
2920
2921 /* When we read a file, we don't need to set ELF section type and
2922 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2923 anyway. We will set ELF section type and flags for all linker
2924 created sections. If user specifies BFD section flags, we will
2925 set ELF section type and flags based on BFD section flags in
2926 elf_fake_sections. Special handling for .init_array/.fini_array
2927 output sections since they may contain .ctors/.dtors input
2928 sections. We don't want _bfd_elf_init_private_section_data to
2929 copy ELF section type from .ctors/.dtors input sections. */
2930 if (abfd->direction != read_direction
2931 || (sec->flags & SEC_LINKER_CREATED) != 0)
2932 {
2933 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2934 if (ssect != NULL
2935 && (!sec->flags
2936 || (sec->flags & SEC_LINKER_CREATED) != 0
2937 || ssect->type == SHT_INIT_ARRAY
2938 || ssect->type == SHT_FINI_ARRAY))
2939 {
2940 elf_section_type (sec) = ssect->type;
2941 elf_section_flags (sec) = ssect->attr;
2942 }
2943 }
2944
2945 return _bfd_generic_new_section_hook (abfd, sec);
2946 }
2947
2948 /* Create a new bfd section from an ELF program header.
2949
2950 Since program segments have no names, we generate a synthetic name
2951 of the form segment<NUM>, where NUM is generally the index in the
2952 program header table. For segments that are split (see below) we
2953 generate the names segment<NUM>a and segment<NUM>b.
2954
2955 Note that some program segments may have a file size that is different than
2956 (less than) the memory size. All this means is that at execution the
2957 system must allocate the amount of memory specified by the memory size,
2958 but only initialize it with the first "file size" bytes read from the
2959 file. This would occur for example, with program segments consisting
2960 of combined data+bss.
2961
2962 To handle the above situation, this routine generates TWO bfd sections
2963 for the single program segment. The first has the length specified by
2964 the file size of the segment, and the second has the length specified
2965 by the difference between the two sizes. In effect, the segment is split
2966 into its initialized and uninitialized parts.
2967
2968 */
2969
2970 bfd_boolean
2971 _bfd_elf_make_section_from_phdr (bfd *abfd,
2972 Elf_Internal_Phdr *hdr,
2973 int hdr_index,
2974 const char *type_name)
2975 {
2976 asection *newsect;
2977 char *name;
2978 char namebuf[64];
2979 size_t len;
2980 int split;
2981
2982 split = ((hdr->p_memsz > 0)
2983 && (hdr->p_filesz > 0)
2984 && (hdr->p_memsz > hdr->p_filesz));
2985
2986 if (hdr->p_filesz > 0)
2987 {
2988 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2989 len = strlen (namebuf) + 1;
2990 name = (char *) bfd_alloc (abfd, len);
2991 if (!name)
2992 return FALSE;
2993 memcpy (name, namebuf, len);
2994 newsect = bfd_make_section (abfd, name);
2995 if (newsect == NULL)
2996 return FALSE;
2997 newsect->vma = hdr->p_vaddr;
2998 newsect->lma = hdr->p_paddr;
2999 newsect->size = hdr->p_filesz;
3000 newsect->filepos = hdr->p_offset;
3001 newsect->flags |= SEC_HAS_CONTENTS;
3002 newsect->alignment_power = bfd_log2 (hdr->p_align);
3003 if (hdr->p_type == PT_LOAD)
3004 {
3005 newsect->flags |= SEC_ALLOC;
3006 newsect->flags |= SEC_LOAD;
3007 if (hdr->p_flags & PF_X)
3008 {
3009 /* FIXME: all we known is that it has execute PERMISSION,
3010 may be data. */
3011 newsect->flags |= SEC_CODE;
3012 }
3013 }
3014 if (!(hdr->p_flags & PF_W))
3015 {
3016 newsect->flags |= SEC_READONLY;
3017 }
3018 }
3019
3020 if (hdr->p_memsz > hdr->p_filesz)
3021 {
3022 bfd_vma align;
3023
3024 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3025 len = strlen (namebuf) + 1;
3026 name = (char *) bfd_alloc (abfd, len);
3027 if (!name)
3028 return FALSE;
3029 memcpy (name, namebuf, len);
3030 newsect = bfd_make_section (abfd, name);
3031 if (newsect == NULL)
3032 return FALSE;
3033 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3034 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3035 newsect->size = hdr->p_memsz - hdr->p_filesz;
3036 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3037 align = newsect->vma & -newsect->vma;
3038 if (align == 0 || align > hdr->p_align)
3039 align = hdr->p_align;
3040 newsect->alignment_power = bfd_log2 (align);
3041 if (hdr->p_type == PT_LOAD)
3042 {
3043 /* Hack for gdb. Segments that have not been modified do
3044 not have their contents written to a core file, on the
3045 assumption that a debugger can find the contents in the
3046 executable. We flag this case by setting the fake
3047 section size to zero. Note that "real" bss sections will
3048 always have their contents dumped to the core file. */
3049 if (bfd_get_format (abfd) == bfd_core)
3050 newsect->size = 0;
3051 newsect->flags |= SEC_ALLOC;
3052 if (hdr->p_flags & PF_X)
3053 newsect->flags |= SEC_CODE;
3054 }
3055 if (!(hdr->p_flags & PF_W))
3056 newsect->flags |= SEC_READONLY;
3057 }
3058
3059 return TRUE;
3060 }
3061
3062 static bfd_boolean
3063 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3064 {
3065 /* The return value is ignored. Build-ids are considered optional. */
3066 if (templ->xvec->flavour == bfd_target_elf_flavour)
3067 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3068 (templ, offset);
3069 return FALSE;
3070 }
3071
3072 bfd_boolean
3073 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3074 {
3075 const struct elf_backend_data *bed;
3076
3077 switch (hdr->p_type)
3078 {
3079 case PT_NULL:
3080 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3081
3082 case PT_LOAD:
3083 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3084 return FALSE;
3085 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3086 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3087 return TRUE;
3088
3089 case PT_DYNAMIC:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3091
3092 case PT_INTERP:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3094
3095 case PT_NOTE:
3096 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3097 return FALSE;
3098 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3099 hdr->p_align))
3100 return FALSE;
3101 return TRUE;
3102
3103 case PT_SHLIB:
3104 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3105
3106 case PT_PHDR:
3107 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3108
3109 case PT_GNU_EH_FRAME:
3110 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3111 "eh_frame_hdr");
3112
3113 case PT_GNU_STACK:
3114 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3115
3116 case PT_GNU_RELRO:
3117 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3118
3119 default:
3120 /* Check for any processor-specific program segment types. */
3121 bed = get_elf_backend_data (abfd);
3122 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3123 }
3124 }
3125
3126 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3127 REL or RELA. */
3128
3129 Elf_Internal_Shdr *
3130 _bfd_elf_single_rel_hdr (asection *sec)
3131 {
3132 if (elf_section_data (sec)->rel.hdr)
3133 {
3134 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3135 return elf_section_data (sec)->rel.hdr;
3136 }
3137 else
3138 return elf_section_data (sec)->rela.hdr;
3139 }
3140
3141 static bfd_boolean
3142 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3143 Elf_Internal_Shdr *rel_hdr,
3144 const char *sec_name,
3145 bfd_boolean use_rela_p)
3146 {
3147 char *name = (char *) bfd_alloc (abfd,
3148 sizeof ".rela" + strlen (sec_name));
3149 if (name == NULL)
3150 return FALSE;
3151
3152 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3153 rel_hdr->sh_name =
3154 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3155 FALSE);
3156 if (rel_hdr->sh_name == (unsigned int) -1)
3157 return FALSE;
3158
3159 return TRUE;
3160 }
3161
3162 /* Allocate and initialize a section-header for a new reloc section,
3163 containing relocations against ASECT. It is stored in RELDATA. If
3164 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3165 relocations. */
3166
3167 static bfd_boolean
3168 _bfd_elf_init_reloc_shdr (bfd *abfd,
3169 struct bfd_elf_section_reloc_data *reldata,
3170 const char *sec_name,
3171 bfd_boolean use_rela_p,
3172 bfd_boolean delay_st_name_p)
3173 {
3174 Elf_Internal_Shdr *rel_hdr;
3175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3176
3177 BFD_ASSERT (reldata->hdr == NULL);
3178 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3179 reldata->hdr = rel_hdr;
3180
3181 if (delay_st_name_p)
3182 rel_hdr->sh_name = (unsigned int) -1;
3183 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3184 use_rela_p))
3185 return FALSE;
3186 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3187 rel_hdr->sh_entsize = (use_rela_p
3188 ? bed->s->sizeof_rela
3189 : bed->s->sizeof_rel);
3190 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3191 rel_hdr->sh_flags = 0;
3192 rel_hdr->sh_addr = 0;
3193 rel_hdr->sh_size = 0;
3194 rel_hdr->sh_offset = 0;
3195
3196 return TRUE;
3197 }
3198
3199 /* Return the default section type based on the passed in section flags. */
3200
3201 int
3202 bfd_elf_get_default_section_type (flagword flags)
3203 {
3204 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3205 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3206 return SHT_NOBITS;
3207 return SHT_PROGBITS;
3208 }
3209
3210 struct fake_section_arg
3211 {
3212 struct bfd_link_info *link_info;
3213 bfd_boolean failed;
3214 };
3215
3216 /* Set up an ELF internal section header for a section. */
3217
3218 static void
3219 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3220 {
3221 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3223 struct bfd_elf_section_data *esd = elf_section_data (asect);
3224 Elf_Internal_Shdr *this_hdr;
3225 unsigned int sh_type;
3226 const char *name = asect->name;
3227 bfd_boolean delay_st_name_p = FALSE;
3228
3229 if (arg->failed)
3230 {
3231 /* We already failed; just get out of the bfd_map_over_sections
3232 loop. */
3233 return;
3234 }
3235
3236 this_hdr = &esd->this_hdr;
3237
3238 if (arg->link_info)
3239 {
3240 /* ld: compress DWARF debug sections with names: .debug_*. */
3241 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3242 && (asect->flags & SEC_DEBUGGING)
3243 && name[1] == 'd'
3244 && name[6] == '_')
3245 {
3246 /* Set SEC_ELF_COMPRESS to indicate this section should be
3247 compressed. */
3248 asect->flags |= SEC_ELF_COMPRESS;
3249
3250 /* If this section will be compressed, delay adding section
3251 name to section name section after it is compressed in
3252 _bfd_elf_assign_file_positions_for_non_load. */
3253 delay_st_name_p = TRUE;
3254 }
3255 }
3256 else if ((asect->flags & SEC_ELF_RENAME))
3257 {
3258 /* objcopy: rename output DWARF debug section. */
3259 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3260 {
3261 /* When we decompress or compress with SHF_COMPRESSED,
3262 convert section name from .zdebug_* to .debug_* if
3263 needed. */
3264 if (name[1] == 'z')
3265 {
3266 char *new_name = convert_zdebug_to_debug (abfd, name);
3267 if (new_name == NULL)
3268 {
3269 arg->failed = TRUE;
3270 return;
3271 }
3272 name = new_name;
3273 }
3274 }
3275 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3276 {
3277 /* PR binutils/18087: Compression does not always make a
3278 section smaller. So only rename the section when
3279 compression has actually taken place. If input section
3280 name is .zdebug_*, we should never compress it again. */
3281 char *new_name = convert_debug_to_zdebug (abfd, name);
3282 if (new_name == NULL)
3283 {
3284 arg->failed = TRUE;
3285 return;
3286 }
3287 BFD_ASSERT (name[1] != 'z');
3288 name = new_name;
3289 }
3290 }
3291
3292 if (delay_st_name_p)
3293 this_hdr->sh_name = (unsigned int) -1;
3294 else
3295 {
3296 this_hdr->sh_name
3297 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3298 name, FALSE);
3299 if (this_hdr->sh_name == (unsigned int) -1)
3300 {
3301 arg->failed = TRUE;
3302 return;
3303 }
3304 }
3305
3306 /* Don't clear sh_flags. Assembler may set additional bits. */
3307
3308 if ((asect->flags & SEC_ALLOC) != 0
3309 || asect->user_set_vma)
3310 this_hdr->sh_addr = asect->vma;
3311 else
3312 this_hdr->sh_addr = 0;
3313
3314 this_hdr->sh_offset = 0;
3315 this_hdr->sh_size = asect->size;
3316 this_hdr->sh_link = 0;
3317 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3318 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3319 {
3320 _bfd_error_handler
3321 /* xgettext:c-format */
3322 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3323 abfd, asect->alignment_power, asect);
3324 arg->failed = TRUE;
3325 return;
3326 }
3327 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3328 /* The sh_entsize and sh_info fields may have been set already by
3329 copy_private_section_data. */
3330
3331 this_hdr->bfd_section = asect;
3332 this_hdr->contents = NULL;
3333
3334 /* If the section type is unspecified, we set it based on
3335 asect->flags. */
3336 if ((asect->flags & SEC_GROUP) != 0)
3337 sh_type = SHT_GROUP;
3338 else
3339 sh_type = bfd_elf_get_default_section_type (asect->flags);
3340
3341 if (this_hdr->sh_type == SHT_NULL)
3342 this_hdr->sh_type = sh_type;
3343 else if (this_hdr->sh_type == SHT_NOBITS
3344 && sh_type == SHT_PROGBITS
3345 && (asect->flags & SEC_ALLOC) != 0)
3346 {
3347 /* Warn if we are changing a NOBITS section to PROGBITS, but
3348 allow the link to proceed. This can happen when users link
3349 non-bss input sections to bss output sections, or emit data
3350 to a bss output section via a linker script. */
3351 _bfd_error_handler
3352 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3353 this_hdr->sh_type = sh_type;
3354 }
3355
3356 switch (this_hdr->sh_type)
3357 {
3358 default:
3359 break;
3360
3361 case SHT_STRTAB:
3362 case SHT_NOTE:
3363 case SHT_NOBITS:
3364 case SHT_PROGBITS:
3365 break;
3366
3367 case SHT_INIT_ARRAY:
3368 case SHT_FINI_ARRAY:
3369 case SHT_PREINIT_ARRAY:
3370 this_hdr->sh_entsize = bed->s->arch_size / 8;
3371 break;
3372
3373 case SHT_HASH:
3374 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3375 break;
3376
3377 case SHT_DYNSYM:
3378 this_hdr->sh_entsize = bed->s->sizeof_sym;
3379 break;
3380
3381 case SHT_DYNAMIC:
3382 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3383 break;
3384
3385 case SHT_RELA:
3386 if (get_elf_backend_data (abfd)->may_use_rela_p)
3387 this_hdr->sh_entsize = bed->s->sizeof_rela;
3388 break;
3389
3390 case SHT_REL:
3391 if (get_elf_backend_data (abfd)->may_use_rel_p)
3392 this_hdr->sh_entsize = bed->s->sizeof_rel;
3393 break;
3394
3395 case SHT_GNU_versym:
3396 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3397 break;
3398
3399 case SHT_GNU_verdef:
3400 this_hdr->sh_entsize = 0;
3401 /* objcopy or strip will copy over sh_info, but may not set
3402 cverdefs. The linker will set cverdefs, but sh_info will be
3403 zero. */
3404 if (this_hdr->sh_info == 0)
3405 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3406 else
3407 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3408 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3409 break;
3410
3411 case SHT_GNU_verneed:
3412 this_hdr->sh_entsize = 0;
3413 /* objcopy or strip will copy over sh_info, but may not set
3414 cverrefs. The linker will set cverrefs, but sh_info will be
3415 zero. */
3416 if (this_hdr->sh_info == 0)
3417 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3418 else
3419 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3420 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3421 break;
3422
3423 case SHT_GROUP:
3424 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3425 break;
3426
3427 case SHT_GNU_HASH:
3428 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3429 break;
3430 }
3431
3432 if ((asect->flags & SEC_ALLOC) != 0)
3433 this_hdr->sh_flags |= SHF_ALLOC;
3434 if ((asect->flags & SEC_READONLY) == 0)
3435 this_hdr->sh_flags |= SHF_WRITE;
3436 if ((asect->flags & SEC_CODE) != 0)
3437 this_hdr->sh_flags |= SHF_EXECINSTR;
3438 if ((asect->flags & SEC_MERGE) != 0)
3439 {
3440 this_hdr->sh_flags |= SHF_MERGE;
3441 this_hdr->sh_entsize = asect->entsize;
3442 }
3443 if ((asect->flags & SEC_STRINGS) != 0)
3444 this_hdr->sh_flags |= SHF_STRINGS;
3445 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3446 this_hdr->sh_flags |= SHF_GROUP;
3447 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3448 {
3449 this_hdr->sh_flags |= SHF_TLS;
3450 if (asect->size == 0
3451 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3452 {
3453 struct bfd_link_order *o = asect->map_tail.link_order;
3454
3455 this_hdr->sh_size = 0;
3456 if (o != NULL)
3457 {
3458 this_hdr->sh_size = o->offset + o->size;
3459 if (this_hdr->sh_size != 0)
3460 this_hdr->sh_type = SHT_NOBITS;
3461 }
3462 }
3463 }
3464 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3465 this_hdr->sh_flags |= SHF_EXCLUDE;
3466
3467 /* If the section has relocs, set up a section header for the
3468 SHT_REL[A] section. If two relocation sections are required for
3469 this section, it is up to the processor-specific back-end to
3470 create the other. */
3471 if ((asect->flags & SEC_RELOC) != 0)
3472 {
3473 /* When doing a relocatable link, create both REL and RELA sections if
3474 needed. */
3475 if (arg->link_info
3476 /* Do the normal setup if we wouldn't create any sections here. */
3477 && esd->rel.count + esd->rela.count > 0
3478 && (bfd_link_relocatable (arg->link_info)
3479 || arg->link_info->emitrelocations))
3480 {
3481 if (esd->rel.count && esd->rel.hdr == NULL
3482 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3483 FALSE, delay_st_name_p))
3484 {
3485 arg->failed = TRUE;
3486 return;
3487 }
3488 if (esd->rela.count && esd->rela.hdr == NULL
3489 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3490 TRUE, delay_st_name_p))
3491 {
3492 arg->failed = TRUE;
3493 return;
3494 }
3495 }
3496 else if (!_bfd_elf_init_reloc_shdr (abfd,
3497 (asect->use_rela_p
3498 ? &esd->rela : &esd->rel),
3499 name,
3500 asect->use_rela_p,
3501 delay_st_name_p))
3502 {
3503 arg->failed = TRUE;
3504 return;
3505 }
3506 }
3507
3508 /* Check for processor-specific section types. */
3509 sh_type = this_hdr->sh_type;
3510 if (bed->elf_backend_fake_sections
3511 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3512 {
3513 arg->failed = TRUE;
3514 return;
3515 }
3516
3517 if (sh_type == SHT_NOBITS && asect->size != 0)
3518 {
3519 /* Don't change the header type from NOBITS if we are being
3520 called for objcopy --only-keep-debug. */
3521 this_hdr->sh_type = sh_type;
3522 }
3523 }
3524
3525 /* Fill in the contents of a SHT_GROUP section. Called from
3526 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3527 when ELF targets use the generic linker, ld. Called for ld -r
3528 from bfd_elf_final_link. */
3529
3530 void
3531 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3532 {
3533 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3534 asection *elt, *first;
3535 unsigned char *loc;
3536 bfd_boolean gas;
3537
3538 /* Ignore linker created group section. See elfNN_ia64_object_p in
3539 elfxx-ia64.c. */
3540 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3541 || sec->size == 0
3542 || *failedptr)
3543 return;
3544
3545 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3546 {
3547 unsigned long symindx = 0;
3548
3549 /* elf_group_id will have been set up by objcopy and the
3550 generic linker. */
3551 if (elf_group_id (sec) != NULL)
3552 symindx = elf_group_id (sec)->udata.i;
3553
3554 if (symindx == 0)
3555 {
3556 /* If called from the assembler, swap_out_syms will have set up
3557 elf_section_syms. */
3558 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3559 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3560 }
3561 elf_section_data (sec)->this_hdr.sh_info = symindx;
3562 }
3563 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3564 {
3565 /* The ELF backend linker sets sh_info to -2 when the group
3566 signature symbol is global, and thus the index can't be
3567 set until all local symbols are output. */
3568 asection *igroup;
3569 struct bfd_elf_section_data *sec_data;
3570 unsigned long symndx;
3571 unsigned long extsymoff;
3572 struct elf_link_hash_entry *h;
3573
3574 /* The point of this little dance to the first SHF_GROUP section
3575 then back to the SHT_GROUP section is that this gets us to
3576 the SHT_GROUP in the input object. */
3577 igroup = elf_sec_group (elf_next_in_group (sec));
3578 sec_data = elf_section_data (igroup);
3579 symndx = sec_data->this_hdr.sh_info;
3580 extsymoff = 0;
3581 if (!elf_bad_symtab (igroup->owner))
3582 {
3583 Elf_Internal_Shdr *symtab_hdr;
3584
3585 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3586 extsymoff = symtab_hdr->sh_info;
3587 }
3588 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3589 while (h->root.type == bfd_link_hash_indirect
3590 || h->root.type == bfd_link_hash_warning)
3591 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3592
3593 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3594 }
3595
3596 /* The contents won't be allocated for "ld -r" or objcopy. */
3597 gas = TRUE;
3598 if (sec->contents == NULL)
3599 {
3600 gas = FALSE;
3601 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3602
3603 /* Arrange for the section to be written out. */
3604 elf_section_data (sec)->this_hdr.contents = sec->contents;
3605 if (sec->contents == NULL)
3606 {
3607 *failedptr = TRUE;
3608 return;
3609 }
3610 }
3611
3612 loc = sec->contents + sec->size;
3613
3614 /* Get the pointer to the first section in the group that gas
3615 squirreled away here. objcopy arranges for this to be set to the
3616 start of the input section group. */
3617 first = elt = elf_next_in_group (sec);
3618
3619 /* First element is a flag word. Rest of section is elf section
3620 indices for all the sections of the group. Write them backwards
3621 just to keep the group in the same order as given in .section
3622 directives, not that it matters. */
3623 while (elt != NULL)
3624 {
3625 asection *s;
3626
3627 s = elt;
3628 if (!gas)
3629 s = s->output_section;
3630 if (s != NULL
3631 && !bfd_is_abs_section (s))
3632 {
3633 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3634 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3635
3636 if (elf_sec->rel.hdr != NULL
3637 && (gas
3638 || (input_elf_sec->rel.hdr != NULL
3639 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3640 {
3641 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3642 loc -= 4;
3643 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3644 }
3645 if (elf_sec->rela.hdr != NULL
3646 && (gas
3647 || (input_elf_sec->rela.hdr != NULL
3648 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3649 {
3650 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3651 loc -= 4;
3652 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3653 }
3654 loc -= 4;
3655 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3656 }
3657 elt = elf_next_in_group (elt);
3658 if (elt == first)
3659 break;
3660 }
3661
3662 loc -= 4;
3663 BFD_ASSERT (loc == sec->contents);
3664
3665 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3666 }
3667
3668 /* Given NAME, the name of a relocation section stripped of its
3669 .rel/.rela prefix, return the section in ABFD to which the
3670 relocations apply. */
3671
3672 asection *
3673 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3674 {
3675 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3676 section likely apply to .got.plt or .got section. */
3677 if (get_elf_backend_data (abfd)->want_got_plt
3678 && strcmp (name, ".plt") == 0)
3679 {
3680 asection *sec;
3681
3682 name = ".got.plt";
3683 sec = bfd_get_section_by_name (abfd, name);
3684 if (sec != NULL)
3685 return sec;
3686 name = ".got";
3687 }
3688
3689 return bfd_get_section_by_name (abfd, name);
3690 }
3691
3692 /* Return the section to which RELOC_SEC applies. */
3693
3694 static asection *
3695 elf_get_reloc_section (asection *reloc_sec)
3696 {
3697 const char *name;
3698 unsigned int type;
3699 bfd *abfd;
3700 const struct elf_backend_data *bed;
3701
3702 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3703 if (type != SHT_REL && type != SHT_RELA)
3704 return NULL;
3705
3706 /* We look up the section the relocs apply to by name. */
3707 name = reloc_sec->name;
3708 if (strncmp (name, ".rel", 4) != 0)
3709 return NULL;
3710 name += 4;
3711 if (type == SHT_RELA && *name++ != 'a')
3712 return NULL;
3713
3714 abfd = reloc_sec->owner;
3715 bed = get_elf_backend_data (abfd);
3716 return bed->get_reloc_section (abfd, name);
3717 }
3718
3719 /* Assign all ELF section numbers. The dummy first section is handled here
3720 too. The link/info pointers for the standard section types are filled
3721 in here too, while we're at it. */
3722
3723 static bfd_boolean
3724 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3725 {
3726 struct elf_obj_tdata *t = elf_tdata (abfd);
3727 asection *sec;
3728 unsigned int section_number;
3729 Elf_Internal_Shdr **i_shdrp;
3730 struct bfd_elf_section_data *d;
3731 bfd_boolean need_symtab;
3732
3733 section_number = 1;
3734
3735 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3736
3737 /* SHT_GROUP sections are in relocatable files only. */
3738 if (link_info == NULL || !link_info->resolve_section_groups)
3739 {
3740 size_t reloc_count = 0;
3741
3742 /* Put SHT_GROUP sections first. */
3743 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3744 {
3745 d = elf_section_data (sec);
3746
3747 if (d->this_hdr.sh_type == SHT_GROUP)
3748 {
3749 if (sec->flags & SEC_LINKER_CREATED)
3750 {
3751 /* Remove the linker created SHT_GROUP sections. */
3752 bfd_section_list_remove (abfd, sec);
3753 abfd->section_count--;
3754 }
3755 else
3756 d->this_idx = section_number++;
3757 }
3758
3759 /* Count relocations. */
3760 reloc_count += sec->reloc_count;
3761 }
3762
3763 /* Clear HAS_RELOC if there are no relocations. */
3764 if (reloc_count == 0)
3765 abfd->flags &= ~HAS_RELOC;
3766 }
3767
3768 for (sec = abfd->sections; sec; sec = sec->next)
3769 {
3770 d = elf_section_data (sec);
3771
3772 if (d->this_hdr.sh_type != SHT_GROUP)
3773 d->this_idx = section_number++;
3774 if (d->this_hdr.sh_name != (unsigned int) -1)
3775 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3776 if (d->rel.hdr)
3777 {
3778 d->rel.idx = section_number++;
3779 if (d->rel.hdr->sh_name != (unsigned int) -1)
3780 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3781 }
3782 else
3783 d->rel.idx = 0;
3784
3785 if (d->rela.hdr)
3786 {
3787 d->rela.idx = section_number++;
3788 if (d->rela.hdr->sh_name != (unsigned int) -1)
3789 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3790 }
3791 else
3792 d->rela.idx = 0;
3793 }
3794
3795 need_symtab = (bfd_get_symcount (abfd) > 0
3796 || (link_info == NULL
3797 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3798 == HAS_RELOC)));
3799 if (need_symtab)
3800 {
3801 elf_onesymtab (abfd) = section_number++;
3802 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3803 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3804 {
3805 elf_section_list *entry;
3806
3807 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3808
3809 entry = bfd_zalloc (abfd, sizeof (*entry));
3810 entry->ndx = section_number++;
3811 elf_symtab_shndx_list (abfd) = entry;
3812 entry->hdr.sh_name
3813 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3814 ".symtab_shndx", FALSE);
3815 if (entry->hdr.sh_name == (unsigned int) -1)
3816 return FALSE;
3817 }
3818 elf_strtab_sec (abfd) = section_number++;
3819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3820 }
3821
3822 elf_shstrtab_sec (abfd) = section_number++;
3823 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3824 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3825
3826 if (section_number >= SHN_LORESERVE)
3827 {
3828 /* xgettext:c-format */
3829 _bfd_error_handler (_("%pB: too many sections: %u"),
3830 abfd, section_number);
3831 return FALSE;
3832 }
3833
3834 elf_numsections (abfd) = section_number;
3835 elf_elfheader (abfd)->e_shnum = section_number;
3836
3837 /* Set up the list of section header pointers, in agreement with the
3838 indices. */
3839 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3840 sizeof (Elf_Internal_Shdr *));
3841 if (i_shdrp == NULL)
3842 return FALSE;
3843
3844 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3845 sizeof (Elf_Internal_Shdr));
3846 if (i_shdrp[0] == NULL)
3847 {
3848 bfd_release (abfd, i_shdrp);
3849 return FALSE;
3850 }
3851
3852 elf_elfsections (abfd) = i_shdrp;
3853
3854 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3855 if (need_symtab)
3856 {
3857 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3858 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3859 {
3860 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3861 BFD_ASSERT (entry != NULL);
3862 i_shdrp[entry->ndx] = & entry->hdr;
3863 entry->hdr.sh_link = elf_onesymtab (abfd);
3864 }
3865 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3866 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3867 }
3868
3869 for (sec = abfd->sections; sec; sec = sec->next)
3870 {
3871 asection *s;
3872
3873 d = elf_section_data (sec);
3874
3875 i_shdrp[d->this_idx] = &d->this_hdr;
3876 if (d->rel.idx != 0)
3877 i_shdrp[d->rel.idx] = d->rel.hdr;
3878 if (d->rela.idx != 0)
3879 i_shdrp[d->rela.idx] = d->rela.hdr;
3880
3881 /* Fill in the sh_link and sh_info fields while we're at it. */
3882
3883 /* sh_link of a reloc section is the section index of the symbol
3884 table. sh_info is the section index of the section to which
3885 the relocation entries apply. */
3886 if (d->rel.idx != 0)
3887 {
3888 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3889 d->rel.hdr->sh_info = d->this_idx;
3890 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3891 }
3892 if (d->rela.idx != 0)
3893 {
3894 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3895 d->rela.hdr->sh_info = d->this_idx;
3896 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3897 }
3898
3899 /* We need to set up sh_link for SHF_LINK_ORDER. */
3900 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3901 {
3902 s = elf_linked_to_section (sec);
3903 if (s)
3904 {
3905 /* elf_linked_to_section points to the input section. */
3906 if (link_info != NULL)
3907 {
3908 /* Check discarded linkonce section. */
3909 if (discarded_section (s))
3910 {
3911 asection *kept;
3912 _bfd_error_handler
3913 /* xgettext:c-format */
3914 (_("%pB: sh_link of section `%pA' points to"
3915 " discarded section `%pA' of `%pB'"),
3916 abfd, d->this_hdr.bfd_section,
3917 s, s->owner);
3918 /* Point to the kept section if it has the same
3919 size as the discarded one. */
3920 kept = _bfd_elf_check_kept_section (s, link_info);
3921 if (kept == NULL)
3922 {
3923 bfd_set_error (bfd_error_bad_value);
3924 return FALSE;
3925 }
3926 s = kept;
3927 }
3928
3929 s = s->output_section;
3930 BFD_ASSERT (s != NULL);
3931 }
3932 else
3933 {
3934 /* Handle objcopy. */
3935 if (s->output_section == NULL)
3936 {
3937 _bfd_error_handler
3938 /* xgettext:c-format */
3939 (_("%pB: sh_link of section `%pA' points to"
3940 " removed section `%pA' of `%pB'"),
3941 abfd, d->this_hdr.bfd_section, s, s->owner);
3942 bfd_set_error (bfd_error_bad_value);
3943 return FALSE;
3944 }
3945 s = s->output_section;
3946 }
3947 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3948 }
3949 else
3950 {
3951 /* PR 290:
3952 The Intel C compiler generates SHT_IA_64_UNWIND with
3953 SHF_LINK_ORDER. But it doesn't set the sh_link or
3954 sh_info fields. Hence we could get the situation
3955 where s is NULL. */
3956 const struct elf_backend_data *bed
3957 = get_elf_backend_data (abfd);
3958 if (bed->link_order_error_handler)
3959 bed->link_order_error_handler
3960 /* xgettext:c-format */
3961 (_("%pB: warning: sh_link not set for section `%pA'"),
3962 abfd, sec);
3963 }
3964 }
3965
3966 switch (d->this_hdr.sh_type)
3967 {
3968 case SHT_REL:
3969 case SHT_RELA:
3970 /* A reloc section which we are treating as a normal BFD
3971 section. sh_link is the section index of the symbol
3972 table. sh_info is the section index of the section to
3973 which the relocation entries apply. We assume that an
3974 allocated reloc section uses the dynamic symbol table.
3975 FIXME: How can we be sure? */
3976 s = bfd_get_section_by_name (abfd, ".dynsym");
3977 if (s != NULL)
3978 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3979
3980 s = elf_get_reloc_section (sec);
3981 if (s != NULL)
3982 {
3983 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3984 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3985 }
3986 break;
3987
3988 case SHT_STRTAB:
3989 /* We assume that a section named .stab*str is a stabs
3990 string section. We look for a section with the same name
3991 but without the trailing ``str'', and set its sh_link
3992 field to point to this section. */
3993 if (CONST_STRNEQ (sec->name, ".stab")
3994 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3995 {
3996 size_t len;
3997 char *alc;
3998
3999 len = strlen (sec->name);
4000 alc = (char *) bfd_malloc (len - 2);
4001 if (alc == NULL)
4002 return FALSE;
4003 memcpy (alc, sec->name, len - 3);
4004 alc[len - 3] = '\0';
4005 s = bfd_get_section_by_name (abfd, alc);
4006 free (alc);
4007 if (s != NULL)
4008 {
4009 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4010
4011 /* This is a .stab section. */
4012 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4013 elf_section_data (s)->this_hdr.sh_entsize
4014 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4015 }
4016 }
4017 break;
4018
4019 case SHT_DYNAMIC:
4020 case SHT_DYNSYM:
4021 case SHT_GNU_verneed:
4022 case SHT_GNU_verdef:
4023 /* sh_link is the section header index of the string table
4024 used for the dynamic entries, or the symbol table, or the
4025 version strings. */
4026 s = bfd_get_section_by_name (abfd, ".dynstr");
4027 if (s != NULL)
4028 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4029 break;
4030
4031 case SHT_GNU_LIBLIST:
4032 /* sh_link is the section header index of the prelink library
4033 list used for the dynamic entries, or the symbol table, or
4034 the version strings. */
4035 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4036 ? ".dynstr" : ".gnu.libstr");
4037 if (s != NULL)
4038 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4039 break;
4040
4041 case SHT_HASH:
4042 case SHT_GNU_HASH:
4043 case SHT_GNU_versym:
4044 /* sh_link is the section header index of the symbol table
4045 this hash table or version table is for. */
4046 s = bfd_get_section_by_name (abfd, ".dynsym");
4047 if (s != NULL)
4048 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4049 break;
4050
4051 case SHT_GROUP:
4052 d->this_hdr.sh_link = elf_onesymtab (abfd);
4053 }
4054 }
4055
4056 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4057 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4058 debug section name from .debug_* to .zdebug_* if needed. */
4059
4060 return TRUE;
4061 }
4062
4063 static bfd_boolean
4064 sym_is_global (bfd *abfd, asymbol *sym)
4065 {
4066 /* If the backend has a special mapping, use it. */
4067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4068 if (bed->elf_backend_sym_is_global)
4069 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4070
4071 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4072 || bfd_is_und_section (bfd_asymbol_section (sym))
4073 || bfd_is_com_section (bfd_asymbol_section (sym)));
4074 }
4075
4076 /* Filter global symbols of ABFD to include in the import library. All
4077 SYMCOUNT symbols of ABFD can be examined from their pointers in
4078 SYMS. Pointers of symbols to keep should be stored contiguously at
4079 the beginning of that array.
4080
4081 Returns the number of symbols to keep. */
4082
4083 unsigned int
4084 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4085 asymbol **syms, long symcount)
4086 {
4087 long src_count, dst_count = 0;
4088
4089 for (src_count = 0; src_count < symcount; src_count++)
4090 {
4091 asymbol *sym = syms[src_count];
4092 char *name = (char *) bfd_asymbol_name (sym);
4093 struct bfd_link_hash_entry *h;
4094
4095 if (!sym_is_global (abfd, sym))
4096 continue;
4097
4098 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4099 if (h == NULL)
4100 continue;
4101 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4102 continue;
4103 if (h->linker_def || h->ldscript_def)
4104 continue;
4105
4106 syms[dst_count++] = sym;
4107 }
4108
4109 syms[dst_count] = NULL;
4110
4111 return dst_count;
4112 }
4113
4114 /* Don't output section symbols for sections that are not going to be
4115 output, that are duplicates or there is no BFD section. */
4116
4117 static bfd_boolean
4118 ignore_section_sym (bfd *abfd, asymbol *sym)
4119 {
4120 elf_symbol_type *type_ptr;
4121
4122 if (sym == NULL)
4123 return FALSE;
4124
4125 if ((sym->flags & BSF_SECTION_SYM) == 0)
4126 return FALSE;
4127
4128 if (sym->section == NULL)
4129 return TRUE;
4130
4131 type_ptr = elf_symbol_from (abfd, sym);
4132 return ((type_ptr != NULL
4133 && type_ptr->internal_elf_sym.st_shndx != 0
4134 && bfd_is_abs_section (sym->section))
4135 || !(sym->section->owner == abfd
4136 || (sym->section->output_section != NULL
4137 && sym->section->output_section->owner == abfd
4138 && sym->section->output_offset == 0)
4139 || bfd_is_abs_section (sym->section)));
4140 }
4141
4142 /* Map symbol from it's internal number to the external number, moving
4143 all local symbols to be at the head of the list. */
4144
4145 static bfd_boolean
4146 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4147 {
4148 unsigned int symcount = bfd_get_symcount (abfd);
4149 asymbol **syms = bfd_get_outsymbols (abfd);
4150 asymbol **sect_syms;
4151 unsigned int num_locals = 0;
4152 unsigned int num_globals = 0;
4153 unsigned int num_locals2 = 0;
4154 unsigned int num_globals2 = 0;
4155 unsigned int max_index = 0;
4156 unsigned int idx;
4157 asection *asect;
4158 asymbol **new_syms;
4159
4160 #ifdef DEBUG
4161 fprintf (stderr, "elf_map_symbols\n");
4162 fflush (stderr);
4163 #endif
4164
4165 for (asect = abfd->sections; asect; asect = asect->next)
4166 {
4167 if (max_index < asect->index)
4168 max_index = asect->index;
4169 }
4170
4171 max_index++;
4172 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4173 if (sect_syms == NULL)
4174 return FALSE;
4175 elf_section_syms (abfd) = sect_syms;
4176 elf_num_section_syms (abfd) = max_index;
4177
4178 /* Init sect_syms entries for any section symbols we have already
4179 decided to output. */
4180 for (idx = 0; idx < symcount; idx++)
4181 {
4182 asymbol *sym = syms[idx];
4183
4184 if ((sym->flags & BSF_SECTION_SYM) != 0
4185 && sym->value == 0
4186 && !ignore_section_sym (abfd, sym)
4187 && !bfd_is_abs_section (sym->section))
4188 {
4189 asection *sec = sym->section;
4190
4191 if (sec->owner != abfd)
4192 sec = sec->output_section;
4193
4194 sect_syms[sec->index] = syms[idx];
4195 }
4196 }
4197
4198 /* Classify all of the symbols. */
4199 for (idx = 0; idx < symcount; idx++)
4200 {
4201 if (sym_is_global (abfd, syms[idx]))
4202 num_globals++;
4203 else if (!ignore_section_sym (abfd, syms[idx]))
4204 num_locals++;
4205 }
4206
4207 /* We will be adding a section symbol for each normal BFD section. Most
4208 sections will already have a section symbol in outsymbols, but
4209 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4210 at least in that case. */
4211 for (asect = abfd->sections; asect; asect = asect->next)
4212 {
4213 if (sect_syms[asect->index] == NULL)
4214 {
4215 if (!sym_is_global (abfd, asect->symbol))
4216 num_locals++;
4217 else
4218 num_globals++;
4219 }
4220 }
4221
4222 /* Now sort the symbols so the local symbols are first. */
4223 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4224 sizeof (asymbol *));
4225
4226 if (new_syms == NULL)
4227 return FALSE;
4228
4229 for (idx = 0; idx < symcount; idx++)
4230 {
4231 asymbol *sym = syms[idx];
4232 unsigned int i;
4233
4234 if (sym_is_global (abfd, sym))
4235 i = num_locals + num_globals2++;
4236 else if (!ignore_section_sym (abfd, sym))
4237 i = num_locals2++;
4238 else
4239 continue;
4240 new_syms[i] = sym;
4241 sym->udata.i = i + 1;
4242 }
4243 for (asect = abfd->sections; asect; asect = asect->next)
4244 {
4245 if (sect_syms[asect->index] == NULL)
4246 {
4247 asymbol *sym = asect->symbol;
4248 unsigned int i;
4249
4250 sect_syms[asect->index] = sym;
4251 if (!sym_is_global (abfd, sym))
4252 i = num_locals2++;
4253 else
4254 i = num_locals + num_globals2++;
4255 new_syms[i] = sym;
4256 sym->udata.i = i + 1;
4257 }
4258 }
4259
4260 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4261
4262 *pnum_locals = num_locals;
4263 return TRUE;
4264 }
4265
4266 /* Align to the maximum file alignment that could be required for any
4267 ELF data structure. */
4268
4269 static inline file_ptr
4270 align_file_position (file_ptr off, int align)
4271 {
4272 return (off + align - 1) & ~(align - 1);
4273 }
4274
4275 /* Assign a file position to a section, optionally aligning to the
4276 required section alignment. */
4277
4278 file_ptr
4279 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4280 file_ptr offset,
4281 bfd_boolean align)
4282 {
4283 if (align && i_shdrp->sh_addralign > 1)
4284 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4285 i_shdrp->sh_offset = offset;
4286 if (i_shdrp->bfd_section != NULL)
4287 i_shdrp->bfd_section->filepos = offset;
4288 if (i_shdrp->sh_type != SHT_NOBITS)
4289 offset += i_shdrp->sh_size;
4290 return offset;
4291 }
4292
4293 /* Compute the file positions we are going to put the sections at, and
4294 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4295 is not NULL, this is being called by the ELF backend linker. */
4296
4297 bfd_boolean
4298 _bfd_elf_compute_section_file_positions (bfd *abfd,
4299 struct bfd_link_info *link_info)
4300 {
4301 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4302 struct fake_section_arg fsargs;
4303 bfd_boolean failed;
4304 struct elf_strtab_hash *strtab = NULL;
4305 Elf_Internal_Shdr *shstrtab_hdr;
4306 bfd_boolean need_symtab;
4307
4308 if (abfd->output_has_begun)
4309 return TRUE;
4310
4311 /* Do any elf backend specific processing first. */
4312 if (bed->elf_backend_begin_write_processing)
4313 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4314
4315 if (! prep_headers (abfd))
4316 return FALSE;
4317
4318 /* Post process the headers if necessary. */
4319 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4320
4321 fsargs.failed = FALSE;
4322 fsargs.link_info = link_info;
4323 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4324 if (fsargs.failed)
4325 return FALSE;
4326
4327 if (!assign_section_numbers (abfd, link_info))
4328 return FALSE;
4329
4330 /* The backend linker builds symbol table information itself. */
4331 need_symtab = (link_info == NULL
4332 && (bfd_get_symcount (abfd) > 0
4333 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4334 == HAS_RELOC)));
4335 if (need_symtab)
4336 {
4337 /* Non-zero if doing a relocatable link. */
4338 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4339
4340 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4341 return FALSE;
4342 }
4343
4344 failed = FALSE;
4345 if (link_info == NULL)
4346 {
4347 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4348 if (failed)
4349 return FALSE;
4350 }
4351
4352 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4353 /* sh_name was set in prep_headers. */
4354 shstrtab_hdr->sh_type = SHT_STRTAB;
4355 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4356 shstrtab_hdr->sh_addr = 0;
4357 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4358 shstrtab_hdr->sh_entsize = 0;
4359 shstrtab_hdr->sh_link = 0;
4360 shstrtab_hdr->sh_info = 0;
4361 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4362 shstrtab_hdr->sh_addralign = 1;
4363
4364 if (!assign_file_positions_except_relocs (abfd, link_info))
4365 return FALSE;
4366
4367 if (need_symtab)
4368 {
4369 file_ptr off;
4370 Elf_Internal_Shdr *hdr;
4371
4372 off = elf_next_file_pos (abfd);
4373
4374 hdr = & elf_symtab_hdr (abfd);
4375 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4376
4377 if (elf_symtab_shndx_list (abfd) != NULL)
4378 {
4379 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4380 if (hdr->sh_size != 0)
4381 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4382 /* FIXME: What about other symtab_shndx sections in the list ? */
4383 }
4384
4385 hdr = &elf_tdata (abfd)->strtab_hdr;
4386 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4387
4388 elf_next_file_pos (abfd) = off;
4389
4390 /* Now that we know where the .strtab section goes, write it
4391 out. */
4392 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4393 || ! _bfd_elf_strtab_emit (abfd, strtab))
4394 return FALSE;
4395 _bfd_elf_strtab_free (strtab);
4396 }
4397
4398 abfd->output_has_begun = TRUE;
4399
4400 return TRUE;
4401 }
4402
4403 /* Make an initial estimate of the size of the program header. If we
4404 get the number wrong here, we'll redo section placement. */
4405
4406 static bfd_size_type
4407 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4408 {
4409 size_t segs;
4410 asection *s;
4411 const struct elf_backend_data *bed;
4412
4413 /* Assume we will need exactly two PT_LOAD segments: one for text
4414 and one for data. */
4415 segs = 2;
4416
4417 s = bfd_get_section_by_name (abfd, ".interp");
4418 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4419 {
4420 /* If we have a loadable interpreter section, we need a
4421 PT_INTERP segment. In this case, assume we also need a
4422 PT_PHDR segment, although that may not be true for all
4423 targets. */
4424 segs += 2;
4425 }
4426
4427 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4428 {
4429 /* We need a PT_DYNAMIC segment. */
4430 ++segs;
4431 }
4432
4433 if (info != NULL && info->relro)
4434 {
4435 /* We need a PT_GNU_RELRO segment. */
4436 ++segs;
4437 }
4438
4439 if (elf_eh_frame_hdr (abfd))
4440 {
4441 /* We need a PT_GNU_EH_FRAME segment. */
4442 ++segs;
4443 }
4444
4445 if (elf_stack_flags (abfd))
4446 {
4447 /* We need a PT_GNU_STACK segment. */
4448 ++segs;
4449 }
4450
4451 s = bfd_get_section_by_name (abfd,
4452 NOTE_GNU_PROPERTY_SECTION_NAME);
4453 if (s != NULL && s->size != 0)
4454 {
4455 /* We need a PT_GNU_PROPERTY segment. */
4456 ++segs;
4457 }
4458
4459 for (s = abfd->sections; s != NULL; s = s->next)
4460 {
4461 if ((s->flags & SEC_LOAD) != 0
4462 && elf_section_type (s) == SHT_NOTE)
4463 {
4464 unsigned int alignment_power;
4465 /* We need a PT_NOTE segment. */
4466 ++segs;
4467 /* Try to create just one PT_NOTE segment for all adjacent
4468 loadable SHT_NOTE sections. gABI requires that within a
4469 PT_NOTE segment (and also inside of each SHT_NOTE section)
4470 each note should have the same alignment. So we check
4471 whether the sections are correctly aligned. */
4472 alignment_power = s->alignment_power;
4473 while (s->next != NULL
4474 && s->next->alignment_power == alignment_power
4475 && (s->next->flags & SEC_LOAD) != 0
4476 && elf_section_type (s->next) == SHT_NOTE)
4477 s = s->next;
4478 }
4479 }
4480
4481 for (s = abfd->sections; s != NULL; s = s->next)
4482 {
4483 if (s->flags & SEC_THREAD_LOCAL)
4484 {
4485 /* We need a PT_TLS segment. */
4486 ++segs;
4487 break;
4488 }
4489 }
4490
4491 bed = get_elf_backend_data (abfd);
4492
4493 if ((abfd->flags & D_PAGED) != 0
4494 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4495 {
4496 /* Add a PT_GNU_MBIND segment for each mbind section. */
4497 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4498 for (s = abfd->sections; s != NULL; s = s->next)
4499 if (elf_section_flags (s) & SHF_GNU_MBIND)
4500 {
4501 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4502 {
4503 _bfd_error_handler
4504 /* xgettext:c-format */
4505 (_("%pB: GNU_MBIND section `%pA' has invalid "
4506 "sh_info field: %d"),
4507 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4508 continue;
4509 }
4510 /* Align mbind section to page size. */
4511 if (s->alignment_power < page_align_power)
4512 s->alignment_power = page_align_power;
4513 segs ++;
4514 }
4515 }
4516
4517 /* Let the backend count up any program headers it might need. */
4518 if (bed->elf_backend_additional_program_headers)
4519 {
4520 int a;
4521
4522 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4523 if (a == -1)
4524 abort ();
4525 segs += a;
4526 }
4527
4528 return segs * bed->s->sizeof_phdr;
4529 }
4530
4531 /* Find the segment that contains the output_section of section. */
4532
4533 Elf_Internal_Phdr *
4534 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4535 {
4536 struct elf_segment_map *m;
4537 Elf_Internal_Phdr *p;
4538
4539 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4540 m != NULL;
4541 m = m->next, p++)
4542 {
4543 int i;
4544
4545 for (i = m->count - 1; i >= 0; i--)
4546 if (m->sections[i] == section)
4547 return p;
4548 }
4549
4550 return NULL;
4551 }
4552
4553 /* Create a mapping from a set of sections to a program segment. */
4554
4555 static struct elf_segment_map *
4556 make_mapping (bfd *abfd,
4557 asection **sections,
4558 unsigned int from,
4559 unsigned int to,
4560 bfd_boolean phdr)
4561 {
4562 struct elf_segment_map *m;
4563 unsigned int i;
4564 asection **hdrpp;
4565 bfd_size_type amt;
4566
4567 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4568 amt += (to - from) * sizeof (asection *);
4569 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4570 if (m == NULL)
4571 return NULL;
4572 m->next = NULL;
4573 m->p_type = PT_LOAD;
4574 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4575 m->sections[i - from] = *hdrpp;
4576 m->count = to - from;
4577
4578 if (from == 0 && phdr)
4579 {
4580 /* Include the headers in the first PT_LOAD segment. */
4581 m->includes_filehdr = 1;
4582 m->includes_phdrs = 1;
4583 }
4584
4585 return m;
4586 }
4587
4588 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4589 on failure. */
4590
4591 struct elf_segment_map *
4592 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4593 {
4594 struct elf_segment_map *m;
4595
4596 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4597 sizeof (struct elf_segment_map));
4598 if (m == NULL)
4599 return NULL;
4600 m->next = NULL;
4601 m->p_type = PT_DYNAMIC;
4602 m->count = 1;
4603 m->sections[0] = dynsec;
4604
4605 return m;
4606 }
4607
4608 /* Possibly add or remove segments from the segment map. */
4609
4610 static bfd_boolean
4611 elf_modify_segment_map (bfd *abfd,
4612 struct bfd_link_info *info,
4613 bfd_boolean remove_empty_load)
4614 {
4615 struct elf_segment_map **m;
4616 const struct elf_backend_data *bed;
4617
4618 /* The placement algorithm assumes that non allocated sections are
4619 not in PT_LOAD segments. We ensure this here by removing such
4620 sections from the segment map. We also remove excluded
4621 sections. Finally, any PT_LOAD segment without sections is
4622 removed. */
4623 m = &elf_seg_map (abfd);
4624 while (*m)
4625 {
4626 unsigned int i, new_count;
4627
4628 for (new_count = 0, i = 0; i < (*m)->count; i++)
4629 {
4630 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4631 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4632 || (*m)->p_type != PT_LOAD))
4633 {
4634 (*m)->sections[new_count] = (*m)->sections[i];
4635 new_count++;
4636 }
4637 }
4638 (*m)->count = new_count;
4639
4640 if (remove_empty_load
4641 && (*m)->p_type == PT_LOAD
4642 && (*m)->count == 0
4643 && !(*m)->includes_phdrs)
4644 *m = (*m)->next;
4645 else
4646 m = &(*m)->next;
4647 }
4648
4649 bed = get_elf_backend_data (abfd);
4650 if (bed->elf_backend_modify_segment_map != NULL)
4651 {
4652 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4653 return FALSE;
4654 }
4655
4656 return TRUE;
4657 }
4658
4659 #define IS_TBSS(s) \
4660 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4661
4662 /* Set up a mapping from BFD sections to program segments. */
4663
4664 bfd_boolean
4665 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4666 {
4667 unsigned int count;
4668 struct elf_segment_map *m;
4669 asection **sections = NULL;
4670 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4671 bfd_boolean no_user_phdrs;
4672
4673 no_user_phdrs = elf_seg_map (abfd) == NULL;
4674
4675 if (info != NULL)
4676 info->user_phdrs = !no_user_phdrs;
4677
4678 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4679 {
4680 asection *s;
4681 unsigned int i;
4682 struct elf_segment_map *mfirst;
4683 struct elf_segment_map **pm;
4684 asection *last_hdr;
4685 bfd_vma last_size;
4686 unsigned int hdr_index;
4687 bfd_vma maxpagesize;
4688 asection **hdrpp;
4689 bfd_boolean phdr_in_segment;
4690 bfd_boolean writable;
4691 bfd_boolean executable;
4692 int tls_count = 0;
4693 asection *first_tls = NULL;
4694 asection *first_mbind = NULL;
4695 asection *dynsec, *eh_frame_hdr;
4696 bfd_size_type amt;
4697 bfd_vma addr_mask, wrap_to = 0;
4698 bfd_size_type phdr_size;
4699
4700 /* Select the allocated sections, and sort them. */
4701
4702 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4703 sizeof (asection *));
4704 if (sections == NULL)
4705 goto error_return;
4706
4707 /* Calculate top address, avoiding undefined behaviour of shift
4708 left operator when shift count is equal to size of type
4709 being shifted. */
4710 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4711 addr_mask = (addr_mask << 1) + 1;
4712
4713 i = 0;
4714 for (s = abfd->sections; s != NULL; s = s->next)
4715 {
4716 if ((s->flags & SEC_ALLOC) != 0)
4717 {
4718 /* target_index is unused until bfd_elf_final_link
4719 starts output of section symbols. Use it to make
4720 qsort stable. */
4721 s->target_index = i;
4722 sections[i] = s;
4723 ++i;
4724 /* A wrapping section potentially clashes with header. */
4725 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4726 wrap_to = (s->lma + s->size) & addr_mask;
4727 }
4728 }
4729 BFD_ASSERT (i <= bfd_count_sections (abfd));
4730 count = i;
4731
4732 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4733
4734 phdr_size = elf_program_header_size (abfd);
4735 if (phdr_size == (bfd_size_type) -1)
4736 phdr_size = get_program_header_size (abfd, info);
4737 phdr_size += bed->s->sizeof_ehdr;
4738 maxpagesize = bed->maxpagesize;
4739 if (maxpagesize == 0)
4740 maxpagesize = 1;
4741 phdr_in_segment = info != NULL && info->load_phdrs;
4742 if (count != 0
4743 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4744 >= (phdr_size & (maxpagesize - 1))))
4745 /* For compatibility with old scripts that may not be using
4746 SIZEOF_HEADERS, add headers when it looks like space has
4747 been left for them. */
4748 phdr_in_segment = TRUE;
4749
4750 /* Build the mapping. */
4751 mfirst = NULL;
4752 pm = &mfirst;
4753
4754 /* If we have a .interp section, then create a PT_PHDR segment for
4755 the program headers and a PT_INTERP segment for the .interp
4756 section. */
4757 s = bfd_get_section_by_name (abfd, ".interp");
4758 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4759 {
4760 amt = sizeof (struct elf_segment_map);
4761 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4762 if (m == NULL)
4763 goto error_return;
4764 m->next = NULL;
4765 m->p_type = PT_PHDR;
4766 m->p_flags = PF_R;
4767 m->p_flags_valid = 1;
4768 m->includes_phdrs = 1;
4769 phdr_in_segment = TRUE;
4770 *pm = m;
4771 pm = &m->next;
4772
4773 amt = sizeof (struct elf_segment_map);
4774 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4775 if (m == NULL)
4776 goto error_return;
4777 m->next = NULL;
4778 m->p_type = PT_INTERP;
4779 m->count = 1;
4780 m->sections[0] = s;
4781
4782 *pm = m;
4783 pm = &m->next;
4784 }
4785
4786 /* Look through the sections. We put sections in the same program
4787 segment when the start of the second section can be placed within
4788 a few bytes of the end of the first section. */
4789 last_hdr = NULL;
4790 last_size = 0;
4791 hdr_index = 0;
4792 writable = FALSE;
4793 executable = FALSE;
4794 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4795 if (dynsec != NULL
4796 && (dynsec->flags & SEC_LOAD) == 0)
4797 dynsec = NULL;
4798
4799 if ((abfd->flags & D_PAGED) == 0)
4800 phdr_in_segment = FALSE;
4801
4802 /* Deal with -Ttext or something similar such that the first section
4803 is not adjacent to the program headers. This is an
4804 approximation, since at this point we don't know exactly how many
4805 program headers we will need. */
4806 if (phdr_in_segment && count > 0)
4807 {
4808 bfd_vma phdr_lma;
4809 bfd_boolean separate_phdr = FALSE;
4810
4811 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4812 if (info != NULL
4813 && info->separate_code
4814 && (sections[0]->flags & SEC_CODE) != 0)
4815 {
4816 /* If data sections should be separate from code and
4817 thus not executable, and the first section is
4818 executable then put the file and program headers in
4819 their own PT_LOAD. */
4820 separate_phdr = TRUE;
4821 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4822 == (sections[0]->lma & addr_mask & -maxpagesize)))
4823 {
4824 /* The file and program headers are currently on the
4825 same page as the first section. Put them on the
4826 previous page if we can. */
4827 if (phdr_lma >= maxpagesize)
4828 phdr_lma -= maxpagesize;
4829 else
4830 separate_phdr = FALSE;
4831 }
4832 }
4833 if ((sections[0]->lma & addr_mask) < phdr_lma
4834 || (sections[0]->lma & addr_mask) < phdr_size)
4835 /* If file and program headers would be placed at the end
4836 of memory then it's probably better to omit them. */
4837 phdr_in_segment = FALSE;
4838 else if (phdr_lma < wrap_to)
4839 /* If a section wraps around to where we'll be placing
4840 file and program headers, then the headers will be
4841 overwritten. */
4842 phdr_in_segment = FALSE;
4843 else if (separate_phdr)
4844 {
4845 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4846 if (m == NULL)
4847 goto error_return;
4848 m->p_paddr = phdr_lma;
4849 m->p_vaddr_offset
4850 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4851 m->p_paddr_valid = 1;
4852 *pm = m;
4853 pm = &m->next;
4854 phdr_in_segment = FALSE;
4855 }
4856 }
4857
4858 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4859 {
4860 asection *hdr;
4861 bfd_boolean new_segment;
4862
4863 hdr = *hdrpp;
4864
4865 /* See if this section and the last one will fit in the same
4866 segment. */
4867
4868 if (last_hdr == NULL)
4869 {
4870 /* If we don't have a segment yet, then we don't need a new
4871 one (we build the last one after this loop). */
4872 new_segment = FALSE;
4873 }
4874 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4875 {
4876 /* If this section has a different relation between the
4877 virtual address and the load address, then we need a new
4878 segment. */
4879 new_segment = TRUE;
4880 }
4881 else if (hdr->lma < last_hdr->lma + last_size
4882 || last_hdr->lma + last_size < last_hdr->lma)
4883 {
4884 /* If this section has a load address that makes it overlap
4885 the previous section, then we need a new segment. */
4886 new_segment = TRUE;
4887 }
4888 else if ((abfd->flags & D_PAGED) != 0
4889 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4890 == (hdr->lma & -maxpagesize)))
4891 {
4892 /* If we are demand paged then we can't map two disk
4893 pages onto the same memory page. */
4894 new_segment = FALSE;
4895 }
4896 /* In the next test we have to be careful when last_hdr->lma is close
4897 to the end of the address space. If the aligned address wraps
4898 around to the start of the address space, then there are no more
4899 pages left in memory and it is OK to assume that the current
4900 section can be included in the current segment. */
4901 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4902 + maxpagesize > last_hdr->lma)
4903 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4904 + maxpagesize <= hdr->lma))
4905 {
4906 /* If putting this section in this segment would force us to
4907 skip a page in the segment, then we need a new segment. */
4908 new_segment = TRUE;
4909 }
4910 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4911 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4912 {
4913 /* We don't want to put a loaded section after a
4914 nonloaded (ie. bss style) section in the same segment
4915 as that will force the non-loaded section to be loaded.
4916 Consider .tbss sections as loaded for this purpose. */
4917 new_segment = TRUE;
4918 }
4919 else if ((abfd->flags & D_PAGED) == 0)
4920 {
4921 /* If the file is not demand paged, which means that we
4922 don't require the sections to be correctly aligned in the
4923 file, then there is no other reason for a new segment. */
4924 new_segment = FALSE;
4925 }
4926 else if (info != NULL
4927 && info->separate_code
4928 && executable != ((hdr->flags & SEC_CODE) != 0))
4929 {
4930 new_segment = TRUE;
4931 }
4932 else if (! writable
4933 && (hdr->flags & SEC_READONLY) == 0)
4934 {
4935 /* We don't want to put a writable section in a read only
4936 segment. */
4937 new_segment = TRUE;
4938 }
4939 else
4940 {
4941 /* Otherwise, we can use the same segment. */
4942 new_segment = FALSE;
4943 }
4944
4945 /* Allow interested parties a chance to override our decision. */
4946 if (last_hdr != NULL
4947 && info != NULL
4948 && info->callbacks->override_segment_assignment != NULL)
4949 new_segment
4950 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4951 last_hdr,
4952 new_segment);
4953
4954 if (! new_segment)
4955 {
4956 if ((hdr->flags & SEC_READONLY) == 0)
4957 writable = TRUE;
4958 if ((hdr->flags & SEC_CODE) != 0)
4959 executable = TRUE;
4960 last_hdr = hdr;
4961 /* .tbss sections effectively have zero size. */
4962 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4963 continue;
4964 }
4965
4966 /* We need a new program segment. We must create a new program
4967 header holding all the sections from hdr_index until hdr. */
4968
4969 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4970 if (m == NULL)
4971 goto error_return;
4972
4973 *pm = m;
4974 pm = &m->next;
4975
4976 if ((hdr->flags & SEC_READONLY) == 0)
4977 writable = TRUE;
4978 else
4979 writable = FALSE;
4980
4981 if ((hdr->flags & SEC_CODE) == 0)
4982 executable = FALSE;
4983 else
4984 executable = TRUE;
4985
4986 last_hdr = hdr;
4987 /* .tbss sections effectively have zero size. */
4988 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4989 hdr_index = i;
4990 phdr_in_segment = FALSE;
4991 }
4992
4993 /* Create a final PT_LOAD program segment, but not if it's just
4994 for .tbss. */
4995 if (last_hdr != NULL
4996 && (i - hdr_index != 1
4997 || !IS_TBSS (last_hdr)))
4998 {
4999 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
5000 if (m == NULL)
5001 goto error_return;
5002
5003 *pm = m;
5004 pm = &m->next;
5005 }
5006
5007 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
5008 if (dynsec != NULL)
5009 {
5010 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5011 if (m == NULL)
5012 goto error_return;
5013 *pm = m;
5014 pm = &m->next;
5015 }
5016
5017 /* For each batch of consecutive loadable SHT_NOTE sections,
5018 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5019 because if we link together nonloadable .note sections and
5020 loadable .note sections, we will generate two .note sections
5021 in the output file. */
5022 for (s = abfd->sections; s != NULL; s = s->next)
5023 {
5024 if ((s->flags & SEC_LOAD) != 0
5025 && elf_section_type (s) == SHT_NOTE)
5026 {
5027 asection *s2;
5028 unsigned int alignment_power = s->alignment_power;
5029
5030 count = 1;
5031 for (s2 = s; s2->next != NULL; s2 = s2->next)
5032 {
5033 if (s2->next->alignment_power == alignment_power
5034 && (s2->next->flags & SEC_LOAD) != 0
5035 && elf_section_type (s2->next) == SHT_NOTE
5036 && align_power (s2->lma + s2->size,
5037 alignment_power)
5038 == s2->next->lma)
5039 count++;
5040 else
5041 break;
5042 }
5043 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5044 amt += count * sizeof (asection *);
5045 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5046 if (m == NULL)
5047 goto error_return;
5048 m->next = NULL;
5049 m->p_type = PT_NOTE;
5050 m->count = count;
5051 while (count > 1)
5052 {
5053 m->sections[m->count - count--] = s;
5054 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5055 s = s->next;
5056 }
5057 m->sections[m->count - 1] = s;
5058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5059 *pm = m;
5060 pm = &m->next;
5061 }
5062 if (s->flags & SEC_THREAD_LOCAL)
5063 {
5064 if (! tls_count)
5065 first_tls = s;
5066 tls_count++;
5067 }
5068 if (first_mbind == NULL
5069 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5070 first_mbind = s;
5071 }
5072
5073 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5074 if (tls_count > 0)
5075 {
5076 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5077 amt += tls_count * sizeof (asection *);
5078 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5079 if (m == NULL)
5080 goto error_return;
5081 m->next = NULL;
5082 m->p_type = PT_TLS;
5083 m->count = tls_count;
5084 /* Mandated PF_R. */
5085 m->p_flags = PF_R;
5086 m->p_flags_valid = 1;
5087 s = first_tls;
5088 for (i = 0; i < (unsigned int) tls_count; ++i)
5089 {
5090 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5091 {
5092 _bfd_error_handler
5093 (_("%pB: TLS sections are not adjacent:"), abfd);
5094 s = first_tls;
5095 i = 0;
5096 while (i < (unsigned int) tls_count)
5097 {
5098 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5099 {
5100 _bfd_error_handler (_(" TLS: %pA"), s);
5101 i++;
5102 }
5103 else
5104 _bfd_error_handler (_(" non-TLS: %pA"), s);
5105 s = s->next;
5106 }
5107 bfd_set_error (bfd_error_bad_value);
5108 goto error_return;
5109 }
5110 m->sections[i] = s;
5111 s = s->next;
5112 }
5113
5114 *pm = m;
5115 pm = &m->next;
5116 }
5117
5118 if (first_mbind
5119 && (abfd->flags & D_PAGED) != 0
5120 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5121 for (s = first_mbind; s != NULL; s = s->next)
5122 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5123 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5124 {
5125 /* Mandated PF_R. */
5126 unsigned long p_flags = PF_R;
5127 if ((s->flags & SEC_READONLY) == 0)
5128 p_flags |= PF_W;
5129 if ((s->flags & SEC_CODE) != 0)
5130 p_flags |= PF_X;
5131
5132 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5133 m = bfd_zalloc (abfd, amt);
5134 if (m == NULL)
5135 goto error_return;
5136 m->next = NULL;
5137 m->p_type = (PT_GNU_MBIND_LO
5138 + elf_section_data (s)->this_hdr.sh_info);
5139 m->count = 1;
5140 m->p_flags_valid = 1;
5141 m->sections[0] = s;
5142 m->p_flags = p_flags;
5143
5144 *pm = m;
5145 pm = &m->next;
5146 }
5147
5148 s = bfd_get_section_by_name (abfd,
5149 NOTE_GNU_PROPERTY_SECTION_NAME);
5150 if (s != NULL && s->size != 0)
5151 {
5152 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5153 m = bfd_zalloc (abfd, amt);
5154 if (m == NULL)
5155 goto error_return;
5156 m->next = NULL;
5157 m->p_type = PT_GNU_PROPERTY;
5158 m->count = 1;
5159 m->p_flags_valid = 1;
5160 m->sections[0] = s;
5161 m->p_flags = PF_R;
5162 *pm = m;
5163 pm = &m->next;
5164 }
5165
5166 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5167 segment. */
5168 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5169 if (eh_frame_hdr != NULL
5170 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5171 {
5172 amt = sizeof (struct elf_segment_map);
5173 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5174 if (m == NULL)
5175 goto error_return;
5176 m->next = NULL;
5177 m->p_type = PT_GNU_EH_FRAME;
5178 m->count = 1;
5179 m->sections[0] = eh_frame_hdr->output_section;
5180
5181 *pm = m;
5182 pm = &m->next;
5183 }
5184
5185 if (elf_stack_flags (abfd))
5186 {
5187 amt = sizeof (struct elf_segment_map);
5188 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5189 if (m == NULL)
5190 goto error_return;
5191 m->next = NULL;
5192 m->p_type = PT_GNU_STACK;
5193 m->p_flags = elf_stack_flags (abfd);
5194 m->p_align = bed->stack_align;
5195 m->p_flags_valid = 1;
5196 m->p_align_valid = m->p_align != 0;
5197 if (info->stacksize > 0)
5198 {
5199 m->p_size = info->stacksize;
5200 m->p_size_valid = 1;
5201 }
5202
5203 *pm = m;
5204 pm = &m->next;
5205 }
5206
5207 if (info != NULL && info->relro)
5208 {
5209 for (m = mfirst; m != NULL; m = m->next)
5210 {
5211 if (m->p_type == PT_LOAD
5212 && m->count != 0
5213 && m->sections[0]->vma >= info->relro_start
5214 && m->sections[0]->vma < info->relro_end)
5215 {
5216 i = m->count;
5217 while (--i != (unsigned) -1)
5218 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5219 == (SEC_LOAD | SEC_HAS_CONTENTS))
5220 break;
5221
5222 if (i != (unsigned) -1)
5223 break;
5224 }
5225 }
5226
5227 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5228 if (m != NULL)
5229 {
5230 amt = sizeof (struct elf_segment_map);
5231 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5232 if (m == NULL)
5233 goto error_return;
5234 m->next = NULL;
5235 m->p_type = PT_GNU_RELRO;
5236 *pm = m;
5237 pm = &m->next;
5238 }
5239 }
5240
5241 free (sections);
5242 elf_seg_map (abfd) = mfirst;
5243 }
5244
5245 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5246 return FALSE;
5247
5248 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5249 ++count;
5250 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5251
5252 return TRUE;
5253
5254 error_return:
5255 if (sections != NULL)
5256 free (sections);
5257 return FALSE;
5258 }
5259
5260 /* Sort sections by address. */
5261
5262 static int
5263 elf_sort_sections (const void *arg1, const void *arg2)
5264 {
5265 const asection *sec1 = *(const asection **) arg1;
5266 const asection *sec2 = *(const asection **) arg2;
5267 bfd_size_type size1, size2;
5268
5269 /* Sort by LMA first, since this is the address used to
5270 place the section into a segment. */
5271 if (sec1->lma < sec2->lma)
5272 return -1;
5273 else if (sec1->lma > sec2->lma)
5274 return 1;
5275
5276 /* Then sort by VMA. Normally the LMA and the VMA will be
5277 the same, and this will do nothing. */
5278 if (sec1->vma < sec2->vma)
5279 return -1;
5280 else if (sec1->vma > sec2->vma)
5281 return 1;
5282
5283 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5284
5285 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5286
5287 if (TOEND (sec1))
5288 {
5289 if (!TOEND (sec2))
5290 return 1;
5291 }
5292 else if (TOEND (sec2))
5293 return -1;
5294
5295 #undef TOEND
5296
5297 /* Sort by size, to put zero sized sections
5298 before others at the same address. */
5299
5300 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5301 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5302
5303 if (size1 < size2)
5304 return -1;
5305 if (size1 > size2)
5306 return 1;
5307
5308 return sec1->target_index - sec2->target_index;
5309 }
5310
5311 /* This qsort comparison functions sorts PT_LOAD segments first and
5312 by p_paddr, for assign_file_positions_for_load_sections. */
5313
5314 static int
5315 elf_sort_segments (const void *arg1, const void *arg2)
5316 {
5317 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5318 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5319
5320 if (m1->p_type != m2->p_type)
5321 {
5322 if (m1->p_type == PT_NULL)
5323 return 1;
5324 if (m2->p_type == PT_NULL)
5325 return -1;
5326 return m1->p_type < m2->p_type ? -1 : 1;
5327 }
5328 if (m1->includes_filehdr != m2->includes_filehdr)
5329 return m1->includes_filehdr ? -1 : 1;
5330 if (m1->no_sort_lma != m2->no_sort_lma)
5331 return m1->no_sort_lma ? -1 : 1;
5332 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5333 {
5334 bfd_vma lma1, lma2;
5335 lma1 = 0;
5336 if (m1->p_paddr_valid)
5337 lma1 = m1->p_paddr;
5338 else if (m1->count != 0)
5339 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5340 lma2 = 0;
5341 if (m2->p_paddr_valid)
5342 lma2 = m2->p_paddr;
5343 else if (m2->count != 0)
5344 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5345 if (lma1 != lma2)
5346 return lma1 < lma2 ? -1 : 1;
5347 }
5348 if (m1->idx != m2->idx)
5349 return m1->idx < m2->idx ? -1 : 1;
5350 return 0;
5351 }
5352
5353 /* Ian Lance Taylor writes:
5354
5355 We shouldn't be using % with a negative signed number. That's just
5356 not good. We have to make sure either that the number is not
5357 negative, or that the number has an unsigned type. When the types
5358 are all the same size they wind up as unsigned. When file_ptr is a
5359 larger signed type, the arithmetic winds up as signed long long,
5360 which is wrong.
5361
5362 What we're trying to say here is something like ``increase OFF by
5363 the least amount that will cause it to be equal to the VMA modulo
5364 the page size.'' */
5365 /* In other words, something like:
5366
5367 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5368 off_offset = off % bed->maxpagesize;
5369 if (vma_offset < off_offset)
5370 adjustment = vma_offset + bed->maxpagesize - off_offset;
5371 else
5372 adjustment = vma_offset - off_offset;
5373
5374 which can be collapsed into the expression below. */
5375
5376 static file_ptr
5377 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5378 {
5379 /* PR binutils/16199: Handle an alignment of zero. */
5380 if (maxpagesize == 0)
5381 maxpagesize = 1;
5382 return ((vma - off) % maxpagesize);
5383 }
5384
5385 static void
5386 print_segment_map (const struct elf_segment_map *m)
5387 {
5388 unsigned int j;
5389 const char *pt = get_segment_type (m->p_type);
5390 char buf[32];
5391
5392 if (pt == NULL)
5393 {
5394 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5395 sprintf (buf, "LOPROC+%7.7x",
5396 (unsigned int) (m->p_type - PT_LOPROC));
5397 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5398 sprintf (buf, "LOOS+%7.7x",
5399 (unsigned int) (m->p_type - PT_LOOS));
5400 else
5401 snprintf (buf, sizeof (buf), "%8.8x",
5402 (unsigned int) m->p_type);
5403 pt = buf;
5404 }
5405 fflush (stdout);
5406 fprintf (stderr, "%s:", pt);
5407 for (j = 0; j < m->count; j++)
5408 fprintf (stderr, " %s", m->sections [j]->name);
5409 putc ('\n',stderr);
5410 fflush (stderr);
5411 }
5412
5413 static bfd_boolean
5414 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5415 {
5416 void *buf;
5417 bfd_boolean ret;
5418
5419 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5420 return FALSE;
5421 buf = bfd_zmalloc (len);
5422 if (buf == NULL)
5423 return FALSE;
5424 ret = bfd_bwrite (buf, len, abfd) == len;
5425 free (buf);
5426 return ret;
5427 }
5428
5429 /* Assign file positions to the sections based on the mapping from
5430 sections to segments. This function also sets up some fields in
5431 the file header. */
5432
5433 static bfd_boolean
5434 assign_file_positions_for_load_sections (bfd *abfd,
5435 struct bfd_link_info *link_info)
5436 {
5437 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5438 struct elf_segment_map *m;
5439 struct elf_segment_map *phdr_load_seg;
5440 Elf_Internal_Phdr *phdrs;
5441 Elf_Internal_Phdr *p;
5442 file_ptr off;
5443 bfd_size_type maxpagesize;
5444 unsigned int alloc, actual;
5445 unsigned int i, j;
5446 struct elf_segment_map **sorted_seg_map;
5447
5448 if (link_info == NULL
5449 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5450 return FALSE;
5451
5452 alloc = 0;
5453 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5454 m->idx = alloc++;
5455
5456 if (alloc)
5457 {
5458 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5459 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5460 }
5461 else
5462 {
5463 /* PR binutils/12467. */
5464 elf_elfheader (abfd)->e_phoff = 0;
5465 elf_elfheader (abfd)->e_phentsize = 0;
5466 }
5467
5468 elf_elfheader (abfd)->e_phnum = alloc;
5469
5470 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5471 {
5472 actual = alloc;
5473 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5474 }
5475 else
5476 {
5477 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5478 BFD_ASSERT (elf_program_header_size (abfd)
5479 == actual * bed->s->sizeof_phdr);
5480 BFD_ASSERT (actual >= alloc);
5481 }
5482
5483 if (alloc == 0)
5484 {
5485 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5486 return TRUE;
5487 }
5488
5489 /* We're writing the size in elf_program_header_size (abfd),
5490 see assign_file_positions_except_relocs, so make sure we have
5491 that amount allocated, with trailing space cleared.
5492 The variable alloc contains the computed need, while
5493 elf_program_header_size (abfd) contains the size used for the
5494 layout.
5495 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5496 where the layout is forced to according to a larger size in the
5497 last iterations for the testcase ld-elf/header. */
5498 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5499 + alloc * sizeof (*sorted_seg_map)));
5500 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5501 elf_tdata (abfd)->phdr = phdrs;
5502 if (phdrs == NULL)
5503 return FALSE;
5504
5505 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5506 {
5507 sorted_seg_map[j] = m;
5508 /* If elf_segment_map is not from map_sections_to_segments, the
5509 sections may not be correctly ordered. NOTE: sorting should
5510 not be done to the PT_NOTE section of a corefile, which may
5511 contain several pseudo-sections artificially created by bfd.
5512 Sorting these pseudo-sections breaks things badly. */
5513 if (m->count > 1
5514 && !(elf_elfheader (abfd)->e_type == ET_CORE
5515 && m->p_type == PT_NOTE))
5516 {
5517 for (i = 0; i < m->count; i++)
5518 m->sections[i]->target_index = i;
5519 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5520 elf_sort_sections);
5521 }
5522 }
5523 if (alloc > 1)
5524 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5525 elf_sort_segments);
5526
5527 maxpagesize = 1;
5528 if ((abfd->flags & D_PAGED) != 0)
5529 maxpagesize = bed->maxpagesize;
5530
5531 /* Sections must map to file offsets past the ELF file header. */
5532 off = bed->s->sizeof_ehdr;
5533 /* And if one of the PT_LOAD headers doesn't include the program
5534 headers then we'll be mapping program headers in the usual
5535 position after the ELF file header. */
5536 phdr_load_seg = NULL;
5537 for (j = 0; j < alloc; j++)
5538 {
5539 m = sorted_seg_map[j];
5540 if (m->p_type != PT_LOAD)
5541 break;
5542 if (m->includes_phdrs)
5543 {
5544 phdr_load_seg = m;
5545 break;
5546 }
5547 }
5548 if (phdr_load_seg == NULL)
5549 off += actual * bed->s->sizeof_phdr;
5550
5551 for (j = 0; j < alloc; j++)
5552 {
5553 asection **secpp;
5554 bfd_vma off_adjust;
5555 bfd_boolean no_contents;
5556
5557 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5558 number of sections with contents contributing to both p_filesz
5559 and p_memsz, followed by a number of sections with no contents
5560 that just contribute to p_memsz. In this loop, OFF tracks next
5561 available file offset for PT_LOAD and PT_NOTE segments. */
5562 m = sorted_seg_map[j];
5563 p = phdrs + m->idx;
5564 p->p_type = m->p_type;
5565 p->p_flags = m->p_flags;
5566
5567 if (m->count == 0)
5568 p->p_vaddr = m->p_vaddr_offset;
5569 else
5570 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5571
5572 if (m->p_paddr_valid)
5573 p->p_paddr = m->p_paddr;
5574 else if (m->count == 0)
5575 p->p_paddr = 0;
5576 else
5577 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5578
5579 if (p->p_type == PT_LOAD
5580 && (abfd->flags & D_PAGED) != 0)
5581 {
5582 /* p_align in demand paged PT_LOAD segments effectively stores
5583 the maximum page size. When copying an executable with
5584 objcopy, we set m->p_align from the input file. Use this
5585 value for maxpagesize rather than bed->maxpagesize, which
5586 may be different. Note that we use maxpagesize for PT_TLS
5587 segment alignment later in this function, so we are relying
5588 on at least one PT_LOAD segment appearing before a PT_TLS
5589 segment. */
5590 if (m->p_align_valid)
5591 maxpagesize = m->p_align;
5592
5593 p->p_align = maxpagesize;
5594 }
5595 else if (m->p_align_valid)
5596 p->p_align = m->p_align;
5597 else if (m->count == 0)
5598 p->p_align = 1 << bed->s->log_file_align;
5599
5600 if (m == phdr_load_seg)
5601 {
5602 if (!m->includes_filehdr)
5603 p->p_offset = off;
5604 off += actual * bed->s->sizeof_phdr;
5605 }
5606
5607 no_contents = FALSE;
5608 off_adjust = 0;
5609 if (p->p_type == PT_LOAD
5610 && m->count > 0)
5611 {
5612 bfd_size_type align;
5613 unsigned int align_power = 0;
5614
5615 if (m->p_align_valid)
5616 align = p->p_align;
5617 else
5618 {
5619 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5620 {
5621 unsigned int secalign;
5622
5623 secalign = bfd_section_alignment (*secpp);
5624 if (secalign > align_power)
5625 align_power = secalign;
5626 }
5627 align = (bfd_size_type) 1 << align_power;
5628 if (align < maxpagesize)
5629 align = maxpagesize;
5630 }
5631
5632 for (i = 0; i < m->count; i++)
5633 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5634 /* If we aren't making room for this section, then
5635 it must be SHT_NOBITS regardless of what we've
5636 set via struct bfd_elf_special_section. */
5637 elf_section_type (m->sections[i]) = SHT_NOBITS;
5638
5639 /* Find out whether this segment contains any loadable
5640 sections. */
5641 no_contents = TRUE;
5642 for (i = 0; i < m->count; i++)
5643 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5644 {
5645 no_contents = FALSE;
5646 break;
5647 }
5648
5649 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5650
5651 /* Broken hardware and/or kernel require that files do not
5652 map the same page with different permissions on some hppa
5653 processors. */
5654 if (j != 0
5655 && (abfd->flags & D_PAGED) != 0
5656 && bed->no_page_alias
5657 && (off & (maxpagesize - 1)) != 0
5658 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5659 off_adjust += maxpagesize;
5660 off += off_adjust;
5661 if (no_contents)
5662 {
5663 /* We shouldn't need to align the segment on disk since
5664 the segment doesn't need file space, but the gABI
5665 arguably requires the alignment and glibc ld.so
5666 checks it. So to comply with the alignment
5667 requirement but not waste file space, we adjust
5668 p_offset for just this segment. (OFF_ADJUST is
5669 subtracted from OFF later.) This may put p_offset
5670 past the end of file, but that shouldn't matter. */
5671 }
5672 else
5673 off_adjust = 0;
5674 }
5675 /* Make sure the .dynamic section is the first section in the
5676 PT_DYNAMIC segment. */
5677 else if (p->p_type == PT_DYNAMIC
5678 && m->count > 1
5679 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5680 {
5681 _bfd_error_handler
5682 (_("%pB: The first section in the PT_DYNAMIC segment"
5683 " is not the .dynamic section"),
5684 abfd);
5685 bfd_set_error (bfd_error_bad_value);
5686 return FALSE;
5687 }
5688 /* Set the note section type to SHT_NOTE. */
5689 else if (p->p_type == PT_NOTE)
5690 for (i = 0; i < m->count; i++)
5691 elf_section_type (m->sections[i]) = SHT_NOTE;
5692
5693 if (m->includes_filehdr)
5694 {
5695 if (!m->p_flags_valid)
5696 p->p_flags |= PF_R;
5697 p->p_filesz = bed->s->sizeof_ehdr;
5698 p->p_memsz = bed->s->sizeof_ehdr;
5699 if (p->p_type == PT_LOAD)
5700 {
5701 if (m->count > 0)
5702 {
5703 if (p->p_vaddr < (bfd_vma) off
5704 || (!m->p_paddr_valid
5705 && p->p_paddr < (bfd_vma) off))
5706 {
5707 _bfd_error_handler
5708 (_("%pB: not enough room for program headers,"
5709 " try linking with -N"),
5710 abfd);
5711 bfd_set_error (bfd_error_bad_value);
5712 return FALSE;
5713 }
5714 p->p_vaddr -= off;
5715 if (!m->p_paddr_valid)
5716 p->p_paddr -= off;
5717 }
5718 }
5719 else if (sorted_seg_map[0]->includes_filehdr)
5720 {
5721 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5722 p->p_vaddr = filehdr->p_vaddr;
5723 if (!m->p_paddr_valid)
5724 p->p_paddr = filehdr->p_paddr;
5725 }
5726 }
5727
5728 if (m->includes_phdrs)
5729 {
5730 if (!m->p_flags_valid)
5731 p->p_flags |= PF_R;
5732 p->p_filesz += actual * bed->s->sizeof_phdr;
5733 p->p_memsz += actual * bed->s->sizeof_phdr;
5734 if (!m->includes_filehdr)
5735 {
5736 if (p->p_type == PT_LOAD)
5737 {
5738 elf_elfheader (abfd)->e_phoff = p->p_offset;
5739 if (m->count > 0)
5740 {
5741 p->p_vaddr -= off - p->p_offset;
5742 if (!m->p_paddr_valid)
5743 p->p_paddr -= off - p->p_offset;
5744 }
5745 }
5746 else if (phdr_load_seg != NULL)
5747 {
5748 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5749 bfd_vma phdr_off = 0;
5750 if (phdr_load_seg->includes_filehdr)
5751 phdr_off = bed->s->sizeof_ehdr;
5752 p->p_vaddr = phdr->p_vaddr + phdr_off;
5753 if (!m->p_paddr_valid)
5754 p->p_paddr = phdr->p_paddr + phdr_off;
5755 p->p_offset = phdr->p_offset + phdr_off;
5756 }
5757 else
5758 p->p_offset = bed->s->sizeof_ehdr;
5759 }
5760 }
5761
5762 if (p->p_type == PT_LOAD
5763 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5764 {
5765 if (!m->includes_filehdr && !m->includes_phdrs)
5766 p->p_offset = off;
5767 else
5768 {
5769 file_ptr adjust;
5770
5771 adjust = off - (p->p_offset + p->p_filesz);
5772 if (!no_contents)
5773 p->p_filesz += adjust;
5774 p->p_memsz += adjust;
5775 }
5776 }
5777
5778 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5779 maps. Set filepos for sections in PT_LOAD segments, and in
5780 core files, for sections in PT_NOTE segments.
5781 assign_file_positions_for_non_load_sections will set filepos
5782 for other sections and update p_filesz for other segments. */
5783 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5784 {
5785 asection *sec;
5786 bfd_size_type align;
5787 Elf_Internal_Shdr *this_hdr;
5788
5789 sec = *secpp;
5790 this_hdr = &elf_section_data (sec)->this_hdr;
5791 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5792
5793 if ((p->p_type == PT_LOAD
5794 || p->p_type == PT_TLS)
5795 && (this_hdr->sh_type != SHT_NOBITS
5796 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5797 && ((this_hdr->sh_flags & SHF_TLS) == 0
5798 || p->p_type == PT_TLS))))
5799 {
5800 bfd_vma p_start = p->p_paddr;
5801 bfd_vma p_end = p_start + p->p_memsz;
5802 bfd_vma s_start = sec->lma;
5803 bfd_vma adjust = s_start - p_end;
5804
5805 if (adjust != 0
5806 && (s_start < p_end
5807 || p_end < p_start))
5808 {
5809 _bfd_error_handler
5810 /* xgettext:c-format */
5811 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5812 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5813 adjust = 0;
5814 sec->lma = p_end;
5815 }
5816 p->p_memsz += adjust;
5817
5818 if (this_hdr->sh_type != SHT_NOBITS)
5819 {
5820 if (p->p_type == PT_LOAD)
5821 {
5822 if (p->p_filesz + adjust < p->p_memsz)
5823 {
5824 /* We have a PROGBITS section following NOBITS ones.
5825 Allocate file space for the NOBITS section(s) and
5826 zero it. */
5827 adjust = p->p_memsz - p->p_filesz;
5828 if (!write_zeros (abfd, off, adjust))
5829 return FALSE;
5830 }
5831 off += adjust;
5832 }
5833 p->p_filesz += adjust;
5834 }
5835 }
5836
5837 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5838 {
5839 /* The section at i == 0 is the one that actually contains
5840 everything. */
5841 if (i == 0)
5842 {
5843 this_hdr->sh_offset = sec->filepos = off;
5844 off += this_hdr->sh_size;
5845 p->p_filesz = this_hdr->sh_size;
5846 p->p_memsz = 0;
5847 p->p_align = 1;
5848 }
5849 else
5850 {
5851 /* The rest are fake sections that shouldn't be written. */
5852 sec->filepos = 0;
5853 sec->size = 0;
5854 sec->flags = 0;
5855 continue;
5856 }
5857 }
5858 else
5859 {
5860 if (p->p_type == PT_LOAD)
5861 {
5862 this_hdr->sh_offset = sec->filepos = off;
5863 if (this_hdr->sh_type != SHT_NOBITS)
5864 off += this_hdr->sh_size;
5865 }
5866 else if (this_hdr->sh_type == SHT_NOBITS
5867 && (this_hdr->sh_flags & SHF_TLS) != 0
5868 && this_hdr->sh_offset == 0)
5869 {
5870 /* This is a .tbss section that didn't get a PT_LOAD.
5871 (See _bfd_elf_map_sections_to_segments "Create a
5872 final PT_LOAD".) Set sh_offset to the value it
5873 would have if we had created a zero p_filesz and
5874 p_memsz PT_LOAD header for the section. This
5875 also makes the PT_TLS header have the same
5876 p_offset value. */
5877 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5878 off, align);
5879 this_hdr->sh_offset = sec->filepos = off + adjust;
5880 }
5881
5882 if (this_hdr->sh_type != SHT_NOBITS)
5883 {
5884 p->p_filesz += this_hdr->sh_size;
5885 /* A load section without SHF_ALLOC is something like
5886 a note section in a PT_NOTE segment. These take
5887 file space but are not loaded into memory. */
5888 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5889 p->p_memsz += this_hdr->sh_size;
5890 }
5891 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5892 {
5893 if (p->p_type == PT_TLS)
5894 p->p_memsz += this_hdr->sh_size;
5895
5896 /* .tbss is special. It doesn't contribute to p_memsz of
5897 normal segments. */
5898 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5899 p->p_memsz += this_hdr->sh_size;
5900 }
5901
5902 if (align > p->p_align
5903 && !m->p_align_valid
5904 && (p->p_type != PT_LOAD
5905 || (abfd->flags & D_PAGED) == 0))
5906 p->p_align = align;
5907 }
5908
5909 if (!m->p_flags_valid)
5910 {
5911 p->p_flags |= PF_R;
5912 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5913 p->p_flags |= PF_X;
5914 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5915 p->p_flags |= PF_W;
5916 }
5917 }
5918
5919 off -= off_adjust;
5920
5921 /* PR ld/20815 - Check that the program header segment, if
5922 present, will be loaded into memory. */
5923 if (p->p_type == PT_PHDR
5924 && phdr_load_seg == NULL
5925 && !(bed->elf_backend_allow_non_load_phdr != NULL
5926 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5927 {
5928 /* The fix for this error is usually to edit the linker script being
5929 used and set up the program headers manually. Either that or
5930 leave room for the headers at the start of the SECTIONS. */
5931 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5932 " by LOAD segment"),
5933 abfd);
5934 return FALSE;
5935 }
5936
5937 /* Check that all sections are in a PT_LOAD segment.
5938 Don't check funky gdb generated core files. */
5939 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5940 {
5941 bfd_boolean check_vma = TRUE;
5942
5943 for (i = 1; i < m->count; i++)
5944 if (m->sections[i]->vma == m->sections[i - 1]->vma
5945 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5946 ->this_hdr), p) != 0
5947 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5948 ->this_hdr), p) != 0)
5949 {
5950 /* Looks like we have overlays packed into the segment. */
5951 check_vma = FALSE;
5952 break;
5953 }
5954
5955 for (i = 0; i < m->count; i++)
5956 {
5957 Elf_Internal_Shdr *this_hdr;
5958 asection *sec;
5959
5960 sec = m->sections[i];
5961 this_hdr = &(elf_section_data(sec)->this_hdr);
5962 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5963 && !ELF_TBSS_SPECIAL (this_hdr, p))
5964 {
5965 _bfd_error_handler
5966 /* xgettext:c-format */
5967 (_("%pB: section `%pA' can't be allocated in segment %d"),
5968 abfd, sec, j);
5969 print_segment_map (m);
5970 }
5971 }
5972 }
5973 }
5974
5975 elf_next_file_pos (abfd) = off;
5976
5977 if (link_info != NULL
5978 && phdr_load_seg != NULL
5979 && phdr_load_seg->includes_filehdr)
5980 {
5981 /* There is a segment that contains both the file headers and the
5982 program headers, so provide a symbol __ehdr_start pointing there.
5983 A program can use this to examine itself robustly. */
5984
5985 struct elf_link_hash_entry *hash
5986 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5987 FALSE, FALSE, TRUE);
5988 /* If the symbol was referenced and not defined, define it. */
5989 if (hash != NULL
5990 && (hash->root.type == bfd_link_hash_new
5991 || hash->root.type == bfd_link_hash_undefined
5992 || hash->root.type == bfd_link_hash_undefweak
5993 || hash->root.type == bfd_link_hash_common))
5994 {
5995 asection *s = NULL;
5996 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
5997
5998 if (phdr_load_seg->count != 0)
5999 /* The segment contains sections, so use the first one. */
6000 s = phdr_load_seg->sections[0];
6001 else
6002 /* Use the first (i.e. lowest-addressed) section in any segment. */
6003 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6004 if (m->p_type == PT_LOAD && m->count != 0)
6005 {
6006 s = m->sections[0];
6007 break;
6008 }
6009
6010 if (s != NULL)
6011 {
6012 hash->root.u.def.value = filehdr_vaddr - s->vma;
6013 hash->root.u.def.section = s;
6014 }
6015 else
6016 {
6017 hash->root.u.def.value = filehdr_vaddr;
6018 hash->root.u.def.section = bfd_abs_section_ptr;
6019 }
6020
6021 hash->root.type = bfd_link_hash_defined;
6022 hash->def_regular = 1;
6023 hash->non_elf = 0;
6024 }
6025 }
6026
6027 return TRUE;
6028 }
6029
6030 /* Determine if a bfd is a debuginfo file. Unfortunately there
6031 is no defined method for detecting such files, so we have to
6032 use heuristics instead. */
6033
6034 bfd_boolean
6035 is_debuginfo_file (bfd *abfd)
6036 {
6037 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6038 return FALSE;
6039
6040 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6041 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6042 Elf_Internal_Shdr **headerp;
6043
6044 for (headerp = start_headers; headerp < end_headers; headerp ++)
6045 {
6046 Elf_Internal_Shdr *header = * headerp;
6047
6048 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6049 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6050 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6051 && header->sh_type != SHT_NOBITS
6052 && header->sh_type != SHT_NOTE)
6053 return FALSE;
6054 }
6055
6056 return TRUE;
6057 }
6058
6059 /* Assign file positions for the other sections, except for compressed debugging
6060 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6061
6062 static bfd_boolean
6063 assign_file_positions_for_non_load_sections (bfd *abfd,
6064 struct bfd_link_info *link_info)
6065 {
6066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6067 Elf_Internal_Shdr **i_shdrpp;
6068 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6069 Elf_Internal_Phdr *phdrs;
6070 Elf_Internal_Phdr *p;
6071 struct elf_segment_map *m;
6072 file_ptr off;
6073
6074 i_shdrpp = elf_elfsections (abfd);
6075 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6076 off = elf_next_file_pos (abfd);
6077 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6078 {
6079 Elf_Internal_Shdr *hdr;
6080
6081 hdr = *hdrpp;
6082 if (hdr->bfd_section != NULL
6083 && (hdr->bfd_section->filepos != 0
6084 || (hdr->sh_type == SHT_NOBITS
6085 && hdr->contents == NULL)))
6086 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6087 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6088 {
6089 if (hdr->sh_size != 0
6090 /* PR 24717 - debuginfo files are known to be not strictly
6091 compliant with the ELF standard. In particular they often
6092 have .note.gnu.property sections that are outside of any
6093 loadable segment. This is not a problem for such files,
6094 so do not warn about them. */
6095 && ! is_debuginfo_file (abfd))
6096 _bfd_error_handler
6097 /* xgettext:c-format */
6098 (_("%pB: warning: allocated section `%s' not in segment"),
6099 abfd,
6100 (hdr->bfd_section == NULL
6101 ? "*unknown*"
6102 : hdr->bfd_section->name));
6103 /* We don't need to page align empty sections. */
6104 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6105 off += vma_page_aligned_bias (hdr->sh_addr, off,
6106 bed->maxpagesize);
6107 else
6108 off += vma_page_aligned_bias (hdr->sh_addr, off,
6109 hdr->sh_addralign);
6110 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6111 FALSE);
6112 }
6113 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6114 && hdr->bfd_section == NULL)
6115 /* We don't know the offset of these sections yet: their size has
6116 not been decided. */
6117 || (hdr->bfd_section != NULL
6118 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6119 || (bfd_section_is_ctf (hdr->bfd_section)
6120 && abfd->is_linker_output)))
6121 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6122 || (elf_symtab_shndx_list (abfd) != NULL
6123 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6124 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6125 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6126 hdr->sh_offset = -1;
6127 else
6128 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6129 }
6130 elf_next_file_pos (abfd) = off;
6131
6132 /* Now that we have set the section file positions, we can set up
6133 the file positions for the non PT_LOAD segments. */
6134 phdrs = elf_tdata (abfd)->phdr;
6135 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6136 {
6137 if (p->p_type == PT_GNU_RELRO)
6138 {
6139 bfd_vma start, end;
6140 bfd_boolean ok;
6141
6142 if (link_info != NULL)
6143 {
6144 /* During linking the range of the RELRO segment is passed
6145 in link_info. Note that there may be padding between
6146 relro_start and the first RELRO section. */
6147 start = link_info->relro_start;
6148 end = link_info->relro_end;
6149 }
6150 else if (m->count != 0)
6151 {
6152 if (!m->p_size_valid)
6153 abort ();
6154 start = m->sections[0]->vma;
6155 end = start + m->p_size;
6156 }
6157 else
6158 {
6159 start = 0;
6160 end = 0;
6161 }
6162
6163 ok = FALSE;
6164 if (start < end)
6165 {
6166 struct elf_segment_map *lm;
6167 const Elf_Internal_Phdr *lp;
6168 unsigned int i;
6169
6170 /* Find a LOAD segment containing a section in the RELRO
6171 segment. */
6172 for (lm = elf_seg_map (abfd), lp = phdrs;
6173 lm != NULL;
6174 lm = lm->next, lp++)
6175 {
6176 if (lp->p_type == PT_LOAD
6177 && lm->count != 0
6178 && (lm->sections[lm->count - 1]->vma
6179 + (!IS_TBSS (lm->sections[lm->count - 1])
6180 ? lm->sections[lm->count - 1]->size
6181 : 0)) > start
6182 && lm->sections[0]->vma < end)
6183 break;
6184 }
6185
6186 if (lm != NULL)
6187 {
6188 /* Find the section starting the RELRO segment. */
6189 for (i = 0; i < lm->count; i++)
6190 {
6191 asection *s = lm->sections[i];
6192 if (s->vma >= start
6193 && s->vma < end
6194 && s->size != 0)
6195 break;
6196 }
6197
6198 if (i < lm->count)
6199 {
6200 p->p_vaddr = lm->sections[i]->vma;
6201 p->p_paddr = lm->sections[i]->lma;
6202 p->p_offset = lm->sections[i]->filepos;
6203 p->p_memsz = end - p->p_vaddr;
6204 p->p_filesz = p->p_memsz;
6205
6206 /* The RELRO segment typically ends a few bytes
6207 into .got.plt but other layouts are possible.
6208 In cases where the end does not match any
6209 loaded section (for instance is in file
6210 padding), trim p_filesz back to correspond to
6211 the end of loaded section contents. */
6212 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6213 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6214
6215 /* Preserve the alignment and flags if they are
6216 valid. The gold linker generates RW/4 for
6217 the PT_GNU_RELRO section. It is better for
6218 objcopy/strip to honor these attributes
6219 otherwise gdb will choke when using separate
6220 debug files. */
6221 if (!m->p_align_valid)
6222 p->p_align = 1;
6223 if (!m->p_flags_valid)
6224 p->p_flags = PF_R;
6225 ok = TRUE;
6226 }
6227 }
6228 }
6229 if (link_info != NULL)
6230 BFD_ASSERT (ok);
6231 if (!ok)
6232 memset (p, 0, sizeof *p);
6233 }
6234 else if (p->p_type == PT_GNU_STACK)
6235 {
6236 if (m->p_size_valid)
6237 p->p_memsz = m->p_size;
6238 }
6239 else if (m->count != 0)
6240 {
6241 unsigned int i;
6242
6243 if (p->p_type != PT_LOAD
6244 && (p->p_type != PT_NOTE
6245 || bfd_get_format (abfd) != bfd_core))
6246 {
6247 /* A user specified segment layout may include a PHDR
6248 segment that overlaps with a LOAD segment... */
6249 if (p->p_type == PT_PHDR)
6250 {
6251 m->count = 0;
6252 continue;
6253 }
6254
6255 if (m->includes_filehdr || m->includes_phdrs)
6256 {
6257 /* PR 17512: file: 2195325e. */
6258 _bfd_error_handler
6259 (_("%pB: error: non-load segment %d includes file header "
6260 "and/or program header"),
6261 abfd, (int) (p - phdrs));
6262 return FALSE;
6263 }
6264
6265 p->p_filesz = 0;
6266 p->p_offset = m->sections[0]->filepos;
6267 for (i = m->count; i-- != 0;)
6268 {
6269 asection *sect = m->sections[i];
6270 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6271 if (hdr->sh_type != SHT_NOBITS)
6272 {
6273 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6274 + hdr->sh_size);
6275 break;
6276 }
6277 }
6278 }
6279 }
6280 }
6281
6282 return TRUE;
6283 }
6284
6285 static elf_section_list *
6286 find_section_in_list (unsigned int i, elf_section_list * list)
6287 {
6288 for (;list != NULL; list = list->next)
6289 if (list->ndx == i)
6290 break;
6291 return list;
6292 }
6293
6294 /* Work out the file positions of all the sections. This is called by
6295 _bfd_elf_compute_section_file_positions. All the section sizes and
6296 VMAs must be known before this is called.
6297
6298 Reloc sections come in two flavours: Those processed specially as
6299 "side-channel" data attached to a section to which they apply, and those that
6300 bfd doesn't process as relocations. The latter sort are stored in a normal
6301 bfd section by bfd_section_from_shdr. We don't consider the former sort
6302 here, unless they form part of the loadable image. Reloc sections not
6303 assigned here (and compressed debugging sections and CTF sections which
6304 nothing else in the file can rely upon) will be handled later by
6305 assign_file_positions_for_relocs.
6306
6307 We also don't set the positions of the .symtab and .strtab here. */
6308
6309 static bfd_boolean
6310 assign_file_positions_except_relocs (bfd *abfd,
6311 struct bfd_link_info *link_info)
6312 {
6313 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6314 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6315 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6316
6317 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6318 && bfd_get_format (abfd) != bfd_core)
6319 {
6320 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6321 unsigned int num_sec = elf_numsections (abfd);
6322 Elf_Internal_Shdr **hdrpp;
6323 unsigned int i;
6324 file_ptr off;
6325
6326 /* Start after the ELF header. */
6327 off = i_ehdrp->e_ehsize;
6328
6329 /* We are not creating an executable, which means that we are
6330 not creating a program header, and that the actual order of
6331 the sections in the file is unimportant. */
6332 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6333 {
6334 Elf_Internal_Shdr *hdr;
6335
6336 hdr = *hdrpp;
6337 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6338 && hdr->bfd_section == NULL)
6339 /* Do not assign offsets for these sections yet: we don't know
6340 their sizes. */
6341 || (hdr->bfd_section != NULL
6342 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6343 || (bfd_section_is_ctf (hdr->bfd_section)
6344 && abfd->is_linker_output)))
6345 || i == elf_onesymtab (abfd)
6346 || (elf_symtab_shndx_list (abfd) != NULL
6347 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6348 || i == elf_strtab_sec (abfd)
6349 || i == elf_shstrtab_sec (abfd))
6350 {
6351 hdr->sh_offset = -1;
6352 }
6353 else
6354 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6355 }
6356
6357 elf_next_file_pos (abfd) = off;
6358 }
6359 else
6360 {
6361 unsigned int alloc;
6362
6363 /* Assign file positions for the loaded sections based on the
6364 assignment of sections to segments. */
6365 if (!assign_file_positions_for_load_sections (abfd, link_info))
6366 return FALSE;
6367
6368 /* And for non-load sections. */
6369 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6370 return FALSE;
6371
6372 if (bed->elf_backend_modify_program_headers != NULL)
6373 {
6374 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6375 return FALSE;
6376 }
6377
6378 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6379 if (link_info != NULL && bfd_link_pie (link_info))
6380 {
6381 unsigned int num_segments = i_ehdrp->e_phnum;
6382 Elf_Internal_Phdr *segment = tdata->phdr;
6383 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6384
6385 /* Find the lowest p_vaddr in PT_LOAD segments. */
6386 bfd_vma p_vaddr = (bfd_vma) -1;
6387 for (; segment < end_segment; segment++)
6388 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6389 p_vaddr = segment->p_vaddr;
6390
6391 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6392 segments is non-zero. */
6393 if (p_vaddr)
6394 i_ehdrp->e_type = ET_EXEC;
6395 }
6396
6397 /* Write out the program headers.
6398 FIXME: We used to have code here to sort the PT_LOAD segments into
6399 ascending order, as per the ELF spec. But this breaks some programs,
6400 including the Linux kernel. But really either the spec should be
6401 changed or the programs updated. */
6402 alloc = i_ehdrp->e_phnum;
6403 if (alloc == 0)
6404 return TRUE;
6405
6406 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6407 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6408 return FALSE;
6409 }
6410
6411 return TRUE;
6412 }
6413
6414 static bfd_boolean
6415 prep_headers (bfd *abfd)
6416 {
6417 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6418 struct elf_strtab_hash *shstrtab;
6419 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6420
6421 i_ehdrp = elf_elfheader (abfd);
6422
6423 shstrtab = _bfd_elf_strtab_init ();
6424 if (shstrtab == NULL)
6425 return FALSE;
6426
6427 elf_shstrtab (abfd) = shstrtab;
6428
6429 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6430 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6431 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6432 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6433
6434 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6435 i_ehdrp->e_ident[EI_DATA] =
6436 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6437 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6438
6439 if ((abfd->flags & DYNAMIC) != 0)
6440 i_ehdrp->e_type = ET_DYN;
6441 else if ((abfd->flags & EXEC_P) != 0)
6442 i_ehdrp->e_type = ET_EXEC;
6443 else if (bfd_get_format (abfd) == bfd_core)
6444 i_ehdrp->e_type = ET_CORE;
6445 else
6446 i_ehdrp->e_type = ET_REL;
6447
6448 switch (bfd_get_arch (abfd))
6449 {
6450 case bfd_arch_unknown:
6451 i_ehdrp->e_machine = EM_NONE;
6452 break;
6453
6454 /* There used to be a long list of cases here, each one setting
6455 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6456 in the corresponding bfd definition. To avoid duplication,
6457 the switch was removed. Machines that need special handling
6458 can generally do it in elf_backend_final_write_processing(),
6459 unless they need the information earlier than the final write.
6460 Such need can generally be supplied by replacing the tests for
6461 e_machine with the conditions used to determine it. */
6462 default:
6463 i_ehdrp->e_machine = bed->elf_machine_code;
6464 }
6465
6466 i_ehdrp->e_version = bed->s->ev_current;
6467 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6468
6469 /* No program header, for now. */
6470 i_ehdrp->e_phoff = 0;
6471 i_ehdrp->e_phentsize = 0;
6472 i_ehdrp->e_phnum = 0;
6473
6474 /* Each bfd section is section header entry. */
6475 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6476 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6477
6478 /* If we're building an executable, we'll need a program header table. */
6479 if (abfd->flags & EXEC_P)
6480 /* It all happens later. */
6481 ;
6482 else
6483 {
6484 i_ehdrp->e_phentsize = 0;
6485 i_ehdrp->e_phoff = 0;
6486 }
6487
6488 elf_tdata (abfd)->symtab_hdr.sh_name =
6489 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6490 elf_tdata (abfd)->strtab_hdr.sh_name =
6491 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6492 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6493 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6494 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6495 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6496 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6497 return FALSE;
6498
6499 return TRUE;
6500 }
6501
6502 /* Assign file positions for all the reloc sections which are not part
6503 of the loadable file image, and the file position of section headers. */
6504
6505 static bfd_boolean
6506 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6507 {
6508 file_ptr off;
6509 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6510 Elf_Internal_Shdr *shdrp;
6511 Elf_Internal_Ehdr *i_ehdrp;
6512 const struct elf_backend_data *bed;
6513
6514 off = elf_next_file_pos (abfd);
6515
6516 shdrpp = elf_elfsections (abfd);
6517 end_shdrpp = shdrpp + elf_numsections (abfd);
6518 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6519 {
6520 shdrp = *shdrpp;
6521 if (shdrp->sh_offset == -1)
6522 {
6523 asection *sec = shdrp->bfd_section;
6524 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6525 || shdrp->sh_type == SHT_RELA);
6526 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6527 if (is_rel
6528 || is_ctf
6529 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6530 {
6531 if (!is_rel && !is_ctf)
6532 {
6533 const char *name = sec->name;
6534 struct bfd_elf_section_data *d;
6535
6536 /* Compress DWARF debug sections. */
6537 if (!bfd_compress_section (abfd, sec,
6538 shdrp->contents))
6539 return FALSE;
6540
6541 if (sec->compress_status == COMPRESS_SECTION_DONE
6542 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6543 {
6544 /* If section is compressed with zlib-gnu, convert
6545 section name from .debug_* to .zdebug_*. */
6546 char *new_name
6547 = convert_debug_to_zdebug (abfd, name);
6548 if (new_name == NULL)
6549 return FALSE;
6550 name = new_name;
6551 }
6552 /* Add section name to section name section. */
6553 if (shdrp->sh_name != (unsigned int) -1)
6554 abort ();
6555 shdrp->sh_name
6556 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6557 name, FALSE);
6558 d = elf_section_data (sec);
6559
6560 /* Add reloc section name to section name section. */
6561 if (d->rel.hdr
6562 && !_bfd_elf_set_reloc_sh_name (abfd,
6563 d->rel.hdr,
6564 name, FALSE))
6565 return FALSE;
6566 if (d->rela.hdr
6567 && !_bfd_elf_set_reloc_sh_name (abfd,
6568 d->rela.hdr,
6569 name, TRUE))
6570 return FALSE;
6571
6572 /* Update section size and contents. */
6573 shdrp->sh_size = sec->size;
6574 shdrp->contents = sec->contents;
6575 shdrp->bfd_section->contents = NULL;
6576 }
6577 else if (is_ctf)
6578 {
6579 /* Update section size and contents. */
6580 shdrp->sh_size = sec->size;
6581 shdrp->contents = sec->contents;
6582 }
6583
6584 off = _bfd_elf_assign_file_position_for_section (shdrp,
6585 off,
6586 TRUE);
6587 }
6588 }
6589 }
6590
6591 /* Place section name section after DWARF debug sections have been
6592 compressed. */
6593 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6594 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6595 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6596 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6597
6598 /* Place the section headers. */
6599 i_ehdrp = elf_elfheader (abfd);
6600 bed = get_elf_backend_data (abfd);
6601 off = align_file_position (off, 1 << bed->s->log_file_align);
6602 i_ehdrp->e_shoff = off;
6603 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6604 elf_next_file_pos (abfd) = off;
6605
6606 return TRUE;
6607 }
6608
6609 bfd_boolean
6610 _bfd_elf_write_object_contents (bfd *abfd)
6611 {
6612 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6613 Elf_Internal_Shdr **i_shdrp;
6614 bfd_boolean failed;
6615 unsigned int count, num_sec;
6616 struct elf_obj_tdata *t;
6617
6618 if (! abfd->output_has_begun
6619 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6620 return FALSE;
6621 /* Do not rewrite ELF data when the BFD has been opened for update.
6622 abfd->output_has_begun was set to TRUE on opening, so creation of new
6623 sections, and modification of existing section sizes was restricted.
6624 This means the ELF header, program headers and section headers can't have
6625 changed.
6626 If the contents of any sections has been modified, then those changes have
6627 already been written to the BFD. */
6628 else if (abfd->direction == both_direction)
6629 {
6630 BFD_ASSERT (abfd->output_has_begun);
6631 return TRUE;
6632 }
6633
6634 i_shdrp = elf_elfsections (abfd);
6635
6636 failed = FALSE;
6637 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6638 if (failed)
6639 return FALSE;
6640
6641 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6642 return FALSE;
6643
6644 /* After writing the headers, we need to write the sections too... */
6645 num_sec = elf_numsections (abfd);
6646 for (count = 1; count < num_sec; count++)
6647 {
6648 i_shdrp[count]->sh_name
6649 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6650 i_shdrp[count]->sh_name);
6651 if (bed->elf_backend_section_processing)
6652 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6653 return FALSE;
6654 if (i_shdrp[count]->contents)
6655 {
6656 bfd_size_type amt = i_shdrp[count]->sh_size;
6657
6658 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6659 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6660 return FALSE;
6661 }
6662 }
6663
6664 /* Write out the section header names. */
6665 t = elf_tdata (abfd);
6666 if (elf_shstrtab (abfd) != NULL
6667 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6668 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6669 return FALSE;
6670
6671 if (!(*bed->elf_backend_final_write_processing) (abfd))
6672 return FALSE;
6673
6674 if (!bed->s->write_shdrs_and_ehdr (abfd))
6675 return FALSE;
6676
6677 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6678 if (t->o->build_id.after_write_object_contents != NULL)
6679 return (*t->o->build_id.after_write_object_contents) (abfd);
6680
6681 return TRUE;
6682 }
6683
6684 bfd_boolean
6685 _bfd_elf_write_corefile_contents (bfd *abfd)
6686 {
6687 /* Hopefully this can be done just like an object file. */
6688 return _bfd_elf_write_object_contents (abfd);
6689 }
6690
6691 /* Given a section, search the header to find them. */
6692
6693 unsigned int
6694 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6695 {
6696 const struct elf_backend_data *bed;
6697 unsigned int sec_index;
6698
6699 if (elf_section_data (asect) != NULL
6700 && elf_section_data (asect)->this_idx != 0)
6701 return elf_section_data (asect)->this_idx;
6702
6703 if (bfd_is_abs_section (asect))
6704 sec_index = SHN_ABS;
6705 else if (bfd_is_com_section (asect))
6706 sec_index = SHN_COMMON;
6707 else if (bfd_is_und_section (asect))
6708 sec_index = SHN_UNDEF;
6709 else
6710 sec_index = SHN_BAD;
6711
6712 bed = get_elf_backend_data (abfd);
6713 if (bed->elf_backend_section_from_bfd_section)
6714 {
6715 int retval = sec_index;
6716
6717 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6718 return retval;
6719 }
6720
6721 if (sec_index == SHN_BAD)
6722 bfd_set_error (bfd_error_nonrepresentable_section);
6723
6724 return sec_index;
6725 }
6726
6727 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6728 on error. */
6729
6730 int
6731 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6732 {
6733 asymbol *asym_ptr = *asym_ptr_ptr;
6734 int idx;
6735 flagword flags = asym_ptr->flags;
6736
6737 /* When gas creates relocations against local labels, it creates its
6738 own symbol for the section, but does put the symbol into the
6739 symbol chain, so udata is 0. When the linker is generating
6740 relocatable output, this section symbol may be for one of the
6741 input sections rather than the output section. */
6742 if (asym_ptr->udata.i == 0
6743 && (flags & BSF_SECTION_SYM)
6744 && asym_ptr->section)
6745 {
6746 asection *sec;
6747 int indx;
6748
6749 sec = asym_ptr->section;
6750 if (sec->owner != abfd && sec->output_section != NULL)
6751 sec = sec->output_section;
6752 if (sec->owner == abfd
6753 && (indx = sec->index) < elf_num_section_syms (abfd)
6754 && elf_section_syms (abfd)[indx] != NULL)
6755 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6756 }
6757
6758 idx = asym_ptr->udata.i;
6759
6760 if (idx == 0)
6761 {
6762 /* This case can occur when using --strip-symbol on a symbol
6763 which is used in a relocation entry. */
6764 _bfd_error_handler
6765 /* xgettext:c-format */
6766 (_("%pB: symbol `%s' required but not present"),
6767 abfd, bfd_asymbol_name (asym_ptr));
6768 bfd_set_error (bfd_error_no_symbols);
6769 return -1;
6770 }
6771
6772 #if DEBUG & 4
6773 {
6774 fprintf (stderr,
6775 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6776 (long) asym_ptr, asym_ptr->name, idx, flags);
6777 fflush (stderr);
6778 }
6779 #endif
6780
6781 return idx;
6782 }
6783
6784 /* Rewrite program header information. */
6785
6786 static bfd_boolean
6787 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6788 {
6789 Elf_Internal_Ehdr *iehdr;
6790 struct elf_segment_map *map;
6791 struct elf_segment_map *map_first;
6792 struct elf_segment_map **pointer_to_map;
6793 Elf_Internal_Phdr *segment;
6794 asection *section;
6795 unsigned int i;
6796 unsigned int num_segments;
6797 bfd_boolean phdr_included = FALSE;
6798 bfd_boolean p_paddr_valid;
6799 bfd_vma maxpagesize;
6800 struct elf_segment_map *phdr_adjust_seg = NULL;
6801 unsigned int phdr_adjust_num = 0;
6802 const struct elf_backend_data *bed;
6803
6804 bed = get_elf_backend_data (ibfd);
6805 iehdr = elf_elfheader (ibfd);
6806
6807 map_first = NULL;
6808 pointer_to_map = &map_first;
6809
6810 num_segments = elf_elfheader (ibfd)->e_phnum;
6811 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6812
6813 /* Returns the end address of the segment + 1. */
6814 #define SEGMENT_END(segment, start) \
6815 (start + (segment->p_memsz > segment->p_filesz \
6816 ? segment->p_memsz : segment->p_filesz))
6817
6818 #define SECTION_SIZE(section, segment) \
6819 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6820 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6821 ? section->size : 0)
6822
6823 /* Returns TRUE if the given section is contained within
6824 the given segment. VMA addresses are compared. */
6825 #define IS_CONTAINED_BY_VMA(section, segment) \
6826 (section->vma >= segment->p_vaddr \
6827 && (section->vma + SECTION_SIZE (section, segment) \
6828 <= (SEGMENT_END (segment, segment->p_vaddr))))
6829
6830 /* Returns TRUE if the given section is contained within
6831 the given segment. LMA addresses are compared. */
6832 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6833 (section->lma >= base \
6834 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6835 && (section->lma + SECTION_SIZE (section, segment) \
6836 <= SEGMENT_END (segment, base)))
6837
6838 /* Handle PT_NOTE segment. */
6839 #define IS_NOTE(p, s) \
6840 (p->p_type == PT_NOTE \
6841 && elf_section_type (s) == SHT_NOTE \
6842 && (bfd_vma) s->filepos >= p->p_offset \
6843 && ((bfd_vma) s->filepos + s->size \
6844 <= p->p_offset + p->p_filesz))
6845
6846 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6847 etc. */
6848 #define IS_COREFILE_NOTE(p, s) \
6849 (IS_NOTE (p, s) \
6850 && bfd_get_format (ibfd) == bfd_core \
6851 && s->vma == 0 \
6852 && s->lma == 0)
6853
6854 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6855 linker, which generates a PT_INTERP section with p_vaddr and
6856 p_memsz set to 0. */
6857 #define IS_SOLARIS_PT_INTERP(p, s) \
6858 (p->p_vaddr == 0 \
6859 && p->p_paddr == 0 \
6860 && p->p_memsz == 0 \
6861 && p->p_filesz > 0 \
6862 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6863 && s->size > 0 \
6864 && (bfd_vma) s->filepos >= p->p_offset \
6865 && ((bfd_vma) s->filepos + s->size \
6866 <= p->p_offset + p->p_filesz))
6867
6868 /* Decide if the given section should be included in the given segment.
6869 A section will be included if:
6870 1. It is within the address space of the segment -- we use the LMA
6871 if that is set for the segment and the VMA otherwise,
6872 2. It is an allocated section or a NOTE section in a PT_NOTE
6873 segment.
6874 3. There is an output section associated with it,
6875 4. The section has not already been allocated to a previous segment.
6876 5. PT_GNU_STACK segments do not include any sections.
6877 6. PT_TLS segment includes only SHF_TLS sections.
6878 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6879 8. PT_DYNAMIC should not contain empty sections at the beginning
6880 (with the possible exception of .dynamic). */
6881 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6882 ((((segment->p_paddr \
6883 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6884 : IS_CONTAINED_BY_VMA (section, segment)) \
6885 && (section->flags & SEC_ALLOC) != 0) \
6886 || IS_NOTE (segment, section)) \
6887 && segment->p_type != PT_GNU_STACK \
6888 && (segment->p_type != PT_TLS \
6889 || (section->flags & SEC_THREAD_LOCAL)) \
6890 && (segment->p_type == PT_LOAD \
6891 || segment->p_type == PT_TLS \
6892 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6893 && (segment->p_type != PT_DYNAMIC \
6894 || SECTION_SIZE (section, segment) > 0 \
6895 || (segment->p_paddr \
6896 ? segment->p_paddr != section->lma \
6897 : segment->p_vaddr != section->vma) \
6898 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6899 && (segment->p_type != PT_LOAD || !section->segment_mark))
6900
6901 /* If the output section of a section in the input segment is NULL,
6902 it is removed from the corresponding output segment. */
6903 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6904 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6905 && section->output_section != NULL)
6906
6907 /* Returns TRUE iff seg1 starts after the end of seg2. */
6908 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6909 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6910
6911 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6912 their VMA address ranges and their LMA address ranges overlap.
6913 It is possible to have overlapping VMA ranges without overlapping LMA
6914 ranges. RedBoot images for example can have both .data and .bss mapped
6915 to the same VMA range, but with the .data section mapped to a different
6916 LMA. */
6917 #define SEGMENT_OVERLAPS(seg1, seg2) \
6918 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6919 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6920 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6921 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6922
6923 /* Initialise the segment mark field. */
6924 for (section = ibfd->sections; section != NULL; section = section->next)
6925 section->segment_mark = FALSE;
6926
6927 /* The Solaris linker creates program headers in which all the
6928 p_paddr fields are zero. When we try to objcopy or strip such a
6929 file, we get confused. Check for this case, and if we find it
6930 don't set the p_paddr_valid fields. */
6931 p_paddr_valid = FALSE;
6932 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6933 i < num_segments;
6934 i++, segment++)
6935 if (segment->p_paddr != 0)
6936 {
6937 p_paddr_valid = TRUE;
6938 break;
6939 }
6940
6941 /* Scan through the segments specified in the program header
6942 of the input BFD. For this first scan we look for overlaps
6943 in the loadable segments. These can be created by weird
6944 parameters to objcopy. Also, fix some solaris weirdness. */
6945 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6946 i < num_segments;
6947 i++, segment++)
6948 {
6949 unsigned int j;
6950 Elf_Internal_Phdr *segment2;
6951
6952 if (segment->p_type == PT_INTERP)
6953 for (section = ibfd->sections; section; section = section->next)
6954 if (IS_SOLARIS_PT_INTERP (segment, section))
6955 {
6956 /* Mininal change so that the normal section to segment
6957 assignment code will work. */
6958 segment->p_vaddr = section->vma;
6959 break;
6960 }
6961
6962 if (segment->p_type != PT_LOAD)
6963 {
6964 /* Remove PT_GNU_RELRO segment. */
6965 if (segment->p_type == PT_GNU_RELRO)
6966 segment->p_type = PT_NULL;
6967 continue;
6968 }
6969
6970 /* Determine if this segment overlaps any previous segments. */
6971 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6972 {
6973 bfd_signed_vma extra_length;
6974
6975 if (segment2->p_type != PT_LOAD
6976 || !SEGMENT_OVERLAPS (segment, segment2))
6977 continue;
6978
6979 /* Merge the two segments together. */
6980 if (segment2->p_vaddr < segment->p_vaddr)
6981 {
6982 /* Extend SEGMENT2 to include SEGMENT and then delete
6983 SEGMENT. */
6984 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6985 - SEGMENT_END (segment2, segment2->p_vaddr));
6986
6987 if (extra_length > 0)
6988 {
6989 segment2->p_memsz += extra_length;
6990 segment2->p_filesz += extra_length;
6991 }
6992
6993 segment->p_type = PT_NULL;
6994
6995 /* Since we have deleted P we must restart the outer loop. */
6996 i = 0;
6997 segment = elf_tdata (ibfd)->phdr;
6998 break;
6999 }
7000 else
7001 {
7002 /* Extend SEGMENT to include SEGMENT2 and then delete
7003 SEGMENT2. */
7004 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7005 - SEGMENT_END (segment, segment->p_vaddr));
7006
7007 if (extra_length > 0)
7008 {
7009 segment->p_memsz += extra_length;
7010 segment->p_filesz += extra_length;
7011 }
7012
7013 segment2->p_type = PT_NULL;
7014 }
7015 }
7016 }
7017
7018 /* The second scan attempts to assign sections to segments. */
7019 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7020 i < num_segments;
7021 i++, segment++)
7022 {
7023 unsigned int section_count;
7024 asection **sections;
7025 asection *output_section;
7026 unsigned int isec;
7027 asection *matching_lma;
7028 asection *suggested_lma;
7029 unsigned int j;
7030 bfd_size_type amt;
7031 asection *first_section;
7032
7033 if (segment->p_type == PT_NULL)
7034 continue;
7035
7036 first_section = NULL;
7037 /* Compute how many sections might be placed into this segment. */
7038 for (section = ibfd->sections, section_count = 0;
7039 section != NULL;
7040 section = section->next)
7041 {
7042 /* Find the first section in the input segment, which may be
7043 removed from the corresponding output segment. */
7044 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7045 {
7046 if (first_section == NULL)
7047 first_section = section;
7048 if (section->output_section != NULL)
7049 ++section_count;
7050 }
7051 }
7052
7053 /* Allocate a segment map big enough to contain
7054 all of the sections we have selected. */
7055 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7056 amt += (bfd_size_type) section_count * sizeof (asection *);
7057 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7058 if (map == NULL)
7059 return FALSE;
7060
7061 /* Initialise the fields of the segment map. Default to
7062 using the physical address of the segment in the input BFD. */
7063 map->next = NULL;
7064 map->p_type = segment->p_type;
7065 map->p_flags = segment->p_flags;
7066 map->p_flags_valid = 1;
7067
7068 /* If the first section in the input segment is removed, there is
7069 no need to preserve segment physical address in the corresponding
7070 output segment. */
7071 if (!first_section || first_section->output_section != NULL)
7072 {
7073 map->p_paddr = segment->p_paddr;
7074 map->p_paddr_valid = p_paddr_valid;
7075 }
7076
7077 /* Determine if this segment contains the ELF file header
7078 and if it contains the program headers themselves. */
7079 map->includes_filehdr = (segment->p_offset == 0
7080 && segment->p_filesz >= iehdr->e_ehsize);
7081 map->includes_phdrs = 0;
7082
7083 if (!phdr_included || segment->p_type != PT_LOAD)
7084 {
7085 map->includes_phdrs =
7086 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7087 && (segment->p_offset + segment->p_filesz
7088 >= ((bfd_vma) iehdr->e_phoff
7089 + iehdr->e_phnum * iehdr->e_phentsize)));
7090
7091 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7092 phdr_included = TRUE;
7093 }
7094
7095 if (section_count == 0)
7096 {
7097 /* Special segments, such as the PT_PHDR segment, may contain
7098 no sections, but ordinary, loadable segments should contain
7099 something. They are allowed by the ELF spec however, so only
7100 a warning is produced.
7101 There is however the valid use case of embedded systems which
7102 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7103 flash memory with zeros. No warning is shown for that case. */
7104 if (segment->p_type == PT_LOAD
7105 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7106 /* xgettext:c-format */
7107 _bfd_error_handler
7108 (_("%pB: warning: empty loadable segment detected"
7109 " at vaddr=%#" PRIx64 ", is this intentional?"),
7110 ibfd, (uint64_t) segment->p_vaddr);
7111
7112 map->p_vaddr_offset = segment->p_vaddr;
7113 map->count = 0;
7114 *pointer_to_map = map;
7115 pointer_to_map = &map->next;
7116
7117 continue;
7118 }
7119
7120 /* Now scan the sections in the input BFD again and attempt
7121 to add their corresponding output sections to the segment map.
7122 The problem here is how to handle an output section which has
7123 been moved (ie had its LMA changed). There are four possibilities:
7124
7125 1. None of the sections have been moved.
7126 In this case we can continue to use the segment LMA from the
7127 input BFD.
7128
7129 2. All of the sections have been moved by the same amount.
7130 In this case we can change the segment's LMA to match the LMA
7131 of the first section.
7132
7133 3. Some of the sections have been moved, others have not.
7134 In this case those sections which have not been moved can be
7135 placed in the current segment which will have to have its size,
7136 and possibly its LMA changed, and a new segment or segments will
7137 have to be created to contain the other sections.
7138
7139 4. The sections have been moved, but not by the same amount.
7140 In this case we can change the segment's LMA to match the LMA
7141 of the first section and we will have to create a new segment
7142 or segments to contain the other sections.
7143
7144 In order to save time, we allocate an array to hold the section
7145 pointers that we are interested in. As these sections get assigned
7146 to a segment, they are removed from this array. */
7147
7148 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7149 if (sections == NULL)
7150 return FALSE;
7151
7152 /* Step One: Scan for segment vs section LMA conflicts.
7153 Also add the sections to the section array allocated above.
7154 Also add the sections to the current segment. In the common
7155 case, where the sections have not been moved, this means that
7156 we have completely filled the segment, and there is nothing
7157 more to do. */
7158 isec = 0;
7159 matching_lma = NULL;
7160 suggested_lma = NULL;
7161
7162 for (section = first_section, j = 0;
7163 section != NULL;
7164 section = section->next)
7165 {
7166 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7167 {
7168 output_section = section->output_section;
7169
7170 sections[j++] = section;
7171
7172 /* The Solaris native linker always sets p_paddr to 0.
7173 We try to catch that case here, and set it to the
7174 correct value. Note - some backends require that
7175 p_paddr be left as zero. */
7176 if (!p_paddr_valid
7177 && segment->p_vaddr != 0
7178 && !bed->want_p_paddr_set_to_zero
7179 && isec == 0
7180 && output_section->lma != 0
7181 && (align_power (segment->p_vaddr
7182 + (map->includes_filehdr
7183 ? iehdr->e_ehsize : 0)
7184 + (map->includes_phdrs
7185 ? iehdr->e_phnum * iehdr->e_phentsize
7186 : 0),
7187 output_section->alignment_power)
7188 == output_section->vma))
7189 map->p_paddr = segment->p_vaddr;
7190
7191 /* Match up the physical address of the segment with the
7192 LMA address of the output section. */
7193 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7194 || IS_COREFILE_NOTE (segment, section)
7195 || (bed->want_p_paddr_set_to_zero
7196 && IS_CONTAINED_BY_VMA (output_section, segment)))
7197 {
7198 if (matching_lma == NULL
7199 || output_section->lma < matching_lma->lma)
7200 matching_lma = output_section;
7201
7202 /* We assume that if the section fits within the segment
7203 then it does not overlap any other section within that
7204 segment. */
7205 map->sections[isec++] = output_section;
7206 }
7207 else if (suggested_lma == NULL)
7208 suggested_lma = output_section;
7209
7210 if (j == section_count)
7211 break;
7212 }
7213 }
7214
7215 BFD_ASSERT (j == section_count);
7216
7217 /* Step Two: Adjust the physical address of the current segment,
7218 if necessary. */
7219 if (isec == section_count)
7220 {
7221 /* All of the sections fitted within the segment as currently
7222 specified. This is the default case. Add the segment to
7223 the list of built segments and carry on to process the next
7224 program header in the input BFD. */
7225 map->count = section_count;
7226 *pointer_to_map = map;
7227 pointer_to_map = &map->next;
7228
7229 if (p_paddr_valid
7230 && !bed->want_p_paddr_set_to_zero)
7231 {
7232 bfd_vma hdr_size = 0;
7233 if (map->includes_filehdr)
7234 hdr_size = iehdr->e_ehsize;
7235 if (map->includes_phdrs)
7236 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7237
7238 /* Account for padding before the first section in the
7239 segment. */
7240 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7241 }
7242
7243 free (sections);
7244 continue;
7245 }
7246 else
7247 {
7248 /* Change the current segment's physical address to match
7249 the LMA of the first section that fitted, or if no
7250 section fitted, the first section. */
7251 if (matching_lma == NULL)
7252 matching_lma = suggested_lma;
7253
7254 map->p_paddr = matching_lma->lma;
7255
7256 /* Offset the segment physical address from the lma
7257 to allow for space taken up by elf headers. */
7258 if (map->includes_phdrs)
7259 {
7260 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7261
7262 /* iehdr->e_phnum is just an estimate of the number
7263 of program headers that we will need. Make a note
7264 here of the number we used and the segment we chose
7265 to hold these headers, so that we can adjust the
7266 offset when we know the correct value. */
7267 phdr_adjust_num = iehdr->e_phnum;
7268 phdr_adjust_seg = map;
7269 }
7270
7271 if (map->includes_filehdr)
7272 {
7273 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7274 map->p_paddr -= iehdr->e_ehsize;
7275 /* We've subtracted off the size of headers from the
7276 first section lma, but there may have been some
7277 alignment padding before that section too. Try to
7278 account for that by adjusting the segment lma down to
7279 the same alignment. */
7280 if (segment->p_align != 0 && segment->p_align < align)
7281 align = segment->p_align;
7282 map->p_paddr &= -align;
7283 }
7284 }
7285
7286 /* Step Three: Loop over the sections again, this time assigning
7287 those that fit to the current segment and removing them from the
7288 sections array; but making sure not to leave large gaps. Once all
7289 possible sections have been assigned to the current segment it is
7290 added to the list of built segments and if sections still remain
7291 to be assigned, a new segment is constructed before repeating
7292 the loop. */
7293 isec = 0;
7294 do
7295 {
7296 map->count = 0;
7297 suggested_lma = NULL;
7298
7299 /* Fill the current segment with sections that fit. */
7300 for (j = 0; j < section_count; j++)
7301 {
7302 section = sections[j];
7303
7304 if (section == NULL)
7305 continue;
7306
7307 output_section = section->output_section;
7308
7309 BFD_ASSERT (output_section != NULL);
7310
7311 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7312 || IS_COREFILE_NOTE (segment, section))
7313 {
7314 if (map->count == 0)
7315 {
7316 /* If the first section in a segment does not start at
7317 the beginning of the segment, then something is
7318 wrong. */
7319 if (align_power (map->p_paddr
7320 + (map->includes_filehdr
7321 ? iehdr->e_ehsize : 0)
7322 + (map->includes_phdrs
7323 ? iehdr->e_phnum * iehdr->e_phentsize
7324 : 0),
7325 output_section->alignment_power)
7326 != output_section->lma)
7327 abort ();
7328 }
7329 else
7330 {
7331 asection *prev_sec;
7332
7333 prev_sec = map->sections[map->count - 1];
7334
7335 /* If the gap between the end of the previous section
7336 and the start of this section is more than
7337 maxpagesize then we need to start a new segment. */
7338 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7339 maxpagesize)
7340 < BFD_ALIGN (output_section->lma, maxpagesize))
7341 || (prev_sec->lma + prev_sec->size
7342 > output_section->lma))
7343 {
7344 if (suggested_lma == NULL)
7345 suggested_lma = output_section;
7346
7347 continue;
7348 }
7349 }
7350
7351 map->sections[map->count++] = output_section;
7352 ++isec;
7353 sections[j] = NULL;
7354 if (segment->p_type == PT_LOAD)
7355 section->segment_mark = TRUE;
7356 }
7357 else if (suggested_lma == NULL)
7358 suggested_lma = output_section;
7359 }
7360
7361 /* PR 23932. A corrupt input file may contain sections that cannot
7362 be assigned to any segment - because for example they have a
7363 negative size - or segments that do not contain any sections. */
7364 if (map->count == 0)
7365 {
7366 bfd_set_error (bfd_error_bad_value);
7367 free (sections);
7368 return FALSE;
7369 }
7370
7371 /* Add the current segment to the list of built segments. */
7372 *pointer_to_map = map;
7373 pointer_to_map = &map->next;
7374
7375 if (isec < section_count)
7376 {
7377 /* We still have not allocated all of the sections to
7378 segments. Create a new segment here, initialise it
7379 and carry on looping. */
7380 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7381 amt += (bfd_size_type) section_count * sizeof (asection *);
7382 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7383 if (map == NULL)
7384 {
7385 free (sections);
7386 return FALSE;
7387 }
7388
7389 /* Initialise the fields of the segment map. Set the physical
7390 physical address to the LMA of the first section that has
7391 not yet been assigned. */
7392 map->next = NULL;
7393 map->p_type = segment->p_type;
7394 map->p_flags = segment->p_flags;
7395 map->p_flags_valid = 1;
7396 map->p_paddr = suggested_lma->lma;
7397 map->p_paddr_valid = p_paddr_valid;
7398 map->includes_filehdr = 0;
7399 map->includes_phdrs = 0;
7400 }
7401 }
7402 while (isec < section_count);
7403
7404 free (sections);
7405 }
7406
7407 elf_seg_map (obfd) = map_first;
7408
7409 /* If we had to estimate the number of program headers that were
7410 going to be needed, then check our estimate now and adjust
7411 the offset if necessary. */
7412 if (phdr_adjust_seg != NULL)
7413 {
7414 unsigned int count;
7415
7416 for (count = 0, map = map_first; map != NULL; map = map->next)
7417 count++;
7418
7419 if (count > phdr_adjust_num)
7420 phdr_adjust_seg->p_paddr
7421 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7422
7423 for (map = map_first; map != NULL; map = map->next)
7424 if (map->p_type == PT_PHDR)
7425 {
7426 bfd_vma adjust
7427 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7428 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7429 break;
7430 }
7431 }
7432
7433 #undef SEGMENT_END
7434 #undef SECTION_SIZE
7435 #undef IS_CONTAINED_BY_VMA
7436 #undef IS_CONTAINED_BY_LMA
7437 #undef IS_NOTE
7438 #undef IS_COREFILE_NOTE
7439 #undef IS_SOLARIS_PT_INTERP
7440 #undef IS_SECTION_IN_INPUT_SEGMENT
7441 #undef INCLUDE_SECTION_IN_SEGMENT
7442 #undef SEGMENT_AFTER_SEGMENT
7443 #undef SEGMENT_OVERLAPS
7444 return TRUE;
7445 }
7446
7447 /* Copy ELF program header information. */
7448
7449 static bfd_boolean
7450 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7451 {
7452 Elf_Internal_Ehdr *iehdr;
7453 struct elf_segment_map *map;
7454 struct elf_segment_map *map_first;
7455 struct elf_segment_map **pointer_to_map;
7456 Elf_Internal_Phdr *segment;
7457 unsigned int i;
7458 unsigned int num_segments;
7459 bfd_boolean phdr_included = FALSE;
7460 bfd_boolean p_paddr_valid;
7461
7462 iehdr = elf_elfheader (ibfd);
7463
7464 map_first = NULL;
7465 pointer_to_map = &map_first;
7466
7467 /* If all the segment p_paddr fields are zero, don't set
7468 map->p_paddr_valid. */
7469 p_paddr_valid = FALSE;
7470 num_segments = elf_elfheader (ibfd)->e_phnum;
7471 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7472 i < num_segments;
7473 i++, segment++)
7474 if (segment->p_paddr != 0)
7475 {
7476 p_paddr_valid = TRUE;
7477 break;
7478 }
7479
7480 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7481 i < num_segments;
7482 i++, segment++)
7483 {
7484 asection *section;
7485 unsigned int section_count;
7486 bfd_size_type amt;
7487 Elf_Internal_Shdr *this_hdr;
7488 asection *first_section = NULL;
7489 asection *lowest_section;
7490
7491 /* Compute how many sections are in this segment. */
7492 for (section = ibfd->sections, section_count = 0;
7493 section != NULL;
7494 section = section->next)
7495 {
7496 this_hdr = &(elf_section_data(section)->this_hdr);
7497 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7498 {
7499 if (first_section == NULL)
7500 first_section = section;
7501 section_count++;
7502 }
7503 }
7504
7505 /* Allocate a segment map big enough to contain
7506 all of the sections we have selected. */
7507 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7508 amt += (bfd_size_type) section_count * sizeof (asection *);
7509 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7510 if (map == NULL)
7511 return FALSE;
7512
7513 /* Initialize the fields of the output segment map with the
7514 input segment. */
7515 map->next = NULL;
7516 map->p_type = segment->p_type;
7517 map->p_flags = segment->p_flags;
7518 map->p_flags_valid = 1;
7519 map->p_paddr = segment->p_paddr;
7520 map->p_paddr_valid = p_paddr_valid;
7521 map->p_align = segment->p_align;
7522 map->p_align_valid = 1;
7523 map->p_vaddr_offset = 0;
7524
7525 if (map->p_type == PT_GNU_RELRO
7526 || map->p_type == PT_GNU_STACK)
7527 {
7528 /* The PT_GNU_RELRO segment may contain the first a few
7529 bytes in the .got.plt section even if the whole .got.plt
7530 section isn't in the PT_GNU_RELRO segment. We won't
7531 change the size of the PT_GNU_RELRO segment.
7532 Similarly, PT_GNU_STACK size is significant on uclinux
7533 systems. */
7534 map->p_size = segment->p_memsz;
7535 map->p_size_valid = 1;
7536 }
7537
7538 /* Determine if this segment contains the ELF file header
7539 and if it contains the program headers themselves. */
7540 map->includes_filehdr = (segment->p_offset == 0
7541 && segment->p_filesz >= iehdr->e_ehsize);
7542
7543 map->includes_phdrs = 0;
7544 if (! phdr_included || segment->p_type != PT_LOAD)
7545 {
7546 map->includes_phdrs =
7547 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7548 && (segment->p_offset + segment->p_filesz
7549 >= ((bfd_vma) iehdr->e_phoff
7550 + iehdr->e_phnum * iehdr->e_phentsize)));
7551
7552 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7553 phdr_included = TRUE;
7554 }
7555
7556 lowest_section = NULL;
7557 if (section_count != 0)
7558 {
7559 unsigned int isec = 0;
7560
7561 for (section = first_section;
7562 section != NULL;
7563 section = section->next)
7564 {
7565 this_hdr = &(elf_section_data(section)->this_hdr);
7566 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7567 {
7568 map->sections[isec++] = section->output_section;
7569 if ((section->flags & SEC_ALLOC) != 0)
7570 {
7571 bfd_vma seg_off;
7572
7573 if (lowest_section == NULL
7574 || section->lma < lowest_section->lma)
7575 lowest_section = section;
7576
7577 /* Section lmas are set up from PT_LOAD header
7578 p_paddr in _bfd_elf_make_section_from_shdr.
7579 If this header has a p_paddr that disagrees
7580 with the section lma, flag the p_paddr as
7581 invalid. */
7582 if ((section->flags & SEC_LOAD) != 0)
7583 seg_off = this_hdr->sh_offset - segment->p_offset;
7584 else
7585 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7586 if (section->lma - segment->p_paddr != seg_off)
7587 map->p_paddr_valid = FALSE;
7588 }
7589 if (isec == section_count)
7590 break;
7591 }
7592 }
7593 }
7594
7595 if (section_count == 0)
7596 map->p_vaddr_offset = segment->p_vaddr;
7597 else if (map->p_paddr_valid)
7598 {
7599 /* Account for padding before the first section in the segment. */
7600 bfd_vma hdr_size = 0;
7601 if (map->includes_filehdr)
7602 hdr_size = iehdr->e_ehsize;
7603 if (map->includes_phdrs)
7604 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7605
7606 map->p_vaddr_offset = (map->p_paddr + hdr_size
7607 - (lowest_section ? lowest_section->lma : 0));
7608 }
7609
7610 map->count = section_count;
7611 *pointer_to_map = map;
7612 pointer_to_map = &map->next;
7613 }
7614
7615 elf_seg_map (obfd) = map_first;
7616 return TRUE;
7617 }
7618
7619 /* Copy private BFD data. This copies or rewrites ELF program header
7620 information. */
7621
7622 static bfd_boolean
7623 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7624 {
7625 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7626 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7627 return TRUE;
7628
7629 if (elf_tdata (ibfd)->phdr == NULL)
7630 return TRUE;
7631
7632 if (ibfd->xvec == obfd->xvec)
7633 {
7634 /* Check to see if any sections in the input BFD
7635 covered by ELF program header have changed. */
7636 Elf_Internal_Phdr *segment;
7637 asection *section, *osec;
7638 unsigned int i, num_segments;
7639 Elf_Internal_Shdr *this_hdr;
7640 const struct elf_backend_data *bed;
7641
7642 bed = get_elf_backend_data (ibfd);
7643
7644 /* Regenerate the segment map if p_paddr is set to 0. */
7645 if (bed->want_p_paddr_set_to_zero)
7646 goto rewrite;
7647
7648 /* Initialize the segment mark field. */
7649 for (section = obfd->sections; section != NULL;
7650 section = section->next)
7651 section->segment_mark = FALSE;
7652
7653 num_segments = elf_elfheader (ibfd)->e_phnum;
7654 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7655 i < num_segments;
7656 i++, segment++)
7657 {
7658 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7659 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7660 which severly confuses things, so always regenerate the segment
7661 map in this case. */
7662 if (segment->p_paddr == 0
7663 && segment->p_memsz == 0
7664 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7665 goto rewrite;
7666
7667 for (section = ibfd->sections;
7668 section != NULL; section = section->next)
7669 {
7670 /* We mark the output section so that we know it comes
7671 from the input BFD. */
7672 osec = section->output_section;
7673 if (osec)
7674 osec->segment_mark = TRUE;
7675
7676 /* Check if this section is covered by the segment. */
7677 this_hdr = &(elf_section_data(section)->this_hdr);
7678 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7679 {
7680 /* FIXME: Check if its output section is changed or
7681 removed. What else do we need to check? */
7682 if (osec == NULL
7683 || section->flags != osec->flags
7684 || section->lma != osec->lma
7685 || section->vma != osec->vma
7686 || section->size != osec->size
7687 || section->rawsize != osec->rawsize
7688 || section->alignment_power != osec->alignment_power)
7689 goto rewrite;
7690 }
7691 }
7692 }
7693
7694 /* Check to see if any output section do not come from the
7695 input BFD. */
7696 for (section = obfd->sections; section != NULL;
7697 section = section->next)
7698 {
7699 if (!section->segment_mark)
7700 goto rewrite;
7701 else
7702 section->segment_mark = FALSE;
7703 }
7704
7705 return copy_elf_program_header (ibfd, obfd);
7706 }
7707
7708 rewrite:
7709 if (ibfd->xvec == obfd->xvec)
7710 {
7711 /* When rewriting program header, set the output maxpagesize to
7712 the maximum alignment of input PT_LOAD segments. */
7713 Elf_Internal_Phdr *segment;
7714 unsigned int i;
7715 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7716 bfd_vma maxpagesize = 0;
7717
7718 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7719 i < num_segments;
7720 i++, segment++)
7721 if (segment->p_type == PT_LOAD
7722 && maxpagesize < segment->p_align)
7723 {
7724 /* PR 17512: file: f17299af. */
7725 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7726 /* xgettext:c-format */
7727 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7728 PRIx64 " is too large"),
7729 ibfd, (uint64_t) segment->p_align);
7730 else
7731 maxpagesize = segment->p_align;
7732 }
7733
7734 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7735 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7736 }
7737
7738 return rewrite_elf_program_header (ibfd, obfd);
7739 }
7740
7741 /* Initialize private output section information from input section. */
7742
7743 bfd_boolean
7744 _bfd_elf_init_private_section_data (bfd *ibfd,
7745 asection *isec,
7746 bfd *obfd,
7747 asection *osec,
7748 struct bfd_link_info *link_info)
7749
7750 {
7751 Elf_Internal_Shdr *ihdr, *ohdr;
7752 bfd_boolean final_link = (link_info != NULL
7753 && !bfd_link_relocatable (link_info));
7754
7755 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7756 || obfd->xvec->flavour != bfd_target_elf_flavour)
7757 return TRUE;
7758
7759 BFD_ASSERT (elf_section_data (osec) != NULL);
7760
7761 /* For objcopy and relocatable link, don't copy the output ELF
7762 section type from input if the output BFD section flags have been
7763 set to something different. For a final link allow some flags
7764 that the linker clears to differ. */
7765 if (elf_section_type (osec) == SHT_NULL
7766 && (osec->flags == isec->flags
7767 || (final_link
7768 && ((osec->flags ^ isec->flags)
7769 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7770 elf_section_type (osec) = elf_section_type (isec);
7771
7772 /* FIXME: Is this correct for all OS/PROC specific flags? */
7773 elf_section_flags (osec) |= (elf_section_flags (isec)
7774 & (SHF_MASKOS | SHF_MASKPROC));
7775
7776 /* Copy sh_info from input for mbind section. */
7777 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7778 && elf_section_flags (isec) & SHF_GNU_MBIND)
7779 elf_section_data (osec)->this_hdr.sh_info
7780 = elf_section_data (isec)->this_hdr.sh_info;
7781
7782 /* Set things up for objcopy and relocatable link. The output
7783 SHT_GROUP section will have its elf_next_in_group pointing back
7784 to the input group members. Ignore linker created group section.
7785 See elfNN_ia64_object_p in elfxx-ia64.c. */
7786 if ((link_info == NULL
7787 || !link_info->resolve_section_groups)
7788 && (elf_sec_group (isec) == NULL
7789 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7790 {
7791 if (elf_section_flags (isec) & SHF_GROUP)
7792 elf_section_flags (osec) |= SHF_GROUP;
7793 elf_next_in_group (osec) = elf_next_in_group (isec);
7794 elf_section_data (osec)->group = elf_section_data (isec)->group;
7795 }
7796
7797 /* If not decompress, preserve SHF_COMPRESSED. */
7798 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7799 elf_section_flags (osec) |= (elf_section_flags (isec)
7800 & SHF_COMPRESSED);
7801
7802 ihdr = &elf_section_data (isec)->this_hdr;
7803
7804 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7805 don't use the output section of the linked-to section since it
7806 may be NULL at this point. */
7807 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7808 {
7809 ohdr = &elf_section_data (osec)->this_hdr;
7810 ohdr->sh_flags |= SHF_LINK_ORDER;
7811 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7812 }
7813
7814 osec->use_rela_p = isec->use_rela_p;
7815
7816 return TRUE;
7817 }
7818
7819 /* Copy private section information. This copies over the entsize
7820 field, and sometimes the info field. */
7821
7822 bfd_boolean
7823 _bfd_elf_copy_private_section_data (bfd *ibfd,
7824 asection *isec,
7825 bfd *obfd,
7826 asection *osec)
7827 {
7828 Elf_Internal_Shdr *ihdr, *ohdr;
7829
7830 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7831 || obfd->xvec->flavour != bfd_target_elf_flavour)
7832 return TRUE;
7833
7834 ihdr = &elf_section_data (isec)->this_hdr;
7835 ohdr = &elf_section_data (osec)->this_hdr;
7836
7837 ohdr->sh_entsize = ihdr->sh_entsize;
7838
7839 if (ihdr->sh_type == SHT_SYMTAB
7840 || ihdr->sh_type == SHT_DYNSYM
7841 || ihdr->sh_type == SHT_GNU_verneed
7842 || ihdr->sh_type == SHT_GNU_verdef)
7843 ohdr->sh_info = ihdr->sh_info;
7844
7845 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7846 NULL);
7847 }
7848
7849 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7850 necessary if we are removing either the SHT_GROUP section or any of
7851 the group member sections. DISCARDED is the value that a section's
7852 output_section has if the section will be discarded, NULL when this
7853 function is called from objcopy, bfd_abs_section_ptr when called
7854 from the linker. */
7855
7856 bfd_boolean
7857 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7858 {
7859 asection *isec;
7860
7861 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7862 if (elf_section_type (isec) == SHT_GROUP)
7863 {
7864 asection *first = elf_next_in_group (isec);
7865 asection *s = first;
7866 bfd_size_type removed = 0;
7867
7868 while (s != NULL)
7869 {
7870 /* If this member section is being output but the
7871 SHT_GROUP section is not, then clear the group info
7872 set up by _bfd_elf_copy_private_section_data. */
7873 if (s->output_section != discarded
7874 && isec->output_section == discarded)
7875 {
7876 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7877 elf_group_name (s->output_section) = NULL;
7878 }
7879 /* Conversely, if the member section is not being output
7880 but the SHT_GROUP section is, then adjust its size. */
7881 else if (s->output_section == discarded
7882 && isec->output_section != discarded)
7883 {
7884 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7885 removed += 4;
7886 if (elf_sec->rel.hdr != NULL
7887 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7888 removed += 4;
7889 if (elf_sec->rela.hdr != NULL
7890 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7891 removed += 4;
7892 }
7893 s = elf_next_in_group (s);
7894 if (s == first)
7895 break;
7896 }
7897 if (removed != 0)
7898 {
7899 if (discarded != NULL)
7900 {
7901 /* If we've been called for ld -r, then we need to
7902 adjust the input section size. */
7903 if (isec->rawsize == 0)
7904 isec->rawsize = isec->size;
7905 isec->size = isec->rawsize - removed;
7906 if (isec->size <= 4)
7907 {
7908 isec->size = 0;
7909 isec->flags |= SEC_EXCLUDE;
7910 }
7911 }
7912 else
7913 {
7914 /* Adjust the output section size when called from
7915 objcopy. */
7916 isec->output_section->size -= removed;
7917 if (isec->output_section->size <= 4)
7918 {
7919 isec->output_section->size = 0;
7920 isec->output_section->flags |= SEC_EXCLUDE;
7921 }
7922 }
7923 }
7924 }
7925
7926 return TRUE;
7927 }
7928
7929 /* Copy private header information. */
7930
7931 bfd_boolean
7932 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7933 {
7934 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7935 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7936 return TRUE;
7937
7938 /* Copy over private BFD data if it has not already been copied.
7939 This must be done here, rather than in the copy_private_bfd_data
7940 entry point, because the latter is called after the section
7941 contents have been set, which means that the program headers have
7942 already been worked out. */
7943 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7944 {
7945 if (! copy_private_bfd_data (ibfd, obfd))
7946 return FALSE;
7947 }
7948
7949 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7950 }
7951
7952 /* Copy private symbol information. If this symbol is in a section
7953 which we did not map into a BFD section, try to map the section
7954 index correctly. We use special macro definitions for the mapped
7955 section indices; these definitions are interpreted by the
7956 swap_out_syms function. */
7957
7958 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7959 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7960 #define MAP_STRTAB (SHN_HIOS + 3)
7961 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7962 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7963
7964 bfd_boolean
7965 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7966 asymbol *isymarg,
7967 bfd *obfd,
7968 asymbol *osymarg)
7969 {
7970 elf_symbol_type *isym, *osym;
7971
7972 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7973 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7974 return TRUE;
7975
7976 isym = elf_symbol_from (ibfd, isymarg);
7977 osym = elf_symbol_from (obfd, osymarg);
7978
7979 if (isym != NULL
7980 && isym->internal_elf_sym.st_shndx != 0
7981 && osym != NULL
7982 && bfd_is_abs_section (isym->symbol.section))
7983 {
7984 unsigned int shndx;
7985
7986 shndx = isym->internal_elf_sym.st_shndx;
7987 if (shndx == elf_onesymtab (ibfd))
7988 shndx = MAP_ONESYMTAB;
7989 else if (shndx == elf_dynsymtab (ibfd))
7990 shndx = MAP_DYNSYMTAB;
7991 else if (shndx == elf_strtab_sec (ibfd))
7992 shndx = MAP_STRTAB;
7993 else if (shndx == elf_shstrtab_sec (ibfd))
7994 shndx = MAP_SHSTRTAB;
7995 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7996 shndx = MAP_SYM_SHNDX;
7997 osym->internal_elf_sym.st_shndx = shndx;
7998 }
7999
8000 return TRUE;
8001 }
8002
8003 /* Swap out the symbols. */
8004
8005 static bfd_boolean
8006 swap_out_syms (bfd *abfd,
8007 struct elf_strtab_hash **sttp,
8008 int relocatable_p)
8009 {
8010 const struct elf_backend_data *bed;
8011 int symcount;
8012 asymbol **syms;
8013 struct elf_strtab_hash *stt;
8014 Elf_Internal_Shdr *symtab_hdr;
8015 Elf_Internal_Shdr *symtab_shndx_hdr;
8016 Elf_Internal_Shdr *symstrtab_hdr;
8017 struct elf_sym_strtab *symstrtab;
8018 bfd_byte *outbound_syms;
8019 bfd_byte *outbound_shndx;
8020 unsigned long outbound_syms_index;
8021 unsigned long outbound_shndx_index;
8022 int idx;
8023 unsigned int num_locals;
8024 bfd_size_type amt;
8025 bfd_boolean name_local_sections;
8026
8027 if (!elf_map_symbols (abfd, &num_locals))
8028 return FALSE;
8029
8030 /* Dump out the symtabs. */
8031 stt = _bfd_elf_strtab_init ();
8032 if (stt == NULL)
8033 return FALSE;
8034
8035 bed = get_elf_backend_data (abfd);
8036 symcount = bfd_get_symcount (abfd);
8037 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8038 symtab_hdr->sh_type = SHT_SYMTAB;
8039 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8040 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8041 symtab_hdr->sh_info = num_locals + 1;
8042 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8043
8044 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8045 symstrtab_hdr->sh_type = SHT_STRTAB;
8046
8047 /* Allocate buffer to swap out the .strtab section. */
8048 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8049 sizeof (*symstrtab));
8050 if (symstrtab == NULL)
8051 {
8052 _bfd_elf_strtab_free (stt);
8053 return FALSE;
8054 }
8055
8056 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8057 bed->s->sizeof_sym);
8058 if (outbound_syms == NULL)
8059 {
8060 error_return:
8061 _bfd_elf_strtab_free (stt);
8062 free (symstrtab);
8063 return FALSE;
8064 }
8065 symtab_hdr->contents = outbound_syms;
8066 outbound_syms_index = 0;
8067
8068 outbound_shndx = NULL;
8069 outbound_shndx_index = 0;
8070
8071 if (elf_symtab_shndx_list (abfd))
8072 {
8073 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8074 if (symtab_shndx_hdr->sh_name != 0)
8075 {
8076 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8077 outbound_shndx = (bfd_byte *)
8078 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8079 if (outbound_shndx == NULL)
8080 goto error_return;
8081
8082 symtab_shndx_hdr->contents = outbound_shndx;
8083 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8084 symtab_shndx_hdr->sh_size = amt;
8085 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8086 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8087 }
8088 /* FIXME: What about any other headers in the list ? */
8089 }
8090
8091 /* Now generate the data (for "contents"). */
8092 {
8093 /* Fill in zeroth symbol and swap it out. */
8094 Elf_Internal_Sym sym;
8095 sym.st_name = 0;
8096 sym.st_value = 0;
8097 sym.st_size = 0;
8098 sym.st_info = 0;
8099 sym.st_other = 0;
8100 sym.st_shndx = SHN_UNDEF;
8101 sym.st_target_internal = 0;
8102 symstrtab[0].sym = sym;
8103 symstrtab[0].dest_index = outbound_syms_index;
8104 symstrtab[0].destshndx_index = outbound_shndx_index;
8105 outbound_syms_index++;
8106 if (outbound_shndx != NULL)
8107 outbound_shndx_index++;
8108 }
8109
8110 name_local_sections
8111 = (bed->elf_backend_name_local_section_symbols
8112 && bed->elf_backend_name_local_section_symbols (abfd));
8113
8114 syms = bfd_get_outsymbols (abfd);
8115 for (idx = 0; idx < symcount;)
8116 {
8117 Elf_Internal_Sym sym;
8118 bfd_vma value = syms[idx]->value;
8119 elf_symbol_type *type_ptr;
8120 flagword flags = syms[idx]->flags;
8121 int type;
8122
8123 if (!name_local_sections
8124 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8125 {
8126 /* Local section symbols have no name. */
8127 sym.st_name = (unsigned long) -1;
8128 }
8129 else
8130 {
8131 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8132 to get the final offset for st_name. */
8133 sym.st_name
8134 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8135 FALSE);
8136 if (sym.st_name == (unsigned long) -1)
8137 goto error_return;
8138 }
8139
8140 type_ptr = elf_symbol_from (abfd, syms[idx]);
8141
8142 if ((flags & BSF_SECTION_SYM) == 0
8143 && bfd_is_com_section (syms[idx]->section))
8144 {
8145 /* ELF common symbols put the alignment into the `value' field,
8146 and the size into the `size' field. This is backwards from
8147 how BFD handles it, so reverse it here. */
8148 sym.st_size = value;
8149 if (type_ptr == NULL
8150 || type_ptr->internal_elf_sym.st_value == 0)
8151 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8152 else
8153 sym.st_value = type_ptr->internal_elf_sym.st_value;
8154 sym.st_shndx = _bfd_elf_section_from_bfd_section
8155 (abfd, syms[idx]->section);
8156 }
8157 else
8158 {
8159 asection *sec = syms[idx]->section;
8160 unsigned int shndx;
8161
8162 if (sec->output_section)
8163 {
8164 value += sec->output_offset;
8165 sec = sec->output_section;
8166 }
8167
8168 /* Don't add in the section vma for relocatable output. */
8169 if (! relocatable_p)
8170 value += sec->vma;
8171 sym.st_value = value;
8172 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8173
8174 if (bfd_is_abs_section (sec)
8175 && type_ptr != NULL
8176 && type_ptr->internal_elf_sym.st_shndx != 0)
8177 {
8178 /* This symbol is in a real ELF section which we did
8179 not create as a BFD section. Undo the mapping done
8180 by copy_private_symbol_data. */
8181 shndx = type_ptr->internal_elf_sym.st_shndx;
8182 switch (shndx)
8183 {
8184 case MAP_ONESYMTAB:
8185 shndx = elf_onesymtab (abfd);
8186 break;
8187 case MAP_DYNSYMTAB:
8188 shndx = elf_dynsymtab (abfd);
8189 break;
8190 case MAP_STRTAB:
8191 shndx = elf_strtab_sec (abfd);
8192 break;
8193 case MAP_SHSTRTAB:
8194 shndx = elf_shstrtab_sec (abfd);
8195 break;
8196 case MAP_SYM_SHNDX:
8197 if (elf_symtab_shndx_list (abfd))
8198 shndx = elf_symtab_shndx_list (abfd)->ndx;
8199 break;
8200 default:
8201 shndx = SHN_ABS;
8202 break;
8203 }
8204 }
8205 else
8206 {
8207 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8208
8209 if (shndx == SHN_BAD)
8210 {
8211 asection *sec2;
8212
8213 /* Writing this would be a hell of a lot easier if
8214 we had some decent documentation on bfd, and
8215 knew what to expect of the library, and what to
8216 demand of applications. For example, it
8217 appears that `objcopy' might not set the
8218 section of a symbol to be a section that is
8219 actually in the output file. */
8220 sec2 = bfd_get_section_by_name (abfd, sec->name);
8221 if (sec2 != NULL)
8222 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8223 if (shndx == SHN_BAD)
8224 {
8225 /* xgettext:c-format */
8226 _bfd_error_handler
8227 (_("unable to find equivalent output section"
8228 " for symbol '%s' from section '%s'"),
8229 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8230 sec->name);
8231 bfd_set_error (bfd_error_invalid_operation);
8232 goto error_return;
8233 }
8234 }
8235 }
8236
8237 sym.st_shndx = shndx;
8238 }
8239
8240 if ((flags & BSF_THREAD_LOCAL) != 0)
8241 type = STT_TLS;
8242 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8243 type = STT_GNU_IFUNC;
8244 else if ((flags & BSF_FUNCTION) != 0)
8245 type = STT_FUNC;
8246 else if ((flags & BSF_OBJECT) != 0)
8247 type = STT_OBJECT;
8248 else if ((flags & BSF_RELC) != 0)
8249 type = STT_RELC;
8250 else if ((flags & BSF_SRELC) != 0)
8251 type = STT_SRELC;
8252 else
8253 type = STT_NOTYPE;
8254
8255 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8256 type = STT_TLS;
8257
8258 /* Processor-specific types. */
8259 if (type_ptr != NULL
8260 && bed->elf_backend_get_symbol_type)
8261 type = ((*bed->elf_backend_get_symbol_type)
8262 (&type_ptr->internal_elf_sym, type));
8263
8264 if (flags & BSF_SECTION_SYM)
8265 {
8266 if (flags & BSF_GLOBAL)
8267 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8268 else
8269 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8270 }
8271 else if (bfd_is_com_section (syms[idx]->section))
8272 {
8273 if (type != STT_TLS)
8274 {
8275 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8276 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8277 ? STT_COMMON : STT_OBJECT);
8278 else
8279 type = ((flags & BSF_ELF_COMMON) != 0
8280 ? STT_COMMON : STT_OBJECT);
8281 }
8282 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8283 }
8284 else if (bfd_is_und_section (syms[idx]->section))
8285 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8286 ? STB_WEAK
8287 : STB_GLOBAL),
8288 type);
8289 else if (flags & BSF_FILE)
8290 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8291 else
8292 {
8293 int bind = STB_LOCAL;
8294
8295 if (flags & BSF_LOCAL)
8296 bind = STB_LOCAL;
8297 else if (flags & BSF_GNU_UNIQUE)
8298 bind = STB_GNU_UNIQUE;
8299 else if (flags & BSF_WEAK)
8300 bind = STB_WEAK;
8301 else if (flags & BSF_GLOBAL)
8302 bind = STB_GLOBAL;
8303
8304 sym.st_info = ELF_ST_INFO (bind, type);
8305 }
8306
8307 if (type_ptr != NULL)
8308 {
8309 sym.st_other = type_ptr->internal_elf_sym.st_other;
8310 sym.st_target_internal
8311 = type_ptr->internal_elf_sym.st_target_internal;
8312 }
8313 else
8314 {
8315 sym.st_other = 0;
8316 sym.st_target_internal = 0;
8317 }
8318
8319 idx++;
8320 symstrtab[idx].sym = sym;
8321 symstrtab[idx].dest_index = outbound_syms_index;
8322 symstrtab[idx].destshndx_index = outbound_shndx_index;
8323
8324 outbound_syms_index++;
8325 if (outbound_shndx != NULL)
8326 outbound_shndx_index++;
8327 }
8328
8329 /* Finalize the .strtab section. */
8330 _bfd_elf_strtab_finalize (stt);
8331
8332 /* Swap out the .strtab section. */
8333 for (idx = 0; idx <= symcount; idx++)
8334 {
8335 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8336 if (elfsym->sym.st_name == (unsigned long) -1)
8337 elfsym->sym.st_name = 0;
8338 else
8339 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8340 elfsym->sym.st_name);
8341 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8342 (outbound_syms
8343 + (elfsym->dest_index
8344 * bed->s->sizeof_sym)),
8345 (outbound_shndx
8346 + (elfsym->destshndx_index
8347 * sizeof (Elf_External_Sym_Shndx))));
8348 }
8349 free (symstrtab);
8350
8351 *sttp = stt;
8352 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8353 symstrtab_hdr->sh_type = SHT_STRTAB;
8354 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8355 symstrtab_hdr->sh_addr = 0;
8356 symstrtab_hdr->sh_entsize = 0;
8357 symstrtab_hdr->sh_link = 0;
8358 symstrtab_hdr->sh_info = 0;
8359 symstrtab_hdr->sh_addralign = 1;
8360
8361 return TRUE;
8362 }
8363
8364 /* Return the number of bytes required to hold the symtab vector.
8365
8366 Note that we base it on the count plus 1, since we will null terminate
8367 the vector allocated based on this size. However, the ELF symbol table
8368 always has a dummy entry as symbol #0, so it ends up even. */
8369
8370 long
8371 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8372 {
8373 bfd_size_type symcount;
8374 long symtab_size;
8375 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8376
8377 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8378 if (symcount >= LONG_MAX / sizeof (asymbol *))
8379 {
8380 bfd_set_error (bfd_error_file_too_big);
8381 return -1;
8382 }
8383 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8384 if (symcount > 0)
8385 symtab_size -= sizeof (asymbol *);
8386
8387 return symtab_size;
8388 }
8389
8390 long
8391 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8392 {
8393 bfd_size_type symcount;
8394 long symtab_size;
8395 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8396
8397 if (elf_dynsymtab (abfd) == 0)
8398 {
8399 bfd_set_error (bfd_error_invalid_operation);
8400 return -1;
8401 }
8402
8403 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8404 if (symcount >= LONG_MAX / sizeof (asymbol *))
8405 {
8406 bfd_set_error (bfd_error_file_too_big);
8407 return -1;
8408 }
8409 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8410 if (symcount > 0)
8411 symtab_size -= sizeof (asymbol *);
8412
8413 return symtab_size;
8414 }
8415
8416 long
8417 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8418 sec_ptr asect)
8419 {
8420 #if SIZEOF_LONG == SIZEOF_INT
8421 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8422 {
8423 bfd_set_error (bfd_error_file_too_big);
8424 return -1;
8425 }
8426 #endif
8427 return (asect->reloc_count + 1) * sizeof (arelent *);
8428 }
8429
8430 /* Canonicalize the relocs. */
8431
8432 long
8433 _bfd_elf_canonicalize_reloc (bfd *abfd,
8434 sec_ptr section,
8435 arelent **relptr,
8436 asymbol **symbols)
8437 {
8438 arelent *tblptr;
8439 unsigned int i;
8440 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8441
8442 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8443 return -1;
8444
8445 tblptr = section->relocation;
8446 for (i = 0; i < section->reloc_count; i++)
8447 *relptr++ = tblptr++;
8448
8449 *relptr = NULL;
8450
8451 return section->reloc_count;
8452 }
8453
8454 long
8455 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8456 {
8457 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8458 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8459
8460 if (symcount >= 0)
8461 abfd->symcount = symcount;
8462 return symcount;
8463 }
8464
8465 long
8466 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8467 asymbol **allocation)
8468 {
8469 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8470 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8471
8472 if (symcount >= 0)
8473 abfd->dynsymcount = symcount;
8474 return symcount;
8475 }
8476
8477 /* Return the size required for the dynamic reloc entries. Any loadable
8478 section that was actually installed in the BFD, and has type SHT_REL
8479 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8480 dynamic reloc section. */
8481
8482 long
8483 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8484 {
8485 bfd_size_type count;
8486 asection *s;
8487
8488 if (elf_dynsymtab (abfd) == 0)
8489 {
8490 bfd_set_error (bfd_error_invalid_operation);
8491 return -1;
8492 }
8493
8494 count = 1;
8495 for (s = abfd->sections; s != NULL; s = s->next)
8496 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8497 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8498 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8499 {
8500 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8501 if (count > LONG_MAX / sizeof (arelent *))
8502 {
8503 bfd_set_error (bfd_error_file_too_big);
8504 return -1;
8505 }
8506 }
8507 return count * sizeof (arelent *);
8508 }
8509
8510 /* Canonicalize the dynamic relocation entries. Note that we return the
8511 dynamic relocations as a single block, although they are actually
8512 associated with particular sections; the interface, which was
8513 designed for SunOS style shared libraries, expects that there is only
8514 one set of dynamic relocs. Any loadable section that was actually
8515 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8516 dynamic symbol table, is considered to be a dynamic reloc section. */
8517
8518 long
8519 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8520 arelent **storage,
8521 asymbol **syms)
8522 {
8523 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8524 asection *s;
8525 long ret;
8526
8527 if (elf_dynsymtab (abfd) == 0)
8528 {
8529 bfd_set_error (bfd_error_invalid_operation);
8530 return -1;
8531 }
8532
8533 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8534 ret = 0;
8535 for (s = abfd->sections; s != NULL; s = s->next)
8536 {
8537 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8538 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8539 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8540 {
8541 arelent *p;
8542 long count, i;
8543
8544 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8545 return -1;
8546 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8547 p = s->relocation;
8548 for (i = 0; i < count; i++)
8549 *storage++ = p++;
8550 ret += count;
8551 }
8552 }
8553
8554 *storage = NULL;
8555
8556 return ret;
8557 }
8558 \f
8559 /* Read in the version information. */
8560
8561 bfd_boolean
8562 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8563 {
8564 bfd_byte *contents = NULL;
8565 unsigned int freeidx = 0;
8566
8567 if (elf_dynverref (abfd) != 0)
8568 {
8569 Elf_Internal_Shdr *hdr;
8570 Elf_External_Verneed *everneed;
8571 Elf_Internal_Verneed *iverneed;
8572 unsigned int i;
8573 bfd_byte *contents_end;
8574
8575 hdr = &elf_tdata (abfd)->dynverref_hdr;
8576
8577 if (hdr->sh_info == 0
8578 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8579 {
8580 error_return_bad_verref:
8581 _bfd_error_handler
8582 (_("%pB: .gnu.version_r invalid entry"), abfd);
8583 bfd_set_error (bfd_error_bad_value);
8584 error_return_verref:
8585 elf_tdata (abfd)->verref = NULL;
8586 elf_tdata (abfd)->cverrefs = 0;
8587 goto error_return;
8588 }
8589
8590 ufile_ptr filesize = bfd_get_file_size (abfd);
8591 if (filesize > 0 && filesize < hdr->sh_size)
8592 {
8593 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8594 of memory. */
8595 bfd_set_error (bfd_error_no_memory);
8596 _bfd_error_handler
8597 /* xgettext:c-format */
8598 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8599 abfd, (uint64_t) hdr->sh_size);
8600 goto error_return_verref;
8601 }
8602 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8603 if (contents == NULL)
8604 goto error_return_verref;
8605
8606 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8607 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8608 goto error_return_verref;
8609
8610 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8611 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8612
8613 if (elf_tdata (abfd)->verref == NULL)
8614 goto error_return_verref;
8615
8616 BFD_ASSERT (sizeof (Elf_External_Verneed)
8617 == sizeof (Elf_External_Vernaux));
8618 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8619 everneed = (Elf_External_Verneed *) contents;
8620 iverneed = elf_tdata (abfd)->verref;
8621 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8622 {
8623 Elf_External_Vernaux *evernaux;
8624 Elf_Internal_Vernaux *ivernaux;
8625 unsigned int j;
8626
8627 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8628
8629 iverneed->vn_bfd = abfd;
8630
8631 iverneed->vn_filename =
8632 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8633 iverneed->vn_file);
8634 if (iverneed->vn_filename == NULL)
8635 goto error_return_bad_verref;
8636
8637 if (iverneed->vn_cnt == 0)
8638 iverneed->vn_auxptr = NULL;
8639 else
8640 {
8641 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8642 bfd_alloc2 (abfd, iverneed->vn_cnt,
8643 sizeof (Elf_Internal_Vernaux));
8644 if (iverneed->vn_auxptr == NULL)
8645 goto error_return_verref;
8646 }
8647
8648 if (iverneed->vn_aux
8649 > (size_t) (contents_end - (bfd_byte *) everneed))
8650 goto error_return_bad_verref;
8651
8652 evernaux = ((Elf_External_Vernaux *)
8653 ((bfd_byte *) everneed + iverneed->vn_aux));
8654 ivernaux = iverneed->vn_auxptr;
8655 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8656 {
8657 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8658
8659 ivernaux->vna_nodename =
8660 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8661 ivernaux->vna_name);
8662 if (ivernaux->vna_nodename == NULL)
8663 goto error_return_bad_verref;
8664
8665 if (ivernaux->vna_other > freeidx)
8666 freeidx = ivernaux->vna_other;
8667
8668 ivernaux->vna_nextptr = NULL;
8669 if (ivernaux->vna_next == 0)
8670 {
8671 iverneed->vn_cnt = j + 1;
8672 break;
8673 }
8674 if (j + 1 < iverneed->vn_cnt)
8675 ivernaux->vna_nextptr = ivernaux + 1;
8676
8677 if (ivernaux->vna_next
8678 > (size_t) (contents_end - (bfd_byte *) evernaux))
8679 goto error_return_bad_verref;
8680
8681 evernaux = ((Elf_External_Vernaux *)
8682 ((bfd_byte *) evernaux + ivernaux->vna_next));
8683 }
8684
8685 iverneed->vn_nextref = NULL;
8686 if (iverneed->vn_next == 0)
8687 break;
8688 if (i + 1 < hdr->sh_info)
8689 iverneed->vn_nextref = iverneed + 1;
8690
8691 if (iverneed->vn_next
8692 > (size_t) (contents_end - (bfd_byte *) everneed))
8693 goto error_return_bad_verref;
8694
8695 everneed = ((Elf_External_Verneed *)
8696 ((bfd_byte *) everneed + iverneed->vn_next));
8697 }
8698 elf_tdata (abfd)->cverrefs = i;
8699
8700 free (contents);
8701 contents = NULL;
8702 }
8703
8704 if (elf_dynverdef (abfd) != 0)
8705 {
8706 Elf_Internal_Shdr *hdr;
8707 Elf_External_Verdef *everdef;
8708 Elf_Internal_Verdef *iverdef;
8709 Elf_Internal_Verdef *iverdefarr;
8710 Elf_Internal_Verdef iverdefmem;
8711 unsigned int i;
8712 unsigned int maxidx;
8713 bfd_byte *contents_end_def, *contents_end_aux;
8714
8715 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8716
8717 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8718 {
8719 error_return_bad_verdef:
8720 _bfd_error_handler
8721 (_("%pB: .gnu.version_d invalid entry"), abfd);
8722 bfd_set_error (bfd_error_bad_value);
8723 error_return_verdef:
8724 elf_tdata (abfd)->verdef = NULL;
8725 elf_tdata (abfd)->cverdefs = 0;
8726 goto error_return;
8727 }
8728
8729 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8730 if (contents == NULL)
8731 goto error_return_verdef;
8732 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8733 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8734 goto error_return_verdef;
8735
8736 BFD_ASSERT (sizeof (Elf_External_Verdef)
8737 >= sizeof (Elf_External_Verdaux));
8738 contents_end_def = contents + hdr->sh_size
8739 - sizeof (Elf_External_Verdef);
8740 contents_end_aux = contents + hdr->sh_size
8741 - sizeof (Elf_External_Verdaux);
8742
8743 /* We know the number of entries in the section but not the maximum
8744 index. Therefore we have to run through all entries and find
8745 the maximum. */
8746 everdef = (Elf_External_Verdef *) contents;
8747 maxidx = 0;
8748 for (i = 0; i < hdr->sh_info; ++i)
8749 {
8750 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8751
8752 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8753 goto error_return_bad_verdef;
8754 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8755 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8756
8757 if (iverdefmem.vd_next == 0)
8758 break;
8759
8760 if (iverdefmem.vd_next
8761 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8762 goto error_return_bad_verdef;
8763
8764 everdef = ((Elf_External_Verdef *)
8765 ((bfd_byte *) everdef + iverdefmem.vd_next));
8766 }
8767
8768 if (default_imported_symver)
8769 {
8770 if (freeidx > maxidx)
8771 maxidx = ++freeidx;
8772 else
8773 freeidx = ++maxidx;
8774 }
8775
8776 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8777 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8778 if (elf_tdata (abfd)->verdef == NULL)
8779 goto error_return_verdef;
8780
8781 elf_tdata (abfd)->cverdefs = maxidx;
8782
8783 everdef = (Elf_External_Verdef *) contents;
8784 iverdefarr = elf_tdata (abfd)->verdef;
8785 for (i = 0; i < hdr->sh_info; i++)
8786 {
8787 Elf_External_Verdaux *everdaux;
8788 Elf_Internal_Verdaux *iverdaux;
8789 unsigned int j;
8790
8791 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8792
8793 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8794 goto error_return_bad_verdef;
8795
8796 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8797 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8798
8799 iverdef->vd_bfd = abfd;
8800
8801 if (iverdef->vd_cnt == 0)
8802 iverdef->vd_auxptr = NULL;
8803 else
8804 {
8805 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8806 bfd_alloc2 (abfd, iverdef->vd_cnt,
8807 sizeof (Elf_Internal_Verdaux));
8808 if (iverdef->vd_auxptr == NULL)
8809 goto error_return_verdef;
8810 }
8811
8812 if (iverdef->vd_aux
8813 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8814 goto error_return_bad_verdef;
8815
8816 everdaux = ((Elf_External_Verdaux *)
8817 ((bfd_byte *) everdef + iverdef->vd_aux));
8818 iverdaux = iverdef->vd_auxptr;
8819 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8820 {
8821 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8822
8823 iverdaux->vda_nodename =
8824 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8825 iverdaux->vda_name);
8826 if (iverdaux->vda_nodename == NULL)
8827 goto error_return_bad_verdef;
8828
8829 iverdaux->vda_nextptr = NULL;
8830 if (iverdaux->vda_next == 0)
8831 {
8832 iverdef->vd_cnt = j + 1;
8833 break;
8834 }
8835 if (j + 1 < iverdef->vd_cnt)
8836 iverdaux->vda_nextptr = iverdaux + 1;
8837
8838 if (iverdaux->vda_next
8839 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8840 goto error_return_bad_verdef;
8841
8842 everdaux = ((Elf_External_Verdaux *)
8843 ((bfd_byte *) everdaux + iverdaux->vda_next));
8844 }
8845
8846 iverdef->vd_nodename = NULL;
8847 if (iverdef->vd_cnt)
8848 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8849
8850 iverdef->vd_nextdef = NULL;
8851 if (iverdef->vd_next == 0)
8852 break;
8853 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8854 iverdef->vd_nextdef = iverdef + 1;
8855
8856 everdef = ((Elf_External_Verdef *)
8857 ((bfd_byte *) everdef + iverdef->vd_next));
8858 }
8859
8860 free (contents);
8861 contents = NULL;
8862 }
8863 else if (default_imported_symver)
8864 {
8865 if (freeidx < 3)
8866 freeidx = 3;
8867 else
8868 freeidx++;
8869
8870 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8871 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8872 if (elf_tdata (abfd)->verdef == NULL)
8873 goto error_return;
8874
8875 elf_tdata (abfd)->cverdefs = freeidx;
8876 }
8877
8878 /* Create a default version based on the soname. */
8879 if (default_imported_symver)
8880 {
8881 Elf_Internal_Verdef *iverdef;
8882 Elf_Internal_Verdaux *iverdaux;
8883
8884 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8885
8886 iverdef->vd_version = VER_DEF_CURRENT;
8887 iverdef->vd_flags = 0;
8888 iverdef->vd_ndx = freeidx;
8889 iverdef->vd_cnt = 1;
8890
8891 iverdef->vd_bfd = abfd;
8892
8893 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8894 if (iverdef->vd_nodename == NULL)
8895 goto error_return_verdef;
8896 iverdef->vd_nextdef = NULL;
8897 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8898 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8899 if (iverdef->vd_auxptr == NULL)
8900 goto error_return_verdef;
8901
8902 iverdaux = iverdef->vd_auxptr;
8903 iverdaux->vda_nodename = iverdef->vd_nodename;
8904 }
8905
8906 return TRUE;
8907
8908 error_return:
8909 if (contents != NULL)
8910 free (contents);
8911 return FALSE;
8912 }
8913 \f
8914 asymbol *
8915 _bfd_elf_make_empty_symbol (bfd *abfd)
8916 {
8917 elf_symbol_type *newsym;
8918
8919 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8920 if (!newsym)
8921 return NULL;
8922 newsym->symbol.the_bfd = abfd;
8923 return &newsym->symbol;
8924 }
8925
8926 void
8927 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8928 asymbol *symbol,
8929 symbol_info *ret)
8930 {
8931 bfd_symbol_info (symbol, ret);
8932 }
8933
8934 /* Return whether a symbol name implies a local symbol. Most targets
8935 use this function for the is_local_label_name entry point, but some
8936 override it. */
8937
8938 bfd_boolean
8939 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8940 const char *name)
8941 {
8942 /* Normal local symbols start with ``.L''. */
8943 if (name[0] == '.' && name[1] == 'L')
8944 return TRUE;
8945
8946 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8947 DWARF debugging symbols starting with ``..''. */
8948 if (name[0] == '.' && name[1] == '.')
8949 return TRUE;
8950
8951 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8952 emitting DWARF debugging output. I suspect this is actually a
8953 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8954 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8955 underscore to be emitted on some ELF targets). For ease of use,
8956 we treat such symbols as local. */
8957 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8958 return TRUE;
8959
8960 /* Treat assembler generated fake symbols, dollar local labels and
8961 forward-backward labels (aka local labels) as locals.
8962 These labels have the form:
8963
8964 L0^A.* (fake symbols)
8965
8966 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8967
8968 Versions which start with .L will have already been matched above,
8969 so we only need to match the rest. */
8970 if (name[0] == 'L' && ISDIGIT (name[1]))
8971 {
8972 bfd_boolean ret = FALSE;
8973 const char * p;
8974 char c;
8975
8976 for (p = name + 2; (c = *p); p++)
8977 {
8978 if (c == 1 || c == 2)
8979 {
8980 if (c == 1 && p == name + 2)
8981 /* A fake symbol. */
8982 return TRUE;
8983
8984 /* FIXME: We are being paranoid here and treating symbols like
8985 L0^Bfoo as if there were non-local, on the grounds that the
8986 assembler will never generate them. But can any symbol
8987 containing an ASCII value in the range 1-31 ever be anything
8988 other than some kind of local ? */
8989 ret = TRUE;
8990 }
8991
8992 if (! ISDIGIT (c))
8993 {
8994 ret = FALSE;
8995 break;
8996 }
8997 }
8998 return ret;
8999 }
9000
9001 return FALSE;
9002 }
9003
9004 alent *
9005 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9006 asymbol *symbol ATTRIBUTE_UNUSED)
9007 {
9008 abort ();
9009 return NULL;
9010 }
9011
9012 bfd_boolean
9013 _bfd_elf_set_arch_mach (bfd *abfd,
9014 enum bfd_architecture arch,
9015 unsigned long machine)
9016 {
9017 /* If this isn't the right architecture for this backend, and this
9018 isn't the generic backend, fail. */
9019 if (arch != get_elf_backend_data (abfd)->arch
9020 && arch != bfd_arch_unknown
9021 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9022 return FALSE;
9023
9024 return bfd_default_set_arch_mach (abfd, arch, machine);
9025 }
9026
9027 /* Find the nearest line to a particular section and offset,
9028 for error reporting. */
9029
9030 bfd_boolean
9031 _bfd_elf_find_nearest_line (bfd *abfd,
9032 asymbol **symbols,
9033 asection *section,
9034 bfd_vma offset,
9035 const char **filename_ptr,
9036 const char **functionname_ptr,
9037 unsigned int *line_ptr,
9038 unsigned int *discriminator_ptr)
9039 {
9040 bfd_boolean found;
9041
9042 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9043 filename_ptr, functionname_ptr,
9044 line_ptr, discriminator_ptr,
9045 dwarf_debug_sections,
9046 &elf_tdata (abfd)->dwarf2_find_line_info)
9047 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9048 filename_ptr, functionname_ptr,
9049 line_ptr))
9050 {
9051 if (!*functionname_ptr)
9052 _bfd_elf_find_function (abfd, symbols, section, offset,
9053 *filename_ptr ? NULL : filename_ptr,
9054 functionname_ptr);
9055 return TRUE;
9056 }
9057
9058 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9059 &found, filename_ptr,
9060 functionname_ptr, line_ptr,
9061 &elf_tdata (abfd)->line_info))
9062 return FALSE;
9063 if (found && (*functionname_ptr || *line_ptr))
9064 return TRUE;
9065
9066 if (symbols == NULL)
9067 return FALSE;
9068
9069 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9070 filename_ptr, functionname_ptr))
9071 return FALSE;
9072
9073 *line_ptr = 0;
9074 return TRUE;
9075 }
9076
9077 /* Find the line for a symbol. */
9078
9079 bfd_boolean
9080 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9081 const char **filename_ptr, unsigned int *line_ptr)
9082 {
9083 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9084 filename_ptr, NULL, line_ptr, NULL,
9085 dwarf_debug_sections,
9086 &elf_tdata (abfd)->dwarf2_find_line_info);
9087 }
9088
9089 /* After a call to bfd_find_nearest_line, successive calls to
9090 bfd_find_inliner_info can be used to get source information about
9091 each level of function inlining that terminated at the address
9092 passed to bfd_find_nearest_line. Currently this is only supported
9093 for DWARF2 with appropriate DWARF3 extensions. */
9094
9095 bfd_boolean
9096 _bfd_elf_find_inliner_info (bfd *abfd,
9097 const char **filename_ptr,
9098 const char **functionname_ptr,
9099 unsigned int *line_ptr)
9100 {
9101 bfd_boolean found;
9102 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9103 functionname_ptr, line_ptr,
9104 & elf_tdata (abfd)->dwarf2_find_line_info);
9105 return found;
9106 }
9107
9108 int
9109 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9110 {
9111 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9112 int ret = bed->s->sizeof_ehdr;
9113
9114 if (!bfd_link_relocatable (info))
9115 {
9116 bfd_size_type phdr_size = elf_program_header_size (abfd);
9117
9118 if (phdr_size == (bfd_size_type) -1)
9119 {
9120 struct elf_segment_map *m;
9121
9122 phdr_size = 0;
9123 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9124 phdr_size += bed->s->sizeof_phdr;
9125
9126 if (phdr_size == 0)
9127 phdr_size = get_program_header_size (abfd, info);
9128 }
9129
9130 elf_program_header_size (abfd) = phdr_size;
9131 ret += phdr_size;
9132 }
9133
9134 return ret;
9135 }
9136
9137 bfd_boolean
9138 _bfd_elf_set_section_contents (bfd *abfd,
9139 sec_ptr section,
9140 const void *location,
9141 file_ptr offset,
9142 bfd_size_type count)
9143 {
9144 Elf_Internal_Shdr *hdr;
9145 file_ptr pos;
9146
9147 if (! abfd->output_has_begun
9148 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9149 return FALSE;
9150
9151 if (!count)
9152 return TRUE;
9153
9154 hdr = &elf_section_data (section)->this_hdr;
9155 if (hdr->sh_offset == (file_ptr) -1)
9156 {
9157 if (bfd_section_is_ctf (section))
9158 /* Nothing to do with this section: the contents are generated
9159 later. */
9160 return TRUE;
9161
9162 /* We must compress this section. Write output to the buffer. */
9163 unsigned char *contents = hdr->contents;
9164 if ((offset + count) > hdr->sh_size
9165 || (section->flags & SEC_ELF_COMPRESS) == 0
9166 || contents == NULL)
9167 abort ();
9168 memcpy (contents + offset, location, count);
9169 return TRUE;
9170 }
9171 pos = hdr->sh_offset + offset;
9172 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9173 || bfd_bwrite (location, count, abfd) != count)
9174 return FALSE;
9175
9176 return TRUE;
9177 }
9178
9179 bfd_boolean
9180 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9181 arelent *cache_ptr ATTRIBUTE_UNUSED,
9182 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9183 {
9184 abort ();
9185 return FALSE;
9186 }
9187
9188 /* Try to convert a non-ELF reloc into an ELF one. */
9189
9190 bfd_boolean
9191 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9192 {
9193 /* Check whether we really have an ELF howto. */
9194
9195 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9196 {
9197 bfd_reloc_code_real_type code;
9198 reloc_howto_type *howto;
9199
9200 /* Alien reloc: Try to determine its type to replace it with an
9201 equivalent ELF reloc. */
9202
9203 if (areloc->howto->pc_relative)
9204 {
9205 switch (areloc->howto->bitsize)
9206 {
9207 case 8:
9208 code = BFD_RELOC_8_PCREL;
9209 break;
9210 case 12:
9211 code = BFD_RELOC_12_PCREL;
9212 break;
9213 case 16:
9214 code = BFD_RELOC_16_PCREL;
9215 break;
9216 case 24:
9217 code = BFD_RELOC_24_PCREL;
9218 break;
9219 case 32:
9220 code = BFD_RELOC_32_PCREL;
9221 break;
9222 case 64:
9223 code = BFD_RELOC_64_PCREL;
9224 break;
9225 default:
9226 goto fail;
9227 }
9228
9229 howto = bfd_reloc_type_lookup (abfd, code);
9230
9231 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9232 {
9233 if (howto->pcrel_offset)
9234 areloc->addend += areloc->address;
9235 else
9236 areloc->addend -= areloc->address; /* addend is unsigned!! */
9237 }
9238 }
9239 else
9240 {
9241 switch (areloc->howto->bitsize)
9242 {
9243 case 8:
9244 code = BFD_RELOC_8;
9245 break;
9246 case 14:
9247 code = BFD_RELOC_14;
9248 break;
9249 case 16:
9250 code = BFD_RELOC_16;
9251 break;
9252 case 26:
9253 code = BFD_RELOC_26;
9254 break;
9255 case 32:
9256 code = BFD_RELOC_32;
9257 break;
9258 case 64:
9259 code = BFD_RELOC_64;
9260 break;
9261 default:
9262 goto fail;
9263 }
9264
9265 howto = bfd_reloc_type_lookup (abfd, code);
9266 }
9267
9268 if (howto)
9269 areloc->howto = howto;
9270 else
9271 goto fail;
9272 }
9273
9274 return TRUE;
9275
9276 fail:
9277 /* xgettext:c-format */
9278 _bfd_error_handler (_("%pB: %s unsupported"),
9279 abfd, areloc->howto->name);
9280 bfd_set_error (bfd_error_bad_value);
9281 return FALSE;
9282 }
9283
9284 bfd_boolean
9285 _bfd_elf_close_and_cleanup (bfd *abfd)
9286 {
9287 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9288 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9289 {
9290 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9291 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9292 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9293 }
9294
9295 return _bfd_generic_close_and_cleanup (abfd);
9296 }
9297
9298 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9299 in the relocation's offset. Thus we cannot allow any sort of sanity
9300 range-checking to interfere. There is nothing else to do in processing
9301 this reloc. */
9302
9303 bfd_reloc_status_type
9304 _bfd_elf_rel_vtable_reloc_fn
9305 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9306 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9307 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9308 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9309 {
9310 return bfd_reloc_ok;
9311 }
9312 \f
9313 /* Elf core file support. Much of this only works on native
9314 toolchains, since we rely on knowing the
9315 machine-dependent procfs structure in order to pick
9316 out details about the corefile. */
9317
9318 #ifdef HAVE_SYS_PROCFS_H
9319 /* Needed for new procfs interface on sparc-solaris. */
9320 # define _STRUCTURED_PROC 1
9321 # include <sys/procfs.h>
9322 #endif
9323
9324 /* Return a PID that identifies a "thread" for threaded cores, or the
9325 PID of the main process for non-threaded cores. */
9326
9327 static int
9328 elfcore_make_pid (bfd *abfd)
9329 {
9330 int pid;
9331
9332 pid = elf_tdata (abfd)->core->lwpid;
9333 if (pid == 0)
9334 pid = elf_tdata (abfd)->core->pid;
9335
9336 return pid;
9337 }
9338
9339 /* If there isn't a section called NAME, make one, using
9340 data from SECT. Note, this function will generate a
9341 reference to NAME, so you shouldn't deallocate or
9342 overwrite it. */
9343
9344 static bfd_boolean
9345 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9346 {
9347 asection *sect2;
9348
9349 if (bfd_get_section_by_name (abfd, name) != NULL)
9350 return TRUE;
9351
9352 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9353 if (sect2 == NULL)
9354 return FALSE;
9355
9356 sect2->size = sect->size;
9357 sect2->filepos = sect->filepos;
9358 sect2->alignment_power = sect->alignment_power;
9359 return TRUE;
9360 }
9361
9362 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9363 actually creates up to two pseudosections:
9364 - For the single-threaded case, a section named NAME, unless
9365 such a section already exists.
9366 - For the multi-threaded case, a section named "NAME/PID", where
9367 PID is elfcore_make_pid (abfd).
9368 Both pseudosections have identical contents. */
9369 bfd_boolean
9370 _bfd_elfcore_make_pseudosection (bfd *abfd,
9371 char *name,
9372 size_t size,
9373 ufile_ptr filepos)
9374 {
9375 char buf[100];
9376 char *threaded_name;
9377 size_t len;
9378 asection *sect;
9379
9380 /* Build the section name. */
9381
9382 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9383 len = strlen (buf) + 1;
9384 threaded_name = (char *) bfd_alloc (abfd, len);
9385 if (threaded_name == NULL)
9386 return FALSE;
9387 memcpy (threaded_name, buf, len);
9388
9389 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9390 SEC_HAS_CONTENTS);
9391 if (sect == NULL)
9392 return FALSE;
9393 sect->size = size;
9394 sect->filepos = filepos;
9395 sect->alignment_power = 2;
9396
9397 return elfcore_maybe_make_sect (abfd, name, sect);
9398 }
9399
9400 static bfd_boolean
9401 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9402 size_t offs)
9403 {
9404 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9405 SEC_HAS_CONTENTS);
9406
9407 if (sect == NULL)
9408 return FALSE;
9409
9410 sect->size = note->descsz - offs;
9411 sect->filepos = note->descpos + offs;
9412 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9413
9414 return TRUE;
9415 }
9416
9417 /* prstatus_t exists on:
9418 solaris 2.5+
9419 linux 2.[01] + glibc
9420 unixware 4.2
9421 */
9422
9423 #if defined (HAVE_PRSTATUS_T)
9424
9425 static bfd_boolean
9426 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9427 {
9428 size_t size;
9429 int offset;
9430
9431 if (note->descsz == sizeof (prstatus_t))
9432 {
9433 prstatus_t prstat;
9434
9435 size = sizeof (prstat.pr_reg);
9436 offset = offsetof (prstatus_t, pr_reg);
9437 memcpy (&prstat, note->descdata, sizeof (prstat));
9438
9439 /* Do not overwrite the core signal if it
9440 has already been set by another thread. */
9441 if (elf_tdata (abfd)->core->signal == 0)
9442 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9443 if (elf_tdata (abfd)->core->pid == 0)
9444 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9445
9446 /* pr_who exists on:
9447 solaris 2.5+
9448 unixware 4.2
9449 pr_who doesn't exist on:
9450 linux 2.[01]
9451 */
9452 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9453 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9454 #else
9455 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9456 #endif
9457 }
9458 #if defined (HAVE_PRSTATUS32_T)
9459 else if (note->descsz == sizeof (prstatus32_t))
9460 {
9461 /* 64-bit host, 32-bit corefile */
9462 prstatus32_t prstat;
9463
9464 size = sizeof (prstat.pr_reg);
9465 offset = offsetof (prstatus32_t, pr_reg);
9466 memcpy (&prstat, note->descdata, sizeof (prstat));
9467
9468 /* Do not overwrite the core signal if it
9469 has already been set by another thread. */
9470 if (elf_tdata (abfd)->core->signal == 0)
9471 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9472 if (elf_tdata (abfd)->core->pid == 0)
9473 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9474
9475 /* pr_who exists on:
9476 solaris 2.5+
9477 unixware 4.2
9478 pr_who doesn't exist on:
9479 linux 2.[01]
9480 */
9481 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9482 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9483 #else
9484 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9485 #endif
9486 }
9487 #endif /* HAVE_PRSTATUS32_T */
9488 else
9489 {
9490 /* Fail - we don't know how to handle any other
9491 note size (ie. data object type). */
9492 return TRUE;
9493 }
9494
9495 /* Make a ".reg/999" section and a ".reg" section. */
9496 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9497 size, note->descpos + offset);
9498 }
9499 #endif /* defined (HAVE_PRSTATUS_T) */
9500
9501 /* Create a pseudosection containing the exact contents of NOTE. */
9502 static bfd_boolean
9503 elfcore_make_note_pseudosection (bfd *abfd,
9504 char *name,
9505 Elf_Internal_Note *note)
9506 {
9507 return _bfd_elfcore_make_pseudosection (abfd, name,
9508 note->descsz, note->descpos);
9509 }
9510
9511 /* There isn't a consistent prfpregset_t across platforms,
9512 but it doesn't matter, because we don't have to pick this
9513 data structure apart. */
9514
9515 static bfd_boolean
9516 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9517 {
9518 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9519 }
9520
9521 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9522 type of NT_PRXFPREG. Just include the whole note's contents
9523 literally. */
9524
9525 static bfd_boolean
9526 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9527 {
9528 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9529 }
9530
9531 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9532 with a note type of NT_X86_XSTATE. Just include the whole note's
9533 contents literally. */
9534
9535 static bfd_boolean
9536 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9537 {
9538 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9539 }
9540
9541 static bfd_boolean
9542 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9543 {
9544 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9545 }
9546
9547 static bfd_boolean
9548 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9549 {
9550 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9551 }
9552
9553 static bfd_boolean
9554 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9555 {
9556 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9557 }
9558
9559 static bfd_boolean
9560 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9561 {
9562 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9563 }
9564
9565 static bfd_boolean
9566 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9567 {
9568 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9569 }
9570
9571 static bfd_boolean
9572 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9573 {
9574 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9575 }
9576
9577 static bfd_boolean
9578 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9579 {
9580 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9581 }
9582
9583 static bfd_boolean
9584 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9585 {
9586 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9587 }
9588
9589 static bfd_boolean
9590 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9591 {
9592 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9593 }
9594
9595 static bfd_boolean
9596 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9597 {
9598 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9599 }
9600
9601 static bfd_boolean
9602 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9603 {
9604 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9605 }
9606
9607 static bfd_boolean
9608 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9609 {
9610 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9611 }
9612
9613 static bfd_boolean
9614 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9615 {
9616 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9617 }
9618
9619 static bfd_boolean
9620 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9621 {
9622 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9623 }
9624
9625 static bfd_boolean
9626 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9627 {
9628 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9629 }
9630
9631 static bfd_boolean
9632 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9633 {
9634 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9635 }
9636
9637 static bfd_boolean
9638 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9639 {
9640 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9641 }
9642
9643 static bfd_boolean
9644 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9645 {
9646 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9647 }
9648
9649 static bfd_boolean
9650 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9651 {
9652 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9653 }
9654
9655 static bfd_boolean
9656 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9657 {
9658 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9659 }
9660
9661 static bfd_boolean
9662 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9663 {
9664 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9665 }
9666
9667 static bfd_boolean
9668 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9669 {
9670 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9671 }
9672
9673 static bfd_boolean
9674 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9675 {
9676 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9677 }
9678
9679 static bfd_boolean
9680 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9681 {
9682 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9683 }
9684
9685 static bfd_boolean
9686 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9687 {
9688 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9689 }
9690
9691 static bfd_boolean
9692 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9693 {
9694 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9695 }
9696
9697 static bfd_boolean
9698 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9699 {
9700 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9701 }
9702
9703 static bfd_boolean
9704 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9705 {
9706 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9707 }
9708
9709 static bfd_boolean
9710 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9711 {
9712 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9713 }
9714
9715 static bfd_boolean
9716 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9717 {
9718 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9719 }
9720
9721 static bfd_boolean
9722 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9723 {
9724 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9725 }
9726
9727 static bfd_boolean
9728 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9729 {
9730 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9731 }
9732
9733 static bfd_boolean
9734 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9735 {
9736 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9737 }
9738
9739 static bfd_boolean
9740 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9741 {
9742 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9743 }
9744
9745 #if defined (HAVE_PRPSINFO_T)
9746 typedef prpsinfo_t elfcore_psinfo_t;
9747 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9748 typedef prpsinfo32_t elfcore_psinfo32_t;
9749 #endif
9750 #endif
9751
9752 #if defined (HAVE_PSINFO_T)
9753 typedef psinfo_t elfcore_psinfo_t;
9754 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9755 typedef psinfo32_t elfcore_psinfo32_t;
9756 #endif
9757 #endif
9758
9759 /* return a malloc'ed copy of a string at START which is at
9760 most MAX bytes long, possibly without a terminating '\0'.
9761 the copy will always have a terminating '\0'. */
9762
9763 char *
9764 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9765 {
9766 char *dups;
9767 char *end = (char *) memchr (start, '\0', max);
9768 size_t len;
9769
9770 if (end == NULL)
9771 len = max;
9772 else
9773 len = end - start;
9774
9775 dups = (char *) bfd_alloc (abfd, len + 1);
9776 if (dups == NULL)
9777 return NULL;
9778
9779 memcpy (dups, start, len);
9780 dups[len] = '\0';
9781
9782 return dups;
9783 }
9784
9785 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9786 static bfd_boolean
9787 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9788 {
9789 if (note->descsz == sizeof (elfcore_psinfo_t))
9790 {
9791 elfcore_psinfo_t psinfo;
9792
9793 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9794
9795 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9796 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9797 #endif
9798 elf_tdata (abfd)->core->program
9799 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9800 sizeof (psinfo.pr_fname));
9801
9802 elf_tdata (abfd)->core->command
9803 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9804 sizeof (psinfo.pr_psargs));
9805 }
9806 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9807 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9808 {
9809 /* 64-bit host, 32-bit corefile */
9810 elfcore_psinfo32_t psinfo;
9811
9812 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9813
9814 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9815 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9816 #endif
9817 elf_tdata (abfd)->core->program
9818 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9819 sizeof (psinfo.pr_fname));
9820
9821 elf_tdata (abfd)->core->command
9822 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9823 sizeof (psinfo.pr_psargs));
9824 }
9825 #endif
9826
9827 else
9828 {
9829 /* Fail - we don't know how to handle any other
9830 note size (ie. data object type). */
9831 return TRUE;
9832 }
9833
9834 /* Note that for some reason, a spurious space is tacked
9835 onto the end of the args in some (at least one anyway)
9836 implementations, so strip it off if it exists. */
9837
9838 {
9839 char *command = elf_tdata (abfd)->core->command;
9840 int n = strlen (command);
9841
9842 if (0 < n && command[n - 1] == ' ')
9843 command[n - 1] = '\0';
9844 }
9845
9846 return TRUE;
9847 }
9848 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9849
9850 #if defined (HAVE_PSTATUS_T)
9851 static bfd_boolean
9852 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9853 {
9854 if (note->descsz == sizeof (pstatus_t)
9855 #if defined (HAVE_PXSTATUS_T)
9856 || note->descsz == sizeof (pxstatus_t)
9857 #endif
9858 )
9859 {
9860 pstatus_t pstat;
9861
9862 memcpy (&pstat, note->descdata, sizeof (pstat));
9863
9864 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9865 }
9866 #if defined (HAVE_PSTATUS32_T)
9867 else if (note->descsz == sizeof (pstatus32_t))
9868 {
9869 /* 64-bit host, 32-bit corefile */
9870 pstatus32_t pstat;
9871
9872 memcpy (&pstat, note->descdata, sizeof (pstat));
9873
9874 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9875 }
9876 #endif
9877 /* Could grab some more details from the "representative"
9878 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9879 NT_LWPSTATUS note, presumably. */
9880
9881 return TRUE;
9882 }
9883 #endif /* defined (HAVE_PSTATUS_T) */
9884
9885 #if defined (HAVE_LWPSTATUS_T)
9886 static bfd_boolean
9887 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9888 {
9889 lwpstatus_t lwpstat;
9890 char buf[100];
9891 char *name;
9892 size_t len;
9893 asection *sect;
9894
9895 if (note->descsz != sizeof (lwpstat)
9896 #if defined (HAVE_LWPXSTATUS_T)
9897 && note->descsz != sizeof (lwpxstatus_t)
9898 #endif
9899 )
9900 return TRUE;
9901
9902 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9903
9904 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9905 /* Do not overwrite the core signal if it has already been set by
9906 another thread. */
9907 if (elf_tdata (abfd)->core->signal == 0)
9908 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9909
9910 /* Make a ".reg/999" section. */
9911
9912 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9913 len = strlen (buf) + 1;
9914 name = bfd_alloc (abfd, len);
9915 if (name == NULL)
9916 return FALSE;
9917 memcpy (name, buf, len);
9918
9919 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9920 if (sect == NULL)
9921 return FALSE;
9922
9923 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9924 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9925 sect->filepos = note->descpos
9926 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9927 #endif
9928
9929 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9930 sect->size = sizeof (lwpstat.pr_reg);
9931 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9932 #endif
9933
9934 sect->alignment_power = 2;
9935
9936 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9937 return FALSE;
9938
9939 /* Make a ".reg2/999" section */
9940
9941 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9942 len = strlen (buf) + 1;
9943 name = bfd_alloc (abfd, len);
9944 if (name == NULL)
9945 return FALSE;
9946 memcpy (name, buf, len);
9947
9948 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9949 if (sect == NULL)
9950 return FALSE;
9951
9952 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9953 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9954 sect->filepos = note->descpos
9955 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9956 #endif
9957
9958 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9959 sect->size = sizeof (lwpstat.pr_fpreg);
9960 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9961 #endif
9962
9963 sect->alignment_power = 2;
9964
9965 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9966 }
9967 #endif /* defined (HAVE_LWPSTATUS_T) */
9968
9969 static bfd_boolean
9970 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9971 {
9972 char buf[30];
9973 char *name;
9974 size_t len;
9975 asection *sect;
9976 int type;
9977 int is_active_thread;
9978 bfd_vma base_addr;
9979
9980 if (note->descsz < 728)
9981 return TRUE;
9982
9983 if (! CONST_STRNEQ (note->namedata, "win32"))
9984 return TRUE;
9985
9986 type = bfd_get_32 (abfd, note->descdata);
9987
9988 switch (type)
9989 {
9990 case 1 /* NOTE_INFO_PROCESS */:
9991 /* FIXME: need to add ->core->command. */
9992 /* process_info.pid */
9993 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9994 /* process_info.signal */
9995 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9996 break;
9997
9998 case 2 /* NOTE_INFO_THREAD */:
9999 /* Make a ".reg/999" section. */
10000 /* thread_info.tid */
10001 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10002
10003 len = strlen (buf) + 1;
10004 name = (char *) bfd_alloc (abfd, len);
10005 if (name == NULL)
10006 return FALSE;
10007
10008 memcpy (name, buf, len);
10009
10010 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10011 if (sect == NULL)
10012 return FALSE;
10013
10014 /* sizeof (thread_info.thread_context) */
10015 sect->size = 716;
10016 /* offsetof (thread_info.thread_context) */
10017 sect->filepos = note->descpos + 12;
10018 sect->alignment_power = 2;
10019
10020 /* thread_info.is_active_thread */
10021 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10022
10023 if (is_active_thread)
10024 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10025 return FALSE;
10026 break;
10027
10028 case 3 /* NOTE_INFO_MODULE */:
10029 /* Make a ".module/xxxxxxxx" section. */
10030 /* module_info.base_address */
10031 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10032 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10033
10034 len = strlen (buf) + 1;
10035 name = (char *) bfd_alloc (abfd, len);
10036 if (name == NULL)
10037 return FALSE;
10038
10039 memcpy (name, buf, len);
10040
10041 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10042
10043 if (sect == NULL)
10044 return FALSE;
10045
10046 sect->size = note->descsz;
10047 sect->filepos = note->descpos;
10048 sect->alignment_power = 2;
10049 break;
10050
10051 default:
10052 return TRUE;
10053 }
10054
10055 return TRUE;
10056 }
10057
10058 static bfd_boolean
10059 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10060 {
10061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10062
10063 switch (note->type)
10064 {
10065 default:
10066 return TRUE;
10067
10068 case NT_PRSTATUS:
10069 if (bed->elf_backend_grok_prstatus)
10070 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10071 return TRUE;
10072 #if defined (HAVE_PRSTATUS_T)
10073 return elfcore_grok_prstatus (abfd, note);
10074 #else
10075 return TRUE;
10076 #endif
10077
10078 #if defined (HAVE_PSTATUS_T)
10079 case NT_PSTATUS:
10080 return elfcore_grok_pstatus (abfd, note);
10081 #endif
10082
10083 #if defined (HAVE_LWPSTATUS_T)
10084 case NT_LWPSTATUS:
10085 return elfcore_grok_lwpstatus (abfd, note);
10086 #endif
10087
10088 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10089 return elfcore_grok_prfpreg (abfd, note);
10090
10091 case NT_WIN32PSTATUS:
10092 return elfcore_grok_win32pstatus (abfd, note);
10093
10094 case NT_PRXFPREG: /* Linux SSE extension */
10095 if (note->namesz == 6
10096 && strcmp (note->namedata, "LINUX") == 0)
10097 return elfcore_grok_prxfpreg (abfd, note);
10098 else
10099 return TRUE;
10100
10101 case NT_X86_XSTATE: /* Linux XSAVE extension */
10102 if (note->namesz == 6
10103 && strcmp (note->namedata, "LINUX") == 0)
10104 return elfcore_grok_xstatereg (abfd, note);
10105 else
10106 return TRUE;
10107
10108 case NT_PPC_VMX:
10109 if (note->namesz == 6
10110 && strcmp (note->namedata, "LINUX") == 0)
10111 return elfcore_grok_ppc_vmx (abfd, note);
10112 else
10113 return TRUE;
10114
10115 case NT_PPC_VSX:
10116 if (note->namesz == 6
10117 && strcmp (note->namedata, "LINUX") == 0)
10118 return elfcore_grok_ppc_vsx (abfd, note);
10119 else
10120 return TRUE;
10121
10122 case NT_PPC_TAR:
10123 if (note->namesz == 6
10124 && strcmp (note->namedata, "LINUX") == 0)
10125 return elfcore_grok_ppc_tar (abfd, note);
10126 else
10127 return TRUE;
10128
10129 case NT_PPC_PPR:
10130 if (note->namesz == 6
10131 && strcmp (note->namedata, "LINUX") == 0)
10132 return elfcore_grok_ppc_ppr (abfd, note);
10133 else
10134 return TRUE;
10135
10136 case NT_PPC_DSCR:
10137 if (note->namesz == 6
10138 && strcmp (note->namedata, "LINUX") == 0)
10139 return elfcore_grok_ppc_dscr (abfd, note);
10140 else
10141 return TRUE;
10142
10143 case NT_PPC_EBB:
10144 if (note->namesz == 6
10145 && strcmp (note->namedata, "LINUX") == 0)
10146 return elfcore_grok_ppc_ebb (abfd, note);
10147 else
10148 return TRUE;
10149
10150 case NT_PPC_PMU:
10151 if (note->namesz == 6
10152 && strcmp (note->namedata, "LINUX") == 0)
10153 return elfcore_grok_ppc_pmu (abfd, note);
10154 else
10155 return TRUE;
10156
10157 case NT_PPC_TM_CGPR:
10158 if (note->namesz == 6
10159 && strcmp (note->namedata, "LINUX") == 0)
10160 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10161 else
10162 return TRUE;
10163
10164 case NT_PPC_TM_CFPR:
10165 if (note->namesz == 6
10166 && strcmp (note->namedata, "LINUX") == 0)
10167 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10168 else
10169 return TRUE;
10170
10171 case NT_PPC_TM_CVMX:
10172 if (note->namesz == 6
10173 && strcmp (note->namedata, "LINUX") == 0)
10174 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10175 else
10176 return TRUE;
10177
10178 case NT_PPC_TM_CVSX:
10179 if (note->namesz == 6
10180 && strcmp (note->namedata, "LINUX") == 0)
10181 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10182 else
10183 return TRUE;
10184
10185 case NT_PPC_TM_SPR:
10186 if (note->namesz == 6
10187 && strcmp (note->namedata, "LINUX") == 0)
10188 return elfcore_grok_ppc_tm_spr (abfd, note);
10189 else
10190 return TRUE;
10191
10192 case NT_PPC_TM_CTAR:
10193 if (note->namesz == 6
10194 && strcmp (note->namedata, "LINUX") == 0)
10195 return elfcore_grok_ppc_tm_ctar (abfd, note);
10196 else
10197 return TRUE;
10198
10199 case NT_PPC_TM_CPPR:
10200 if (note->namesz == 6
10201 && strcmp (note->namedata, "LINUX") == 0)
10202 return elfcore_grok_ppc_tm_cppr (abfd, note);
10203 else
10204 return TRUE;
10205
10206 case NT_PPC_TM_CDSCR:
10207 if (note->namesz == 6
10208 && strcmp (note->namedata, "LINUX") == 0)
10209 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10210 else
10211 return TRUE;
10212
10213 case NT_S390_HIGH_GPRS:
10214 if (note->namesz == 6
10215 && strcmp (note->namedata, "LINUX") == 0)
10216 return elfcore_grok_s390_high_gprs (abfd, note);
10217 else
10218 return TRUE;
10219
10220 case NT_S390_TIMER:
10221 if (note->namesz == 6
10222 && strcmp (note->namedata, "LINUX") == 0)
10223 return elfcore_grok_s390_timer (abfd, note);
10224 else
10225 return TRUE;
10226
10227 case NT_S390_TODCMP:
10228 if (note->namesz == 6
10229 && strcmp (note->namedata, "LINUX") == 0)
10230 return elfcore_grok_s390_todcmp (abfd, note);
10231 else
10232 return TRUE;
10233
10234 case NT_S390_TODPREG:
10235 if (note->namesz == 6
10236 && strcmp (note->namedata, "LINUX") == 0)
10237 return elfcore_grok_s390_todpreg (abfd, note);
10238 else
10239 return TRUE;
10240
10241 case NT_S390_CTRS:
10242 if (note->namesz == 6
10243 && strcmp (note->namedata, "LINUX") == 0)
10244 return elfcore_grok_s390_ctrs (abfd, note);
10245 else
10246 return TRUE;
10247
10248 case NT_S390_PREFIX:
10249 if (note->namesz == 6
10250 && strcmp (note->namedata, "LINUX") == 0)
10251 return elfcore_grok_s390_prefix (abfd, note);
10252 else
10253 return TRUE;
10254
10255 case NT_S390_LAST_BREAK:
10256 if (note->namesz == 6
10257 && strcmp (note->namedata, "LINUX") == 0)
10258 return elfcore_grok_s390_last_break (abfd, note);
10259 else
10260 return TRUE;
10261
10262 case NT_S390_SYSTEM_CALL:
10263 if (note->namesz == 6
10264 && strcmp (note->namedata, "LINUX") == 0)
10265 return elfcore_grok_s390_system_call (abfd, note);
10266 else
10267 return TRUE;
10268
10269 case NT_S390_TDB:
10270 if (note->namesz == 6
10271 && strcmp (note->namedata, "LINUX") == 0)
10272 return elfcore_grok_s390_tdb (abfd, note);
10273 else
10274 return TRUE;
10275
10276 case NT_S390_VXRS_LOW:
10277 if (note->namesz == 6
10278 && strcmp (note->namedata, "LINUX") == 0)
10279 return elfcore_grok_s390_vxrs_low (abfd, note);
10280 else
10281 return TRUE;
10282
10283 case NT_S390_VXRS_HIGH:
10284 if (note->namesz == 6
10285 && strcmp (note->namedata, "LINUX") == 0)
10286 return elfcore_grok_s390_vxrs_high (abfd, note);
10287 else
10288 return TRUE;
10289
10290 case NT_S390_GS_CB:
10291 if (note->namesz == 6
10292 && strcmp (note->namedata, "LINUX") == 0)
10293 return elfcore_grok_s390_gs_cb (abfd, note);
10294 else
10295 return TRUE;
10296
10297 case NT_S390_GS_BC:
10298 if (note->namesz == 6
10299 && strcmp (note->namedata, "LINUX") == 0)
10300 return elfcore_grok_s390_gs_bc (abfd, note);
10301 else
10302 return TRUE;
10303
10304 case NT_ARM_VFP:
10305 if (note->namesz == 6
10306 && strcmp (note->namedata, "LINUX") == 0)
10307 return elfcore_grok_arm_vfp (abfd, note);
10308 else
10309 return TRUE;
10310
10311 case NT_ARM_TLS:
10312 if (note->namesz == 6
10313 && strcmp (note->namedata, "LINUX") == 0)
10314 return elfcore_grok_aarch_tls (abfd, note);
10315 else
10316 return TRUE;
10317
10318 case NT_ARM_HW_BREAK:
10319 if (note->namesz == 6
10320 && strcmp (note->namedata, "LINUX") == 0)
10321 return elfcore_grok_aarch_hw_break (abfd, note);
10322 else
10323 return TRUE;
10324
10325 case NT_ARM_HW_WATCH:
10326 if (note->namesz == 6
10327 && strcmp (note->namedata, "LINUX") == 0)
10328 return elfcore_grok_aarch_hw_watch (abfd, note);
10329 else
10330 return TRUE;
10331
10332 case NT_ARM_SVE:
10333 if (note->namesz == 6
10334 && strcmp (note->namedata, "LINUX") == 0)
10335 return elfcore_grok_aarch_sve (abfd, note);
10336 else
10337 return TRUE;
10338
10339 case NT_ARM_PAC_MASK:
10340 if (note->namesz == 6
10341 && strcmp (note->namedata, "LINUX") == 0)
10342 return elfcore_grok_aarch_pauth (abfd, note);
10343 else
10344 return TRUE;
10345
10346 case NT_PRPSINFO:
10347 case NT_PSINFO:
10348 if (bed->elf_backend_grok_psinfo)
10349 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10350 return TRUE;
10351 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10352 return elfcore_grok_psinfo (abfd, note);
10353 #else
10354 return TRUE;
10355 #endif
10356
10357 case NT_AUXV:
10358 return elfcore_make_auxv_note_section (abfd, note, 0);
10359
10360 case NT_FILE:
10361 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10362 note);
10363
10364 case NT_SIGINFO:
10365 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10366 note);
10367
10368 }
10369 }
10370
10371 static bfd_boolean
10372 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10373 {
10374 struct bfd_build_id* build_id;
10375
10376 if (note->descsz == 0)
10377 return FALSE;
10378
10379 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10380 if (build_id == NULL)
10381 return FALSE;
10382
10383 build_id->size = note->descsz;
10384 memcpy (build_id->data, note->descdata, note->descsz);
10385 abfd->build_id = build_id;
10386
10387 return TRUE;
10388 }
10389
10390 static bfd_boolean
10391 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10392 {
10393 switch (note->type)
10394 {
10395 default:
10396 return TRUE;
10397
10398 case NT_GNU_PROPERTY_TYPE_0:
10399 return _bfd_elf_parse_gnu_properties (abfd, note);
10400
10401 case NT_GNU_BUILD_ID:
10402 return elfobj_grok_gnu_build_id (abfd, note);
10403 }
10404 }
10405
10406 static bfd_boolean
10407 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10408 {
10409 struct sdt_note *cur =
10410 (struct sdt_note *) bfd_alloc (abfd,
10411 sizeof (struct sdt_note) + note->descsz);
10412
10413 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10414 cur->size = (bfd_size_type) note->descsz;
10415 memcpy (cur->data, note->descdata, note->descsz);
10416
10417 elf_tdata (abfd)->sdt_note_head = cur;
10418
10419 return TRUE;
10420 }
10421
10422 static bfd_boolean
10423 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10424 {
10425 switch (note->type)
10426 {
10427 case NT_STAPSDT:
10428 return elfobj_grok_stapsdt_note_1 (abfd, note);
10429
10430 default:
10431 return TRUE;
10432 }
10433 }
10434
10435 static bfd_boolean
10436 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10437 {
10438 size_t offset;
10439
10440 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10441 {
10442 case ELFCLASS32:
10443 if (note->descsz < 108)
10444 return FALSE;
10445 break;
10446
10447 case ELFCLASS64:
10448 if (note->descsz < 120)
10449 return FALSE;
10450 break;
10451
10452 default:
10453 return FALSE;
10454 }
10455
10456 /* Check for version 1 in pr_version. */
10457 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10458 return FALSE;
10459
10460 offset = 4;
10461
10462 /* Skip over pr_psinfosz. */
10463 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10464 offset += 4;
10465 else
10466 {
10467 offset += 4; /* Padding before pr_psinfosz. */
10468 offset += 8;
10469 }
10470
10471 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10472 elf_tdata (abfd)->core->program
10473 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10474 offset += 17;
10475
10476 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10477 elf_tdata (abfd)->core->command
10478 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10479 offset += 81;
10480
10481 /* Padding before pr_pid. */
10482 offset += 2;
10483
10484 /* The pr_pid field was added in version "1a". */
10485 if (note->descsz < offset + 4)
10486 return TRUE;
10487
10488 elf_tdata (abfd)->core->pid
10489 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10490
10491 return TRUE;
10492 }
10493
10494 static bfd_boolean
10495 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10496 {
10497 size_t offset;
10498 size_t size;
10499 size_t min_size;
10500
10501 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10502 Also compute minimum size of this note. */
10503 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10504 {
10505 case ELFCLASS32:
10506 offset = 4 + 4;
10507 min_size = offset + (4 * 2) + 4 + 4 + 4;
10508 break;
10509
10510 case ELFCLASS64:
10511 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10512 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10513 break;
10514
10515 default:
10516 return FALSE;
10517 }
10518
10519 if (note->descsz < min_size)
10520 return FALSE;
10521
10522 /* Check for version 1 in pr_version. */
10523 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10524 return FALSE;
10525
10526 /* Extract size of pr_reg from pr_gregsetsz. */
10527 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10528 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10529 {
10530 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10531 offset += 4 * 2;
10532 }
10533 else
10534 {
10535 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10536 offset += 8 * 2;
10537 }
10538
10539 /* Skip over pr_osreldate. */
10540 offset += 4;
10541
10542 /* Read signal from pr_cursig. */
10543 if (elf_tdata (abfd)->core->signal == 0)
10544 elf_tdata (abfd)->core->signal
10545 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10546 offset += 4;
10547
10548 /* Read TID from pr_pid. */
10549 elf_tdata (abfd)->core->lwpid
10550 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10551 offset += 4;
10552
10553 /* Padding before pr_reg. */
10554 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10555 offset += 4;
10556
10557 /* Make sure that there is enough data remaining in the note. */
10558 if ((note->descsz - offset) < size)
10559 return FALSE;
10560
10561 /* Make a ".reg/999" section and a ".reg" section. */
10562 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10563 size, note->descpos + offset);
10564 }
10565
10566 static bfd_boolean
10567 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10568 {
10569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10570
10571 switch (note->type)
10572 {
10573 case NT_PRSTATUS:
10574 if (bed->elf_backend_grok_freebsd_prstatus)
10575 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10576 return TRUE;
10577 return elfcore_grok_freebsd_prstatus (abfd, note);
10578
10579 case NT_FPREGSET:
10580 return elfcore_grok_prfpreg (abfd, note);
10581
10582 case NT_PRPSINFO:
10583 return elfcore_grok_freebsd_psinfo (abfd, note);
10584
10585 case NT_FREEBSD_THRMISC:
10586 if (note->namesz == 8)
10587 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10588 else
10589 return TRUE;
10590
10591 case NT_FREEBSD_PROCSTAT_PROC:
10592 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10593 note);
10594
10595 case NT_FREEBSD_PROCSTAT_FILES:
10596 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10597 note);
10598
10599 case NT_FREEBSD_PROCSTAT_VMMAP:
10600 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10601 note);
10602
10603 case NT_FREEBSD_PROCSTAT_AUXV:
10604 return elfcore_make_auxv_note_section (abfd, note, 4);
10605
10606 case NT_X86_XSTATE:
10607 if (note->namesz == 8)
10608 return elfcore_grok_xstatereg (abfd, note);
10609 else
10610 return TRUE;
10611
10612 case NT_FREEBSD_PTLWPINFO:
10613 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10614 note);
10615
10616 case NT_ARM_VFP:
10617 return elfcore_grok_arm_vfp (abfd, note);
10618
10619 default:
10620 return TRUE;
10621 }
10622 }
10623
10624 static bfd_boolean
10625 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10626 {
10627 char *cp;
10628
10629 cp = strchr (note->namedata, '@');
10630 if (cp != NULL)
10631 {
10632 *lwpidp = atoi(cp + 1);
10633 return TRUE;
10634 }
10635 return FALSE;
10636 }
10637
10638 static bfd_boolean
10639 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10640 {
10641 if (note->descsz <= 0x7c + 31)
10642 return FALSE;
10643
10644 /* Signal number at offset 0x08. */
10645 elf_tdata (abfd)->core->signal
10646 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10647
10648 /* Process ID at offset 0x50. */
10649 elf_tdata (abfd)->core->pid
10650 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10651
10652 /* Command name at 0x7c (max 32 bytes, including nul). */
10653 elf_tdata (abfd)->core->command
10654 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10655
10656 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10657 note);
10658 }
10659
10660 static bfd_boolean
10661 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10662 {
10663 int lwp;
10664
10665 if (elfcore_netbsd_get_lwpid (note, &lwp))
10666 elf_tdata (abfd)->core->lwpid = lwp;
10667
10668 switch (note->type)
10669 {
10670 case NT_NETBSDCORE_PROCINFO:
10671 /* NetBSD-specific core "procinfo". Note that we expect to
10672 find this note before any of the others, which is fine,
10673 since the kernel writes this note out first when it
10674 creates a core file. */
10675 return elfcore_grok_netbsd_procinfo (abfd, note);
10676 #ifdef NT_NETBSDCORE_AUXV
10677 case NT_NETBSDCORE_AUXV:
10678 /* NetBSD-specific Elf Auxiliary Vector data. */
10679 return elfcore_make_auxv_note_section (abfd, note, 4);
10680 #endif
10681 default:
10682 break;
10683 }
10684
10685 /* As of March 2017 there are no other machine-independent notes
10686 defined for NetBSD core files. If the note type is less
10687 than the start of the machine-dependent note types, we don't
10688 understand it. */
10689
10690 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10691 return TRUE;
10692
10693
10694 switch (bfd_get_arch (abfd))
10695 {
10696 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10697 PT_GETFPREGS == mach+2. */
10698
10699 case bfd_arch_alpha:
10700 case bfd_arch_sparc:
10701 switch (note->type)
10702 {
10703 case NT_NETBSDCORE_FIRSTMACH+0:
10704 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10705
10706 case NT_NETBSDCORE_FIRSTMACH+2:
10707 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10708
10709 default:
10710 return TRUE;
10711 }
10712
10713 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10714 There's also old PT___GETREGS40 == mach + 1 for old reg
10715 structure which lacks GBR. */
10716
10717 case bfd_arch_sh:
10718 switch (note->type)
10719 {
10720 case NT_NETBSDCORE_FIRSTMACH+3:
10721 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10722
10723 case NT_NETBSDCORE_FIRSTMACH+5:
10724 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10725
10726 default:
10727 return TRUE;
10728 }
10729
10730 /* On all other arch's, PT_GETREGS == mach+1 and
10731 PT_GETFPREGS == mach+3. */
10732
10733 default:
10734 switch (note->type)
10735 {
10736 case NT_NETBSDCORE_FIRSTMACH+1:
10737 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10738
10739 case NT_NETBSDCORE_FIRSTMACH+3:
10740 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10741
10742 default:
10743 return TRUE;
10744 }
10745 }
10746 /* NOTREACHED */
10747 }
10748
10749 static bfd_boolean
10750 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10751 {
10752 if (note->descsz <= 0x48 + 31)
10753 return FALSE;
10754
10755 /* Signal number at offset 0x08. */
10756 elf_tdata (abfd)->core->signal
10757 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10758
10759 /* Process ID at offset 0x20. */
10760 elf_tdata (abfd)->core->pid
10761 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10762
10763 /* Command name at 0x48 (max 32 bytes, including nul). */
10764 elf_tdata (abfd)->core->command
10765 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10766
10767 return TRUE;
10768 }
10769
10770 static bfd_boolean
10771 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10772 {
10773 if (note->type == NT_OPENBSD_PROCINFO)
10774 return elfcore_grok_openbsd_procinfo (abfd, note);
10775
10776 if (note->type == NT_OPENBSD_REGS)
10777 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10778
10779 if (note->type == NT_OPENBSD_FPREGS)
10780 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10781
10782 if (note->type == NT_OPENBSD_XFPREGS)
10783 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10784
10785 if (note->type == NT_OPENBSD_AUXV)
10786 return elfcore_make_auxv_note_section (abfd, note, 0);
10787
10788 if (note->type == NT_OPENBSD_WCOOKIE)
10789 {
10790 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10791 SEC_HAS_CONTENTS);
10792
10793 if (sect == NULL)
10794 return FALSE;
10795 sect->size = note->descsz;
10796 sect->filepos = note->descpos;
10797 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10798
10799 return TRUE;
10800 }
10801
10802 return TRUE;
10803 }
10804
10805 static bfd_boolean
10806 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10807 {
10808 void *ddata = note->descdata;
10809 char buf[100];
10810 char *name;
10811 asection *sect;
10812 short sig;
10813 unsigned flags;
10814
10815 if (note->descsz < 16)
10816 return FALSE;
10817
10818 /* nto_procfs_status 'pid' field is at offset 0. */
10819 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10820
10821 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10822 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10823
10824 /* nto_procfs_status 'flags' field is at offset 8. */
10825 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10826
10827 /* nto_procfs_status 'what' field is at offset 14. */
10828 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10829 {
10830 elf_tdata (abfd)->core->signal = sig;
10831 elf_tdata (abfd)->core->lwpid = *tid;
10832 }
10833
10834 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10835 do not come from signals so we make sure we set the current
10836 thread just in case. */
10837 if (flags & 0x00000080)
10838 elf_tdata (abfd)->core->lwpid = *tid;
10839
10840 /* Make a ".qnx_core_status/%d" section. */
10841 sprintf (buf, ".qnx_core_status/%ld", *tid);
10842
10843 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10844 if (name == NULL)
10845 return FALSE;
10846 strcpy (name, buf);
10847
10848 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10849 if (sect == NULL)
10850 return FALSE;
10851
10852 sect->size = note->descsz;
10853 sect->filepos = note->descpos;
10854 sect->alignment_power = 2;
10855
10856 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10857 }
10858
10859 static bfd_boolean
10860 elfcore_grok_nto_regs (bfd *abfd,
10861 Elf_Internal_Note *note,
10862 long tid,
10863 char *base)
10864 {
10865 char buf[100];
10866 char *name;
10867 asection *sect;
10868
10869 /* Make a "(base)/%d" section. */
10870 sprintf (buf, "%s/%ld", base, tid);
10871
10872 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10873 if (name == NULL)
10874 return FALSE;
10875 strcpy (name, buf);
10876
10877 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10878 if (sect == NULL)
10879 return FALSE;
10880
10881 sect->size = note->descsz;
10882 sect->filepos = note->descpos;
10883 sect->alignment_power = 2;
10884
10885 /* This is the current thread. */
10886 if (elf_tdata (abfd)->core->lwpid == tid)
10887 return elfcore_maybe_make_sect (abfd, base, sect);
10888
10889 return TRUE;
10890 }
10891
10892 #define BFD_QNT_CORE_INFO 7
10893 #define BFD_QNT_CORE_STATUS 8
10894 #define BFD_QNT_CORE_GREG 9
10895 #define BFD_QNT_CORE_FPREG 10
10896
10897 static bfd_boolean
10898 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10899 {
10900 /* Every GREG section has a STATUS section before it. Store the
10901 tid from the previous call to pass down to the next gregs
10902 function. */
10903 static long tid = 1;
10904
10905 switch (note->type)
10906 {
10907 case BFD_QNT_CORE_INFO:
10908 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10909 case BFD_QNT_CORE_STATUS:
10910 return elfcore_grok_nto_status (abfd, note, &tid);
10911 case BFD_QNT_CORE_GREG:
10912 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10913 case BFD_QNT_CORE_FPREG:
10914 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10915 default:
10916 return TRUE;
10917 }
10918 }
10919
10920 static bfd_boolean
10921 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10922 {
10923 char *name;
10924 asection *sect;
10925 size_t len;
10926
10927 /* Use note name as section name. */
10928 len = note->namesz;
10929 name = (char *) bfd_alloc (abfd, len);
10930 if (name == NULL)
10931 return FALSE;
10932 memcpy (name, note->namedata, len);
10933 name[len - 1] = '\0';
10934
10935 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10936 if (sect == NULL)
10937 return FALSE;
10938
10939 sect->size = note->descsz;
10940 sect->filepos = note->descpos;
10941 sect->alignment_power = 1;
10942
10943 return TRUE;
10944 }
10945
10946 /* Function: elfcore_write_note
10947
10948 Inputs:
10949 buffer to hold note, and current size of buffer
10950 name of note
10951 type of note
10952 data for note
10953 size of data for note
10954
10955 Writes note to end of buffer. ELF64 notes are written exactly as
10956 for ELF32, despite the current (as of 2006) ELF gabi specifying
10957 that they ought to have 8-byte namesz and descsz field, and have
10958 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10959
10960 Return:
10961 Pointer to realloc'd buffer, *BUFSIZ updated. */
10962
10963 char *
10964 elfcore_write_note (bfd *abfd,
10965 char *buf,
10966 int *bufsiz,
10967 const char *name,
10968 int type,
10969 const void *input,
10970 int size)
10971 {
10972 Elf_External_Note *xnp;
10973 size_t namesz;
10974 size_t newspace;
10975 char *dest;
10976
10977 namesz = 0;
10978 if (name != NULL)
10979 namesz = strlen (name) + 1;
10980
10981 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10982
10983 buf = (char *) realloc (buf, *bufsiz + newspace);
10984 if (buf == NULL)
10985 return buf;
10986 dest = buf + *bufsiz;
10987 *bufsiz += newspace;
10988 xnp = (Elf_External_Note *) dest;
10989 H_PUT_32 (abfd, namesz, xnp->namesz);
10990 H_PUT_32 (abfd, size, xnp->descsz);
10991 H_PUT_32 (abfd, type, xnp->type);
10992 dest = xnp->name;
10993 if (name != NULL)
10994 {
10995 memcpy (dest, name, namesz);
10996 dest += namesz;
10997 while (namesz & 3)
10998 {
10999 *dest++ = '\0';
11000 ++namesz;
11001 }
11002 }
11003 memcpy (dest, input, size);
11004 dest += size;
11005 while (size & 3)
11006 {
11007 *dest++ = '\0';
11008 ++size;
11009 }
11010 return buf;
11011 }
11012
11013 /* gcc-8 warns (*) on all the strncpy calls in this function about
11014 possible string truncation. The "truncation" is not a bug. We
11015 have an external representation of structs with fields that are not
11016 necessarily NULL terminated and corresponding internal
11017 representation fields that are one larger so that they can always
11018 be NULL terminated.
11019 gcc versions between 4.2 and 4.6 do not allow pragma control of
11020 diagnostics inside functions, giving a hard error if you try to use
11021 the finer control available with later versions.
11022 gcc prior to 4.2 warns about diagnostic push and pop.
11023 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11024 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11025 (*) Depending on your system header files! */
11026 #if GCC_VERSION >= 8000
11027 # pragma GCC diagnostic push
11028 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11029 #endif
11030 char *
11031 elfcore_write_prpsinfo (bfd *abfd,
11032 char *buf,
11033 int *bufsiz,
11034 const char *fname,
11035 const char *psargs)
11036 {
11037 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11038
11039 if (bed->elf_backend_write_core_note != NULL)
11040 {
11041 char *ret;
11042 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11043 NT_PRPSINFO, fname, psargs);
11044 if (ret != NULL)
11045 return ret;
11046 }
11047
11048 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11049 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11050 if (bed->s->elfclass == ELFCLASS32)
11051 {
11052 # if defined (HAVE_PSINFO32_T)
11053 psinfo32_t data;
11054 int note_type = NT_PSINFO;
11055 # else
11056 prpsinfo32_t data;
11057 int note_type = NT_PRPSINFO;
11058 # endif
11059
11060 memset (&data, 0, sizeof (data));
11061 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11062 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11063 return elfcore_write_note (abfd, buf, bufsiz,
11064 "CORE", note_type, &data, sizeof (data));
11065 }
11066 else
11067 # endif
11068 {
11069 # if defined (HAVE_PSINFO_T)
11070 psinfo_t data;
11071 int note_type = NT_PSINFO;
11072 # else
11073 prpsinfo_t data;
11074 int note_type = NT_PRPSINFO;
11075 # endif
11076
11077 memset (&data, 0, sizeof (data));
11078 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11079 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11080 return elfcore_write_note (abfd, buf, bufsiz,
11081 "CORE", note_type, &data, sizeof (data));
11082 }
11083 #endif /* PSINFO_T or PRPSINFO_T */
11084
11085 free (buf);
11086 return NULL;
11087 }
11088 #if GCC_VERSION >= 8000
11089 # pragma GCC diagnostic pop
11090 #endif
11091
11092 char *
11093 elfcore_write_linux_prpsinfo32
11094 (bfd *abfd, char *buf, int *bufsiz,
11095 const struct elf_internal_linux_prpsinfo *prpsinfo)
11096 {
11097 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11098 {
11099 struct elf_external_linux_prpsinfo32_ugid16 data;
11100
11101 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11102 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11103 &data, sizeof (data));
11104 }
11105 else
11106 {
11107 struct elf_external_linux_prpsinfo32_ugid32 data;
11108
11109 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11110 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11111 &data, sizeof (data));
11112 }
11113 }
11114
11115 char *
11116 elfcore_write_linux_prpsinfo64
11117 (bfd *abfd, char *buf, int *bufsiz,
11118 const struct elf_internal_linux_prpsinfo *prpsinfo)
11119 {
11120 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11121 {
11122 struct elf_external_linux_prpsinfo64_ugid16 data;
11123
11124 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11125 return elfcore_write_note (abfd, buf, bufsiz,
11126 "CORE", NT_PRPSINFO, &data, sizeof (data));
11127 }
11128 else
11129 {
11130 struct elf_external_linux_prpsinfo64_ugid32 data;
11131
11132 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11133 return elfcore_write_note (abfd, buf, bufsiz,
11134 "CORE", NT_PRPSINFO, &data, sizeof (data));
11135 }
11136 }
11137
11138 char *
11139 elfcore_write_prstatus (bfd *abfd,
11140 char *buf,
11141 int *bufsiz,
11142 long pid,
11143 int cursig,
11144 const void *gregs)
11145 {
11146 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11147
11148 if (bed->elf_backend_write_core_note != NULL)
11149 {
11150 char *ret;
11151 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11152 NT_PRSTATUS,
11153 pid, cursig, gregs);
11154 if (ret != NULL)
11155 return ret;
11156 }
11157
11158 #if defined (HAVE_PRSTATUS_T)
11159 #if defined (HAVE_PRSTATUS32_T)
11160 if (bed->s->elfclass == ELFCLASS32)
11161 {
11162 prstatus32_t prstat;
11163
11164 memset (&prstat, 0, sizeof (prstat));
11165 prstat.pr_pid = pid;
11166 prstat.pr_cursig = cursig;
11167 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11168 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11169 NT_PRSTATUS, &prstat, sizeof (prstat));
11170 }
11171 else
11172 #endif
11173 {
11174 prstatus_t prstat;
11175
11176 memset (&prstat, 0, sizeof (prstat));
11177 prstat.pr_pid = pid;
11178 prstat.pr_cursig = cursig;
11179 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11180 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11181 NT_PRSTATUS, &prstat, sizeof (prstat));
11182 }
11183 #endif /* HAVE_PRSTATUS_T */
11184
11185 free (buf);
11186 return NULL;
11187 }
11188
11189 #if defined (HAVE_LWPSTATUS_T)
11190 char *
11191 elfcore_write_lwpstatus (bfd *abfd,
11192 char *buf,
11193 int *bufsiz,
11194 long pid,
11195 int cursig,
11196 const void *gregs)
11197 {
11198 lwpstatus_t lwpstat;
11199 const char *note_name = "CORE";
11200
11201 memset (&lwpstat, 0, sizeof (lwpstat));
11202 lwpstat.pr_lwpid = pid >> 16;
11203 lwpstat.pr_cursig = cursig;
11204 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11205 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11206 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11207 #if !defined(gregs)
11208 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11209 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11210 #else
11211 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11212 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11213 #endif
11214 #endif
11215 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11216 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11217 }
11218 #endif /* HAVE_LWPSTATUS_T */
11219
11220 #if defined (HAVE_PSTATUS_T)
11221 char *
11222 elfcore_write_pstatus (bfd *abfd,
11223 char *buf,
11224 int *bufsiz,
11225 long pid,
11226 int cursig ATTRIBUTE_UNUSED,
11227 const void *gregs ATTRIBUTE_UNUSED)
11228 {
11229 const char *note_name = "CORE";
11230 #if defined (HAVE_PSTATUS32_T)
11231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11232
11233 if (bed->s->elfclass == ELFCLASS32)
11234 {
11235 pstatus32_t pstat;
11236
11237 memset (&pstat, 0, sizeof (pstat));
11238 pstat.pr_pid = pid & 0xffff;
11239 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11240 NT_PSTATUS, &pstat, sizeof (pstat));
11241 return buf;
11242 }
11243 else
11244 #endif
11245 {
11246 pstatus_t pstat;
11247
11248 memset (&pstat, 0, sizeof (pstat));
11249 pstat.pr_pid = pid & 0xffff;
11250 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11251 NT_PSTATUS, &pstat, sizeof (pstat));
11252 return buf;
11253 }
11254 }
11255 #endif /* HAVE_PSTATUS_T */
11256
11257 char *
11258 elfcore_write_prfpreg (bfd *abfd,
11259 char *buf,
11260 int *bufsiz,
11261 const void *fpregs,
11262 int size)
11263 {
11264 const char *note_name = "CORE";
11265 return elfcore_write_note (abfd, buf, bufsiz,
11266 note_name, NT_FPREGSET, fpregs, size);
11267 }
11268
11269 char *
11270 elfcore_write_prxfpreg (bfd *abfd,
11271 char *buf,
11272 int *bufsiz,
11273 const void *xfpregs,
11274 int size)
11275 {
11276 char *note_name = "LINUX";
11277 return elfcore_write_note (abfd, buf, bufsiz,
11278 note_name, NT_PRXFPREG, xfpregs, size);
11279 }
11280
11281 char *
11282 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11283 const void *xfpregs, int size)
11284 {
11285 char *note_name;
11286 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11287 note_name = "FreeBSD";
11288 else
11289 note_name = "LINUX";
11290 return elfcore_write_note (abfd, buf, bufsiz,
11291 note_name, NT_X86_XSTATE, xfpregs, size);
11292 }
11293
11294 char *
11295 elfcore_write_ppc_vmx (bfd *abfd,
11296 char *buf,
11297 int *bufsiz,
11298 const void *ppc_vmx,
11299 int size)
11300 {
11301 char *note_name = "LINUX";
11302 return elfcore_write_note (abfd, buf, bufsiz,
11303 note_name, NT_PPC_VMX, ppc_vmx, size);
11304 }
11305
11306 char *
11307 elfcore_write_ppc_vsx (bfd *abfd,
11308 char *buf,
11309 int *bufsiz,
11310 const void *ppc_vsx,
11311 int size)
11312 {
11313 char *note_name = "LINUX";
11314 return elfcore_write_note (abfd, buf, bufsiz,
11315 note_name, NT_PPC_VSX, ppc_vsx, size);
11316 }
11317
11318 char *
11319 elfcore_write_ppc_tar (bfd *abfd,
11320 char *buf,
11321 int *bufsiz,
11322 const void *ppc_tar,
11323 int size)
11324 {
11325 char *note_name = "LINUX";
11326 return elfcore_write_note (abfd, buf, bufsiz,
11327 note_name, NT_PPC_TAR, ppc_tar, size);
11328 }
11329
11330 char *
11331 elfcore_write_ppc_ppr (bfd *abfd,
11332 char *buf,
11333 int *bufsiz,
11334 const void *ppc_ppr,
11335 int size)
11336 {
11337 char *note_name = "LINUX";
11338 return elfcore_write_note (abfd, buf, bufsiz,
11339 note_name, NT_PPC_PPR, ppc_ppr, size);
11340 }
11341
11342 char *
11343 elfcore_write_ppc_dscr (bfd *abfd,
11344 char *buf,
11345 int *bufsiz,
11346 const void *ppc_dscr,
11347 int size)
11348 {
11349 char *note_name = "LINUX";
11350 return elfcore_write_note (abfd, buf, bufsiz,
11351 note_name, NT_PPC_DSCR, ppc_dscr, size);
11352 }
11353
11354 char *
11355 elfcore_write_ppc_ebb (bfd *abfd,
11356 char *buf,
11357 int *bufsiz,
11358 const void *ppc_ebb,
11359 int size)
11360 {
11361 char *note_name = "LINUX";
11362 return elfcore_write_note (abfd, buf, bufsiz,
11363 note_name, NT_PPC_EBB, ppc_ebb, size);
11364 }
11365
11366 char *
11367 elfcore_write_ppc_pmu (bfd *abfd,
11368 char *buf,
11369 int *bufsiz,
11370 const void *ppc_pmu,
11371 int size)
11372 {
11373 char *note_name = "LINUX";
11374 return elfcore_write_note (abfd, buf, bufsiz,
11375 note_name, NT_PPC_PMU, ppc_pmu, size);
11376 }
11377
11378 char *
11379 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11380 char *buf,
11381 int *bufsiz,
11382 const void *ppc_tm_cgpr,
11383 int size)
11384 {
11385 char *note_name = "LINUX";
11386 return elfcore_write_note (abfd, buf, bufsiz,
11387 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11388 }
11389
11390 char *
11391 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11392 char *buf,
11393 int *bufsiz,
11394 const void *ppc_tm_cfpr,
11395 int size)
11396 {
11397 char *note_name = "LINUX";
11398 return elfcore_write_note (abfd, buf, bufsiz,
11399 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11400 }
11401
11402 char *
11403 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11404 char *buf,
11405 int *bufsiz,
11406 const void *ppc_tm_cvmx,
11407 int size)
11408 {
11409 char *note_name = "LINUX";
11410 return elfcore_write_note (abfd, buf, bufsiz,
11411 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11412 }
11413
11414 char *
11415 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11416 char *buf,
11417 int *bufsiz,
11418 const void *ppc_tm_cvsx,
11419 int size)
11420 {
11421 char *note_name = "LINUX";
11422 return elfcore_write_note (abfd, buf, bufsiz,
11423 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11424 }
11425
11426 char *
11427 elfcore_write_ppc_tm_spr (bfd *abfd,
11428 char *buf,
11429 int *bufsiz,
11430 const void *ppc_tm_spr,
11431 int size)
11432 {
11433 char *note_name = "LINUX";
11434 return elfcore_write_note (abfd, buf, bufsiz,
11435 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11436 }
11437
11438 char *
11439 elfcore_write_ppc_tm_ctar (bfd *abfd,
11440 char *buf,
11441 int *bufsiz,
11442 const void *ppc_tm_ctar,
11443 int size)
11444 {
11445 char *note_name = "LINUX";
11446 return elfcore_write_note (abfd, buf, bufsiz,
11447 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11448 }
11449
11450 char *
11451 elfcore_write_ppc_tm_cppr (bfd *abfd,
11452 char *buf,
11453 int *bufsiz,
11454 const void *ppc_tm_cppr,
11455 int size)
11456 {
11457 char *note_name = "LINUX";
11458 return elfcore_write_note (abfd, buf, bufsiz,
11459 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11460 }
11461
11462 char *
11463 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11464 char *buf,
11465 int *bufsiz,
11466 const void *ppc_tm_cdscr,
11467 int size)
11468 {
11469 char *note_name = "LINUX";
11470 return elfcore_write_note (abfd, buf, bufsiz,
11471 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11472 }
11473
11474 static char *
11475 elfcore_write_s390_high_gprs (bfd *abfd,
11476 char *buf,
11477 int *bufsiz,
11478 const void *s390_high_gprs,
11479 int size)
11480 {
11481 char *note_name = "LINUX";
11482 return elfcore_write_note (abfd, buf, bufsiz,
11483 note_name, NT_S390_HIGH_GPRS,
11484 s390_high_gprs, size);
11485 }
11486
11487 char *
11488 elfcore_write_s390_timer (bfd *abfd,
11489 char *buf,
11490 int *bufsiz,
11491 const void *s390_timer,
11492 int size)
11493 {
11494 char *note_name = "LINUX";
11495 return elfcore_write_note (abfd, buf, bufsiz,
11496 note_name, NT_S390_TIMER, s390_timer, size);
11497 }
11498
11499 char *
11500 elfcore_write_s390_todcmp (bfd *abfd,
11501 char *buf,
11502 int *bufsiz,
11503 const void *s390_todcmp,
11504 int size)
11505 {
11506 char *note_name = "LINUX";
11507 return elfcore_write_note (abfd, buf, bufsiz,
11508 note_name, NT_S390_TODCMP, s390_todcmp, size);
11509 }
11510
11511 char *
11512 elfcore_write_s390_todpreg (bfd *abfd,
11513 char *buf,
11514 int *bufsiz,
11515 const void *s390_todpreg,
11516 int size)
11517 {
11518 char *note_name = "LINUX";
11519 return elfcore_write_note (abfd, buf, bufsiz,
11520 note_name, NT_S390_TODPREG, s390_todpreg, size);
11521 }
11522
11523 char *
11524 elfcore_write_s390_ctrs (bfd *abfd,
11525 char *buf,
11526 int *bufsiz,
11527 const void *s390_ctrs,
11528 int size)
11529 {
11530 char *note_name = "LINUX";
11531 return elfcore_write_note (abfd, buf, bufsiz,
11532 note_name, NT_S390_CTRS, s390_ctrs, size);
11533 }
11534
11535 char *
11536 elfcore_write_s390_prefix (bfd *abfd,
11537 char *buf,
11538 int *bufsiz,
11539 const void *s390_prefix,
11540 int size)
11541 {
11542 char *note_name = "LINUX";
11543 return elfcore_write_note (abfd, buf, bufsiz,
11544 note_name, NT_S390_PREFIX, s390_prefix, size);
11545 }
11546
11547 char *
11548 elfcore_write_s390_last_break (bfd *abfd,
11549 char *buf,
11550 int *bufsiz,
11551 const void *s390_last_break,
11552 int size)
11553 {
11554 char *note_name = "LINUX";
11555 return elfcore_write_note (abfd, buf, bufsiz,
11556 note_name, NT_S390_LAST_BREAK,
11557 s390_last_break, size);
11558 }
11559
11560 char *
11561 elfcore_write_s390_system_call (bfd *abfd,
11562 char *buf,
11563 int *bufsiz,
11564 const void *s390_system_call,
11565 int size)
11566 {
11567 char *note_name = "LINUX";
11568 return elfcore_write_note (abfd, buf, bufsiz,
11569 note_name, NT_S390_SYSTEM_CALL,
11570 s390_system_call, size);
11571 }
11572
11573 char *
11574 elfcore_write_s390_tdb (bfd *abfd,
11575 char *buf,
11576 int *bufsiz,
11577 const void *s390_tdb,
11578 int size)
11579 {
11580 char *note_name = "LINUX";
11581 return elfcore_write_note (abfd, buf, bufsiz,
11582 note_name, NT_S390_TDB, s390_tdb, size);
11583 }
11584
11585 char *
11586 elfcore_write_s390_vxrs_low (bfd *abfd,
11587 char *buf,
11588 int *bufsiz,
11589 const void *s390_vxrs_low,
11590 int size)
11591 {
11592 char *note_name = "LINUX";
11593 return elfcore_write_note (abfd, buf, bufsiz,
11594 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11595 }
11596
11597 char *
11598 elfcore_write_s390_vxrs_high (bfd *abfd,
11599 char *buf,
11600 int *bufsiz,
11601 const void *s390_vxrs_high,
11602 int size)
11603 {
11604 char *note_name = "LINUX";
11605 return elfcore_write_note (abfd, buf, bufsiz,
11606 note_name, NT_S390_VXRS_HIGH,
11607 s390_vxrs_high, size);
11608 }
11609
11610 char *
11611 elfcore_write_s390_gs_cb (bfd *abfd,
11612 char *buf,
11613 int *bufsiz,
11614 const void *s390_gs_cb,
11615 int size)
11616 {
11617 char *note_name = "LINUX";
11618 return elfcore_write_note (abfd, buf, bufsiz,
11619 note_name, NT_S390_GS_CB,
11620 s390_gs_cb, size);
11621 }
11622
11623 char *
11624 elfcore_write_s390_gs_bc (bfd *abfd,
11625 char *buf,
11626 int *bufsiz,
11627 const void *s390_gs_bc,
11628 int size)
11629 {
11630 char *note_name = "LINUX";
11631 return elfcore_write_note (abfd, buf, bufsiz,
11632 note_name, NT_S390_GS_BC,
11633 s390_gs_bc, size);
11634 }
11635
11636 char *
11637 elfcore_write_arm_vfp (bfd *abfd,
11638 char *buf,
11639 int *bufsiz,
11640 const void *arm_vfp,
11641 int size)
11642 {
11643 char *note_name = "LINUX";
11644 return elfcore_write_note (abfd, buf, bufsiz,
11645 note_name, NT_ARM_VFP, arm_vfp, size);
11646 }
11647
11648 char *
11649 elfcore_write_aarch_tls (bfd *abfd,
11650 char *buf,
11651 int *bufsiz,
11652 const void *aarch_tls,
11653 int size)
11654 {
11655 char *note_name = "LINUX";
11656 return elfcore_write_note (abfd, buf, bufsiz,
11657 note_name, NT_ARM_TLS, aarch_tls, size);
11658 }
11659
11660 char *
11661 elfcore_write_aarch_hw_break (bfd *abfd,
11662 char *buf,
11663 int *bufsiz,
11664 const void *aarch_hw_break,
11665 int size)
11666 {
11667 char *note_name = "LINUX";
11668 return elfcore_write_note (abfd, buf, bufsiz,
11669 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11670 }
11671
11672 char *
11673 elfcore_write_aarch_hw_watch (bfd *abfd,
11674 char *buf,
11675 int *bufsiz,
11676 const void *aarch_hw_watch,
11677 int size)
11678 {
11679 char *note_name = "LINUX";
11680 return elfcore_write_note (abfd, buf, bufsiz,
11681 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11682 }
11683
11684 char *
11685 elfcore_write_aarch_sve (bfd *abfd,
11686 char *buf,
11687 int *bufsiz,
11688 const void *aarch_sve,
11689 int size)
11690 {
11691 char *note_name = "LINUX";
11692 return elfcore_write_note (abfd, buf, bufsiz,
11693 note_name, NT_ARM_SVE, aarch_sve, size);
11694 }
11695
11696 char *
11697 elfcore_write_aarch_pauth (bfd *abfd,
11698 char *buf,
11699 int *bufsiz,
11700 const void *aarch_pauth,
11701 int size)
11702 {
11703 char *note_name = "LINUX";
11704 return elfcore_write_note (abfd, buf, bufsiz,
11705 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11706 }
11707
11708 char *
11709 elfcore_write_register_note (bfd *abfd,
11710 char *buf,
11711 int *bufsiz,
11712 const char *section,
11713 const void *data,
11714 int size)
11715 {
11716 if (strcmp (section, ".reg2") == 0)
11717 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11718 if (strcmp (section, ".reg-xfp") == 0)
11719 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11720 if (strcmp (section, ".reg-xstate") == 0)
11721 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11722 if (strcmp (section, ".reg-ppc-vmx") == 0)
11723 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11724 if (strcmp (section, ".reg-ppc-vsx") == 0)
11725 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11726 if (strcmp (section, ".reg-ppc-tar") == 0)
11727 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11728 if (strcmp (section, ".reg-ppc-ppr") == 0)
11729 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11730 if (strcmp (section, ".reg-ppc-dscr") == 0)
11731 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11732 if (strcmp (section, ".reg-ppc-ebb") == 0)
11733 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11734 if (strcmp (section, ".reg-ppc-pmu") == 0)
11735 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11736 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11737 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11738 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11739 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11740 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11741 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11742 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11743 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11744 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11745 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11746 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11747 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11748 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11749 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11750 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11751 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11752 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11753 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11754 if (strcmp (section, ".reg-s390-timer") == 0)
11755 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11756 if (strcmp (section, ".reg-s390-todcmp") == 0)
11757 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11758 if (strcmp (section, ".reg-s390-todpreg") == 0)
11759 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11760 if (strcmp (section, ".reg-s390-ctrs") == 0)
11761 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11762 if (strcmp (section, ".reg-s390-prefix") == 0)
11763 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11764 if (strcmp (section, ".reg-s390-last-break") == 0)
11765 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11766 if (strcmp (section, ".reg-s390-system-call") == 0)
11767 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11768 if (strcmp (section, ".reg-s390-tdb") == 0)
11769 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11770 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11771 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11772 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11773 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11774 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11775 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11776 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11777 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11778 if (strcmp (section, ".reg-arm-vfp") == 0)
11779 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11780 if (strcmp (section, ".reg-aarch-tls") == 0)
11781 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11782 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11783 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11784 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11785 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11786 if (strcmp (section, ".reg-aarch-sve") == 0)
11787 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11788 if (strcmp (section, ".reg-aarch-pauth") == 0)
11789 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11790 return NULL;
11791 }
11792
11793 static bfd_boolean
11794 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11795 size_t align)
11796 {
11797 char *p;
11798
11799 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11800 gABI specifies that PT_NOTE alignment should be aligned to 4
11801 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11802 align is less than 4, we use 4 byte alignment. */
11803 if (align < 4)
11804 align = 4;
11805 if (align != 4 && align != 8)
11806 return FALSE;
11807
11808 p = buf;
11809 while (p < buf + size)
11810 {
11811 Elf_External_Note *xnp = (Elf_External_Note *) p;
11812 Elf_Internal_Note in;
11813
11814 if (offsetof (Elf_External_Note, name) > buf - p + size)
11815 return FALSE;
11816
11817 in.type = H_GET_32 (abfd, xnp->type);
11818
11819 in.namesz = H_GET_32 (abfd, xnp->namesz);
11820 in.namedata = xnp->name;
11821 if (in.namesz > buf - in.namedata + size)
11822 return FALSE;
11823
11824 in.descsz = H_GET_32 (abfd, xnp->descsz);
11825 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11826 in.descpos = offset + (in.descdata - buf);
11827 if (in.descsz != 0
11828 && (in.descdata >= buf + size
11829 || in.descsz > buf - in.descdata + size))
11830 return FALSE;
11831
11832 switch (bfd_get_format (abfd))
11833 {
11834 default:
11835 return TRUE;
11836
11837 case bfd_core:
11838 {
11839 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11840 struct
11841 {
11842 const char * string;
11843 size_t len;
11844 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11845 }
11846 grokers[] =
11847 {
11848 GROKER_ELEMENT ("", elfcore_grok_note),
11849 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11850 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11851 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11852 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11853 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11854 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11855 };
11856 #undef GROKER_ELEMENT
11857 int i;
11858
11859 for (i = ARRAY_SIZE (grokers); i--;)
11860 {
11861 if (in.namesz >= grokers[i].len
11862 && strncmp (in.namedata, grokers[i].string,
11863 grokers[i].len) == 0)
11864 {
11865 if (! grokers[i].func (abfd, & in))
11866 return FALSE;
11867 break;
11868 }
11869 }
11870 break;
11871 }
11872
11873 case bfd_object:
11874 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11875 {
11876 if (! elfobj_grok_gnu_note (abfd, &in))
11877 return FALSE;
11878 }
11879 else if (in.namesz == sizeof "stapsdt"
11880 && strcmp (in.namedata, "stapsdt") == 0)
11881 {
11882 if (! elfobj_grok_stapsdt_note (abfd, &in))
11883 return FALSE;
11884 }
11885 break;
11886 }
11887
11888 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11889 }
11890
11891 return TRUE;
11892 }
11893
11894 bfd_boolean
11895 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11896 size_t align)
11897 {
11898 char *buf;
11899
11900 if (size == 0 || (size + 1) == 0)
11901 return TRUE;
11902
11903 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11904 return FALSE;
11905
11906 buf = (char *) bfd_malloc (size + 1);
11907 if (buf == NULL)
11908 return FALSE;
11909
11910 /* PR 17512: file: ec08f814
11911 0-termintate the buffer so that string searches will not overflow. */
11912 buf[size] = 0;
11913
11914 if (bfd_bread (buf, size, abfd) != size
11915 || !elf_parse_notes (abfd, buf, size, offset, align))
11916 {
11917 free (buf);
11918 return FALSE;
11919 }
11920
11921 free (buf);
11922 return TRUE;
11923 }
11924 \f
11925 /* Providing external access to the ELF program header table. */
11926
11927 /* Return an upper bound on the number of bytes required to store a
11928 copy of ABFD's program header table entries. Return -1 if an error
11929 occurs; bfd_get_error will return an appropriate code. */
11930
11931 long
11932 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11933 {
11934 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11935 {
11936 bfd_set_error (bfd_error_wrong_format);
11937 return -1;
11938 }
11939
11940 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11941 }
11942
11943 /* Copy ABFD's program header table entries to *PHDRS. The entries
11944 will be stored as an array of Elf_Internal_Phdr structures, as
11945 defined in include/elf/internal.h. To find out how large the
11946 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11947
11948 Return the number of program header table entries read, or -1 if an
11949 error occurs; bfd_get_error will return an appropriate code. */
11950
11951 int
11952 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11953 {
11954 int num_phdrs;
11955
11956 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11957 {
11958 bfd_set_error (bfd_error_wrong_format);
11959 return -1;
11960 }
11961
11962 num_phdrs = elf_elfheader (abfd)->e_phnum;
11963 if (num_phdrs != 0)
11964 memcpy (phdrs, elf_tdata (abfd)->phdr,
11965 num_phdrs * sizeof (Elf_Internal_Phdr));
11966
11967 return num_phdrs;
11968 }
11969
11970 enum elf_reloc_type_class
11971 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11972 const asection *rel_sec ATTRIBUTE_UNUSED,
11973 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11974 {
11975 return reloc_class_normal;
11976 }
11977
11978 /* For RELA architectures, return the relocation value for a
11979 relocation against a local symbol. */
11980
11981 bfd_vma
11982 _bfd_elf_rela_local_sym (bfd *abfd,
11983 Elf_Internal_Sym *sym,
11984 asection **psec,
11985 Elf_Internal_Rela *rel)
11986 {
11987 asection *sec = *psec;
11988 bfd_vma relocation;
11989
11990 relocation = (sec->output_section->vma
11991 + sec->output_offset
11992 + sym->st_value);
11993 if ((sec->flags & SEC_MERGE)
11994 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11995 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11996 {
11997 rel->r_addend =
11998 _bfd_merged_section_offset (abfd, psec,
11999 elf_section_data (sec)->sec_info,
12000 sym->st_value + rel->r_addend);
12001 if (sec != *psec)
12002 {
12003 /* If we have changed the section, and our original section is
12004 marked with SEC_EXCLUDE, it means that the original
12005 SEC_MERGE section has been completely subsumed in some
12006 other SEC_MERGE section. In this case, we need to leave
12007 some info around for --emit-relocs. */
12008 if ((sec->flags & SEC_EXCLUDE) != 0)
12009 sec->kept_section = *psec;
12010 sec = *psec;
12011 }
12012 rel->r_addend -= relocation;
12013 rel->r_addend += sec->output_section->vma + sec->output_offset;
12014 }
12015 return relocation;
12016 }
12017
12018 bfd_vma
12019 _bfd_elf_rel_local_sym (bfd *abfd,
12020 Elf_Internal_Sym *sym,
12021 asection **psec,
12022 bfd_vma addend)
12023 {
12024 asection *sec = *psec;
12025
12026 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12027 return sym->st_value + addend;
12028
12029 return _bfd_merged_section_offset (abfd, psec,
12030 elf_section_data (sec)->sec_info,
12031 sym->st_value + addend);
12032 }
12033
12034 /* Adjust an address within a section. Given OFFSET within SEC, return
12035 the new offset within the section, based upon changes made to the
12036 section. Returns -1 if the offset is now invalid.
12037 The offset (in abnd out) is in target sized bytes, however big a
12038 byte may be. */
12039
12040 bfd_vma
12041 _bfd_elf_section_offset (bfd *abfd,
12042 struct bfd_link_info *info,
12043 asection *sec,
12044 bfd_vma offset)
12045 {
12046 switch (sec->sec_info_type)
12047 {
12048 case SEC_INFO_TYPE_STABS:
12049 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12050 offset);
12051 case SEC_INFO_TYPE_EH_FRAME:
12052 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12053
12054 default:
12055 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12056 {
12057 /* Reverse the offset. */
12058 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12059 bfd_size_type address_size = bed->s->arch_size / 8;
12060
12061 /* address_size and sec->size are in octets. Convert
12062 to bytes before subtracting the original offset. */
12063 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
12064 }
12065 return offset;
12066 }
12067 }
12068 \f
12069 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12070 reconstruct an ELF file by reading the segments out of remote memory
12071 based on the ELF file header at EHDR_VMA and the ELF program headers it
12072 points to. If not null, *LOADBASEP is filled in with the difference
12073 between the VMAs from which the segments were read, and the VMAs the
12074 file headers (and hence BFD's idea of each section's VMA) put them at.
12075
12076 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12077 remote memory at target address VMA into the local buffer at MYADDR; it
12078 should return zero on success or an `errno' code on failure. TEMPL must
12079 be a BFD for an ELF target with the word size and byte order found in
12080 the remote memory. */
12081
12082 bfd *
12083 bfd_elf_bfd_from_remote_memory
12084 (bfd *templ,
12085 bfd_vma ehdr_vma,
12086 bfd_size_type size,
12087 bfd_vma *loadbasep,
12088 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12089 {
12090 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12091 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12092 }
12093 \f
12094 long
12095 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12096 long symcount ATTRIBUTE_UNUSED,
12097 asymbol **syms ATTRIBUTE_UNUSED,
12098 long dynsymcount,
12099 asymbol **dynsyms,
12100 asymbol **ret)
12101 {
12102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12103 asection *relplt;
12104 asymbol *s;
12105 const char *relplt_name;
12106 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12107 arelent *p;
12108 long count, i, n;
12109 size_t size;
12110 Elf_Internal_Shdr *hdr;
12111 char *names;
12112 asection *plt;
12113
12114 *ret = NULL;
12115
12116 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12117 return 0;
12118
12119 if (dynsymcount <= 0)
12120 return 0;
12121
12122 if (!bed->plt_sym_val)
12123 return 0;
12124
12125 relplt_name = bed->relplt_name;
12126 if (relplt_name == NULL)
12127 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12128 relplt = bfd_get_section_by_name (abfd, relplt_name);
12129 if (relplt == NULL)
12130 return 0;
12131
12132 hdr = &elf_section_data (relplt)->this_hdr;
12133 if (hdr->sh_link != elf_dynsymtab (abfd)
12134 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12135 return 0;
12136
12137 plt = bfd_get_section_by_name (abfd, ".plt");
12138 if (plt == NULL)
12139 return 0;
12140
12141 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12142 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12143 return -1;
12144
12145 count = relplt->size / hdr->sh_entsize;
12146 size = count * sizeof (asymbol);
12147 p = relplt->relocation;
12148 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12149 {
12150 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12151 if (p->addend != 0)
12152 {
12153 #ifdef BFD64
12154 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12155 #else
12156 size += sizeof ("+0x") - 1 + 8;
12157 #endif
12158 }
12159 }
12160
12161 s = *ret = (asymbol *) bfd_malloc (size);
12162 if (s == NULL)
12163 return -1;
12164
12165 names = (char *) (s + count);
12166 p = relplt->relocation;
12167 n = 0;
12168 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12169 {
12170 size_t len;
12171 bfd_vma addr;
12172
12173 addr = bed->plt_sym_val (i, plt, p);
12174 if (addr == (bfd_vma) -1)
12175 continue;
12176
12177 *s = **p->sym_ptr_ptr;
12178 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12179 we are defining a symbol, ensure one of them is set. */
12180 if ((s->flags & BSF_LOCAL) == 0)
12181 s->flags |= BSF_GLOBAL;
12182 s->flags |= BSF_SYNTHETIC;
12183 s->section = plt;
12184 s->value = addr - plt->vma;
12185 s->name = names;
12186 s->udata.p = NULL;
12187 len = strlen ((*p->sym_ptr_ptr)->name);
12188 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12189 names += len;
12190 if (p->addend != 0)
12191 {
12192 char buf[30], *a;
12193
12194 memcpy (names, "+0x", sizeof ("+0x") - 1);
12195 names += sizeof ("+0x") - 1;
12196 bfd_sprintf_vma (abfd, buf, p->addend);
12197 for (a = buf; *a == '0'; ++a)
12198 ;
12199 len = strlen (a);
12200 memcpy (names, a, len);
12201 names += len;
12202 }
12203 memcpy (names, "@plt", sizeof ("@plt"));
12204 names += sizeof ("@plt");
12205 ++s, ++n;
12206 }
12207
12208 return n;
12209 }
12210
12211 /* It is only used by x86-64 so far.
12212 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12213 but current usage would allow all of _bfd_std_section to be zero. */
12214 static const asymbol lcomm_sym
12215 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12216 asection _bfd_elf_large_com_section
12217 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12218 "LARGE_COMMON", 0, SEC_IS_COMMON);
12219
12220 void
12221 _bfd_elf_post_process_headers (bfd *abfd ATTRIBUTE_UNUSED,
12222 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12223 {
12224 }
12225
12226 bfd_boolean
12227 _bfd_elf_final_write_processing (bfd *abfd)
12228 {
12229 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12230
12231 i_ehdrp = elf_elfheader (abfd);
12232
12233 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12234 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12235
12236 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12237 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12238 STB_GNU_UNIQUE binding. */
12239 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12240 {
12241 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12242 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12243 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12244 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12245 {
12246 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12247 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12248 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12249 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12250 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12251 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12252 bfd_set_error (bfd_error_bad_value);
12253 return FALSE;
12254 }
12255 }
12256 return TRUE;
12257 }
12258
12259
12260 /* Return TRUE for ELF symbol types that represent functions.
12261 This is the default version of this function, which is sufficient for
12262 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12263
12264 bfd_boolean
12265 _bfd_elf_is_function_type (unsigned int type)
12266 {
12267 return (type == STT_FUNC
12268 || type == STT_GNU_IFUNC);
12269 }
12270
12271 /* If the ELF symbol SYM might be a function in SEC, return the
12272 function size and set *CODE_OFF to the function's entry point,
12273 otherwise return zero. */
12274
12275 bfd_size_type
12276 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12277 bfd_vma *code_off)
12278 {
12279 bfd_size_type size;
12280
12281 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12282 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12283 || sym->section != sec)
12284 return 0;
12285
12286 *code_off = sym->value;
12287 size = 0;
12288 if (!(sym->flags & BSF_SYNTHETIC))
12289 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12290 if (size == 0)
12291 size = 1;
12292 return size;
12293 }
This page took 0.372252 seconds and 4 git commands to generate.