Issue a linker error if TLS sections are not adjacent
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 return FALSE;
614 }
615
616 memset (shdr->contents, 0, amt);
617
618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
620 != shdr->sh_size))
621 return FALSE;
622
623 /* Translate raw contents, a flag word followed by an
624 array of elf section indices all in target byte order,
625 to the flag word followed by an array of elf section
626 pointers. */
627 src = shdr->contents + shdr->sh_size;
628 dest = (Elf_Internal_Group *) (shdr->contents + amt);
629 while (1)
630 {
631 unsigned int idx;
632
633 src -= 4;
634 --dest;
635 idx = H_GET_32 (abfd, src);
636 if (src == shdr->contents)
637 {
638 dest->flags = idx;
639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
640 shdr->bfd_section->flags
641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
642 break;
643 }
644 if (idx >= shnum)
645 {
646 ((*_bfd_error_handler)
647 (_("%B: invalid SHT_GROUP entry"), abfd));
648 idx = 0;
649 }
650 dest->shdr = elf_elfsections (abfd)[idx];
651 }
652 }
653 }
654 }
655 }
656
657 if (num_group != (unsigned) -1)
658 {
659 unsigned int i;
660
661 for (i = 0; i < num_group; i++)
662 {
663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
665 unsigned int n_elt = shdr->sh_size / 4;
666
667 /* Look through this group's sections to see if current
668 section is a member. */
669 while (--n_elt != 0)
670 if ((++idx)->shdr == hdr)
671 {
672 asection *s = NULL;
673
674 /* We are a member of this group. Go looking through
675 other members to see if any others are linked via
676 next_in_group. */
677 idx = (Elf_Internal_Group *) shdr->contents;
678 n_elt = shdr->sh_size / 4;
679 while (--n_elt != 0)
680 if ((s = (++idx)->shdr->bfd_section) != NULL
681 && elf_next_in_group (s) != NULL)
682 break;
683 if (n_elt != 0)
684 {
685 /* Snarf the group name from other member, and
686 insert current section in circular list. */
687 elf_group_name (newsect) = elf_group_name (s);
688 elf_next_in_group (newsect) = elf_next_in_group (s);
689 elf_next_in_group (s) = newsect;
690 }
691 else
692 {
693 const char *gname;
694
695 gname = group_signature (abfd, shdr);
696 if (gname == NULL)
697 return FALSE;
698 elf_group_name (newsect) = gname;
699
700 /* Start a circular list with one element. */
701 elf_next_in_group (newsect) = newsect;
702 }
703
704 /* If the group section has been created, point to the
705 new member. */
706 if (shdr->bfd_section != NULL)
707 elf_next_in_group (shdr->bfd_section) = newsect;
708
709 i = num_group - 1;
710 break;
711 }
712 }
713 }
714
715 if (elf_group_name (newsect) == NULL)
716 {
717 (*_bfd_error_handler) (_("%B: no group info for section %A"),
718 abfd, newsect);
719 }
720 return TRUE;
721 }
722
723 bfd_boolean
724 _bfd_elf_setup_sections (bfd *abfd)
725 {
726 unsigned int i;
727 unsigned int num_group = elf_tdata (abfd)->num_group;
728 bfd_boolean result = TRUE;
729 asection *s;
730
731 /* Process SHF_LINK_ORDER. */
732 for (s = abfd->sections; s != NULL; s = s->next)
733 {
734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
736 {
737 unsigned int elfsec = this_hdr->sh_link;
738 /* FIXME: The old Intel compiler and old strip/objcopy may
739 not set the sh_link or sh_info fields. Hence we could
740 get the situation where elfsec is 0. */
741 if (elfsec == 0)
742 {
743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
744 if (bed->link_order_error_handler)
745 bed->link_order_error_handler
746 (_("%B: warning: sh_link not set for section `%A'"),
747 abfd, s);
748 }
749 else
750 {
751 asection *linksec = NULL;
752
753 if (elfsec < elf_numsections (abfd))
754 {
755 this_hdr = elf_elfsections (abfd)[elfsec];
756 linksec = this_hdr->bfd_section;
757 }
758
759 /* PR 1991, 2008:
760 Some strip/objcopy may leave an incorrect value in
761 sh_link. We don't want to proceed. */
762 if (linksec == NULL)
763 {
764 (*_bfd_error_handler)
765 (_("%B: sh_link [%d] in section `%A' is incorrect"),
766 s->owner, s, elfsec);
767 result = FALSE;
768 }
769
770 elf_linked_to_section (s) = linksec;
771 }
772 }
773 }
774
775 /* Process section groups. */
776 if (num_group == (unsigned) -1)
777 return result;
778
779 for (i = 0; i < num_group; i++)
780 {
781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
783 unsigned int n_elt = shdr->sh_size / 4;
784
785 while (--n_elt != 0)
786 if ((++idx)->shdr->bfd_section)
787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
788 else if (idx->shdr->sh_type == SHT_RELA
789 || idx->shdr->sh_type == SHT_REL)
790 /* We won't include relocation sections in section groups in
791 output object files. We adjust the group section size here
792 so that relocatable link will work correctly when
793 relocation sections are in section group in input object
794 files. */
795 shdr->bfd_section->size -= 4;
796 else
797 {
798 /* There are some unknown sections in the group. */
799 (*_bfd_error_handler)
800 (_("%B: unknown [%d] section `%s' in group [%s]"),
801 abfd,
802 (unsigned int) idx->shdr->sh_type,
803 bfd_elf_string_from_elf_section (abfd,
804 (elf_elfheader (abfd)
805 ->e_shstrndx),
806 idx->shdr->sh_name),
807 shdr->bfd_section->name);
808 result = FALSE;
809 }
810 }
811 return result;
812 }
813
814 bfd_boolean
815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
816 {
817 return elf_next_in_group (sec) != NULL;
818 }
819
820 /* Make a BFD section from an ELF section. We store a pointer to the
821 BFD section in the bfd_section field of the header. */
822
823 bfd_boolean
824 _bfd_elf_make_section_from_shdr (bfd *abfd,
825 Elf_Internal_Shdr *hdr,
826 const char *name,
827 int shindex)
828 {
829 asection *newsect;
830 flagword flags;
831 const struct elf_backend_data *bed;
832
833 if (hdr->bfd_section != NULL)
834 return TRUE;
835
836 newsect = bfd_make_section_anyway (abfd, name);
837 if (newsect == NULL)
838 return FALSE;
839
840 hdr->bfd_section = newsect;
841 elf_section_data (newsect)->this_hdr = *hdr;
842 elf_section_data (newsect)->this_idx = shindex;
843
844 /* Always use the real type/flags. */
845 elf_section_type (newsect) = hdr->sh_type;
846 elf_section_flags (newsect) = hdr->sh_flags;
847
848 newsect->filepos = hdr->sh_offset;
849
850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
852 || ! bfd_set_section_alignment (abfd, newsect,
853 bfd_log2 (hdr->sh_addralign)))
854 return FALSE;
855
856 flags = SEC_NO_FLAGS;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_HAS_CONTENTS;
859 if (hdr->sh_type == SHT_GROUP)
860 flags |= SEC_GROUP | SEC_EXCLUDE;
861 if ((hdr->sh_flags & SHF_ALLOC) != 0)
862 {
863 flags |= SEC_ALLOC;
864 if (hdr->sh_type != SHT_NOBITS)
865 flags |= SEC_LOAD;
866 }
867 if ((hdr->sh_flags & SHF_WRITE) == 0)
868 flags |= SEC_READONLY;
869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
870 flags |= SEC_CODE;
871 else if ((flags & SEC_LOAD) != 0)
872 flags |= SEC_DATA;
873 if ((hdr->sh_flags & SHF_MERGE) != 0)
874 {
875 flags |= SEC_MERGE;
876 newsect->entsize = hdr->sh_entsize;
877 if ((hdr->sh_flags & SHF_STRINGS) != 0)
878 flags |= SEC_STRINGS;
879 }
880 if (hdr->sh_flags & SHF_GROUP)
881 if (!setup_group (abfd, hdr, newsect))
882 return FALSE;
883 if ((hdr->sh_flags & SHF_TLS) != 0)
884 flags |= SEC_THREAD_LOCAL;
885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
886 flags |= SEC_EXCLUDE;
887
888 if ((flags & SEC_ALLOC) == 0)
889 {
890 /* The debugging sections appear to be recognized only by name,
891 not any sort of flag. Their SEC_ALLOC bits are cleared. */
892 if (name [0] == '.')
893 {
894 const char *p;
895 int n;
896 if (name[1] == 'd')
897 p = ".debug", n = 6;
898 else if (name[1] == 'g' && name[2] == 'n')
899 p = ".gnu.linkonce.wi.", n = 17;
900 else if (name[1] == 'g' && name[2] == 'd')
901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
902 else if (name[1] == 'l')
903 p = ".line", n = 5;
904 else if (name[1] == 's')
905 p = ".stab", n = 5;
906 else if (name[1] == 'z')
907 p = ".zdebug", n = 7;
908 else
909 p = NULL, n = 0;
910 if (p != NULL && strncmp (name, p, n) == 0)
911 flags |= SEC_DEBUGGING;
912 }
913 }
914
915 /* As a GNU extension, if the name begins with .gnu.linkonce, we
916 only link a single copy of the section. This is used to support
917 g++. g++ will emit each template expansion in its own section.
918 The symbols will be defined as weak, so that multiple definitions
919 are permitted. The GNU linker extension is to actually discard
920 all but one of the sections. */
921 if (CONST_STRNEQ (name, ".gnu.linkonce")
922 && elf_next_in_group (newsect) == NULL)
923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
924
925 bed = get_elf_backend_data (abfd);
926 if (bed->elf_backend_section_flags)
927 if (! bed->elf_backend_section_flags (&flags, hdr))
928 return FALSE;
929
930 if (! bfd_set_section_flags (abfd, newsect, flags))
931 return FALSE;
932
933 /* We do not parse the PT_NOTE segments as we are interested even in the
934 separate debug info files which may have the segments offsets corrupted.
935 PT_NOTEs from the core files are currently not parsed using BFD. */
936 if (hdr->sh_type == SHT_NOTE)
937 {
938 bfd_byte *contents;
939
940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
941 return FALSE;
942
943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
944 free (contents);
945 }
946
947 if ((flags & SEC_ALLOC) != 0)
948 {
949 Elf_Internal_Phdr *phdr;
950 unsigned int i, nload;
951
952 /* Some ELF linkers produce binaries with all the program header
953 p_paddr fields zero. If we have such a binary with more than
954 one PT_LOAD header, then leave the section lma equal to vma
955 so that we don't create sections with overlapping lma. */
956 phdr = elf_tdata (abfd)->phdr;
957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 if (phdr->p_paddr != 0)
959 break;
960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
961 ++nload;
962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
963 return TRUE;
964
965 phdr = elf_tdata (abfd)->phdr;
966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
967 {
968 if (((phdr->p_type == PT_LOAD
969 && (hdr->sh_flags & SHF_TLS) == 0)
970 || phdr->p_type == PT_TLS)
971 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
972 {
973 if ((flags & SEC_LOAD) == 0)
974 newsect->lma = (phdr->p_paddr
975 + hdr->sh_addr - phdr->p_vaddr);
976 else
977 /* We used to use the same adjustment for SEC_LOAD
978 sections, but that doesn't work if the segment
979 is packed with code from multiple VMAs.
980 Instead we calculate the section LMA based on
981 the segment LMA. It is assumed that the
982 segment will contain sections with contiguous
983 LMAs, even if the VMAs are not. */
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_offset - phdr->p_offset);
986
987 /* With contiguous segments, we can't tell from file
988 offsets whether a section with zero size should
989 be placed at the end of one segment or the
990 beginning of the next. Decide based on vaddr. */
991 if (hdr->sh_addr >= phdr->p_vaddr
992 && (hdr->sh_addr + hdr->sh_size
993 <= phdr->p_vaddr + phdr->p_memsz))
994 break;
995 }
996 }
997 }
998
999 /* Compress/decompress DWARF debug sections with names: .debug_* and
1000 .zdebug_*, after the section flags is set. */
1001 if ((flags & SEC_DEBUGGING)
1002 && ((name[1] == 'd' && name[6] == '_')
1003 || (name[1] == 'z' && name[7] == '_')))
1004 {
1005 enum { nothing, compress, decompress } action = nothing;
1006 char *new_name;
1007
1008 if (bfd_is_section_compressed (abfd, newsect))
1009 {
1010 /* Compressed section. Check if we should decompress. */
1011 if ((abfd->flags & BFD_DECOMPRESS))
1012 action = decompress;
1013 }
1014 else
1015 {
1016 /* Normal section. Check if we should compress. */
1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1018 action = compress;
1019 }
1020
1021 new_name = NULL;
1022 switch (action)
1023 {
1024 case nothing:
1025 break;
1026 case compress:
1027 if (!bfd_init_section_compress_status (abfd, newsect))
1028 {
1029 (*_bfd_error_handler)
1030 (_("%B: unable to initialize compress status for section %s"),
1031 abfd, name);
1032 return FALSE;
1033 }
1034 if (name[1] != 'z')
1035 {
1036 unsigned int len = strlen (name);
1037
1038 new_name = bfd_alloc (abfd, len + 2);
1039 if (new_name == NULL)
1040 return FALSE;
1041 new_name[0] = '.';
1042 new_name[1] = 'z';
1043 memcpy (new_name + 2, name + 1, len);
1044 }
1045 break;
1046 case decompress:
1047 if (!bfd_init_section_decompress_status (abfd, newsect))
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: unable to initialize decompress status for section %s"),
1051 abfd, name);
1052 return FALSE;
1053 }
1054 if (name[1] == 'z')
1055 {
1056 unsigned int len = strlen (name);
1057
1058 new_name = bfd_alloc (abfd, len);
1059 if (new_name == NULL)
1060 return FALSE;
1061 new_name[0] = '.';
1062 memcpy (new_name + 1, name + 2, len - 1);
1063 }
1064 break;
1065 }
1066 if (new_name != NULL)
1067 bfd_rename_section (abfd, newsect, new_name);
1068 }
1069
1070 return TRUE;
1071 }
1072
1073 const char *const bfd_elf_section_type_names[] = {
1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1077 };
1078
1079 /* ELF relocs are against symbols. If we are producing relocatable
1080 output, and the reloc is against an external symbol, and nothing
1081 has given us any additional addend, the resulting reloc will also
1082 be against the same symbol. In such a case, we don't want to
1083 change anything about the way the reloc is handled, since it will
1084 all be done at final link time. Rather than put special case code
1085 into bfd_perform_relocation, all the reloc types use this howto
1086 function. It just short circuits the reloc if producing
1087 relocatable output against an external symbol. */
1088
1089 bfd_reloc_status_type
1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1091 arelent *reloc_entry,
1092 asymbol *symbol,
1093 void *data ATTRIBUTE_UNUSED,
1094 asection *input_section,
1095 bfd *output_bfd,
1096 char **error_message ATTRIBUTE_UNUSED)
1097 {
1098 if (output_bfd != NULL
1099 && (symbol->flags & BSF_SECTION_SYM) == 0
1100 && (! reloc_entry->howto->partial_inplace
1101 || reloc_entry->addend == 0))
1102 {
1103 reloc_entry->address += input_section->output_offset;
1104 return bfd_reloc_ok;
1105 }
1106
1107 return bfd_reloc_continue;
1108 }
1109 \f
1110 /* Copy the program header and other data from one object module to
1111 another. */
1112
1113 bfd_boolean
1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1115 {
1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1118 return TRUE;
1119
1120 if (!elf_flags_init (obfd))
1121 {
1122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1123 elf_flags_init (obfd) = TRUE;
1124 }
1125
1126 elf_gp (obfd) = elf_gp (ibfd);
1127
1128 /* Also copy the EI_OSABI field. */
1129 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1130 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1131
1132 /* Copy object attributes. */
1133 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1134 return TRUE;
1135 }
1136
1137 static const char *
1138 get_segment_type (unsigned int p_type)
1139 {
1140 const char *pt;
1141 switch (p_type)
1142 {
1143 case PT_NULL: pt = "NULL"; break;
1144 case PT_LOAD: pt = "LOAD"; break;
1145 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1146 case PT_INTERP: pt = "INTERP"; break;
1147 case PT_NOTE: pt = "NOTE"; break;
1148 case PT_SHLIB: pt = "SHLIB"; break;
1149 case PT_PHDR: pt = "PHDR"; break;
1150 case PT_TLS: pt = "TLS"; break;
1151 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1152 case PT_GNU_STACK: pt = "STACK"; break;
1153 case PT_GNU_RELRO: pt = "RELRO"; break;
1154 default: pt = NULL; break;
1155 }
1156 return pt;
1157 }
1158
1159 /* Print out the program headers. */
1160
1161 bfd_boolean
1162 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1163 {
1164 FILE *f = (FILE *) farg;
1165 Elf_Internal_Phdr *p;
1166 asection *s;
1167 bfd_byte *dynbuf = NULL;
1168
1169 p = elf_tdata (abfd)->phdr;
1170 if (p != NULL)
1171 {
1172 unsigned int i, c;
1173
1174 fprintf (f, _("\nProgram Header:\n"));
1175 c = elf_elfheader (abfd)->e_phnum;
1176 for (i = 0; i < c; i++, p++)
1177 {
1178 const char *pt = get_segment_type (p->p_type);
1179 char buf[20];
1180
1181 if (pt == NULL)
1182 {
1183 sprintf (buf, "0x%lx", p->p_type);
1184 pt = buf;
1185 }
1186 fprintf (f, "%8s off 0x", pt);
1187 bfd_fprintf_vma (abfd, f, p->p_offset);
1188 fprintf (f, " vaddr 0x");
1189 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1190 fprintf (f, " paddr 0x");
1191 bfd_fprintf_vma (abfd, f, p->p_paddr);
1192 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1193 fprintf (f, " filesz 0x");
1194 bfd_fprintf_vma (abfd, f, p->p_filesz);
1195 fprintf (f, " memsz 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_memsz);
1197 fprintf (f, " flags %c%c%c",
1198 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1199 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1200 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1201 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1202 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1203 fprintf (f, "\n");
1204 }
1205 }
1206
1207 s = bfd_get_section_by_name (abfd, ".dynamic");
1208 if (s != NULL)
1209 {
1210 unsigned int elfsec;
1211 unsigned long shlink;
1212 bfd_byte *extdyn, *extdynend;
1213 size_t extdynsize;
1214 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1215
1216 fprintf (f, _("\nDynamic Section:\n"));
1217
1218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1219 goto error_return;
1220
1221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1222 if (elfsec == SHN_BAD)
1223 goto error_return;
1224 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1225
1226 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1227 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1228
1229 extdyn = dynbuf;
1230 extdynend = extdyn + s->size;
1231 for (; extdyn < extdynend; extdyn += extdynsize)
1232 {
1233 Elf_Internal_Dyn dyn;
1234 const char *name = "";
1235 char ab[20];
1236 bfd_boolean stringp;
1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1238
1239 (*swap_dyn_in) (abfd, extdyn, &dyn);
1240
1241 if (dyn.d_tag == DT_NULL)
1242 break;
1243
1244 stringp = FALSE;
1245 switch (dyn.d_tag)
1246 {
1247 default:
1248 if (bed->elf_backend_get_target_dtag)
1249 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1250
1251 if (!strcmp (name, ""))
1252 {
1253 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1254 name = ab;
1255 }
1256 break;
1257
1258 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1259 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1260 case DT_PLTGOT: name = "PLTGOT"; break;
1261 case DT_HASH: name = "HASH"; break;
1262 case DT_STRTAB: name = "STRTAB"; break;
1263 case DT_SYMTAB: name = "SYMTAB"; break;
1264 case DT_RELA: name = "RELA"; break;
1265 case DT_RELASZ: name = "RELASZ"; break;
1266 case DT_RELAENT: name = "RELAENT"; break;
1267 case DT_STRSZ: name = "STRSZ"; break;
1268 case DT_SYMENT: name = "SYMENT"; break;
1269 case DT_INIT: name = "INIT"; break;
1270 case DT_FINI: name = "FINI"; break;
1271 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1272 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1273 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1274 case DT_REL: name = "REL"; break;
1275 case DT_RELSZ: name = "RELSZ"; break;
1276 case DT_RELENT: name = "RELENT"; break;
1277 case DT_PLTREL: name = "PLTREL"; break;
1278 case DT_DEBUG: name = "DEBUG"; break;
1279 case DT_TEXTREL: name = "TEXTREL"; break;
1280 case DT_JMPREL: name = "JMPREL"; break;
1281 case DT_BIND_NOW: name = "BIND_NOW"; break;
1282 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1283 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1284 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1285 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1286 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1287 case DT_FLAGS: name = "FLAGS"; break;
1288 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1289 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1290 case DT_CHECKSUM: name = "CHECKSUM"; break;
1291 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1292 case DT_MOVEENT: name = "MOVEENT"; break;
1293 case DT_MOVESZ: name = "MOVESZ"; break;
1294 case DT_FEATURE: name = "FEATURE"; break;
1295 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1296 case DT_SYMINSZ: name = "SYMINSZ"; break;
1297 case DT_SYMINENT: name = "SYMINENT"; break;
1298 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1299 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1300 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1301 case DT_PLTPAD: name = "PLTPAD"; break;
1302 case DT_MOVETAB: name = "MOVETAB"; break;
1303 case DT_SYMINFO: name = "SYMINFO"; break;
1304 case DT_RELACOUNT: name = "RELACOUNT"; break;
1305 case DT_RELCOUNT: name = "RELCOUNT"; break;
1306 case DT_FLAGS_1: name = "FLAGS_1"; break;
1307 case DT_VERSYM: name = "VERSYM"; break;
1308 case DT_VERDEF: name = "VERDEF"; break;
1309 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1310 case DT_VERNEED: name = "VERNEED"; break;
1311 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1312 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1313 case DT_USED: name = "USED"; break;
1314 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1315 case DT_GNU_HASH: name = "GNU_HASH"; break;
1316 }
1317
1318 fprintf (f, " %-20s ", name);
1319 if (! stringp)
1320 {
1321 fprintf (f, "0x");
1322 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1323 }
1324 else
1325 {
1326 const char *string;
1327 unsigned int tagv = dyn.d_un.d_val;
1328
1329 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1330 if (string == NULL)
1331 goto error_return;
1332 fprintf (f, "%s", string);
1333 }
1334 fprintf (f, "\n");
1335 }
1336
1337 free (dynbuf);
1338 dynbuf = NULL;
1339 }
1340
1341 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1342 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1343 {
1344 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1345 return FALSE;
1346 }
1347
1348 if (elf_dynverdef (abfd) != 0)
1349 {
1350 Elf_Internal_Verdef *t;
1351
1352 fprintf (f, _("\nVersion definitions:\n"));
1353 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1354 {
1355 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1356 t->vd_flags, t->vd_hash,
1357 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1358 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1359 {
1360 Elf_Internal_Verdaux *a;
1361
1362 fprintf (f, "\t");
1363 for (a = t->vd_auxptr->vda_nextptr;
1364 a != NULL;
1365 a = a->vda_nextptr)
1366 fprintf (f, "%s ",
1367 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1368 fprintf (f, "\n");
1369 }
1370 }
1371 }
1372
1373 if (elf_dynverref (abfd) != 0)
1374 {
1375 Elf_Internal_Verneed *t;
1376
1377 fprintf (f, _("\nVersion References:\n"));
1378 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1379 {
1380 Elf_Internal_Vernaux *a;
1381
1382 fprintf (f, _(" required from %s:\n"),
1383 t->vn_filename ? t->vn_filename : "<corrupt>");
1384 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1385 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1386 a->vna_flags, a->vna_other,
1387 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1388 }
1389 }
1390
1391 return TRUE;
1392
1393 error_return:
1394 if (dynbuf != NULL)
1395 free (dynbuf);
1396 return FALSE;
1397 }
1398
1399 /* Display ELF-specific fields of a symbol. */
1400
1401 void
1402 bfd_elf_print_symbol (bfd *abfd,
1403 void *filep,
1404 asymbol *symbol,
1405 bfd_print_symbol_type how)
1406 {
1407 FILE *file = (FILE *) filep;
1408 switch (how)
1409 {
1410 case bfd_print_symbol_name:
1411 fprintf (file, "%s", symbol->name);
1412 break;
1413 case bfd_print_symbol_more:
1414 fprintf (file, "elf ");
1415 bfd_fprintf_vma (abfd, file, symbol->value);
1416 fprintf (file, " %lx", (unsigned long) symbol->flags);
1417 break;
1418 case bfd_print_symbol_all:
1419 {
1420 const char *section_name;
1421 const char *name = NULL;
1422 const struct elf_backend_data *bed;
1423 unsigned char st_other;
1424 bfd_vma val;
1425
1426 section_name = symbol->section ? symbol->section->name : "(*none*)";
1427
1428 bed = get_elf_backend_data (abfd);
1429 if (bed->elf_backend_print_symbol_all)
1430 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1431
1432 if (name == NULL)
1433 {
1434 name = symbol->name;
1435 bfd_print_symbol_vandf (abfd, file, symbol);
1436 }
1437
1438 fprintf (file, " %s\t", section_name);
1439 /* Print the "other" value for a symbol. For common symbols,
1440 we've already printed the size; now print the alignment.
1441 For other symbols, we have no specified alignment, and
1442 we've printed the address; now print the size. */
1443 if (symbol->section && bfd_is_com_section (symbol->section))
1444 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1445 else
1446 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1447 bfd_fprintf_vma (abfd, file, val);
1448
1449 /* If we have version information, print it. */
1450 if (elf_dynversym (abfd) != 0
1451 && (elf_dynverdef (abfd) != 0
1452 || elf_dynverref (abfd) != 0))
1453 {
1454 unsigned int vernum;
1455 const char *version_string;
1456
1457 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1458
1459 if (vernum == 0)
1460 version_string = "";
1461 else if (vernum == 1)
1462 version_string = "Base";
1463 else if (vernum <= elf_tdata (abfd)->cverdefs)
1464 version_string =
1465 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1466 else
1467 {
1468 Elf_Internal_Verneed *t;
1469
1470 version_string = "";
1471 for (t = elf_tdata (abfd)->verref;
1472 t != NULL;
1473 t = t->vn_nextref)
1474 {
1475 Elf_Internal_Vernaux *a;
1476
1477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1478 {
1479 if (a->vna_other == vernum)
1480 {
1481 version_string = a->vna_nodename;
1482 break;
1483 }
1484 }
1485 }
1486 }
1487
1488 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1489 fprintf (file, " %-11s", version_string);
1490 else
1491 {
1492 int i;
1493
1494 fprintf (file, " (%s)", version_string);
1495 for (i = 10 - strlen (version_string); i > 0; --i)
1496 putc (' ', file);
1497 }
1498 }
1499
1500 /* If the st_other field is not zero, print it. */
1501 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1502
1503 switch (st_other)
1504 {
1505 case 0: break;
1506 case STV_INTERNAL: fprintf (file, " .internal"); break;
1507 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1508 case STV_PROTECTED: fprintf (file, " .protected"); break;
1509 default:
1510 /* Some other non-defined flags are also present, so print
1511 everything hex. */
1512 fprintf (file, " 0x%02x", (unsigned int) st_other);
1513 }
1514
1515 fprintf (file, " %s", name);
1516 }
1517 break;
1518 }
1519 }
1520
1521 /* Allocate an ELF string table--force the first byte to be zero. */
1522
1523 struct bfd_strtab_hash *
1524 _bfd_elf_stringtab_init (void)
1525 {
1526 struct bfd_strtab_hash *ret;
1527
1528 ret = _bfd_stringtab_init ();
1529 if (ret != NULL)
1530 {
1531 bfd_size_type loc;
1532
1533 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1534 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1535 if (loc == (bfd_size_type) -1)
1536 {
1537 _bfd_stringtab_free (ret);
1538 ret = NULL;
1539 }
1540 }
1541 return ret;
1542 }
1543 \f
1544 /* ELF .o/exec file reading */
1545
1546 /* Create a new bfd section from an ELF section header. */
1547
1548 bfd_boolean
1549 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1550 {
1551 Elf_Internal_Shdr *hdr;
1552 Elf_Internal_Ehdr *ehdr;
1553 const struct elf_backend_data *bed;
1554 const char *name;
1555
1556 if (shindex >= elf_numsections (abfd))
1557 return FALSE;
1558
1559 hdr = elf_elfsections (abfd)[shindex];
1560 ehdr = elf_elfheader (abfd);
1561 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1562 hdr->sh_name);
1563 if (name == NULL)
1564 return FALSE;
1565
1566 bed = get_elf_backend_data (abfd);
1567 switch (hdr->sh_type)
1568 {
1569 case SHT_NULL:
1570 /* Inactive section. Throw it away. */
1571 return TRUE;
1572
1573 case SHT_PROGBITS: /* Normal section with contents. */
1574 case SHT_NOBITS: /* .bss section. */
1575 case SHT_HASH: /* .hash section. */
1576 case SHT_NOTE: /* .note section. */
1577 case SHT_INIT_ARRAY: /* .init_array section. */
1578 case SHT_FINI_ARRAY: /* .fini_array section. */
1579 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1580 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1581 case SHT_GNU_HASH: /* .gnu.hash section. */
1582 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1583
1584 case SHT_DYNAMIC: /* Dynamic linking information. */
1585 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1586 return FALSE;
1587 if (hdr->sh_link > elf_numsections (abfd))
1588 {
1589 /* PR 10478: Accept Solaris binaries with a sh_link
1590 field set to SHN_BEFORE or SHN_AFTER. */
1591 switch (bfd_get_arch (abfd))
1592 {
1593 case bfd_arch_i386:
1594 case bfd_arch_sparc:
1595 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1596 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1597 break;
1598 /* Otherwise fall through. */
1599 default:
1600 return FALSE;
1601 }
1602 }
1603 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1604 return FALSE;
1605 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1606 {
1607 Elf_Internal_Shdr *dynsymhdr;
1608
1609 /* The shared libraries distributed with hpux11 have a bogus
1610 sh_link field for the ".dynamic" section. Find the
1611 string table for the ".dynsym" section instead. */
1612 if (elf_dynsymtab (abfd) != 0)
1613 {
1614 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1615 hdr->sh_link = dynsymhdr->sh_link;
1616 }
1617 else
1618 {
1619 unsigned int i, num_sec;
1620
1621 num_sec = elf_numsections (abfd);
1622 for (i = 1; i < num_sec; i++)
1623 {
1624 dynsymhdr = elf_elfsections (abfd)[i];
1625 if (dynsymhdr->sh_type == SHT_DYNSYM)
1626 {
1627 hdr->sh_link = dynsymhdr->sh_link;
1628 break;
1629 }
1630 }
1631 }
1632 }
1633 break;
1634
1635 case SHT_SYMTAB: /* A symbol table */
1636 if (elf_onesymtab (abfd) == shindex)
1637 return TRUE;
1638
1639 if (hdr->sh_entsize != bed->s->sizeof_sym)
1640 return FALSE;
1641 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1642 {
1643 if (hdr->sh_size != 0)
1644 return FALSE;
1645 /* Some assemblers erroneously set sh_info to one with a
1646 zero sh_size. ld sees this as a global symbol count
1647 of (unsigned) -1. Fix it here. */
1648 hdr->sh_info = 0;
1649 return TRUE;
1650 }
1651 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1652 elf_onesymtab (abfd) = shindex;
1653 elf_tdata (abfd)->symtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1655 abfd->flags |= HAS_SYMS;
1656
1657 /* Sometimes a shared object will map in the symbol table. If
1658 SHF_ALLOC is set, and this is a shared object, then we also
1659 treat this section as a BFD section. We can not base the
1660 decision purely on SHF_ALLOC, because that flag is sometimes
1661 set in a relocatable object file, which would confuse the
1662 linker. */
1663 if ((hdr->sh_flags & SHF_ALLOC) != 0
1664 && (abfd->flags & DYNAMIC) != 0
1665 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex))
1667 return FALSE;
1668
1669 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1670 can't read symbols without that section loaded as well. It
1671 is most likely specified by the next section header. */
1672 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = shindex + 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1681 && hdr2->sh_link == shindex)
1682 break;
1683 }
1684 if (i == num_sec)
1685 for (i = 1; i < shindex; i++)
1686 {
1687 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1688 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1689 && hdr2->sh_link == shindex)
1690 break;
1691 }
1692 if (i != shindex)
1693 return bfd_section_from_shdr (abfd, i);
1694 }
1695 return TRUE;
1696
1697 case SHT_DYNSYM: /* A dynamic symbol table */
1698 if (elf_dynsymtab (abfd) == shindex)
1699 return TRUE;
1700
1701 if (hdr->sh_entsize != bed->s->sizeof_sym)
1702 return FALSE;
1703 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1704 {
1705 if (hdr->sh_size != 0)
1706 return FALSE;
1707 /* Some linkers erroneously set sh_info to one with a
1708 zero sh_size. ld sees this as a global symbol count
1709 of (unsigned) -1. Fix it here. */
1710 hdr->sh_info = 0;
1711 return TRUE;
1712 }
1713 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1714 elf_dynsymtab (abfd) = shindex;
1715 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Besides being a symbol table, we also treat this as a regular
1720 section, so that objcopy can handle it. */
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1722
1723 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1724 if (elf_symtab_shndx (abfd) == shindex)
1725 return TRUE;
1726
1727 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1728 elf_symtab_shndx (abfd) = shindex;
1729 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1730 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1731 return TRUE;
1732
1733 case SHT_STRTAB: /* A string table */
1734 if (hdr->bfd_section != NULL)
1735 return TRUE;
1736 if (ehdr->e_shstrndx == shindex)
1737 {
1738 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1740 return TRUE;
1741 }
1742 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1743 {
1744 symtab_strtab:
1745 elf_tdata (abfd)->strtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1750 {
1751 dynsymtab_strtab:
1752 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1753 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1754 elf_elfsections (abfd)[shindex] = hdr;
1755 /* We also treat this as a regular section, so that objcopy
1756 can handle it. */
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* If the string table isn't one of the above, then treat it as a
1762 regular section. We need to scan all the headers to be sure,
1763 just in case this strtab section appeared before the above. */
1764 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1765 {
1766 unsigned int i, num_sec;
1767
1768 num_sec = elf_numsections (abfd);
1769 for (i = 1; i < num_sec; i++)
1770 {
1771 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1772 if (hdr2->sh_link == shindex)
1773 {
1774 /* Prevent endless recursion on broken objects. */
1775 if (i == shindex)
1776 return FALSE;
1777 if (! bfd_section_from_shdr (abfd, i))
1778 return FALSE;
1779 if (elf_onesymtab (abfd) == i)
1780 goto symtab_strtab;
1781 if (elf_dynsymtab (abfd) == i)
1782 goto dynsymtab_strtab;
1783 }
1784 }
1785 }
1786 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1787
1788 case SHT_REL:
1789 case SHT_RELA:
1790 /* *These* do a lot of work -- but build no sections! */
1791 {
1792 asection *target_sect;
1793 Elf_Internal_Shdr *hdr2, **p_hdr;
1794 unsigned int num_sec = elf_numsections (abfd);
1795 struct bfd_elf_section_data *esdt;
1796 bfd_size_type amt;
1797
1798 if (hdr->sh_entsize
1799 != (bfd_size_type) (hdr->sh_type == SHT_REL
1800 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1801 return FALSE;
1802
1803 /* Check for a bogus link to avoid crashing. */
1804 if (hdr->sh_link >= num_sec)
1805 {
1806 ((*_bfd_error_handler)
1807 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1808 abfd, hdr->sh_link, name, shindex));
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811 }
1812
1813 /* For some incomprehensible reason Oracle distributes
1814 libraries for Solaris in which some of the objects have
1815 bogus sh_link fields. It would be nice if we could just
1816 reject them, but, unfortunately, some people need to use
1817 them. We scan through the section headers; if we find only
1818 one suitable symbol table, we clobber the sh_link to point
1819 to it. I hope this doesn't break anything.
1820
1821 Don't do it on executable nor shared library. */
1822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1823 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1824 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1825 {
1826 unsigned int scan;
1827 int found;
1828
1829 found = 0;
1830 for (scan = 1; scan < num_sec; scan++)
1831 {
1832 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1833 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1834 {
1835 if (found != 0)
1836 {
1837 found = 0;
1838 break;
1839 }
1840 found = scan;
1841 }
1842 }
1843 if (found != 0)
1844 hdr->sh_link = found;
1845 }
1846
1847 /* Get the symbol table. */
1848 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1850 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1851 return FALSE;
1852
1853 /* If this reloc section does not use the main symbol table we
1854 don't treat it as a reloc section. BFD can't adequately
1855 represent such a section, so at least for now, we don't
1856 try. We just present it as a normal section. We also
1857 can't use it as a reloc section if it points to the null
1858 section, an invalid section, another reloc section, or its
1859 sh_link points to the null section. */
1860 if (hdr->sh_link != elf_onesymtab (abfd)
1861 || hdr->sh_link == SHN_UNDEF
1862 || hdr->sh_info == SHN_UNDEF
1863 || hdr->sh_info >= num_sec
1864 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1865 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1866 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1867 shindex);
1868
1869 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1870 return FALSE;
1871 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1872 if (target_sect == NULL)
1873 return FALSE;
1874
1875 esdt = elf_section_data (target_sect);
1876 if (hdr->sh_type == SHT_RELA)
1877 p_hdr = &esdt->rela.hdr;
1878 else
1879 p_hdr = &esdt->rel.hdr;
1880
1881 BFD_ASSERT (*p_hdr == NULL);
1882 amt = sizeof (*hdr2);
1883 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1884 if (hdr2 == NULL)
1885 return FALSE;
1886 *hdr2 = *hdr;
1887 *p_hdr = hdr2;
1888 elf_elfsections (abfd)[shindex] = hdr2;
1889 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1890 target_sect->flags |= SEC_RELOC;
1891 target_sect->relocation = NULL;
1892 target_sect->rel_filepos = hdr->sh_offset;
1893 /* In the section to which the relocations apply, mark whether
1894 its relocations are of the REL or RELA variety. */
1895 if (hdr->sh_size != 0)
1896 {
1897 if (hdr->sh_type == SHT_RELA)
1898 target_sect->use_rela_p = 1;
1899 }
1900 abfd->flags |= HAS_RELOC;
1901 return TRUE;
1902 }
1903
1904 case SHT_GNU_verdef:
1905 elf_dynverdef (abfd) = shindex;
1906 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_GNU_versym:
1910 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1911 return FALSE;
1912 elf_dynversym (abfd) = shindex;
1913 elf_tdata (abfd)->dynversym_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_verneed:
1917 elf_dynverref (abfd) = shindex;
1918 elf_tdata (abfd)->dynverref_hdr = *hdr;
1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1920
1921 case SHT_SHLIB:
1922 return TRUE;
1923
1924 case SHT_GROUP:
1925 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1926 return FALSE;
1927 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1928 return FALSE;
1929 if (hdr->contents != NULL)
1930 {
1931 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1932 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1933 asection *s;
1934
1935 if (idx->flags & GRP_COMDAT)
1936 hdr->bfd_section->flags
1937 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1938
1939 /* We try to keep the same section order as it comes in. */
1940 idx += n_elt;
1941 while (--n_elt != 0)
1942 {
1943 --idx;
1944
1945 if (idx->shdr != NULL
1946 && (s = idx->shdr->bfd_section) != NULL
1947 && elf_next_in_group (s) != NULL)
1948 {
1949 elf_next_in_group (hdr->bfd_section) = s;
1950 break;
1951 }
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Possibly an attributes section. */
1958 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1959 || hdr->sh_type == bed->obj_attrs_section_type)
1960 {
1961 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1962 return FALSE;
1963 _bfd_elf_parse_attributes (abfd, hdr);
1964 return TRUE;
1965 }
1966
1967 /* Check for any processor-specific section types. */
1968 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1969 return TRUE;
1970
1971 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1972 {
1973 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1974 /* FIXME: How to properly handle allocated section reserved
1975 for applications? */
1976 (*_bfd_error_handler)
1977 (_("%B: don't know how to handle allocated, application "
1978 "specific section `%s' [0x%8x]"),
1979 abfd, name, hdr->sh_type);
1980 else
1981 /* Allow sections reserved for applications. */
1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1983 shindex);
1984 }
1985 else if (hdr->sh_type >= SHT_LOPROC
1986 && hdr->sh_type <= SHT_HIPROC)
1987 /* FIXME: We should handle this section. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle processor specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1993 {
1994 /* Unrecognised OS-specific sections. */
1995 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1996 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1997 required to correctly process the section and the file should
1998 be rejected with an error message. */
1999 (*_bfd_error_handler)
2000 (_("%B: don't know how to handle OS specific section "
2001 "`%s' [0x%8x]"),
2002 abfd, name, hdr->sh_type);
2003 else
2004 /* Otherwise it should be processed. */
2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2006 }
2007 else
2008 /* FIXME: We should handle this section. */
2009 (*_bfd_error_handler)
2010 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2011 abfd, name, hdr->sh_type);
2012
2013 return FALSE;
2014 }
2015
2016 return TRUE;
2017 }
2018
2019 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2020
2021 Elf_Internal_Sym *
2022 bfd_sym_from_r_symndx (struct sym_cache *cache,
2023 bfd *abfd,
2024 unsigned long r_symndx)
2025 {
2026 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2027
2028 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2029 {
2030 Elf_Internal_Shdr *symtab_hdr;
2031 unsigned char esym[sizeof (Elf64_External_Sym)];
2032 Elf_External_Sym_Shndx eshndx;
2033
2034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2035 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2036 &cache->sym[ent], esym, &eshndx) == NULL)
2037 return NULL;
2038
2039 if (cache->abfd != abfd)
2040 {
2041 memset (cache->indx, -1, sizeof (cache->indx));
2042 cache->abfd = abfd;
2043 }
2044 cache->indx[ent] = r_symndx;
2045 }
2046
2047 return &cache->sym[ent];
2048 }
2049
2050 /* Given an ELF section number, retrieve the corresponding BFD
2051 section. */
2052
2053 asection *
2054 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2055 {
2056 if (sec_index >= elf_numsections (abfd))
2057 return NULL;
2058 return elf_elfsections (abfd)[sec_index]->bfd_section;
2059 }
2060
2061 static const struct bfd_elf_special_section special_sections_b[] =
2062 {
2063 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_c[] =
2068 {
2069 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2070 { NULL, 0, 0, 0, 0 }
2071 };
2072
2073 static const struct bfd_elf_special_section special_sections_d[] =
2074 {
2075 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2076 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2077 /* There are more DWARF sections than these, but they needn't be added here
2078 unless you have to cope with broken compilers that don't emit section
2079 attributes or you want to help the user writing assembler. */
2080 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2082 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2086 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2087 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2088 { NULL, 0, 0, 0, 0 }
2089 };
2090
2091 static const struct bfd_elf_special_section special_sections_f[] =
2092 {
2093 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2094 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_g[] =
2099 {
2100 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2101 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2102 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2103 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2104 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2105 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2106 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2107 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2108 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_h[] =
2113 {
2114 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_i[] =
2119 {
2120 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2121 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_l[] =
2127 {
2128 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_n[] =
2133 {
2134 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2135 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_p[] =
2140 {
2141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2142 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2143 { NULL, 0, 0, 0, 0 }
2144 };
2145
2146 static const struct bfd_elf_special_section special_sections_r[] =
2147 {
2148 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2149 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2150 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2151 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_s[] =
2156 {
2157 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2158 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2159 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2160 /* See struct bfd_elf_special_section declaration for the semantics of
2161 this special case where .prefix_length != strlen (.prefix). */
2162 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section special_sections_t[] =
2167 {
2168 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2169 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2170 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173
2174 static const struct bfd_elf_special_section special_sections_z[] =
2175 {
2176 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2177 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2178 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2179 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2180 { NULL, 0, 0, 0, 0 }
2181 };
2182
2183 static const struct bfd_elf_special_section * const special_sections[] =
2184 {
2185 special_sections_b, /* 'b' */
2186 special_sections_c, /* 'c' */
2187 special_sections_d, /* 'd' */
2188 NULL, /* 'e' */
2189 special_sections_f, /* 'f' */
2190 special_sections_g, /* 'g' */
2191 special_sections_h, /* 'h' */
2192 special_sections_i, /* 'i' */
2193 NULL, /* 'j' */
2194 NULL, /* 'k' */
2195 special_sections_l, /* 'l' */
2196 NULL, /* 'm' */
2197 special_sections_n, /* 'n' */
2198 NULL, /* 'o' */
2199 special_sections_p, /* 'p' */
2200 NULL, /* 'q' */
2201 special_sections_r, /* 'r' */
2202 special_sections_s, /* 's' */
2203 special_sections_t, /* 't' */
2204 NULL, /* 'u' */
2205 NULL, /* 'v' */
2206 NULL, /* 'w' */
2207 NULL, /* 'x' */
2208 NULL, /* 'y' */
2209 special_sections_z /* 'z' */
2210 };
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_special_section (const char *name,
2214 const struct bfd_elf_special_section *spec,
2215 unsigned int rela)
2216 {
2217 int i;
2218 int len;
2219
2220 len = strlen (name);
2221
2222 for (i = 0; spec[i].prefix != NULL; i++)
2223 {
2224 int suffix_len;
2225 int prefix_len = spec[i].prefix_length;
2226
2227 if (len < prefix_len)
2228 continue;
2229 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2230 continue;
2231
2232 suffix_len = spec[i].suffix_length;
2233 if (suffix_len <= 0)
2234 {
2235 if (name[prefix_len] != 0)
2236 {
2237 if (suffix_len == 0)
2238 continue;
2239 if (name[prefix_len] != '.'
2240 && (suffix_len == -2
2241 || (rela && spec[i].type == SHT_REL)))
2242 continue;
2243 }
2244 }
2245 else
2246 {
2247 if (len < prefix_len + suffix_len)
2248 continue;
2249 if (memcmp (name + len - suffix_len,
2250 spec[i].prefix + prefix_len,
2251 suffix_len) != 0)
2252 continue;
2253 }
2254 return &spec[i];
2255 }
2256
2257 return NULL;
2258 }
2259
2260 const struct bfd_elf_special_section *
2261 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2262 {
2263 int i;
2264 const struct bfd_elf_special_section *spec;
2265 const struct elf_backend_data *bed;
2266
2267 /* See if this is one of the special sections. */
2268 if (sec->name == NULL)
2269 return NULL;
2270
2271 bed = get_elf_backend_data (abfd);
2272 spec = bed->special_sections;
2273 if (spec)
2274 {
2275 spec = _bfd_elf_get_special_section (sec->name,
2276 bed->special_sections,
2277 sec->use_rela_p);
2278 if (spec != NULL)
2279 return spec;
2280 }
2281
2282 if (sec->name[0] != '.')
2283 return NULL;
2284
2285 i = sec->name[1] - 'b';
2286 if (i < 0 || i > 'z' - 'b')
2287 return NULL;
2288
2289 spec = special_sections[i];
2290
2291 if (spec == NULL)
2292 return NULL;
2293
2294 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2295 }
2296
2297 bfd_boolean
2298 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2299 {
2300 struct bfd_elf_section_data *sdata;
2301 const struct elf_backend_data *bed;
2302 const struct bfd_elf_special_section *ssect;
2303
2304 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2305 if (sdata == NULL)
2306 {
2307 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2308 sizeof (*sdata));
2309 if (sdata == NULL)
2310 return FALSE;
2311 sec->used_by_bfd = sdata;
2312 }
2313
2314 /* Indicate whether or not this section should use RELA relocations. */
2315 bed = get_elf_backend_data (abfd);
2316 sec->use_rela_p = bed->default_use_rela_p;
2317
2318 /* When we read a file, we don't need to set ELF section type and
2319 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2320 anyway. We will set ELF section type and flags for all linker
2321 created sections. If user specifies BFD section flags, we will
2322 set ELF section type and flags based on BFD section flags in
2323 elf_fake_sections. Special handling for .init_array/.fini_array
2324 output sections since they may contain .ctors/.dtors input
2325 sections. We don't want _bfd_elf_init_private_section_data to
2326 copy ELF section type from .ctors/.dtors input sections. */
2327 if (abfd->direction != read_direction
2328 || (sec->flags & SEC_LINKER_CREATED) != 0)
2329 {
2330 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2331 if (ssect != NULL
2332 && (!sec->flags
2333 || (sec->flags & SEC_LINKER_CREATED) != 0
2334 || ssect->type == SHT_INIT_ARRAY
2335 || ssect->type == SHT_FINI_ARRAY))
2336 {
2337 elf_section_type (sec) = ssect->type;
2338 elf_section_flags (sec) = ssect->attr;
2339 }
2340 }
2341
2342 return _bfd_generic_new_section_hook (abfd, sec);
2343 }
2344
2345 /* Create a new bfd section from an ELF program header.
2346
2347 Since program segments have no names, we generate a synthetic name
2348 of the form segment<NUM>, where NUM is generally the index in the
2349 program header table. For segments that are split (see below) we
2350 generate the names segment<NUM>a and segment<NUM>b.
2351
2352 Note that some program segments may have a file size that is different than
2353 (less than) the memory size. All this means is that at execution the
2354 system must allocate the amount of memory specified by the memory size,
2355 but only initialize it with the first "file size" bytes read from the
2356 file. This would occur for example, with program segments consisting
2357 of combined data+bss.
2358
2359 To handle the above situation, this routine generates TWO bfd sections
2360 for the single program segment. The first has the length specified by
2361 the file size of the segment, and the second has the length specified
2362 by the difference between the two sizes. In effect, the segment is split
2363 into its initialized and uninitialized parts.
2364
2365 */
2366
2367 bfd_boolean
2368 _bfd_elf_make_section_from_phdr (bfd *abfd,
2369 Elf_Internal_Phdr *hdr,
2370 int hdr_index,
2371 const char *type_name)
2372 {
2373 asection *newsect;
2374 char *name;
2375 char namebuf[64];
2376 size_t len;
2377 int split;
2378
2379 split = ((hdr->p_memsz > 0)
2380 && (hdr->p_filesz > 0)
2381 && (hdr->p_memsz > hdr->p_filesz));
2382
2383 if (hdr->p_filesz > 0)
2384 {
2385 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2386 len = strlen (namebuf) + 1;
2387 name = (char *) bfd_alloc (abfd, len);
2388 if (!name)
2389 return FALSE;
2390 memcpy (name, namebuf, len);
2391 newsect = bfd_make_section (abfd, name);
2392 if (newsect == NULL)
2393 return FALSE;
2394 newsect->vma = hdr->p_vaddr;
2395 newsect->lma = hdr->p_paddr;
2396 newsect->size = hdr->p_filesz;
2397 newsect->filepos = hdr->p_offset;
2398 newsect->flags |= SEC_HAS_CONTENTS;
2399 newsect->alignment_power = bfd_log2 (hdr->p_align);
2400 if (hdr->p_type == PT_LOAD)
2401 {
2402 newsect->flags |= SEC_ALLOC;
2403 newsect->flags |= SEC_LOAD;
2404 if (hdr->p_flags & PF_X)
2405 {
2406 /* FIXME: all we known is that it has execute PERMISSION,
2407 may be data. */
2408 newsect->flags |= SEC_CODE;
2409 }
2410 }
2411 if (!(hdr->p_flags & PF_W))
2412 {
2413 newsect->flags |= SEC_READONLY;
2414 }
2415 }
2416
2417 if (hdr->p_memsz > hdr->p_filesz)
2418 {
2419 bfd_vma align;
2420
2421 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2422 len = strlen (namebuf) + 1;
2423 name = (char *) bfd_alloc (abfd, len);
2424 if (!name)
2425 return FALSE;
2426 memcpy (name, namebuf, len);
2427 newsect = bfd_make_section (abfd, name);
2428 if (newsect == NULL)
2429 return FALSE;
2430 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2431 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2432 newsect->size = hdr->p_memsz - hdr->p_filesz;
2433 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2434 align = newsect->vma & -newsect->vma;
2435 if (align == 0 || align > hdr->p_align)
2436 align = hdr->p_align;
2437 newsect->alignment_power = bfd_log2 (align);
2438 if (hdr->p_type == PT_LOAD)
2439 {
2440 /* Hack for gdb. Segments that have not been modified do
2441 not have their contents written to a core file, on the
2442 assumption that a debugger can find the contents in the
2443 executable. We flag this case by setting the fake
2444 section size to zero. Note that "real" bss sections will
2445 always have their contents dumped to the core file. */
2446 if (bfd_get_format (abfd) == bfd_core)
2447 newsect->size = 0;
2448 newsect->flags |= SEC_ALLOC;
2449 if (hdr->p_flags & PF_X)
2450 newsect->flags |= SEC_CODE;
2451 }
2452 if (!(hdr->p_flags & PF_W))
2453 newsect->flags |= SEC_READONLY;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 bfd_boolean
2460 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2461 {
2462 const struct elf_backend_data *bed;
2463
2464 switch (hdr->p_type)
2465 {
2466 case PT_NULL:
2467 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2468
2469 case PT_LOAD:
2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2471
2472 case PT_DYNAMIC:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2474
2475 case PT_INTERP:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2477
2478 case PT_NOTE:
2479 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2480 return FALSE;
2481 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2482 return FALSE;
2483 return TRUE;
2484
2485 case PT_SHLIB:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2487
2488 case PT_PHDR:
2489 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2490
2491 case PT_GNU_EH_FRAME:
2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2493 "eh_frame_hdr");
2494
2495 case PT_GNU_STACK:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2497
2498 case PT_GNU_RELRO:
2499 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2500
2501 default:
2502 /* Check for any processor-specific program segment types. */
2503 bed = get_elf_backend_data (abfd);
2504 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2505 }
2506 }
2507
2508 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2509 REL or RELA. */
2510
2511 Elf_Internal_Shdr *
2512 _bfd_elf_single_rel_hdr (asection *sec)
2513 {
2514 if (elf_section_data (sec)->rel.hdr)
2515 {
2516 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2517 return elf_section_data (sec)->rel.hdr;
2518 }
2519 else
2520 return elf_section_data (sec)->rela.hdr;
2521 }
2522
2523 /* Allocate and initialize a section-header for a new reloc section,
2524 containing relocations against ASECT. It is stored in RELDATA. If
2525 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2526 relocations. */
2527
2528 static bfd_boolean
2529 _bfd_elf_init_reloc_shdr (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata,
2531 asection *asect,
2532 bfd_boolean use_rela_p)
2533 {
2534 Elf_Internal_Shdr *rel_hdr;
2535 char *name;
2536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2537 bfd_size_type amt;
2538
2539 amt = sizeof (Elf_Internal_Shdr);
2540 BFD_ASSERT (reldata->hdr == NULL);
2541 rel_hdr = bfd_zalloc (abfd, amt);
2542 reldata->hdr = rel_hdr;
2543
2544 amt = sizeof ".rela" + strlen (asect->name);
2545 name = (char *) bfd_alloc (abfd, amt);
2546 if (name == NULL)
2547 return FALSE;
2548 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2549 rel_hdr->sh_name =
2550 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2551 FALSE);
2552 if (rel_hdr->sh_name == (unsigned int) -1)
2553 return FALSE;
2554 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2555 rel_hdr->sh_entsize = (use_rela_p
2556 ? bed->s->sizeof_rela
2557 : bed->s->sizeof_rel);
2558 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2559 rel_hdr->sh_flags = 0;
2560 rel_hdr->sh_addr = 0;
2561 rel_hdr->sh_size = 0;
2562 rel_hdr->sh_offset = 0;
2563
2564 return TRUE;
2565 }
2566
2567 /* Return the default section type based on the passed in section flags. */
2568
2569 int
2570 bfd_elf_get_default_section_type (flagword flags)
2571 {
2572 if ((flags & SEC_ALLOC) != 0
2573 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2574 return SHT_NOBITS;
2575 return SHT_PROGBITS;
2576 }
2577
2578 struct fake_section_arg
2579 {
2580 struct bfd_link_info *link_info;
2581 bfd_boolean failed;
2582 };
2583
2584 /* Set up an ELF internal section header for a section. */
2585
2586 static void
2587 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2588 {
2589 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2591 struct bfd_elf_section_data *esd = elf_section_data (asect);
2592 Elf_Internal_Shdr *this_hdr;
2593 unsigned int sh_type;
2594
2595 if (arg->failed)
2596 {
2597 /* We already failed; just get out of the bfd_map_over_sections
2598 loop. */
2599 return;
2600 }
2601
2602 this_hdr = &esd->this_hdr;
2603
2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2605 asect->name, FALSE);
2606 if (this_hdr->sh_name == (unsigned int) -1)
2607 {
2608 arg->failed = TRUE;
2609 return;
2610 }
2611
2612 /* Don't clear sh_flags. Assembler may set additional bits. */
2613
2614 if ((asect->flags & SEC_ALLOC) != 0
2615 || asect->user_set_vma)
2616 this_hdr->sh_addr = asect->vma;
2617 else
2618 this_hdr->sh_addr = 0;
2619
2620 this_hdr->sh_offset = 0;
2621 this_hdr->sh_size = asect->size;
2622 this_hdr->sh_link = 0;
2623 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2624 /* The sh_entsize and sh_info fields may have been set already by
2625 copy_private_section_data. */
2626
2627 this_hdr->bfd_section = asect;
2628 this_hdr->contents = NULL;
2629
2630 /* If the section type is unspecified, we set it based on
2631 asect->flags. */
2632 if ((asect->flags & SEC_GROUP) != 0)
2633 sh_type = SHT_GROUP;
2634 else
2635 sh_type = bfd_elf_get_default_section_type (asect->flags);
2636
2637 if (this_hdr->sh_type == SHT_NULL)
2638 this_hdr->sh_type = sh_type;
2639 else if (this_hdr->sh_type == SHT_NOBITS
2640 && sh_type == SHT_PROGBITS
2641 && (asect->flags & SEC_ALLOC) != 0)
2642 {
2643 /* Warn if we are changing a NOBITS section to PROGBITS, but
2644 allow the link to proceed. This can happen when users link
2645 non-bss input sections to bss output sections, or emit data
2646 to a bss output section via a linker script. */
2647 (*_bfd_error_handler)
2648 (_("warning: section `%A' type changed to PROGBITS"), asect);
2649 this_hdr->sh_type = sh_type;
2650 }
2651
2652 switch (this_hdr->sh_type)
2653 {
2654 default:
2655 break;
2656
2657 case SHT_STRTAB:
2658 case SHT_INIT_ARRAY:
2659 case SHT_FINI_ARRAY:
2660 case SHT_PREINIT_ARRAY:
2661 case SHT_NOTE:
2662 case SHT_NOBITS:
2663 case SHT_PROGBITS:
2664 break;
2665
2666 case SHT_HASH:
2667 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2668 break;
2669
2670 case SHT_DYNSYM:
2671 this_hdr->sh_entsize = bed->s->sizeof_sym;
2672 break;
2673
2674 case SHT_DYNAMIC:
2675 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2676 break;
2677
2678 case SHT_RELA:
2679 if (get_elf_backend_data (abfd)->may_use_rela_p)
2680 this_hdr->sh_entsize = bed->s->sizeof_rela;
2681 break;
2682
2683 case SHT_REL:
2684 if (get_elf_backend_data (abfd)->may_use_rel_p)
2685 this_hdr->sh_entsize = bed->s->sizeof_rel;
2686 break;
2687
2688 case SHT_GNU_versym:
2689 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2690 break;
2691
2692 case SHT_GNU_verdef:
2693 this_hdr->sh_entsize = 0;
2694 /* objcopy or strip will copy over sh_info, but may not set
2695 cverdefs. The linker will set cverdefs, but sh_info will be
2696 zero. */
2697 if (this_hdr->sh_info == 0)
2698 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2699 else
2700 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2701 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2702 break;
2703
2704 case SHT_GNU_verneed:
2705 this_hdr->sh_entsize = 0;
2706 /* objcopy or strip will copy over sh_info, but may not set
2707 cverrefs. The linker will set cverrefs, but sh_info will be
2708 zero. */
2709 if (this_hdr->sh_info == 0)
2710 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2711 else
2712 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2713 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2714 break;
2715
2716 case SHT_GROUP:
2717 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2718 break;
2719
2720 case SHT_GNU_HASH:
2721 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2722 break;
2723 }
2724
2725 if ((asect->flags & SEC_ALLOC) != 0)
2726 this_hdr->sh_flags |= SHF_ALLOC;
2727 if ((asect->flags & SEC_READONLY) == 0)
2728 this_hdr->sh_flags |= SHF_WRITE;
2729 if ((asect->flags & SEC_CODE) != 0)
2730 this_hdr->sh_flags |= SHF_EXECINSTR;
2731 if ((asect->flags & SEC_MERGE) != 0)
2732 {
2733 this_hdr->sh_flags |= SHF_MERGE;
2734 this_hdr->sh_entsize = asect->entsize;
2735 if ((asect->flags & SEC_STRINGS) != 0)
2736 this_hdr->sh_flags |= SHF_STRINGS;
2737 }
2738 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2739 this_hdr->sh_flags |= SHF_GROUP;
2740 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2741 {
2742 this_hdr->sh_flags |= SHF_TLS;
2743 if (asect->size == 0
2744 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2745 {
2746 struct bfd_link_order *o = asect->map_tail.link_order;
2747
2748 this_hdr->sh_size = 0;
2749 if (o != NULL)
2750 {
2751 this_hdr->sh_size = o->offset + o->size;
2752 if (this_hdr->sh_size != 0)
2753 this_hdr->sh_type = SHT_NOBITS;
2754 }
2755 }
2756 }
2757 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2758 this_hdr->sh_flags |= SHF_EXCLUDE;
2759
2760 /* If the section has relocs, set up a section header for the
2761 SHT_REL[A] section. If two relocation sections are required for
2762 this section, it is up to the processor-specific back-end to
2763 create the other. */
2764 if ((asect->flags & SEC_RELOC) != 0)
2765 {
2766 /* When doing a relocatable link, create both REL and RELA sections if
2767 needed. */
2768 if (arg->link_info
2769 /* Do the normal setup if we wouldn't create any sections here. */
2770 && esd->rel.count + esd->rela.count > 0
2771 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2772 {
2773 if (esd->rel.count && esd->rel.hdr == NULL
2774 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2775 {
2776 arg->failed = TRUE;
2777 return;
2778 }
2779 if (esd->rela.count && esd->rela.hdr == NULL
2780 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2781 {
2782 arg->failed = TRUE;
2783 return;
2784 }
2785 }
2786 else if (!_bfd_elf_init_reloc_shdr (abfd,
2787 (asect->use_rela_p
2788 ? &esd->rela : &esd->rel),
2789 asect,
2790 asect->use_rela_p))
2791 arg->failed = TRUE;
2792 }
2793
2794 /* Check for processor-specific section types. */
2795 sh_type = this_hdr->sh_type;
2796 if (bed->elf_backend_fake_sections
2797 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2798 arg->failed = TRUE;
2799
2800 if (sh_type == SHT_NOBITS && asect->size != 0)
2801 {
2802 /* Don't change the header type from NOBITS if we are being
2803 called for objcopy --only-keep-debug. */
2804 this_hdr->sh_type = sh_type;
2805 }
2806 }
2807
2808 /* Fill in the contents of a SHT_GROUP section. Called from
2809 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2810 when ELF targets use the generic linker, ld. Called for ld -r
2811 from bfd_elf_final_link. */
2812
2813 void
2814 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2815 {
2816 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2817 asection *elt, *first;
2818 unsigned char *loc;
2819 bfd_boolean gas;
2820
2821 /* Ignore linker created group section. See elfNN_ia64_object_p in
2822 elfxx-ia64.c. */
2823 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2824 || *failedptr)
2825 return;
2826
2827 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2828 {
2829 unsigned long symindx = 0;
2830
2831 /* elf_group_id will have been set up by objcopy and the
2832 generic linker. */
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms. */
2840 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 }
2843 elf_section_data (sec)->this_hdr.sh_info = symindx;
2844 }
2845 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2846 {
2847 /* The ELF backend linker sets sh_info to -2 when the group
2848 signature symbol is global, and thus the index can't be
2849 set until all local symbols are output. */
2850 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2851 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2852 unsigned long symndx = sec_data->this_hdr.sh_info;
2853 unsigned long extsymoff = 0;
2854 struct elf_link_hash_entry *h;
2855
2856 if (!elf_bad_symtab (igroup->owner))
2857 {
2858 Elf_Internal_Shdr *symtab_hdr;
2859
2860 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2861 extsymoff = symtab_hdr->sh_info;
2862 }
2863 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2864 while (h->root.type == bfd_link_hash_indirect
2865 || h->root.type == bfd_link_hash_warning)
2866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2867
2868 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2869 }
2870
2871 /* The contents won't be allocated for "ld -r" or objcopy. */
2872 gas = TRUE;
2873 if (sec->contents == NULL)
2874 {
2875 gas = FALSE;
2876 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2877
2878 /* Arrange for the section to be written out. */
2879 elf_section_data (sec)->this_hdr.contents = sec->contents;
2880 if (sec->contents == NULL)
2881 {
2882 *failedptr = TRUE;
2883 return;
2884 }
2885 }
2886
2887 loc = sec->contents + sec->size;
2888
2889 /* Get the pointer to the first section in the group that gas
2890 squirreled away here. objcopy arranges for this to be set to the
2891 start of the input section group. */
2892 first = elt = elf_next_in_group (sec);
2893
2894 /* First element is a flag word. Rest of section is elf section
2895 indices for all the sections of the group. Write them backwards
2896 just to keep the group in the same order as given in .section
2897 directives, not that it matters. */
2898 while (elt != NULL)
2899 {
2900 asection *s;
2901
2902 s = elt;
2903 if (!gas)
2904 s = s->output_section;
2905 if (s != NULL
2906 && !bfd_is_abs_section (s))
2907 {
2908 unsigned int idx = elf_section_data (s)->this_idx;
2909
2910 loc -= 4;
2911 H_PUT_32 (abfd, idx, loc);
2912 }
2913 elt = elf_next_in_group (elt);
2914 if (elt == first)
2915 break;
2916 }
2917
2918 if ((loc -= 4) != sec->contents)
2919 abort ();
2920
2921 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2922 }
2923
2924 /* Assign all ELF section numbers. The dummy first section is handled here
2925 too. The link/info pointers for the standard section types are filled
2926 in here too, while we're at it. */
2927
2928 static bfd_boolean
2929 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2930 {
2931 struct elf_obj_tdata *t = elf_tdata (abfd);
2932 asection *sec;
2933 unsigned int section_number, secn;
2934 Elf_Internal_Shdr **i_shdrp;
2935 struct bfd_elf_section_data *d;
2936 bfd_boolean need_symtab;
2937
2938 section_number = 1;
2939
2940 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2941
2942 /* SHT_GROUP sections are in relocatable files only. */
2943 if (link_info == NULL || link_info->relocatable)
2944 {
2945 /* Put SHT_GROUP sections first. */
2946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2947 {
2948 d = elf_section_data (sec);
2949
2950 if (d->this_hdr.sh_type == SHT_GROUP)
2951 {
2952 if (sec->flags & SEC_LINKER_CREATED)
2953 {
2954 /* Remove the linker created SHT_GROUP sections. */
2955 bfd_section_list_remove (abfd, sec);
2956 abfd->section_count--;
2957 }
2958 else
2959 d->this_idx = section_number++;
2960 }
2961 }
2962 }
2963
2964 for (sec = abfd->sections; sec; sec = sec->next)
2965 {
2966 d = elf_section_data (sec);
2967
2968 if (d->this_hdr.sh_type != SHT_GROUP)
2969 d->this_idx = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2971 if (d->rel.hdr)
2972 {
2973 d->rel.idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2975 }
2976 else
2977 d->rel.idx = 0;
2978
2979 if (d->rela.hdr)
2980 {
2981 d->rela.idx = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2983 }
2984 else
2985 d->rela.idx = 0;
2986 }
2987
2988 elf_shstrtab_sec (abfd) = section_number++;
2989 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2990 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2991
2992 need_symtab = (bfd_get_symcount (abfd) > 0
2993 || (link_info == NULL
2994 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2995 == HAS_RELOC)));
2996 if (need_symtab)
2997 {
2998 elf_onesymtab (abfd) = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3000 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3001 {
3002 elf_symtab_shndx (abfd) = section_number++;
3003 t->symtab_shndx_hdr.sh_name
3004 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3005 ".symtab_shndx", FALSE);
3006 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3007 return FALSE;
3008 }
3009 elf_strtab_sec (abfd) = section_number++;
3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3011 }
3012
3013 if (section_number >= SHN_LORESERVE)
3014 {
3015 _bfd_error_handler (_("%B: too many sections: %u"),
3016 abfd, section_number);
3017 return FALSE;
3018 }
3019
3020 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3021 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3022
3023 elf_numsections (abfd) = section_number;
3024 elf_elfheader (abfd)->e_shnum = section_number;
3025
3026 /* Set up the list of section header pointers, in agreement with the
3027 indices. */
3028 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3029 sizeof (Elf_Internal_Shdr *));
3030 if (i_shdrp == NULL)
3031 return FALSE;
3032
3033 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3034 sizeof (Elf_Internal_Shdr));
3035 if (i_shdrp[0] == NULL)
3036 {
3037 bfd_release (abfd, i_shdrp);
3038 return FALSE;
3039 }
3040
3041 elf_elfsections (abfd) = i_shdrp;
3042
3043 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3044 if (need_symtab)
3045 {
3046 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3047 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3048 {
3049 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3050 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3051 }
3052 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3053 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3054 }
3055
3056 for (sec = abfd->sections; sec; sec = sec->next)
3057 {
3058 asection *s;
3059 const char *name;
3060
3061 d = elf_section_data (sec);
3062
3063 i_shdrp[d->this_idx] = &d->this_hdr;
3064 if (d->rel.idx != 0)
3065 i_shdrp[d->rel.idx] = d->rel.hdr;
3066 if (d->rela.idx != 0)
3067 i_shdrp[d->rela.idx] = d->rela.hdr;
3068
3069 /* Fill in the sh_link and sh_info fields while we're at it. */
3070
3071 /* sh_link of a reloc section is the section index of the symbol
3072 table. sh_info is the section index of the section to which
3073 the relocation entries apply. */
3074 if (d->rel.idx != 0)
3075 {
3076 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3077 d->rel.hdr->sh_info = d->this_idx;
3078 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3079 }
3080 if (d->rela.idx != 0)
3081 {
3082 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3083 d->rela.hdr->sh_info = d->this_idx;
3084 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3085 }
3086
3087 /* We need to set up sh_link for SHF_LINK_ORDER. */
3088 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3089 {
3090 s = elf_linked_to_section (sec);
3091 if (s)
3092 {
3093 /* elf_linked_to_section points to the input section. */
3094 if (link_info != NULL)
3095 {
3096 /* Check discarded linkonce section. */
3097 if (discarded_section (s))
3098 {
3099 asection *kept;
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section,
3103 s, s->owner);
3104 /* Point to the kept section if it has the same
3105 size as the discarded one. */
3106 kept = _bfd_elf_check_kept_section (s, link_info);
3107 if (kept == NULL)
3108 {
3109 bfd_set_error (bfd_error_bad_value);
3110 return FALSE;
3111 }
3112 s = kept;
3113 }
3114
3115 s = s->output_section;
3116 BFD_ASSERT (s != NULL);
3117 }
3118 else
3119 {
3120 /* Handle objcopy. */
3121 if (s->output_section == NULL)
3122 {
3123 (*_bfd_error_handler)
3124 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3125 abfd, d->this_hdr.bfd_section, s, s->owner);
3126 bfd_set_error (bfd_error_bad_value);
3127 return FALSE;
3128 }
3129 s = s->output_section;
3130 }
3131 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3132 }
3133 else
3134 {
3135 /* PR 290:
3136 The Intel C compiler generates SHT_IA_64_UNWIND with
3137 SHF_LINK_ORDER. But it doesn't set the sh_link or
3138 sh_info fields. Hence we could get the situation
3139 where s is NULL. */
3140 const struct elf_backend_data *bed
3141 = get_elf_backend_data (abfd);
3142 if (bed->link_order_error_handler)
3143 bed->link_order_error_handler
3144 (_("%B: warning: sh_link not set for section `%A'"),
3145 abfd, sec);
3146 }
3147 }
3148
3149 switch (d->this_hdr.sh_type)
3150 {
3151 case SHT_REL:
3152 case SHT_RELA:
3153 /* A reloc section which we are treating as a normal BFD
3154 section. sh_link is the section index of the symbol
3155 table. sh_info is the section index of the section to
3156 which the relocation entries apply. We assume that an
3157 allocated reloc section uses the dynamic symbol table.
3158 FIXME: How can we be sure? */
3159 s = bfd_get_section_by_name (abfd, ".dynsym");
3160 if (s != NULL)
3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162
3163 /* We look up the section the relocs apply to by name. */
3164 name = sec->name;
3165 if (d->this_hdr.sh_type == SHT_REL)
3166 name += 4;
3167 else
3168 name += 5;
3169 s = bfd_get_section_by_name (abfd, name);
3170 if (s != NULL)
3171 {
3172 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3173 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3174 }
3175 break;
3176
3177 case SHT_STRTAB:
3178 /* We assume that a section named .stab*str is a stabs
3179 string section. We look for a section with the same name
3180 but without the trailing ``str'', and set its sh_link
3181 field to point to this section. */
3182 if (CONST_STRNEQ (sec->name, ".stab")
3183 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3184 {
3185 size_t len;
3186 char *alc;
3187
3188 len = strlen (sec->name);
3189 alc = (char *) bfd_malloc (len - 2);
3190 if (alc == NULL)
3191 return FALSE;
3192 memcpy (alc, sec->name, len - 3);
3193 alc[len - 3] = '\0';
3194 s = bfd_get_section_by_name (abfd, alc);
3195 free (alc);
3196 if (s != NULL)
3197 {
3198 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3199
3200 /* This is a .stab section. */
3201 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3202 elf_section_data (s)->this_hdr.sh_entsize
3203 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3204 }
3205 }
3206 break;
3207
3208 case SHT_DYNAMIC:
3209 case SHT_DYNSYM:
3210 case SHT_GNU_verneed:
3211 case SHT_GNU_verdef:
3212 /* sh_link is the section header index of the string table
3213 used for the dynamic entries, or the symbol table, or the
3214 version strings. */
3215 s = bfd_get_section_by_name (abfd, ".dynstr");
3216 if (s != NULL)
3217 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3218 break;
3219
3220 case SHT_GNU_LIBLIST:
3221 /* sh_link is the section header index of the prelink library
3222 list used for the dynamic entries, or the symbol table, or
3223 the version strings. */
3224 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3225 ? ".dynstr" : ".gnu.libstr");
3226 if (s != NULL)
3227 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3228 break;
3229
3230 case SHT_HASH:
3231 case SHT_GNU_HASH:
3232 case SHT_GNU_versym:
3233 /* sh_link is the section header index of the symbol table
3234 this hash table or version table is for. */
3235 s = bfd_get_section_by_name (abfd, ".dynsym");
3236 if (s != NULL)
3237 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3238 break;
3239
3240 case SHT_GROUP:
3241 d->this_hdr.sh_link = elf_onesymtab (abfd);
3242 }
3243 }
3244
3245 for (secn = 1; secn < section_number; ++secn)
3246 if (i_shdrp[secn] == NULL)
3247 i_shdrp[secn] = i_shdrp[0];
3248 else
3249 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3250 i_shdrp[secn]->sh_name);
3251 return TRUE;
3252 }
3253
3254 static bfd_boolean
3255 sym_is_global (bfd *abfd, asymbol *sym)
3256 {
3257 /* If the backend has a special mapping, use it. */
3258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3259 if (bed->elf_backend_sym_is_global)
3260 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3261
3262 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3263 || bfd_is_und_section (bfd_get_section (sym))
3264 || bfd_is_com_section (bfd_get_section (sym)));
3265 }
3266
3267 /* Don't output section symbols for sections that are not going to be
3268 output, that are duplicates or there is no BFD section. */
3269
3270 static bfd_boolean
3271 ignore_section_sym (bfd *abfd, asymbol *sym)
3272 {
3273 elf_symbol_type *type_ptr;
3274
3275 if ((sym->flags & BSF_SECTION_SYM) == 0)
3276 return FALSE;
3277
3278 type_ptr = elf_symbol_from (abfd, sym);
3279 return ((type_ptr != NULL
3280 && type_ptr->internal_elf_sym.st_shndx != 0
3281 && bfd_is_abs_section (sym->section))
3282 || !(sym->section->owner == abfd
3283 || (sym->section->output_section->owner == abfd
3284 && sym->section->output_offset == 0)
3285 || bfd_is_abs_section (sym->section)));
3286 }
3287
3288 /* Map symbol from it's internal number to the external number, moving
3289 all local symbols to be at the head of the list. */
3290
3291 static bfd_boolean
3292 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3293 {
3294 unsigned int symcount = bfd_get_symcount (abfd);
3295 asymbol **syms = bfd_get_outsymbols (abfd);
3296 asymbol **sect_syms;
3297 unsigned int num_locals = 0;
3298 unsigned int num_globals = 0;
3299 unsigned int num_locals2 = 0;
3300 unsigned int num_globals2 = 0;
3301 int max_index = 0;
3302 unsigned int idx;
3303 asection *asect;
3304 asymbol **new_syms;
3305
3306 #ifdef DEBUG
3307 fprintf (stderr, "elf_map_symbols\n");
3308 fflush (stderr);
3309 #endif
3310
3311 for (asect = abfd->sections; asect; asect = asect->next)
3312 {
3313 if (max_index < asect->index)
3314 max_index = asect->index;
3315 }
3316
3317 max_index++;
3318 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3319 if (sect_syms == NULL)
3320 return FALSE;
3321 elf_section_syms (abfd) = sect_syms;
3322 elf_num_section_syms (abfd) = max_index;
3323
3324 /* Init sect_syms entries for any section symbols we have already
3325 decided to output. */
3326 for (idx = 0; idx < symcount; idx++)
3327 {
3328 asymbol *sym = syms[idx];
3329
3330 if ((sym->flags & BSF_SECTION_SYM) != 0
3331 && sym->value == 0
3332 && !ignore_section_sym (abfd, sym)
3333 && !bfd_is_abs_section (sym->section))
3334 {
3335 asection *sec = sym->section;
3336
3337 if (sec->owner != abfd)
3338 sec = sec->output_section;
3339
3340 sect_syms[sec->index] = syms[idx];
3341 }
3342 }
3343
3344 /* Classify all of the symbols. */
3345 for (idx = 0; idx < symcount; idx++)
3346 {
3347 if (sym_is_global (abfd, syms[idx]))
3348 num_globals++;
3349 else if (!ignore_section_sym (abfd, syms[idx]))
3350 num_locals++;
3351 }
3352
3353 /* We will be adding a section symbol for each normal BFD section. Most
3354 sections will already have a section symbol in outsymbols, but
3355 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3356 at least in that case. */
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (sect_syms[asect->index] == NULL)
3360 {
3361 if (!sym_is_global (abfd, asect->symbol))
3362 num_locals++;
3363 else
3364 num_globals++;
3365 }
3366 }
3367
3368 /* Now sort the symbols so the local symbols are first. */
3369 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3370 sizeof (asymbol *));
3371
3372 if (new_syms == NULL)
3373 return FALSE;
3374
3375 for (idx = 0; idx < symcount; idx++)
3376 {
3377 asymbol *sym = syms[idx];
3378 unsigned int i;
3379
3380 if (sym_is_global (abfd, sym))
3381 i = num_locals + num_globals2++;
3382 else if (!ignore_section_sym (abfd, sym))
3383 i = num_locals2++;
3384 else
3385 continue;
3386 new_syms[i] = sym;
3387 sym->udata.i = i + 1;
3388 }
3389 for (asect = abfd->sections; asect; asect = asect->next)
3390 {
3391 if (sect_syms[asect->index] == NULL)
3392 {
3393 asymbol *sym = asect->symbol;
3394 unsigned int i;
3395
3396 sect_syms[asect->index] = sym;
3397 if (!sym_is_global (abfd, sym))
3398 i = num_locals2++;
3399 else
3400 i = num_locals + num_globals2++;
3401 new_syms[i] = sym;
3402 sym->udata.i = i + 1;
3403 }
3404 }
3405
3406 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3407
3408 *pnum_locals = num_locals;
3409 return TRUE;
3410 }
3411
3412 /* Align to the maximum file alignment that could be required for any
3413 ELF data structure. */
3414
3415 static inline file_ptr
3416 align_file_position (file_ptr off, int align)
3417 {
3418 return (off + align - 1) & ~(align - 1);
3419 }
3420
3421 /* Assign a file position to a section, optionally aligning to the
3422 required section alignment. */
3423
3424 file_ptr
3425 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3426 file_ptr offset,
3427 bfd_boolean align)
3428 {
3429 if (align && i_shdrp->sh_addralign > 1)
3430 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3431 i_shdrp->sh_offset = offset;
3432 if (i_shdrp->bfd_section != NULL)
3433 i_shdrp->bfd_section->filepos = offset;
3434 if (i_shdrp->sh_type != SHT_NOBITS)
3435 offset += i_shdrp->sh_size;
3436 return offset;
3437 }
3438
3439 /* Compute the file positions we are going to put the sections at, and
3440 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3441 is not NULL, this is being called by the ELF backend linker. */
3442
3443 bfd_boolean
3444 _bfd_elf_compute_section_file_positions (bfd *abfd,
3445 struct bfd_link_info *link_info)
3446 {
3447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3448 struct fake_section_arg fsargs;
3449 bfd_boolean failed;
3450 struct bfd_strtab_hash *strtab = NULL;
3451 Elf_Internal_Shdr *shstrtab_hdr;
3452 bfd_boolean need_symtab;
3453
3454 if (abfd->output_has_begun)
3455 return TRUE;
3456
3457 /* Do any elf backend specific processing first. */
3458 if (bed->elf_backend_begin_write_processing)
3459 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3460
3461 if (! prep_headers (abfd))
3462 return FALSE;
3463
3464 /* Post process the headers if necessary. */
3465 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3466
3467 fsargs.failed = FALSE;
3468 fsargs.link_info = link_info;
3469 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3470 if (fsargs.failed)
3471 return FALSE;
3472
3473 if (!assign_section_numbers (abfd, link_info))
3474 return FALSE;
3475
3476 /* The backend linker builds symbol table information itself. */
3477 need_symtab = (link_info == NULL
3478 && (bfd_get_symcount (abfd) > 0
3479 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3480 == HAS_RELOC)));
3481 if (need_symtab)
3482 {
3483 /* Non-zero if doing a relocatable link. */
3484 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3485
3486 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3487 return FALSE;
3488 }
3489
3490 failed = FALSE;
3491 if (link_info == NULL)
3492 {
3493 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3494 if (failed)
3495 return FALSE;
3496 }
3497
3498 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3499 /* sh_name was set in prep_headers. */
3500 shstrtab_hdr->sh_type = SHT_STRTAB;
3501 shstrtab_hdr->sh_flags = 0;
3502 shstrtab_hdr->sh_addr = 0;
3503 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3504 shstrtab_hdr->sh_entsize = 0;
3505 shstrtab_hdr->sh_link = 0;
3506 shstrtab_hdr->sh_info = 0;
3507 /* sh_offset is set in assign_file_positions_except_relocs. */
3508 shstrtab_hdr->sh_addralign = 1;
3509
3510 if (!assign_file_positions_except_relocs (abfd, link_info))
3511 return FALSE;
3512
3513 if (need_symtab)
3514 {
3515 file_ptr off;
3516 Elf_Internal_Shdr *hdr;
3517
3518 off = elf_next_file_pos (abfd);
3519
3520 hdr = &elf_tdata (abfd)->symtab_hdr;
3521 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3522
3523 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3524 if (hdr->sh_size != 0)
3525 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3526
3527 hdr = &elf_tdata (abfd)->strtab_hdr;
3528 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3529
3530 elf_next_file_pos (abfd) = off;
3531
3532 /* Now that we know where the .strtab section goes, write it
3533 out. */
3534 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3535 || ! _bfd_stringtab_emit (abfd, strtab))
3536 return FALSE;
3537 _bfd_stringtab_free (strtab);
3538 }
3539
3540 abfd->output_has_begun = TRUE;
3541
3542 return TRUE;
3543 }
3544
3545 /* Make an initial estimate of the size of the program header. If we
3546 get the number wrong here, we'll redo section placement. */
3547
3548 static bfd_size_type
3549 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3550 {
3551 size_t segs;
3552 asection *s;
3553 const struct elf_backend_data *bed;
3554
3555 /* Assume we will need exactly two PT_LOAD segments: one for text
3556 and one for data. */
3557 segs = 2;
3558
3559 s = bfd_get_section_by_name (abfd, ".interp");
3560 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3561 {
3562 /* If we have a loadable interpreter section, we need a
3563 PT_INTERP segment. In this case, assume we also need a
3564 PT_PHDR segment, although that may not be true for all
3565 targets. */
3566 segs += 2;
3567 }
3568
3569 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3570 {
3571 /* We need a PT_DYNAMIC segment. */
3572 ++segs;
3573 }
3574
3575 if (info != NULL && info->relro)
3576 {
3577 /* We need a PT_GNU_RELRO segment. */
3578 ++segs;
3579 }
3580
3581 if (elf_eh_frame_hdr (abfd))
3582 {
3583 /* We need a PT_GNU_EH_FRAME segment. */
3584 ++segs;
3585 }
3586
3587 if (elf_stack_flags (abfd))
3588 {
3589 /* We need a PT_GNU_STACK segment. */
3590 ++segs;
3591 }
3592
3593 for (s = abfd->sections; s != NULL; s = s->next)
3594 {
3595 if ((s->flags & SEC_LOAD) != 0
3596 && CONST_STRNEQ (s->name, ".note"))
3597 {
3598 /* We need a PT_NOTE segment. */
3599 ++segs;
3600 /* Try to create just one PT_NOTE segment
3601 for all adjacent loadable .note* sections.
3602 gABI requires that within a PT_NOTE segment
3603 (and also inside of each SHT_NOTE section)
3604 each note is padded to a multiple of 4 size,
3605 so we check whether the sections are correctly
3606 aligned. */
3607 if (s->alignment_power == 2)
3608 while (s->next != NULL
3609 && s->next->alignment_power == 2
3610 && (s->next->flags & SEC_LOAD) != 0
3611 && CONST_STRNEQ (s->next->name, ".note"))
3612 s = s->next;
3613 }
3614 }
3615
3616 for (s = abfd->sections; s != NULL; s = s->next)
3617 {
3618 if (s->flags & SEC_THREAD_LOCAL)
3619 {
3620 /* We need a PT_TLS segment. */
3621 ++segs;
3622 break;
3623 }
3624 }
3625
3626 /* Let the backend count up any program headers it might need. */
3627 bed = get_elf_backend_data (abfd);
3628 if (bed->elf_backend_additional_program_headers)
3629 {
3630 int a;
3631
3632 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3633 if (a == -1)
3634 abort ();
3635 segs += a;
3636 }
3637
3638 return segs * bed->s->sizeof_phdr;
3639 }
3640
3641 /* Find the segment that contains the output_section of section. */
3642
3643 Elf_Internal_Phdr *
3644 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3645 {
3646 struct elf_segment_map *m;
3647 Elf_Internal_Phdr *p;
3648
3649 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3650 m != NULL;
3651 m = m->next, p++)
3652 {
3653 int i;
3654
3655 for (i = m->count - 1; i >= 0; i--)
3656 if (m->sections[i] == section)
3657 return p;
3658 }
3659
3660 return NULL;
3661 }
3662
3663 /* Create a mapping from a set of sections to a program segment. */
3664
3665 static struct elf_segment_map *
3666 make_mapping (bfd *abfd,
3667 asection **sections,
3668 unsigned int from,
3669 unsigned int to,
3670 bfd_boolean phdr)
3671 {
3672 struct elf_segment_map *m;
3673 unsigned int i;
3674 asection **hdrpp;
3675 bfd_size_type amt;
3676
3677 amt = sizeof (struct elf_segment_map);
3678 amt += (to - from - 1) * sizeof (asection *);
3679 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 return NULL;
3682 m->next = NULL;
3683 m->p_type = PT_LOAD;
3684 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3685 m->sections[i - from] = *hdrpp;
3686 m->count = to - from;
3687
3688 if (from == 0 && phdr)
3689 {
3690 /* Include the headers in the first PT_LOAD segment. */
3691 m->includes_filehdr = 1;
3692 m->includes_phdrs = 1;
3693 }
3694
3695 return m;
3696 }
3697
3698 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3699 on failure. */
3700
3701 struct elf_segment_map *
3702 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3703 {
3704 struct elf_segment_map *m;
3705
3706 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3707 sizeof (struct elf_segment_map));
3708 if (m == NULL)
3709 return NULL;
3710 m->next = NULL;
3711 m->p_type = PT_DYNAMIC;
3712 m->count = 1;
3713 m->sections[0] = dynsec;
3714
3715 return m;
3716 }
3717
3718 /* Possibly add or remove segments from the segment map. */
3719
3720 static bfd_boolean
3721 elf_modify_segment_map (bfd *abfd,
3722 struct bfd_link_info *info,
3723 bfd_boolean remove_empty_load)
3724 {
3725 struct elf_segment_map **m;
3726 const struct elf_backend_data *bed;
3727
3728 /* The placement algorithm assumes that non allocated sections are
3729 not in PT_LOAD segments. We ensure this here by removing such
3730 sections from the segment map. We also remove excluded
3731 sections. Finally, any PT_LOAD segment without sections is
3732 removed. */
3733 m = &elf_seg_map (abfd);
3734 while (*m)
3735 {
3736 unsigned int i, new_count;
3737
3738 for (new_count = 0, i = 0; i < (*m)->count; i++)
3739 {
3740 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3741 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3742 || (*m)->p_type != PT_LOAD))
3743 {
3744 (*m)->sections[new_count] = (*m)->sections[i];
3745 new_count++;
3746 }
3747 }
3748 (*m)->count = new_count;
3749
3750 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3751 *m = (*m)->next;
3752 else
3753 m = &(*m)->next;
3754 }
3755
3756 bed = get_elf_backend_data (abfd);
3757 if (bed->elf_backend_modify_segment_map != NULL)
3758 {
3759 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3760 return FALSE;
3761 }
3762
3763 return TRUE;
3764 }
3765
3766 /* Set up a mapping from BFD sections to program segments. */
3767
3768 bfd_boolean
3769 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3770 {
3771 unsigned int count;
3772 struct elf_segment_map *m;
3773 asection **sections = NULL;
3774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3775 bfd_boolean no_user_phdrs;
3776
3777 no_user_phdrs = elf_seg_map (abfd) == NULL;
3778
3779 if (info != NULL)
3780 info->user_phdrs = !no_user_phdrs;
3781
3782 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3783 {
3784 asection *s;
3785 unsigned int i;
3786 struct elf_segment_map *mfirst;
3787 struct elf_segment_map **pm;
3788 asection *last_hdr;
3789 bfd_vma last_size;
3790 unsigned int phdr_index;
3791 bfd_vma maxpagesize;
3792 asection **hdrpp;
3793 bfd_boolean phdr_in_segment = TRUE;
3794 bfd_boolean writable;
3795 int tls_count = 0;
3796 asection *first_tls = NULL;
3797 asection *dynsec, *eh_frame_hdr;
3798 bfd_size_type amt;
3799 bfd_vma addr_mask, wrap_to = 0;
3800
3801 /* Select the allocated sections, and sort them. */
3802
3803 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3804 sizeof (asection *));
3805 if (sections == NULL)
3806 goto error_return;
3807
3808 /* Calculate top address, avoiding undefined behaviour of shift
3809 left operator when shift count is equal to size of type
3810 being shifted. */
3811 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3812 addr_mask = (addr_mask << 1) + 1;
3813
3814 i = 0;
3815 for (s = abfd->sections; s != NULL; s = s->next)
3816 {
3817 if ((s->flags & SEC_ALLOC) != 0)
3818 {
3819 sections[i] = s;
3820 ++i;
3821 /* A wrapping section potentially clashes with header. */
3822 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3823 wrap_to = (s->lma + s->size) & addr_mask;
3824 }
3825 }
3826 BFD_ASSERT (i <= bfd_count_sections (abfd));
3827 count = i;
3828
3829 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3830
3831 /* Build the mapping. */
3832
3833 mfirst = NULL;
3834 pm = &mfirst;
3835
3836 /* If we have a .interp section, then create a PT_PHDR segment for
3837 the program headers and a PT_INTERP segment for the .interp
3838 section. */
3839 s = bfd_get_section_by_name (abfd, ".interp");
3840 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3841 {
3842 amt = sizeof (struct elf_segment_map);
3843 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3844 if (m == NULL)
3845 goto error_return;
3846 m->next = NULL;
3847 m->p_type = PT_PHDR;
3848 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3849 m->p_flags = PF_R | PF_X;
3850 m->p_flags_valid = 1;
3851 m->includes_phdrs = 1;
3852
3853 *pm = m;
3854 pm = &m->next;
3855
3856 amt = sizeof (struct elf_segment_map);
3857 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3858 if (m == NULL)
3859 goto error_return;
3860 m->next = NULL;
3861 m->p_type = PT_INTERP;
3862 m->count = 1;
3863 m->sections[0] = s;
3864
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868
3869 /* Look through the sections. We put sections in the same program
3870 segment when the start of the second section can be placed within
3871 a few bytes of the end of the first section. */
3872 last_hdr = NULL;
3873 last_size = 0;
3874 phdr_index = 0;
3875 maxpagesize = bed->maxpagesize;
3876 writable = FALSE;
3877 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3878 if (dynsec != NULL
3879 && (dynsec->flags & SEC_LOAD) == 0)
3880 dynsec = NULL;
3881
3882 /* Deal with -Ttext or something similar such that the first section
3883 is not adjacent to the program headers. This is an
3884 approximation, since at this point we don't know exactly how many
3885 program headers we will need. */
3886 if (count > 0)
3887 {
3888 bfd_size_type phdr_size = elf_program_header_size (abfd);
3889
3890 if (phdr_size == (bfd_size_type) -1)
3891 phdr_size = get_program_header_size (abfd, info);
3892 phdr_size += bed->s->sizeof_ehdr;
3893 if ((abfd->flags & D_PAGED) == 0
3894 || (sections[0]->lma & addr_mask) < phdr_size
3895 || ((sections[0]->lma & addr_mask) % maxpagesize
3896 < phdr_size % maxpagesize)
3897 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3898 phdr_in_segment = FALSE;
3899 }
3900
3901 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3902 {
3903 asection *hdr;
3904 bfd_boolean new_segment;
3905
3906 hdr = *hdrpp;
3907
3908 /* See if this section and the last one will fit in the same
3909 segment. */
3910
3911 if (last_hdr == NULL)
3912 {
3913 /* If we don't have a segment yet, then we don't need a new
3914 one (we build the last one after this loop). */
3915 new_segment = FALSE;
3916 }
3917 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3918 {
3919 /* If this section has a different relation between the
3920 virtual address and the load address, then we need a new
3921 segment. */
3922 new_segment = TRUE;
3923 }
3924 else if (hdr->lma < last_hdr->lma + last_size
3925 || last_hdr->lma + last_size < last_hdr->lma)
3926 {
3927 /* If this section has a load address that makes it overlap
3928 the previous section, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 /* In the next test we have to be careful when last_hdr->lma is close
3932 to the end of the address space. If the aligned address wraps
3933 around to the start of the address space, then there are no more
3934 pages left in memory and it is OK to assume that the current
3935 section can be included in the current segment. */
3936 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3937 > last_hdr->lma)
3938 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3939 <= hdr->lma))
3940 {
3941 /* If putting this section in this segment would force us to
3942 skip a page in the segment, then we need a new segment. */
3943 new_segment = TRUE;
3944 }
3945 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3946 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3947 {
3948 /* We don't want to put a loadable section after a
3949 nonloadable section in the same segment.
3950 Consider .tbss sections as loadable for this purpose. */
3951 new_segment = TRUE;
3952 }
3953 else if ((abfd->flags & D_PAGED) == 0)
3954 {
3955 /* If the file is not demand paged, which means that we
3956 don't require the sections to be correctly aligned in the
3957 file, then there is no other reason for a new segment. */
3958 new_segment = FALSE;
3959 }
3960 else if (! writable
3961 && (hdr->flags & SEC_READONLY) == 0
3962 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3963 != (hdr->lma & -maxpagesize)))
3964 {
3965 /* We don't want to put a writable section in a read only
3966 segment, unless they are on the same page in memory
3967 anyhow. We already know that the last section does not
3968 bring us past the current section on the page, so the
3969 only case in which the new section is not on the same
3970 page as the previous section is when the previous section
3971 ends precisely on a page boundary. */
3972 new_segment = TRUE;
3973 }
3974 else
3975 {
3976 /* Otherwise, we can use the same segment. */
3977 new_segment = FALSE;
3978 }
3979
3980 /* Allow interested parties a chance to override our decision. */
3981 if (last_hdr != NULL
3982 && info != NULL
3983 && info->callbacks->override_segment_assignment != NULL)
3984 new_segment
3985 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3986 last_hdr,
3987 new_segment);
3988
3989 if (! new_segment)
3990 {
3991 if ((hdr->flags & SEC_READONLY) == 0)
3992 writable = TRUE;
3993 last_hdr = hdr;
3994 /* .tbss sections effectively have zero size. */
3995 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3996 != SEC_THREAD_LOCAL)
3997 last_size = hdr->size;
3998 else
3999 last_size = 0;
4000 continue;
4001 }
4002
4003 /* We need a new program segment. We must create a new program
4004 header holding all the sections from phdr_index until hdr. */
4005
4006 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4007 if (m == NULL)
4008 goto error_return;
4009
4010 *pm = m;
4011 pm = &m->next;
4012
4013 if ((hdr->flags & SEC_READONLY) == 0)
4014 writable = TRUE;
4015 else
4016 writable = FALSE;
4017
4018 last_hdr = hdr;
4019 /* .tbss sections effectively have zero size. */
4020 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4021 last_size = hdr->size;
4022 else
4023 last_size = 0;
4024 phdr_index = i;
4025 phdr_in_segment = FALSE;
4026 }
4027
4028 /* Create a final PT_LOAD program segment, but not if it's just
4029 for .tbss. */
4030 if (last_hdr != NULL
4031 && (i - phdr_index != 1
4032 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4033 != SEC_THREAD_LOCAL)))
4034 {
4035 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4036 if (m == NULL)
4037 goto error_return;
4038
4039 *pm = m;
4040 pm = &m->next;
4041 }
4042
4043 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4044 if (dynsec != NULL)
4045 {
4046 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4047 if (m == NULL)
4048 goto error_return;
4049 *pm = m;
4050 pm = &m->next;
4051 }
4052
4053 /* For each batch of consecutive loadable .note sections,
4054 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4055 because if we link together nonloadable .note sections and
4056 loadable .note sections, we will generate two .note sections
4057 in the output file. FIXME: Using names for section types is
4058 bogus anyhow. */
4059 for (s = abfd->sections; s != NULL; s = s->next)
4060 {
4061 if ((s->flags & SEC_LOAD) != 0
4062 && CONST_STRNEQ (s->name, ".note"))
4063 {
4064 asection *s2;
4065
4066 count = 1;
4067 amt = sizeof (struct elf_segment_map);
4068 if (s->alignment_power == 2)
4069 for (s2 = s; s2->next != NULL; s2 = s2->next)
4070 {
4071 if (s2->next->alignment_power == 2
4072 && (s2->next->flags & SEC_LOAD) != 0
4073 && CONST_STRNEQ (s2->next->name, ".note")
4074 && align_power (s2->lma + s2->size, 2)
4075 == s2->next->lma)
4076 count++;
4077 else
4078 break;
4079 }
4080 amt += (count - 1) * sizeof (asection *);
4081 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4082 if (m == NULL)
4083 goto error_return;
4084 m->next = NULL;
4085 m->p_type = PT_NOTE;
4086 m->count = count;
4087 while (count > 1)
4088 {
4089 m->sections[m->count - count--] = s;
4090 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4091 s = s->next;
4092 }
4093 m->sections[m->count - 1] = s;
4094 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4095 *pm = m;
4096 pm = &m->next;
4097 }
4098 if (s->flags & SEC_THREAD_LOCAL)
4099 {
4100 if (! tls_count)
4101 first_tls = s;
4102 tls_count++;
4103 }
4104 }
4105
4106 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4107 if (tls_count > 0)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 amt += (tls_count - 1) * sizeof (asection *);
4111 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4112 if (m == NULL)
4113 goto error_return;
4114 m->next = NULL;
4115 m->p_type = PT_TLS;
4116 m->count = tls_count;
4117 /* Mandated PF_R. */
4118 m->p_flags = PF_R;
4119 m->p_flags_valid = 1;
4120 s = first_tls;
4121 for (i = 0; i < (unsigned int) tls_count; ++i)
4122 {
4123 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4124 {
4125 _bfd_error_handler
4126 (_("%B: TLS sections are not adjacent:"), abfd);
4127 s = first_tls;
4128 i = 0;
4129 while (i < (unsigned int) tls_count)
4130 {
4131 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4132 {
4133 _bfd_error_handler (_(" TLS: %A"), s);
4134 i++;
4135 }
4136 else
4137 _bfd_error_handler (_(" non-TLS: %A"), s);
4138 s = s->next;
4139 }
4140 bfd_set_error (bfd_error_bad_value);
4141 goto error_return;
4142 }
4143 m->sections[i] = s;
4144 s = s->next;
4145 }
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4152 segment. */
4153 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4154 if (eh_frame_hdr != NULL
4155 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4156 {
4157 amt = sizeof (struct elf_segment_map);
4158 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4159 if (m == NULL)
4160 goto error_return;
4161 m->next = NULL;
4162 m->p_type = PT_GNU_EH_FRAME;
4163 m->count = 1;
4164 m->sections[0] = eh_frame_hdr->output_section;
4165
4166 *pm = m;
4167 pm = &m->next;
4168 }
4169
4170 if (elf_stack_flags (abfd))
4171 {
4172 amt = sizeof (struct elf_segment_map);
4173 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4174 if (m == NULL)
4175 goto error_return;
4176 m->next = NULL;
4177 m->p_type = PT_GNU_STACK;
4178 m->p_flags = elf_stack_flags (abfd);
4179 m->p_align = bed->stack_align;
4180 m->p_flags_valid = 1;
4181 m->p_align_valid = m->p_align != 0;
4182 if (info->stacksize > 0)
4183 {
4184 m->p_size = info->stacksize;
4185 m->p_size_valid = 1;
4186 }
4187
4188 *pm = m;
4189 pm = &m->next;
4190 }
4191
4192 if (info != NULL && info->relro)
4193 {
4194 for (m = mfirst; m != NULL; m = m->next)
4195 {
4196 if (m->p_type == PT_LOAD
4197 && m->count != 0
4198 && m->sections[0]->vma >= info->relro_start
4199 && m->sections[0]->vma < info->relro_end)
4200 {
4201 i = m->count;
4202 while (--i != (unsigned) -1)
4203 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4204 == (SEC_LOAD | SEC_HAS_CONTENTS))
4205 break;
4206
4207 if (i != (unsigned) -1)
4208 break;
4209 }
4210 }
4211
4212 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4213 if (m != NULL)
4214 {
4215 amt = sizeof (struct elf_segment_map);
4216 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4217 if (m == NULL)
4218 goto error_return;
4219 m->next = NULL;
4220 m->p_type = PT_GNU_RELRO;
4221 m->p_flags = PF_R;
4222 m->p_flags_valid = 1;
4223
4224 *pm = m;
4225 pm = &m->next;
4226 }
4227 }
4228
4229 free (sections);
4230 elf_seg_map (abfd) = mfirst;
4231 }
4232
4233 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4234 return FALSE;
4235
4236 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4237 ++count;
4238 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4239
4240 return TRUE;
4241
4242 error_return:
4243 if (sections != NULL)
4244 free (sections);
4245 return FALSE;
4246 }
4247
4248 /* Sort sections by address. */
4249
4250 static int
4251 elf_sort_sections (const void *arg1, const void *arg2)
4252 {
4253 const asection *sec1 = *(const asection **) arg1;
4254 const asection *sec2 = *(const asection **) arg2;
4255 bfd_size_type size1, size2;
4256
4257 /* Sort by LMA first, since this is the address used to
4258 place the section into a segment. */
4259 if (sec1->lma < sec2->lma)
4260 return -1;
4261 else if (sec1->lma > sec2->lma)
4262 return 1;
4263
4264 /* Then sort by VMA. Normally the LMA and the VMA will be
4265 the same, and this will do nothing. */
4266 if (sec1->vma < sec2->vma)
4267 return -1;
4268 else if (sec1->vma > sec2->vma)
4269 return 1;
4270
4271 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4272
4273 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4274
4275 if (TOEND (sec1))
4276 {
4277 if (TOEND (sec2))
4278 {
4279 /* If the indicies are the same, do not return 0
4280 here, but continue to try the next comparison. */
4281 if (sec1->target_index - sec2->target_index != 0)
4282 return sec1->target_index - sec2->target_index;
4283 }
4284 else
4285 return 1;
4286 }
4287 else if (TOEND (sec2))
4288 return -1;
4289
4290 #undef TOEND
4291
4292 /* Sort by size, to put zero sized sections
4293 before others at the same address. */
4294
4295 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4296 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4297
4298 if (size1 < size2)
4299 return -1;
4300 if (size1 > size2)
4301 return 1;
4302
4303 return sec1->target_index - sec2->target_index;
4304 }
4305
4306 /* Ian Lance Taylor writes:
4307
4308 We shouldn't be using % with a negative signed number. That's just
4309 not good. We have to make sure either that the number is not
4310 negative, or that the number has an unsigned type. When the types
4311 are all the same size they wind up as unsigned. When file_ptr is a
4312 larger signed type, the arithmetic winds up as signed long long,
4313 which is wrong.
4314
4315 What we're trying to say here is something like ``increase OFF by
4316 the least amount that will cause it to be equal to the VMA modulo
4317 the page size.'' */
4318 /* In other words, something like:
4319
4320 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4321 off_offset = off % bed->maxpagesize;
4322 if (vma_offset < off_offset)
4323 adjustment = vma_offset + bed->maxpagesize - off_offset;
4324 else
4325 adjustment = vma_offset - off_offset;
4326
4327 which can can be collapsed into the expression below. */
4328
4329 static file_ptr
4330 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4331 {
4332 /* PR binutils/16199: Handle an alignment of zero. */
4333 if (maxpagesize == 0)
4334 maxpagesize = 1;
4335 return ((vma - off) % maxpagesize);
4336 }
4337
4338 static void
4339 print_segment_map (const struct elf_segment_map *m)
4340 {
4341 unsigned int j;
4342 const char *pt = get_segment_type (m->p_type);
4343 char buf[32];
4344
4345 if (pt == NULL)
4346 {
4347 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4348 sprintf (buf, "LOPROC+%7.7x",
4349 (unsigned int) (m->p_type - PT_LOPROC));
4350 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4351 sprintf (buf, "LOOS+%7.7x",
4352 (unsigned int) (m->p_type - PT_LOOS));
4353 else
4354 snprintf (buf, sizeof (buf), "%8.8x",
4355 (unsigned int) m->p_type);
4356 pt = buf;
4357 }
4358 fflush (stdout);
4359 fprintf (stderr, "%s:", pt);
4360 for (j = 0; j < m->count; j++)
4361 fprintf (stderr, " %s", m->sections [j]->name);
4362 putc ('\n',stderr);
4363 fflush (stderr);
4364 }
4365
4366 static bfd_boolean
4367 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4368 {
4369 void *buf;
4370 bfd_boolean ret;
4371
4372 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4373 return FALSE;
4374 buf = bfd_zmalloc (len);
4375 if (buf == NULL)
4376 return FALSE;
4377 ret = bfd_bwrite (buf, len, abfd) == len;
4378 free (buf);
4379 return ret;
4380 }
4381
4382 /* Assign file positions to the sections based on the mapping from
4383 sections to segments. This function also sets up some fields in
4384 the file header. */
4385
4386 static bfd_boolean
4387 assign_file_positions_for_load_sections (bfd *abfd,
4388 struct bfd_link_info *link_info)
4389 {
4390 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4391 struct elf_segment_map *m;
4392 Elf_Internal_Phdr *phdrs;
4393 Elf_Internal_Phdr *p;
4394 file_ptr off;
4395 bfd_size_type maxpagesize;
4396 unsigned int alloc;
4397 unsigned int i, j;
4398 bfd_vma header_pad = 0;
4399
4400 if (link_info == NULL
4401 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4402 return FALSE;
4403
4404 alloc = 0;
4405 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4406 {
4407 ++alloc;
4408 if (m->header_size)
4409 header_pad = m->header_size;
4410 }
4411
4412 if (alloc)
4413 {
4414 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4415 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4416 }
4417 else
4418 {
4419 /* PR binutils/12467. */
4420 elf_elfheader (abfd)->e_phoff = 0;
4421 elf_elfheader (abfd)->e_phentsize = 0;
4422 }
4423
4424 elf_elfheader (abfd)->e_phnum = alloc;
4425
4426 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4427 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4428 else
4429 BFD_ASSERT (elf_program_header_size (abfd)
4430 >= alloc * bed->s->sizeof_phdr);
4431
4432 if (alloc == 0)
4433 {
4434 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4435 return TRUE;
4436 }
4437
4438 /* We're writing the size in elf_program_header_size (abfd),
4439 see assign_file_positions_except_relocs, so make sure we have
4440 that amount allocated, with trailing space cleared.
4441 The variable alloc contains the computed need, while
4442 elf_program_header_size (abfd) contains the size used for the
4443 layout.
4444 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4445 where the layout is forced to according to a larger size in the
4446 last iterations for the testcase ld-elf/header. */
4447 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4448 == 0);
4449 phdrs = (Elf_Internal_Phdr *)
4450 bfd_zalloc2 (abfd,
4451 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4452 sizeof (Elf_Internal_Phdr));
4453 elf_tdata (abfd)->phdr = phdrs;
4454 if (phdrs == NULL)
4455 return FALSE;
4456
4457 maxpagesize = 1;
4458 if ((abfd->flags & D_PAGED) != 0)
4459 maxpagesize = bed->maxpagesize;
4460
4461 off = bed->s->sizeof_ehdr;
4462 off += alloc * bed->s->sizeof_phdr;
4463 if (header_pad < (bfd_vma) off)
4464 header_pad = 0;
4465 else
4466 header_pad -= off;
4467 off += header_pad;
4468
4469 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4470 m != NULL;
4471 m = m->next, p++, j++)
4472 {
4473 asection **secpp;
4474 bfd_vma off_adjust;
4475 bfd_boolean no_contents;
4476
4477 /* If elf_segment_map is not from map_sections_to_segments, the
4478 sections may not be correctly ordered. NOTE: sorting should
4479 not be done to the PT_NOTE section of a corefile, which may
4480 contain several pseudo-sections artificially created by bfd.
4481 Sorting these pseudo-sections breaks things badly. */
4482 if (m->count > 1
4483 && !(elf_elfheader (abfd)->e_type == ET_CORE
4484 && m->p_type == PT_NOTE))
4485 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4486 elf_sort_sections);
4487
4488 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4489 number of sections with contents contributing to both p_filesz
4490 and p_memsz, followed by a number of sections with no contents
4491 that just contribute to p_memsz. In this loop, OFF tracks next
4492 available file offset for PT_LOAD and PT_NOTE segments. */
4493 p->p_type = m->p_type;
4494 p->p_flags = m->p_flags;
4495
4496 if (m->count == 0)
4497 p->p_vaddr = 0;
4498 else
4499 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4500
4501 if (m->p_paddr_valid)
4502 p->p_paddr = m->p_paddr;
4503 else if (m->count == 0)
4504 p->p_paddr = 0;
4505 else
4506 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4507
4508 if (p->p_type == PT_LOAD
4509 && (abfd->flags & D_PAGED) != 0)
4510 {
4511 /* p_align in demand paged PT_LOAD segments effectively stores
4512 the maximum page size. When copying an executable with
4513 objcopy, we set m->p_align from the input file. Use this
4514 value for maxpagesize rather than bed->maxpagesize, which
4515 may be different. Note that we use maxpagesize for PT_TLS
4516 segment alignment later in this function, so we are relying
4517 on at least one PT_LOAD segment appearing before a PT_TLS
4518 segment. */
4519 if (m->p_align_valid)
4520 maxpagesize = m->p_align;
4521
4522 p->p_align = maxpagesize;
4523 }
4524 else if (m->p_align_valid)
4525 p->p_align = m->p_align;
4526 else if (m->count == 0)
4527 p->p_align = 1 << bed->s->log_file_align;
4528 else
4529 p->p_align = 0;
4530
4531 no_contents = FALSE;
4532 off_adjust = 0;
4533 if (p->p_type == PT_LOAD
4534 && m->count > 0)
4535 {
4536 bfd_size_type align;
4537 unsigned int align_power = 0;
4538
4539 if (m->p_align_valid)
4540 align = p->p_align;
4541 else
4542 {
4543 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4544 {
4545 unsigned int secalign;
4546
4547 secalign = bfd_get_section_alignment (abfd, *secpp);
4548 if (secalign > align_power)
4549 align_power = secalign;
4550 }
4551 align = (bfd_size_type) 1 << align_power;
4552 if (align < maxpagesize)
4553 align = maxpagesize;
4554 }
4555
4556 for (i = 0; i < m->count; i++)
4557 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4558 /* If we aren't making room for this section, then
4559 it must be SHT_NOBITS regardless of what we've
4560 set via struct bfd_elf_special_section. */
4561 elf_section_type (m->sections[i]) = SHT_NOBITS;
4562
4563 /* Find out whether this segment contains any loadable
4564 sections. */
4565 no_contents = TRUE;
4566 for (i = 0; i < m->count; i++)
4567 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4568 {
4569 no_contents = FALSE;
4570 break;
4571 }
4572
4573 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4574 off += off_adjust;
4575 if (no_contents)
4576 {
4577 /* We shouldn't need to align the segment on disk since
4578 the segment doesn't need file space, but the gABI
4579 arguably requires the alignment and glibc ld.so
4580 checks it. So to comply with the alignment
4581 requirement but not waste file space, we adjust
4582 p_offset for just this segment. (OFF_ADJUST is
4583 subtracted from OFF later.) This may put p_offset
4584 past the end of file, but that shouldn't matter. */
4585 }
4586 else
4587 off_adjust = 0;
4588 }
4589 /* Make sure the .dynamic section is the first section in the
4590 PT_DYNAMIC segment. */
4591 else if (p->p_type == PT_DYNAMIC
4592 && m->count > 1
4593 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4594 {
4595 _bfd_error_handler
4596 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4597 abfd);
4598 bfd_set_error (bfd_error_bad_value);
4599 return FALSE;
4600 }
4601 /* Set the note section type to SHT_NOTE. */
4602 else if (p->p_type == PT_NOTE)
4603 for (i = 0; i < m->count; i++)
4604 elf_section_type (m->sections[i]) = SHT_NOTE;
4605
4606 p->p_offset = 0;
4607 p->p_filesz = 0;
4608 p->p_memsz = 0;
4609
4610 if (m->includes_filehdr)
4611 {
4612 if (!m->p_flags_valid)
4613 p->p_flags |= PF_R;
4614 p->p_filesz = bed->s->sizeof_ehdr;
4615 p->p_memsz = bed->s->sizeof_ehdr;
4616 if (m->count > 0)
4617 {
4618 if (p->p_vaddr < (bfd_vma) off)
4619 {
4620 (*_bfd_error_handler)
4621 (_("%B: Not enough room for program headers, try linking with -N"),
4622 abfd);
4623 bfd_set_error (bfd_error_bad_value);
4624 return FALSE;
4625 }
4626
4627 p->p_vaddr -= off;
4628 if (!m->p_paddr_valid)
4629 p->p_paddr -= off;
4630 }
4631 }
4632
4633 if (m->includes_phdrs)
4634 {
4635 if (!m->p_flags_valid)
4636 p->p_flags |= PF_R;
4637
4638 if (!m->includes_filehdr)
4639 {
4640 p->p_offset = bed->s->sizeof_ehdr;
4641
4642 if (m->count > 0)
4643 {
4644 p->p_vaddr -= off - p->p_offset;
4645 if (!m->p_paddr_valid)
4646 p->p_paddr -= off - p->p_offset;
4647 }
4648 }
4649
4650 p->p_filesz += alloc * bed->s->sizeof_phdr;
4651 p->p_memsz += alloc * bed->s->sizeof_phdr;
4652 if (m->count)
4653 {
4654 p->p_filesz += header_pad;
4655 p->p_memsz += header_pad;
4656 }
4657 }
4658
4659 if (p->p_type == PT_LOAD
4660 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4661 {
4662 if (!m->includes_filehdr && !m->includes_phdrs)
4663 p->p_offset = off;
4664 else
4665 {
4666 file_ptr adjust;
4667
4668 adjust = off - (p->p_offset + p->p_filesz);
4669 if (!no_contents)
4670 p->p_filesz += adjust;
4671 p->p_memsz += adjust;
4672 }
4673 }
4674
4675 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4676 maps. Set filepos for sections in PT_LOAD segments, and in
4677 core files, for sections in PT_NOTE segments.
4678 assign_file_positions_for_non_load_sections will set filepos
4679 for other sections and update p_filesz for other segments. */
4680 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4681 {
4682 asection *sec;
4683 bfd_size_type align;
4684 Elf_Internal_Shdr *this_hdr;
4685
4686 sec = *secpp;
4687 this_hdr = &elf_section_data (sec)->this_hdr;
4688 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4689
4690 if ((p->p_type == PT_LOAD
4691 || p->p_type == PT_TLS)
4692 && (this_hdr->sh_type != SHT_NOBITS
4693 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4694 && ((this_hdr->sh_flags & SHF_TLS) == 0
4695 || p->p_type == PT_TLS))))
4696 {
4697 bfd_vma p_start = p->p_paddr;
4698 bfd_vma p_end = p_start + p->p_memsz;
4699 bfd_vma s_start = sec->lma;
4700 bfd_vma adjust = s_start - p_end;
4701
4702 if (adjust != 0
4703 && (s_start < p_end
4704 || p_end < p_start))
4705 {
4706 (*_bfd_error_handler)
4707 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4708 (unsigned long) s_start, (unsigned long) p_end);
4709 adjust = 0;
4710 sec->lma = p_end;
4711 }
4712 p->p_memsz += adjust;
4713
4714 if (this_hdr->sh_type != SHT_NOBITS)
4715 {
4716 if (p->p_filesz + adjust < p->p_memsz)
4717 {
4718 /* We have a PROGBITS section following NOBITS ones.
4719 Allocate file space for the NOBITS section(s) and
4720 zero it. */
4721 adjust = p->p_memsz - p->p_filesz;
4722 if (!write_zeros (abfd, off, adjust))
4723 return FALSE;
4724 }
4725 off += adjust;
4726 p->p_filesz += adjust;
4727 }
4728 }
4729
4730 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4731 {
4732 /* The section at i == 0 is the one that actually contains
4733 everything. */
4734 if (i == 0)
4735 {
4736 this_hdr->sh_offset = sec->filepos = off;
4737 off += this_hdr->sh_size;
4738 p->p_filesz = this_hdr->sh_size;
4739 p->p_memsz = 0;
4740 p->p_align = 1;
4741 }
4742 else
4743 {
4744 /* The rest are fake sections that shouldn't be written. */
4745 sec->filepos = 0;
4746 sec->size = 0;
4747 sec->flags = 0;
4748 continue;
4749 }
4750 }
4751 else
4752 {
4753 if (p->p_type == PT_LOAD)
4754 {
4755 this_hdr->sh_offset = sec->filepos = off;
4756 if (this_hdr->sh_type != SHT_NOBITS)
4757 off += this_hdr->sh_size;
4758 }
4759 else if (this_hdr->sh_type == SHT_NOBITS
4760 && (this_hdr->sh_flags & SHF_TLS) != 0
4761 && this_hdr->sh_offset == 0)
4762 {
4763 /* This is a .tbss section that didn't get a PT_LOAD.
4764 (See _bfd_elf_map_sections_to_segments "Create a
4765 final PT_LOAD".) Set sh_offset to the value it
4766 would have if we had created a zero p_filesz and
4767 p_memsz PT_LOAD header for the section. This
4768 also makes the PT_TLS header have the same
4769 p_offset value. */
4770 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4771 off, align);
4772 this_hdr->sh_offset = sec->filepos = off + adjust;
4773 }
4774
4775 if (this_hdr->sh_type != SHT_NOBITS)
4776 {
4777 p->p_filesz += this_hdr->sh_size;
4778 /* A load section without SHF_ALLOC is something like
4779 a note section in a PT_NOTE segment. These take
4780 file space but are not loaded into memory. */
4781 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4782 p->p_memsz += this_hdr->sh_size;
4783 }
4784 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4785 {
4786 if (p->p_type == PT_TLS)
4787 p->p_memsz += this_hdr->sh_size;
4788
4789 /* .tbss is special. It doesn't contribute to p_memsz of
4790 normal segments. */
4791 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4792 p->p_memsz += this_hdr->sh_size;
4793 }
4794
4795 if (align > p->p_align
4796 && !m->p_align_valid
4797 && (p->p_type != PT_LOAD
4798 || (abfd->flags & D_PAGED) == 0))
4799 p->p_align = align;
4800 }
4801
4802 if (!m->p_flags_valid)
4803 {
4804 p->p_flags |= PF_R;
4805 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4806 p->p_flags |= PF_X;
4807 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4808 p->p_flags |= PF_W;
4809 }
4810 }
4811
4812 off -= off_adjust;
4813
4814 /* Check that all sections are in a PT_LOAD segment.
4815 Don't check funky gdb generated core files. */
4816 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4817 {
4818 bfd_boolean check_vma = TRUE;
4819
4820 for (i = 1; i < m->count; i++)
4821 if (m->sections[i]->vma == m->sections[i - 1]->vma
4822 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4823 ->this_hdr), p) != 0
4824 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4825 ->this_hdr), p) != 0)
4826 {
4827 /* Looks like we have overlays packed into the segment. */
4828 check_vma = FALSE;
4829 break;
4830 }
4831
4832 for (i = 0; i < m->count; i++)
4833 {
4834 Elf_Internal_Shdr *this_hdr;
4835 asection *sec;
4836
4837 sec = m->sections[i];
4838 this_hdr = &(elf_section_data(sec)->this_hdr);
4839 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4840 && !ELF_TBSS_SPECIAL (this_hdr, p))
4841 {
4842 (*_bfd_error_handler)
4843 (_("%B: section `%A' can't be allocated in segment %d"),
4844 abfd, sec, j);
4845 print_segment_map (m);
4846 }
4847 }
4848 }
4849 }
4850
4851 elf_next_file_pos (abfd) = off;
4852 return TRUE;
4853 }
4854
4855 /* Assign file positions for the other sections. */
4856
4857 static bfd_boolean
4858 assign_file_positions_for_non_load_sections (bfd *abfd,
4859 struct bfd_link_info *link_info)
4860 {
4861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4862 Elf_Internal_Shdr **i_shdrpp;
4863 Elf_Internal_Shdr **hdrpp;
4864 Elf_Internal_Phdr *phdrs;
4865 Elf_Internal_Phdr *p;
4866 struct elf_segment_map *m;
4867 struct elf_segment_map *hdrs_segment;
4868 bfd_vma filehdr_vaddr, filehdr_paddr;
4869 bfd_vma phdrs_vaddr, phdrs_paddr;
4870 file_ptr off;
4871 unsigned int num_sec;
4872 unsigned int i;
4873 unsigned int count;
4874
4875 i_shdrpp = elf_elfsections (abfd);
4876 num_sec = elf_numsections (abfd);
4877 off = elf_next_file_pos (abfd);
4878 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4879 {
4880 Elf_Internal_Shdr *hdr;
4881
4882 hdr = *hdrpp;
4883 if (hdr->bfd_section != NULL
4884 && (hdr->bfd_section->filepos != 0
4885 || (hdr->sh_type == SHT_NOBITS
4886 && hdr->contents == NULL)))
4887 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4888 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4889 {
4890 if (hdr->sh_size != 0)
4891 (*_bfd_error_handler)
4892 (_("%B: warning: allocated section `%s' not in segment"),
4893 abfd,
4894 (hdr->bfd_section == NULL
4895 ? "*unknown*"
4896 : hdr->bfd_section->name));
4897 /* We don't need to page align empty sections. */
4898 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4899 off += vma_page_aligned_bias (hdr->sh_addr, off,
4900 bed->maxpagesize);
4901 else
4902 off += vma_page_aligned_bias (hdr->sh_addr, off,
4903 hdr->sh_addralign);
4904 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4905 FALSE);
4906 }
4907 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4908 && hdr->bfd_section == NULL)
4909 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4910 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4911 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4912 hdr->sh_offset = -1;
4913 else
4914 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4915 }
4916
4917 /* Now that we have set the section file positions, we can set up
4918 the file positions for the non PT_LOAD segments. */
4919 count = 0;
4920 filehdr_vaddr = 0;
4921 filehdr_paddr = 0;
4922 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4923 phdrs_paddr = 0;
4924 hdrs_segment = NULL;
4925 phdrs = elf_tdata (abfd)->phdr;
4926 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4927 {
4928 ++count;
4929 if (p->p_type != PT_LOAD)
4930 continue;
4931
4932 if (m->includes_filehdr)
4933 {
4934 filehdr_vaddr = p->p_vaddr;
4935 filehdr_paddr = p->p_paddr;
4936 }
4937 if (m->includes_phdrs)
4938 {
4939 phdrs_vaddr = p->p_vaddr;
4940 phdrs_paddr = p->p_paddr;
4941 if (m->includes_filehdr)
4942 {
4943 hdrs_segment = m;
4944 phdrs_vaddr += bed->s->sizeof_ehdr;
4945 phdrs_paddr += bed->s->sizeof_ehdr;
4946 }
4947 }
4948 }
4949
4950 if (hdrs_segment != NULL && link_info != NULL)
4951 {
4952 /* There is a segment that contains both the file headers and the
4953 program headers, so provide a symbol __ehdr_start pointing there.
4954 A program can use this to examine itself robustly. */
4955
4956 struct elf_link_hash_entry *hash
4957 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4958 FALSE, FALSE, TRUE);
4959 /* If the symbol was referenced and not defined, define it. */
4960 if (hash != NULL
4961 && (hash->root.type == bfd_link_hash_new
4962 || hash->root.type == bfd_link_hash_undefined
4963 || hash->root.type == bfd_link_hash_undefweak
4964 || hash->root.type == bfd_link_hash_common))
4965 {
4966 asection *s = NULL;
4967 if (hdrs_segment->count != 0)
4968 /* The segment contains sections, so use the first one. */
4969 s = hdrs_segment->sections[0];
4970 else
4971 /* Use the first (i.e. lowest-addressed) section in any segment. */
4972 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4973 if (m->count != 0)
4974 {
4975 s = m->sections[0];
4976 break;
4977 }
4978
4979 if (s != NULL)
4980 {
4981 hash->root.u.def.value = filehdr_vaddr - s->vma;
4982 hash->root.u.def.section = s;
4983 }
4984 else
4985 {
4986 hash->root.u.def.value = filehdr_vaddr;
4987 hash->root.u.def.section = bfd_abs_section_ptr;
4988 }
4989
4990 hash->root.type = bfd_link_hash_defined;
4991 hash->def_regular = 1;
4992 hash->non_elf = 0;
4993 }
4994 }
4995
4996 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4997 {
4998 if (p->p_type == PT_GNU_RELRO)
4999 {
5000 const Elf_Internal_Phdr *lp;
5001 struct elf_segment_map *lm;
5002
5003 if (link_info != NULL)
5004 {
5005 /* During linking the range of the RELRO segment is passed
5006 in link_info. */
5007 for (lm = elf_seg_map (abfd), lp = phdrs;
5008 lm != NULL;
5009 lm = lm->next, lp++)
5010 {
5011 if (lp->p_type == PT_LOAD
5012 && lp->p_vaddr < link_info->relro_end
5013 && lm->count != 0
5014 && lm->sections[0]->vma >= link_info->relro_start)
5015 break;
5016 }
5017
5018 BFD_ASSERT (lm != NULL);
5019 }
5020 else
5021 {
5022 /* Otherwise we are copying an executable or shared
5023 library, but we need to use the same linker logic. */
5024 for (lp = phdrs; lp < phdrs + count; ++lp)
5025 {
5026 if (lp->p_type == PT_LOAD
5027 && lp->p_paddr == p->p_paddr)
5028 break;
5029 }
5030 }
5031
5032 if (lp < phdrs + count)
5033 {
5034 p->p_vaddr = lp->p_vaddr;
5035 p->p_paddr = lp->p_paddr;
5036 p->p_offset = lp->p_offset;
5037 if (link_info != NULL)
5038 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5039 else if (m->p_size_valid)
5040 p->p_filesz = m->p_size;
5041 else
5042 abort ();
5043 p->p_memsz = p->p_filesz;
5044 /* Preserve the alignment and flags if they are valid. The
5045 gold linker generates RW/4 for the PT_GNU_RELRO section.
5046 It is better for objcopy/strip to honor these attributes
5047 otherwise gdb will choke when using separate debug files.
5048 */
5049 if (!m->p_align_valid)
5050 p->p_align = 1;
5051 if (!m->p_flags_valid)
5052 p->p_flags = (lp->p_flags & ~PF_W);
5053 }
5054 else
5055 {
5056 memset (p, 0, sizeof *p);
5057 p->p_type = PT_NULL;
5058 }
5059 }
5060 else if (p->p_type == PT_GNU_STACK)
5061 {
5062 if (m->p_size_valid)
5063 p->p_memsz = m->p_size;
5064 }
5065 else if (m->count != 0)
5066 {
5067 if (p->p_type != PT_LOAD
5068 && (p->p_type != PT_NOTE
5069 || bfd_get_format (abfd) != bfd_core))
5070 {
5071 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5072
5073 p->p_filesz = 0;
5074 p->p_offset = m->sections[0]->filepos;
5075 for (i = m->count; i-- != 0;)
5076 {
5077 asection *sect = m->sections[i];
5078 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5079 if (hdr->sh_type != SHT_NOBITS)
5080 {
5081 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5082 + hdr->sh_size);
5083 break;
5084 }
5085 }
5086 }
5087 }
5088 else if (m->includes_filehdr)
5089 {
5090 p->p_vaddr = filehdr_vaddr;
5091 if (! m->p_paddr_valid)
5092 p->p_paddr = filehdr_paddr;
5093 }
5094 else if (m->includes_phdrs)
5095 {
5096 p->p_vaddr = phdrs_vaddr;
5097 if (! m->p_paddr_valid)
5098 p->p_paddr = phdrs_paddr;
5099 }
5100 }
5101
5102 elf_next_file_pos (abfd) = off;
5103
5104 return TRUE;
5105 }
5106
5107 /* Work out the file positions of all the sections. This is called by
5108 _bfd_elf_compute_section_file_positions. All the section sizes and
5109 VMAs must be known before this is called.
5110
5111 Reloc sections come in two flavours: Those processed specially as
5112 "side-channel" data attached to a section to which they apply, and
5113 those that bfd doesn't process as relocations. The latter sort are
5114 stored in a normal bfd section by bfd_section_from_shdr. We don't
5115 consider the former sort here, unless they form part of the loadable
5116 image. Reloc sections not assigned here will be handled later by
5117 assign_file_positions_for_relocs.
5118
5119 We also don't set the positions of the .symtab and .strtab here. */
5120
5121 static bfd_boolean
5122 assign_file_positions_except_relocs (bfd *abfd,
5123 struct bfd_link_info *link_info)
5124 {
5125 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5126 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5127 file_ptr off;
5128 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5129
5130 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5131 && bfd_get_format (abfd) != bfd_core)
5132 {
5133 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5134 unsigned int num_sec = elf_numsections (abfd);
5135 Elf_Internal_Shdr **hdrpp;
5136 unsigned int i;
5137
5138 /* Start after the ELF header. */
5139 off = i_ehdrp->e_ehsize;
5140
5141 /* We are not creating an executable, which means that we are
5142 not creating a program header, and that the actual order of
5143 the sections in the file is unimportant. */
5144 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5145 {
5146 Elf_Internal_Shdr *hdr;
5147
5148 hdr = *hdrpp;
5149 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5150 && hdr->bfd_section == NULL)
5151 || i == elf_onesymtab (abfd)
5152 || i == elf_symtab_shndx (abfd)
5153 || i == elf_strtab_sec (abfd))
5154 {
5155 hdr->sh_offset = -1;
5156 }
5157 else
5158 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5159 }
5160 }
5161 else
5162 {
5163 unsigned int alloc;
5164
5165 /* Assign file positions for the loaded sections based on the
5166 assignment of sections to segments. */
5167 if (!assign_file_positions_for_load_sections (abfd, link_info))
5168 return FALSE;
5169
5170 /* And for non-load sections. */
5171 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5172 return FALSE;
5173
5174 if (bed->elf_backend_modify_program_headers != NULL)
5175 {
5176 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5177 return FALSE;
5178 }
5179
5180 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5181 if (link_info != NULL
5182 && link_info->executable
5183 && link_info->shared)
5184 {
5185 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5186 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5187 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5188
5189 /* Find the lowest p_vaddr in PT_LOAD segments. */
5190 bfd_vma p_vaddr = (bfd_vma) -1;
5191 for (; segment < end_segment; segment++)
5192 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5193 p_vaddr = segment->p_vaddr;
5194
5195 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5196 segments is non-zero. */
5197 if (p_vaddr)
5198 i_ehdrp->e_type = ET_EXEC;
5199 }
5200
5201 /* Write out the program headers. */
5202 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5203 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5204 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5205 return FALSE;
5206
5207 off = elf_next_file_pos (abfd);
5208 }
5209
5210 /* Place the section headers. */
5211 off = align_file_position (off, 1 << bed->s->log_file_align);
5212 i_ehdrp->e_shoff = off;
5213 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5214
5215 elf_next_file_pos (abfd) = off;
5216
5217 return TRUE;
5218 }
5219
5220 static bfd_boolean
5221 prep_headers (bfd *abfd)
5222 {
5223 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5224 struct elf_strtab_hash *shstrtab;
5225 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5226
5227 i_ehdrp = elf_elfheader (abfd);
5228
5229 shstrtab = _bfd_elf_strtab_init ();
5230 if (shstrtab == NULL)
5231 return FALSE;
5232
5233 elf_shstrtab (abfd) = shstrtab;
5234
5235 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5236 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5237 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5238 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5239
5240 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5241 i_ehdrp->e_ident[EI_DATA] =
5242 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5243 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5244
5245 if ((abfd->flags & DYNAMIC) != 0)
5246 i_ehdrp->e_type = ET_DYN;
5247 else if ((abfd->flags & EXEC_P) != 0)
5248 i_ehdrp->e_type = ET_EXEC;
5249 else if (bfd_get_format (abfd) == bfd_core)
5250 i_ehdrp->e_type = ET_CORE;
5251 else
5252 i_ehdrp->e_type = ET_REL;
5253
5254 switch (bfd_get_arch (abfd))
5255 {
5256 case bfd_arch_unknown:
5257 i_ehdrp->e_machine = EM_NONE;
5258 break;
5259
5260 /* There used to be a long list of cases here, each one setting
5261 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5262 in the corresponding bfd definition. To avoid duplication,
5263 the switch was removed. Machines that need special handling
5264 can generally do it in elf_backend_final_write_processing(),
5265 unless they need the information earlier than the final write.
5266 Such need can generally be supplied by replacing the tests for
5267 e_machine with the conditions used to determine it. */
5268 default:
5269 i_ehdrp->e_machine = bed->elf_machine_code;
5270 }
5271
5272 i_ehdrp->e_version = bed->s->ev_current;
5273 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5274
5275 /* No program header, for now. */
5276 i_ehdrp->e_phoff = 0;
5277 i_ehdrp->e_phentsize = 0;
5278 i_ehdrp->e_phnum = 0;
5279
5280 /* Each bfd section is section header entry. */
5281 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5282 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5283
5284 /* If we're building an executable, we'll need a program header table. */
5285 if (abfd->flags & EXEC_P)
5286 /* It all happens later. */
5287 ;
5288 else
5289 {
5290 i_ehdrp->e_phentsize = 0;
5291 i_ehdrp->e_phoff = 0;
5292 }
5293
5294 elf_tdata (abfd)->symtab_hdr.sh_name =
5295 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5296 elf_tdata (abfd)->strtab_hdr.sh_name =
5297 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5298 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5299 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5300 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5301 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5302 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5303 return FALSE;
5304
5305 return TRUE;
5306 }
5307
5308 /* Assign file positions for all the reloc sections which are not part
5309 of the loadable file image. */
5310
5311 void
5312 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5313 {
5314 file_ptr off;
5315 unsigned int i, num_sec;
5316 Elf_Internal_Shdr **shdrpp;
5317
5318 off = elf_next_file_pos (abfd);
5319
5320 num_sec = elf_numsections (abfd);
5321 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5322 {
5323 Elf_Internal_Shdr *shdrp;
5324
5325 shdrp = *shdrpp;
5326 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5327 && shdrp->sh_offset == -1)
5328 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5329 }
5330
5331 elf_next_file_pos (abfd) = off;
5332 }
5333
5334 bfd_boolean
5335 _bfd_elf_write_object_contents (bfd *abfd)
5336 {
5337 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5338 Elf_Internal_Shdr **i_shdrp;
5339 bfd_boolean failed;
5340 unsigned int count, num_sec;
5341 struct elf_obj_tdata *t;
5342
5343 if (! abfd->output_has_begun
5344 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5345 return FALSE;
5346
5347 i_shdrp = elf_elfsections (abfd);
5348
5349 failed = FALSE;
5350 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5351 if (failed)
5352 return FALSE;
5353
5354 _bfd_elf_assign_file_positions_for_relocs (abfd);
5355
5356 /* After writing the headers, we need to write the sections too... */
5357 num_sec = elf_numsections (abfd);
5358 for (count = 1; count < num_sec; count++)
5359 {
5360 if (bed->elf_backend_section_processing)
5361 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5362 if (i_shdrp[count]->contents)
5363 {
5364 bfd_size_type amt = i_shdrp[count]->sh_size;
5365
5366 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5367 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5368 return FALSE;
5369 }
5370 }
5371
5372 /* Write out the section header names. */
5373 t = elf_tdata (abfd);
5374 if (elf_shstrtab (abfd) != NULL
5375 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5376 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5377 return FALSE;
5378
5379 if (bed->elf_backend_final_write_processing)
5380 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5381
5382 if (!bed->s->write_shdrs_and_ehdr (abfd))
5383 return FALSE;
5384
5385 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5386 if (t->o->build_id.after_write_object_contents != NULL)
5387 return (*t->o->build_id.after_write_object_contents) (abfd);
5388
5389 return TRUE;
5390 }
5391
5392 bfd_boolean
5393 _bfd_elf_write_corefile_contents (bfd *abfd)
5394 {
5395 /* Hopefully this can be done just like an object file. */
5396 return _bfd_elf_write_object_contents (abfd);
5397 }
5398
5399 /* Given a section, search the header to find them. */
5400
5401 unsigned int
5402 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5403 {
5404 const struct elf_backend_data *bed;
5405 unsigned int sec_index;
5406
5407 if (elf_section_data (asect) != NULL
5408 && elf_section_data (asect)->this_idx != 0)
5409 return elf_section_data (asect)->this_idx;
5410
5411 if (bfd_is_abs_section (asect))
5412 sec_index = SHN_ABS;
5413 else if (bfd_is_com_section (asect))
5414 sec_index = SHN_COMMON;
5415 else if (bfd_is_und_section (asect))
5416 sec_index = SHN_UNDEF;
5417 else
5418 sec_index = SHN_BAD;
5419
5420 bed = get_elf_backend_data (abfd);
5421 if (bed->elf_backend_section_from_bfd_section)
5422 {
5423 int retval = sec_index;
5424
5425 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5426 return retval;
5427 }
5428
5429 if (sec_index == SHN_BAD)
5430 bfd_set_error (bfd_error_nonrepresentable_section);
5431
5432 return sec_index;
5433 }
5434
5435 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5436 on error. */
5437
5438 int
5439 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5440 {
5441 asymbol *asym_ptr = *asym_ptr_ptr;
5442 int idx;
5443 flagword flags = asym_ptr->flags;
5444
5445 /* When gas creates relocations against local labels, it creates its
5446 own symbol for the section, but does put the symbol into the
5447 symbol chain, so udata is 0. When the linker is generating
5448 relocatable output, this section symbol may be for one of the
5449 input sections rather than the output section. */
5450 if (asym_ptr->udata.i == 0
5451 && (flags & BSF_SECTION_SYM)
5452 && asym_ptr->section)
5453 {
5454 asection *sec;
5455 int indx;
5456
5457 sec = asym_ptr->section;
5458 if (sec->owner != abfd && sec->output_section != NULL)
5459 sec = sec->output_section;
5460 if (sec->owner == abfd
5461 && (indx = sec->index) < elf_num_section_syms (abfd)
5462 && elf_section_syms (abfd)[indx] != NULL)
5463 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5464 }
5465
5466 idx = asym_ptr->udata.i;
5467
5468 if (idx == 0)
5469 {
5470 /* This case can occur when using --strip-symbol on a symbol
5471 which is used in a relocation entry. */
5472 (*_bfd_error_handler)
5473 (_("%B: symbol `%s' required but not present"),
5474 abfd, bfd_asymbol_name (asym_ptr));
5475 bfd_set_error (bfd_error_no_symbols);
5476 return -1;
5477 }
5478
5479 #if DEBUG & 4
5480 {
5481 fprintf (stderr,
5482 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5483 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5484 fflush (stderr);
5485 }
5486 #endif
5487
5488 return idx;
5489 }
5490
5491 /* Rewrite program header information. */
5492
5493 static bfd_boolean
5494 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5495 {
5496 Elf_Internal_Ehdr *iehdr;
5497 struct elf_segment_map *map;
5498 struct elf_segment_map *map_first;
5499 struct elf_segment_map **pointer_to_map;
5500 Elf_Internal_Phdr *segment;
5501 asection *section;
5502 unsigned int i;
5503 unsigned int num_segments;
5504 bfd_boolean phdr_included = FALSE;
5505 bfd_boolean p_paddr_valid;
5506 bfd_vma maxpagesize;
5507 struct elf_segment_map *phdr_adjust_seg = NULL;
5508 unsigned int phdr_adjust_num = 0;
5509 const struct elf_backend_data *bed;
5510
5511 bed = get_elf_backend_data (ibfd);
5512 iehdr = elf_elfheader (ibfd);
5513
5514 map_first = NULL;
5515 pointer_to_map = &map_first;
5516
5517 num_segments = elf_elfheader (ibfd)->e_phnum;
5518 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5519
5520 /* Returns the end address of the segment + 1. */
5521 #define SEGMENT_END(segment, start) \
5522 (start + (segment->p_memsz > segment->p_filesz \
5523 ? segment->p_memsz : segment->p_filesz))
5524
5525 #define SECTION_SIZE(section, segment) \
5526 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5527 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5528 ? section->size : 0)
5529
5530 /* Returns TRUE if the given section is contained within
5531 the given segment. VMA addresses are compared. */
5532 #define IS_CONTAINED_BY_VMA(section, segment) \
5533 (section->vma >= segment->p_vaddr \
5534 && (section->vma + SECTION_SIZE (section, segment) \
5535 <= (SEGMENT_END (segment, segment->p_vaddr))))
5536
5537 /* Returns TRUE if the given section is contained within
5538 the given segment. LMA addresses are compared. */
5539 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5540 (section->lma >= base \
5541 && (section->lma + SECTION_SIZE (section, segment) \
5542 <= SEGMENT_END (segment, base)))
5543
5544 /* Handle PT_NOTE segment. */
5545 #define IS_NOTE(p, s) \
5546 (p->p_type == PT_NOTE \
5547 && elf_section_type (s) == SHT_NOTE \
5548 && (bfd_vma) s->filepos >= p->p_offset \
5549 && ((bfd_vma) s->filepos + s->size \
5550 <= p->p_offset + p->p_filesz))
5551
5552 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5553 etc. */
5554 #define IS_COREFILE_NOTE(p, s) \
5555 (IS_NOTE (p, s) \
5556 && bfd_get_format (ibfd) == bfd_core \
5557 && s->vma == 0 \
5558 && s->lma == 0)
5559
5560 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5561 linker, which generates a PT_INTERP section with p_vaddr and
5562 p_memsz set to 0. */
5563 #define IS_SOLARIS_PT_INTERP(p, s) \
5564 (p->p_vaddr == 0 \
5565 && p->p_paddr == 0 \
5566 && p->p_memsz == 0 \
5567 && p->p_filesz > 0 \
5568 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5569 && s->size > 0 \
5570 && (bfd_vma) s->filepos >= p->p_offset \
5571 && ((bfd_vma) s->filepos + s->size \
5572 <= p->p_offset + p->p_filesz))
5573
5574 /* Decide if the given section should be included in the given segment.
5575 A section will be included if:
5576 1. It is within the address space of the segment -- we use the LMA
5577 if that is set for the segment and the VMA otherwise,
5578 2. It is an allocated section or a NOTE section in a PT_NOTE
5579 segment.
5580 3. There is an output section associated with it,
5581 4. The section has not already been allocated to a previous segment.
5582 5. PT_GNU_STACK segments do not include any sections.
5583 6. PT_TLS segment includes only SHF_TLS sections.
5584 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5585 8. PT_DYNAMIC should not contain empty sections at the beginning
5586 (with the possible exception of .dynamic). */
5587 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5588 ((((segment->p_paddr \
5589 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5590 : IS_CONTAINED_BY_VMA (section, segment)) \
5591 && (section->flags & SEC_ALLOC) != 0) \
5592 || IS_NOTE (segment, section)) \
5593 && segment->p_type != PT_GNU_STACK \
5594 && (segment->p_type != PT_TLS \
5595 || (section->flags & SEC_THREAD_LOCAL)) \
5596 && (segment->p_type == PT_LOAD \
5597 || segment->p_type == PT_TLS \
5598 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5599 && (segment->p_type != PT_DYNAMIC \
5600 || SECTION_SIZE (section, segment) > 0 \
5601 || (segment->p_paddr \
5602 ? segment->p_paddr != section->lma \
5603 : segment->p_vaddr != section->vma) \
5604 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5605 == 0)) \
5606 && !section->segment_mark)
5607
5608 /* If the output section of a section in the input segment is NULL,
5609 it is removed from the corresponding output segment. */
5610 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5611 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5612 && section->output_section != NULL)
5613
5614 /* Returns TRUE iff seg1 starts after the end of seg2. */
5615 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5616 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5617
5618 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5619 their VMA address ranges and their LMA address ranges overlap.
5620 It is possible to have overlapping VMA ranges without overlapping LMA
5621 ranges. RedBoot images for example can have both .data and .bss mapped
5622 to the same VMA range, but with the .data section mapped to a different
5623 LMA. */
5624 #define SEGMENT_OVERLAPS(seg1, seg2) \
5625 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5626 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5627 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5628 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5629
5630 /* Initialise the segment mark field. */
5631 for (section = ibfd->sections; section != NULL; section = section->next)
5632 section->segment_mark = FALSE;
5633
5634 /* The Solaris linker creates program headers in which all the
5635 p_paddr fields are zero. When we try to objcopy or strip such a
5636 file, we get confused. Check for this case, and if we find it
5637 don't set the p_paddr_valid fields. */
5638 p_paddr_valid = FALSE;
5639 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5640 i < num_segments;
5641 i++, segment++)
5642 if (segment->p_paddr != 0)
5643 {
5644 p_paddr_valid = TRUE;
5645 break;
5646 }
5647
5648 /* Scan through the segments specified in the program header
5649 of the input BFD. For this first scan we look for overlaps
5650 in the loadable segments. These can be created by weird
5651 parameters to objcopy. Also, fix some solaris weirdness. */
5652 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5653 i < num_segments;
5654 i++, segment++)
5655 {
5656 unsigned int j;
5657 Elf_Internal_Phdr *segment2;
5658
5659 if (segment->p_type == PT_INTERP)
5660 for (section = ibfd->sections; section; section = section->next)
5661 if (IS_SOLARIS_PT_INTERP (segment, section))
5662 {
5663 /* Mininal change so that the normal section to segment
5664 assignment code will work. */
5665 segment->p_vaddr = section->vma;
5666 break;
5667 }
5668
5669 if (segment->p_type != PT_LOAD)
5670 {
5671 /* Remove PT_GNU_RELRO segment. */
5672 if (segment->p_type == PT_GNU_RELRO)
5673 segment->p_type = PT_NULL;
5674 continue;
5675 }
5676
5677 /* Determine if this segment overlaps any previous segments. */
5678 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5679 {
5680 bfd_signed_vma extra_length;
5681
5682 if (segment2->p_type != PT_LOAD
5683 || !SEGMENT_OVERLAPS (segment, segment2))
5684 continue;
5685
5686 /* Merge the two segments together. */
5687 if (segment2->p_vaddr < segment->p_vaddr)
5688 {
5689 /* Extend SEGMENT2 to include SEGMENT and then delete
5690 SEGMENT. */
5691 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5692 - SEGMENT_END (segment2, segment2->p_vaddr));
5693
5694 if (extra_length > 0)
5695 {
5696 segment2->p_memsz += extra_length;
5697 segment2->p_filesz += extra_length;
5698 }
5699
5700 segment->p_type = PT_NULL;
5701
5702 /* Since we have deleted P we must restart the outer loop. */
5703 i = 0;
5704 segment = elf_tdata (ibfd)->phdr;
5705 break;
5706 }
5707 else
5708 {
5709 /* Extend SEGMENT to include SEGMENT2 and then delete
5710 SEGMENT2. */
5711 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5712 - SEGMENT_END (segment, segment->p_vaddr));
5713
5714 if (extra_length > 0)
5715 {
5716 segment->p_memsz += extra_length;
5717 segment->p_filesz += extra_length;
5718 }
5719
5720 segment2->p_type = PT_NULL;
5721 }
5722 }
5723 }
5724
5725 /* The second scan attempts to assign sections to segments. */
5726 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5727 i < num_segments;
5728 i++, segment++)
5729 {
5730 unsigned int section_count;
5731 asection **sections;
5732 asection *output_section;
5733 unsigned int isec;
5734 bfd_vma matching_lma;
5735 bfd_vma suggested_lma;
5736 unsigned int j;
5737 bfd_size_type amt;
5738 asection *first_section;
5739 bfd_boolean first_matching_lma;
5740 bfd_boolean first_suggested_lma;
5741
5742 if (segment->p_type == PT_NULL)
5743 continue;
5744
5745 first_section = NULL;
5746 /* Compute how many sections might be placed into this segment. */
5747 for (section = ibfd->sections, section_count = 0;
5748 section != NULL;
5749 section = section->next)
5750 {
5751 /* Find the first section in the input segment, which may be
5752 removed from the corresponding output segment. */
5753 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5754 {
5755 if (first_section == NULL)
5756 first_section = section;
5757 if (section->output_section != NULL)
5758 ++section_count;
5759 }
5760 }
5761
5762 /* Allocate a segment map big enough to contain
5763 all of the sections we have selected. */
5764 amt = sizeof (struct elf_segment_map);
5765 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5766 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5767 if (map == NULL)
5768 return FALSE;
5769
5770 /* Initialise the fields of the segment map. Default to
5771 using the physical address of the segment in the input BFD. */
5772 map->next = NULL;
5773 map->p_type = segment->p_type;
5774 map->p_flags = segment->p_flags;
5775 map->p_flags_valid = 1;
5776
5777 /* If the first section in the input segment is removed, there is
5778 no need to preserve segment physical address in the corresponding
5779 output segment. */
5780 if (!first_section || first_section->output_section != NULL)
5781 {
5782 map->p_paddr = segment->p_paddr;
5783 map->p_paddr_valid = p_paddr_valid;
5784 }
5785
5786 /* Determine if this segment contains the ELF file header
5787 and if it contains the program headers themselves. */
5788 map->includes_filehdr = (segment->p_offset == 0
5789 && segment->p_filesz >= iehdr->e_ehsize);
5790 map->includes_phdrs = 0;
5791
5792 if (!phdr_included || segment->p_type != PT_LOAD)
5793 {
5794 map->includes_phdrs =
5795 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5796 && (segment->p_offset + segment->p_filesz
5797 >= ((bfd_vma) iehdr->e_phoff
5798 + iehdr->e_phnum * iehdr->e_phentsize)));
5799
5800 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5801 phdr_included = TRUE;
5802 }
5803
5804 if (section_count == 0)
5805 {
5806 /* Special segments, such as the PT_PHDR segment, may contain
5807 no sections, but ordinary, loadable segments should contain
5808 something. They are allowed by the ELF spec however, so only
5809 a warning is produced. */
5810 if (segment->p_type == PT_LOAD)
5811 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5812 " detected, is this intentional ?\n"),
5813 ibfd);
5814
5815 map->count = 0;
5816 *pointer_to_map = map;
5817 pointer_to_map = &map->next;
5818
5819 continue;
5820 }
5821
5822 /* Now scan the sections in the input BFD again and attempt
5823 to add their corresponding output sections to the segment map.
5824 The problem here is how to handle an output section which has
5825 been moved (ie had its LMA changed). There are four possibilities:
5826
5827 1. None of the sections have been moved.
5828 In this case we can continue to use the segment LMA from the
5829 input BFD.
5830
5831 2. All of the sections have been moved by the same amount.
5832 In this case we can change the segment's LMA to match the LMA
5833 of the first section.
5834
5835 3. Some of the sections have been moved, others have not.
5836 In this case those sections which have not been moved can be
5837 placed in the current segment which will have to have its size,
5838 and possibly its LMA changed, and a new segment or segments will
5839 have to be created to contain the other sections.
5840
5841 4. The sections have been moved, but not by the same amount.
5842 In this case we can change the segment's LMA to match the LMA
5843 of the first section and we will have to create a new segment
5844 or segments to contain the other sections.
5845
5846 In order to save time, we allocate an array to hold the section
5847 pointers that we are interested in. As these sections get assigned
5848 to a segment, they are removed from this array. */
5849
5850 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5851 if (sections == NULL)
5852 return FALSE;
5853
5854 /* Step One: Scan for segment vs section LMA conflicts.
5855 Also add the sections to the section array allocated above.
5856 Also add the sections to the current segment. In the common
5857 case, where the sections have not been moved, this means that
5858 we have completely filled the segment, and there is nothing
5859 more to do. */
5860 isec = 0;
5861 matching_lma = 0;
5862 suggested_lma = 0;
5863 first_matching_lma = TRUE;
5864 first_suggested_lma = TRUE;
5865
5866 for (section = ibfd->sections;
5867 section != NULL;
5868 section = section->next)
5869 if (section == first_section)
5870 break;
5871
5872 for (j = 0; section != NULL; section = section->next)
5873 {
5874 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5875 {
5876 output_section = section->output_section;
5877
5878 sections[j++] = section;
5879
5880 /* The Solaris native linker always sets p_paddr to 0.
5881 We try to catch that case here, and set it to the
5882 correct value. Note - some backends require that
5883 p_paddr be left as zero. */
5884 if (!p_paddr_valid
5885 && segment->p_vaddr != 0
5886 && !bed->want_p_paddr_set_to_zero
5887 && isec == 0
5888 && output_section->lma != 0
5889 && output_section->vma == (segment->p_vaddr
5890 + (map->includes_filehdr
5891 ? iehdr->e_ehsize
5892 : 0)
5893 + (map->includes_phdrs
5894 ? (iehdr->e_phnum
5895 * iehdr->e_phentsize)
5896 : 0)))
5897 map->p_paddr = segment->p_vaddr;
5898
5899 /* Match up the physical address of the segment with the
5900 LMA address of the output section. */
5901 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5902 || IS_COREFILE_NOTE (segment, section)
5903 || (bed->want_p_paddr_set_to_zero
5904 && IS_CONTAINED_BY_VMA (output_section, segment)))
5905 {
5906 if (first_matching_lma || output_section->lma < matching_lma)
5907 {
5908 matching_lma = output_section->lma;
5909 first_matching_lma = FALSE;
5910 }
5911
5912 /* We assume that if the section fits within the segment
5913 then it does not overlap any other section within that
5914 segment. */
5915 map->sections[isec++] = output_section;
5916 }
5917 else if (first_suggested_lma)
5918 {
5919 suggested_lma = output_section->lma;
5920 first_suggested_lma = FALSE;
5921 }
5922
5923 if (j == section_count)
5924 break;
5925 }
5926 }
5927
5928 BFD_ASSERT (j == section_count);
5929
5930 /* Step Two: Adjust the physical address of the current segment,
5931 if necessary. */
5932 if (isec == section_count)
5933 {
5934 /* All of the sections fitted within the segment as currently
5935 specified. This is the default case. Add the segment to
5936 the list of built segments and carry on to process the next
5937 program header in the input BFD. */
5938 map->count = section_count;
5939 *pointer_to_map = map;
5940 pointer_to_map = &map->next;
5941
5942 if (p_paddr_valid
5943 && !bed->want_p_paddr_set_to_zero
5944 && matching_lma != map->p_paddr
5945 && !map->includes_filehdr
5946 && !map->includes_phdrs)
5947 /* There is some padding before the first section in the
5948 segment. So, we must account for that in the output
5949 segment's vma. */
5950 map->p_vaddr_offset = matching_lma - map->p_paddr;
5951
5952 free (sections);
5953 continue;
5954 }
5955 else
5956 {
5957 if (!first_matching_lma)
5958 {
5959 /* At least one section fits inside the current segment.
5960 Keep it, but modify its physical address to match the
5961 LMA of the first section that fitted. */
5962 map->p_paddr = matching_lma;
5963 }
5964 else
5965 {
5966 /* None of the sections fitted inside the current segment.
5967 Change the current segment's physical address to match
5968 the LMA of the first section. */
5969 map->p_paddr = suggested_lma;
5970 }
5971
5972 /* Offset the segment physical address from the lma
5973 to allow for space taken up by elf headers. */
5974 if (map->includes_filehdr)
5975 {
5976 if (map->p_paddr >= iehdr->e_ehsize)
5977 map->p_paddr -= iehdr->e_ehsize;
5978 else
5979 {
5980 map->includes_filehdr = FALSE;
5981 map->includes_phdrs = FALSE;
5982 }
5983 }
5984
5985 if (map->includes_phdrs)
5986 {
5987 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5988 {
5989 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5990
5991 /* iehdr->e_phnum is just an estimate of the number
5992 of program headers that we will need. Make a note
5993 here of the number we used and the segment we chose
5994 to hold these headers, so that we can adjust the
5995 offset when we know the correct value. */
5996 phdr_adjust_num = iehdr->e_phnum;
5997 phdr_adjust_seg = map;
5998 }
5999 else
6000 map->includes_phdrs = FALSE;
6001 }
6002 }
6003
6004 /* Step Three: Loop over the sections again, this time assigning
6005 those that fit to the current segment and removing them from the
6006 sections array; but making sure not to leave large gaps. Once all
6007 possible sections have been assigned to the current segment it is
6008 added to the list of built segments and if sections still remain
6009 to be assigned, a new segment is constructed before repeating
6010 the loop. */
6011 isec = 0;
6012 do
6013 {
6014 map->count = 0;
6015 suggested_lma = 0;
6016 first_suggested_lma = TRUE;
6017
6018 /* Fill the current segment with sections that fit. */
6019 for (j = 0; j < section_count; j++)
6020 {
6021 section = sections[j];
6022
6023 if (section == NULL)
6024 continue;
6025
6026 output_section = section->output_section;
6027
6028 BFD_ASSERT (output_section != NULL);
6029
6030 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6031 || IS_COREFILE_NOTE (segment, section))
6032 {
6033 if (map->count == 0)
6034 {
6035 /* If the first section in a segment does not start at
6036 the beginning of the segment, then something is
6037 wrong. */
6038 if (output_section->lma
6039 != (map->p_paddr
6040 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6041 + (map->includes_phdrs
6042 ? iehdr->e_phnum * iehdr->e_phentsize
6043 : 0)))
6044 abort ();
6045 }
6046 else
6047 {
6048 asection *prev_sec;
6049
6050 prev_sec = map->sections[map->count - 1];
6051
6052 /* If the gap between the end of the previous section
6053 and the start of this section is more than
6054 maxpagesize then we need to start a new segment. */
6055 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6056 maxpagesize)
6057 < BFD_ALIGN (output_section->lma, maxpagesize))
6058 || (prev_sec->lma + prev_sec->size
6059 > output_section->lma))
6060 {
6061 if (first_suggested_lma)
6062 {
6063 suggested_lma = output_section->lma;
6064 first_suggested_lma = FALSE;
6065 }
6066
6067 continue;
6068 }
6069 }
6070
6071 map->sections[map->count++] = output_section;
6072 ++isec;
6073 sections[j] = NULL;
6074 section->segment_mark = TRUE;
6075 }
6076 else if (first_suggested_lma)
6077 {
6078 suggested_lma = output_section->lma;
6079 first_suggested_lma = FALSE;
6080 }
6081 }
6082
6083 BFD_ASSERT (map->count > 0);
6084
6085 /* Add the current segment to the list of built segments. */
6086 *pointer_to_map = map;
6087 pointer_to_map = &map->next;
6088
6089 if (isec < section_count)
6090 {
6091 /* We still have not allocated all of the sections to
6092 segments. Create a new segment here, initialise it
6093 and carry on looping. */
6094 amt = sizeof (struct elf_segment_map);
6095 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6096 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6097 if (map == NULL)
6098 {
6099 free (sections);
6100 return FALSE;
6101 }
6102
6103 /* Initialise the fields of the segment map. Set the physical
6104 physical address to the LMA of the first section that has
6105 not yet been assigned. */
6106 map->next = NULL;
6107 map->p_type = segment->p_type;
6108 map->p_flags = segment->p_flags;
6109 map->p_flags_valid = 1;
6110 map->p_paddr = suggested_lma;
6111 map->p_paddr_valid = p_paddr_valid;
6112 map->includes_filehdr = 0;
6113 map->includes_phdrs = 0;
6114 }
6115 }
6116 while (isec < section_count);
6117
6118 free (sections);
6119 }
6120
6121 elf_seg_map (obfd) = map_first;
6122
6123 /* If we had to estimate the number of program headers that were
6124 going to be needed, then check our estimate now and adjust
6125 the offset if necessary. */
6126 if (phdr_adjust_seg != NULL)
6127 {
6128 unsigned int count;
6129
6130 for (count = 0, map = map_first; map != NULL; map = map->next)
6131 count++;
6132
6133 if (count > phdr_adjust_num)
6134 phdr_adjust_seg->p_paddr
6135 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6136 }
6137
6138 #undef SEGMENT_END
6139 #undef SECTION_SIZE
6140 #undef IS_CONTAINED_BY_VMA
6141 #undef IS_CONTAINED_BY_LMA
6142 #undef IS_NOTE
6143 #undef IS_COREFILE_NOTE
6144 #undef IS_SOLARIS_PT_INTERP
6145 #undef IS_SECTION_IN_INPUT_SEGMENT
6146 #undef INCLUDE_SECTION_IN_SEGMENT
6147 #undef SEGMENT_AFTER_SEGMENT
6148 #undef SEGMENT_OVERLAPS
6149 return TRUE;
6150 }
6151
6152 /* Copy ELF program header information. */
6153
6154 static bfd_boolean
6155 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6156 {
6157 Elf_Internal_Ehdr *iehdr;
6158 struct elf_segment_map *map;
6159 struct elf_segment_map *map_first;
6160 struct elf_segment_map **pointer_to_map;
6161 Elf_Internal_Phdr *segment;
6162 unsigned int i;
6163 unsigned int num_segments;
6164 bfd_boolean phdr_included = FALSE;
6165 bfd_boolean p_paddr_valid;
6166
6167 iehdr = elf_elfheader (ibfd);
6168
6169 map_first = NULL;
6170 pointer_to_map = &map_first;
6171
6172 /* If all the segment p_paddr fields are zero, don't set
6173 map->p_paddr_valid. */
6174 p_paddr_valid = FALSE;
6175 num_segments = elf_elfheader (ibfd)->e_phnum;
6176 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6177 i < num_segments;
6178 i++, segment++)
6179 if (segment->p_paddr != 0)
6180 {
6181 p_paddr_valid = TRUE;
6182 break;
6183 }
6184
6185 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6186 i < num_segments;
6187 i++, segment++)
6188 {
6189 asection *section;
6190 unsigned int section_count;
6191 bfd_size_type amt;
6192 Elf_Internal_Shdr *this_hdr;
6193 asection *first_section = NULL;
6194 asection *lowest_section;
6195
6196 /* Compute how many sections are in this segment. */
6197 for (section = ibfd->sections, section_count = 0;
6198 section != NULL;
6199 section = section->next)
6200 {
6201 this_hdr = &(elf_section_data(section)->this_hdr);
6202 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6203 {
6204 if (first_section == NULL)
6205 first_section = section;
6206 section_count++;
6207 }
6208 }
6209
6210 /* Allocate a segment map big enough to contain
6211 all of the sections we have selected. */
6212 amt = sizeof (struct elf_segment_map);
6213 if (section_count != 0)
6214 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6215 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6216 if (map == NULL)
6217 return FALSE;
6218
6219 /* Initialize the fields of the output segment map with the
6220 input segment. */
6221 map->next = NULL;
6222 map->p_type = segment->p_type;
6223 map->p_flags = segment->p_flags;
6224 map->p_flags_valid = 1;
6225 map->p_paddr = segment->p_paddr;
6226 map->p_paddr_valid = p_paddr_valid;
6227 map->p_align = segment->p_align;
6228 map->p_align_valid = 1;
6229 map->p_vaddr_offset = 0;
6230
6231 if (map->p_type == PT_GNU_RELRO
6232 || map->p_type == PT_GNU_STACK)
6233 {
6234 /* The PT_GNU_RELRO segment may contain the first a few
6235 bytes in the .got.plt section even if the whole .got.plt
6236 section isn't in the PT_GNU_RELRO segment. We won't
6237 change the size of the PT_GNU_RELRO segment.
6238 Similarly, PT_GNU_STACK size is significant on uclinux
6239 systems. */
6240 map->p_size = segment->p_memsz;
6241 map->p_size_valid = 1;
6242 }
6243
6244 /* Determine if this segment contains the ELF file header
6245 and if it contains the program headers themselves. */
6246 map->includes_filehdr = (segment->p_offset == 0
6247 && segment->p_filesz >= iehdr->e_ehsize);
6248
6249 map->includes_phdrs = 0;
6250 if (! phdr_included || segment->p_type != PT_LOAD)
6251 {
6252 map->includes_phdrs =
6253 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6254 && (segment->p_offset + segment->p_filesz
6255 >= ((bfd_vma) iehdr->e_phoff
6256 + iehdr->e_phnum * iehdr->e_phentsize)));
6257
6258 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6259 phdr_included = TRUE;
6260 }
6261
6262 lowest_section = first_section;
6263 if (section_count != 0)
6264 {
6265 unsigned int isec = 0;
6266
6267 for (section = first_section;
6268 section != NULL;
6269 section = section->next)
6270 {
6271 this_hdr = &(elf_section_data(section)->this_hdr);
6272 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6273 {
6274 map->sections[isec++] = section->output_section;
6275 if ((section->flags & SEC_ALLOC) != 0)
6276 {
6277 bfd_vma seg_off;
6278
6279 if (section->lma < lowest_section->lma)
6280 lowest_section = section;
6281
6282 /* Section lmas are set up from PT_LOAD header
6283 p_paddr in _bfd_elf_make_section_from_shdr.
6284 If this header has a p_paddr that disagrees
6285 with the section lma, flag the p_paddr as
6286 invalid. */
6287 if ((section->flags & SEC_LOAD) != 0)
6288 seg_off = this_hdr->sh_offset - segment->p_offset;
6289 else
6290 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6291 if (section->lma - segment->p_paddr != seg_off)
6292 map->p_paddr_valid = FALSE;
6293 }
6294 if (isec == section_count)
6295 break;
6296 }
6297 }
6298 }
6299
6300 if (map->includes_filehdr && lowest_section != NULL)
6301 /* We need to keep the space used by the headers fixed. */
6302 map->header_size = lowest_section->vma - segment->p_vaddr;
6303
6304 if (!map->includes_phdrs
6305 && !map->includes_filehdr
6306 && map->p_paddr_valid)
6307 /* There is some other padding before the first section. */
6308 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6309 - segment->p_paddr);
6310
6311 map->count = section_count;
6312 *pointer_to_map = map;
6313 pointer_to_map = &map->next;
6314 }
6315
6316 elf_seg_map (obfd) = map_first;
6317 return TRUE;
6318 }
6319
6320 /* Copy private BFD data. This copies or rewrites ELF program header
6321 information. */
6322
6323 static bfd_boolean
6324 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6325 {
6326 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6327 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6328 return TRUE;
6329
6330 if (elf_tdata (ibfd)->phdr == NULL)
6331 return TRUE;
6332
6333 if (ibfd->xvec == obfd->xvec)
6334 {
6335 /* Check to see if any sections in the input BFD
6336 covered by ELF program header have changed. */
6337 Elf_Internal_Phdr *segment;
6338 asection *section, *osec;
6339 unsigned int i, num_segments;
6340 Elf_Internal_Shdr *this_hdr;
6341 const struct elf_backend_data *bed;
6342
6343 bed = get_elf_backend_data (ibfd);
6344
6345 /* Regenerate the segment map if p_paddr is set to 0. */
6346 if (bed->want_p_paddr_set_to_zero)
6347 goto rewrite;
6348
6349 /* Initialize the segment mark field. */
6350 for (section = obfd->sections; section != NULL;
6351 section = section->next)
6352 section->segment_mark = FALSE;
6353
6354 num_segments = elf_elfheader (ibfd)->e_phnum;
6355 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6356 i < num_segments;
6357 i++, segment++)
6358 {
6359 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6360 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6361 which severly confuses things, so always regenerate the segment
6362 map in this case. */
6363 if (segment->p_paddr == 0
6364 && segment->p_memsz == 0
6365 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6366 goto rewrite;
6367
6368 for (section = ibfd->sections;
6369 section != NULL; section = section->next)
6370 {
6371 /* We mark the output section so that we know it comes
6372 from the input BFD. */
6373 osec = section->output_section;
6374 if (osec)
6375 osec->segment_mark = TRUE;
6376
6377 /* Check if this section is covered by the segment. */
6378 this_hdr = &(elf_section_data(section)->this_hdr);
6379 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6380 {
6381 /* FIXME: Check if its output section is changed or
6382 removed. What else do we need to check? */
6383 if (osec == NULL
6384 || section->flags != osec->flags
6385 || section->lma != osec->lma
6386 || section->vma != osec->vma
6387 || section->size != osec->size
6388 || section->rawsize != osec->rawsize
6389 || section->alignment_power != osec->alignment_power)
6390 goto rewrite;
6391 }
6392 }
6393 }
6394
6395 /* Check to see if any output section do not come from the
6396 input BFD. */
6397 for (section = obfd->sections; section != NULL;
6398 section = section->next)
6399 {
6400 if (section->segment_mark == FALSE)
6401 goto rewrite;
6402 else
6403 section->segment_mark = FALSE;
6404 }
6405
6406 return copy_elf_program_header (ibfd, obfd);
6407 }
6408
6409 rewrite:
6410 if (ibfd->xvec == obfd->xvec)
6411 {
6412 /* When rewriting program header, set the output maxpagesize to
6413 the maximum alignment of input PT_LOAD segments. */
6414 Elf_Internal_Phdr *segment;
6415 unsigned int i;
6416 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6417 bfd_vma maxpagesize = 0;
6418
6419 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6420 i < num_segments;
6421 i++, segment++)
6422 if (segment->p_type == PT_LOAD
6423 && maxpagesize < segment->p_align)
6424 maxpagesize = segment->p_align;
6425
6426 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6427 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6428 }
6429
6430 return rewrite_elf_program_header (ibfd, obfd);
6431 }
6432
6433 /* Initialize private output section information from input section. */
6434
6435 bfd_boolean
6436 _bfd_elf_init_private_section_data (bfd *ibfd,
6437 asection *isec,
6438 bfd *obfd,
6439 asection *osec,
6440 struct bfd_link_info *link_info)
6441
6442 {
6443 Elf_Internal_Shdr *ihdr, *ohdr;
6444 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6445
6446 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6447 || obfd->xvec->flavour != bfd_target_elf_flavour)
6448 return TRUE;
6449
6450 BFD_ASSERT (elf_section_data (osec) != NULL);
6451
6452 /* For objcopy and relocatable link, don't copy the output ELF
6453 section type from input if the output BFD section flags have been
6454 set to something different. For a final link allow some flags
6455 that the linker clears to differ. */
6456 if (elf_section_type (osec) == SHT_NULL
6457 && (osec->flags == isec->flags
6458 || (final_link
6459 && ((osec->flags ^ isec->flags)
6460 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6461 elf_section_type (osec) = elf_section_type (isec);
6462
6463 /* FIXME: Is this correct for all OS/PROC specific flags? */
6464 elf_section_flags (osec) |= (elf_section_flags (isec)
6465 & (SHF_MASKOS | SHF_MASKPROC));
6466
6467 /* Set things up for objcopy and relocatable link. The output
6468 SHT_GROUP section will have its elf_next_in_group pointing back
6469 to the input group members. Ignore linker created group section.
6470 See elfNN_ia64_object_p in elfxx-ia64.c. */
6471 if (!final_link)
6472 {
6473 if (elf_sec_group (isec) == NULL
6474 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6475 {
6476 if (elf_section_flags (isec) & SHF_GROUP)
6477 elf_section_flags (osec) |= SHF_GROUP;
6478 elf_next_in_group (osec) = elf_next_in_group (isec);
6479 elf_section_data (osec)->group = elf_section_data (isec)->group;
6480 }
6481 }
6482
6483 ihdr = &elf_section_data (isec)->this_hdr;
6484
6485 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6486 don't use the output section of the linked-to section since it
6487 may be NULL at this point. */
6488 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6489 {
6490 ohdr = &elf_section_data (osec)->this_hdr;
6491 ohdr->sh_flags |= SHF_LINK_ORDER;
6492 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6493 }
6494
6495 osec->use_rela_p = isec->use_rela_p;
6496
6497 return TRUE;
6498 }
6499
6500 /* Copy private section information. This copies over the entsize
6501 field, and sometimes the info field. */
6502
6503 bfd_boolean
6504 _bfd_elf_copy_private_section_data (bfd *ibfd,
6505 asection *isec,
6506 bfd *obfd,
6507 asection *osec)
6508 {
6509 Elf_Internal_Shdr *ihdr, *ohdr;
6510
6511 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6512 || obfd->xvec->flavour != bfd_target_elf_flavour)
6513 return TRUE;
6514
6515 ihdr = &elf_section_data (isec)->this_hdr;
6516 ohdr = &elf_section_data (osec)->this_hdr;
6517
6518 ohdr->sh_entsize = ihdr->sh_entsize;
6519
6520 if (ihdr->sh_type == SHT_SYMTAB
6521 || ihdr->sh_type == SHT_DYNSYM
6522 || ihdr->sh_type == SHT_GNU_verneed
6523 || ihdr->sh_type == SHT_GNU_verdef)
6524 ohdr->sh_info = ihdr->sh_info;
6525
6526 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6527 NULL);
6528 }
6529
6530 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6531 necessary if we are removing either the SHT_GROUP section or any of
6532 the group member sections. DISCARDED is the value that a section's
6533 output_section has if the section will be discarded, NULL when this
6534 function is called from objcopy, bfd_abs_section_ptr when called
6535 from the linker. */
6536
6537 bfd_boolean
6538 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6539 {
6540 asection *isec;
6541
6542 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6543 if (elf_section_type (isec) == SHT_GROUP)
6544 {
6545 asection *first = elf_next_in_group (isec);
6546 asection *s = first;
6547 bfd_size_type removed = 0;
6548
6549 while (s != NULL)
6550 {
6551 /* If this member section is being output but the
6552 SHT_GROUP section is not, then clear the group info
6553 set up by _bfd_elf_copy_private_section_data. */
6554 if (s->output_section != discarded
6555 && isec->output_section == discarded)
6556 {
6557 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6558 elf_group_name (s->output_section) = NULL;
6559 }
6560 /* Conversely, if the member section is not being output
6561 but the SHT_GROUP section is, then adjust its size. */
6562 else if (s->output_section == discarded
6563 && isec->output_section != discarded)
6564 removed += 4;
6565 s = elf_next_in_group (s);
6566 if (s == first)
6567 break;
6568 }
6569 if (removed != 0)
6570 {
6571 if (discarded != NULL)
6572 {
6573 /* If we've been called for ld -r, then we need to
6574 adjust the input section size. This function may
6575 be called multiple times, so save the original
6576 size. */
6577 if (isec->rawsize == 0)
6578 isec->rawsize = isec->size;
6579 isec->size = isec->rawsize - removed;
6580 }
6581 else
6582 {
6583 /* Adjust the output section size when called from
6584 objcopy. */
6585 isec->output_section->size -= removed;
6586 }
6587 }
6588 }
6589
6590 return TRUE;
6591 }
6592
6593 /* Copy private header information. */
6594
6595 bfd_boolean
6596 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6597 {
6598 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6599 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6600 return TRUE;
6601
6602 /* Copy over private BFD data if it has not already been copied.
6603 This must be done here, rather than in the copy_private_bfd_data
6604 entry point, because the latter is called after the section
6605 contents have been set, which means that the program headers have
6606 already been worked out. */
6607 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6608 {
6609 if (! copy_private_bfd_data (ibfd, obfd))
6610 return FALSE;
6611 }
6612
6613 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6614 }
6615
6616 /* Copy private symbol information. If this symbol is in a section
6617 which we did not map into a BFD section, try to map the section
6618 index correctly. We use special macro definitions for the mapped
6619 section indices; these definitions are interpreted by the
6620 swap_out_syms function. */
6621
6622 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6623 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6624 #define MAP_STRTAB (SHN_HIOS + 3)
6625 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6626 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6627
6628 bfd_boolean
6629 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6630 asymbol *isymarg,
6631 bfd *obfd,
6632 asymbol *osymarg)
6633 {
6634 elf_symbol_type *isym, *osym;
6635
6636 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6637 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6638 return TRUE;
6639
6640 isym = elf_symbol_from (ibfd, isymarg);
6641 osym = elf_symbol_from (obfd, osymarg);
6642
6643 if (isym != NULL
6644 && isym->internal_elf_sym.st_shndx != 0
6645 && osym != NULL
6646 && bfd_is_abs_section (isym->symbol.section))
6647 {
6648 unsigned int shndx;
6649
6650 shndx = isym->internal_elf_sym.st_shndx;
6651 if (shndx == elf_onesymtab (ibfd))
6652 shndx = MAP_ONESYMTAB;
6653 else if (shndx == elf_dynsymtab (ibfd))
6654 shndx = MAP_DYNSYMTAB;
6655 else if (shndx == elf_strtab_sec (ibfd))
6656 shndx = MAP_STRTAB;
6657 else if (shndx == elf_shstrtab_sec (ibfd))
6658 shndx = MAP_SHSTRTAB;
6659 else if (shndx == elf_symtab_shndx (ibfd))
6660 shndx = MAP_SYM_SHNDX;
6661 osym->internal_elf_sym.st_shndx = shndx;
6662 }
6663
6664 return TRUE;
6665 }
6666
6667 /* Swap out the symbols. */
6668
6669 static bfd_boolean
6670 swap_out_syms (bfd *abfd,
6671 struct bfd_strtab_hash **sttp,
6672 int relocatable_p)
6673 {
6674 const struct elf_backend_data *bed;
6675 int symcount;
6676 asymbol **syms;
6677 struct bfd_strtab_hash *stt;
6678 Elf_Internal_Shdr *symtab_hdr;
6679 Elf_Internal_Shdr *symtab_shndx_hdr;
6680 Elf_Internal_Shdr *symstrtab_hdr;
6681 bfd_byte *outbound_syms;
6682 bfd_byte *outbound_shndx;
6683 int idx;
6684 unsigned int num_locals;
6685 bfd_size_type amt;
6686 bfd_boolean name_local_sections;
6687
6688 if (!elf_map_symbols (abfd, &num_locals))
6689 return FALSE;
6690
6691 /* Dump out the symtabs. */
6692 stt = _bfd_elf_stringtab_init ();
6693 if (stt == NULL)
6694 return FALSE;
6695
6696 bed = get_elf_backend_data (abfd);
6697 symcount = bfd_get_symcount (abfd);
6698 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6699 symtab_hdr->sh_type = SHT_SYMTAB;
6700 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6701 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6702 symtab_hdr->sh_info = num_locals + 1;
6703 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6704
6705 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6706 symstrtab_hdr->sh_type = SHT_STRTAB;
6707
6708 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6709 bed->s->sizeof_sym);
6710 if (outbound_syms == NULL)
6711 {
6712 _bfd_stringtab_free (stt);
6713 return FALSE;
6714 }
6715 symtab_hdr->contents = outbound_syms;
6716
6717 outbound_shndx = NULL;
6718 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6719 if (symtab_shndx_hdr->sh_name != 0)
6720 {
6721 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6722 outbound_shndx = (bfd_byte *)
6723 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6724 if (outbound_shndx == NULL)
6725 {
6726 _bfd_stringtab_free (stt);
6727 return FALSE;
6728 }
6729
6730 symtab_shndx_hdr->contents = outbound_shndx;
6731 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6732 symtab_shndx_hdr->sh_size = amt;
6733 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6734 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6735 }
6736
6737 /* Now generate the data (for "contents"). */
6738 {
6739 /* Fill in zeroth symbol and swap it out. */
6740 Elf_Internal_Sym sym;
6741 sym.st_name = 0;
6742 sym.st_value = 0;
6743 sym.st_size = 0;
6744 sym.st_info = 0;
6745 sym.st_other = 0;
6746 sym.st_shndx = SHN_UNDEF;
6747 sym.st_target_internal = 0;
6748 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6749 outbound_syms += bed->s->sizeof_sym;
6750 if (outbound_shndx != NULL)
6751 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6752 }
6753
6754 name_local_sections
6755 = (bed->elf_backend_name_local_section_symbols
6756 && bed->elf_backend_name_local_section_symbols (abfd));
6757
6758 syms = bfd_get_outsymbols (abfd);
6759 for (idx = 0; idx < symcount; idx++)
6760 {
6761 Elf_Internal_Sym sym;
6762 bfd_vma value = syms[idx]->value;
6763 elf_symbol_type *type_ptr;
6764 flagword flags = syms[idx]->flags;
6765 int type;
6766
6767 if (!name_local_sections
6768 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6769 {
6770 /* Local section symbols have no name. */
6771 sym.st_name = 0;
6772 }
6773 else
6774 {
6775 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6776 syms[idx]->name,
6777 TRUE, FALSE);
6778 if (sym.st_name == (unsigned long) -1)
6779 {
6780 _bfd_stringtab_free (stt);
6781 return FALSE;
6782 }
6783 }
6784
6785 type_ptr = elf_symbol_from (abfd, syms[idx]);
6786
6787 if ((flags & BSF_SECTION_SYM) == 0
6788 && bfd_is_com_section (syms[idx]->section))
6789 {
6790 /* ELF common symbols put the alignment into the `value' field,
6791 and the size into the `size' field. This is backwards from
6792 how BFD handles it, so reverse it here. */
6793 sym.st_size = value;
6794 if (type_ptr == NULL
6795 || type_ptr->internal_elf_sym.st_value == 0)
6796 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6797 else
6798 sym.st_value = type_ptr->internal_elf_sym.st_value;
6799 sym.st_shndx = _bfd_elf_section_from_bfd_section
6800 (abfd, syms[idx]->section);
6801 }
6802 else
6803 {
6804 asection *sec = syms[idx]->section;
6805 unsigned int shndx;
6806
6807 if (sec->output_section)
6808 {
6809 value += sec->output_offset;
6810 sec = sec->output_section;
6811 }
6812
6813 /* Don't add in the section vma for relocatable output. */
6814 if (! relocatable_p)
6815 value += sec->vma;
6816 sym.st_value = value;
6817 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6818
6819 if (bfd_is_abs_section (sec)
6820 && type_ptr != NULL
6821 && type_ptr->internal_elf_sym.st_shndx != 0)
6822 {
6823 /* This symbol is in a real ELF section which we did
6824 not create as a BFD section. Undo the mapping done
6825 by copy_private_symbol_data. */
6826 shndx = type_ptr->internal_elf_sym.st_shndx;
6827 switch (shndx)
6828 {
6829 case MAP_ONESYMTAB:
6830 shndx = elf_onesymtab (abfd);
6831 break;
6832 case MAP_DYNSYMTAB:
6833 shndx = elf_dynsymtab (abfd);
6834 break;
6835 case MAP_STRTAB:
6836 shndx = elf_strtab_sec (abfd);
6837 break;
6838 case MAP_SHSTRTAB:
6839 shndx = elf_shstrtab_sec (abfd);
6840 break;
6841 case MAP_SYM_SHNDX:
6842 shndx = elf_symtab_shndx (abfd);
6843 break;
6844 default:
6845 shndx = SHN_ABS;
6846 break;
6847 }
6848 }
6849 else
6850 {
6851 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6852
6853 if (shndx == SHN_BAD)
6854 {
6855 asection *sec2;
6856
6857 /* Writing this would be a hell of a lot easier if
6858 we had some decent documentation on bfd, and
6859 knew what to expect of the library, and what to
6860 demand of applications. For example, it
6861 appears that `objcopy' might not set the
6862 section of a symbol to be a section that is
6863 actually in the output file. */
6864 sec2 = bfd_get_section_by_name (abfd, sec->name);
6865 if (sec2 == NULL)
6866 {
6867 _bfd_error_handler (_("\
6868 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6869 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6870 sec->name);
6871 bfd_set_error (bfd_error_invalid_operation);
6872 _bfd_stringtab_free (stt);
6873 return FALSE;
6874 }
6875
6876 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6877 BFD_ASSERT (shndx != SHN_BAD);
6878 }
6879 }
6880
6881 sym.st_shndx = shndx;
6882 }
6883
6884 if ((flags & BSF_THREAD_LOCAL) != 0)
6885 type = STT_TLS;
6886 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6887 type = STT_GNU_IFUNC;
6888 else if ((flags & BSF_FUNCTION) != 0)
6889 type = STT_FUNC;
6890 else if ((flags & BSF_OBJECT) != 0)
6891 type = STT_OBJECT;
6892 else if ((flags & BSF_RELC) != 0)
6893 type = STT_RELC;
6894 else if ((flags & BSF_SRELC) != 0)
6895 type = STT_SRELC;
6896 else
6897 type = STT_NOTYPE;
6898
6899 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6900 type = STT_TLS;
6901
6902 /* Processor-specific types. */
6903 if (type_ptr != NULL
6904 && bed->elf_backend_get_symbol_type)
6905 type = ((*bed->elf_backend_get_symbol_type)
6906 (&type_ptr->internal_elf_sym, type));
6907
6908 if (flags & BSF_SECTION_SYM)
6909 {
6910 if (flags & BSF_GLOBAL)
6911 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6912 else
6913 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6914 }
6915 else if (bfd_is_com_section (syms[idx]->section))
6916 {
6917 #ifdef USE_STT_COMMON
6918 if (type == STT_OBJECT)
6919 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6920 else
6921 #endif
6922 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6923 }
6924 else if (bfd_is_und_section (syms[idx]->section))
6925 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6926 ? STB_WEAK
6927 : STB_GLOBAL),
6928 type);
6929 else if (flags & BSF_FILE)
6930 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6931 else
6932 {
6933 int bind = STB_LOCAL;
6934
6935 if (flags & BSF_LOCAL)
6936 bind = STB_LOCAL;
6937 else if (flags & BSF_GNU_UNIQUE)
6938 bind = STB_GNU_UNIQUE;
6939 else if (flags & BSF_WEAK)
6940 bind = STB_WEAK;
6941 else if (flags & BSF_GLOBAL)
6942 bind = STB_GLOBAL;
6943
6944 sym.st_info = ELF_ST_INFO (bind, type);
6945 }
6946
6947 if (type_ptr != NULL)
6948 {
6949 sym.st_other = type_ptr->internal_elf_sym.st_other;
6950 sym.st_target_internal
6951 = type_ptr->internal_elf_sym.st_target_internal;
6952 }
6953 else
6954 {
6955 sym.st_other = 0;
6956 sym.st_target_internal = 0;
6957 }
6958
6959 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6960 outbound_syms += bed->s->sizeof_sym;
6961 if (outbound_shndx != NULL)
6962 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6963 }
6964
6965 *sttp = stt;
6966 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6967 symstrtab_hdr->sh_type = SHT_STRTAB;
6968
6969 symstrtab_hdr->sh_flags = 0;
6970 symstrtab_hdr->sh_addr = 0;
6971 symstrtab_hdr->sh_entsize = 0;
6972 symstrtab_hdr->sh_link = 0;
6973 symstrtab_hdr->sh_info = 0;
6974 symstrtab_hdr->sh_addralign = 1;
6975
6976 return TRUE;
6977 }
6978
6979 /* Return the number of bytes required to hold the symtab vector.
6980
6981 Note that we base it on the count plus 1, since we will null terminate
6982 the vector allocated based on this size. However, the ELF symbol table
6983 always has a dummy entry as symbol #0, so it ends up even. */
6984
6985 long
6986 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6987 {
6988 long symcount;
6989 long symtab_size;
6990 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6991
6992 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6993 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6994 if (symcount > 0)
6995 symtab_size -= sizeof (asymbol *);
6996
6997 return symtab_size;
6998 }
6999
7000 long
7001 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7002 {
7003 long symcount;
7004 long symtab_size;
7005 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7006
7007 if (elf_dynsymtab (abfd) == 0)
7008 {
7009 bfd_set_error (bfd_error_invalid_operation);
7010 return -1;
7011 }
7012
7013 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7014 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7015 if (symcount > 0)
7016 symtab_size -= sizeof (asymbol *);
7017
7018 return symtab_size;
7019 }
7020
7021 long
7022 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7023 sec_ptr asect)
7024 {
7025 return (asect->reloc_count + 1) * sizeof (arelent *);
7026 }
7027
7028 /* Canonicalize the relocs. */
7029
7030 long
7031 _bfd_elf_canonicalize_reloc (bfd *abfd,
7032 sec_ptr section,
7033 arelent **relptr,
7034 asymbol **symbols)
7035 {
7036 arelent *tblptr;
7037 unsigned int i;
7038 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7039
7040 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7041 return -1;
7042
7043 tblptr = section->relocation;
7044 for (i = 0; i < section->reloc_count; i++)
7045 *relptr++ = tblptr++;
7046
7047 *relptr = NULL;
7048
7049 return section->reloc_count;
7050 }
7051
7052 long
7053 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7054 {
7055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7056 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7057
7058 if (symcount >= 0)
7059 bfd_get_symcount (abfd) = symcount;
7060 return symcount;
7061 }
7062
7063 long
7064 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7065 asymbol **allocation)
7066 {
7067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7068 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7069
7070 if (symcount >= 0)
7071 bfd_get_dynamic_symcount (abfd) = symcount;
7072 return symcount;
7073 }
7074
7075 /* Return the size required for the dynamic reloc entries. Any loadable
7076 section that was actually installed in the BFD, and has type SHT_REL
7077 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7078 dynamic reloc section. */
7079
7080 long
7081 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7082 {
7083 long ret;
7084 asection *s;
7085
7086 if (elf_dynsymtab (abfd) == 0)
7087 {
7088 bfd_set_error (bfd_error_invalid_operation);
7089 return -1;
7090 }
7091
7092 ret = sizeof (arelent *);
7093 for (s = abfd->sections; s != NULL; s = s->next)
7094 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7095 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7096 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7097 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7098 * sizeof (arelent *));
7099
7100 return ret;
7101 }
7102
7103 /* Canonicalize the dynamic relocation entries. Note that we return the
7104 dynamic relocations as a single block, although they are actually
7105 associated with particular sections; the interface, which was
7106 designed for SunOS style shared libraries, expects that there is only
7107 one set of dynamic relocs. Any loadable section that was actually
7108 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7109 dynamic symbol table, is considered to be a dynamic reloc section. */
7110
7111 long
7112 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7113 arelent **storage,
7114 asymbol **syms)
7115 {
7116 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7117 asection *s;
7118 long ret;
7119
7120 if (elf_dynsymtab (abfd) == 0)
7121 {
7122 bfd_set_error (bfd_error_invalid_operation);
7123 return -1;
7124 }
7125
7126 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7127 ret = 0;
7128 for (s = abfd->sections; s != NULL; s = s->next)
7129 {
7130 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7131 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7132 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7133 {
7134 arelent *p;
7135 long count, i;
7136
7137 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7138 return -1;
7139 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7140 p = s->relocation;
7141 for (i = 0; i < count; i++)
7142 *storage++ = p++;
7143 ret += count;
7144 }
7145 }
7146
7147 *storage = NULL;
7148
7149 return ret;
7150 }
7151 \f
7152 /* Read in the version information. */
7153
7154 bfd_boolean
7155 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7156 {
7157 bfd_byte *contents = NULL;
7158 unsigned int freeidx = 0;
7159
7160 if (elf_dynverref (abfd) != 0)
7161 {
7162 Elf_Internal_Shdr *hdr;
7163 Elf_External_Verneed *everneed;
7164 Elf_Internal_Verneed *iverneed;
7165 unsigned int i;
7166 bfd_byte *contents_end;
7167
7168 hdr = &elf_tdata (abfd)->dynverref_hdr;
7169
7170 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7171 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7172 if (elf_tdata (abfd)->verref == NULL)
7173 goto error_return;
7174
7175 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7176
7177 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7178 if (contents == NULL)
7179 {
7180 error_return_verref:
7181 elf_tdata (abfd)->verref = NULL;
7182 elf_tdata (abfd)->cverrefs = 0;
7183 goto error_return;
7184 }
7185 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7186 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7187 goto error_return_verref;
7188
7189 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7190 goto error_return_verref;
7191
7192 BFD_ASSERT (sizeof (Elf_External_Verneed)
7193 == sizeof (Elf_External_Vernaux));
7194 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7195 everneed = (Elf_External_Verneed *) contents;
7196 iverneed = elf_tdata (abfd)->verref;
7197 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7198 {
7199 Elf_External_Vernaux *evernaux;
7200 Elf_Internal_Vernaux *ivernaux;
7201 unsigned int j;
7202
7203 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7204
7205 iverneed->vn_bfd = abfd;
7206
7207 iverneed->vn_filename =
7208 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7209 iverneed->vn_file);
7210 if (iverneed->vn_filename == NULL)
7211 goto error_return_verref;
7212
7213 if (iverneed->vn_cnt == 0)
7214 iverneed->vn_auxptr = NULL;
7215 else
7216 {
7217 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7218 bfd_alloc2 (abfd, iverneed->vn_cnt,
7219 sizeof (Elf_Internal_Vernaux));
7220 if (iverneed->vn_auxptr == NULL)
7221 goto error_return_verref;
7222 }
7223
7224 if (iverneed->vn_aux
7225 > (size_t) (contents_end - (bfd_byte *) everneed))
7226 goto error_return_verref;
7227
7228 evernaux = ((Elf_External_Vernaux *)
7229 ((bfd_byte *) everneed + iverneed->vn_aux));
7230 ivernaux = iverneed->vn_auxptr;
7231 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7232 {
7233 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7234
7235 ivernaux->vna_nodename =
7236 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7237 ivernaux->vna_name);
7238 if (ivernaux->vna_nodename == NULL)
7239 goto error_return_verref;
7240
7241 if (j + 1 < iverneed->vn_cnt)
7242 ivernaux->vna_nextptr = ivernaux + 1;
7243 else
7244 ivernaux->vna_nextptr = NULL;
7245
7246 if (ivernaux->vna_next
7247 > (size_t) (contents_end - (bfd_byte *) evernaux))
7248 goto error_return_verref;
7249
7250 evernaux = ((Elf_External_Vernaux *)
7251 ((bfd_byte *) evernaux + ivernaux->vna_next));
7252
7253 if (ivernaux->vna_other > freeidx)
7254 freeidx = ivernaux->vna_other;
7255 }
7256
7257 if (i + 1 < hdr->sh_info)
7258 iverneed->vn_nextref = iverneed + 1;
7259 else
7260 iverneed->vn_nextref = NULL;
7261
7262 if (iverneed->vn_next
7263 > (size_t) (contents_end - (bfd_byte *) everneed))
7264 goto error_return_verref;
7265
7266 everneed = ((Elf_External_Verneed *)
7267 ((bfd_byte *) everneed + iverneed->vn_next));
7268 }
7269
7270 free (contents);
7271 contents = NULL;
7272 }
7273
7274 if (elf_dynverdef (abfd) != 0)
7275 {
7276 Elf_Internal_Shdr *hdr;
7277 Elf_External_Verdef *everdef;
7278 Elf_Internal_Verdef *iverdef;
7279 Elf_Internal_Verdef *iverdefarr;
7280 Elf_Internal_Verdef iverdefmem;
7281 unsigned int i;
7282 unsigned int maxidx;
7283 bfd_byte *contents_end_def, *contents_end_aux;
7284
7285 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7286
7287 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7288 if (contents == NULL)
7289 goto error_return;
7290 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7291 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7292 goto error_return;
7293
7294 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7295 goto error_return;
7296
7297 BFD_ASSERT (sizeof (Elf_External_Verdef)
7298 >= sizeof (Elf_External_Verdaux));
7299 contents_end_def = contents + hdr->sh_size
7300 - sizeof (Elf_External_Verdef);
7301 contents_end_aux = contents + hdr->sh_size
7302 - sizeof (Elf_External_Verdaux);
7303
7304 /* We know the number of entries in the section but not the maximum
7305 index. Therefore we have to run through all entries and find
7306 the maximum. */
7307 everdef = (Elf_External_Verdef *) contents;
7308 maxidx = 0;
7309 for (i = 0; i < hdr->sh_info; ++i)
7310 {
7311 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7312
7313 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7314 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7315
7316 if (iverdefmem.vd_next
7317 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7318 goto error_return;
7319
7320 everdef = ((Elf_External_Verdef *)
7321 ((bfd_byte *) everdef + iverdefmem.vd_next));
7322 }
7323
7324 if (default_imported_symver)
7325 {
7326 if (freeidx > maxidx)
7327 maxidx = ++freeidx;
7328 else
7329 freeidx = ++maxidx;
7330 }
7331 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7332 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7333 if (elf_tdata (abfd)->verdef == NULL)
7334 goto error_return;
7335
7336 elf_tdata (abfd)->cverdefs = maxidx;
7337
7338 everdef = (Elf_External_Verdef *) contents;
7339 iverdefarr = elf_tdata (abfd)->verdef;
7340 for (i = 0; i < hdr->sh_info; i++)
7341 {
7342 Elf_External_Verdaux *everdaux;
7343 Elf_Internal_Verdaux *iverdaux;
7344 unsigned int j;
7345
7346 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7347
7348 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7349 {
7350 error_return_verdef:
7351 elf_tdata (abfd)->verdef = NULL;
7352 elf_tdata (abfd)->cverdefs = 0;
7353 goto error_return;
7354 }
7355
7356 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7357 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7358
7359 iverdef->vd_bfd = abfd;
7360
7361 if (iverdef->vd_cnt == 0)
7362 iverdef->vd_auxptr = NULL;
7363 else
7364 {
7365 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7366 bfd_alloc2 (abfd, iverdef->vd_cnt,
7367 sizeof (Elf_Internal_Verdaux));
7368 if (iverdef->vd_auxptr == NULL)
7369 goto error_return_verdef;
7370 }
7371
7372 if (iverdef->vd_aux
7373 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7374 goto error_return_verdef;
7375
7376 everdaux = ((Elf_External_Verdaux *)
7377 ((bfd_byte *) everdef + iverdef->vd_aux));
7378 iverdaux = iverdef->vd_auxptr;
7379 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7380 {
7381 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7382
7383 iverdaux->vda_nodename =
7384 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7385 iverdaux->vda_name);
7386 if (iverdaux->vda_nodename == NULL)
7387 goto error_return_verdef;
7388
7389 if (j + 1 < iverdef->vd_cnt)
7390 iverdaux->vda_nextptr = iverdaux + 1;
7391 else
7392 iverdaux->vda_nextptr = NULL;
7393
7394 if (iverdaux->vda_next
7395 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7396 goto error_return_verdef;
7397
7398 everdaux = ((Elf_External_Verdaux *)
7399 ((bfd_byte *) everdaux + iverdaux->vda_next));
7400 }
7401
7402 if (iverdef->vd_cnt)
7403 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7404
7405 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7406 iverdef->vd_nextdef = iverdef + 1;
7407 else
7408 iverdef->vd_nextdef = NULL;
7409
7410 everdef = ((Elf_External_Verdef *)
7411 ((bfd_byte *) everdef + iverdef->vd_next));
7412 }
7413
7414 free (contents);
7415 contents = NULL;
7416 }
7417 else if (default_imported_symver)
7418 {
7419 if (freeidx < 3)
7420 freeidx = 3;
7421 else
7422 freeidx++;
7423
7424 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7425 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7426 if (elf_tdata (abfd)->verdef == NULL)
7427 goto error_return;
7428
7429 elf_tdata (abfd)->cverdefs = freeidx;
7430 }
7431
7432 /* Create a default version based on the soname. */
7433 if (default_imported_symver)
7434 {
7435 Elf_Internal_Verdef *iverdef;
7436 Elf_Internal_Verdaux *iverdaux;
7437
7438 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7439
7440 iverdef->vd_version = VER_DEF_CURRENT;
7441 iverdef->vd_flags = 0;
7442 iverdef->vd_ndx = freeidx;
7443 iverdef->vd_cnt = 1;
7444
7445 iverdef->vd_bfd = abfd;
7446
7447 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7448 if (iverdef->vd_nodename == NULL)
7449 goto error_return_verdef;
7450 iverdef->vd_nextdef = NULL;
7451 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7452 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7453 if (iverdef->vd_auxptr == NULL)
7454 goto error_return_verdef;
7455
7456 iverdaux = iverdef->vd_auxptr;
7457 iverdaux->vda_nodename = iverdef->vd_nodename;
7458 iverdaux->vda_nextptr = NULL;
7459 }
7460
7461 return TRUE;
7462
7463 error_return:
7464 if (contents != NULL)
7465 free (contents);
7466 return FALSE;
7467 }
7468 \f
7469 asymbol *
7470 _bfd_elf_make_empty_symbol (bfd *abfd)
7471 {
7472 elf_symbol_type *newsym;
7473 bfd_size_type amt = sizeof (elf_symbol_type);
7474
7475 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7476 if (!newsym)
7477 return NULL;
7478 else
7479 {
7480 newsym->symbol.the_bfd = abfd;
7481 return &newsym->symbol;
7482 }
7483 }
7484
7485 void
7486 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7487 asymbol *symbol,
7488 symbol_info *ret)
7489 {
7490 bfd_symbol_info (symbol, ret);
7491 }
7492
7493 /* Return whether a symbol name implies a local symbol. Most targets
7494 use this function for the is_local_label_name entry point, but some
7495 override it. */
7496
7497 bfd_boolean
7498 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7499 const char *name)
7500 {
7501 /* Normal local symbols start with ``.L''. */
7502 if (name[0] == '.' && name[1] == 'L')
7503 return TRUE;
7504
7505 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7506 DWARF debugging symbols starting with ``..''. */
7507 if (name[0] == '.' && name[1] == '.')
7508 return TRUE;
7509
7510 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7511 emitting DWARF debugging output. I suspect this is actually a
7512 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7513 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7514 underscore to be emitted on some ELF targets). For ease of use,
7515 we treat such symbols as local. */
7516 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7517 return TRUE;
7518
7519 return FALSE;
7520 }
7521
7522 alent *
7523 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7524 asymbol *symbol ATTRIBUTE_UNUSED)
7525 {
7526 abort ();
7527 return NULL;
7528 }
7529
7530 bfd_boolean
7531 _bfd_elf_set_arch_mach (bfd *abfd,
7532 enum bfd_architecture arch,
7533 unsigned long machine)
7534 {
7535 /* If this isn't the right architecture for this backend, and this
7536 isn't the generic backend, fail. */
7537 if (arch != get_elf_backend_data (abfd)->arch
7538 && arch != bfd_arch_unknown
7539 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7540 return FALSE;
7541
7542 return bfd_default_set_arch_mach (abfd, arch, machine);
7543 }
7544
7545 /* Find the function to a particular section and offset,
7546 for error reporting. */
7547
7548 static bfd_boolean
7549 elf_find_function (bfd *abfd,
7550 asection *section,
7551 asymbol **symbols,
7552 bfd_vma offset,
7553 const char **filename_ptr,
7554 const char **functionname_ptr)
7555 {
7556 struct elf_find_function_cache
7557 {
7558 asection *last_section;
7559 asymbol *func;
7560 const char *filename;
7561 bfd_size_type func_size;
7562 } *cache;
7563
7564 if (symbols == NULL)
7565 return FALSE;
7566
7567 cache = elf_tdata (abfd)->elf_find_function_cache;
7568 if (cache == NULL)
7569 {
7570 cache = bfd_zalloc (abfd, sizeof (*cache));
7571 elf_tdata (abfd)->elf_find_function_cache = cache;
7572 if (cache == NULL)
7573 return FALSE;
7574 }
7575 if (cache->last_section != section
7576 || cache->func == NULL
7577 || offset < cache->func->value
7578 || offset >= cache->func->value + cache->func_size)
7579 {
7580 asymbol *file;
7581 bfd_vma low_func;
7582 asymbol **p;
7583 /* ??? Given multiple file symbols, it is impossible to reliably
7584 choose the right file name for global symbols. File symbols are
7585 local symbols, and thus all file symbols must sort before any
7586 global symbols. The ELF spec may be interpreted to say that a
7587 file symbol must sort before other local symbols, but currently
7588 ld -r doesn't do this. So, for ld -r output, it is possible to
7589 make a better choice of file name for local symbols by ignoring
7590 file symbols appearing after a given local symbol. */
7591 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7592 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7593
7594 file = NULL;
7595 low_func = 0;
7596 state = nothing_seen;
7597 cache->filename = NULL;
7598 cache->func = NULL;
7599 cache->func_size = 0;
7600 cache->last_section = section;
7601
7602 for (p = symbols; *p != NULL; p++)
7603 {
7604 asymbol *sym = *p;
7605 bfd_vma code_off;
7606 bfd_size_type size;
7607
7608 if ((sym->flags & BSF_FILE) != 0)
7609 {
7610 file = sym;
7611 if (state == symbol_seen)
7612 state = file_after_symbol_seen;
7613 continue;
7614 }
7615
7616 size = bed->maybe_function_sym (sym, section, &code_off);
7617 if (size != 0
7618 && code_off <= offset
7619 && (code_off > low_func
7620 || (code_off == low_func
7621 && size > cache->func_size)))
7622 {
7623 cache->func = sym;
7624 cache->func_size = size;
7625 cache->filename = NULL;
7626 low_func = code_off;
7627 if (file != NULL
7628 && ((sym->flags & BSF_LOCAL) != 0
7629 || state != file_after_symbol_seen))
7630 cache->filename = bfd_asymbol_name (file);
7631 }
7632 if (state == nothing_seen)
7633 state = symbol_seen;
7634 }
7635 }
7636
7637 if (cache->func == NULL)
7638 return FALSE;
7639
7640 if (filename_ptr)
7641 *filename_ptr = cache->filename;
7642 if (functionname_ptr)
7643 *functionname_ptr = bfd_asymbol_name (cache->func);
7644
7645 return TRUE;
7646 }
7647
7648 /* Find the nearest line to a particular section and offset,
7649 for error reporting. */
7650
7651 bfd_boolean
7652 _bfd_elf_find_nearest_line (bfd *abfd,
7653 asection *section,
7654 asymbol **symbols,
7655 bfd_vma offset,
7656 const char **filename_ptr,
7657 const char **functionname_ptr,
7658 unsigned int *line_ptr)
7659 {
7660 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7661 offset, filename_ptr,
7662 functionname_ptr,
7663 line_ptr,
7664 NULL);
7665 }
7666
7667 bfd_boolean
7668 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7669 asection *section,
7670 asymbol **symbols,
7671 bfd_vma offset,
7672 const char **filename_ptr,
7673 const char **functionname_ptr,
7674 unsigned int *line_ptr,
7675 unsigned int *discriminator_ptr)
7676 {
7677 bfd_boolean found;
7678
7679 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7680 filename_ptr, functionname_ptr,
7681 line_ptr))
7682 {
7683 if (!*functionname_ptr)
7684 elf_find_function (abfd, section, symbols, offset,
7685 *filename_ptr ? NULL : filename_ptr,
7686 functionname_ptr);
7687
7688 return TRUE;
7689 }
7690
7691 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7692 section, symbols, offset,
7693 filename_ptr, functionname_ptr,
7694 line_ptr, discriminator_ptr, 0,
7695 &elf_tdata (abfd)->dwarf2_find_line_info))
7696 {
7697 if (!*functionname_ptr)
7698 elf_find_function (abfd, section, symbols, offset,
7699 *filename_ptr ? NULL : filename_ptr,
7700 functionname_ptr);
7701
7702 return TRUE;
7703 }
7704
7705 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7706 &found, filename_ptr,
7707 functionname_ptr, line_ptr,
7708 &elf_tdata (abfd)->line_info))
7709 return FALSE;
7710 if (found && (*functionname_ptr || *line_ptr))
7711 return TRUE;
7712
7713 if (symbols == NULL)
7714 return FALSE;
7715
7716 if (! elf_find_function (abfd, section, symbols, offset,
7717 filename_ptr, functionname_ptr))
7718 return FALSE;
7719
7720 *line_ptr = 0;
7721 return TRUE;
7722 }
7723
7724 /* Find the line for a symbol. */
7725
7726 bfd_boolean
7727 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7728 const char **filename_ptr, unsigned int *line_ptr)
7729 {
7730 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7731 filename_ptr, line_ptr,
7732 NULL);
7733 }
7734
7735 bfd_boolean
7736 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7737 const char **filename_ptr,
7738 unsigned int *line_ptr,
7739 unsigned int *discriminator_ptr)
7740 {
7741 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7742 filename_ptr, line_ptr, discriminator_ptr, 0,
7743 &elf_tdata (abfd)->dwarf2_find_line_info);
7744 }
7745
7746 /* After a call to bfd_find_nearest_line, successive calls to
7747 bfd_find_inliner_info can be used to get source information about
7748 each level of function inlining that terminated at the address
7749 passed to bfd_find_nearest_line. Currently this is only supported
7750 for DWARF2 with appropriate DWARF3 extensions. */
7751
7752 bfd_boolean
7753 _bfd_elf_find_inliner_info (bfd *abfd,
7754 const char **filename_ptr,
7755 const char **functionname_ptr,
7756 unsigned int *line_ptr)
7757 {
7758 bfd_boolean found;
7759 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7760 functionname_ptr, line_ptr,
7761 & elf_tdata (abfd)->dwarf2_find_line_info);
7762 return found;
7763 }
7764
7765 int
7766 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7767 {
7768 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7769 int ret = bed->s->sizeof_ehdr;
7770
7771 if (!info->relocatable)
7772 {
7773 bfd_size_type phdr_size = elf_program_header_size (abfd);
7774
7775 if (phdr_size == (bfd_size_type) -1)
7776 {
7777 struct elf_segment_map *m;
7778
7779 phdr_size = 0;
7780 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7781 phdr_size += bed->s->sizeof_phdr;
7782
7783 if (phdr_size == 0)
7784 phdr_size = get_program_header_size (abfd, info);
7785 }
7786
7787 elf_program_header_size (abfd) = phdr_size;
7788 ret += phdr_size;
7789 }
7790
7791 return ret;
7792 }
7793
7794 bfd_boolean
7795 _bfd_elf_set_section_contents (bfd *abfd,
7796 sec_ptr section,
7797 const void *location,
7798 file_ptr offset,
7799 bfd_size_type count)
7800 {
7801 Elf_Internal_Shdr *hdr;
7802 bfd_signed_vma pos;
7803
7804 if (! abfd->output_has_begun
7805 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7806 return FALSE;
7807
7808 hdr = &elf_section_data (section)->this_hdr;
7809 pos = hdr->sh_offset + offset;
7810 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7811 || bfd_bwrite (location, count, abfd) != count)
7812 return FALSE;
7813
7814 return TRUE;
7815 }
7816
7817 void
7818 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7819 arelent *cache_ptr ATTRIBUTE_UNUSED,
7820 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7821 {
7822 abort ();
7823 }
7824
7825 /* Try to convert a non-ELF reloc into an ELF one. */
7826
7827 bfd_boolean
7828 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7829 {
7830 /* Check whether we really have an ELF howto. */
7831
7832 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7833 {
7834 bfd_reloc_code_real_type code;
7835 reloc_howto_type *howto;
7836
7837 /* Alien reloc: Try to determine its type to replace it with an
7838 equivalent ELF reloc. */
7839
7840 if (areloc->howto->pc_relative)
7841 {
7842 switch (areloc->howto->bitsize)
7843 {
7844 case 8:
7845 code = BFD_RELOC_8_PCREL;
7846 break;
7847 case 12:
7848 code = BFD_RELOC_12_PCREL;
7849 break;
7850 case 16:
7851 code = BFD_RELOC_16_PCREL;
7852 break;
7853 case 24:
7854 code = BFD_RELOC_24_PCREL;
7855 break;
7856 case 32:
7857 code = BFD_RELOC_32_PCREL;
7858 break;
7859 case 64:
7860 code = BFD_RELOC_64_PCREL;
7861 break;
7862 default:
7863 goto fail;
7864 }
7865
7866 howto = bfd_reloc_type_lookup (abfd, code);
7867
7868 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7869 {
7870 if (howto->pcrel_offset)
7871 areloc->addend += areloc->address;
7872 else
7873 areloc->addend -= areloc->address; /* addend is unsigned!! */
7874 }
7875 }
7876 else
7877 {
7878 switch (areloc->howto->bitsize)
7879 {
7880 case 8:
7881 code = BFD_RELOC_8;
7882 break;
7883 case 14:
7884 code = BFD_RELOC_14;
7885 break;
7886 case 16:
7887 code = BFD_RELOC_16;
7888 break;
7889 case 26:
7890 code = BFD_RELOC_26;
7891 break;
7892 case 32:
7893 code = BFD_RELOC_32;
7894 break;
7895 case 64:
7896 code = BFD_RELOC_64;
7897 break;
7898 default:
7899 goto fail;
7900 }
7901
7902 howto = bfd_reloc_type_lookup (abfd, code);
7903 }
7904
7905 if (howto)
7906 areloc->howto = howto;
7907 else
7908 goto fail;
7909 }
7910
7911 return TRUE;
7912
7913 fail:
7914 (*_bfd_error_handler)
7915 (_("%B: unsupported relocation type %s"),
7916 abfd, areloc->howto->name);
7917 bfd_set_error (bfd_error_bad_value);
7918 return FALSE;
7919 }
7920
7921 bfd_boolean
7922 _bfd_elf_close_and_cleanup (bfd *abfd)
7923 {
7924 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7925 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7926 {
7927 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7928 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7929 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7930 }
7931
7932 return _bfd_generic_close_and_cleanup (abfd);
7933 }
7934
7935 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7936 in the relocation's offset. Thus we cannot allow any sort of sanity
7937 range-checking to interfere. There is nothing else to do in processing
7938 this reloc. */
7939
7940 bfd_reloc_status_type
7941 _bfd_elf_rel_vtable_reloc_fn
7942 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7943 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7944 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7945 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7946 {
7947 return bfd_reloc_ok;
7948 }
7949 \f
7950 /* Elf core file support. Much of this only works on native
7951 toolchains, since we rely on knowing the
7952 machine-dependent procfs structure in order to pick
7953 out details about the corefile. */
7954
7955 #ifdef HAVE_SYS_PROCFS_H
7956 /* Needed for new procfs interface on sparc-solaris. */
7957 # define _STRUCTURED_PROC 1
7958 # include <sys/procfs.h>
7959 #endif
7960
7961 /* Return a PID that identifies a "thread" for threaded cores, or the
7962 PID of the main process for non-threaded cores. */
7963
7964 static int
7965 elfcore_make_pid (bfd *abfd)
7966 {
7967 int pid;
7968
7969 pid = elf_tdata (abfd)->core->lwpid;
7970 if (pid == 0)
7971 pid = elf_tdata (abfd)->core->pid;
7972
7973 return pid;
7974 }
7975
7976 /* If there isn't a section called NAME, make one, using
7977 data from SECT. Note, this function will generate a
7978 reference to NAME, so you shouldn't deallocate or
7979 overwrite it. */
7980
7981 static bfd_boolean
7982 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7983 {
7984 asection *sect2;
7985
7986 if (bfd_get_section_by_name (abfd, name) != NULL)
7987 return TRUE;
7988
7989 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7990 if (sect2 == NULL)
7991 return FALSE;
7992
7993 sect2->size = sect->size;
7994 sect2->filepos = sect->filepos;
7995 sect2->alignment_power = sect->alignment_power;
7996 return TRUE;
7997 }
7998
7999 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8000 actually creates up to two pseudosections:
8001 - For the single-threaded case, a section named NAME, unless
8002 such a section already exists.
8003 - For the multi-threaded case, a section named "NAME/PID", where
8004 PID is elfcore_make_pid (abfd).
8005 Both pseudosections have identical contents. */
8006 bfd_boolean
8007 _bfd_elfcore_make_pseudosection (bfd *abfd,
8008 char *name,
8009 size_t size,
8010 ufile_ptr filepos)
8011 {
8012 char buf[100];
8013 char *threaded_name;
8014 size_t len;
8015 asection *sect;
8016
8017 /* Build the section name. */
8018
8019 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8020 len = strlen (buf) + 1;
8021 threaded_name = (char *) bfd_alloc (abfd, len);
8022 if (threaded_name == NULL)
8023 return FALSE;
8024 memcpy (threaded_name, buf, len);
8025
8026 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8027 SEC_HAS_CONTENTS);
8028 if (sect == NULL)
8029 return FALSE;
8030 sect->size = size;
8031 sect->filepos = filepos;
8032 sect->alignment_power = 2;
8033
8034 return elfcore_maybe_make_sect (abfd, name, sect);
8035 }
8036
8037 /* prstatus_t exists on:
8038 solaris 2.5+
8039 linux 2.[01] + glibc
8040 unixware 4.2
8041 */
8042
8043 #if defined (HAVE_PRSTATUS_T)
8044
8045 static bfd_boolean
8046 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8047 {
8048 size_t size;
8049 int offset;
8050
8051 if (note->descsz == sizeof (prstatus_t))
8052 {
8053 prstatus_t prstat;
8054
8055 size = sizeof (prstat.pr_reg);
8056 offset = offsetof (prstatus_t, pr_reg);
8057 memcpy (&prstat, note->descdata, sizeof (prstat));
8058
8059 /* Do not overwrite the core signal if it
8060 has already been set by another thread. */
8061 if (elf_tdata (abfd)->core->signal == 0)
8062 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8063 if (elf_tdata (abfd)->core->pid == 0)
8064 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8065
8066 /* pr_who exists on:
8067 solaris 2.5+
8068 unixware 4.2
8069 pr_who doesn't exist on:
8070 linux 2.[01]
8071 */
8072 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8073 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8074 #else
8075 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8076 #endif
8077 }
8078 #if defined (HAVE_PRSTATUS32_T)
8079 else if (note->descsz == sizeof (prstatus32_t))
8080 {
8081 /* 64-bit host, 32-bit corefile */
8082 prstatus32_t prstat;
8083
8084 size = sizeof (prstat.pr_reg);
8085 offset = offsetof (prstatus32_t, pr_reg);
8086 memcpy (&prstat, note->descdata, sizeof (prstat));
8087
8088 /* Do not overwrite the core signal if it
8089 has already been set by another thread. */
8090 if (elf_tdata (abfd)->core->signal == 0)
8091 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8092 if (elf_tdata (abfd)->core->pid == 0)
8093 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8094
8095 /* pr_who exists on:
8096 solaris 2.5+
8097 unixware 4.2
8098 pr_who doesn't exist on:
8099 linux 2.[01]
8100 */
8101 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8102 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8103 #else
8104 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8105 #endif
8106 }
8107 #endif /* HAVE_PRSTATUS32_T */
8108 else
8109 {
8110 /* Fail - we don't know how to handle any other
8111 note size (ie. data object type). */
8112 return TRUE;
8113 }
8114
8115 /* Make a ".reg/999" section and a ".reg" section. */
8116 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8117 size, note->descpos + offset);
8118 }
8119 #endif /* defined (HAVE_PRSTATUS_T) */
8120
8121 /* Create a pseudosection containing the exact contents of NOTE. */
8122 static bfd_boolean
8123 elfcore_make_note_pseudosection (bfd *abfd,
8124 char *name,
8125 Elf_Internal_Note *note)
8126 {
8127 return _bfd_elfcore_make_pseudosection (abfd, name,
8128 note->descsz, note->descpos);
8129 }
8130
8131 /* There isn't a consistent prfpregset_t across platforms,
8132 but it doesn't matter, because we don't have to pick this
8133 data structure apart. */
8134
8135 static bfd_boolean
8136 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8137 {
8138 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8139 }
8140
8141 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8142 type of NT_PRXFPREG. Just include the whole note's contents
8143 literally. */
8144
8145 static bfd_boolean
8146 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8147 {
8148 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8149 }
8150
8151 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8152 with a note type of NT_X86_XSTATE. Just include the whole note's
8153 contents literally. */
8154
8155 static bfd_boolean
8156 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8157 {
8158 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8159 }
8160
8161 static bfd_boolean
8162 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8163 {
8164 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8165 }
8166
8167 static bfd_boolean
8168 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8169 {
8170 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8171 }
8172
8173 static bfd_boolean
8174 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8175 {
8176 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8177 }
8178
8179 static bfd_boolean
8180 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8181 {
8182 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8183 }
8184
8185 static bfd_boolean
8186 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8187 {
8188 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8189 }
8190
8191 static bfd_boolean
8192 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8193 {
8194 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8195 }
8196
8197 static bfd_boolean
8198 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8199 {
8200 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8201 }
8202
8203 static bfd_boolean
8204 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8205 {
8206 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8207 }
8208
8209 static bfd_boolean
8210 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8211 {
8212 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8213 }
8214
8215 static bfd_boolean
8216 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8217 {
8218 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8219 }
8220
8221 static bfd_boolean
8222 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8223 {
8224 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8225 }
8226
8227 static bfd_boolean
8228 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8229 {
8230 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8231 }
8232
8233 static bfd_boolean
8234 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8235 {
8236 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8237 }
8238
8239 static bfd_boolean
8240 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8241 {
8242 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8243 }
8244
8245 static bfd_boolean
8246 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8247 {
8248 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8249 }
8250
8251 #if defined (HAVE_PRPSINFO_T)
8252 typedef prpsinfo_t elfcore_psinfo_t;
8253 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8254 typedef prpsinfo32_t elfcore_psinfo32_t;
8255 #endif
8256 #endif
8257
8258 #if defined (HAVE_PSINFO_T)
8259 typedef psinfo_t elfcore_psinfo_t;
8260 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8261 typedef psinfo32_t elfcore_psinfo32_t;
8262 #endif
8263 #endif
8264
8265 /* return a malloc'ed copy of a string at START which is at
8266 most MAX bytes long, possibly without a terminating '\0'.
8267 the copy will always have a terminating '\0'. */
8268
8269 char *
8270 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8271 {
8272 char *dups;
8273 char *end = (char *) memchr (start, '\0', max);
8274 size_t len;
8275
8276 if (end == NULL)
8277 len = max;
8278 else
8279 len = end - start;
8280
8281 dups = (char *) bfd_alloc (abfd, len + 1);
8282 if (dups == NULL)
8283 return NULL;
8284
8285 memcpy (dups, start, len);
8286 dups[len] = '\0';
8287
8288 return dups;
8289 }
8290
8291 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8292 static bfd_boolean
8293 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8294 {
8295 if (note->descsz == sizeof (elfcore_psinfo_t))
8296 {
8297 elfcore_psinfo_t psinfo;
8298
8299 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8300
8301 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8302 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8303 #endif
8304 elf_tdata (abfd)->core->program
8305 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8306 sizeof (psinfo.pr_fname));
8307
8308 elf_tdata (abfd)->core->command
8309 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8310 sizeof (psinfo.pr_psargs));
8311 }
8312 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8313 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8314 {
8315 /* 64-bit host, 32-bit corefile */
8316 elfcore_psinfo32_t psinfo;
8317
8318 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8319
8320 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8321 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8322 #endif
8323 elf_tdata (abfd)->core->program
8324 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8325 sizeof (psinfo.pr_fname));
8326
8327 elf_tdata (abfd)->core->command
8328 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8329 sizeof (psinfo.pr_psargs));
8330 }
8331 #endif
8332
8333 else
8334 {
8335 /* Fail - we don't know how to handle any other
8336 note size (ie. data object type). */
8337 return TRUE;
8338 }
8339
8340 /* Note that for some reason, a spurious space is tacked
8341 onto the end of the args in some (at least one anyway)
8342 implementations, so strip it off if it exists. */
8343
8344 {
8345 char *command = elf_tdata (abfd)->core->command;
8346 int n = strlen (command);
8347
8348 if (0 < n && command[n - 1] == ' ')
8349 command[n - 1] = '\0';
8350 }
8351
8352 return TRUE;
8353 }
8354 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8355
8356 #if defined (HAVE_PSTATUS_T)
8357 static bfd_boolean
8358 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8359 {
8360 if (note->descsz == sizeof (pstatus_t)
8361 #if defined (HAVE_PXSTATUS_T)
8362 || note->descsz == sizeof (pxstatus_t)
8363 #endif
8364 )
8365 {
8366 pstatus_t pstat;
8367
8368 memcpy (&pstat, note->descdata, sizeof (pstat));
8369
8370 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8371 }
8372 #if defined (HAVE_PSTATUS32_T)
8373 else if (note->descsz == sizeof (pstatus32_t))
8374 {
8375 /* 64-bit host, 32-bit corefile */
8376 pstatus32_t pstat;
8377
8378 memcpy (&pstat, note->descdata, sizeof (pstat));
8379
8380 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8381 }
8382 #endif
8383 /* Could grab some more details from the "representative"
8384 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8385 NT_LWPSTATUS note, presumably. */
8386
8387 return TRUE;
8388 }
8389 #endif /* defined (HAVE_PSTATUS_T) */
8390
8391 #if defined (HAVE_LWPSTATUS_T)
8392 static bfd_boolean
8393 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8394 {
8395 lwpstatus_t lwpstat;
8396 char buf[100];
8397 char *name;
8398 size_t len;
8399 asection *sect;
8400
8401 if (note->descsz != sizeof (lwpstat)
8402 #if defined (HAVE_LWPXSTATUS_T)
8403 && note->descsz != sizeof (lwpxstatus_t)
8404 #endif
8405 )
8406 return TRUE;
8407
8408 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8409
8410 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8411 /* Do not overwrite the core signal if it has already been set by
8412 another thread. */
8413 if (elf_tdata (abfd)->core->signal == 0)
8414 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8415
8416 /* Make a ".reg/999" section. */
8417
8418 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8419 len = strlen (buf) + 1;
8420 name = bfd_alloc (abfd, len);
8421 if (name == NULL)
8422 return FALSE;
8423 memcpy (name, buf, len);
8424
8425 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8426 if (sect == NULL)
8427 return FALSE;
8428
8429 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8430 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8431 sect->filepos = note->descpos
8432 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8433 #endif
8434
8435 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8436 sect->size = sizeof (lwpstat.pr_reg);
8437 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8438 #endif
8439
8440 sect->alignment_power = 2;
8441
8442 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8443 return FALSE;
8444
8445 /* Make a ".reg2/999" section */
8446
8447 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8448 len = strlen (buf) + 1;
8449 name = bfd_alloc (abfd, len);
8450 if (name == NULL)
8451 return FALSE;
8452 memcpy (name, buf, len);
8453
8454 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8455 if (sect == NULL)
8456 return FALSE;
8457
8458 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8459 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8460 sect->filepos = note->descpos
8461 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8462 #endif
8463
8464 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8465 sect->size = sizeof (lwpstat.pr_fpreg);
8466 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8467 #endif
8468
8469 sect->alignment_power = 2;
8470
8471 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8472 }
8473 #endif /* defined (HAVE_LWPSTATUS_T) */
8474
8475 static bfd_boolean
8476 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8477 {
8478 char buf[30];
8479 char *name;
8480 size_t len;
8481 asection *sect;
8482 int type;
8483 int is_active_thread;
8484 bfd_vma base_addr;
8485
8486 if (note->descsz < 728)
8487 return TRUE;
8488
8489 if (! CONST_STRNEQ (note->namedata, "win32"))
8490 return TRUE;
8491
8492 type = bfd_get_32 (abfd, note->descdata);
8493
8494 switch (type)
8495 {
8496 case 1 /* NOTE_INFO_PROCESS */:
8497 /* FIXME: need to add ->core->command. */
8498 /* process_info.pid */
8499 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8500 /* process_info.signal */
8501 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8502 break;
8503
8504 case 2 /* NOTE_INFO_THREAD */:
8505 /* Make a ".reg/999" section. */
8506 /* thread_info.tid */
8507 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8508
8509 len = strlen (buf) + 1;
8510 name = (char *) bfd_alloc (abfd, len);
8511 if (name == NULL)
8512 return FALSE;
8513
8514 memcpy (name, buf, len);
8515
8516 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8517 if (sect == NULL)
8518 return FALSE;
8519
8520 /* sizeof (thread_info.thread_context) */
8521 sect->size = 716;
8522 /* offsetof (thread_info.thread_context) */
8523 sect->filepos = note->descpos + 12;
8524 sect->alignment_power = 2;
8525
8526 /* thread_info.is_active_thread */
8527 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8528
8529 if (is_active_thread)
8530 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8531 return FALSE;
8532 break;
8533
8534 case 3 /* NOTE_INFO_MODULE */:
8535 /* Make a ".module/xxxxxxxx" section. */
8536 /* module_info.base_address */
8537 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8538 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8539
8540 len = strlen (buf) + 1;
8541 name = (char *) bfd_alloc (abfd, len);
8542 if (name == NULL)
8543 return FALSE;
8544
8545 memcpy (name, buf, len);
8546
8547 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8548
8549 if (sect == NULL)
8550 return FALSE;
8551
8552 sect->size = note->descsz;
8553 sect->filepos = note->descpos;
8554 sect->alignment_power = 2;
8555 break;
8556
8557 default:
8558 return TRUE;
8559 }
8560
8561 return TRUE;
8562 }
8563
8564 static bfd_boolean
8565 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8566 {
8567 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8568
8569 switch (note->type)
8570 {
8571 default:
8572 return TRUE;
8573
8574 case NT_PRSTATUS:
8575 if (bed->elf_backend_grok_prstatus)
8576 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8577 return TRUE;
8578 #if defined (HAVE_PRSTATUS_T)
8579 return elfcore_grok_prstatus (abfd, note);
8580 #else
8581 return TRUE;
8582 #endif
8583
8584 #if defined (HAVE_PSTATUS_T)
8585 case NT_PSTATUS:
8586 return elfcore_grok_pstatus (abfd, note);
8587 #endif
8588
8589 #if defined (HAVE_LWPSTATUS_T)
8590 case NT_LWPSTATUS:
8591 return elfcore_grok_lwpstatus (abfd, note);
8592 #endif
8593
8594 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8595 return elfcore_grok_prfpreg (abfd, note);
8596
8597 case NT_WIN32PSTATUS:
8598 return elfcore_grok_win32pstatus (abfd, note);
8599
8600 case NT_PRXFPREG: /* Linux SSE extension */
8601 if (note->namesz == 6
8602 && strcmp (note->namedata, "LINUX") == 0)
8603 return elfcore_grok_prxfpreg (abfd, note);
8604 else
8605 return TRUE;
8606
8607 case NT_X86_XSTATE: /* Linux XSAVE extension */
8608 if (note->namesz == 6
8609 && strcmp (note->namedata, "LINUX") == 0)
8610 return elfcore_grok_xstatereg (abfd, note);
8611 else
8612 return TRUE;
8613
8614 case NT_PPC_VMX:
8615 if (note->namesz == 6
8616 && strcmp (note->namedata, "LINUX") == 0)
8617 return elfcore_grok_ppc_vmx (abfd, note);
8618 else
8619 return TRUE;
8620
8621 case NT_PPC_VSX:
8622 if (note->namesz == 6
8623 && strcmp (note->namedata, "LINUX") == 0)
8624 return elfcore_grok_ppc_vsx (abfd, note);
8625 else
8626 return TRUE;
8627
8628 case NT_S390_HIGH_GPRS:
8629 if (note->namesz == 6
8630 && strcmp (note->namedata, "LINUX") == 0)
8631 return elfcore_grok_s390_high_gprs (abfd, note);
8632 else
8633 return TRUE;
8634
8635 case NT_S390_TIMER:
8636 if (note->namesz == 6
8637 && strcmp (note->namedata, "LINUX") == 0)
8638 return elfcore_grok_s390_timer (abfd, note);
8639 else
8640 return TRUE;
8641
8642 case NT_S390_TODCMP:
8643 if (note->namesz == 6
8644 && strcmp (note->namedata, "LINUX") == 0)
8645 return elfcore_grok_s390_todcmp (abfd, note);
8646 else
8647 return TRUE;
8648
8649 case NT_S390_TODPREG:
8650 if (note->namesz == 6
8651 && strcmp (note->namedata, "LINUX") == 0)
8652 return elfcore_grok_s390_todpreg (abfd, note);
8653 else
8654 return TRUE;
8655
8656 case NT_S390_CTRS:
8657 if (note->namesz == 6
8658 && strcmp (note->namedata, "LINUX") == 0)
8659 return elfcore_grok_s390_ctrs (abfd, note);
8660 else
8661 return TRUE;
8662
8663 case NT_S390_PREFIX:
8664 if (note->namesz == 6
8665 && strcmp (note->namedata, "LINUX") == 0)
8666 return elfcore_grok_s390_prefix (abfd, note);
8667 else
8668 return TRUE;
8669
8670 case NT_S390_LAST_BREAK:
8671 if (note->namesz == 6
8672 && strcmp (note->namedata, "LINUX") == 0)
8673 return elfcore_grok_s390_last_break (abfd, note);
8674 else
8675 return TRUE;
8676
8677 case NT_S390_SYSTEM_CALL:
8678 if (note->namesz == 6
8679 && strcmp (note->namedata, "LINUX") == 0)
8680 return elfcore_grok_s390_system_call (abfd, note);
8681 else
8682 return TRUE;
8683
8684 case NT_S390_TDB:
8685 if (note->namesz == 6
8686 && strcmp (note->namedata, "LINUX") == 0)
8687 return elfcore_grok_s390_tdb (abfd, note);
8688 else
8689 return TRUE;
8690
8691 case NT_ARM_VFP:
8692 if (note->namesz == 6
8693 && strcmp (note->namedata, "LINUX") == 0)
8694 return elfcore_grok_arm_vfp (abfd, note);
8695 else
8696 return TRUE;
8697
8698 case NT_ARM_TLS:
8699 if (note->namesz == 6
8700 && strcmp (note->namedata, "LINUX") == 0)
8701 return elfcore_grok_aarch_tls (abfd, note);
8702 else
8703 return TRUE;
8704
8705 case NT_ARM_HW_BREAK:
8706 if (note->namesz == 6
8707 && strcmp (note->namedata, "LINUX") == 0)
8708 return elfcore_grok_aarch_hw_break (abfd, note);
8709 else
8710 return TRUE;
8711
8712 case NT_ARM_HW_WATCH:
8713 if (note->namesz == 6
8714 && strcmp (note->namedata, "LINUX") == 0)
8715 return elfcore_grok_aarch_hw_watch (abfd, note);
8716 else
8717 return TRUE;
8718
8719 case NT_PRPSINFO:
8720 case NT_PSINFO:
8721 if (bed->elf_backend_grok_psinfo)
8722 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8723 return TRUE;
8724 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8725 return elfcore_grok_psinfo (abfd, note);
8726 #else
8727 return TRUE;
8728 #endif
8729
8730 case NT_AUXV:
8731 {
8732 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8733 SEC_HAS_CONTENTS);
8734
8735 if (sect == NULL)
8736 return FALSE;
8737 sect->size = note->descsz;
8738 sect->filepos = note->descpos;
8739 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8740
8741 return TRUE;
8742 }
8743
8744 case NT_FILE:
8745 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8746 note);
8747
8748 case NT_SIGINFO:
8749 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8750 note);
8751 }
8752 }
8753
8754 static bfd_boolean
8755 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8756 {
8757 struct elf_obj_tdata *t;
8758
8759 if (note->descsz == 0)
8760 return FALSE;
8761
8762 t = elf_tdata (abfd);
8763 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8764 if (t->build_id == NULL)
8765 return FALSE;
8766
8767 t->build_id->size = note->descsz;
8768 memcpy (t->build_id->data, note->descdata, note->descsz);
8769
8770 return TRUE;
8771 }
8772
8773 static bfd_boolean
8774 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8775 {
8776 switch (note->type)
8777 {
8778 default:
8779 return TRUE;
8780
8781 case NT_GNU_BUILD_ID:
8782 return elfobj_grok_gnu_build_id (abfd, note);
8783 }
8784 }
8785
8786 static bfd_boolean
8787 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8788 {
8789 struct sdt_note *cur =
8790 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8791 + note->descsz);
8792
8793 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8794 cur->size = (bfd_size_type) note->descsz;
8795 memcpy (cur->data, note->descdata, note->descsz);
8796
8797 elf_tdata (abfd)->sdt_note_head = cur;
8798
8799 return TRUE;
8800 }
8801
8802 static bfd_boolean
8803 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8804 {
8805 switch (note->type)
8806 {
8807 case NT_STAPSDT:
8808 return elfobj_grok_stapsdt_note_1 (abfd, note);
8809
8810 default:
8811 return TRUE;
8812 }
8813 }
8814
8815 static bfd_boolean
8816 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8817 {
8818 char *cp;
8819
8820 cp = strchr (note->namedata, '@');
8821 if (cp != NULL)
8822 {
8823 *lwpidp = atoi(cp + 1);
8824 return TRUE;
8825 }
8826 return FALSE;
8827 }
8828
8829 static bfd_boolean
8830 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8831 {
8832 /* Signal number at offset 0x08. */
8833 elf_tdata (abfd)->core->signal
8834 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8835
8836 /* Process ID at offset 0x50. */
8837 elf_tdata (abfd)->core->pid
8838 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8839
8840 /* Command name at 0x7c (max 32 bytes, including nul). */
8841 elf_tdata (abfd)->core->command
8842 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8843
8844 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8845 note);
8846 }
8847
8848 static bfd_boolean
8849 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8850 {
8851 int lwp;
8852
8853 if (elfcore_netbsd_get_lwpid (note, &lwp))
8854 elf_tdata (abfd)->core->lwpid = lwp;
8855
8856 if (note->type == NT_NETBSDCORE_PROCINFO)
8857 {
8858 /* NetBSD-specific core "procinfo". Note that we expect to
8859 find this note before any of the others, which is fine,
8860 since the kernel writes this note out first when it
8861 creates a core file. */
8862
8863 return elfcore_grok_netbsd_procinfo (abfd, note);
8864 }
8865
8866 /* As of Jan 2002 there are no other machine-independent notes
8867 defined for NetBSD core files. If the note type is less
8868 than the start of the machine-dependent note types, we don't
8869 understand it. */
8870
8871 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8872 return TRUE;
8873
8874
8875 switch (bfd_get_arch (abfd))
8876 {
8877 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8878 PT_GETFPREGS == mach+2. */
8879
8880 case bfd_arch_alpha:
8881 case bfd_arch_sparc:
8882 switch (note->type)
8883 {
8884 case NT_NETBSDCORE_FIRSTMACH+0:
8885 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8886
8887 case NT_NETBSDCORE_FIRSTMACH+2:
8888 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8889
8890 default:
8891 return TRUE;
8892 }
8893
8894 /* On all other arch's, PT_GETREGS == mach+1 and
8895 PT_GETFPREGS == mach+3. */
8896
8897 default:
8898 switch (note->type)
8899 {
8900 case NT_NETBSDCORE_FIRSTMACH+1:
8901 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8902
8903 case NT_NETBSDCORE_FIRSTMACH+3:
8904 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8905
8906 default:
8907 return TRUE;
8908 }
8909 }
8910 /* NOTREACHED */
8911 }
8912
8913 static bfd_boolean
8914 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8915 {
8916 /* Signal number at offset 0x08. */
8917 elf_tdata (abfd)->core->signal
8918 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8919
8920 /* Process ID at offset 0x20. */
8921 elf_tdata (abfd)->core->pid
8922 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8923
8924 /* Command name at 0x48 (max 32 bytes, including nul). */
8925 elf_tdata (abfd)->core->command
8926 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8927
8928 return TRUE;
8929 }
8930
8931 static bfd_boolean
8932 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8933 {
8934 if (note->type == NT_OPENBSD_PROCINFO)
8935 return elfcore_grok_openbsd_procinfo (abfd, note);
8936
8937 if (note->type == NT_OPENBSD_REGS)
8938 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8939
8940 if (note->type == NT_OPENBSD_FPREGS)
8941 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8942
8943 if (note->type == NT_OPENBSD_XFPREGS)
8944 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8945
8946 if (note->type == NT_OPENBSD_AUXV)
8947 {
8948 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8949 SEC_HAS_CONTENTS);
8950
8951 if (sect == NULL)
8952 return FALSE;
8953 sect->size = note->descsz;
8954 sect->filepos = note->descpos;
8955 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8956
8957 return TRUE;
8958 }
8959
8960 if (note->type == NT_OPENBSD_WCOOKIE)
8961 {
8962 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8963 SEC_HAS_CONTENTS);
8964
8965 if (sect == NULL)
8966 return FALSE;
8967 sect->size = note->descsz;
8968 sect->filepos = note->descpos;
8969 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8970
8971 return TRUE;
8972 }
8973
8974 return TRUE;
8975 }
8976
8977 static bfd_boolean
8978 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8979 {
8980 void *ddata = note->descdata;
8981 char buf[100];
8982 char *name;
8983 asection *sect;
8984 short sig;
8985 unsigned flags;
8986
8987 /* nto_procfs_status 'pid' field is at offset 0. */
8988 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8989
8990 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8991 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8992
8993 /* nto_procfs_status 'flags' field is at offset 8. */
8994 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8995
8996 /* nto_procfs_status 'what' field is at offset 14. */
8997 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8998 {
8999 elf_tdata (abfd)->core->signal = sig;
9000 elf_tdata (abfd)->core->lwpid = *tid;
9001 }
9002
9003 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9004 do not come from signals so we make sure we set the current
9005 thread just in case. */
9006 if (flags & 0x00000080)
9007 elf_tdata (abfd)->core->lwpid = *tid;
9008
9009 /* Make a ".qnx_core_status/%d" section. */
9010 sprintf (buf, ".qnx_core_status/%ld", *tid);
9011
9012 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9013 if (name == NULL)
9014 return FALSE;
9015 strcpy (name, buf);
9016
9017 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9018 if (sect == NULL)
9019 return FALSE;
9020
9021 sect->size = note->descsz;
9022 sect->filepos = note->descpos;
9023 sect->alignment_power = 2;
9024
9025 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9026 }
9027
9028 static bfd_boolean
9029 elfcore_grok_nto_regs (bfd *abfd,
9030 Elf_Internal_Note *note,
9031 long tid,
9032 char *base)
9033 {
9034 char buf[100];
9035 char *name;
9036 asection *sect;
9037
9038 /* Make a "(base)/%d" section. */
9039 sprintf (buf, "%s/%ld", base, tid);
9040
9041 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9042 if (name == NULL)
9043 return FALSE;
9044 strcpy (name, buf);
9045
9046 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9047 if (sect == NULL)
9048 return FALSE;
9049
9050 sect->size = note->descsz;
9051 sect->filepos = note->descpos;
9052 sect->alignment_power = 2;
9053
9054 /* This is the current thread. */
9055 if (elf_tdata (abfd)->core->lwpid == tid)
9056 return elfcore_maybe_make_sect (abfd, base, sect);
9057
9058 return TRUE;
9059 }
9060
9061 #define BFD_QNT_CORE_INFO 7
9062 #define BFD_QNT_CORE_STATUS 8
9063 #define BFD_QNT_CORE_GREG 9
9064 #define BFD_QNT_CORE_FPREG 10
9065
9066 static bfd_boolean
9067 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9068 {
9069 /* Every GREG section has a STATUS section before it. Store the
9070 tid from the previous call to pass down to the next gregs
9071 function. */
9072 static long tid = 1;
9073
9074 switch (note->type)
9075 {
9076 case BFD_QNT_CORE_INFO:
9077 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9078 case BFD_QNT_CORE_STATUS:
9079 return elfcore_grok_nto_status (abfd, note, &tid);
9080 case BFD_QNT_CORE_GREG:
9081 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9082 case BFD_QNT_CORE_FPREG:
9083 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9084 default:
9085 return TRUE;
9086 }
9087 }
9088
9089 static bfd_boolean
9090 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9091 {
9092 char *name;
9093 asection *sect;
9094 size_t len;
9095
9096 /* Use note name as section name. */
9097 len = note->namesz;
9098 name = (char *) bfd_alloc (abfd, len);
9099 if (name == NULL)
9100 return FALSE;
9101 memcpy (name, note->namedata, len);
9102 name[len - 1] = '\0';
9103
9104 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9105 if (sect == NULL)
9106 return FALSE;
9107
9108 sect->size = note->descsz;
9109 sect->filepos = note->descpos;
9110 sect->alignment_power = 1;
9111
9112 return TRUE;
9113 }
9114
9115 /* Function: elfcore_write_note
9116
9117 Inputs:
9118 buffer to hold note, and current size of buffer
9119 name of note
9120 type of note
9121 data for note
9122 size of data for note
9123
9124 Writes note to end of buffer. ELF64 notes are written exactly as
9125 for ELF32, despite the current (as of 2006) ELF gabi specifying
9126 that they ought to have 8-byte namesz and descsz field, and have
9127 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9128
9129 Return:
9130 Pointer to realloc'd buffer, *BUFSIZ updated. */
9131
9132 char *
9133 elfcore_write_note (bfd *abfd,
9134 char *buf,
9135 int *bufsiz,
9136 const char *name,
9137 int type,
9138 const void *input,
9139 int size)
9140 {
9141 Elf_External_Note *xnp;
9142 size_t namesz;
9143 size_t newspace;
9144 char *dest;
9145
9146 namesz = 0;
9147 if (name != NULL)
9148 namesz = strlen (name) + 1;
9149
9150 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9151
9152 buf = (char *) realloc (buf, *bufsiz + newspace);
9153 if (buf == NULL)
9154 return buf;
9155 dest = buf + *bufsiz;
9156 *bufsiz += newspace;
9157 xnp = (Elf_External_Note *) dest;
9158 H_PUT_32 (abfd, namesz, xnp->namesz);
9159 H_PUT_32 (abfd, size, xnp->descsz);
9160 H_PUT_32 (abfd, type, xnp->type);
9161 dest = xnp->name;
9162 if (name != NULL)
9163 {
9164 memcpy (dest, name, namesz);
9165 dest += namesz;
9166 while (namesz & 3)
9167 {
9168 *dest++ = '\0';
9169 ++namesz;
9170 }
9171 }
9172 memcpy (dest, input, size);
9173 dest += size;
9174 while (size & 3)
9175 {
9176 *dest++ = '\0';
9177 ++size;
9178 }
9179 return buf;
9180 }
9181
9182 char *
9183 elfcore_write_prpsinfo (bfd *abfd,
9184 char *buf,
9185 int *bufsiz,
9186 const char *fname,
9187 const char *psargs)
9188 {
9189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9190
9191 if (bed->elf_backend_write_core_note != NULL)
9192 {
9193 char *ret;
9194 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9195 NT_PRPSINFO, fname, psargs);
9196 if (ret != NULL)
9197 return ret;
9198 }
9199
9200 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9201 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9202 if (bed->s->elfclass == ELFCLASS32)
9203 {
9204 #if defined (HAVE_PSINFO32_T)
9205 psinfo32_t data;
9206 int note_type = NT_PSINFO;
9207 #else
9208 prpsinfo32_t data;
9209 int note_type = NT_PRPSINFO;
9210 #endif
9211
9212 memset (&data, 0, sizeof (data));
9213 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9214 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9215 return elfcore_write_note (abfd, buf, bufsiz,
9216 "CORE", note_type, &data, sizeof (data));
9217 }
9218 else
9219 #endif
9220 {
9221 #if defined (HAVE_PSINFO_T)
9222 psinfo_t data;
9223 int note_type = NT_PSINFO;
9224 #else
9225 prpsinfo_t data;
9226 int note_type = NT_PRPSINFO;
9227 #endif
9228
9229 memset (&data, 0, sizeof (data));
9230 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9231 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9232 return elfcore_write_note (abfd, buf, bufsiz,
9233 "CORE", note_type, &data, sizeof (data));
9234 }
9235 #endif /* PSINFO_T or PRPSINFO_T */
9236
9237 free (buf);
9238 return NULL;
9239 }
9240
9241 char *
9242 elfcore_write_linux_prpsinfo32
9243 (bfd *abfd, char *buf, int *bufsiz,
9244 const struct elf_internal_linux_prpsinfo *prpsinfo)
9245 {
9246 struct elf_external_linux_prpsinfo32 data;
9247
9248 memset (&data, 0, sizeof (data));
9249 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9250
9251 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9252 &data, sizeof (data));
9253 }
9254
9255 char *
9256 elfcore_write_linux_prpsinfo64
9257 (bfd *abfd, char *buf, int *bufsiz,
9258 const struct elf_internal_linux_prpsinfo *prpsinfo)
9259 {
9260 struct elf_external_linux_prpsinfo64 data;
9261
9262 memset (&data, 0, sizeof (data));
9263 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9264
9265 return elfcore_write_note (abfd, buf, bufsiz,
9266 "CORE", NT_PRPSINFO, &data, sizeof (data));
9267 }
9268
9269 char *
9270 elfcore_write_prstatus (bfd *abfd,
9271 char *buf,
9272 int *bufsiz,
9273 long pid,
9274 int cursig,
9275 const void *gregs)
9276 {
9277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9278
9279 if (bed->elf_backend_write_core_note != NULL)
9280 {
9281 char *ret;
9282 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9283 NT_PRSTATUS,
9284 pid, cursig, gregs);
9285 if (ret != NULL)
9286 return ret;
9287 }
9288
9289 #if defined (HAVE_PRSTATUS_T)
9290 #if defined (HAVE_PRSTATUS32_T)
9291 if (bed->s->elfclass == ELFCLASS32)
9292 {
9293 prstatus32_t prstat;
9294
9295 memset (&prstat, 0, sizeof (prstat));
9296 prstat.pr_pid = pid;
9297 prstat.pr_cursig = cursig;
9298 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9299 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9300 NT_PRSTATUS, &prstat, sizeof (prstat));
9301 }
9302 else
9303 #endif
9304 {
9305 prstatus_t prstat;
9306
9307 memset (&prstat, 0, sizeof (prstat));
9308 prstat.pr_pid = pid;
9309 prstat.pr_cursig = cursig;
9310 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9311 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9312 NT_PRSTATUS, &prstat, sizeof (prstat));
9313 }
9314 #endif /* HAVE_PRSTATUS_T */
9315
9316 free (buf);
9317 return NULL;
9318 }
9319
9320 #if defined (HAVE_LWPSTATUS_T)
9321 char *
9322 elfcore_write_lwpstatus (bfd *abfd,
9323 char *buf,
9324 int *bufsiz,
9325 long pid,
9326 int cursig,
9327 const void *gregs)
9328 {
9329 lwpstatus_t lwpstat;
9330 const char *note_name = "CORE";
9331
9332 memset (&lwpstat, 0, sizeof (lwpstat));
9333 lwpstat.pr_lwpid = pid >> 16;
9334 lwpstat.pr_cursig = cursig;
9335 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9336 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9337 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9338 #if !defined(gregs)
9339 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9340 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9341 #else
9342 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9343 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9344 #endif
9345 #endif
9346 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9347 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9348 }
9349 #endif /* HAVE_LWPSTATUS_T */
9350
9351 #if defined (HAVE_PSTATUS_T)
9352 char *
9353 elfcore_write_pstatus (bfd *abfd,
9354 char *buf,
9355 int *bufsiz,
9356 long pid,
9357 int cursig ATTRIBUTE_UNUSED,
9358 const void *gregs ATTRIBUTE_UNUSED)
9359 {
9360 const char *note_name = "CORE";
9361 #if defined (HAVE_PSTATUS32_T)
9362 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9363
9364 if (bed->s->elfclass == ELFCLASS32)
9365 {
9366 pstatus32_t pstat;
9367
9368 memset (&pstat, 0, sizeof (pstat));
9369 pstat.pr_pid = pid & 0xffff;
9370 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9371 NT_PSTATUS, &pstat, sizeof (pstat));
9372 return buf;
9373 }
9374 else
9375 #endif
9376 {
9377 pstatus_t pstat;
9378
9379 memset (&pstat, 0, sizeof (pstat));
9380 pstat.pr_pid = pid & 0xffff;
9381 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9382 NT_PSTATUS, &pstat, sizeof (pstat));
9383 return buf;
9384 }
9385 }
9386 #endif /* HAVE_PSTATUS_T */
9387
9388 char *
9389 elfcore_write_prfpreg (bfd *abfd,
9390 char *buf,
9391 int *bufsiz,
9392 const void *fpregs,
9393 int size)
9394 {
9395 const char *note_name = "CORE";
9396 return elfcore_write_note (abfd, buf, bufsiz,
9397 note_name, NT_FPREGSET, fpregs, size);
9398 }
9399
9400 char *
9401 elfcore_write_prxfpreg (bfd *abfd,
9402 char *buf,
9403 int *bufsiz,
9404 const void *xfpregs,
9405 int size)
9406 {
9407 char *note_name = "LINUX";
9408 return elfcore_write_note (abfd, buf, bufsiz,
9409 note_name, NT_PRXFPREG, xfpregs, size);
9410 }
9411
9412 char *
9413 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9414 const void *xfpregs, int size)
9415 {
9416 char *note_name = "LINUX";
9417 return elfcore_write_note (abfd, buf, bufsiz,
9418 note_name, NT_X86_XSTATE, xfpregs, size);
9419 }
9420
9421 char *
9422 elfcore_write_ppc_vmx (bfd *abfd,
9423 char *buf,
9424 int *bufsiz,
9425 const void *ppc_vmx,
9426 int size)
9427 {
9428 char *note_name = "LINUX";
9429 return elfcore_write_note (abfd, buf, bufsiz,
9430 note_name, NT_PPC_VMX, ppc_vmx, size);
9431 }
9432
9433 char *
9434 elfcore_write_ppc_vsx (bfd *abfd,
9435 char *buf,
9436 int *bufsiz,
9437 const void *ppc_vsx,
9438 int size)
9439 {
9440 char *note_name = "LINUX";
9441 return elfcore_write_note (abfd, buf, bufsiz,
9442 note_name, NT_PPC_VSX, ppc_vsx, size);
9443 }
9444
9445 static char *
9446 elfcore_write_s390_high_gprs (bfd *abfd,
9447 char *buf,
9448 int *bufsiz,
9449 const void *s390_high_gprs,
9450 int size)
9451 {
9452 char *note_name = "LINUX";
9453 return elfcore_write_note (abfd, buf, bufsiz,
9454 note_name, NT_S390_HIGH_GPRS,
9455 s390_high_gprs, size);
9456 }
9457
9458 char *
9459 elfcore_write_s390_timer (bfd *abfd,
9460 char *buf,
9461 int *bufsiz,
9462 const void *s390_timer,
9463 int size)
9464 {
9465 char *note_name = "LINUX";
9466 return elfcore_write_note (abfd, buf, bufsiz,
9467 note_name, NT_S390_TIMER, s390_timer, size);
9468 }
9469
9470 char *
9471 elfcore_write_s390_todcmp (bfd *abfd,
9472 char *buf,
9473 int *bufsiz,
9474 const void *s390_todcmp,
9475 int size)
9476 {
9477 char *note_name = "LINUX";
9478 return elfcore_write_note (abfd, buf, bufsiz,
9479 note_name, NT_S390_TODCMP, s390_todcmp, size);
9480 }
9481
9482 char *
9483 elfcore_write_s390_todpreg (bfd *abfd,
9484 char *buf,
9485 int *bufsiz,
9486 const void *s390_todpreg,
9487 int size)
9488 {
9489 char *note_name = "LINUX";
9490 return elfcore_write_note (abfd, buf, bufsiz,
9491 note_name, NT_S390_TODPREG, s390_todpreg, size);
9492 }
9493
9494 char *
9495 elfcore_write_s390_ctrs (bfd *abfd,
9496 char *buf,
9497 int *bufsiz,
9498 const void *s390_ctrs,
9499 int size)
9500 {
9501 char *note_name = "LINUX";
9502 return elfcore_write_note (abfd, buf, bufsiz,
9503 note_name, NT_S390_CTRS, s390_ctrs, size);
9504 }
9505
9506 char *
9507 elfcore_write_s390_prefix (bfd *abfd,
9508 char *buf,
9509 int *bufsiz,
9510 const void *s390_prefix,
9511 int size)
9512 {
9513 char *note_name = "LINUX";
9514 return elfcore_write_note (abfd, buf, bufsiz,
9515 note_name, NT_S390_PREFIX, s390_prefix, size);
9516 }
9517
9518 char *
9519 elfcore_write_s390_last_break (bfd *abfd,
9520 char *buf,
9521 int *bufsiz,
9522 const void *s390_last_break,
9523 int size)
9524 {
9525 char *note_name = "LINUX";
9526 return elfcore_write_note (abfd, buf, bufsiz,
9527 note_name, NT_S390_LAST_BREAK,
9528 s390_last_break, size);
9529 }
9530
9531 char *
9532 elfcore_write_s390_system_call (bfd *abfd,
9533 char *buf,
9534 int *bufsiz,
9535 const void *s390_system_call,
9536 int size)
9537 {
9538 char *note_name = "LINUX";
9539 return elfcore_write_note (abfd, buf, bufsiz,
9540 note_name, NT_S390_SYSTEM_CALL,
9541 s390_system_call, size);
9542 }
9543
9544 char *
9545 elfcore_write_s390_tdb (bfd *abfd,
9546 char *buf,
9547 int *bufsiz,
9548 const void *s390_tdb,
9549 int size)
9550 {
9551 char *note_name = "LINUX";
9552 return elfcore_write_note (abfd, buf, bufsiz,
9553 note_name, NT_S390_TDB, s390_tdb, size);
9554 }
9555
9556 char *
9557 elfcore_write_arm_vfp (bfd *abfd,
9558 char *buf,
9559 int *bufsiz,
9560 const void *arm_vfp,
9561 int size)
9562 {
9563 char *note_name = "LINUX";
9564 return elfcore_write_note (abfd, buf, bufsiz,
9565 note_name, NT_ARM_VFP, arm_vfp, size);
9566 }
9567
9568 char *
9569 elfcore_write_aarch_tls (bfd *abfd,
9570 char *buf,
9571 int *bufsiz,
9572 const void *aarch_tls,
9573 int size)
9574 {
9575 char *note_name = "LINUX";
9576 return elfcore_write_note (abfd, buf, bufsiz,
9577 note_name, NT_ARM_TLS, aarch_tls, size);
9578 }
9579
9580 char *
9581 elfcore_write_aarch_hw_break (bfd *abfd,
9582 char *buf,
9583 int *bufsiz,
9584 const void *aarch_hw_break,
9585 int size)
9586 {
9587 char *note_name = "LINUX";
9588 return elfcore_write_note (abfd, buf, bufsiz,
9589 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9590 }
9591
9592 char *
9593 elfcore_write_aarch_hw_watch (bfd *abfd,
9594 char *buf,
9595 int *bufsiz,
9596 const void *aarch_hw_watch,
9597 int size)
9598 {
9599 char *note_name = "LINUX";
9600 return elfcore_write_note (abfd, buf, bufsiz,
9601 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9602 }
9603
9604 char *
9605 elfcore_write_register_note (bfd *abfd,
9606 char *buf,
9607 int *bufsiz,
9608 const char *section,
9609 const void *data,
9610 int size)
9611 {
9612 if (strcmp (section, ".reg2") == 0)
9613 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9614 if (strcmp (section, ".reg-xfp") == 0)
9615 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9616 if (strcmp (section, ".reg-xstate") == 0)
9617 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9618 if (strcmp (section, ".reg-ppc-vmx") == 0)
9619 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9620 if (strcmp (section, ".reg-ppc-vsx") == 0)
9621 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9622 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9623 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9624 if (strcmp (section, ".reg-s390-timer") == 0)
9625 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9626 if (strcmp (section, ".reg-s390-todcmp") == 0)
9627 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9628 if (strcmp (section, ".reg-s390-todpreg") == 0)
9629 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9630 if (strcmp (section, ".reg-s390-ctrs") == 0)
9631 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9632 if (strcmp (section, ".reg-s390-prefix") == 0)
9633 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9634 if (strcmp (section, ".reg-s390-last-break") == 0)
9635 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9636 if (strcmp (section, ".reg-s390-system-call") == 0)
9637 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9638 if (strcmp (section, ".reg-s390-tdb") == 0)
9639 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9640 if (strcmp (section, ".reg-arm-vfp") == 0)
9641 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9642 if (strcmp (section, ".reg-aarch-tls") == 0)
9643 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9644 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9645 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9646 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9647 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9648 return NULL;
9649 }
9650
9651 static bfd_boolean
9652 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9653 {
9654 char *p;
9655
9656 p = buf;
9657 while (p < buf + size)
9658 {
9659 /* FIXME: bad alignment assumption. */
9660 Elf_External_Note *xnp = (Elf_External_Note *) p;
9661 Elf_Internal_Note in;
9662
9663 if (offsetof (Elf_External_Note, name) > buf - p + size)
9664 return FALSE;
9665
9666 in.type = H_GET_32 (abfd, xnp->type);
9667
9668 in.namesz = H_GET_32 (abfd, xnp->namesz);
9669 in.namedata = xnp->name;
9670 if (in.namesz > buf - in.namedata + size)
9671 return FALSE;
9672
9673 in.descsz = H_GET_32 (abfd, xnp->descsz);
9674 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9675 in.descpos = offset + (in.descdata - buf);
9676 if (in.descsz != 0
9677 && (in.descdata >= buf + size
9678 || in.descsz > buf - in.descdata + size))
9679 return FALSE;
9680
9681 switch (bfd_get_format (abfd))
9682 {
9683 default:
9684 return TRUE;
9685
9686 case bfd_core:
9687 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9688 {
9689 if (! elfcore_grok_netbsd_note (abfd, &in))
9690 return FALSE;
9691 }
9692 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9693 {
9694 if (! elfcore_grok_openbsd_note (abfd, &in))
9695 return FALSE;
9696 }
9697 else if (CONST_STRNEQ (in.namedata, "QNX"))
9698 {
9699 if (! elfcore_grok_nto_note (abfd, &in))
9700 return FALSE;
9701 }
9702 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9703 {
9704 if (! elfcore_grok_spu_note (abfd, &in))
9705 return FALSE;
9706 }
9707 else
9708 {
9709 if (! elfcore_grok_note (abfd, &in))
9710 return FALSE;
9711 }
9712 break;
9713
9714 case bfd_object:
9715 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9716 {
9717 if (! elfobj_grok_gnu_note (abfd, &in))
9718 return FALSE;
9719 }
9720 else if (in.namesz == sizeof "stapsdt"
9721 && strcmp (in.namedata, "stapsdt") == 0)
9722 {
9723 if (! elfobj_grok_stapsdt_note (abfd, &in))
9724 return FALSE;
9725 }
9726 break;
9727 }
9728
9729 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9730 }
9731
9732 return TRUE;
9733 }
9734
9735 static bfd_boolean
9736 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9737 {
9738 char *buf;
9739
9740 if (size <= 0)
9741 return TRUE;
9742
9743 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9744 return FALSE;
9745
9746 buf = (char *) bfd_malloc (size);
9747 if (buf == NULL)
9748 return FALSE;
9749
9750 if (bfd_bread (buf, size, abfd) != size
9751 || !elf_parse_notes (abfd, buf, size, offset))
9752 {
9753 free (buf);
9754 return FALSE;
9755 }
9756
9757 free (buf);
9758 return TRUE;
9759 }
9760 \f
9761 /* Providing external access to the ELF program header table. */
9762
9763 /* Return an upper bound on the number of bytes required to store a
9764 copy of ABFD's program header table entries. Return -1 if an error
9765 occurs; bfd_get_error will return an appropriate code. */
9766
9767 long
9768 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9769 {
9770 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9771 {
9772 bfd_set_error (bfd_error_wrong_format);
9773 return -1;
9774 }
9775
9776 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9777 }
9778
9779 /* Copy ABFD's program header table entries to *PHDRS. The entries
9780 will be stored as an array of Elf_Internal_Phdr structures, as
9781 defined in include/elf/internal.h. To find out how large the
9782 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9783
9784 Return the number of program header table entries read, or -1 if an
9785 error occurs; bfd_get_error will return an appropriate code. */
9786
9787 int
9788 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9789 {
9790 int num_phdrs;
9791
9792 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9793 {
9794 bfd_set_error (bfd_error_wrong_format);
9795 return -1;
9796 }
9797
9798 num_phdrs = elf_elfheader (abfd)->e_phnum;
9799 memcpy (phdrs, elf_tdata (abfd)->phdr,
9800 num_phdrs * sizeof (Elf_Internal_Phdr));
9801
9802 return num_phdrs;
9803 }
9804
9805 enum elf_reloc_type_class
9806 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9807 const asection *rel_sec ATTRIBUTE_UNUSED,
9808 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9809 {
9810 return reloc_class_normal;
9811 }
9812
9813 /* For RELA architectures, return the relocation value for a
9814 relocation against a local symbol. */
9815
9816 bfd_vma
9817 _bfd_elf_rela_local_sym (bfd *abfd,
9818 Elf_Internal_Sym *sym,
9819 asection **psec,
9820 Elf_Internal_Rela *rel)
9821 {
9822 asection *sec = *psec;
9823 bfd_vma relocation;
9824
9825 relocation = (sec->output_section->vma
9826 + sec->output_offset
9827 + sym->st_value);
9828 if ((sec->flags & SEC_MERGE)
9829 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9830 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9831 {
9832 rel->r_addend =
9833 _bfd_merged_section_offset (abfd, psec,
9834 elf_section_data (sec)->sec_info,
9835 sym->st_value + rel->r_addend);
9836 if (sec != *psec)
9837 {
9838 /* If we have changed the section, and our original section is
9839 marked with SEC_EXCLUDE, it means that the original
9840 SEC_MERGE section has been completely subsumed in some
9841 other SEC_MERGE section. In this case, we need to leave
9842 some info around for --emit-relocs. */
9843 if ((sec->flags & SEC_EXCLUDE) != 0)
9844 sec->kept_section = *psec;
9845 sec = *psec;
9846 }
9847 rel->r_addend -= relocation;
9848 rel->r_addend += sec->output_section->vma + sec->output_offset;
9849 }
9850 return relocation;
9851 }
9852
9853 bfd_vma
9854 _bfd_elf_rel_local_sym (bfd *abfd,
9855 Elf_Internal_Sym *sym,
9856 asection **psec,
9857 bfd_vma addend)
9858 {
9859 asection *sec = *psec;
9860
9861 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9862 return sym->st_value + addend;
9863
9864 return _bfd_merged_section_offset (abfd, psec,
9865 elf_section_data (sec)->sec_info,
9866 sym->st_value + addend);
9867 }
9868
9869 bfd_vma
9870 _bfd_elf_section_offset (bfd *abfd,
9871 struct bfd_link_info *info,
9872 asection *sec,
9873 bfd_vma offset)
9874 {
9875 switch (sec->sec_info_type)
9876 {
9877 case SEC_INFO_TYPE_STABS:
9878 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9879 offset);
9880 case SEC_INFO_TYPE_EH_FRAME:
9881 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9882 default:
9883 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9884 {
9885 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9886 bfd_size_type address_size = bed->s->arch_size / 8;
9887 offset = sec->size - offset - address_size;
9888 }
9889 return offset;
9890 }
9891 }
9892 \f
9893 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9894 reconstruct an ELF file by reading the segments out of remote memory
9895 based on the ELF file header at EHDR_VMA and the ELF program headers it
9896 points to. If not null, *LOADBASEP is filled in with the difference
9897 between the VMAs from which the segments were read, and the VMAs the
9898 file headers (and hence BFD's idea of each section's VMA) put them at.
9899
9900 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9901 remote memory at target address VMA into the local buffer at MYADDR; it
9902 should return zero on success or an `errno' code on failure. TEMPL must
9903 be a BFD for an ELF target with the word size and byte order found in
9904 the remote memory. */
9905
9906 bfd *
9907 bfd_elf_bfd_from_remote_memory
9908 (bfd *templ,
9909 bfd_vma ehdr_vma,
9910 bfd_vma *loadbasep,
9911 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9912 {
9913 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9914 (templ, ehdr_vma, loadbasep, target_read_memory);
9915 }
9916 \f
9917 long
9918 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9919 long symcount ATTRIBUTE_UNUSED,
9920 asymbol **syms ATTRIBUTE_UNUSED,
9921 long dynsymcount,
9922 asymbol **dynsyms,
9923 asymbol **ret)
9924 {
9925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9926 asection *relplt;
9927 asymbol *s;
9928 const char *relplt_name;
9929 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9930 arelent *p;
9931 long count, i, n;
9932 size_t size;
9933 Elf_Internal_Shdr *hdr;
9934 char *names;
9935 asection *plt;
9936
9937 *ret = NULL;
9938
9939 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9940 return 0;
9941
9942 if (dynsymcount <= 0)
9943 return 0;
9944
9945 if (!bed->plt_sym_val)
9946 return 0;
9947
9948 relplt_name = bed->relplt_name;
9949 if (relplt_name == NULL)
9950 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9951 relplt = bfd_get_section_by_name (abfd, relplt_name);
9952 if (relplt == NULL)
9953 return 0;
9954
9955 hdr = &elf_section_data (relplt)->this_hdr;
9956 if (hdr->sh_link != elf_dynsymtab (abfd)
9957 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9958 return 0;
9959
9960 plt = bfd_get_section_by_name (abfd, ".plt");
9961 if (plt == NULL)
9962 return 0;
9963
9964 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9965 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9966 return -1;
9967
9968 count = relplt->size / hdr->sh_entsize;
9969 size = count * sizeof (asymbol);
9970 p = relplt->relocation;
9971 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9972 {
9973 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9974 if (p->addend != 0)
9975 {
9976 #ifdef BFD64
9977 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9978 #else
9979 size += sizeof ("+0x") - 1 + 8;
9980 #endif
9981 }
9982 }
9983
9984 s = *ret = (asymbol *) bfd_malloc (size);
9985 if (s == NULL)
9986 return -1;
9987
9988 names = (char *) (s + count);
9989 p = relplt->relocation;
9990 n = 0;
9991 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9992 {
9993 size_t len;
9994 bfd_vma addr;
9995
9996 addr = bed->plt_sym_val (i, plt, p);
9997 if (addr == (bfd_vma) -1)
9998 continue;
9999
10000 *s = **p->sym_ptr_ptr;
10001 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10002 we are defining a symbol, ensure one of them is set. */
10003 if ((s->flags & BSF_LOCAL) == 0)
10004 s->flags |= BSF_GLOBAL;
10005 s->flags |= BSF_SYNTHETIC;
10006 s->section = plt;
10007 s->value = addr - plt->vma;
10008 s->name = names;
10009 s->udata.p = NULL;
10010 len = strlen ((*p->sym_ptr_ptr)->name);
10011 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10012 names += len;
10013 if (p->addend != 0)
10014 {
10015 char buf[30], *a;
10016
10017 memcpy (names, "+0x", sizeof ("+0x") - 1);
10018 names += sizeof ("+0x") - 1;
10019 bfd_sprintf_vma (abfd, buf, p->addend);
10020 for (a = buf; *a == '0'; ++a)
10021 ;
10022 len = strlen (a);
10023 memcpy (names, a, len);
10024 names += len;
10025 }
10026 memcpy (names, "@plt", sizeof ("@plt"));
10027 names += sizeof ("@plt");
10028 ++s, ++n;
10029 }
10030
10031 return n;
10032 }
10033
10034 /* It is only used by x86-64 so far. */
10035 asection _bfd_elf_large_com_section
10036 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10037 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10038
10039 void
10040 _bfd_elf_post_process_headers (bfd * abfd,
10041 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10042 {
10043 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10044
10045 i_ehdrp = elf_elfheader (abfd);
10046
10047 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10048
10049 /* To make things simpler for the loader on Linux systems we set the
10050 osabi field to ELFOSABI_GNU if the binary contains symbols of
10051 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10052 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10053 && elf_tdata (abfd)->has_gnu_symbols)
10054 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10055 }
10056
10057
10058 /* Return TRUE for ELF symbol types that represent functions.
10059 This is the default version of this function, which is sufficient for
10060 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10061
10062 bfd_boolean
10063 _bfd_elf_is_function_type (unsigned int type)
10064 {
10065 return (type == STT_FUNC
10066 || type == STT_GNU_IFUNC);
10067 }
10068
10069 /* If the ELF symbol SYM might be a function in SEC, return the
10070 function size and set *CODE_OFF to the function's entry point,
10071 otherwise return zero. */
10072
10073 bfd_size_type
10074 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10075 bfd_vma *code_off)
10076 {
10077 bfd_size_type size;
10078
10079 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10080 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10081 || sym->section != sec)
10082 return 0;
10083
10084 *code_off = sym->value;
10085 size = 0;
10086 if (!(sym->flags & BSF_SYNTHETIC))
10087 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10088 if (size == 0)
10089 size = 1;
10090 return size;
10091 }
This page took 0.282147 seconds and 4 git commands to generate.