Index: sim/frv/ChangeLog
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static int elf_sort_sections (const void *, const void *);
44 static bfd_boolean assign_file_positions_except_relocs (bfd *);
45 static bfd_boolean prep_headers (bfd *);
46 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
47 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
48
49 /* Swap version information in and out. The version information is
50 currently size independent. If that ever changes, this code will
51 need to move into elfcode.h. */
52
53 /* Swap in a Verdef structure. */
54
55 void
56 _bfd_elf_swap_verdef_in (bfd *abfd,
57 const Elf_External_Verdef *src,
58 Elf_Internal_Verdef *dst)
59 {
60 dst->vd_version = H_GET_16 (abfd, src->vd_version);
61 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
62 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
63 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
64 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
65 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
66 dst->vd_next = H_GET_32 (abfd, src->vd_next);
67 }
68
69 /* Swap out a Verdef structure. */
70
71 void
72 _bfd_elf_swap_verdef_out (bfd *abfd,
73 const Elf_Internal_Verdef *src,
74 Elf_External_Verdef *dst)
75 {
76 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
77 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
78 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
79 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
80 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
81 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
82 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
83 }
84
85 /* Swap in a Verdaux structure. */
86
87 void
88 _bfd_elf_swap_verdaux_in (bfd *abfd,
89 const Elf_External_Verdaux *src,
90 Elf_Internal_Verdaux *dst)
91 {
92 dst->vda_name = H_GET_32 (abfd, src->vda_name);
93 dst->vda_next = H_GET_32 (abfd, src->vda_next);
94 }
95
96 /* Swap out a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_out (bfd *abfd,
100 const Elf_Internal_Verdaux *src,
101 Elf_External_Verdaux *dst)
102 {
103 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
104 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
105 }
106
107 /* Swap in a Verneed structure. */
108
109 void
110 _bfd_elf_swap_verneed_in (bfd *abfd,
111 const Elf_External_Verneed *src,
112 Elf_Internal_Verneed *dst)
113 {
114 dst->vn_version = H_GET_16 (abfd, src->vn_version);
115 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
116 dst->vn_file = H_GET_32 (abfd, src->vn_file);
117 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
118 dst->vn_next = H_GET_32 (abfd, src->vn_next);
119 }
120
121 /* Swap out a Verneed structure. */
122
123 void
124 _bfd_elf_swap_verneed_out (bfd *abfd,
125 const Elf_Internal_Verneed *src,
126 Elf_External_Verneed *dst)
127 {
128 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
129 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
130 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
131 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
132 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
133 }
134
135 /* Swap in a Vernaux structure. */
136
137 void
138 _bfd_elf_swap_vernaux_in (bfd *abfd,
139 const Elf_External_Vernaux *src,
140 Elf_Internal_Vernaux *dst)
141 {
142 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
143 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
144 dst->vna_other = H_GET_16 (abfd, src->vna_other);
145 dst->vna_name = H_GET_32 (abfd, src->vna_name);
146 dst->vna_next = H_GET_32 (abfd, src->vna_next);
147 }
148
149 /* Swap out a Vernaux structure. */
150
151 void
152 _bfd_elf_swap_vernaux_out (bfd *abfd,
153 const Elf_Internal_Vernaux *src,
154 Elf_External_Vernaux *dst)
155 {
156 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
157 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
158 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
159 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
160 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
161 }
162
163 /* Swap in a Versym structure. */
164
165 void
166 _bfd_elf_swap_versym_in (bfd *abfd,
167 const Elf_External_Versym *src,
168 Elf_Internal_Versym *dst)
169 {
170 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
171 }
172
173 /* Swap out a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_out (bfd *abfd,
177 const Elf_Internal_Versym *src,
178 Elf_External_Versym *dst)
179 {
180 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
181 }
182
183 /* Standard ELF hash function. Do not change this function; you will
184 cause invalid hash tables to be generated. */
185
186 unsigned long
187 bfd_elf_hash (const char *namearg)
188 {
189 const unsigned char *name = (const unsigned char *) namearg;
190 unsigned long h = 0;
191 unsigned long g;
192 int ch;
193
194 while ((ch = *name++) != '\0')
195 {
196 h = (h << 4) + ch;
197 if ((g = (h & 0xf0000000)) != 0)
198 {
199 h ^= g >> 24;
200 /* The ELF ABI says `h &= ~g', but this is equivalent in
201 this case and on some machines one insn instead of two. */
202 h ^= g;
203 }
204 }
205 return h & 0xffffffff;
206 }
207
208 /* Read a specified number of bytes at a specified offset in an ELF
209 file, into a newly allocated buffer, and return a pointer to the
210 buffer. */
211
212 static char *
213 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
214 {
215 char *buf;
216
217 if ((buf = bfd_alloc (abfd, size)) == NULL)
218 return NULL;
219 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
220 return NULL;
221 if (bfd_bread (buf, size, abfd) != size)
222 {
223 if (bfd_get_error () != bfd_error_system_call)
224 bfd_set_error (bfd_error_file_truncated);
225 return NULL;
226 }
227 return buf;
228 }
229
230 bfd_boolean
231 bfd_elf_mkobject (bfd *abfd)
232 {
233 /* This just does initialization. */
234 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
235 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
236 if (elf_tdata (abfd) == 0)
237 return FALSE;
238 /* Since everything is done at close time, do we need any
239 initialization? */
240
241 return TRUE;
242 }
243
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
246 {
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
249 }
250
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
253 {
254 Elf_Internal_Shdr **i_shdrp;
255 char *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
258
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
261 return 0;
262
263 shstrtab = (char *) i_shdrp[shindex]->contents;
264 if (shstrtab == NULL)
265 {
266 /* No cached one, attempt to read, and cache what we read. */
267 offset = i_shdrp[shindex]->sh_offset;
268 shstrtabsize = i_shdrp[shindex]->sh_size;
269 shstrtab = elf_read (abfd, offset, shstrtabsize);
270 i_shdrp[shindex]->contents = shstrtab;
271 }
272 return shstrtab;
273 }
274
275 char *
276 bfd_elf_string_from_elf_section (bfd *abfd,
277 unsigned int shindex,
278 unsigned int strindex)
279 {
280 Elf_Internal_Shdr *hdr;
281
282 if (strindex == 0)
283 return "";
284
285 hdr = elf_elfsections (abfd)[shindex];
286
287 if (hdr->contents == NULL
288 && bfd_elf_get_str_section (abfd, shindex) == NULL)
289 return NULL;
290
291 if (strindex >= hdr->sh_size)
292 {
293 (*_bfd_error_handler)
294 (_("%s: invalid string offset %u >= %lu for section `%s'"),
295 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
296 ((shindex == elf_elfheader(abfd)->e_shstrndx
297 && strindex == hdr->sh_name)
298 ? ".shstrtab"
299 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
300 return "";
301 }
302
303 return ((char *) hdr->contents) + strindex;
304 }
305
306 /* Read and convert symbols to internal format.
307 SYMCOUNT specifies the number of symbols to read, starting from
308 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
309 are non-NULL, they are used to store the internal symbols, external
310 symbols, and symbol section index extensions, respectively. */
311
312 Elf_Internal_Sym *
313 bfd_elf_get_elf_syms (bfd *ibfd,
314 Elf_Internal_Shdr *symtab_hdr,
315 size_t symcount,
316 size_t symoffset,
317 Elf_Internal_Sym *intsym_buf,
318 void *extsym_buf,
319 Elf_External_Sym_Shndx *extshndx_buf)
320 {
321 Elf_Internal_Shdr *shndx_hdr;
322 void *alloc_ext;
323 const bfd_byte *esym;
324 Elf_External_Sym_Shndx *alloc_extshndx;
325 Elf_External_Sym_Shndx *shndx;
326 Elf_Internal_Sym *isym;
327 Elf_Internal_Sym *isymend;
328 const struct elf_backend_data *bed;
329 size_t extsym_size;
330 bfd_size_type amt;
331 file_ptr pos;
332
333 if (symcount == 0)
334 return intsym_buf;
335
336 /* Normal syms might have section extension entries. */
337 shndx_hdr = NULL;
338 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
339 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
340
341 /* Read the symbols. */
342 alloc_ext = NULL;
343 alloc_extshndx = NULL;
344 bed = get_elf_backend_data (ibfd);
345 extsym_size = bed->s->sizeof_sym;
346 amt = symcount * extsym_size;
347 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
348 if (extsym_buf == NULL)
349 {
350 alloc_ext = bfd_malloc (amt);
351 extsym_buf = alloc_ext;
352 }
353 if (extsym_buf == NULL
354 || bfd_seek (ibfd, pos, SEEK_SET) != 0
355 || bfd_bread (extsym_buf, amt, ibfd) != amt)
356 {
357 intsym_buf = NULL;
358 goto out;
359 }
360
361 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
362 extshndx_buf = NULL;
363 else
364 {
365 amt = symcount * sizeof (Elf_External_Sym_Shndx);
366 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
367 if (extshndx_buf == NULL)
368 {
369 alloc_extshndx = bfd_malloc (amt);
370 extshndx_buf = alloc_extshndx;
371 }
372 if (extshndx_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
375 {
376 intsym_buf = NULL;
377 goto out;
378 }
379 }
380
381 if (intsym_buf == NULL)
382 {
383 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
384 intsym_buf = bfd_malloc (amt);
385 if (intsym_buf == NULL)
386 goto out;
387 }
388
389 /* Convert the symbols to internal form. */
390 isymend = intsym_buf + symcount;
391 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
392 isym < isymend;
393 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
394 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
395
396 out:
397 if (alloc_ext != NULL)
398 free (alloc_ext);
399 if (alloc_extshndx != NULL)
400 free (alloc_extshndx);
401
402 return intsym_buf;
403 }
404
405 /* Look up a symbol name. */
406 const char *
407 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
408 {
409 unsigned int iname = isym->st_name;
410 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
411 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
412 {
413 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
414 shindex = elf_elfheader (abfd)->e_shstrndx;
415 }
416
417 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
418 }
419
420 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
421 sections. The first element is the flags, the rest are section
422 pointers. */
423
424 typedef union elf_internal_group {
425 Elf_Internal_Shdr *shdr;
426 unsigned int flags;
427 } Elf_Internal_Group;
428
429 /* Return the name of the group signature symbol. Why isn't the
430 signature just a string? */
431
432 static const char *
433 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
434 {
435 Elf_Internal_Shdr *hdr;
436 unsigned char esym[sizeof (Elf64_External_Sym)];
437 Elf_External_Sym_Shndx eshndx;
438 Elf_Internal_Sym isym;
439
440 /* First we need to ensure the symbol table is available. */
441 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
442 return NULL;
443
444 /* Go read the symbol. */
445 hdr = &elf_tdata (abfd)->symtab_hdr;
446 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
447 &isym, esym, &eshndx) == NULL)
448 return NULL;
449
450 return bfd_elf_local_sym_name (abfd, &isym);
451 }
452
453 /* Set next_in_group list pointer, and group name for NEWSECT. */
454
455 static bfd_boolean
456 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
457 {
458 unsigned int num_group = elf_tdata (abfd)->num_group;
459
460 /* If num_group is zero, read in all SHT_GROUP sections. The count
461 is set to -1 if there are no SHT_GROUP sections. */
462 if (num_group == 0)
463 {
464 unsigned int i, shnum;
465
466 /* First count the number of groups. If we have a SHT_GROUP
467 section with just a flag word (ie. sh_size is 4), ignore it. */
468 shnum = elf_numsections (abfd);
469 num_group = 0;
470 for (i = 0; i < shnum; i++)
471 {
472 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
473 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
474 num_group += 1;
475 }
476
477 if (num_group == 0)
478 num_group = (unsigned) -1;
479 elf_tdata (abfd)->num_group = num_group;
480
481 if (num_group > 0)
482 {
483 /* We keep a list of elf section headers for group sections,
484 so we can find them quickly. */
485 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
486 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
487 if (elf_tdata (abfd)->group_sect_ptr == NULL)
488 return FALSE;
489
490 num_group = 0;
491 for (i = 0; i < shnum; i++)
492 {
493 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
494 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
495 {
496 unsigned char *src;
497 Elf_Internal_Group *dest;
498
499 /* Add to list of sections. */
500 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
501 num_group += 1;
502
503 /* Read the raw contents. */
504 BFD_ASSERT (sizeof (*dest) >= 4);
505 amt = shdr->sh_size * sizeof (*dest) / 4;
506 shdr->contents = bfd_alloc (abfd, amt);
507 if (shdr->contents == NULL
508 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
509 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
510 != shdr->sh_size))
511 return FALSE;
512
513 /* Translate raw contents, a flag word followed by an
514 array of elf section indices all in target byte order,
515 to the flag word followed by an array of elf section
516 pointers. */
517 src = shdr->contents + shdr->sh_size;
518 dest = (Elf_Internal_Group *) (shdr->contents + amt);
519 while (1)
520 {
521 unsigned int idx;
522
523 src -= 4;
524 --dest;
525 idx = H_GET_32 (abfd, src);
526 if (src == shdr->contents)
527 {
528 dest->flags = idx;
529 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
530 shdr->bfd_section->flags
531 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
532 break;
533 }
534 if (idx >= shnum)
535 {
536 ((*_bfd_error_handler)
537 (_("%s: invalid SHT_GROUP entry"),
538 bfd_archive_filename (abfd)));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%s: no group info for section %s"),
609 bfd_archive_filename (abfd), newsect->name);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
616 {
617 asection *first = elf_next_in_group (group);
618 asection *s = first;
619
620 while (s != NULL)
621 {
622 s->output_section = bfd_abs_section_ptr;
623 s = elf_next_in_group (s);
624 /* These lists are circular. */
625 if (s == first)
626 break;
627 }
628 return TRUE;
629 }
630
631 /* Make a BFD section from an ELF section. We store a pointer to the
632 BFD section in the bfd_section field of the header. */
633
634 bfd_boolean
635 _bfd_elf_make_section_from_shdr (bfd *abfd,
636 Elf_Internal_Shdr *hdr,
637 const char *name)
638 {
639 asection *newsect;
640 flagword flags;
641 const struct elf_backend_data *bed;
642
643 if (hdr->bfd_section != NULL)
644 {
645 BFD_ASSERT (strcmp (name,
646 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
647 return TRUE;
648 }
649
650 newsect = bfd_make_section_anyway (abfd, name);
651 if (newsect == NULL)
652 return FALSE;
653
654 /* Always use the real type/flags. */
655 elf_section_type (newsect) = hdr->sh_type;
656 elf_section_flags (newsect) = hdr->sh_flags;
657
658 newsect->filepos = hdr->sh_offset;
659
660 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
661 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
662 || ! bfd_set_section_alignment (abfd, newsect,
663 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
664 return FALSE;
665
666 flags = SEC_NO_FLAGS;
667 if (hdr->sh_type != SHT_NOBITS)
668 flags |= SEC_HAS_CONTENTS;
669 if (hdr->sh_type == SHT_GROUP)
670 flags |= SEC_GROUP | SEC_EXCLUDE;
671 if ((hdr->sh_flags & SHF_ALLOC) != 0)
672 {
673 flags |= SEC_ALLOC;
674 if (hdr->sh_type != SHT_NOBITS)
675 flags |= SEC_LOAD;
676 }
677 if ((hdr->sh_flags & SHF_WRITE) == 0)
678 flags |= SEC_READONLY;
679 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
680 flags |= SEC_CODE;
681 else if ((flags & SEC_LOAD) != 0)
682 flags |= SEC_DATA;
683 if ((hdr->sh_flags & SHF_MERGE) != 0)
684 {
685 flags |= SEC_MERGE;
686 newsect->entsize = hdr->sh_entsize;
687 if ((hdr->sh_flags & SHF_STRINGS) != 0)
688 flags |= SEC_STRINGS;
689 }
690 if (hdr->sh_flags & SHF_GROUP)
691 if (!setup_group (abfd, hdr, newsect))
692 return FALSE;
693 if ((hdr->sh_flags & SHF_TLS) != 0)
694 flags |= SEC_THREAD_LOCAL;
695
696 /* The debugging sections appear to be recognized only by name, not
697 any sort of flag. */
698 {
699 static const char *debug_sec_names [] =
700 {
701 ".debug",
702 ".gnu.linkonce.wi.",
703 ".line",
704 ".stab"
705 };
706 int i;
707
708 for (i = ARRAY_SIZE (debug_sec_names); i--;)
709 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
710 break;
711
712 if (i >= 0)
713 flags |= SEC_DEBUGGING;
714 }
715
716 /* As a GNU extension, if the name begins with .gnu.linkonce, we
717 only link a single copy of the section. This is used to support
718 g++. g++ will emit each template expansion in its own section.
719 The symbols will be defined as weak, so that multiple definitions
720 are permitted. The GNU linker extension is to actually discard
721 all but one of the sections. */
722 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
723 && elf_next_in_group (newsect) == NULL)
724 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
725
726 bed = get_elf_backend_data (abfd);
727 if (bed->elf_backend_section_flags)
728 if (! bed->elf_backend_section_flags (&flags, hdr))
729 return FALSE;
730
731 if (! bfd_set_section_flags (abfd, newsect, flags))
732 return FALSE;
733
734 if ((flags & SEC_ALLOC) != 0)
735 {
736 Elf_Internal_Phdr *phdr;
737 unsigned int i;
738
739 /* Look through the phdrs to see if we need to adjust the lma.
740 If all the p_paddr fields are zero, we ignore them, since
741 some ELF linkers produce such output. */
742 phdr = elf_tdata (abfd)->phdr;
743 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
744 {
745 if (phdr->p_paddr != 0)
746 break;
747 }
748 if (i < elf_elfheader (abfd)->e_phnum)
749 {
750 phdr = elf_tdata (abfd)->phdr;
751 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
752 {
753 /* This section is part of this segment if its file
754 offset plus size lies within the segment's memory
755 span and, if the section is loaded, the extent of the
756 loaded data lies within the extent of the segment.
757
758 Note - we used to check the p_paddr field as well, and
759 refuse to set the LMA if it was 0. This is wrong
760 though, as a perfectly valid initialised segment can
761 have a p_paddr of zero. Some architectures, eg ARM,
762 place special significance on the address 0 and
763 executables need to be able to have a segment which
764 covers this address. */
765 if (phdr->p_type == PT_LOAD
766 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
767 && (hdr->sh_offset + hdr->sh_size
768 <= phdr->p_offset + phdr->p_memsz)
769 && ((flags & SEC_LOAD) == 0
770 || (hdr->sh_offset + hdr->sh_size
771 <= phdr->p_offset + phdr->p_filesz)))
772 {
773 if ((flags & SEC_LOAD) == 0)
774 newsect->lma = (phdr->p_paddr
775 + hdr->sh_addr - phdr->p_vaddr);
776 else
777 /* We used to use the same adjustment for SEC_LOAD
778 sections, but that doesn't work if the segment
779 is packed with code from multiple VMAs.
780 Instead we calculate the section LMA based on
781 the segment LMA. It is assumed that the
782 segment will contain sections with contiguous
783 LMAs, even if the VMAs are not. */
784 newsect->lma = (phdr->p_paddr
785 + hdr->sh_offset - phdr->p_offset);
786
787 /* With contiguous segments, we can't tell from file
788 offsets whether a section with zero size should
789 be placed at the end of one segment or the
790 beginning of the next. Decide based on vaddr. */
791 if (hdr->sh_addr >= phdr->p_vaddr
792 && (hdr->sh_addr + hdr->sh_size
793 <= phdr->p_vaddr + phdr->p_memsz))
794 break;
795 }
796 }
797 }
798 }
799
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
802
803 return TRUE;
804 }
805
806 /*
807 INTERNAL_FUNCTION
808 bfd_elf_find_section
809
810 SYNOPSIS
811 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
812
813 DESCRIPTION
814 Helper functions for GDB to locate the string tables.
815 Since BFD hides string tables from callers, GDB needs to use an
816 internal hook to find them. Sun's .stabstr, in particular,
817 isn't even pointed to by the .stab section, so ordinary
818 mechanisms wouldn't work to find it, even if we had some.
819 */
820
821 struct elf_internal_shdr *
822 bfd_elf_find_section (bfd *abfd, char *name)
823 {
824 Elf_Internal_Shdr **i_shdrp;
825 char *shstrtab;
826 unsigned int max;
827 unsigned int i;
828
829 i_shdrp = elf_elfsections (abfd);
830 if (i_shdrp != NULL)
831 {
832 shstrtab = bfd_elf_get_str_section (abfd,
833 elf_elfheader (abfd)->e_shstrndx);
834 if (shstrtab != NULL)
835 {
836 max = elf_numsections (abfd);
837 for (i = 1; i < max; i++)
838 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
839 return i_shdrp[i];
840 }
841 }
842 return 0;
843 }
844
845 const char *const bfd_elf_section_type_names[] = {
846 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
847 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
848 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
849 };
850
851 /* ELF relocs are against symbols. If we are producing relocatable
852 output, and the reloc is against an external symbol, and nothing
853 has given us any additional addend, the resulting reloc will also
854 be against the same symbol. In such a case, we don't want to
855 change anything about the way the reloc is handled, since it will
856 all be done at final link time. Rather than put special case code
857 into bfd_perform_relocation, all the reloc types use this howto
858 function. It just short circuits the reloc if producing
859 relocatable output against an external symbol. */
860
861 bfd_reloc_status_type
862 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
863 arelent *reloc_entry,
864 asymbol *symbol,
865 void *data ATTRIBUTE_UNUSED,
866 asection *input_section,
867 bfd *output_bfd,
868 char **error_message ATTRIBUTE_UNUSED)
869 {
870 if (output_bfd != NULL
871 && (symbol->flags & BSF_SECTION_SYM) == 0
872 && (! reloc_entry->howto->partial_inplace
873 || reloc_entry->addend == 0))
874 {
875 reloc_entry->address += input_section->output_offset;
876 return bfd_reloc_ok;
877 }
878
879 return bfd_reloc_continue;
880 }
881 \f
882 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
883
884 static void
885 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
886 asection *sec)
887 {
888 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
889 sec->sec_info_type = ELF_INFO_TYPE_NONE;
890 }
891
892 /* Finish SHF_MERGE section merging. */
893
894 bfd_boolean
895 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
896 {
897 if (!is_elf_hash_table (info))
898 return FALSE;
899 if (elf_hash_table (info)->merge_info)
900 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
901 merge_sections_remove_hook);
902 return TRUE;
903 }
904
905 void
906 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
907 {
908 sec->output_section = bfd_abs_section_ptr;
909 sec->output_offset = sec->vma;
910 if (!is_elf_hash_table (info))
911 return;
912
913 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
914 }
915 \f
916 /* Copy the program header and other data from one object module to
917 another. */
918
919 bfd_boolean
920 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
921 {
922 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
923 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
924 return TRUE;
925
926 BFD_ASSERT (!elf_flags_init (obfd)
927 || (elf_elfheader (obfd)->e_flags
928 == elf_elfheader (ibfd)->e_flags));
929
930 elf_gp (obfd) = elf_gp (ibfd);
931 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
932 elf_flags_init (obfd) = TRUE;
933 return TRUE;
934 }
935
936 /* Print out the program headers. */
937
938 bfd_boolean
939 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
940 {
941 FILE *f = farg;
942 Elf_Internal_Phdr *p;
943 asection *s;
944 bfd_byte *dynbuf = NULL;
945
946 p = elf_tdata (abfd)->phdr;
947 if (p != NULL)
948 {
949 unsigned int i, c;
950
951 fprintf (f, _("\nProgram Header:\n"));
952 c = elf_elfheader (abfd)->e_phnum;
953 for (i = 0; i < c; i++, p++)
954 {
955 const char *pt;
956 char buf[20];
957
958 switch (p->p_type)
959 {
960 case PT_NULL: pt = "NULL"; break;
961 case PT_LOAD: pt = "LOAD"; break;
962 case PT_DYNAMIC: pt = "DYNAMIC"; break;
963 case PT_INTERP: pt = "INTERP"; break;
964 case PT_NOTE: pt = "NOTE"; break;
965 case PT_SHLIB: pt = "SHLIB"; break;
966 case PT_PHDR: pt = "PHDR"; break;
967 case PT_TLS: pt = "TLS"; break;
968 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
969 case PT_GNU_STACK: pt = "STACK"; break;
970 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
971 }
972 fprintf (f, "%8s off 0x", pt);
973 bfd_fprintf_vma (abfd, f, p->p_offset);
974 fprintf (f, " vaddr 0x");
975 bfd_fprintf_vma (abfd, f, p->p_vaddr);
976 fprintf (f, " paddr 0x");
977 bfd_fprintf_vma (abfd, f, p->p_paddr);
978 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
979 fprintf (f, " filesz 0x");
980 bfd_fprintf_vma (abfd, f, p->p_filesz);
981 fprintf (f, " memsz 0x");
982 bfd_fprintf_vma (abfd, f, p->p_memsz);
983 fprintf (f, " flags %c%c%c",
984 (p->p_flags & PF_R) != 0 ? 'r' : '-',
985 (p->p_flags & PF_W) != 0 ? 'w' : '-',
986 (p->p_flags & PF_X) != 0 ? 'x' : '-');
987 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
988 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
989 fprintf (f, "\n");
990 }
991 }
992
993 s = bfd_get_section_by_name (abfd, ".dynamic");
994 if (s != NULL)
995 {
996 int elfsec;
997 unsigned long shlink;
998 bfd_byte *extdyn, *extdynend;
999 size_t extdynsize;
1000 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1001
1002 fprintf (f, _("\nDynamic Section:\n"));
1003
1004 dynbuf = bfd_malloc (s->_raw_size);
1005 if (dynbuf == NULL)
1006 goto error_return;
1007 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1008 goto error_return;
1009
1010 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1011 if (elfsec == -1)
1012 goto error_return;
1013 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1014
1015 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1016 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1017
1018 extdyn = dynbuf;
1019 extdynend = extdyn + s->_raw_size;
1020 for (; extdyn < extdynend; extdyn += extdynsize)
1021 {
1022 Elf_Internal_Dyn dyn;
1023 const char *name;
1024 char ab[20];
1025 bfd_boolean stringp;
1026
1027 (*swap_dyn_in) (abfd, extdyn, &dyn);
1028
1029 if (dyn.d_tag == DT_NULL)
1030 break;
1031
1032 stringp = FALSE;
1033 switch (dyn.d_tag)
1034 {
1035 default:
1036 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1037 name = ab;
1038 break;
1039
1040 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1041 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1042 case DT_PLTGOT: name = "PLTGOT"; break;
1043 case DT_HASH: name = "HASH"; break;
1044 case DT_STRTAB: name = "STRTAB"; break;
1045 case DT_SYMTAB: name = "SYMTAB"; break;
1046 case DT_RELA: name = "RELA"; break;
1047 case DT_RELASZ: name = "RELASZ"; break;
1048 case DT_RELAENT: name = "RELAENT"; break;
1049 case DT_STRSZ: name = "STRSZ"; break;
1050 case DT_SYMENT: name = "SYMENT"; break;
1051 case DT_INIT: name = "INIT"; break;
1052 case DT_FINI: name = "FINI"; break;
1053 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1054 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1055 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1056 case DT_REL: name = "REL"; break;
1057 case DT_RELSZ: name = "RELSZ"; break;
1058 case DT_RELENT: name = "RELENT"; break;
1059 case DT_PLTREL: name = "PLTREL"; break;
1060 case DT_DEBUG: name = "DEBUG"; break;
1061 case DT_TEXTREL: name = "TEXTREL"; break;
1062 case DT_JMPREL: name = "JMPREL"; break;
1063 case DT_BIND_NOW: name = "BIND_NOW"; break;
1064 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1065 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1066 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1067 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1068 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1069 case DT_FLAGS: name = "FLAGS"; break;
1070 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1071 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1072 case DT_CHECKSUM: name = "CHECKSUM"; break;
1073 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1074 case DT_MOVEENT: name = "MOVEENT"; break;
1075 case DT_MOVESZ: name = "MOVESZ"; break;
1076 case DT_FEATURE: name = "FEATURE"; break;
1077 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1078 case DT_SYMINSZ: name = "SYMINSZ"; break;
1079 case DT_SYMINENT: name = "SYMINENT"; break;
1080 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1081 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1082 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1083 case DT_PLTPAD: name = "PLTPAD"; break;
1084 case DT_MOVETAB: name = "MOVETAB"; break;
1085 case DT_SYMINFO: name = "SYMINFO"; break;
1086 case DT_RELACOUNT: name = "RELACOUNT"; break;
1087 case DT_RELCOUNT: name = "RELCOUNT"; break;
1088 case DT_FLAGS_1: name = "FLAGS_1"; break;
1089 case DT_VERSYM: name = "VERSYM"; break;
1090 case DT_VERDEF: name = "VERDEF"; break;
1091 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1092 case DT_VERNEED: name = "VERNEED"; break;
1093 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1094 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1095 case DT_USED: name = "USED"; break;
1096 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1097 }
1098
1099 fprintf (f, " %-11s ", name);
1100 if (! stringp)
1101 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1102 else
1103 {
1104 const char *string;
1105 unsigned int tagv = dyn.d_un.d_val;
1106
1107 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1108 if (string == NULL)
1109 goto error_return;
1110 fprintf (f, "%s", string);
1111 }
1112 fprintf (f, "\n");
1113 }
1114
1115 free (dynbuf);
1116 dynbuf = NULL;
1117 }
1118
1119 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1120 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1121 {
1122 if (! _bfd_elf_slurp_version_tables (abfd))
1123 return FALSE;
1124 }
1125
1126 if (elf_dynverdef (abfd) != 0)
1127 {
1128 Elf_Internal_Verdef *t;
1129
1130 fprintf (f, _("\nVersion definitions:\n"));
1131 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1132 {
1133 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1134 t->vd_flags, t->vd_hash, t->vd_nodename);
1135 if (t->vd_auxptr->vda_nextptr != NULL)
1136 {
1137 Elf_Internal_Verdaux *a;
1138
1139 fprintf (f, "\t");
1140 for (a = t->vd_auxptr->vda_nextptr;
1141 a != NULL;
1142 a = a->vda_nextptr)
1143 fprintf (f, "%s ", a->vda_nodename);
1144 fprintf (f, "\n");
1145 }
1146 }
1147 }
1148
1149 if (elf_dynverref (abfd) != 0)
1150 {
1151 Elf_Internal_Verneed *t;
1152
1153 fprintf (f, _("\nVersion References:\n"));
1154 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1155 {
1156 Elf_Internal_Vernaux *a;
1157
1158 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1160 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1161 a->vna_flags, a->vna_other, a->vna_nodename);
1162 }
1163 }
1164
1165 return TRUE;
1166
1167 error_return:
1168 if (dynbuf != NULL)
1169 free (dynbuf);
1170 return FALSE;
1171 }
1172
1173 /* Display ELF-specific fields of a symbol. */
1174
1175 void
1176 bfd_elf_print_symbol (bfd *abfd,
1177 void *filep,
1178 asymbol *symbol,
1179 bfd_print_symbol_type how)
1180 {
1181 FILE *file = filep;
1182 switch (how)
1183 {
1184 case bfd_print_symbol_name:
1185 fprintf (file, "%s", symbol->name);
1186 break;
1187 case bfd_print_symbol_more:
1188 fprintf (file, "elf ");
1189 bfd_fprintf_vma (abfd, file, symbol->value);
1190 fprintf (file, " %lx", (long) symbol->flags);
1191 break;
1192 case bfd_print_symbol_all:
1193 {
1194 const char *section_name;
1195 const char *name = NULL;
1196 const struct elf_backend_data *bed;
1197 unsigned char st_other;
1198 bfd_vma val;
1199
1200 section_name = symbol->section ? symbol->section->name : "(*none*)";
1201
1202 bed = get_elf_backend_data (abfd);
1203 if (bed->elf_backend_print_symbol_all)
1204 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1205
1206 if (name == NULL)
1207 {
1208 name = symbol->name;
1209 bfd_print_symbol_vandf (abfd, file, symbol);
1210 }
1211
1212 fprintf (file, " %s\t", section_name);
1213 /* Print the "other" value for a symbol. For common symbols,
1214 we've already printed the size; now print the alignment.
1215 For other symbols, we have no specified alignment, and
1216 we've printed the address; now print the size. */
1217 if (bfd_is_com_section (symbol->section))
1218 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1219 else
1220 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1221 bfd_fprintf_vma (abfd, file, val);
1222
1223 /* If we have version information, print it. */
1224 if (elf_tdata (abfd)->dynversym_section != 0
1225 && (elf_tdata (abfd)->dynverdef_section != 0
1226 || elf_tdata (abfd)->dynverref_section != 0))
1227 {
1228 unsigned int vernum;
1229 const char *version_string;
1230
1231 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1232
1233 if (vernum == 0)
1234 version_string = "";
1235 else if (vernum == 1)
1236 version_string = "Base";
1237 else if (vernum <= elf_tdata (abfd)->cverdefs)
1238 version_string =
1239 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1240 else
1241 {
1242 Elf_Internal_Verneed *t;
1243
1244 version_string = "";
1245 for (t = elf_tdata (abfd)->verref;
1246 t != NULL;
1247 t = t->vn_nextref)
1248 {
1249 Elf_Internal_Vernaux *a;
1250
1251 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1252 {
1253 if (a->vna_other == vernum)
1254 {
1255 version_string = a->vna_nodename;
1256 break;
1257 }
1258 }
1259 }
1260 }
1261
1262 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1263 fprintf (file, " %-11s", version_string);
1264 else
1265 {
1266 int i;
1267
1268 fprintf (file, " (%s)", version_string);
1269 for (i = 10 - strlen (version_string); i > 0; --i)
1270 putc (' ', file);
1271 }
1272 }
1273
1274 /* If the st_other field is not zero, print it. */
1275 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1276
1277 switch (st_other)
1278 {
1279 case 0: break;
1280 case STV_INTERNAL: fprintf (file, " .internal"); break;
1281 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1282 case STV_PROTECTED: fprintf (file, " .protected"); break;
1283 default:
1284 /* Some other non-defined flags are also present, so print
1285 everything hex. */
1286 fprintf (file, " 0x%02x", (unsigned int) st_other);
1287 }
1288
1289 fprintf (file, " %s", name);
1290 }
1291 break;
1292 }
1293 }
1294 \f
1295 /* Create an entry in an ELF linker hash table. */
1296
1297 struct bfd_hash_entry *
1298 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1299 struct bfd_hash_table *table,
1300 const char *string)
1301 {
1302 /* Allocate the structure if it has not already been allocated by a
1303 subclass. */
1304 if (entry == NULL)
1305 {
1306 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1307 if (entry == NULL)
1308 return entry;
1309 }
1310
1311 /* Call the allocation method of the superclass. */
1312 entry = _bfd_link_hash_newfunc (entry, table, string);
1313 if (entry != NULL)
1314 {
1315 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1316 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1317
1318 /* Set local fields. */
1319 ret->indx = -1;
1320 ret->dynindx = -1;
1321 ret->dynstr_index = 0;
1322 ret->elf_hash_value = 0;
1323 ret->weakdef = NULL;
1324 ret->verinfo.verdef = NULL;
1325 ret->vtable_entries_size = 0;
1326 ret->vtable_entries_used = NULL;
1327 ret->vtable_parent = NULL;
1328 ret->got = htab->init_refcount;
1329 ret->plt = htab->init_refcount;
1330 ret->size = 0;
1331 ret->type = STT_NOTYPE;
1332 ret->other = 0;
1333 /* Assume that we have been called by a non-ELF symbol reader.
1334 This flag is then reset by the code which reads an ELF input
1335 file. This ensures that a symbol created by a non-ELF symbol
1336 reader will have the flag set correctly. */
1337 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1338 }
1339
1340 return entry;
1341 }
1342
1343 /* Copy data from an indirect symbol to its direct symbol, hiding the
1344 old indirect symbol. Also used for copying flags to a weakdef. */
1345
1346 void
1347 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1348 struct elf_link_hash_entry *dir,
1349 struct elf_link_hash_entry *ind)
1350 {
1351 bfd_signed_vma tmp;
1352 bfd_signed_vma lowest_valid = bed->can_refcount;
1353
1354 /* Copy down any references that we may have already seen to the
1355 symbol which just became indirect. */
1356
1357 dir->elf_link_hash_flags |=
1358 (ind->elf_link_hash_flags
1359 & (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF));
1363
1364 if (ind->root.type != bfd_link_hash_indirect)
1365 return;
1366
1367 /* Copy over the global and procedure linkage table refcount entries.
1368 These may have been already set up by a check_relocs routine. */
1369 tmp = dir->got.refcount;
1370 if (tmp < lowest_valid)
1371 {
1372 dir->got.refcount = ind->got.refcount;
1373 ind->got.refcount = tmp;
1374 }
1375 else
1376 BFD_ASSERT (ind->got.refcount < lowest_valid);
1377
1378 tmp = dir->plt.refcount;
1379 if (tmp < lowest_valid)
1380 {
1381 dir->plt.refcount = ind->plt.refcount;
1382 ind->plt.refcount = tmp;
1383 }
1384 else
1385 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1386
1387 if (dir->dynindx == -1)
1388 {
1389 dir->dynindx = ind->dynindx;
1390 dir->dynstr_index = ind->dynstr_index;
1391 ind->dynindx = -1;
1392 ind->dynstr_index = 0;
1393 }
1394 else
1395 BFD_ASSERT (ind->dynindx == -1);
1396 }
1397
1398 void
1399 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1400 struct elf_link_hash_entry *h,
1401 bfd_boolean force_local)
1402 {
1403 h->plt = elf_hash_table (info)->init_offset;
1404 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1405 if (force_local)
1406 {
1407 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1408 if (h->dynindx != -1)
1409 {
1410 h->dynindx = -1;
1411 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1412 h->dynstr_index);
1413 }
1414 }
1415 }
1416
1417 /* Initialize an ELF linker hash table. */
1418
1419 bfd_boolean
1420 _bfd_elf_link_hash_table_init
1421 (struct elf_link_hash_table *table,
1422 bfd *abfd,
1423 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1424 struct bfd_hash_table *,
1425 const char *))
1426 {
1427 bfd_boolean ret;
1428
1429 table->dynamic_sections_created = FALSE;
1430 table->dynobj = NULL;
1431 /* Make sure can_refcount is extended to the width and signedness of
1432 init_refcount before we subtract one from it. */
1433 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1434 table->init_refcount.refcount -= 1;
1435 table->init_offset.offset = -(bfd_vma) 1;
1436 /* The first dynamic symbol is a dummy. */
1437 table->dynsymcount = 1;
1438 table->dynstr = NULL;
1439 table->bucketcount = 0;
1440 table->needed = NULL;
1441 table->hgot = NULL;
1442 table->stab_info = NULL;
1443 table->merge_info = NULL;
1444 memset (&table->eh_info, 0, sizeof (table->eh_info));
1445 table->dynlocal = NULL;
1446 table->runpath = NULL;
1447 table->tls_segment = NULL;
1448 table->loaded = NULL;
1449
1450 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1451 table->root.type = bfd_link_elf_hash_table;
1452
1453 return ret;
1454 }
1455
1456 /* Create an ELF linker hash table. */
1457
1458 struct bfd_link_hash_table *
1459 _bfd_elf_link_hash_table_create (bfd *abfd)
1460 {
1461 struct elf_link_hash_table *ret;
1462 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1463
1464 ret = bfd_malloc (amt);
1465 if (ret == NULL)
1466 return NULL;
1467
1468 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1469 {
1470 free (ret);
1471 return NULL;
1472 }
1473
1474 return &ret->root;
1475 }
1476
1477 /* This is a hook for the ELF emulation code in the generic linker to
1478 tell the backend linker what file name to use for the DT_NEEDED
1479 entry for a dynamic object. The generic linker passes name as an
1480 empty string to indicate that no DT_NEEDED entry should be made. */
1481
1482 void
1483 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1484 {
1485 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1486 && bfd_get_format (abfd) == bfd_object)
1487 elf_dt_name (abfd) = name;
1488 }
1489
1490 void
1491 bfd_elf_set_dt_needed_soname (bfd *abfd, const char *name)
1492 {
1493 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1494 && bfd_get_format (abfd) == bfd_object)
1495 elf_dt_soname (abfd) = name;
1496 }
1497
1498 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1499 the linker ELF emulation code. */
1500
1501 struct bfd_link_needed_list *
1502 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1503 struct bfd_link_info *info)
1504 {
1505 if (! is_elf_hash_table (info))
1506 return NULL;
1507 return elf_hash_table (info)->needed;
1508 }
1509
1510 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1511 hook for the linker ELF emulation code. */
1512
1513 struct bfd_link_needed_list *
1514 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1515 struct bfd_link_info *info)
1516 {
1517 if (! is_elf_hash_table (info))
1518 return NULL;
1519 return elf_hash_table (info)->runpath;
1520 }
1521
1522 /* Get the name actually used for a dynamic object for a link. This
1523 is the SONAME entry if there is one. Otherwise, it is the string
1524 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1525
1526 const char *
1527 bfd_elf_get_dt_soname (bfd *abfd)
1528 {
1529 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1530 && bfd_get_format (abfd) == bfd_object)
1531 return elf_dt_name (abfd);
1532 return NULL;
1533 }
1534
1535 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1536 the ELF linker emulation code. */
1537
1538 bfd_boolean
1539 bfd_elf_get_bfd_needed_list (bfd *abfd,
1540 struct bfd_link_needed_list **pneeded)
1541 {
1542 asection *s;
1543 bfd_byte *dynbuf = NULL;
1544 int elfsec;
1545 unsigned long shlink;
1546 bfd_byte *extdyn, *extdynend;
1547 size_t extdynsize;
1548 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1549
1550 *pneeded = NULL;
1551
1552 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1553 || bfd_get_format (abfd) != bfd_object)
1554 return TRUE;
1555
1556 s = bfd_get_section_by_name (abfd, ".dynamic");
1557 if (s == NULL || s->_raw_size == 0)
1558 return TRUE;
1559
1560 dynbuf = bfd_malloc (s->_raw_size);
1561 if (dynbuf == NULL)
1562 goto error_return;
1563
1564 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1565 goto error_return;
1566
1567 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1568 if (elfsec == -1)
1569 goto error_return;
1570
1571 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1572
1573 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1574 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1575
1576 extdyn = dynbuf;
1577 extdynend = extdyn + s->_raw_size;
1578 for (; extdyn < extdynend; extdyn += extdynsize)
1579 {
1580 Elf_Internal_Dyn dyn;
1581
1582 (*swap_dyn_in) (abfd, extdyn, &dyn);
1583
1584 if (dyn.d_tag == DT_NULL)
1585 break;
1586
1587 if (dyn.d_tag == DT_NEEDED)
1588 {
1589 const char *string;
1590 struct bfd_link_needed_list *l;
1591 unsigned int tagv = dyn.d_un.d_val;
1592 bfd_size_type amt;
1593
1594 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1595 if (string == NULL)
1596 goto error_return;
1597
1598 amt = sizeof *l;
1599 l = bfd_alloc (abfd, amt);
1600 if (l == NULL)
1601 goto error_return;
1602
1603 l->by = abfd;
1604 l->name = string;
1605 l->next = *pneeded;
1606 *pneeded = l;
1607 }
1608 }
1609
1610 free (dynbuf);
1611
1612 return TRUE;
1613
1614 error_return:
1615 if (dynbuf != NULL)
1616 free (dynbuf);
1617 return FALSE;
1618 }
1619 \f
1620 /* Allocate an ELF string table--force the first byte to be zero. */
1621
1622 struct bfd_strtab_hash *
1623 _bfd_elf_stringtab_init (void)
1624 {
1625 struct bfd_strtab_hash *ret;
1626
1627 ret = _bfd_stringtab_init ();
1628 if (ret != NULL)
1629 {
1630 bfd_size_type loc;
1631
1632 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1633 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1634 if (loc == (bfd_size_type) -1)
1635 {
1636 _bfd_stringtab_free (ret);
1637 ret = NULL;
1638 }
1639 }
1640 return ret;
1641 }
1642 \f
1643 /* ELF .o/exec file reading */
1644
1645 /* Create a new bfd section from an ELF section header. */
1646
1647 bfd_boolean
1648 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1649 {
1650 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1651 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1652 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1653 const char *name;
1654
1655 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1656
1657 switch (hdr->sh_type)
1658 {
1659 case SHT_NULL:
1660 /* Inactive section. Throw it away. */
1661 return TRUE;
1662
1663 case SHT_PROGBITS: /* Normal section with contents. */
1664 case SHT_NOBITS: /* .bss section. */
1665 case SHT_HASH: /* .hash section. */
1666 case SHT_NOTE: /* .note section. */
1667 case SHT_INIT_ARRAY: /* .init_array section. */
1668 case SHT_FINI_ARRAY: /* .fini_array section. */
1669 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1670 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1671
1672 case SHT_DYNAMIC: /* Dynamic linking information. */
1673 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1674 return FALSE;
1675 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1676 {
1677 Elf_Internal_Shdr *dynsymhdr;
1678
1679 /* The shared libraries distributed with hpux11 have a bogus
1680 sh_link field for the ".dynamic" section. Find the
1681 string table for the ".dynsym" section instead. */
1682 if (elf_dynsymtab (abfd) != 0)
1683 {
1684 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1685 hdr->sh_link = dynsymhdr->sh_link;
1686 }
1687 else
1688 {
1689 unsigned int i, num_sec;
1690
1691 num_sec = elf_numsections (abfd);
1692 for (i = 1; i < num_sec; i++)
1693 {
1694 dynsymhdr = elf_elfsections (abfd)[i];
1695 if (dynsymhdr->sh_type == SHT_DYNSYM)
1696 {
1697 hdr->sh_link = dynsymhdr->sh_link;
1698 break;
1699 }
1700 }
1701 }
1702 }
1703 break;
1704
1705 case SHT_SYMTAB: /* A symbol table */
1706 if (elf_onesymtab (abfd) == shindex)
1707 return TRUE;
1708
1709 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1710 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1711 elf_onesymtab (abfd) = shindex;
1712 elf_tdata (abfd)->symtab_hdr = *hdr;
1713 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1714 abfd->flags |= HAS_SYMS;
1715
1716 /* Sometimes a shared object will map in the symbol table. If
1717 SHF_ALLOC is set, and this is a shared object, then we also
1718 treat this section as a BFD section. We can not base the
1719 decision purely on SHF_ALLOC, because that flag is sometimes
1720 set in a relocatable object file, which would confuse the
1721 linker. */
1722 if ((hdr->sh_flags & SHF_ALLOC) != 0
1723 && (abfd->flags & DYNAMIC) != 0
1724 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1725 return FALSE;
1726
1727 return TRUE;
1728
1729 case SHT_DYNSYM: /* A dynamic symbol table */
1730 if (elf_dynsymtab (abfd) == shindex)
1731 return TRUE;
1732
1733 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1734 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1735 elf_dynsymtab (abfd) = shindex;
1736 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1738 abfd->flags |= HAS_SYMS;
1739
1740 /* Besides being a symbol table, we also treat this as a regular
1741 section, so that objcopy can handle it. */
1742 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1743
1744 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1745 if (elf_symtab_shndx (abfd) == shindex)
1746 return TRUE;
1747
1748 /* Get the associated symbol table. */
1749 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1750 || hdr->sh_link != elf_onesymtab (abfd))
1751 return FALSE;
1752
1753 elf_symtab_shndx (abfd) = shindex;
1754 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1755 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1756 return TRUE;
1757
1758 case SHT_STRTAB: /* A string table */
1759 if (hdr->bfd_section != NULL)
1760 return TRUE;
1761 if (ehdr->e_shstrndx == shindex)
1762 {
1763 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1764 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1765 return TRUE;
1766 }
1767 {
1768 unsigned int i, num_sec;
1769
1770 num_sec = elf_numsections (abfd);
1771 for (i = 1; i < num_sec; i++)
1772 {
1773 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1774 if (hdr2->sh_link == shindex)
1775 {
1776 if (! bfd_section_from_shdr (abfd, i))
1777 return FALSE;
1778 if (elf_onesymtab (abfd) == i)
1779 {
1780 elf_tdata (abfd)->strtab_hdr = *hdr;
1781 elf_elfsections (abfd)[shindex] =
1782 &elf_tdata (abfd)->strtab_hdr;
1783 return TRUE;
1784 }
1785 if (elf_dynsymtab (abfd) == i)
1786 {
1787 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1788 elf_elfsections (abfd)[shindex] = hdr =
1789 &elf_tdata (abfd)->dynstrtab_hdr;
1790 /* We also treat this as a regular section, so
1791 that objcopy can handle it. */
1792 break;
1793 }
1794 #if 0 /* Not handling other string tables specially right now. */
1795 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1796 /* We have a strtab for some random other section. */
1797 newsect = (asection *) hdr2->bfd_section;
1798 if (!newsect)
1799 break;
1800 hdr->bfd_section = newsect;
1801 hdr2 = &elf_section_data (newsect)->str_hdr;
1802 *hdr2 = *hdr;
1803 elf_elfsections (abfd)[shindex] = hdr2;
1804 #endif
1805 }
1806 }
1807 }
1808
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1810
1811 case SHT_REL:
1812 case SHT_RELA:
1813 /* *These* do a lot of work -- but build no sections! */
1814 {
1815 asection *target_sect;
1816 Elf_Internal_Shdr *hdr2;
1817 unsigned int num_sec = elf_numsections (abfd);
1818
1819 /* Check for a bogus link to avoid crashing. */
1820 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1821 || hdr->sh_link >= num_sec)
1822 {
1823 ((*_bfd_error_handler)
1824 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1825 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1826 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1827 }
1828
1829 /* For some incomprehensible reason Oracle distributes
1830 libraries for Solaris in which some of the objects have
1831 bogus sh_link fields. It would be nice if we could just
1832 reject them, but, unfortunately, some people need to use
1833 them. We scan through the section headers; if we find only
1834 one suitable symbol table, we clobber the sh_link to point
1835 to it. I hope this doesn't break anything. */
1836 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1837 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1838 {
1839 unsigned int scan;
1840 int found;
1841
1842 found = 0;
1843 for (scan = 1; scan < num_sec; scan++)
1844 {
1845 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1846 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1847 {
1848 if (found != 0)
1849 {
1850 found = 0;
1851 break;
1852 }
1853 found = scan;
1854 }
1855 }
1856 if (found != 0)
1857 hdr->sh_link = found;
1858 }
1859
1860 /* Get the symbol table. */
1861 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1862 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1863 return FALSE;
1864
1865 /* If this reloc section does not use the main symbol table we
1866 don't treat it as a reloc section. BFD can't adequately
1867 represent such a section, so at least for now, we don't
1868 try. We just present it as a normal section. We also
1869 can't use it as a reloc section if it points to the null
1870 section. */
1871 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1872 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1873
1874 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1875 return FALSE;
1876 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1877 if (target_sect == NULL)
1878 return FALSE;
1879
1880 if ((target_sect->flags & SEC_RELOC) == 0
1881 || target_sect->reloc_count == 0)
1882 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1883 else
1884 {
1885 bfd_size_type amt;
1886 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1887 amt = sizeof (*hdr2);
1888 hdr2 = bfd_alloc (abfd, amt);
1889 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1890 }
1891 *hdr2 = *hdr;
1892 elf_elfsections (abfd)[shindex] = hdr2;
1893 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1894 target_sect->flags |= SEC_RELOC;
1895 target_sect->relocation = NULL;
1896 target_sect->rel_filepos = hdr->sh_offset;
1897 /* In the section to which the relocations apply, mark whether
1898 its relocations are of the REL or RELA variety. */
1899 if (hdr->sh_size != 0)
1900 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1901 abfd->flags |= HAS_RELOC;
1902 return TRUE;
1903 }
1904 break;
1905
1906 case SHT_GNU_verdef:
1907 elf_dynverdef (abfd) = shindex;
1908 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1909 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1910 break;
1911
1912 case SHT_GNU_versym:
1913 elf_dynversym (abfd) = shindex;
1914 elf_tdata (abfd)->dynversym_hdr = *hdr;
1915 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1916 break;
1917
1918 case SHT_GNU_verneed:
1919 elf_dynverref (abfd) = shindex;
1920 elf_tdata (abfd)->dynverref_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1922 break;
1923
1924 case SHT_SHLIB:
1925 return TRUE;
1926
1927 case SHT_GROUP:
1928 /* We need a BFD section for objcopy and relocatable linking,
1929 and it's handy to have the signature available as the section
1930 name. */
1931 name = group_signature (abfd, hdr);
1932 if (name == NULL)
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / 4;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 while (--n_elt != 0)
1947 if ((s = (++idx)->shdr->bfd_section) != NULL
1948 && elf_next_in_group (s) != NULL)
1949 {
1950 elf_next_in_group (hdr->bfd_section) = s;
1951 break;
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Check for any processor-specific section types. */
1958 {
1959 if (bed->elf_backend_section_from_shdr)
1960 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1961 }
1962 break;
1963 }
1964
1965 return TRUE;
1966 }
1967
1968 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1969 Return SEC for sections that have no elf section, and NULL on error. */
1970
1971 asection *
1972 bfd_section_from_r_symndx (bfd *abfd,
1973 struct sym_sec_cache *cache,
1974 asection *sec,
1975 unsigned long r_symndx)
1976 {
1977 Elf_Internal_Shdr *symtab_hdr;
1978 unsigned char esym[sizeof (Elf64_External_Sym)];
1979 Elf_External_Sym_Shndx eshndx;
1980 Elf_Internal_Sym isym;
1981 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1982
1983 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1984 return cache->sec[ent];
1985
1986 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1987 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1988 &isym, esym, &eshndx) == NULL)
1989 return NULL;
1990
1991 if (cache->abfd != abfd)
1992 {
1993 memset (cache->indx, -1, sizeof (cache->indx));
1994 cache->abfd = abfd;
1995 }
1996 cache->indx[ent] = r_symndx;
1997 cache->sec[ent] = sec;
1998 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
1999 || isym.st_shndx > SHN_HIRESERVE)
2000 {
2001 asection *s;
2002 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2003 if (s != NULL)
2004 cache->sec[ent] = s;
2005 }
2006 return cache->sec[ent];
2007 }
2008
2009 /* Given an ELF section number, retrieve the corresponding BFD
2010 section. */
2011
2012 asection *
2013 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2014 {
2015 if (index >= elf_numsections (abfd))
2016 return NULL;
2017 return elf_elfsections (abfd)[index]->bfd_section;
2018 }
2019
2020 static struct bfd_elf_special_section const special_sections[] =
2021 {
2022 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2023 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2024 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2025 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2026 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2027 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2028 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2029 { ".line", 5, 0, SHT_PROGBITS, 0 },
2030 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2031 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2032 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2033 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2034 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2035 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2036 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2037 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2038 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2039 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2040 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2041 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2042 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2043 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2044 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2045 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2046 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2047 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2048 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2049 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2050 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2051 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2052 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2053 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2054 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2055 { ".note", 5, -1, SHT_NOTE, 0 },
2056 { ".rela", 5, -1, SHT_RELA, 0 },
2057 { ".rel", 4, -1, SHT_REL, 0 },
2058 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060 };
2061
2062 static const struct bfd_elf_special_section *
2063 get_special_section (const char *name,
2064 const struct bfd_elf_special_section *special_sections,
2065 unsigned int rela)
2066 {
2067 int i;
2068 int len = strlen (name);
2069
2070 for (i = 0; special_sections[i].prefix != NULL; i++)
2071 {
2072 int suffix_len;
2073 int prefix_len = special_sections[i].prefix_length;
2074
2075 if (len < prefix_len)
2076 continue;
2077 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2078 continue;
2079
2080 suffix_len = special_sections[i].suffix_length;
2081 if (suffix_len <= 0)
2082 {
2083 if (name[prefix_len] != 0)
2084 {
2085 if (suffix_len == 0)
2086 continue;
2087 if (name[prefix_len] != '.'
2088 && (suffix_len == -2
2089 || (rela && special_sections[i].type == SHT_REL)))
2090 continue;
2091 }
2092 }
2093 else
2094 {
2095 if (len < prefix_len + suffix_len)
2096 continue;
2097 if (memcmp (name + len - suffix_len,
2098 special_sections[i].prefix + prefix_len,
2099 suffix_len) != 0)
2100 continue;
2101 }
2102 return &special_sections[i];
2103 }
2104
2105 return NULL;
2106 }
2107
2108 const struct bfd_elf_special_section *
2109 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2110 {
2111 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2112 const struct bfd_elf_special_section *ssect = NULL;
2113
2114 /* See if this is one of the special sections. */
2115 if (name)
2116 {
2117 unsigned int rela = bed->default_use_rela_p;
2118
2119 if (bed->special_sections)
2120 ssect = get_special_section (name, bed->special_sections, rela);
2121
2122 if (! ssect)
2123 ssect = get_special_section (name, special_sections, rela);
2124 }
2125
2126 return ssect;
2127 }
2128
2129 bfd_boolean
2130 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2131 {
2132 struct bfd_elf_section_data *sdata;
2133 const struct bfd_elf_special_section *ssect;
2134
2135 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2136 if (sdata == NULL)
2137 {
2138 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2139 if (sdata == NULL)
2140 return FALSE;
2141 sec->used_by_bfd = sdata;
2142 }
2143
2144 elf_section_type (sec) = SHT_NULL;
2145 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2146 if (ssect != NULL)
2147 {
2148 elf_section_type (sec) = ssect->type;
2149 elf_section_flags (sec) = ssect->attr;
2150 }
2151
2152 /* Indicate whether or not this section should use RELA relocations. */
2153 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2154
2155 return TRUE;
2156 }
2157
2158 /* Create a new bfd section from an ELF program header.
2159
2160 Since program segments have no names, we generate a synthetic name
2161 of the form segment<NUM>, where NUM is generally the index in the
2162 program header table. For segments that are split (see below) we
2163 generate the names segment<NUM>a and segment<NUM>b.
2164
2165 Note that some program segments may have a file size that is different than
2166 (less than) the memory size. All this means is that at execution the
2167 system must allocate the amount of memory specified by the memory size,
2168 but only initialize it with the first "file size" bytes read from the
2169 file. This would occur for example, with program segments consisting
2170 of combined data+bss.
2171
2172 To handle the above situation, this routine generates TWO bfd sections
2173 for the single program segment. The first has the length specified by
2174 the file size of the segment, and the second has the length specified
2175 by the difference between the two sizes. In effect, the segment is split
2176 into it's initialized and uninitialized parts.
2177
2178 */
2179
2180 bfd_boolean
2181 _bfd_elf_make_section_from_phdr (bfd *abfd,
2182 Elf_Internal_Phdr *hdr,
2183 int index,
2184 const char *typename)
2185 {
2186 asection *newsect;
2187 char *name;
2188 char namebuf[64];
2189 size_t len;
2190 int split;
2191
2192 split = ((hdr->p_memsz > 0)
2193 && (hdr->p_filesz > 0)
2194 && (hdr->p_memsz > hdr->p_filesz));
2195 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2196 len = strlen (namebuf) + 1;
2197 name = bfd_alloc (abfd, len);
2198 if (!name)
2199 return FALSE;
2200 memcpy (name, namebuf, len);
2201 newsect = bfd_make_section (abfd, name);
2202 if (newsect == NULL)
2203 return FALSE;
2204 newsect->vma = hdr->p_vaddr;
2205 newsect->lma = hdr->p_paddr;
2206 newsect->_raw_size = hdr->p_filesz;
2207 newsect->filepos = hdr->p_offset;
2208 newsect->flags |= SEC_HAS_CONTENTS;
2209 newsect->alignment_power = bfd_log2 (hdr->p_align);
2210 if (hdr->p_type == PT_LOAD)
2211 {
2212 newsect->flags |= SEC_ALLOC;
2213 newsect->flags |= SEC_LOAD;
2214 if (hdr->p_flags & PF_X)
2215 {
2216 /* FIXME: all we known is that it has execute PERMISSION,
2217 may be data. */
2218 newsect->flags |= SEC_CODE;
2219 }
2220 }
2221 if (!(hdr->p_flags & PF_W))
2222 {
2223 newsect->flags |= SEC_READONLY;
2224 }
2225
2226 if (split)
2227 {
2228 sprintf (namebuf, "%s%db", typename, index);
2229 len = strlen (namebuf) + 1;
2230 name = bfd_alloc (abfd, len);
2231 if (!name)
2232 return FALSE;
2233 memcpy (name, namebuf, len);
2234 newsect = bfd_make_section (abfd, name);
2235 if (newsect == NULL)
2236 return FALSE;
2237 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2238 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2239 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2240 if (hdr->p_type == PT_LOAD)
2241 {
2242 newsect->flags |= SEC_ALLOC;
2243 if (hdr->p_flags & PF_X)
2244 newsect->flags |= SEC_CODE;
2245 }
2246 if (!(hdr->p_flags & PF_W))
2247 newsect->flags |= SEC_READONLY;
2248 }
2249
2250 return TRUE;
2251 }
2252
2253 bfd_boolean
2254 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2255 {
2256 const struct elf_backend_data *bed;
2257
2258 switch (hdr->p_type)
2259 {
2260 case PT_NULL:
2261 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2262
2263 case PT_LOAD:
2264 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2265
2266 case PT_DYNAMIC:
2267 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2268
2269 case PT_INTERP:
2270 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2271
2272 case PT_NOTE:
2273 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2274 return FALSE;
2275 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2276 return FALSE;
2277 return TRUE;
2278
2279 case PT_SHLIB:
2280 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2281
2282 case PT_PHDR:
2283 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2284
2285 case PT_GNU_EH_FRAME:
2286 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2287 "eh_frame_hdr");
2288
2289 case PT_GNU_STACK:
2290 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2291
2292 default:
2293 /* Check for any processor-specific program segment types.
2294 If no handler for them, default to making "segment" sections. */
2295 bed = get_elf_backend_data (abfd);
2296 if (bed->elf_backend_section_from_phdr)
2297 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2298 else
2299 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2300 }
2301 }
2302
2303 /* Initialize REL_HDR, the section-header for new section, containing
2304 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2305 relocations; otherwise, we use REL relocations. */
2306
2307 bfd_boolean
2308 _bfd_elf_init_reloc_shdr (bfd *abfd,
2309 Elf_Internal_Shdr *rel_hdr,
2310 asection *asect,
2311 bfd_boolean use_rela_p)
2312 {
2313 char *name;
2314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2315 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2316
2317 name = bfd_alloc (abfd, amt);
2318 if (name == NULL)
2319 return FALSE;
2320 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2321 rel_hdr->sh_name =
2322 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2323 FALSE);
2324 if (rel_hdr->sh_name == (unsigned int) -1)
2325 return FALSE;
2326 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2327 rel_hdr->sh_entsize = (use_rela_p
2328 ? bed->s->sizeof_rela
2329 : bed->s->sizeof_rel);
2330 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2331 rel_hdr->sh_flags = 0;
2332 rel_hdr->sh_addr = 0;
2333 rel_hdr->sh_size = 0;
2334 rel_hdr->sh_offset = 0;
2335
2336 return TRUE;
2337 }
2338
2339 /* Set up an ELF internal section header for a section. */
2340
2341 static void
2342 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2343 {
2344 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2345 bfd_boolean *failedptr = failedptrarg;
2346 Elf_Internal_Shdr *this_hdr;
2347
2348 if (*failedptr)
2349 {
2350 /* We already failed; just get out of the bfd_map_over_sections
2351 loop. */
2352 return;
2353 }
2354
2355 this_hdr = &elf_section_data (asect)->this_hdr;
2356
2357 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2358 asect->name, FALSE);
2359 if (this_hdr->sh_name == (unsigned int) -1)
2360 {
2361 *failedptr = TRUE;
2362 return;
2363 }
2364
2365 this_hdr->sh_flags = 0;
2366
2367 if ((asect->flags & SEC_ALLOC) != 0
2368 || asect->user_set_vma)
2369 this_hdr->sh_addr = asect->vma;
2370 else
2371 this_hdr->sh_addr = 0;
2372
2373 this_hdr->sh_offset = 0;
2374 this_hdr->sh_size = asect->_raw_size;
2375 this_hdr->sh_link = 0;
2376 this_hdr->sh_addralign = 1 << asect->alignment_power;
2377 /* The sh_entsize and sh_info fields may have been set already by
2378 copy_private_section_data. */
2379
2380 this_hdr->bfd_section = asect;
2381 this_hdr->contents = NULL;
2382
2383 /* If the section type is unspecified, we set it based on
2384 asect->flags. */
2385 if (this_hdr->sh_type == SHT_NULL)
2386 {
2387 if ((asect->flags & SEC_ALLOC) != 0
2388 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2389 || (asect->flags & SEC_NEVER_LOAD) != 0))
2390 this_hdr->sh_type = SHT_NOBITS;
2391 else
2392 this_hdr->sh_type = SHT_PROGBITS;
2393 }
2394
2395 switch (this_hdr->sh_type)
2396 {
2397 default:
2398 break;
2399
2400 case SHT_STRTAB:
2401 case SHT_INIT_ARRAY:
2402 case SHT_FINI_ARRAY:
2403 case SHT_PREINIT_ARRAY:
2404 case SHT_NOTE:
2405 case SHT_NOBITS:
2406 case SHT_PROGBITS:
2407 break;
2408
2409 case SHT_HASH:
2410 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2411 break;
2412
2413 case SHT_DYNSYM:
2414 this_hdr->sh_entsize = bed->s->sizeof_sym;
2415 break;
2416
2417 case SHT_DYNAMIC:
2418 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2419 break;
2420
2421 case SHT_RELA:
2422 if (get_elf_backend_data (abfd)->may_use_rela_p)
2423 this_hdr->sh_entsize = bed->s->sizeof_rela;
2424 break;
2425
2426 case SHT_REL:
2427 if (get_elf_backend_data (abfd)->may_use_rel_p)
2428 this_hdr->sh_entsize = bed->s->sizeof_rel;
2429 break;
2430
2431 case SHT_GNU_versym:
2432 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2433 break;
2434
2435 case SHT_GNU_verdef:
2436 this_hdr->sh_entsize = 0;
2437 /* objcopy or strip will copy over sh_info, but may not set
2438 cverdefs. The linker will set cverdefs, but sh_info will be
2439 zero. */
2440 if (this_hdr->sh_info == 0)
2441 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2442 else
2443 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2444 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2445 break;
2446
2447 case SHT_GNU_verneed:
2448 this_hdr->sh_entsize = 0;
2449 /* objcopy or strip will copy over sh_info, but may not set
2450 cverrefs. The linker will set cverrefs, but sh_info will be
2451 zero. */
2452 if (this_hdr->sh_info == 0)
2453 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2454 else
2455 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2456 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2457 break;
2458
2459 case SHT_GROUP:
2460 this_hdr->sh_entsize = 4;
2461 break;
2462 }
2463
2464 if ((asect->flags & SEC_ALLOC) != 0)
2465 this_hdr->sh_flags |= SHF_ALLOC;
2466 if ((asect->flags & SEC_READONLY) == 0)
2467 this_hdr->sh_flags |= SHF_WRITE;
2468 if ((asect->flags & SEC_CODE) != 0)
2469 this_hdr->sh_flags |= SHF_EXECINSTR;
2470 if ((asect->flags & SEC_MERGE) != 0)
2471 {
2472 this_hdr->sh_flags |= SHF_MERGE;
2473 this_hdr->sh_entsize = asect->entsize;
2474 if ((asect->flags & SEC_STRINGS) != 0)
2475 this_hdr->sh_flags |= SHF_STRINGS;
2476 }
2477 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2478 this_hdr->sh_flags |= SHF_GROUP;
2479 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2480 {
2481 this_hdr->sh_flags |= SHF_TLS;
2482 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2483 {
2484 struct bfd_link_order *o;
2485
2486 this_hdr->sh_size = 0;
2487 for (o = asect->link_order_head; o != NULL; o = o->next)
2488 if (this_hdr->sh_size < o->offset + o->size)
2489 this_hdr->sh_size = o->offset + o->size;
2490 if (this_hdr->sh_size)
2491 this_hdr->sh_type = SHT_NOBITS;
2492 }
2493 }
2494
2495 /* Check for processor-specific section types. */
2496 if (bed->elf_backend_fake_sections
2497 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2498 *failedptr = TRUE;
2499
2500 /* If the section has relocs, set up a section header for the
2501 SHT_REL[A] section. If two relocation sections are required for
2502 this section, it is up to the processor-specific back-end to
2503 create the other. */
2504 if ((asect->flags & SEC_RELOC) != 0
2505 && !_bfd_elf_init_reloc_shdr (abfd,
2506 &elf_section_data (asect)->rel_hdr,
2507 asect,
2508 asect->use_rela_p))
2509 *failedptr = TRUE;
2510 }
2511
2512 /* Fill in the contents of a SHT_GROUP section. */
2513
2514 void
2515 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2516 {
2517 bfd_boolean *failedptr = failedptrarg;
2518 unsigned long symindx;
2519 asection *elt, *first;
2520 unsigned char *loc;
2521 struct bfd_link_order *l;
2522 bfd_boolean gas;
2523
2524 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2525 || *failedptr)
2526 return;
2527
2528 symindx = 0;
2529 if (elf_group_id (sec) != NULL)
2530 symindx = elf_group_id (sec)->udata.i;
2531
2532 if (symindx == 0)
2533 {
2534 /* If called from the assembler, swap_out_syms will have set up
2535 elf_section_syms; If called for "ld -r", use target_index. */
2536 if (elf_section_syms (abfd) != NULL)
2537 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2538 else
2539 symindx = sec->target_index;
2540 }
2541 elf_section_data (sec)->this_hdr.sh_info = symindx;
2542
2543 /* The contents won't be allocated for "ld -r" or objcopy. */
2544 gas = TRUE;
2545 if (sec->contents == NULL)
2546 {
2547 gas = FALSE;
2548 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2549
2550 /* Arrange for the section to be written out. */
2551 elf_section_data (sec)->this_hdr.contents = sec->contents;
2552 if (sec->contents == NULL)
2553 {
2554 *failedptr = TRUE;
2555 return;
2556 }
2557 }
2558
2559 loc = sec->contents + sec->_raw_size;
2560
2561 /* Get the pointer to the first section in the group that gas
2562 squirreled away here. objcopy arranges for this to be set to the
2563 start of the input section group. */
2564 first = elt = elf_next_in_group (sec);
2565
2566 /* First element is a flag word. Rest of section is elf section
2567 indices for all the sections of the group. Write them backwards
2568 just to keep the group in the same order as given in .section
2569 directives, not that it matters. */
2570 while (elt != NULL)
2571 {
2572 asection *s;
2573 unsigned int idx;
2574
2575 loc -= 4;
2576 s = elt;
2577 if (!gas)
2578 s = s->output_section;
2579 idx = 0;
2580 if (s != NULL)
2581 idx = elf_section_data (s)->this_idx;
2582 H_PUT_32 (abfd, idx, loc);
2583 elt = elf_next_in_group (elt);
2584 if (elt == first)
2585 break;
2586 }
2587
2588 /* If this is a relocatable link, then the above did nothing because
2589 SEC is the output section. Look through the input sections
2590 instead. */
2591 for (l = sec->link_order_head; l != NULL; l = l->next)
2592 if (l->type == bfd_indirect_link_order
2593 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2594 do
2595 {
2596 loc -= 4;
2597 H_PUT_32 (abfd,
2598 elf_section_data (elt->output_section)->this_idx, loc);
2599 elt = elf_next_in_group (elt);
2600 /* During a relocatable link, the lists are circular. */
2601 }
2602 while (elt != elf_next_in_group (l->u.indirect.section));
2603
2604 /* With ld -r, merging SHT_GROUP sections results in wasted space
2605 due to allowing for the flag word on each input. We may well
2606 duplicate entries too. */
2607 while ((loc -= 4) > sec->contents)
2608 H_PUT_32 (abfd, 0, loc);
2609
2610 if (loc != sec->contents)
2611 abort ();
2612
2613 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2614 }
2615
2616 /* Assign all ELF section numbers. The dummy first section is handled here
2617 too. The link/info pointers for the standard section types are filled
2618 in here too, while we're at it. */
2619
2620 static bfd_boolean
2621 assign_section_numbers (bfd *abfd)
2622 {
2623 struct elf_obj_tdata *t = elf_tdata (abfd);
2624 asection *sec;
2625 unsigned int section_number, secn;
2626 Elf_Internal_Shdr **i_shdrp;
2627 bfd_size_type amt;
2628
2629 section_number = 1;
2630
2631 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2632
2633 for (sec = abfd->sections; sec; sec = sec->next)
2634 {
2635 struct bfd_elf_section_data *d = elf_section_data (sec);
2636
2637 if (section_number == SHN_LORESERVE)
2638 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2639 d->this_idx = section_number++;
2640 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2641 if ((sec->flags & SEC_RELOC) == 0)
2642 d->rel_idx = 0;
2643 else
2644 {
2645 if (section_number == SHN_LORESERVE)
2646 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2647 d->rel_idx = section_number++;
2648 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2649 }
2650
2651 if (d->rel_hdr2)
2652 {
2653 if (section_number == SHN_LORESERVE)
2654 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2655 d->rel_idx2 = section_number++;
2656 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2657 }
2658 else
2659 d->rel_idx2 = 0;
2660 }
2661
2662 if (section_number == SHN_LORESERVE)
2663 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2664 t->shstrtab_section = section_number++;
2665 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2666 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2667
2668 if (bfd_get_symcount (abfd) > 0)
2669 {
2670 if (section_number == SHN_LORESERVE)
2671 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2672 t->symtab_section = section_number++;
2673 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2674 if (section_number > SHN_LORESERVE - 2)
2675 {
2676 if (section_number == SHN_LORESERVE)
2677 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2678 t->symtab_shndx_section = section_number++;
2679 t->symtab_shndx_hdr.sh_name
2680 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2681 ".symtab_shndx", FALSE);
2682 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2683 return FALSE;
2684 }
2685 if (section_number == SHN_LORESERVE)
2686 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2687 t->strtab_section = section_number++;
2688 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2689 }
2690
2691 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2692 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2693
2694 elf_numsections (abfd) = section_number;
2695 elf_elfheader (abfd)->e_shnum = section_number;
2696 if (section_number > SHN_LORESERVE)
2697 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2698
2699 /* Set up the list of section header pointers, in agreement with the
2700 indices. */
2701 amt = section_number * sizeof (Elf_Internal_Shdr *);
2702 i_shdrp = bfd_zalloc (abfd, amt);
2703 if (i_shdrp == NULL)
2704 return FALSE;
2705
2706 amt = sizeof (Elf_Internal_Shdr);
2707 i_shdrp[0] = bfd_zalloc (abfd, amt);
2708 if (i_shdrp[0] == NULL)
2709 {
2710 bfd_release (abfd, i_shdrp);
2711 return FALSE;
2712 }
2713
2714 elf_elfsections (abfd) = i_shdrp;
2715
2716 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2717 if (bfd_get_symcount (abfd) > 0)
2718 {
2719 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2720 if (elf_numsections (abfd) > SHN_LORESERVE)
2721 {
2722 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2723 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2724 }
2725 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2726 t->symtab_hdr.sh_link = t->strtab_section;
2727 }
2728 for (sec = abfd->sections; sec; sec = sec->next)
2729 {
2730 struct bfd_elf_section_data *d = elf_section_data (sec);
2731 asection *s;
2732 const char *name;
2733
2734 i_shdrp[d->this_idx] = &d->this_hdr;
2735 if (d->rel_idx != 0)
2736 i_shdrp[d->rel_idx] = &d->rel_hdr;
2737 if (d->rel_idx2 != 0)
2738 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2739
2740 /* Fill in the sh_link and sh_info fields while we're at it. */
2741
2742 /* sh_link of a reloc section is the section index of the symbol
2743 table. sh_info is the section index of the section to which
2744 the relocation entries apply. */
2745 if (d->rel_idx != 0)
2746 {
2747 d->rel_hdr.sh_link = t->symtab_section;
2748 d->rel_hdr.sh_info = d->this_idx;
2749 }
2750 if (d->rel_idx2 != 0)
2751 {
2752 d->rel_hdr2->sh_link = t->symtab_section;
2753 d->rel_hdr2->sh_info = d->this_idx;
2754 }
2755
2756 switch (d->this_hdr.sh_type)
2757 {
2758 case SHT_REL:
2759 case SHT_RELA:
2760 /* A reloc section which we are treating as a normal BFD
2761 section. sh_link is the section index of the symbol
2762 table. sh_info is the section index of the section to
2763 which the relocation entries apply. We assume that an
2764 allocated reloc section uses the dynamic symbol table.
2765 FIXME: How can we be sure? */
2766 s = bfd_get_section_by_name (abfd, ".dynsym");
2767 if (s != NULL)
2768 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2769
2770 /* We look up the section the relocs apply to by name. */
2771 name = sec->name;
2772 if (d->this_hdr.sh_type == SHT_REL)
2773 name += 4;
2774 else
2775 name += 5;
2776 s = bfd_get_section_by_name (abfd, name);
2777 if (s != NULL)
2778 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2779 break;
2780
2781 case SHT_STRTAB:
2782 /* We assume that a section named .stab*str is a stabs
2783 string section. We look for a section with the same name
2784 but without the trailing ``str'', and set its sh_link
2785 field to point to this section. */
2786 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2787 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2788 {
2789 size_t len;
2790 char *alc;
2791
2792 len = strlen (sec->name);
2793 alc = bfd_malloc (len - 2);
2794 if (alc == NULL)
2795 return FALSE;
2796 memcpy (alc, sec->name, len - 3);
2797 alc[len - 3] = '\0';
2798 s = bfd_get_section_by_name (abfd, alc);
2799 free (alc);
2800 if (s != NULL)
2801 {
2802 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2803
2804 /* This is a .stab section. */
2805 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2806 elf_section_data (s)->this_hdr.sh_entsize
2807 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2808 }
2809 }
2810 break;
2811
2812 case SHT_DYNAMIC:
2813 case SHT_DYNSYM:
2814 case SHT_GNU_verneed:
2815 case SHT_GNU_verdef:
2816 /* sh_link is the section header index of the string table
2817 used for the dynamic entries, or the symbol table, or the
2818 version strings. */
2819 s = bfd_get_section_by_name (abfd, ".dynstr");
2820 if (s != NULL)
2821 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2822 break;
2823
2824 case SHT_HASH:
2825 case SHT_GNU_versym:
2826 /* sh_link is the section header index of the symbol table
2827 this hash table or version table is for. */
2828 s = bfd_get_section_by_name (abfd, ".dynsym");
2829 if (s != NULL)
2830 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2831 break;
2832
2833 case SHT_GROUP:
2834 d->this_hdr.sh_link = t->symtab_section;
2835 }
2836 }
2837
2838 for (secn = 1; secn < section_number; ++secn)
2839 if (i_shdrp[secn] == NULL)
2840 i_shdrp[secn] = i_shdrp[0];
2841 else
2842 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2843 i_shdrp[secn]->sh_name);
2844 return TRUE;
2845 }
2846
2847 /* Map symbol from it's internal number to the external number, moving
2848 all local symbols to be at the head of the list. */
2849
2850 static int
2851 sym_is_global (bfd *abfd, asymbol *sym)
2852 {
2853 /* If the backend has a special mapping, use it. */
2854 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2855 if (bed->elf_backend_sym_is_global)
2856 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2857
2858 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2859 || bfd_is_und_section (bfd_get_section (sym))
2860 || bfd_is_com_section (bfd_get_section (sym)));
2861 }
2862
2863 static bfd_boolean
2864 elf_map_symbols (bfd *abfd)
2865 {
2866 unsigned int symcount = bfd_get_symcount (abfd);
2867 asymbol **syms = bfd_get_outsymbols (abfd);
2868 asymbol **sect_syms;
2869 unsigned int num_locals = 0;
2870 unsigned int num_globals = 0;
2871 unsigned int num_locals2 = 0;
2872 unsigned int num_globals2 = 0;
2873 int max_index = 0;
2874 unsigned int idx;
2875 asection *asect;
2876 asymbol **new_syms;
2877 bfd_size_type amt;
2878
2879 #ifdef DEBUG
2880 fprintf (stderr, "elf_map_symbols\n");
2881 fflush (stderr);
2882 #endif
2883
2884 for (asect = abfd->sections; asect; asect = asect->next)
2885 {
2886 if (max_index < asect->index)
2887 max_index = asect->index;
2888 }
2889
2890 max_index++;
2891 amt = max_index * sizeof (asymbol *);
2892 sect_syms = bfd_zalloc (abfd, amt);
2893 if (sect_syms == NULL)
2894 return FALSE;
2895 elf_section_syms (abfd) = sect_syms;
2896 elf_num_section_syms (abfd) = max_index;
2897
2898 /* Init sect_syms entries for any section symbols we have already
2899 decided to output. */
2900 for (idx = 0; idx < symcount; idx++)
2901 {
2902 asymbol *sym = syms[idx];
2903
2904 if ((sym->flags & BSF_SECTION_SYM) != 0
2905 && sym->value == 0)
2906 {
2907 asection *sec;
2908
2909 sec = sym->section;
2910
2911 if (sec->owner != NULL)
2912 {
2913 if (sec->owner != abfd)
2914 {
2915 if (sec->output_offset != 0)
2916 continue;
2917
2918 sec = sec->output_section;
2919
2920 /* Empty sections in the input files may have had a
2921 section symbol created for them. (See the comment
2922 near the end of _bfd_generic_link_output_symbols in
2923 linker.c). If the linker script discards such
2924 sections then we will reach this point. Since we know
2925 that we cannot avoid this case, we detect it and skip
2926 the abort and the assignment to the sect_syms array.
2927 To reproduce this particular case try running the
2928 linker testsuite test ld-scripts/weak.exp for an ELF
2929 port that uses the generic linker. */
2930 if (sec->owner == NULL)
2931 continue;
2932
2933 BFD_ASSERT (sec->owner == abfd);
2934 }
2935 sect_syms[sec->index] = syms[idx];
2936 }
2937 }
2938 }
2939
2940 /* Classify all of the symbols. */
2941 for (idx = 0; idx < symcount; idx++)
2942 {
2943 if (!sym_is_global (abfd, syms[idx]))
2944 num_locals++;
2945 else
2946 num_globals++;
2947 }
2948
2949 /* We will be adding a section symbol for each BFD section. Most normal
2950 sections will already have a section symbol in outsymbols, but
2951 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2952 at least in that case. */
2953 for (asect = abfd->sections; asect; asect = asect->next)
2954 {
2955 if (sect_syms[asect->index] == NULL)
2956 {
2957 if (!sym_is_global (abfd, asect->symbol))
2958 num_locals++;
2959 else
2960 num_globals++;
2961 }
2962 }
2963
2964 /* Now sort the symbols so the local symbols are first. */
2965 amt = (num_locals + num_globals) * sizeof (asymbol *);
2966 new_syms = bfd_alloc (abfd, amt);
2967
2968 if (new_syms == NULL)
2969 return FALSE;
2970
2971 for (idx = 0; idx < symcount; idx++)
2972 {
2973 asymbol *sym = syms[idx];
2974 unsigned int i;
2975
2976 if (!sym_is_global (abfd, sym))
2977 i = num_locals2++;
2978 else
2979 i = num_locals + num_globals2++;
2980 new_syms[i] = sym;
2981 sym->udata.i = i + 1;
2982 }
2983 for (asect = abfd->sections; asect; asect = asect->next)
2984 {
2985 if (sect_syms[asect->index] == NULL)
2986 {
2987 asymbol *sym = asect->symbol;
2988 unsigned int i;
2989
2990 sect_syms[asect->index] = sym;
2991 if (!sym_is_global (abfd, sym))
2992 i = num_locals2++;
2993 else
2994 i = num_locals + num_globals2++;
2995 new_syms[i] = sym;
2996 sym->udata.i = i + 1;
2997 }
2998 }
2999
3000 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3001
3002 elf_num_locals (abfd) = num_locals;
3003 elf_num_globals (abfd) = num_globals;
3004 return TRUE;
3005 }
3006
3007 /* Align to the maximum file alignment that could be required for any
3008 ELF data structure. */
3009
3010 static inline file_ptr
3011 align_file_position (file_ptr off, int align)
3012 {
3013 return (off + align - 1) & ~(align - 1);
3014 }
3015
3016 /* Assign a file position to a section, optionally aligning to the
3017 required section alignment. */
3018
3019 file_ptr
3020 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3021 file_ptr offset,
3022 bfd_boolean align)
3023 {
3024 if (align)
3025 {
3026 unsigned int al;
3027
3028 al = i_shdrp->sh_addralign;
3029 if (al > 1)
3030 offset = BFD_ALIGN (offset, al);
3031 }
3032 i_shdrp->sh_offset = offset;
3033 if (i_shdrp->bfd_section != NULL)
3034 i_shdrp->bfd_section->filepos = offset;
3035 if (i_shdrp->sh_type != SHT_NOBITS)
3036 offset += i_shdrp->sh_size;
3037 return offset;
3038 }
3039
3040 /* Compute the file positions we are going to put the sections at, and
3041 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3042 is not NULL, this is being called by the ELF backend linker. */
3043
3044 bfd_boolean
3045 _bfd_elf_compute_section_file_positions (bfd *abfd,
3046 struct bfd_link_info *link_info)
3047 {
3048 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3049 bfd_boolean failed;
3050 struct bfd_strtab_hash *strtab;
3051 Elf_Internal_Shdr *shstrtab_hdr;
3052
3053 if (abfd->output_has_begun)
3054 return TRUE;
3055
3056 /* Do any elf backend specific processing first. */
3057 if (bed->elf_backend_begin_write_processing)
3058 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3059
3060 if (! prep_headers (abfd))
3061 return FALSE;
3062
3063 /* Post process the headers if necessary. */
3064 if (bed->elf_backend_post_process_headers)
3065 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3066
3067 failed = FALSE;
3068 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3069 if (failed)
3070 return FALSE;
3071
3072 if (!assign_section_numbers (abfd))
3073 return FALSE;
3074
3075 /* The backend linker builds symbol table information itself. */
3076 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3077 {
3078 /* Non-zero if doing a relocatable link. */
3079 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3080
3081 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3082 return FALSE;
3083 }
3084
3085 if (link_info == NULL)
3086 {
3087 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3088 if (failed)
3089 return FALSE;
3090 }
3091
3092 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3093 /* sh_name was set in prep_headers. */
3094 shstrtab_hdr->sh_type = SHT_STRTAB;
3095 shstrtab_hdr->sh_flags = 0;
3096 shstrtab_hdr->sh_addr = 0;
3097 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3098 shstrtab_hdr->sh_entsize = 0;
3099 shstrtab_hdr->sh_link = 0;
3100 shstrtab_hdr->sh_info = 0;
3101 /* sh_offset is set in assign_file_positions_except_relocs. */
3102 shstrtab_hdr->sh_addralign = 1;
3103
3104 if (!assign_file_positions_except_relocs (abfd))
3105 return FALSE;
3106
3107 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3108 {
3109 file_ptr off;
3110 Elf_Internal_Shdr *hdr;
3111
3112 off = elf_tdata (abfd)->next_file_pos;
3113
3114 hdr = &elf_tdata (abfd)->symtab_hdr;
3115 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3116
3117 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3118 if (hdr->sh_size != 0)
3119 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3120
3121 hdr = &elf_tdata (abfd)->strtab_hdr;
3122 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3123
3124 elf_tdata (abfd)->next_file_pos = off;
3125
3126 /* Now that we know where the .strtab section goes, write it
3127 out. */
3128 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3129 || ! _bfd_stringtab_emit (abfd, strtab))
3130 return FALSE;
3131 _bfd_stringtab_free (strtab);
3132 }
3133
3134 abfd->output_has_begun = TRUE;
3135
3136 return TRUE;
3137 }
3138
3139 /* Create a mapping from a set of sections to a program segment. */
3140
3141 static struct elf_segment_map *
3142 make_mapping (bfd *abfd,
3143 asection **sections,
3144 unsigned int from,
3145 unsigned int to,
3146 bfd_boolean phdr)
3147 {
3148 struct elf_segment_map *m;
3149 unsigned int i;
3150 asection **hdrpp;
3151 bfd_size_type amt;
3152
3153 amt = sizeof (struct elf_segment_map);
3154 amt += (to - from - 1) * sizeof (asection *);
3155 m = bfd_zalloc (abfd, amt);
3156 if (m == NULL)
3157 return NULL;
3158 m->next = NULL;
3159 m->p_type = PT_LOAD;
3160 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3161 m->sections[i - from] = *hdrpp;
3162 m->count = to - from;
3163
3164 if (from == 0 && phdr)
3165 {
3166 /* Include the headers in the first PT_LOAD segment. */
3167 m->includes_filehdr = 1;
3168 m->includes_phdrs = 1;
3169 }
3170
3171 return m;
3172 }
3173
3174 /* Set up a mapping from BFD sections to program segments. */
3175
3176 static bfd_boolean
3177 map_sections_to_segments (bfd *abfd)
3178 {
3179 asection **sections = NULL;
3180 asection *s;
3181 unsigned int i;
3182 unsigned int count;
3183 struct elf_segment_map *mfirst;
3184 struct elf_segment_map **pm;
3185 struct elf_segment_map *m;
3186 asection *last_hdr;
3187 unsigned int phdr_index;
3188 bfd_vma maxpagesize;
3189 asection **hdrpp;
3190 bfd_boolean phdr_in_segment = TRUE;
3191 bfd_boolean writable;
3192 int tls_count = 0;
3193 asection *first_tls = NULL;
3194 asection *dynsec, *eh_frame_hdr;
3195 bfd_size_type amt;
3196
3197 if (elf_tdata (abfd)->segment_map != NULL)
3198 return TRUE;
3199
3200 if (bfd_count_sections (abfd) == 0)
3201 return TRUE;
3202
3203 /* Select the allocated sections, and sort them. */
3204
3205 amt = bfd_count_sections (abfd) * sizeof (asection *);
3206 sections = bfd_malloc (amt);
3207 if (sections == NULL)
3208 goto error_return;
3209
3210 i = 0;
3211 for (s = abfd->sections; s != NULL; s = s->next)
3212 {
3213 if ((s->flags & SEC_ALLOC) != 0)
3214 {
3215 sections[i] = s;
3216 ++i;
3217 }
3218 }
3219 BFD_ASSERT (i <= bfd_count_sections (abfd));
3220 count = i;
3221
3222 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3223
3224 /* Build the mapping. */
3225
3226 mfirst = NULL;
3227 pm = &mfirst;
3228
3229 /* If we have a .interp section, then create a PT_PHDR segment for
3230 the program headers and a PT_INTERP segment for the .interp
3231 section. */
3232 s = bfd_get_section_by_name (abfd, ".interp");
3233 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3234 {
3235 amt = sizeof (struct elf_segment_map);
3236 m = bfd_zalloc (abfd, amt);
3237 if (m == NULL)
3238 goto error_return;
3239 m->next = NULL;
3240 m->p_type = PT_PHDR;
3241 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3242 m->p_flags = PF_R | PF_X;
3243 m->p_flags_valid = 1;
3244 m->includes_phdrs = 1;
3245
3246 *pm = m;
3247 pm = &m->next;
3248
3249 amt = sizeof (struct elf_segment_map);
3250 m = bfd_zalloc (abfd, amt);
3251 if (m == NULL)
3252 goto error_return;
3253 m->next = NULL;
3254 m->p_type = PT_INTERP;
3255 m->count = 1;
3256 m->sections[0] = s;
3257
3258 *pm = m;
3259 pm = &m->next;
3260 }
3261
3262 /* Look through the sections. We put sections in the same program
3263 segment when the start of the second section can be placed within
3264 a few bytes of the end of the first section. */
3265 last_hdr = NULL;
3266 phdr_index = 0;
3267 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3268 writable = FALSE;
3269 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3270 if (dynsec != NULL
3271 && (dynsec->flags & SEC_LOAD) == 0)
3272 dynsec = NULL;
3273
3274 /* Deal with -Ttext or something similar such that the first section
3275 is not adjacent to the program headers. This is an
3276 approximation, since at this point we don't know exactly how many
3277 program headers we will need. */
3278 if (count > 0)
3279 {
3280 bfd_size_type phdr_size;
3281
3282 phdr_size = elf_tdata (abfd)->program_header_size;
3283 if (phdr_size == 0)
3284 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3285 if ((abfd->flags & D_PAGED) == 0
3286 || sections[0]->lma < phdr_size
3287 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3288 phdr_in_segment = FALSE;
3289 }
3290
3291 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3292 {
3293 asection *hdr;
3294 bfd_boolean new_segment;
3295
3296 hdr = *hdrpp;
3297
3298 /* See if this section and the last one will fit in the same
3299 segment. */
3300
3301 if (last_hdr == NULL)
3302 {
3303 /* If we don't have a segment yet, then we don't need a new
3304 one (we build the last one after this loop). */
3305 new_segment = FALSE;
3306 }
3307 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3308 {
3309 /* If this section has a different relation between the
3310 virtual address and the load address, then we need a new
3311 segment. */
3312 new_segment = TRUE;
3313 }
3314 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3315 < BFD_ALIGN (hdr->lma, maxpagesize))
3316 {
3317 /* If putting this section in this segment would force us to
3318 skip a page in the segment, then we need a new segment. */
3319 new_segment = TRUE;
3320 }
3321 else if ((last_hdr->flags & SEC_LOAD) == 0
3322 && (hdr->flags & SEC_LOAD) != 0)
3323 {
3324 /* We don't want to put a loadable section after a
3325 nonloadable section in the same segment. */
3326 new_segment = TRUE;
3327 }
3328 else if ((abfd->flags & D_PAGED) == 0)
3329 {
3330 /* If the file is not demand paged, which means that we
3331 don't require the sections to be correctly aligned in the
3332 file, then there is no other reason for a new segment. */
3333 new_segment = FALSE;
3334 }
3335 else if (! writable
3336 && (hdr->flags & SEC_READONLY) == 0
3337 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3338 & ~(maxpagesize - 1))
3339 != (hdr->lma & ~(maxpagesize - 1))))
3340 {
3341 /* We don't want to put a writable section in a read only
3342 segment, unless they are on the same page in memory
3343 anyhow. We already know that the last section does not
3344 bring us past the current section on the page, so the
3345 only case in which the new section is not on the same
3346 page as the previous section is when the previous section
3347 ends precisely on a page boundary. */
3348 new_segment = TRUE;
3349 }
3350 else
3351 {
3352 /* Otherwise, we can use the same segment. */
3353 new_segment = FALSE;
3354 }
3355
3356 if (! new_segment)
3357 {
3358 if ((hdr->flags & SEC_READONLY) == 0)
3359 writable = TRUE;
3360 last_hdr = hdr;
3361 continue;
3362 }
3363
3364 /* We need a new program segment. We must create a new program
3365 header holding all the sections from phdr_index until hdr. */
3366
3367 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3368 if (m == NULL)
3369 goto error_return;
3370
3371 *pm = m;
3372 pm = &m->next;
3373
3374 if ((hdr->flags & SEC_READONLY) == 0)
3375 writable = TRUE;
3376 else
3377 writable = FALSE;
3378
3379 last_hdr = hdr;
3380 phdr_index = i;
3381 phdr_in_segment = FALSE;
3382 }
3383
3384 /* Create a final PT_LOAD program segment. */
3385 if (last_hdr != NULL)
3386 {
3387 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3388 if (m == NULL)
3389 goto error_return;
3390
3391 *pm = m;
3392 pm = &m->next;
3393 }
3394
3395 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3396 if (dynsec != NULL)
3397 {
3398 amt = sizeof (struct elf_segment_map);
3399 m = bfd_zalloc (abfd, amt);
3400 if (m == NULL)
3401 goto error_return;
3402 m->next = NULL;
3403 m->p_type = PT_DYNAMIC;
3404 m->count = 1;
3405 m->sections[0] = dynsec;
3406
3407 *pm = m;
3408 pm = &m->next;
3409 }
3410
3411 /* For each loadable .note section, add a PT_NOTE segment. We don't
3412 use bfd_get_section_by_name, because if we link together
3413 nonloadable .note sections and loadable .note sections, we will
3414 generate two .note sections in the output file. FIXME: Using
3415 names for section types is bogus anyhow. */
3416 for (s = abfd->sections; s != NULL; s = s->next)
3417 {
3418 if ((s->flags & SEC_LOAD) != 0
3419 && strncmp (s->name, ".note", 5) == 0)
3420 {
3421 amt = sizeof (struct elf_segment_map);
3422 m = bfd_zalloc (abfd, amt);
3423 if (m == NULL)
3424 goto error_return;
3425 m->next = NULL;
3426 m->p_type = PT_NOTE;
3427 m->count = 1;
3428 m->sections[0] = s;
3429
3430 *pm = m;
3431 pm = &m->next;
3432 }
3433 if (s->flags & SEC_THREAD_LOCAL)
3434 {
3435 if (! tls_count)
3436 first_tls = s;
3437 tls_count++;
3438 }
3439 }
3440
3441 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3442 if (tls_count > 0)
3443 {
3444 int i;
3445
3446 amt = sizeof (struct elf_segment_map);
3447 amt += (tls_count - 1) * sizeof (asection *);
3448 m = bfd_zalloc (abfd, amt);
3449 if (m == NULL)
3450 goto error_return;
3451 m->next = NULL;
3452 m->p_type = PT_TLS;
3453 m->count = tls_count;
3454 /* Mandated PF_R. */
3455 m->p_flags = PF_R;
3456 m->p_flags_valid = 1;
3457 for (i = 0; i < tls_count; ++i)
3458 {
3459 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3460 m->sections[i] = first_tls;
3461 first_tls = first_tls->next;
3462 }
3463
3464 *pm = m;
3465 pm = &m->next;
3466 }
3467
3468 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3469 segment. */
3470 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3471 if (eh_frame_hdr != NULL
3472 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3473 {
3474 amt = sizeof (struct elf_segment_map);
3475 m = bfd_zalloc (abfd, amt);
3476 if (m == NULL)
3477 goto error_return;
3478 m->next = NULL;
3479 m->p_type = PT_GNU_EH_FRAME;
3480 m->count = 1;
3481 m->sections[0] = eh_frame_hdr->output_section;
3482
3483 *pm = m;
3484 pm = &m->next;
3485 }
3486
3487 if (elf_tdata (abfd)->stack_flags)
3488 {
3489 amt = sizeof (struct elf_segment_map);
3490 m = bfd_zalloc (abfd, amt);
3491 if (m == NULL)
3492 goto error_return;
3493 m->next = NULL;
3494 m->p_type = PT_GNU_STACK;
3495 m->p_flags = elf_tdata (abfd)->stack_flags;
3496 m->p_flags_valid = 1;
3497
3498 *pm = m;
3499 pm = &m->next;
3500 }
3501
3502 free (sections);
3503 sections = NULL;
3504
3505 elf_tdata (abfd)->segment_map = mfirst;
3506 return TRUE;
3507
3508 error_return:
3509 if (sections != NULL)
3510 free (sections);
3511 return FALSE;
3512 }
3513
3514 /* Sort sections by address. */
3515
3516 static int
3517 elf_sort_sections (const void *arg1, const void *arg2)
3518 {
3519 const asection *sec1 = *(const asection **) arg1;
3520 const asection *sec2 = *(const asection **) arg2;
3521 bfd_size_type size1, size2;
3522
3523 /* Sort by LMA first, since this is the address used to
3524 place the section into a segment. */
3525 if (sec1->lma < sec2->lma)
3526 return -1;
3527 else if (sec1->lma > sec2->lma)
3528 return 1;
3529
3530 /* Then sort by VMA. Normally the LMA and the VMA will be
3531 the same, and this will do nothing. */
3532 if (sec1->vma < sec2->vma)
3533 return -1;
3534 else if (sec1->vma > sec2->vma)
3535 return 1;
3536
3537 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3538
3539 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3540
3541 if (TOEND (sec1))
3542 {
3543 if (TOEND (sec2))
3544 {
3545 /* If the indicies are the same, do not return 0
3546 here, but continue to try the next comparison. */
3547 if (sec1->target_index - sec2->target_index != 0)
3548 return sec1->target_index - sec2->target_index;
3549 }
3550 else
3551 return 1;
3552 }
3553 else if (TOEND (sec2))
3554 return -1;
3555
3556 #undef TOEND
3557
3558 /* Sort by size, to put zero sized sections
3559 before others at the same address. */
3560
3561 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3562 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3563
3564 if (size1 < size2)
3565 return -1;
3566 if (size1 > size2)
3567 return 1;
3568
3569 return sec1->target_index - sec2->target_index;
3570 }
3571
3572 /* Assign file positions to the sections based on the mapping from
3573 sections to segments. This function also sets up some fields in
3574 the file header, and writes out the program headers. */
3575
3576 static bfd_boolean
3577 assign_file_positions_for_segments (bfd *abfd)
3578 {
3579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3580 unsigned int count;
3581 struct elf_segment_map *m;
3582 unsigned int alloc;
3583 Elf_Internal_Phdr *phdrs;
3584 file_ptr off, voff;
3585 bfd_vma filehdr_vaddr, filehdr_paddr;
3586 bfd_vma phdrs_vaddr, phdrs_paddr;
3587 Elf_Internal_Phdr *p;
3588 bfd_size_type amt;
3589
3590 if (elf_tdata (abfd)->segment_map == NULL)
3591 {
3592 if (! map_sections_to_segments (abfd))
3593 return FALSE;
3594 }
3595 else
3596 {
3597 /* The placement algorithm assumes that non allocated sections are
3598 not in PT_LOAD segments. We ensure this here by removing such
3599 sections from the segment map. */
3600 for (m = elf_tdata (abfd)->segment_map;
3601 m != NULL;
3602 m = m->next)
3603 {
3604 unsigned int new_count;
3605 unsigned int i;
3606
3607 if (m->p_type != PT_LOAD)
3608 continue;
3609
3610 new_count = 0;
3611 for (i = 0; i < m->count; i ++)
3612 {
3613 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3614 {
3615 if (i != new_count)
3616 m->sections[new_count] = m->sections[i];
3617
3618 new_count ++;
3619 }
3620 }
3621
3622 if (new_count != m->count)
3623 m->count = new_count;
3624 }
3625 }
3626
3627 if (bed->elf_backend_modify_segment_map)
3628 {
3629 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3630 return FALSE;
3631 }
3632
3633 count = 0;
3634 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3635 ++count;
3636
3637 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3638 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3639 elf_elfheader (abfd)->e_phnum = count;
3640
3641 if (count == 0)
3642 return TRUE;
3643
3644 /* If we already counted the number of program segments, make sure
3645 that we allocated enough space. This happens when SIZEOF_HEADERS
3646 is used in a linker script. */
3647 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3648 if (alloc != 0 && count > alloc)
3649 {
3650 ((*_bfd_error_handler)
3651 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3652 bfd_get_filename (abfd), alloc, count));
3653 bfd_set_error (bfd_error_bad_value);
3654 return FALSE;
3655 }
3656
3657 if (alloc == 0)
3658 alloc = count;
3659
3660 amt = alloc * sizeof (Elf_Internal_Phdr);
3661 phdrs = bfd_alloc (abfd, amt);
3662 if (phdrs == NULL)
3663 return FALSE;
3664
3665 off = bed->s->sizeof_ehdr;
3666 off += alloc * bed->s->sizeof_phdr;
3667
3668 filehdr_vaddr = 0;
3669 filehdr_paddr = 0;
3670 phdrs_vaddr = 0;
3671 phdrs_paddr = 0;
3672
3673 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3674 m != NULL;
3675 m = m->next, p++)
3676 {
3677 unsigned int i;
3678 asection **secpp;
3679
3680 /* If elf_segment_map is not from map_sections_to_segments, the
3681 sections may not be correctly ordered. NOTE: sorting should
3682 not be done to the PT_NOTE section of a corefile, which may
3683 contain several pseudo-sections artificially created by bfd.
3684 Sorting these pseudo-sections breaks things badly. */
3685 if (m->count > 1
3686 && !(elf_elfheader (abfd)->e_type == ET_CORE
3687 && m->p_type == PT_NOTE))
3688 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3689 elf_sort_sections);
3690
3691 p->p_type = m->p_type;
3692 p->p_flags = m->p_flags;
3693
3694 if (p->p_type == PT_LOAD
3695 && m->count > 0
3696 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3697 {
3698 if ((abfd->flags & D_PAGED) != 0)
3699 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3700 else
3701 {
3702 bfd_size_type align;
3703
3704 align = 0;
3705 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3706 {
3707 bfd_size_type secalign;
3708
3709 secalign = bfd_get_section_alignment (abfd, *secpp);
3710 if (secalign > align)
3711 align = secalign;
3712 }
3713
3714 off += (m->sections[0]->vma - off) % (1 << align);
3715 }
3716 }
3717
3718 if (m->count == 0)
3719 p->p_vaddr = 0;
3720 else
3721 p->p_vaddr = m->sections[0]->vma;
3722
3723 if (m->p_paddr_valid)
3724 p->p_paddr = m->p_paddr;
3725 else if (m->count == 0)
3726 p->p_paddr = 0;
3727 else
3728 p->p_paddr = m->sections[0]->lma;
3729
3730 if (p->p_type == PT_LOAD
3731 && (abfd->flags & D_PAGED) != 0)
3732 p->p_align = bed->maxpagesize;
3733 else if (m->count == 0)
3734 p->p_align = 1 << bed->s->log_file_align;
3735 else
3736 p->p_align = 0;
3737
3738 p->p_offset = 0;
3739 p->p_filesz = 0;
3740 p->p_memsz = 0;
3741
3742 if (m->includes_filehdr)
3743 {
3744 if (! m->p_flags_valid)
3745 p->p_flags |= PF_R;
3746 p->p_offset = 0;
3747 p->p_filesz = bed->s->sizeof_ehdr;
3748 p->p_memsz = bed->s->sizeof_ehdr;
3749 if (m->count > 0)
3750 {
3751 BFD_ASSERT (p->p_type == PT_LOAD);
3752
3753 if (p->p_vaddr < (bfd_vma) off)
3754 {
3755 (*_bfd_error_handler)
3756 (_("%s: Not enough room for program headers, try linking with -N"),
3757 bfd_get_filename (abfd));
3758 bfd_set_error (bfd_error_bad_value);
3759 return FALSE;
3760 }
3761
3762 p->p_vaddr -= off;
3763 if (! m->p_paddr_valid)
3764 p->p_paddr -= off;
3765 }
3766 if (p->p_type == PT_LOAD)
3767 {
3768 filehdr_vaddr = p->p_vaddr;
3769 filehdr_paddr = p->p_paddr;
3770 }
3771 }
3772
3773 if (m->includes_phdrs)
3774 {
3775 if (! m->p_flags_valid)
3776 p->p_flags |= PF_R;
3777
3778 if (m->includes_filehdr)
3779 {
3780 if (p->p_type == PT_LOAD)
3781 {
3782 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3783 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3784 }
3785 }
3786 else
3787 {
3788 p->p_offset = bed->s->sizeof_ehdr;
3789
3790 if (m->count > 0)
3791 {
3792 BFD_ASSERT (p->p_type == PT_LOAD);
3793 p->p_vaddr -= off - p->p_offset;
3794 if (! m->p_paddr_valid)
3795 p->p_paddr -= off - p->p_offset;
3796 }
3797
3798 if (p->p_type == PT_LOAD)
3799 {
3800 phdrs_vaddr = p->p_vaddr;
3801 phdrs_paddr = p->p_paddr;
3802 }
3803 else
3804 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3805 }
3806
3807 p->p_filesz += alloc * bed->s->sizeof_phdr;
3808 p->p_memsz += alloc * bed->s->sizeof_phdr;
3809 }
3810
3811 if (p->p_type == PT_LOAD
3812 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3813 {
3814 if (! m->includes_filehdr && ! m->includes_phdrs)
3815 p->p_offset = off;
3816 else
3817 {
3818 file_ptr adjust;
3819
3820 adjust = off - (p->p_offset + p->p_filesz);
3821 p->p_filesz += adjust;
3822 p->p_memsz += adjust;
3823 }
3824 }
3825
3826 voff = off;
3827
3828 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3829 {
3830 asection *sec;
3831 flagword flags;
3832 bfd_size_type align;
3833
3834 sec = *secpp;
3835 flags = sec->flags;
3836 align = 1 << bfd_get_section_alignment (abfd, sec);
3837
3838 /* The section may have artificial alignment forced by a
3839 link script. Notice this case by the gap between the
3840 cumulative phdr lma and the section's lma. */
3841 if (p->p_paddr + p->p_memsz < sec->lma)
3842 {
3843 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3844
3845 p->p_memsz += adjust;
3846 if (p->p_type == PT_LOAD
3847 || (p->p_type == PT_NOTE
3848 && bfd_get_format (abfd) == bfd_core))
3849 {
3850 off += adjust;
3851 voff += adjust;
3852 }
3853 if ((flags & SEC_LOAD) != 0
3854 || (flags & SEC_THREAD_LOCAL) != 0)
3855 p->p_filesz += adjust;
3856 }
3857
3858 if (p->p_type == PT_LOAD)
3859 {
3860 bfd_signed_vma adjust;
3861
3862 if ((flags & SEC_LOAD) != 0)
3863 {
3864 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3865 if (adjust < 0)
3866 adjust = 0;
3867 }
3868 else if ((flags & SEC_ALLOC) != 0)
3869 {
3870 /* The section VMA must equal the file position
3871 modulo the page size. FIXME: I'm not sure if
3872 this adjustment is really necessary. We used to
3873 not have the SEC_LOAD case just above, and then
3874 this was necessary, but now I'm not sure. */
3875 if ((abfd->flags & D_PAGED) != 0)
3876 adjust = (sec->vma - voff) % bed->maxpagesize;
3877 else
3878 adjust = (sec->vma - voff) % align;
3879 }
3880 else
3881 adjust = 0;
3882
3883 if (adjust != 0)
3884 {
3885 if (i == 0)
3886 {
3887 (* _bfd_error_handler) (_("\
3888 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3889 bfd_section_name (abfd, sec),
3890 sec->lma,
3891 p->p_paddr);
3892 return FALSE;
3893 }
3894 p->p_memsz += adjust;
3895 off += adjust;
3896 voff += adjust;
3897 if ((flags & SEC_LOAD) != 0)
3898 p->p_filesz += adjust;
3899 }
3900
3901 sec->filepos = off;
3902
3903 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3904 used in a linker script we may have a section with
3905 SEC_LOAD clear but which is supposed to have
3906 contents. */
3907 if ((flags & SEC_LOAD) != 0
3908 || (flags & SEC_HAS_CONTENTS) != 0)
3909 off += sec->_raw_size;
3910
3911 if ((flags & SEC_ALLOC) != 0
3912 && ((flags & SEC_LOAD) != 0
3913 || (flags & SEC_THREAD_LOCAL) == 0))
3914 voff += sec->_raw_size;
3915 }
3916
3917 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3918 {
3919 /* The actual "note" segment has i == 0.
3920 This is the one that actually contains everything. */
3921 if (i == 0)
3922 {
3923 sec->filepos = off;
3924 p->p_filesz = sec->_raw_size;
3925 off += sec->_raw_size;
3926 voff = off;
3927 }
3928 else
3929 {
3930 /* Fake sections -- don't need to be written. */
3931 sec->filepos = 0;
3932 sec->_raw_size = 0;
3933 flags = sec->flags = 0;
3934 }
3935 p->p_memsz = 0;
3936 p->p_align = 1;
3937 }
3938 else
3939 {
3940 if ((sec->flags & SEC_LOAD) != 0
3941 || (sec->flags & SEC_THREAD_LOCAL) == 0
3942 || p->p_type == PT_TLS)
3943 p->p_memsz += sec->_raw_size;
3944
3945 if ((flags & SEC_LOAD) != 0)
3946 p->p_filesz += sec->_raw_size;
3947
3948 if (p->p_type == PT_TLS
3949 && sec->_raw_size == 0
3950 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3951 {
3952 struct bfd_link_order *o;
3953 bfd_vma tbss_size = 0;
3954
3955 for (o = sec->link_order_head; o != NULL; o = o->next)
3956 if (tbss_size < o->offset + o->size)
3957 tbss_size = o->offset + o->size;
3958
3959 p->p_memsz += tbss_size;
3960 }
3961
3962 if (align > p->p_align
3963 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3964 p->p_align = align;
3965 }
3966
3967 if (! m->p_flags_valid)
3968 {
3969 p->p_flags |= PF_R;
3970 if ((flags & SEC_CODE) != 0)
3971 p->p_flags |= PF_X;
3972 if ((flags & SEC_READONLY) == 0)
3973 p->p_flags |= PF_W;
3974 }
3975 }
3976 }
3977
3978 /* Now that we have set the section file positions, we can set up
3979 the file positions for the non PT_LOAD segments. */
3980 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3981 m != NULL;
3982 m = m->next, p++)
3983 {
3984 if (p->p_type != PT_LOAD && m->count > 0)
3985 {
3986 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3987 p->p_offset = m->sections[0]->filepos;
3988 }
3989 if (m->count == 0)
3990 {
3991 if (m->includes_filehdr)
3992 {
3993 p->p_vaddr = filehdr_vaddr;
3994 if (! m->p_paddr_valid)
3995 p->p_paddr = filehdr_paddr;
3996 }
3997 else if (m->includes_phdrs)
3998 {
3999 p->p_vaddr = phdrs_vaddr;
4000 if (! m->p_paddr_valid)
4001 p->p_paddr = phdrs_paddr;
4002 }
4003 }
4004 }
4005
4006 /* Clear out any program headers we allocated but did not use. */
4007 for (; count < alloc; count++, p++)
4008 {
4009 memset (p, 0, sizeof *p);
4010 p->p_type = PT_NULL;
4011 }
4012
4013 elf_tdata (abfd)->phdr = phdrs;
4014
4015 elf_tdata (abfd)->next_file_pos = off;
4016
4017 /* Write out the program headers. */
4018 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4019 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4020 return FALSE;
4021
4022 return TRUE;
4023 }
4024
4025 /* Get the size of the program header.
4026
4027 If this is called by the linker before any of the section VMA's are set, it
4028 can't calculate the correct value for a strange memory layout. This only
4029 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4030 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4031 data segment (exclusive of .interp and .dynamic).
4032
4033 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4034 will be two segments. */
4035
4036 static bfd_size_type
4037 get_program_header_size (bfd *abfd)
4038 {
4039 size_t segs;
4040 asection *s;
4041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4042
4043 /* We can't return a different result each time we're called. */
4044 if (elf_tdata (abfd)->program_header_size != 0)
4045 return elf_tdata (abfd)->program_header_size;
4046
4047 if (elf_tdata (abfd)->segment_map != NULL)
4048 {
4049 struct elf_segment_map *m;
4050
4051 segs = 0;
4052 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4053 ++segs;
4054 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4055 return elf_tdata (abfd)->program_header_size;
4056 }
4057
4058 /* Assume we will need exactly two PT_LOAD segments: one for text
4059 and one for data. */
4060 segs = 2;
4061
4062 s = bfd_get_section_by_name (abfd, ".interp");
4063 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4064 {
4065 /* If we have a loadable interpreter section, we need a
4066 PT_INTERP segment. In this case, assume we also need a
4067 PT_PHDR segment, although that may not be true for all
4068 targets. */
4069 segs += 2;
4070 }
4071
4072 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4073 {
4074 /* We need a PT_DYNAMIC segment. */
4075 ++segs;
4076 }
4077
4078 if (elf_tdata (abfd)->eh_frame_hdr)
4079 {
4080 /* We need a PT_GNU_EH_FRAME segment. */
4081 ++segs;
4082 }
4083
4084 if (elf_tdata (abfd)->stack_flags)
4085 {
4086 /* We need a PT_GNU_STACK segment. */
4087 ++segs;
4088 }
4089
4090 for (s = abfd->sections; s != NULL; s = s->next)
4091 {
4092 if ((s->flags & SEC_LOAD) != 0
4093 && strncmp (s->name, ".note", 5) == 0)
4094 {
4095 /* We need a PT_NOTE segment. */
4096 ++segs;
4097 }
4098 }
4099
4100 for (s = abfd->sections; s != NULL; s = s->next)
4101 {
4102 if (s->flags & SEC_THREAD_LOCAL)
4103 {
4104 /* We need a PT_TLS segment. */
4105 ++segs;
4106 break;
4107 }
4108 }
4109
4110 /* Let the backend count up any program headers it might need. */
4111 if (bed->elf_backend_additional_program_headers)
4112 {
4113 int a;
4114
4115 a = (*bed->elf_backend_additional_program_headers) (abfd);
4116 if (a == -1)
4117 abort ();
4118 segs += a;
4119 }
4120
4121 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4122 return elf_tdata (abfd)->program_header_size;
4123 }
4124
4125 /* Work out the file positions of all the sections. This is called by
4126 _bfd_elf_compute_section_file_positions. All the section sizes and
4127 VMAs must be known before this is called.
4128
4129 We do not consider reloc sections at this point, unless they form
4130 part of the loadable image. Reloc sections are assigned file
4131 positions in assign_file_positions_for_relocs, which is called by
4132 write_object_contents and final_link.
4133
4134 We also don't set the positions of the .symtab and .strtab here. */
4135
4136 static bfd_boolean
4137 assign_file_positions_except_relocs (bfd *abfd)
4138 {
4139 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4140 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4141 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4142 unsigned int num_sec = elf_numsections (abfd);
4143 file_ptr off;
4144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4145
4146 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4147 && bfd_get_format (abfd) != bfd_core)
4148 {
4149 Elf_Internal_Shdr **hdrpp;
4150 unsigned int i;
4151
4152 /* Start after the ELF header. */
4153 off = i_ehdrp->e_ehsize;
4154
4155 /* We are not creating an executable, which means that we are
4156 not creating a program header, and that the actual order of
4157 the sections in the file is unimportant. */
4158 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4159 {
4160 Elf_Internal_Shdr *hdr;
4161
4162 hdr = *hdrpp;
4163 if (hdr->sh_type == SHT_REL
4164 || hdr->sh_type == SHT_RELA
4165 || i == tdata->symtab_section
4166 || i == tdata->symtab_shndx_section
4167 || i == tdata->strtab_section)
4168 {
4169 hdr->sh_offset = -1;
4170 }
4171 else
4172 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4173
4174 if (i == SHN_LORESERVE - 1)
4175 {
4176 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4177 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4178 }
4179 }
4180 }
4181 else
4182 {
4183 unsigned int i;
4184 Elf_Internal_Shdr **hdrpp;
4185
4186 /* Assign file positions for the loaded sections based on the
4187 assignment of sections to segments. */
4188 if (! assign_file_positions_for_segments (abfd))
4189 return FALSE;
4190
4191 /* Assign file positions for the other sections. */
4192
4193 off = elf_tdata (abfd)->next_file_pos;
4194 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4195 {
4196 Elf_Internal_Shdr *hdr;
4197
4198 hdr = *hdrpp;
4199 if (hdr->bfd_section != NULL
4200 && hdr->bfd_section->filepos != 0)
4201 hdr->sh_offset = hdr->bfd_section->filepos;
4202 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4203 {
4204 ((*_bfd_error_handler)
4205 (_("%s: warning: allocated section `%s' not in segment"),
4206 bfd_get_filename (abfd),
4207 (hdr->bfd_section == NULL
4208 ? "*unknown*"
4209 : hdr->bfd_section->name)));
4210 if ((abfd->flags & D_PAGED) != 0)
4211 off += (hdr->sh_addr - off) % bed->maxpagesize;
4212 else
4213 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4214 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4215 FALSE);
4216 }
4217 else if (hdr->sh_type == SHT_REL
4218 || hdr->sh_type == SHT_RELA
4219 || hdr == i_shdrpp[tdata->symtab_section]
4220 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4221 || hdr == i_shdrpp[tdata->strtab_section])
4222 hdr->sh_offset = -1;
4223 else
4224 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4225
4226 if (i == SHN_LORESERVE - 1)
4227 {
4228 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4229 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4230 }
4231 }
4232 }
4233
4234 /* Place the section headers. */
4235 off = align_file_position (off, 1 << bed->s->log_file_align);
4236 i_ehdrp->e_shoff = off;
4237 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4238
4239 elf_tdata (abfd)->next_file_pos = off;
4240
4241 return TRUE;
4242 }
4243
4244 static bfd_boolean
4245 prep_headers (bfd *abfd)
4246 {
4247 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4248 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4249 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4250 struct elf_strtab_hash *shstrtab;
4251 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4252
4253 i_ehdrp = elf_elfheader (abfd);
4254 i_shdrp = elf_elfsections (abfd);
4255
4256 shstrtab = _bfd_elf_strtab_init ();
4257 if (shstrtab == NULL)
4258 return FALSE;
4259
4260 elf_shstrtab (abfd) = shstrtab;
4261
4262 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4263 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4264 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4265 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4266
4267 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4268 i_ehdrp->e_ident[EI_DATA] =
4269 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4270 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4271
4272 if ((abfd->flags & DYNAMIC) != 0)
4273 i_ehdrp->e_type = ET_DYN;
4274 else if ((abfd->flags & EXEC_P) != 0)
4275 i_ehdrp->e_type = ET_EXEC;
4276 else if (bfd_get_format (abfd) == bfd_core)
4277 i_ehdrp->e_type = ET_CORE;
4278 else
4279 i_ehdrp->e_type = ET_REL;
4280
4281 switch (bfd_get_arch (abfd))
4282 {
4283 case bfd_arch_unknown:
4284 i_ehdrp->e_machine = EM_NONE;
4285 break;
4286
4287 /* There used to be a long list of cases here, each one setting
4288 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4289 in the corresponding bfd definition. To avoid duplication,
4290 the switch was removed. Machines that need special handling
4291 can generally do it in elf_backend_final_write_processing(),
4292 unless they need the information earlier than the final write.
4293 Such need can generally be supplied by replacing the tests for
4294 e_machine with the conditions used to determine it. */
4295 default:
4296 i_ehdrp->e_machine = bed->elf_machine_code;
4297 }
4298
4299 i_ehdrp->e_version = bed->s->ev_current;
4300 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4301
4302 /* No program header, for now. */
4303 i_ehdrp->e_phoff = 0;
4304 i_ehdrp->e_phentsize = 0;
4305 i_ehdrp->e_phnum = 0;
4306
4307 /* Each bfd section is section header entry. */
4308 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4309 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4310
4311 /* If we're building an executable, we'll need a program header table. */
4312 if (abfd->flags & EXEC_P)
4313 {
4314 /* It all happens later. */
4315 #if 0
4316 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4317
4318 /* elf_build_phdrs() returns a (NULL-terminated) array of
4319 Elf_Internal_Phdrs. */
4320 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4321 i_ehdrp->e_phoff = outbase;
4322 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4323 #endif
4324 }
4325 else
4326 {
4327 i_ehdrp->e_phentsize = 0;
4328 i_phdrp = 0;
4329 i_ehdrp->e_phoff = 0;
4330 }
4331
4332 elf_tdata (abfd)->symtab_hdr.sh_name =
4333 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4334 elf_tdata (abfd)->strtab_hdr.sh_name =
4335 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4336 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4337 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4338 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4339 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4340 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4341 return FALSE;
4342
4343 return TRUE;
4344 }
4345
4346 /* Assign file positions for all the reloc sections which are not part
4347 of the loadable file image. */
4348
4349 void
4350 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4351 {
4352 file_ptr off;
4353 unsigned int i, num_sec;
4354 Elf_Internal_Shdr **shdrpp;
4355
4356 off = elf_tdata (abfd)->next_file_pos;
4357
4358 num_sec = elf_numsections (abfd);
4359 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4360 {
4361 Elf_Internal_Shdr *shdrp;
4362
4363 shdrp = *shdrpp;
4364 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4365 && shdrp->sh_offset == -1)
4366 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4367 }
4368
4369 elf_tdata (abfd)->next_file_pos = off;
4370 }
4371
4372 bfd_boolean
4373 _bfd_elf_write_object_contents (bfd *abfd)
4374 {
4375 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4376 Elf_Internal_Ehdr *i_ehdrp;
4377 Elf_Internal_Shdr **i_shdrp;
4378 bfd_boolean failed;
4379 unsigned int count, num_sec;
4380
4381 if (! abfd->output_has_begun
4382 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4383 return FALSE;
4384
4385 i_shdrp = elf_elfsections (abfd);
4386 i_ehdrp = elf_elfheader (abfd);
4387
4388 failed = FALSE;
4389 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4390 if (failed)
4391 return FALSE;
4392
4393 _bfd_elf_assign_file_positions_for_relocs (abfd);
4394
4395 /* After writing the headers, we need to write the sections too... */
4396 num_sec = elf_numsections (abfd);
4397 for (count = 1; count < num_sec; count++)
4398 {
4399 if (bed->elf_backend_section_processing)
4400 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4401 if (i_shdrp[count]->contents)
4402 {
4403 bfd_size_type amt = i_shdrp[count]->sh_size;
4404
4405 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4406 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4407 return FALSE;
4408 }
4409 if (count == SHN_LORESERVE - 1)
4410 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4411 }
4412
4413 /* Write out the section header names. */
4414 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4415 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4416 return FALSE;
4417
4418 if (bed->elf_backend_final_write_processing)
4419 (*bed->elf_backend_final_write_processing) (abfd,
4420 elf_tdata (abfd)->linker);
4421
4422 return bed->s->write_shdrs_and_ehdr (abfd);
4423 }
4424
4425 bfd_boolean
4426 _bfd_elf_write_corefile_contents (bfd *abfd)
4427 {
4428 /* Hopefully this can be done just like an object file. */
4429 return _bfd_elf_write_object_contents (abfd);
4430 }
4431
4432 /* Given a section, search the header to find them. */
4433
4434 int
4435 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4436 {
4437 const struct elf_backend_data *bed;
4438 int index;
4439
4440 if (elf_section_data (asect) != NULL
4441 && elf_section_data (asect)->this_idx != 0)
4442 return elf_section_data (asect)->this_idx;
4443
4444 if (bfd_is_abs_section (asect))
4445 index = SHN_ABS;
4446 else if (bfd_is_com_section (asect))
4447 index = SHN_COMMON;
4448 else if (bfd_is_und_section (asect))
4449 index = SHN_UNDEF;
4450 else
4451 {
4452 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4453 int maxindex = elf_numsections (abfd);
4454
4455 for (index = 1; index < maxindex; index++)
4456 {
4457 Elf_Internal_Shdr *hdr = i_shdrp[index];
4458
4459 if (hdr != NULL && hdr->bfd_section == asect)
4460 return index;
4461 }
4462 index = -1;
4463 }
4464
4465 bed = get_elf_backend_data (abfd);
4466 if (bed->elf_backend_section_from_bfd_section)
4467 {
4468 int retval = index;
4469
4470 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4471 return retval;
4472 }
4473
4474 if (index == -1)
4475 bfd_set_error (bfd_error_nonrepresentable_section);
4476
4477 return index;
4478 }
4479
4480 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4481 on error. */
4482
4483 int
4484 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4485 {
4486 asymbol *asym_ptr = *asym_ptr_ptr;
4487 int idx;
4488 flagword flags = asym_ptr->flags;
4489
4490 /* When gas creates relocations against local labels, it creates its
4491 own symbol for the section, but does put the symbol into the
4492 symbol chain, so udata is 0. When the linker is generating
4493 relocatable output, this section symbol may be for one of the
4494 input sections rather than the output section. */
4495 if (asym_ptr->udata.i == 0
4496 && (flags & BSF_SECTION_SYM)
4497 && asym_ptr->section)
4498 {
4499 int indx;
4500
4501 if (asym_ptr->section->output_section != NULL)
4502 indx = asym_ptr->section->output_section->index;
4503 else
4504 indx = asym_ptr->section->index;
4505 if (indx < elf_num_section_syms (abfd)
4506 && elf_section_syms (abfd)[indx] != NULL)
4507 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4508 }
4509
4510 idx = asym_ptr->udata.i;
4511
4512 if (idx == 0)
4513 {
4514 /* This case can occur when using --strip-symbol on a symbol
4515 which is used in a relocation entry. */
4516 (*_bfd_error_handler)
4517 (_("%s: symbol `%s' required but not present"),
4518 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4519 bfd_set_error (bfd_error_no_symbols);
4520 return -1;
4521 }
4522
4523 #if DEBUG & 4
4524 {
4525 fprintf (stderr,
4526 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4527 (long) asym_ptr, asym_ptr->name, idx, flags,
4528 elf_symbol_flags (flags));
4529 fflush (stderr);
4530 }
4531 #endif
4532
4533 return idx;
4534 }
4535
4536 /* Copy private BFD data. This copies any program header information. */
4537
4538 static bfd_boolean
4539 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4540 {
4541 Elf_Internal_Ehdr *iehdr;
4542 struct elf_segment_map *map;
4543 struct elf_segment_map *map_first;
4544 struct elf_segment_map **pointer_to_map;
4545 Elf_Internal_Phdr *segment;
4546 asection *section;
4547 unsigned int i;
4548 unsigned int num_segments;
4549 bfd_boolean phdr_included = FALSE;
4550 bfd_vma maxpagesize;
4551 struct elf_segment_map *phdr_adjust_seg = NULL;
4552 unsigned int phdr_adjust_num = 0;
4553 const struct elf_backend_data *bed;
4554
4555 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4556 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4557 return TRUE;
4558
4559 if (elf_tdata (ibfd)->phdr == NULL)
4560 return TRUE;
4561
4562 bed = get_elf_backend_data (ibfd);
4563 iehdr = elf_elfheader (ibfd);
4564
4565 map_first = NULL;
4566 pointer_to_map = &map_first;
4567
4568 num_segments = elf_elfheader (ibfd)->e_phnum;
4569 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4570
4571 /* Returns the end address of the segment + 1. */
4572 #define SEGMENT_END(segment, start) \
4573 (start + (segment->p_memsz > segment->p_filesz \
4574 ? segment->p_memsz : segment->p_filesz))
4575
4576 #define SECTION_SIZE(section, segment) \
4577 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4578 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4579 ? section->_raw_size : 0)
4580
4581 /* Returns TRUE if the given section is contained within
4582 the given segment. VMA addresses are compared. */
4583 #define IS_CONTAINED_BY_VMA(section, segment) \
4584 (section->vma >= segment->p_vaddr \
4585 && (section->vma + SECTION_SIZE (section, segment) \
4586 <= (SEGMENT_END (segment, segment->p_vaddr))))
4587
4588 /* Returns TRUE if the given section is contained within
4589 the given segment. LMA addresses are compared. */
4590 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4591 (section->lma >= base \
4592 && (section->lma + SECTION_SIZE (section, segment) \
4593 <= SEGMENT_END (segment, base)))
4594
4595 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4596 #define IS_COREFILE_NOTE(p, s) \
4597 (p->p_type == PT_NOTE \
4598 && bfd_get_format (ibfd) == bfd_core \
4599 && s->vma == 0 && s->lma == 0 \
4600 && (bfd_vma) s->filepos >= p->p_offset \
4601 && ((bfd_vma) s->filepos + s->_raw_size \
4602 <= p->p_offset + p->p_filesz))
4603
4604 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4605 linker, which generates a PT_INTERP section with p_vaddr and
4606 p_memsz set to 0. */
4607 #define IS_SOLARIS_PT_INTERP(p, s) \
4608 (p->p_vaddr == 0 \
4609 && p->p_paddr == 0 \
4610 && p->p_memsz == 0 \
4611 && p->p_filesz > 0 \
4612 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4613 && s->_raw_size > 0 \
4614 && (bfd_vma) s->filepos >= p->p_offset \
4615 && ((bfd_vma) s->filepos + s->_raw_size \
4616 <= p->p_offset + p->p_filesz))
4617
4618 /* Decide if the given section should be included in the given segment.
4619 A section will be included if:
4620 1. It is within the address space of the segment -- we use the LMA
4621 if that is set for the segment and the VMA otherwise,
4622 2. It is an allocated segment,
4623 3. There is an output section associated with it,
4624 4. The section has not already been allocated to a previous segment.
4625 5. PT_TLS segment includes only SHF_TLS sections.
4626 6. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4627 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4628 ((((segment->p_paddr \
4629 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4630 : IS_CONTAINED_BY_VMA (section, segment)) \
4631 && (section->flags & SEC_ALLOC) != 0) \
4632 || IS_COREFILE_NOTE (segment, section)) \
4633 && section->output_section != NULL \
4634 && (segment->p_type != PT_TLS \
4635 || (section->flags & SEC_THREAD_LOCAL)) \
4636 && (segment->p_type == PT_LOAD \
4637 || segment->p_type == PT_TLS \
4638 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4639 && ! section->segment_mark)
4640
4641 /* Returns TRUE iff seg1 starts after the end of seg2. */
4642 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4643 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4644
4645 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4646 their VMA address ranges and their LMA address ranges overlap.
4647 It is possible to have overlapping VMA ranges without overlapping LMA
4648 ranges. RedBoot images for example can have both .data and .bss mapped
4649 to the same VMA range, but with the .data section mapped to a different
4650 LMA. */
4651 #define SEGMENT_OVERLAPS(seg1, seg2) \
4652 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4653 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4654 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4655 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4656
4657 /* Initialise the segment mark field. */
4658 for (section = ibfd->sections; section != NULL; section = section->next)
4659 section->segment_mark = FALSE;
4660
4661 /* Scan through the segments specified in the program header
4662 of the input BFD. For this first scan we look for overlaps
4663 in the loadable segments. These can be created by weird
4664 parameters to objcopy. Also, fix some solaris weirdness. */
4665 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4666 i < num_segments;
4667 i++, segment++)
4668 {
4669 unsigned int j;
4670 Elf_Internal_Phdr *segment2;
4671
4672 if (segment->p_type == PT_INTERP)
4673 for (section = ibfd->sections; section; section = section->next)
4674 if (IS_SOLARIS_PT_INTERP (segment, section))
4675 {
4676 /* Mininal change so that the normal section to segment
4677 assigment code will work. */
4678 segment->p_vaddr = section->vma;
4679 break;
4680 }
4681
4682 if (segment->p_type != PT_LOAD)
4683 continue;
4684
4685 /* Determine if this segment overlaps any previous segments. */
4686 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4687 {
4688 bfd_signed_vma extra_length;
4689
4690 if (segment2->p_type != PT_LOAD
4691 || ! SEGMENT_OVERLAPS (segment, segment2))
4692 continue;
4693
4694 /* Merge the two segments together. */
4695 if (segment2->p_vaddr < segment->p_vaddr)
4696 {
4697 /* Extend SEGMENT2 to include SEGMENT and then delete
4698 SEGMENT. */
4699 extra_length =
4700 SEGMENT_END (segment, segment->p_vaddr)
4701 - SEGMENT_END (segment2, segment2->p_vaddr);
4702
4703 if (extra_length > 0)
4704 {
4705 segment2->p_memsz += extra_length;
4706 segment2->p_filesz += extra_length;
4707 }
4708
4709 segment->p_type = PT_NULL;
4710
4711 /* Since we have deleted P we must restart the outer loop. */
4712 i = 0;
4713 segment = elf_tdata (ibfd)->phdr;
4714 break;
4715 }
4716 else
4717 {
4718 /* Extend SEGMENT to include SEGMENT2 and then delete
4719 SEGMENT2. */
4720 extra_length =
4721 SEGMENT_END (segment2, segment2->p_vaddr)
4722 - SEGMENT_END (segment, segment->p_vaddr);
4723
4724 if (extra_length > 0)
4725 {
4726 segment->p_memsz += extra_length;
4727 segment->p_filesz += extra_length;
4728 }
4729
4730 segment2->p_type = PT_NULL;
4731 }
4732 }
4733 }
4734
4735 /* The second scan attempts to assign sections to segments. */
4736 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4737 i < num_segments;
4738 i ++, segment ++)
4739 {
4740 unsigned int section_count;
4741 asection ** sections;
4742 asection * output_section;
4743 unsigned int isec;
4744 bfd_vma matching_lma;
4745 bfd_vma suggested_lma;
4746 unsigned int j;
4747 bfd_size_type amt;
4748
4749 if (segment->p_type == PT_NULL)
4750 continue;
4751
4752 /* Compute how many sections might be placed into this segment. */
4753 for (section = ibfd->sections, section_count = 0;
4754 section != NULL;
4755 section = section->next)
4756 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4757 ++section_count;
4758
4759 /* Allocate a segment map big enough to contain
4760 all of the sections we have selected. */
4761 amt = sizeof (struct elf_segment_map);
4762 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4763 map = bfd_alloc (obfd, amt);
4764 if (map == NULL)
4765 return FALSE;
4766
4767 /* Initialise the fields of the segment map. Default to
4768 using the physical address of the segment in the input BFD. */
4769 map->next = NULL;
4770 map->p_type = segment->p_type;
4771 map->p_flags = segment->p_flags;
4772 map->p_flags_valid = 1;
4773 map->p_paddr = segment->p_paddr;
4774 map->p_paddr_valid = 1;
4775
4776 /* Determine if this segment contains the ELF file header
4777 and if it contains the program headers themselves. */
4778 map->includes_filehdr = (segment->p_offset == 0
4779 && segment->p_filesz >= iehdr->e_ehsize);
4780
4781 map->includes_phdrs = 0;
4782
4783 if (! phdr_included || segment->p_type != PT_LOAD)
4784 {
4785 map->includes_phdrs =
4786 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4787 && (segment->p_offset + segment->p_filesz
4788 >= ((bfd_vma) iehdr->e_phoff
4789 + iehdr->e_phnum * iehdr->e_phentsize)));
4790
4791 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4792 phdr_included = TRUE;
4793 }
4794
4795 if (section_count == 0)
4796 {
4797 /* Special segments, such as the PT_PHDR segment, may contain
4798 no sections, but ordinary, loadable segments should contain
4799 something. They are allowed by the ELF spec however, so only
4800 a warning is produced. */
4801 if (segment->p_type == PT_LOAD)
4802 (*_bfd_error_handler)
4803 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4804 bfd_archive_filename (ibfd));
4805
4806 map->count = 0;
4807 *pointer_to_map = map;
4808 pointer_to_map = &map->next;
4809
4810 continue;
4811 }
4812
4813 /* Now scan the sections in the input BFD again and attempt
4814 to add their corresponding output sections to the segment map.
4815 The problem here is how to handle an output section which has
4816 been moved (ie had its LMA changed). There are four possibilities:
4817
4818 1. None of the sections have been moved.
4819 In this case we can continue to use the segment LMA from the
4820 input BFD.
4821
4822 2. All of the sections have been moved by the same amount.
4823 In this case we can change the segment's LMA to match the LMA
4824 of the first section.
4825
4826 3. Some of the sections have been moved, others have not.
4827 In this case those sections which have not been moved can be
4828 placed in the current segment which will have to have its size,
4829 and possibly its LMA changed, and a new segment or segments will
4830 have to be created to contain the other sections.
4831
4832 4. The sections have been moved, but not by the same amount.
4833 In this case we can change the segment's LMA to match the LMA
4834 of the first section and we will have to create a new segment
4835 or segments to contain the other sections.
4836
4837 In order to save time, we allocate an array to hold the section
4838 pointers that we are interested in. As these sections get assigned
4839 to a segment, they are removed from this array. */
4840
4841 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4842 to work around this long long bug. */
4843 amt = section_count * sizeof (asection *);
4844 sections = bfd_malloc (amt);
4845 if (sections == NULL)
4846 return FALSE;
4847
4848 /* Step One: Scan for segment vs section LMA conflicts.
4849 Also add the sections to the section array allocated above.
4850 Also add the sections to the current segment. In the common
4851 case, where the sections have not been moved, this means that
4852 we have completely filled the segment, and there is nothing
4853 more to do. */
4854 isec = 0;
4855 matching_lma = 0;
4856 suggested_lma = 0;
4857
4858 for (j = 0, section = ibfd->sections;
4859 section != NULL;
4860 section = section->next)
4861 {
4862 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4863 {
4864 output_section = section->output_section;
4865
4866 sections[j ++] = section;
4867
4868 /* The Solaris native linker always sets p_paddr to 0.
4869 We try to catch that case here, and set it to the
4870 correct value. Note - some backends require that
4871 p_paddr be left as zero. */
4872 if (segment->p_paddr == 0
4873 && segment->p_vaddr != 0
4874 && (! bed->want_p_paddr_set_to_zero)
4875 && isec == 0
4876 && output_section->lma != 0
4877 && (output_section->vma == (segment->p_vaddr
4878 + (map->includes_filehdr
4879 ? iehdr->e_ehsize
4880 : 0)
4881 + (map->includes_phdrs
4882 ? (iehdr->e_phnum
4883 * iehdr->e_phentsize)
4884 : 0))))
4885 map->p_paddr = segment->p_vaddr;
4886
4887 /* Match up the physical address of the segment with the
4888 LMA address of the output section. */
4889 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4890 || IS_COREFILE_NOTE (segment, section)
4891 || (bed->want_p_paddr_set_to_zero &&
4892 IS_CONTAINED_BY_VMA (output_section, segment))
4893 )
4894 {
4895 if (matching_lma == 0)
4896 matching_lma = output_section->lma;
4897
4898 /* We assume that if the section fits within the segment
4899 then it does not overlap any other section within that
4900 segment. */
4901 map->sections[isec ++] = output_section;
4902 }
4903 else if (suggested_lma == 0)
4904 suggested_lma = output_section->lma;
4905 }
4906 }
4907
4908 BFD_ASSERT (j == section_count);
4909
4910 /* Step Two: Adjust the physical address of the current segment,
4911 if necessary. */
4912 if (isec == section_count)
4913 {
4914 /* All of the sections fitted within the segment as currently
4915 specified. This is the default case. Add the segment to
4916 the list of built segments and carry on to process the next
4917 program header in the input BFD. */
4918 map->count = section_count;
4919 *pointer_to_map = map;
4920 pointer_to_map = &map->next;
4921
4922 free (sections);
4923 continue;
4924 }
4925 else
4926 {
4927 if (matching_lma != 0)
4928 {
4929 /* At least one section fits inside the current segment.
4930 Keep it, but modify its physical address to match the
4931 LMA of the first section that fitted. */
4932 map->p_paddr = matching_lma;
4933 }
4934 else
4935 {
4936 /* None of the sections fitted inside the current segment.
4937 Change the current segment's physical address to match
4938 the LMA of the first section. */
4939 map->p_paddr = suggested_lma;
4940 }
4941
4942 /* Offset the segment physical address from the lma
4943 to allow for space taken up by elf headers. */
4944 if (map->includes_filehdr)
4945 map->p_paddr -= iehdr->e_ehsize;
4946
4947 if (map->includes_phdrs)
4948 {
4949 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4950
4951 /* iehdr->e_phnum is just an estimate of the number
4952 of program headers that we will need. Make a note
4953 here of the number we used and the segment we chose
4954 to hold these headers, so that we can adjust the
4955 offset when we know the correct value. */
4956 phdr_adjust_num = iehdr->e_phnum;
4957 phdr_adjust_seg = map;
4958 }
4959 }
4960
4961 /* Step Three: Loop over the sections again, this time assigning
4962 those that fit to the current segment and removing them from the
4963 sections array; but making sure not to leave large gaps. Once all
4964 possible sections have been assigned to the current segment it is
4965 added to the list of built segments and if sections still remain
4966 to be assigned, a new segment is constructed before repeating
4967 the loop. */
4968 isec = 0;
4969 do
4970 {
4971 map->count = 0;
4972 suggested_lma = 0;
4973
4974 /* Fill the current segment with sections that fit. */
4975 for (j = 0; j < section_count; j++)
4976 {
4977 section = sections[j];
4978
4979 if (section == NULL)
4980 continue;
4981
4982 output_section = section->output_section;
4983
4984 BFD_ASSERT (output_section != NULL);
4985
4986 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4987 || IS_COREFILE_NOTE (segment, section))
4988 {
4989 if (map->count == 0)
4990 {
4991 /* If the first section in a segment does not start at
4992 the beginning of the segment, then something is
4993 wrong. */
4994 if (output_section->lma !=
4995 (map->p_paddr
4996 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4997 + (map->includes_phdrs
4998 ? iehdr->e_phnum * iehdr->e_phentsize
4999 : 0)))
5000 abort ();
5001 }
5002 else
5003 {
5004 asection * prev_sec;
5005
5006 prev_sec = map->sections[map->count - 1];
5007
5008 /* If the gap between the end of the previous section
5009 and the start of this section is more than
5010 maxpagesize then we need to start a new segment. */
5011 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5012 maxpagesize)
5013 < BFD_ALIGN (output_section->lma, maxpagesize))
5014 || ((prev_sec->lma + prev_sec->_raw_size)
5015 > output_section->lma))
5016 {
5017 if (suggested_lma == 0)
5018 suggested_lma = output_section->lma;
5019
5020 continue;
5021 }
5022 }
5023
5024 map->sections[map->count++] = output_section;
5025 ++isec;
5026 sections[j] = NULL;
5027 section->segment_mark = TRUE;
5028 }
5029 else if (suggested_lma == 0)
5030 suggested_lma = output_section->lma;
5031 }
5032
5033 BFD_ASSERT (map->count > 0);
5034
5035 /* Add the current segment to the list of built segments. */
5036 *pointer_to_map = map;
5037 pointer_to_map = &map->next;
5038
5039 if (isec < section_count)
5040 {
5041 /* We still have not allocated all of the sections to
5042 segments. Create a new segment here, initialise it
5043 and carry on looping. */
5044 amt = sizeof (struct elf_segment_map);
5045 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5046 map = bfd_alloc (obfd, amt);
5047 if (map == NULL)
5048 {
5049 free (sections);
5050 return FALSE;
5051 }
5052
5053 /* Initialise the fields of the segment map. Set the physical
5054 physical address to the LMA of the first section that has
5055 not yet been assigned. */
5056 map->next = NULL;
5057 map->p_type = segment->p_type;
5058 map->p_flags = segment->p_flags;
5059 map->p_flags_valid = 1;
5060 map->p_paddr = suggested_lma;
5061 map->p_paddr_valid = 1;
5062 map->includes_filehdr = 0;
5063 map->includes_phdrs = 0;
5064 }
5065 }
5066 while (isec < section_count);
5067
5068 free (sections);
5069 }
5070
5071 /* The Solaris linker creates program headers in which all the
5072 p_paddr fields are zero. When we try to objcopy or strip such a
5073 file, we get confused. Check for this case, and if we find it
5074 reset the p_paddr_valid fields. */
5075 for (map = map_first; map != NULL; map = map->next)
5076 if (map->p_paddr != 0)
5077 break;
5078 if (map == NULL)
5079 for (map = map_first; map != NULL; map = map->next)
5080 map->p_paddr_valid = 0;
5081
5082 elf_tdata (obfd)->segment_map = map_first;
5083
5084 /* If we had to estimate the number of program headers that were
5085 going to be needed, then check our estimate now and adjust
5086 the offset if necessary. */
5087 if (phdr_adjust_seg != NULL)
5088 {
5089 unsigned int count;
5090
5091 for (count = 0, map = map_first; map != NULL; map = map->next)
5092 count++;
5093
5094 if (count > phdr_adjust_num)
5095 phdr_adjust_seg->p_paddr
5096 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5097 }
5098
5099 #if 0
5100 /* Final Step: Sort the segments into ascending order of physical
5101 address. */
5102 if (map_first != NULL)
5103 {
5104 struct elf_segment_map *prev;
5105
5106 prev = map_first;
5107 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5108 {
5109 /* Yes I know - its a bubble sort.... */
5110 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5111 {
5112 /* Swap map and map->next. */
5113 prev->next = map->next;
5114 map->next = map->next->next;
5115 prev->next->next = map;
5116
5117 /* Restart loop. */
5118 map = map_first;
5119 }
5120 }
5121 }
5122 #endif
5123
5124 #undef SEGMENT_END
5125 #undef SECTION_SIZE
5126 #undef IS_CONTAINED_BY_VMA
5127 #undef IS_CONTAINED_BY_LMA
5128 #undef IS_COREFILE_NOTE
5129 #undef IS_SOLARIS_PT_INTERP
5130 #undef INCLUDE_SECTION_IN_SEGMENT
5131 #undef SEGMENT_AFTER_SEGMENT
5132 #undef SEGMENT_OVERLAPS
5133 return TRUE;
5134 }
5135
5136 /* Copy private section information. This copies over the entsize
5137 field, and sometimes the info field. */
5138
5139 bfd_boolean
5140 _bfd_elf_copy_private_section_data (bfd *ibfd,
5141 asection *isec,
5142 bfd *obfd,
5143 asection *osec)
5144 {
5145 Elf_Internal_Shdr *ihdr, *ohdr;
5146
5147 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5148 || obfd->xvec->flavour != bfd_target_elf_flavour)
5149 return TRUE;
5150
5151 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5152 {
5153 asection *s;
5154
5155 /* Only set up the segments if there are no more SEC_ALLOC
5156 sections. FIXME: This won't do the right thing if objcopy is
5157 used to remove the last SEC_ALLOC section, since objcopy
5158 won't call this routine in that case. */
5159 for (s = isec->next; s != NULL; s = s->next)
5160 if ((s->flags & SEC_ALLOC) != 0)
5161 break;
5162 if (s == NULL)
5163 {
5164 if (! copy_private_bfd_data (ibfd, obfd))
5165 return FALSE;
5166 }
5167 }
5168
5169 ihdr = &elf_section_data (isec)->this_hdr;
5170 ohdr = &elf_section_data (osec)->this_hdr;
5171
5172 ohdr->sh_entsize = ihdr->sh_entsize;
5173
5174 if (ihdr->sh_type == SHT_SYMTAB
5175 || ihdr->sh_type == SHT_DYNSYM
5176 || ihdr->sh_type == SHT_GNU_verneed
5177 || ihdr->sh_type == SHT_GNU_verdef)
5178 ohdr->sh_info = ihdr->sh_info;
5179
5180 /* Set things up for objcopy. The output SHT_GROUP section will
5181 have its elf_next_in_group pointing back to the input group
5182 members. */
5183 elf_next_in_group (osec) = elf_next_in_group (isec);
5184 elf_group_name (osec) = elf_group_name (isec);
5185
5186 osec->use_rela_p = isec->use_rela_p;
5187
5188 return TRUE;
5189 }
5190
5191 /* Copy private symbol information. If this symbol is in a section
5192 which we did not map into a BFD section, try to map the section
5193 index correctly. We use special macro definitions for the mapped
5194 section indices; these definitions are interpreted by the
5195 swap_out_syms function. */
5196
5197 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5198 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5199 #define MAP_STRTAB (SHN_HIOS + 3)
5200 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5201 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5202
5203 bfd_boolean
5204 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5205 asymbol *isymarg,
5206 bfd *obfd,
5207 asymbol *osymarg)
5208 {
5209 elf_symbol_type *isym, *osym;
5210
5211 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5212 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5213 return TRUE;
5214
5215 isym = elf_symbol_from (ibfd, isymarg);
5216 osym = elf_symbol_from (obfd, osymarg);
5217
5218 if (isym != NULL
5219 && osym != NULL
5220 && bfd_is_abs_section (isym->symbol.section))
5221 {
5222 unsigned int shndx;
5223
5224 shndx = isym->internal_elf_sym.st_shndx;
5225 if (shndx == elf_onesymtab (ibfd))
5226 shndx = MAP_ONESYMTAB;
5227 else if (shndx == elf_dynsymtab (ibfd))
5228 shndx = MAP_DYNSYMTAB;
5229 else if (shndx == elf_tdata (ibfd)->strtab_section)
5230 shndx = MAP_STRTAB;
5231 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5232 shndx = MAP_SHSTRTAB;
5233 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5234 shndx = MAP_SYM_SHNDX;
5235 osym->internal_elf_sym.st_shndx = shndx;
5236 }
5237
5238 return TRUE;
5239 }
5240
5241 /* Swap out the symbols. */
5242
5243 static bfd_boolean
5244 swap_out_syms (bfd *abfd,
5245 struct bfd_strtab_hash **sttp,
5246 int relocatable_p)
5247 {
5248 const struct elf_backend_data *bed;
5249 int symcount;
5250 asymbol **syms;
5251 struct bfd_strtab_hash *stt;
5252 Elf_Internal_Shdr *symtab_hdr;
5253 Elf_Internal_Shdr *symtab_shndx_hdr;
5254 Elf_Internal_Shdr *symstrtab_hdr;
5255 char *outbound_syms;
5256 char *outbound_shndx;
5257 int idx;
5258 bfd_size_type amt;
5259
5260 if (!elf_map_symbols (abfd))
5261 return FALSE;
5262
5263 /* Dump out the symtabs. */
5264 stt = _bfd_elf_stringtab_init ();
5265 if (stt == NULL)
5266 return FALSE;
5267
5268 bed = get_elf_backend_data (abfd);
5269 symcount = bfd_get_symcount (abfd);
5270 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5271 symtab_hdr->sh_type = SHT_SYMTAB;
5272 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5273 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5274 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5275 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5276
5277 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5278 symstrtab_hdr->sh_type = SHT_STRTAB;
5279
5280 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5281 outbound_syms = bfd_alloc (abfd, amt);
5282 if (outbound_syms == NULL)
5283 {
5284 _bfd_stringtab_free (stt);
5285 return FALSE;
5286 }
5287 symtab_hdr->contents = outbound_syms;
5288
5289 outbound_shndx = NULL;
5290 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5291 if (symtab_shndx_hdr->sh_name != 0)
5292 {
5293 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5294 outbound_shndx = bfd_zalloc (abfd, amt);
5295 if (outbound_shndx == NULL)
5296 {
5297 _bfd_stringtab_free (stt);
5298 return FALSE;
5299 }
5300
5301 symtab_shndx_hdr->contents = outbound_shndx;
5302 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5303 symtab_shndx_hdr->sh_size = amt;
5304 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5305 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5306 }
5307
5308 /* Now generate the data (for "contents"). */
5309 {
5310 /* Fill in zeroth symbol and swap it out. */
5311 Elf_Internal_Sym sym;
5312 sym.st_name = 0;
5313 sym.st_value = 0;
5314 sym.st_size = 0;
5315 sym.st_info = 0;
5316 sym.st_other = 0;
5317 sym.st_shndx = SHN_UNDEF;
5318 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5319 outbound_syms += bed->s->sizeof_sym;
5320 if (outbound_shndx != NULL)
5321 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5322 }
5323
5324 syms = bfd_get_outsymbols (abfd);
5325 for (idx = 0; idx < symcount; idx++)
5326 {
5327 Elf_Internal_Sym sym;
5328 bfd_vma value = syms[idx]->value;
5329 elf_symbol_type *type_ptr;
5330 flagword flags = syms[idx]->flags;
5331 int type;
5332
5333 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5334 {
5335 /* Local section symbols have no name. */
5336 sym.st_name = 0;
5337 }
5338 else
5339 {
5340 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5341 syms[idx]->name,
5342 TRUE, FALSE);
5343 if (sym.st_name == (unsigned long) -1)
5344 {
5345 _bfd_stringtab_free (stt);
5346 return FALSE;
5347 }
5348 }
5349
5350 type_ptr = elf_symbol_from (abfd, syms[idx]);
5351
5352 if ((flags & BSF_SECTION_SYM) == 0
5353 && bfd_is_com_section (syms[idx]->section))
5354 {
5355 /* ELF common symbols put the alignment into the `value' field,
5356 and the size into the `size' field. This is backwards from
5357 how BFD handles it, so reverse it here. */
5358 sym.st_size = value;
5359 if (type_ptr == NULL
5360 || type_ptr->internal_elf_sym.st_value == 0)
5361 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5362 else
5363 sym.st_value = type_ptr->internal_elf_sym.st_value;
5364 sym.st_shndx = _bfd_elf_section_from_bfd_section
5365 (abfd, syms[idx]->section);
5366 }
5367 else
5368 {
5369 asection *sec = syms[idx]->section;
5370 int shndx;
5371
5372 if (sec->output_section)
5373 {
5374 value += sec->output_offset;
5375 sec = sec->output_section;
5376 }
5377
5378 /* Don't add in the section vma for relocatable output. */
5379 if (! relocatable_p)
5380 value += sec->vma;
5381 sym.st_value = value;
5382 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5383
5384 if (bfd_is_abs_section (sec)
5385 && type_ptr != NULL
5386 && type_ptr->internal_elf_sym.st_shndx != 0)
5387 {
5388 /* This symbol is in a real ELF section which we did
5389 not create as a BFD section. Undo the mapping done
5390 by copy_private_symbol_data. */
5391 shndx = type_ptr->internal_elf_sym.st_shndx;
5392 switch (shndx)
5393 {
5394 case MAP_ONESYMTAB:
5395 shndx = elf_onesymtab (abfd);
5396 break;
5397 case MAP_DYNSYMTAB:
5398 shndx = elf_dynsymtab (abfd);
5399 break;
5400 case MAP_STRTAB:
5401 shndx = elf_tdata (abfd)->strtab_section;
5402 break;
5403 case MAP_SHSTRTAB:
5404 shndx = elf_tdata (abfd)->shstrtab_section;
5405 break;
5406 case MAP_SYM_SHNDX:
5407 shndx = elf_tdata (abfd)->symtab_shndx_section;
5408 break;
5409 default:
5410 break;
5411 }
5412 }
5413 else
5414 {
5415 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5416
5417 if (shndx == -1)
5418 {
5419 asection *sec2;
5420
5421 /* Writing this would be a hell of a lot easier if
5422 we had some decent documentation on bfd, and
5423 knew what to expect of the library, and what to
5424 demand of applications. For example, it
5425 appears that `objcopy' might not set the
5426 section of a symbol to be a section that is
5427 actually in the output file. */
5428 sec2 = bfd_get_section_by_name (abfd, sec->name);
5429 if (sec2 == NULL)
5430 {
5431 _bfd_error_handler (_("\
5432 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5433 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5434 sec->name);
5435 bfd_set_error (bfd_error_invalid_operation);
5436 _bfd_stringtab_free (stt);
5437 return FALSE;
5438 }
5439
5440 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5441 BFD_ASSERT (shndx != -1);
5442 }
5443 }
5444
5445 sym.st_shndx = shndx;
5446 }
5447
5448 if ((flags & BSF_THREAD_LOCAL) != 0)
5449 type = STT_TLS;
5450 else if ((flags & BSF_FUNCTION) != 0)
5451 type = STT_FUNC;
5452 else if ((flags & BSF_OBJECT) != 0)
5453 type = STT_OBJECT;
5454 else
5455 type = STT_NOTYPE;
5456
5457 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5458 type = STT_TLS;
5459
5460 /* Processor-specific types. */
5461 if (type_ptr != NULL
5462 && bed->elf_backend_get_symbol_type)
5463 type = ((*bed->elf_backend_get_symbol_type)
5464 (&type_ptr->internal_elf_sym, type));
5465
5466 if (flags & BSF_SECTION_SYM)
5467 {
5468 if (flags & BSF_GLOBAL)
5469 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5470 else
5471 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5472 }
5473 else if (bfd_is_com_section (syms[idx]->section))
5474 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5475 else if (bfd_is_und_section (syms[idx]->section))
5476 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5477 ? STB_WEAK
5478 : STB_GLOBAL),
5479 type);
5480 else if (flags & BSF_FILE)
5481 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5482 else
5483 {
5484 int bind = STB_LOCAL;
5485
5486 if (flags & BSF_LOCAL)
5487 bind = STB_LOCAL;
5488 else if (flags & BSF_WEAK)
5489 bind = STB_WEAK;
5490 else if (flags & BSF_GLOBAL)
5491 bind = STB_GLOBAL;
5492
5493 sym.st_info = ELF_ST_INFO (bind, type);
5494 }
5495
5496 if (type_ptr != NULL)
5497 sym.st_other = type_ptr->internal_elf_sym.st_other;
5498 else
5499 sym.st_other = 0;
5500
5501 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5502 outbound_syms += bed->s->sizeof_sym;
5503 if (outbound_shndx != NULL)
5504 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5505 }
5506
5507 *sttp = stt;
5508 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5509 symstrtab_hdr->sh_type = SHT_STRTAB;
5510
5511 symstrtab_hdr->sh_flags = 0;
5512 symstrtab_hdr->sh_addr = 0;
5513 symstrtab_hdr->sh_entsize = 0;
5514 symstrtab_hdr->sh_link = 0;
5515 symstrtab_hdr->sh_info = 0;
5516 symstrtab_hdr->sh_addralign = 1;
5517
5518 return TRUE;
5519 }
5520
5521 /* Return the number of bytes required to hold the symtab vector.
5522
5523 Note that we base it on the count plus 1, since we will null terminate
5524 the vector allocated based on this size. However, the ELF symbol table
5525 always has a dummy entry as symbol #0, so it ends up even. */
5526
5527 long
5528 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5529 {
5530 long symcount;
5531 long symtab_size;
5532 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5533
5534 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5535 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5536 if (symcount > 0)
5537 symtab_size -= sizeof (asymbol *);
5538
5539 return symtab_size;
5540 }
5541
5542 long
5543 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5544 {
5545 long symcount;
5546 long symtab_size;
5547 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5548
5549 if (elf_dynsymtab (abfd) == 0)
5550 {
5551 bfd_set_error (bfd_error_invalid_operation);
5552 return -1;
5553 }
5554
5555 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5556 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5557 if (symcount > 0)
5558 symtab_size -= sizeof (asymbol *);
5559
5560 return symtab_size;
5561 }
5562
5563 long
5564 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5565 sec_ptr asect)
5566 {
5567 return (asect->reloc_count + 1) * sizeof (arelent *);
5568 }
5569
5570 /* Canonicalize the relocs. */
5571
5572 long
5573 _bfd_elf_canonicalize_reloc (bfd *abfd,
5574 sec_ptr section,
5575 arelent **relptr,
5576 asymbol **symbols)
5577 {
5578 arelent *tblptr;
5579 unsigned int i;
5580 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5581
5582 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5583 return -1;
5584
5585 tblptr = section->relocation;
5586 for (i = 0; i < section->reloc_count; i++)
5587 *relptr++ = tblptr++;
5588
5589 *relptr = NULL;
5590
5591 return section->reloc_count;
5592 }
5593
5594 long
5595 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5596 {
5597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5598 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5599
5600 if (symcount >= 0)
5601 bfd_get_symcount (abfd) = symcount;
5602 return symcount;
5603 }
5604
5605 long
5606 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5607 asymbol **allocation)
5608 {
5609 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5610 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5611
5612 if (symcount >= 0)
5613 bfd_get_dynamic_symcount (abfd) = symcount;
5614 return symcount;
5615 }
5616
5617 /* Return the size required for the dynamic reloc entries. Any
5618 section that was actually installed in the BFD, and has type
5619 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5620 considered to be a dynamic reloc section. */
5621
5622 long
5623 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5624 {
5625 long ret;
5626 asection *s;
5627
5628 if (elf_dynsymtab (abfd) == 0)
5629 {
5630 bfd_set_error (bfd_error_invalid_operation);
5631 return -1;
5632 }
5633
5634 ret = sizeof (arelent *);
5635 for (s = abfd->sections; s != NULL; s = s->next)
5636 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5637 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5638 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5639 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5640 * sizeof (arelent *));
5641
5642 return ret;
5643 }
5644
5645 /* Canonicalize the dynamic relocation entries. Note that we return
5646 the dynamic relocations as a single block, although they are
5647 actually associated with particular sections; the interface, which
5648 was designed for SunOS style shared libraries, expects that there
5649 is only one set of dynamic relocs. Any section that was actually
5650 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5651 the dynamic symbol table, is considered to be a dynamic reloc
5652 section. */
5653
5654 long
5655 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5656 arelent **storage,
5657 asymbol **syms)
5658 {
5659 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5660 asection *s;
5661 long ret;
5662
5663 if (elf_dynsymtab (abfd) == 0)
5664 {
5665 bfd_set_error (bfd_error_invalid_operation);
5666 return -1;
5667 }
5668
5669 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5670 ret = 0;
5671 for (s = abfd->sections; s != NULL; s = s->next)
5672 {
5673 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5674 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5675 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5676 {
5677 arelent *p;
5678 long count, i;
5679
5680 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5681 return -1;
5682 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5683 p = s->relocation;
5684 for (i = 0; i < count; i++)
5685 *storage++ = p++;
5686 ret += count;
5687 }
5688 }
5689
5690 *storage = NULL;
5691
5692 return ret;
5693 }
5694 \f
5695 /* Read in the version information. */
5696
5697 bfd_boolean
5698 _bfd_elf_slurp_version_tables (bfd *abfd)
5699 {
5700 bfd_byte *contents = NULL;
5701 bfd_size_type amt;
5702
5703 if (elf_dynverdef (abfd) != 0)
5704 {
5705 Elf_Internal_Shdr *hdr;
5706 Elf_External_Verdef *everdef;
5707 Elf_Internal_Verdef *iverdef;
5708 Elf_Internal_Verdef *iverdefarr;
5709 Elf_Internal_Verdef iverdefmem;
5710 unsigned int i;
5711 unsigned int maxidx;
5712
5713 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5714
5715 contents = bfd_malloc (hdr->sh_size);
5716 if (contents == NULL)
5717 goto error_return;
5718 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5719 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5720 goto error_return;
5721
5722 /* We know the number of entries in the section but not the maximum
5723 index. Therefore we have to run through all entries and find
5724 the maximum. */
5725 everdef = (Elf_External_Verdef *) contents;
5726 maxidx = 0;
5727 for (i = 0; i < hdr->sh_info; ++i)
5728 {
5729 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5730
5731 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5732 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5733
5734 everdef = ((Elf_External_Verdef *)
5735 ((bfd_byte *) everdef + iverdefmem.vd_next));
5736 }
5737
5738 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5739 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5740 if (elf_tdata (abfd)->verdef == NULL)
5741 goto error_return;
5742
5743 elf_tdata (abfd)->cverdefs = maxidx;
5744
5745 everdef = (Elf_External_Verdef *) contents;
5746 iverdefarr = elf_tdata (abfd)->verdef;
5747 for (i = 0; i < hdr->sh_info; i++)
5748 {
5749 Elf_External_Verdaux *everdaux;
5750 Elf_Internal_Verdaux *iverdaux;
5751 unsigned int j;
5752
5753 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5754
5755 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5756 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5757
5758 iverdef->vd_bfd = abfd;
5759
5760 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5761 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5762 if (iverdef->vd_auxptr == NULL)
5763 goto error_return;
5764
5765 everdaux = ((Elf_External_Verdaux *)
5766 ((bfd_byte *) everdef + iverdef->vd_aux));
5767 iverdaux = iverdef->vd_auxptr;
5768 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5769 {
5770 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5771
5772 iverdaux->vda_nodename =
5773 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5774 iverdaux->vda_name);
5775 if (iverdaux->vda_nodename == NULL)
5776 goto error_return;
5777
5778 if (j + 1 < iverdef->vd_cnt)
5779 iverdaux->vda_nextptr = iverdaux + 1;
5780 else
5781 iverdaux->vda_nextptr = NULL;
5782
5783 everdaux = ((Elf_External_Verdaux *)
5784 ((bfd_byte *) everdaux + iverdaux->vda_next));
5785 }
5786
5787 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5788
5789 if (i + 1 < hdr->sh_info)
5790 iverdef->vd_nextdef = iverdef + 1;
5791 else
5792 iverdef->vd_nextdef = NULL;
5793
5794 everdef = ((Elf_External_Verdef *)
5795 ((bfd_byte *) everdef + iverdef->vd_next));
5796 }
5797
5798 free (contents);
5799 contents = NULL;
5800 }
5801
5802 if (elf_dynverref (abfd) != 0)
5803 {
5804 Elf_Internal_Shdr *hdr;
5805 Elf_External_Verneed *everneed;
5806 Elf_Internal_Verneed *iverneed;
5807 unsigned int i;
5808
5809 hdr = &elf_tdata (abfd)->dynverref_hdr;
5810
5811 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5812 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5813 if (elf_tdata (abfd)->verref == NULL)
5814 goto error_return;
5815
5816 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5817
5818 contents = bfd_malloc (hdr->sh_size);
5819 if (contents == NULL)
5820 goto error_return;
5821 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5822 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5823 goto error_return;
5824
5825 everneed = (Elf_External_Verneed *) contents;
5826 iverneed = elf_tdata (abfd)->verref;
5827 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5828 {
5829 Elf_External_Vernaux *evernaux;
5830 Elf_Internal_Vernaux *ivernaux;
5831 unsigned int j;
5832
5833 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5834
5835 iverneed->vn_bfd = abfd;
5836
5837 iverneed->vn_filename =
5838 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5839 iverneed->vn_file);
5840 if (iverneed->vn_filename == NULL)
5841 goto error_return;
5842
5843 amt = iverneed->vn_cnt;
5844 amt *= sizeof (Elf_Internal_Vernaux);
5845 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5846
5847 evernaux = ((Elf_External_Vernaux *)
5848 ((bfd_byte *) everneed + iverneed->vn_aux));
5849 ivernaux = iverneed->vn_auxptr;
5850 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5851 {
5852 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5853
5854 ivernaux->vna_nodename =
5855 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5856 ivernaux->vna_name);
5857 if (ivernaux->vna_nodename == NULL)
5858 goto error_return;
5859
5860 if (j + 1 < iverneed->vn_cnt)
5861 ivernaux->vna_nextptr = ivernaux + 1;
5862 else
5863 ivernaux->vna_nextptr = NULL;
5864
5865 evernaux = ((Elf_External_Vernaux *)
5866 ((bfd_byte *) evernaux + ivernaux->vna_next));
5867 }
5868
5869 if (i + 1 < hdr->sh_info)
5870 iverneed->vn_nextref = iverneed + 1;
5871 else
5872 iverneed->vn_nextref = NULL;
5873
5874 everneed = ((Elf_External_Verneed *)
5875 ((bfd_byte *) everneed + iverneed->vn_next));
5876 }
5877
5878 free (contents);
5879 contents = NULL;
5880 }
5881
5882 return TRUE;
5883
5884 error_return:
5885 if (contents != NULL)
5886 free (contents);
5887 return FALSE;
5888 }
5889 \f
5890 asymbol *
5891 _bfd_elf_make_empty_symbol (bfd *abfd)
5892 {
5893 elf_symbol_type *newsym;
5894 bfd_size_type amt = sizeof (elf_symbol_type);
5895
5896 newsym = bfd_zalloc (abfd, amt);
5897 if (!newsym)
5898 return NULL;
5899 else
5900 {
5901 newsym->symbol.the_bfd = abfd;
5902 return &newsym->symbol;
5903 }
5904 }
5905
5906 void
5907 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5908 asymbol *symbol,
5909 symbol_info *ret)
5910 {
5911 bfd_symbol_info (symbol, ret);
5912 }
5913
5914 /* Return whether a symbol name implies a local symbol. Most targets
5915 use this function for the is_local_label_name entry point, but some
5916 override it. */
5917
5918 bfd_boolean
5919 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5920 const char *name)
5921 {
5922 /* Normal local symbols start with ``.L''. */
5923 if (name[0] == '.' && name[1] == 'L')
5924 return TRUE;
5925
5926 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5927 DWARF debugging symbols starting with ``..''. */
5928 if (name[0] == '.' && name[1] == '.')
5929 return TRUE;
5930
5931 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5932 emitting DWARF debugging output. I suspect this is actually a
5933 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5934 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5935 underscore to be emitted on some ELF targets). For ease of use,
5936 we treat such symbols as local. */
5937 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5938 return TRUE;
5939
5940 return FALSE;
5941 }
5942
5943 alent *
5944 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
5945 asymbol *symbol ATTRIBUTE_UNUSED)
5946 {
5947 abort ();
5948 return NULL;
5949 }
5950
5951 bfd_boolean
5952 _bfd_elf_set_arch_mach (bfd *abfd,
5953 enum bfd_architecture arch,
5954 unsigned long machine)
5955 {
5956 /* If this isn't the right architecture for this backend, and this
5957 isn't the generic backend, fail. */
5958 if (arch != get_elf_backend_data (abfd)->arch
5959 && arch != bfd_arch_unknown
5960 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5961 return FALSE;
5962
5963 return bfd_default_set_arch_mach (abfd, arch, machine);
5964 }
5965
5966 /* Find the function to a particular section and offset,
5967 for error reporting. */
5968
5969 static bfd_boolean
5970 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5971 asection *section,
5972 asymbol **symbols,
5973 bfd_vma offset,
5974 const char **filename_ptr,
5975 const char **functionname_ptr)
5976 {
5977 const char *filename;
5978 asymbol *func;
5979 bfd_vma low_func;
5980 asymbol **p;
5981
5982 filename = NULL;
5983 func = NULL;
5984 low_func = 0;
5985
5986 for (p = symbols; *p != NULL; p++)
5987 {
5988 elf_symbol_type *q;
5989
5990 q = (elf_symbol_type *) *p;
5991
5992 if (bfd_get_section (&q->symbol) != section)
5993 continue;
5994
5995 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5996 {
5997 default:
5998 break;
5999 case STT_FILE:
6000 filename = bfd_asymbol_name (&q->symbol);
6001 break;
6002 case STT_NOTYPE:
6003 case STT_FUNC:
6004 if (q->symbol.section == section
6005 && q->symbol.value >= low_func
6006 && q->symbol.value <= offset)
6007 {
6008 func = (asymbol *) q;
6009 low_func = q->symbol.value;
6010 }
6011 break;
6012 }
6013 }
6014
6015 if (func == NULL)
6016 return FALSE;
6017
6018 if (filename_ptr)
6019 *filename_ptr = filename;
6020 if (functionname_ptr)
6021 *functionname_ptr = bfd_asymbol_name (func);
6022
6023 return TRUE;
6024 }
6025
6026 /* Find the nearest line to a particular section and offset,
6027 for error reporting. */
6028
6029 bfd_boolean
6030 _bfd_elf_find_nearest_line (bfd *abfd,
6031 asection *section,
6032 asymbol **symbols,
6033 bfd_vma offset,
6034 const char **filename_ptr,
6035 const char **functionname_ptr,
6036 unsigned int *line_ptr)
6037 {
6038 bfd_boolean found;
6039
6040 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6041 filename_ptr, functionname_ptr,
6042 line_ptr))
6043 {
6044 if (!*functionname_ptr)
6045 elf_find_function (abfd, section, symbols, offset,
6046 *filename_ptr ? NULL : filename_ptr,
6047 functionname_ptr);
6048
6049 return TRUE;
6050 }
6051
6052 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6053 filename_ptr, functionname_ptr,
6054 line_ptr, 0,
6055 &elf_tdata (abfd)->dwarf2_find_line_info))
6056 {
6057 if (!*functionname_ptr)
6058 elf_find_function (abfd, section, symbols, offset,
6059 *filename_ptr ? NULL : filename_ptr,
6060 functionname_ptr);
6061
6062 return TRUE;
6063 }
6064
6065 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6066 &found, filename_ptr,
6067 functionname_ptr, line_ptr,
6068 &elf_tdata (abfd)->line_info))
6069 return FALSE;
6070 if (found && (*functionname_ptr || *line_ptr))
6071 return TRUE;
6072
6073 if (symbols == NULL)
6074 return FALSE;
6075
6076 if (! elf_find_function (abfd, section, symbols, offset,
6077 filename_ptr, functionname_ptr))
6078 return FALSE;
6079
6080 *line_ptr = 0;
6081 return TRUE;
6082 }
6083
6084 int
6085 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6086 {
6087 int ret;
6088
6089 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6090 if (! reloc)
6091 ret += get_program_header_size (abfd);
6092 return ret;
6093 }
6094
6095 bfd_boolean
6096 _bfd_elf_set_section_contents (bfd *abfd,
6097 sec_ptr section,
6098 void *location,
6099 file_ptr offset,
6100 bfd_size_type count)
6101 {
6102 Elf_Internal_Shdr *hdr;
6103 bfd_signed_vma pos;
6104
6105 if (! abfd->output_has_begun
6106 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6107 return FALSE;
6108
6109 hdr = &elf_section_data (section)->this_hdr;
6110 pos = hdr->sh_offset + offset;
6111 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6112 || bfd_bwrite (location, count, abfd) != count)
6113 return FALSE;
6114
6115 return TRUE;
6116 }
6117
6118 void
6119 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6120 arelent *cache_ptr ATTRIBUTE_UNUSED,
6121 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6122 {
6123 abort ();
6124 }
6125
6126 /* Try to convert a non-ELF reloc into an ELF one. */
6127
6128 bfd_boolean
6129 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6130 {
6131 /* Check whether we really have an ELF howto. */
6132
6133 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6134 {
6135 bfd_reloc_code_real_type code;
6136 reloc_howto_type *howto;
6137
6138 /* Alien reloc: Try to determine its type to replace it with an
6139 equivalent ELF reloc. */
6140
6141 if (areloc->howto->pc_relative)
6142 {
6143 switch (areloc->howto->bitsize)
6144 {
6145 case 8:
6146 code = BFD_RELOC_8_PCREL;
6147 break;
6148 case 12:
6149 code = BFD_RELOC_12_PCREL;
6150 break;
6151 case 16:
6152 code = BFD_RELOC_16_PCREL;
6153 break;
6154 case 24:
6155 code = BFD_RELOC_24_PCREL;
6156 break;
6157 case 32:
6158 code = BFD_RELOC_32_PCREL;
6159 break;
6160 case 64:
6161 code = BFD_RELOC_64_PCREL;
6162 break;
6163 default:
6164 goto fail;
6165 }
6166
6167 howto = bfd_reloc_type_lookup (abfd, code);
6168
6169 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6170 {
6171 if (howto->pcrel_offset)
6172 areloc->addend += areloc->address;
6173 else
6174 areloc->addend -= areloc->address; /* addend is unsigned!! */
6175 }
6176 }
6177 else
6178 {
6179 switch (areloc->howto->bitsize)
6180 {
6181 case 8:
6182 code = BFD_RELOC_8;
6183 break;
6184 case 14:
6185 code = BFD_RELOC_14;
6186 break;
6187 case 16:
6188 code = BFD_RELOC_16;
6189 break;
6190 case 26:
6191 code = BFD_RELOC_26;
6192 break;
6193 case 32:
6194 code = BFD_RELOC_32;
6195 break;
6196 case 64:
6197 code = BFD_RELOC_64;
6198 break;
6199 default:
6200 goto fail;
6201 }
6202
6203 howto = bfd_reloc_type_lookup (abfd, code);
6204 }
6205
6206 if (howto)
6207 areloc->howto = howto;
6208 else
6209 goto fail;
6210 }
6211
6212 return TRUE;
6213
6214 fail:
6215 (*_bfd_error_handler)
6216 (_("%s: unsupported relocation type %s"),
6217 bfd_archive_filename (abfd), areloc->howto->name);
6218 bfd_set_error (bfd_error_bad_value);
6219 return FALSE;
6220 }
6221
6222 bfd_boolean
6223 _bfd_elf_close_and_cleanup (bfd *abfd)
6224 {
6225 if (bfd_get_format (abfd) == bfd_object)
6226 {
6227 if (elf_shstrtab (abfd) != NULL)
6228 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6229 }
6230
6231 return _bfd_generic_close_and_cleanup (abfd);
6232 }
6233
6234 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6235 in the relocation's offset. Thus we cannot allow any sort of sanity
6236 range-checking to interfere. There is nothing else to do in processing
6237 this reloc. */
6238
6239 bfd_reloc_status_type
6240 _bfd_elf_rel_vtable_reloc_fn
6241 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6242 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6243 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6244 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6245 {
6246 return bfd_reloc_ok;
6247 }
6248 \f
6249 /* Elf core file support. Much of this only works on native
6250 toolchains, since we rely on knowing the
6251 machine-dependent procfs structure in order to pick
6252 out details about the corefile. */
6253
6254 #ifdef HAVE_SYS_PROCFS_H
6255 # include <sys/procfs.h>
6256 #endif
6257
6258 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6259
6260 static int
6261 elfcore_make_pid (bfd *abfd)
6262 {
6263 return ((elf_tdata (abfd)->core_lwpid << 16)
6264 + (elf_tdata (abfd)->core_pid));
6265 }
6266
6267 /* If there isn't a section called NAME, make one, using
6268 data from SECT. Note, this function will generate a
6269 reference to NAME, so you shouldn't deallocate or
6270 overwrite it. */
6271
6272 static bfd_boolean
6273 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6274 {
6275 asection *sect2;
6276
6277 if (bfd_get_section_by_name (abfd, name) != NULL)
6278 return TRUE;
6279
6280 sect2 = bfd_make_section (abfd, name);
6281 if (sect2 == NULL)
6282 return FALSE;
6283
6284 sect2->_raw_size = sect->_raw_size;
6285 sect2->filepos = sect->filepos;
6286 sect2->flags = sect->flags;
6287 sect2->alignment_power = sect->alignment_power;
6288 return TRUE;
6289 }
6290
6291 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6292 actually creates up to two pseudosections:
6293 - For the single-threaded case, a section named NAME, unless
6294 such a section already exists.
6295 - For the multi-threaded case, a section named "NAME/PID", where
6296 PID is elfcore_make_pid (abfd).
6297 Both pseudosections have identical contents. */
6298 bfd_boolean
6299 _bfd_elfcore_make_pseudosection (bfd *abfd,
6300 char *name,
6301 size_t size,
6302 ufile_ptr filepos)
6303 {
6304 char buf[100];
6305 char *threaded_name;
6306 size_t len;
6307 asection *sect;
6308
6309 /* Build the section name. */
6310
6311 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6312 len = strlen (buf) + 1;
6313 threaded_name = bfd_alloc (abfd, len);
6314 if (threaded_name == NULL)
6315 return FALSE;
6316 memcpy (threaded_name, buf, len);
6317
6318 sect = bfd_make_section_anyway (abfd, threaded_name);
6319 if (sect == NULL)
6320 return FALSE;
6321 sect->_raw_size = size;
6322 sect->filepos = filepos;
6323 sect->flags = SEC_HAS_CONTENTS;
6324 sect->alignment_power = 2;
6325
6326 return elfcore_maybe_make_sect (abfd, name, sect);
6327 }
6328
6329 /* prstatus_t exists on:
6330 solaris 2.5+
6331 linux 2.[01] + glibc
6332 unixware 4.2
6333 */
6334
6335 #if defined (HAVE_PRSTATUS_T)
6336
6337 static bfd_boolean
6338 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6339 {
6340 size_t raw_size;
6341 int offset;
6342
6343 if (note->descsz == sizeof (prstatus_t))
6344 {
6345 prstatus_t prstat;
6346
6347 raw_size = sizeof (prstat.pr_reg);
6348 offset = offsetof (prstatus_t, pr_reg);
6349 memcpy (&prstat, note->descdata, sizeof (prstat));
6350
6351 /* Do not overwrite the core signal if it
6352 has already been set by another thread. */
6353 if (elf_tdata (abfd)->core_signal == 0)
6354 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6355 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6356
6357 /* pr_who exists on:
6358 solaris 2.5+
6359 unixware 4.2
6360 pr_who doesn't exist on:
6361 linux 2.[01]
6362 */
6363 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6364 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6365 #endif
6366 }
6367 #if defined (HAVE_PRSTATUS32_T)
6368 else if (note->descsz == sizeof (prstatus32_t))
6369 {
6370 /* 64-bit host, 32-bit corefile */
6371 prstatus32_t prstat;
6372
6373 raw_size = sizeof (prstat.pr_reg);
6374 offset = offsetof (prstatus32_t, pr_reg);
6375 memcpy (&prstat, note->descdata, sizeof (prstat));
6376
6377 /* Do not overwrite the core signal if it
6378 has already been set by another thread. */
6379 if (elf_tdata (abfd)->core_signal == 0)
6380 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6381 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6382
6383 /* pr_who exists on:
6384 solaris 2.5+
6385 unixware 4.2
6386 pr_who doesn't exist on:
6387 linux 2.[01]
6388 */
6389 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6390 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6391 #endif
6392 }
6393 #endif /* HAVE_PRSTATUS32_T */
6394 else
6395 {
6396 /* Fail - we don't know how to handle any other
6397 note size (ie. data object type). */
6398 return TRUE;
6399 }
6400
6401 /* Make a ".reg/999" section and a ".reg" section. */
6402 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6403 raw_size, note->descpos + offset);
6404 }
6405 #endif /* defined (HAVE_PRSTATUS_T) */
6406
6407 /* Create a pseudosection containing the exact contents of NOTE. */
6408 static bfd_boolean
6409 elfcore_make_note_pseudosection (bfd *abfd,
6410 char *name,
6411 Elf_Internal_Note *note)
6412 {
6413 return _bfd_elfcore_make_pseudosection (abfd, name,
6414 note->descsz, note->descpos);
6415 }
6416
6417 /* There isn't a consistent prfpregset_t across platforms,
6418 but it doesn't matter, because we don't have to pick this
6419 data structure apart. */
6420
6421 static bfd_boolean
6422 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6423 {
6424 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6425 }
6426
6427 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6428 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6429 literally. */
6430
6431 static bfd_boolean
6432 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6433 {
6434 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6435 }
6436
6437 #if defined (HAVE_PRPSINFO_T)
6438 typedef prpsinfo_t elfcore_psinfo_t;
6439 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6440 typedef prpsinfo32_t elfcore_psinfo32_t;
6441 #endif
6442 #endif
6443
6444 #if defined (HAVE_PSINFO_T)
6445 typedef psinfo_t elfcore_psinfo_t;
6446 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6447 typedef psinfo32_t elfcore_psinfo32_t;
6448 #endif
6449 #endif
6450
6451 /* return a malloc'ed copy of a string at START which is at
6452 most MAX bytes long, possibly without a terminating '\0'.
6453 the copy will always have a terminating '\0'. */
6454
6455 char *
6456 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6457 {
6458 char *dups;
6459 char *end = memchr (start, '\0', max);
6460 size_t len;
6461
6462 if (end == NULL)
6463 len = max;
6464 else
6465 len = end - start;
6466
6467 dups = bfd_alloc (abfd, len + 1);
6468 if (dups == NULL)
6469 return NULL;
6470
6471 memcpy (dups, start, len);
6472 dups[len] = '\0';
6473
6474 return dups;
6475 }
6476
6477 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6478 static bfd_boolean
6479 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6480 {
6481 if (note->descsz == sizeof (elfcore_psinfo_t))
6482 {
6483 elfcore_psinfo_t psinfo;
6484
6485 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6486
6487 elf_tdata (abfd)->core_program
6488 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6489 sizeof (psinfo.pr_fname));
6490
6491 elf_tdata (abfd)->core_command
6492 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6493 sizeof (psinfo.pr_psargs));
6494 }
6495 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6496 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6497 {
6498 /* 64-bit host, 32-bit corefile */
6499 elfcore_psinfo32_t psinfo;
6500
6501 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6502
6503 elf_tdata (abfd)->core_program
6504 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6505 sizeof (psinfo.pr_fname));
6506
6507 elf_tdata (abfd)->core_command
6508 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6509 sizeof (psinfo.pr_psargs));
6510 }
6511 #endif
6512
6513 else
6514 {
6515 /* Fail - we don't know how to handle any other
6516 note size (ie. data object type). */
6517 return TRUE;
6518 }
6519
6520 /* Note that for some reason, a spurious space is tacked
6521 onto the end of the args in some (at least one anyway)
6522 implementations, so strip it off if it exists. */
6523
6524 {
6525 char *command = elf_tdata (abfd)->core_command;
6526 int n = strlen (command);
6527
6528 if (0 < n && command[n - 1] == ' ')
6529 command[n - 1] = '\0';
6530 }
6531
6532 return TRUE;
6533 }
6534 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6535
6536 #if defined (HAVE_PSTATUS_T)
6537 static bfd_boolean
6538 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6539 {
6540 if (note->descsz == sizeof (pstatus_t)
6541 #if defined (HAVE_PXSTATUS_T)
6542 || note->descsz == sizeof (pxstatus_t)
6543 #endif
6544 )
6545 {
6546 pstatus_t pstat;
6547
6548 memcpy (&pstat, note->descdata, sizeof (pstat));
6549
6550 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6551 }
6552 #if defined (HAVE_PSTATUS32_T)
6553 else if (note->descsz == sizeof (pstatus32_t))
6554 {
6555 /* 64-bit host, 32-bit corefile */
6556 pstatus32_t pstat;
6557
6558 memcpy (&pstat, note->descdata, sizeof (pstat));
6559
6560 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6561 }
6562 #endif
6563 /* Could grab some more details from the "representative"
6564 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6565 NT_LWPSTATUS note, presumably. */
6566
6567 return TRUE;
6568 }
6569 #endif /* defined (HAVE_PSTATUS_T) */
6570
6571 #if defined (HAVE_LWPSTATUS_T)
6572 static bfd_boolean
6573 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6574 {
6575 lwpstatus_t lwpstat;
6576 char buf[100];
6577 char *name;
6578 size_t len;
6579 asection *sect;
6580
6581 if (note->descsz != sizeof (lwpstat)
6582 #if defined (HAVE_LWPXSTATUS_T)
6583 && note->descsz != sizeof (lwpxstatus_t)
6584 #endif
6585 )
6586 return TRUE;
6587
6588 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6589
6590 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6591 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6592
6593 /* Make a ".reg/999" section. */
6594
6595 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6596 len = strlen (buf) + 1;
6597 name = bfd_alloc (abfd, len);
6598 if (name == NULL)
6599 return FALSE;
6600 memcpy (name, buf, len);
6601
6602 sect = bfd_make_section_anyway (abfd, name);
6603 if (sect == NULL)
6604 return FALSE;
6605
6606 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6607 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6608 sect->filepos = note->descpos
6609 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6610 #endif
6611
6612 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6613 sect->_raw_size = sizeof (lwpstat.pr_reg);
6614 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6615 #endif
6616
6617 sect->flags = SEC_HAS_CONTENTS;
6618 sect->alignment_power = 2;
6619
6620 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6621 return FALSE;
6622
6623 /* Make a ".reg2/999" section */
6624
6625 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6626 len = strlen (buf) + 1;
6627 name = bfd_alloc (abfd, len);
6628 if (name == NULL)
6629 return FALSE;
6630 memcpy (name, buf, len);
6631
6632 sect = bfd_make_section_anyway (abfd, name);
6633 if (sect == NULL)
6634 return FALSE;
6635
6636 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6637 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6638 sect->filepos = note->descpos
6639 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6640 #endif
6641
6642 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6643 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6644 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6645 #endif
6646
6647 sect->flags = SEC_HAS_CONTENTS;
6648 sect->alignment_power = 2;
6649
6650 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6651 }
6652 #endif /* defined (HAVE_LWPSTATUS_T) */
6653
6654 #if defined (HAVE_WIN32_PSTATUS_T)
6655 static bfd_boolean
6656 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6657 {
6658 char buf[30];
6659 char *name;
6660 size_t len;
6661 asection *sect;
6662 win32_pstatus_t pstatus;
6663
6664 if (note->descsz < sizeof (pstatus))
6665 return TRUE;
6666
6667 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6668
6669 switch (pstatus.data_type)
6670 {
6671 case NOTE_INFO_PROCESS:
6672 /* FIXME: need to add ->core_command. */
6673 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6674 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6675 break;
6676
6677 case NOTE_INFO_THREAD:
6678 /* Make a ".reg/999" section. */
6679 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6680
6681 len = strlen (buf) + 1;
6682 name = bfd_alloc (abfd, len);
6683 if (name == NULL)
6684 return FALSE;
6685
6686 memcpy (name, buf, len);
6687
6688 sect = bfd_make_section_anyway (abfd, name);
6689 if (sect == NULL)
6690 return FALSE;
6691
6692 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6693 sect->filepos = (note->descpos
6694 + offsetof (struct win32_pstatus,
6695 data.thread_info.thread_context));
6696 sect->flags = SEC_HAS_CONTENTS;
6697 sect->alignment_power = 2;
6698
6699 if (pstatus.data.thread_info.is_active_thread)
6700 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6701 return FALSE;
6702 break;
6703
6704 case NOTE_INFO_MODULE:
6705 /* Make a ".module/xxxxxxxx" section. */
6706 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6707
6708 len = strlen (buf) + 1;
6709 name = bfd_alloc (abfd, len);
6710 if (name == NULL)
6711 return FALSE;
6712
6713 memcpy (name, buf, len);
6714
6715 sect = bfd_make_section_anyway (abfd, name);
6716
6717 if (sect == NULL)
6718 return FALSE;
6719
6720 sect->_raw_size = note->descsz;
6721 sect->filepos = note->descpos;
6722 sect->flags = SEC_HAS_CONTENTS;
6723 sect->alignment_power = 2;
6724 break;
6725
6726 default:
6727 return TRUE;
6728 }
6729
6730 return TRUE;
6731 }
6732 #endif /* HAVE_WIN32_PSTATUS_T */
6733
6734 static bfd_boolean
6735 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6736 {
6737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6738
6739 switch (note->type)
6740 {
6741 default:
6742 return TRUE;
6743
6744 case NT_PRSTATUS:
6745 if (bed->elf_backend_grok_prstatus)
6746 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6747 return TRUE;
6748 #if defined (HAVE_PRSTATUS_T)
6749 return elfcore_grok_prstatus (abfd, note);
6750 #else
6751 return TRUE;
6752 #endif
6753
6754 #if defined (HAVE_PSTATUS_T)
6755 case NT_PSTATUS:
6756 return elfcore_grok_pstatus (abfd, note);
6757 #endif
6758
6759 #if defined (HAVE_LWPSTATUS_T)
6760 case NT_LWPSTATUS:
6761 return elfcore_grok_lwpstatus (abfd, note);
6762 #endif
6763
6764 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6765 return elfcore_grok_prfpreg (abfd, note);
6766
6767 #if defined (HAVE_WIN32_PSTATUS_T)
6768 case NT_WIN32PSTATUS:
6769 return elfcore_grok_win32pstatus (abfd, note);
6770 #endif
6771
6772 case NT_PRXFPREG: /* Linux SSE extension */
6773 if (note->namesz == 6
6774 && strcmp (note->namedata, "LINUX") == 0)
6775 return elfcore_grok_prxfpreg (abfd, note);
6776 else
6777 return TRUE;
6778
6779 case NT_PRPSINFO:
6780 case NT_PSINFO:
6781 if (bed->elf_backend_grok_psinfo)
6782 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6783 return TRUE;
6784 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6785 return elfcore_grok_psinfo (abfd, note);
6786 #else
6787 return TRUE;
6788 #endif
6789
6790 case NT_AUXV:
6791 {
6792 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6793
6794 if (sect == NULL)
6795 return FALSE;
6796 sect->_raw_size = note->descsz;
6797 sect->filepos = note->descpos;
6798 sect->flags = SEC_HAS_CONTENTS;
6799 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6800
6801 return TRUE;
6802 }
6803 }
6804 }
6805
6806 static bfd_boolean
6807 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6808 {
6809 char *cp;
6810
6811 cp = strchr (note->namedata, '@');
6812 if (cp != NULL)
6813 {
6814 *lwpidp = atoi(cp + 1);
6815 return TRUE;
6816 }
6817 return FALSE;
6818 }
6819
6820 static bfd_boolean
6821 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6822 {
6823
6824 /* Signal number at offset 0x08. */
6825 elf_tdata (abfd)->core_signal
6826 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6827
6828 /* Process ID at offset 0x50. */
6829 elf_tdata (abfd)->core_pid
6830 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6831
6832 /* Command name at 0x7c (max 32 bytes, including nul). */
6833 elf_tdata (abfd)->core_command
6834 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6835
6836 return TRUE;
6837 }
6838
6839 static bfd_boolean
6840 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6841 {
6842 int lwp;
6843
6844 if (elfcore_netbsd_get_lwpid (note, &lwp))
6845 elf_tdata (abfd)->core_lwpid = lwp;
6846
6847 if (note->type == NT_NETBSDCORE_PROCINFO)
6848 {
6849 /* NetBSD-specific core "procinfo". Note that we expect to
6850 find this note before any of the others, which is fine,
6851 since the kernel writes this note out first when it
6852 creates a core file. */
6853
6854 return elfcore_grok_netbsd_procinfo (abfd, note);
6855 }
6856
6857 /* As of Jan 2002 there are no other machine-independent notes
6858 defined for NetBSD core files. If the note type is less
6859 than the start of the machine-dependent note types, we don't
6860 understand it. */
6861
6862 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6863 return TRUE;
6864
6865
6866 switch (bfd_get_arch (abfd))
6867 {
6868 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6869 PT_GETFPREGS == mach+2. */
6870
6871 case bfd_arch_alpha:
6872 case bfd_arch_sparc:
6873 switch (note->type)
6874 {
6875 case NT_NETBSDCORE_FIRSTMACH+0:
6876 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6877
6878 case NT_NETBSDCORE_FIRSTMACH+2:
6879 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6880
6881 default:
6882 return TRUE;
6883 }
6884
6885 /* On all other arch's, PT_GETREGS == mach+1 and
6886 PT_GETFPREGS == mach+3. */
6887
6888 default:
6889 switch (note->type)
6890 {
6891 case NT_NETBSDCORE_FIRSTMACH+1:
6892 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6893
6894 case NT_NETBSDCORE_FIRSTMACH+3:
6895 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6896
6897 default:
6898 return TRUE;
6899 }
6900 }
6901 /* NOTREACHED */
6902 }
6903
6904 static bfd_boolean
6905 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6906 {
6907 void *ddata = note->descdata;
6908 char buf[100];
6909 char *name;
6910 asection *sect;
6911 short sig;
6912 unsigned flags;
6913
6914 /* nto_procfs_status 'pid' field is at offset 0. */
6915 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6916
6917 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6918 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6919
6920 /* nto_procfs_status 'flags' field is at offset 8. */
6921 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6922
6923 /* nto_procfs_status 'what' field is at offset 14. */
6924 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6925 {
6926 elf_tdata (abfd)->core_signal = sig;
6927 elf_tdata (abfd)->core_lwpid = *tid;
6928 }
6929
6930 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6931 do not come from signals so we make sure we set the current
6932 thread just in case. */
6933 if (flags & 0x00000080)
6934 elf_tdata (abfd)->core_lwpid = *tid;
6935
6936 /* Make a ".qnx_core_status/%d" section. */
6937 sprintf (buf, ".qnx_core_status/%d", *tid);
6938
6939 name = bfd_alloc (abfd, strlen (buf) + 1);
6940 if (name == NULL)
6941 return FALSE;
6942 strcpy (name, buf);
6943
6944 sect = bfd_make_section_anyway (abfd, name);
6945 if (sect == NULL)
6946 return FALSE;
6947
6948 sect->_raw_size = note->descsz;
6949 sect->filepos = note->descpos;
6950 sect->flags = SEC_HAS_CONTENTS;
6951 sect->alignment_power = 2;
6952
6953 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
6954 }
6955
6956 static bfd_boolean
6957 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
6958 {
6959 char buf[100];
6960 char *name;
6961 asection *sect;
6962
6963 /* Make a ".reg/%d" section. */
6964 sprintf (buf, ".reg/%d", tid);
6965
6966 name = bfd_alloc (abfd, strlen (buf) + 1);
6967 if (name == NULL)
6968 return FALSE;
6969 strcpy (name, buf);
6970
6971 sect = bfd_make_section_anyway (abfd, name);
6972 if (sect == NULL)
6973 return FALSE;
6974
6975 sect->_raw_size = note->descsz;
6976 sect->filepos = note->descpos;
6977 sect->flags = SEC_HAS_CONTENTS;
6978 sect->alignment_power = 2;
6979
6980 /* This is the current thread. */
6981 if (elf_tdata (abfd)->core_lwpid == tid)
6982 return elfcore_maybe_make_sect (abfd, ".reg", sect);
6983
6984 return TRUE;
6985 }
6986
6987 #define BFD_QNT_CORE_INFO 7
6988 #define BFD_QNT_CORE_STATUS 8
6989 #define BFD_QNT_CORE_GREG 9
6990 #define BFD_QNT_CORE_FPREG 10
6991
6992 static bfd_boolean
6993 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
6994 {
6995 /* Every GREG section has a STATUS section before it. Store the
6996 tid from the previous call to pass down to the next gregs
6997 function. */
6998 static pid_t tid = 1;
6999
7000 switch (note->type)
7001 {
7002 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7003 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7004 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7005 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7006 default: return TRUE;
7007 }
7008 }
7009
7010 /* Function: elfcore_write_note
7011
7012 Inputs:
7013 buffer to hold note
7014 name of note
7015 type of note
7016 data for note
7017 size of data for note
7018
7019 Return:
7020 End of buffer containing note. */
7021
7022 char *
7023 elfcore_write_note (bfd *abfd,
7024 char *buf,
7025 int *bufsiz,
7026 const char *name,
7027 int type,
7028 const void *input,
7029 int size)
7030 {
7031 Elf_External_Note *xnp;
7032 size_t namesz;
7033 size_t pad;
7034 size_t newspace;
7035 char *p, *dest;
7036
7037 namesz = 0;
7038 pad = 0;
7039 if (name != NULL)
7040 {
7041 const struct elf_backend_data *bed;
7042
7043 namesz = strlen (name) + 1;
7044 bed = get_elf_backend_data (abfd);
7045 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7046 }
7047
7048 newspace = 12 + namesz + pad + size;
7049
7050 p = realloc (buf, *bufsiz + newspace);
7051 dest = p + *bufsiz;
7052 *bufsiz += newspace;
7053 xnp = (Elf_External_Note *) dest;
7054 H_PUT_32 (abfd, namesz, xnp->namesz);
7055 H_PUT_32 (abfd, size, xnp->descsz);
7056 H_PUT_32 (abfd, type, xnp->type);
7057 dest = xnp->name;
7058 if (name != NULL)
7059 {
7060 memcpy (dest, name, namesz);
7061 dest += namesz;
7062 while (pad != 0)
7063 {
7064 *dest++ = '\0';
7065 --pad;
7066 }
7067 }
7068 memcpy (dest, input, size);
7069 return p;
7070 }
7071
7072 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7073 char *
7074 elfcore_write_prpsinfo (bfd *abfd,
7075 char *buf,
7076 int *bufsiz,
7077 const char *fname,
7078 const char *psargs)
7079 {
7080 int note_type;
7081 char *note_name = "CORE";
7082
7083 #if defined (HAVE_PSINFO_T)
7084 psinfo_t data;
7085 note_type = NT_PSINFO;
7086 #else
7087 prpsinfo_t data;
7088 note_type = NT_PRPSINFO;
7089 #endif
7090
7091 memset (&data, 0, sizeof (data));
7092 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7093 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7094 return elfcore_write_note (abfd, buf, bufsiz,
7095 note_name, note_type, &data, sizeof (data));
7096 }
7097 #endif /* PSINFO_T or PRPSINFO_T */
7098
7099 #if defined (HAVE_PRSTATUS_T)
7100 char *
7101 elfcore_write_prstatus (bfd *abfd,
7102 char *buf,
7103 int *bufsiz,
7104 long pid,
7105 int cursig,
7106 const void *gregs)
7107 {
7108 prstatus_t prstat;
7109 char *note_name = "CORE";
7110
7111 memset (&prstat, 0, sizeof (prstat));
7112 prstat.pr_pid = pid;
7113 prstat.pr_cursig = cursig;
7114 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7115 return elfcore_write_note (abfd, buf, bufsiz,
7116 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7117 }
7118 #endif /* HAVE_PRSTATUS_T */
7119
7120 #if defined (HAVE_LWPSTATUS_T)
7121 char *
7122 elfcore_write_lwpstatus (bfd *abfd,
7123 char *buf,
7124 int *bufsiz,
7125 long pid,
7126 int cursig,
7127 const void *gregs)
7128 {
7129 lwpstatus_t lwpstat;
7130 char *note_name = "CORE";
7131
7132 memset (&lwpstat, 0, sizeof (lwpstat));
7133 lwpstat.pr_lwpid = pid >> 16;
7134 lwpstat.pr_cursig = cursig;
7135 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7136 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7137 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7138 #if !defined(gregs)
7139 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7140 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7141 #else
7142 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7143 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7144 #endif
7145 #endif
7146 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7147 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7148 }
7149 #endif /* HAVE_LWPSTATUS_T */
7150
7151 #if defined (HAVE_PSTATUS_T)
7152 char *
7153 elfcore_write_pstatus (bfd *abfd,
7154 char *buf,
7155 int *bufsiz,
7156 long pid,
7157 int cursig,
7158 const void *gregs)
7159 {
7160 pstatus_t pstat;
7161 char *note_name = "CORE";
7162
7163 memset (&pstat, 0, sizeof (pstat));
7164 pstat.pr_pid = pid & 0xffff;
7165 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7166 NT_PSTATUS, &pstat, sizeof (pstat));
7167 return buf;
7168 }
7169 #endif /* HAVE_PSTATUS_T */
7170
7171 char *
7172 elfcore_write_prfpreg (bfd *abfd,
7173 char *buf,
7174 int *bufsiz,
7175 const void *fpregs,
7176 int size)
7177 {
7178 char *note_name = "CORE";
7179 return elfcore_write_note (abfd, buf, bufsiz,
7180 note_name, NT_FPREGSET, fpregs, size);
7181 }
7182
7183 char *
7184 elfcore_write_prxfpreg (bfd *abfd,
7185 char *buf,
7186 int *bufsiz,
7187 const void *xfpregs,
7188 int size)
7189 {
7190 char *note_name = "LINUX";
7191 return elfcore_write_note (abfd, buf, bufsiz,
7192 note_name, NT_PRXFPREG, xfpregs, size);
7193 }
7194
7195 static bfd_boolean
7196 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7197 {
7198 char *buf;
7199 char *p;
7200
7201 if (size <= 0)
7202 return TRUE;
7203
7204 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7205 return FALSE;
7206
7207 buf = bfd_malloc (size);
7208 if (buf == NULL)
7209 return FALSE;
7210
7211 if (bfd_bread (buf, size, abfd) != size)
7212 {
7213 error:
7214 free (buf);
7215 return FALSE;
7216 }
7217
7218 p = buf;
7219 while (p < buf + size)
7220 {
7221 /* FIXME: bad alignment assumption. */
7222 Elf_External_Note *xnp = (Elf_External_Note *) p;
7223 Elf_Internal_Note in;
7224
7225 in.type = H_GET_32 (abfd, xnp->type);
7226
7227 in.namesz = H_GET_32 (abfd, xnp->namesz);
7228 in.namedata = xnp->name;
7229
7230 in.descsz = H_GET_32 (abfd, xnp->descsz);
7231 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7232 in.descpos = offset + (in.descdata - buf);
7233
7234 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7235 {
7236 if (! elfcore_grok_netbsd_note (abfd, &in))
7237 goto error;
7238 }
7239 else if (strncmp (in.namedata, "QNX", 3) == 0)
7240 {
7241 if (! elfcore_grok_nto_note (abfd, &in))
7242 goto error;
7243 }
7244 else
7245 {
7246 if (! elfcore_grok_note (abfd, &in))
7247 goto error;
7248 }
7249
7250 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7251 }
7252
7253 free (buf);
7254 return TRUE;
7255 }
7256 \f
7257 /* Providing external access to the ELF program header table. */
7258
7259 /* Return an upper bound on the number of bytes required to store a
7260 copy of ABFD's program header table entries. Return -1 if an error
7261 occurs; bfd_get_error will return an appropriate code. */
7262
7263 long
7264 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7265 {
7266 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7267 {
7268 bfd_set_error (bfd_error_wrong_format);
7269 return -1;
7270 }
7271
7272 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7273 }
7274
7275 /* Copy ABFD's program header table entries to *PHDRS. The entries
7276 will be stored as an array of Elf_Internal_Phdr structures, as
7277 defined in include/elf/internal.h. To find out how large the
7278 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7279
7280 Return the number of program header table entries read, or -1 if an
7281 error occurs; bfd_get_error will return an appropriate code. */
7282
7283 int
7284 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7285 {
7286 int num_phdrs;
7287
7288 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7289 {
7290 bfd_set_error (bfd_error_wrong_format);
7291 return -1;
7292 }
7293
7294 num_phdrs = elf_elfheader (abfd)->e_phnum;
7295 memcpy (phdrs, elf_tdata (abfd)->phdr,
7296 num_phdrs * sizeof (Elf_Internal_Phdr));
7297
7298 return num_phdrs;
7299 }
7300
7301 void
7302 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7303 {
7304 #ifdef BFD64
7305 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7306
7307 i_ehdrp = elf_elfheader (abfd);
7308 if (i_ehdrp == NULL)
7309 sprintf_vma (buf, value);
7310 else
7311 {
7312 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7313 {
7314 #if BFD_HOST_64BIT_LONG
7315 sprintf (buf, "%016lx", value);
7316 #else
7317 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7318 _bfd_int64_low (value));
7319 #endif
7320 }
7321 else
7322 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7323 }
7324 #else
7325 sprintf_vma (buf, value);
7326 #endif
7327 }
7328
7329 void
7330 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7331 {
7332 #ifdef BFD64
7333 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7334
7335 i_ehdrp = elf_elfheader (abfd);
7336 if (i_ehdrp == NULL)
7337 fprintf_vma ((FILE *) stream, value);
7338 else
7339 {
7340 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7341 {
7342 #if BFD_HOST_64BIT_LONG
7343 fprintf ((FILE *) stream, "%016lx", value);
7344 #else
7345 fprintf ((FILE *) stream, "%08lx%08lx",
7346 _bfd_int64_high (value), _bfd_int64_low (value));
7347 #endif
7348 }
7349 else
7350 fprintf ((FILE *) stream, "%08lx",
7351 (unsigned long) (value & 0xffffffff));
7352 }
7353 #else
7354 fprintf_vma ((FILE *) stream, value);
7355 #endif
7356 }
7357
7358 enum elf_reloc_type_class
7359 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7360 {
7361 return reloc_class_normal;
7362 }
7363
7364 /* For RELA architectures, return the relocation value for a
7365 relocation against a local symbol. */
7366
7367 bfd_vma
7368 _bfd_elf_rela_local_sym (bfd *abfd,
7369 Elf_Internal_Sym *sym,
7370 asection *sec,
7371 Elf_Internal_Rela *rel)
7372 {
7373 bfd_vma relocation;
7374
7375 relocation = (sec->output_section->vma
7376 + sec->output_offset
7377 + sym->st_value);
7378 if ((sec->flags & SEC_MERGE)
7379 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7380 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7381 {
7382 asection *msec;
7383
7384 msec = sec;
7385 rel->r_addend =
7386 _bfd_merged_section_offset (abfd, &msec,
7387 elf_section_data (sec)->sec_info,
7388 sym->st_value + rel->r_addend,
7389 0)
7390 - relocation;
7391 rel->r_addend += msec->output_section->vma + msec->output_offset;
7392 }
7393 return relocation;
7394 }
7395
7396 bfd_vma
7397 _bfd_elf_rel_local_sym (bfd *abfd,
7398 Elf_Internal_Sym *sym,
7399 asection **psec,
7400 bfd_vma addend)
7401 {
7402 asection *sec = *psec;
7403
7404 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7405 return sym->st_value + addend;
7406
7407 return _bfd_merged_section_offset (abfd, psec,
7408 elf_section_data (sec)->sec_info,
7409 sym->st_value + addend, 0);
7410 }
7411
7412 bfd_vma
7413 _bfd_elf_section_offset (bfd *abfd,
7414 struct bfd_link_info *info,
7415 asection *sec,
7416 bfd_vma offset)
7417 {
7418 struct bfd_elf_section_data *sec_data;
7419
7420 sec_data = elf_section_data (sec);
7421 switch (sec->sec_info_type)
7422 {
7423 case ELF_INFO_TYPE_STABS:
7424 return _bfd_stab_section_offset (abfd,
7425 &elf_hash_table (info)->merge_info,
7426 sec, &sec_data->sec_info, offset);
7427 case ELF_INFO_TYPE_EH_FRAME:
7428 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7429 default:
7430 return offset;
7431 }
7432 }
7433 \f
7434 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7435 reconstruct an ELF file by reading the segments out of remote memory
7436 based on the ELF file header at EHDR_VMA and the ELF program headers it
7437 points to. If not null, *LOADBASEP is filled in with the difference
7438 between the VMAs from which the segments were read, and the VMAs the
7439 file headers (and hence BFD's idea of each section's VMA) put them at.
7440
7441 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7442 remote memory at target address VMA into the local buffer at MYADDR; it
7443 should return zero on success or an `errno' code on failure. TEMPL must
7444 be a BFD for an ELF target with the word size and byte order found in
7445 the remote memory. */
7446
7447 bfd *
7448 bfd_elf_bfd_from_remote_memory
7449 (bfd *templ,
7450 bfd_vma ehdr_vma,
7451 bfd_vma *loadbasep,
7452 int (*target_read_memory) (bfd_vma, char *, int))
7453 {
7454 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7455 (templ, ehdr_vma, loadbasep, target_read_memory);
7456 }
This page took 0.229143 seconds and 4 git commands to generate.