Fix null pointer dereference when parsing a corrupt ELF binary.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%B: attempt to load strings from"
343 " a non-string section (number %d)"),
344 abfd, shindex);
345 return NULL;
346 }
347
348 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
349 return NULL;
350 }
351
352 if (strindex >= hdr->sh_size)
353 {
354 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
355 _bfd_error_handler
356 /* xgettext:c-format */
357 (_("%B: invalid string offset %u >= %Lu for section `%s'"),
358 abfd, strindex, hdr->sh_size,
359 (shindex == shstrndx && strindex == hdr->sh_name
360 ? ".shstrtab"
361 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
362 return NULL;
363 }
364
365 return ((char *) hdr->contents) + strindex;
366 }
367
368 /* Read and convert symbols to internal format.
369 SYMCOUNT specifies the number of symbols to read, starting from
370 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
371 are non-NULL, they are used to store the internal symbols, external
372 symbols, and symbol section index extensions, respectively.
373 Returns a pointer to the internal symbol buffer (malloced if necessary)
374 or NULL if there were no symbols or some kind of problem. */
375
376 Elf_Internal_Sym *
377 bfd_elf_get_elf_syms (bfd *ibfd,
378 Elf_Internal_Shdr *symtab_hdr,
379 size_t symcount,
380 size_t symoffset,
381 Elf_Internal_Sym *intsym_buf,
382 void *extsym_buf,
383 Elf_External_Sym_Shndx *extshndx_buf)
384 {
385 Elf_Internal_Shdr *shndx_hdr;
386 void *alloc_ext;
387 const bfd_byte *esym;
388 Elf_External_Sym_Shndx *alloc_extshndx;
389 Elf_External_Sym_Shndx *shndx;
390 Elf_Internal_Sym *alloc_intsym;
391 Elf_Internal_Sym *isym;
392 Elf_Internal_Sym *isymend;
393 const struct elf_backend_data *bed;
394 size_t extsym_size;
395 bfd_size_type amt;
396 file_ptr pos;
397
398 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
399 abort ();
400
401 if (symcount == 0)
402 return intsym_buf;
403
404 /* Normal syms might have section extension entries. */
405 shndx_hdr = NULL;
406 if (elf_symtab_shndx_list (ibfd) != NULL)
407 {
408 elf_section_list * entry;
409 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
410
411 /* Find an index section that is linked to this symtab section. */
412 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
413 {
414 /* PR 20063. */
415 if (entry->hdr.sh_link >= elf_numsections (ibfd))
416 continue;
417
418 if (sections[entry->hdr.sh_link] == symtab_hdr)
419 {
420 shndx_hdr = & entry->hdr;
421 break;
422 };
423 }
424
425 if (shndx_hdr == NULL)
426 {
427 if (symtab_hdr == & elf_symtab_hdr (ibfd))
428 /* Not really accurate, but this was how the old code used to work. */
429 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
430 /* Otherwise we do nothing. The assumption is that
431 the index table will not be needed. */
432 }
433 }
434
435 /* Read the symbols. */
436 alloc_ext = NULL;
437 alloc_extshndx = NULL;
438 alloc_intsym = NULL;
439 bed = get_elf_backend_data (ibfd);
440 extsym_size = bed->s->sizeof_sym;
441 amt = (bfd_size_type) symcount * extsym_size;
442 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
443 if (extsym_buf == NULL)
444 {
445 alloc_ext = bfd_malloc2 (symcount, extsym_size);
446 extsym_buf = alloc_ext;
447 }
448 if (extsym_buf == NULL
449 || bfd_seek (ibfd, pos, SEEK_SET) != 0
450 || bfd_bread (extsym_buf, amt, ibfd) != amt)
451 {
452 intsym_buf = NULL;
453 goto out;
454 }
455
456 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
457 extshndx_buf = NULL;
458 else
459 {
460 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
461 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
462 if (extshndx_buf == NULL)
463 {
464 alloc_extshndx = (Elf_External_Sym_Shndx *)
465 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
466 extshndx_buf = alloc_extshndx;
467 }
468 if (extshndx_buf == NULL
469 || bfd_seek (ibfd, pos, SEEK_SET) != 0
470 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
471 {
472 intsym_buf = NULL;
473 goto out;
474 }
475 }
476
477 if (intsym_buf == NULL)
478 {
479 alloc_intsym = (Elf_Internal_Sym *)
480 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
481 intsym_buf = alloc_intsym;
482 if (intsym_buf == NULL)
483 goto out;
484 }
485
486 /* Convert the symbols to internal form. */
487 isymend = intsym_buf + symcount;
488 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
489 shndx = extshndx_buf;
490 isym < isymend;
491 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
492 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
493 {
494 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
495 /* xgettext:c-format */
496 _bfd_error_handler (_("%B symbol number %lu references"
497 " nonexistent SHT_SYMTAB_SHNDX section"),
498 ibfd, (unsigned long) symoffset);
499 if (alloc_intsym != NULL)
500 free (alloc_intsym);
501 intsym_buf = NULL;
502 goto out;
503 }
504
505 out:
506 if (alloc_ext != NULL)
507 free (alloc_ext);
508 if (alloc_extshndx != NULL)
509 free (alloc_extshndx);
510
511 return intsym_buf;
512 }
513
514 /* Look up a symbol name. */
515 const char *
516 bfd_elf_sym_name (bfd *abfd,
517 Elf_Internal_Shdr *symtab_hdr,
518 Elf_Internal_Sym *isym,
519 asection *sym_sec)
520 {
521 const char *name;
522 unsigned int iname = isym->st_name;
523 unsigned int shindex = symtab_hdr->sh_link;
524
525 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
526 /* Check for a bogus st_shndx to avoid crashing. */
527 && isym->st_shndx < elf_numsections (abfd))
528 {
529 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
530 shindex = elf_elfheader (abfd)->e_shstrndx;
531 }
532
533 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
534 if (name == NULL)
535 name = "(null)";
536 else if (sym_sec && *name == '\0')
537 name = bfd_section_name (abfd, sym_sec);
538
539 return name;
540 }
541
542 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
543 sections. The first element is the flags, the rest are section
544 pointers. */
545
546 typedef union elf_internal_group {
547 Elf_Internal_Shdr *shdr;
548 unsigned int flags;
549 } Elf_Internal_Group;
550
551 /* Return the name of the group signature symbol. Why isn't the
552 signature just a string? */
553
554 static const char *
555 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
556 {
557 Elf_Internal_Shdr *hdr;
558 unsigned char esym[sizeof (Elf64_External_Sym)];
559 Elf_External_Sym_Shndx eshndx;
560 Elf_Internal_Sym isym;
561
562 /* First we need to ensure the symbol table is available. Make sure
563 that it is a symbol table section. */
564 if (ghdr->sh_link >= elf_numsections (abfd))
565 return NULL;
566 hdr = elf_elfsections (abfd) [ghdr->sh_link];
567 if (hdr->sh_type != SHT_SYMTAB
568 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
569 return NULL;
570
571 /* Go read the symbol. */
572 hdr = &elf_tdata (abfd)->symtab_hdr;
573 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
574 &isym, esym, &eshndx) == NULL)
575 return NULL;
576
577 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
578 }
579
580 /* Set next_in_group list pointer, and group name for NEWSECT. */
581
582 static bfd_boolean
583 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
584 {
585 unsigned int num_group = elf_tdata (abfd)->num_group;
586
587 /* If num_group is zero, read in all SHT_GROUP sections. The count
588 is set to -1 if there are no SHT_GROUP sections. */
589 if (num_group == 0)
590 {
591 unsigned int i, shnum;
592
593 /* First count the number of groups. If we have a SHT_GROUP
594 section with just a flag word (ie. sh_size is 4), ignore it. */
595 shnum = elf_numsections (abfd);
596 num_group = 0;
597
598 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
599 ( (shdr)->sh_type == SHT_GROUP \
600 && (shdr)->sh_size >= minsize \
601 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
602 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
603
604 for (i = 0; i < shnum; i++)
605 {
606 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
607
608 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
609 num_group += 1;
610 }
611
612 if (num_group == 0)
613 {
614 num_group = (unsigned) -1;
615 elf_tdata (abfd)->num_group = num_group;
616 elf_tdata (abfd)->group_sect_ptr = NULL;
617 }
618 else
619 {
620 /* We keep a list of elf section headers for group sections,
621 so we can find them quickly. */
622 bfd_size_type amt;
623
624 elf_tdata (abfd)->num_group = num_group;
625 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
626 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
627 if (elf_tdata (abfd)->group_sect_ptr == NULL)
628 return FALSE;
629 memset (elf_tdata (abfd)->group_sect_ptr, 0, num_group * sizeof (Elf_Internal_Shdr *));
630 num_group = 0;
631
632 for (i = 0; i < shnum; i++)
633 {
634 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
635
636 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
637 {
638 unsigned char *src;
639 Elf_Internal_Group *dest;
640
641 /* Make sure the group section has a BFD section
642 attached to it. */
643 if (!bfd_section_from_shdr (abfd, i))
644 return FALSE;
645
646 /* Add to list of sections. */
647 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
648 num_group += 1;
649
650 /* Read the raw contents. */
651 BFD_ASSERT (sizeof (*dest) >= 4);
652 amt = shdr->sh_size * sizeof (*dest) / 4;
653 shdr->contents = (unsigned char *)
654 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
655 /* PR binutils/4110: Handle corrupt group headers. */
656 if (shdr->contents == NULL)
657 {
658 _bfd_error_handler
659 /* xgettext:c-format */
660 (_("%B: corrupt size field in group section"
661 " header: %#Lx"), abfd, shdr->sh_size);
662 bfd_set_error (bfd_error_bad_value);
663 -- num_group;
664 continue;
665 }
666
667 memset (shdr->contents, 0, amt);
668
669 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
670 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
671 != shdr->sh_size))
672 {
673 _bfd_error_handler
674 /* xgettext:c-format */
675 (_("%B: invalid size field in group section"
676 " header: %#Lx"), abfd, shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 /* PR 17510: If the group contents are even
680 partially corrupt, do not allow any of the
681 contents to be used. */
682 memset (shdr->contents, 0, amt);
683 continue;
684 }
685
686 /* Translate raw contents, a flag word followed by an
687 array of elf section indices all in target byte order,
688 to the flag word followed by an array of elf section
689 pointers. */
690 src = shdr->contents + shdr->sh_size;
691 dest = (Elf_Internal_Group *) (shdr->contents + amt);
692
693 while (1)
694 {
695 unsigned int idx;
696
697 src -= 4;
698 --dest;
699 idx = H_GET_32 (abfd, src);
700 if (src == shdr->contents)
701 {
702 dest->flags = idx;
703 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
704 shdr->bfd_section->flags
705 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
706 break;
707 }
708 if (idx >= shnum)
709 {
710 _bfd_error_handler
711 (_("%B: invalid SHT_GROUP entry"), abfd);
712 idx = 0;
713 }
714 dest->shdr = elf_elfsections (abfd)[idx];
715 }
716 }
717 }
718
719 /* PR 17510: Corrupt binaries might contain invalid groups. */
720 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
721 {
722 elf_tdata (abfd)->num_group = num_group;
723
724 /* If all groups are invalid then fail. */
725 if (num_group == 0)
726 {
727 elf_tdata (abfd)->group_sect_ptr = NULL;
728 elf_tdata (abfd)->num_group = num_group = -1;
729 _bfd_error_handler
730 (_("%B: no valid group sections found"), abfd);
731 bfd_set_error (bfd_error_bad_value);
732 }
733 }
734 }
735 }
736
737 if (num_group != (unsigned) -1)
738 {
739 unsigned int i;
740
741 for (i = 0; i < num_group; i++)
742 {
743 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
744 Elf_Internal_Group *idx;
745 bfd_size_type n_elt;
746
747 if (shdr == NULL)
748 continue;
749
750 idx = (Elf_Internal_Group *) shdr->contents;
751 if (idx == NULL || shdr->sh_size < 4)
752 {
753 /* See PR 21957 for a reproducer. */
754 /* xgettext:c-format */
755 _bfd_error_handler (_("%B: group section '%A' has no contents"),
756 abfd, shdr->bfd_section);
757 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
758 bfd_set_error (bfd_error_bad_value);
759 return FALSE;
760 }
761 n_elt = shdr->sh_size / 4;
762
763 /* Look through this group's sections to see if current
764 section is a member. */
765 while (--n_elt != 0)
766 if ((++idx)->shdr == hdr)
767 {
768 asection *s = NULL;
769
770 /* We are a member of this group. Go looking through
771 other members to see if any others are linked via
772 next_in_group. */
773 idx = (Elf_Internal_Group *) shdr->contents;
774 n_elt = shdr->sh_size / 4;
775 while (--n_elt != 0)
776 if ((s = (++idx)->shdr->bfd_section) != NULL
777 && elf_next_in_group (s) != NULL)
778 break;
779 if (n_elt != 0)
780 {
781 /* Snarf the group name from other member, and
782 insert current section in circular list. */
783 elf_group_name (newsect) = elf_group_name (s);
784 elf_next_in_group (newsect) = elf_next_in_group (s);
785 elf_next_in_group (s) = newsect;
786 }
787 else
788 {
789 const char *gname;
790
791 gname = group_signature (abfd, shdr);
792 if (gname == NULL)
793 return FALSE;
794 elf_group_name (newsect) = gname;
795
796 /* Start a circular list with one element. */
797 elf_next_in_group (newsect) = newsect;
798 }
799
800 /* If the group section has been created, point to the
801 new member. */
802 if (shdr->bfd_section != NULL)
803 elf_next_in_group (shdr->bfd_section) = newsect;
804
805 i = num_group - 1;
806 break;
807 }
808 }
809 }
810
811 if (elf_group_name (newsect) == NULL)
812 {
813 /* xgettext:c-format */
814 _bfd_error_handler (_("%B: no group info for section '%A'"),
815 abfd, newsect);
816 return FALSE;
817 }
818 return TRUE;
819 }
820
821 bfd_boolean
822 _bfd_elf_setup_sections (bfd *abfd)
823 {
824 unsigned int i;
825 unsigned int num_group = elf_tdata (abfd)->num_group;
826 bfd_boolean result = TRUE;
827 asection *s;
828
829 /* Process SHF_LINK_ORDER. */
830 for (s = abfd->sections; s != NULL; s = s->next)
831 {
832 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
833 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
834 {
835 unsigned int elfsec = this_hdr->sh_link;
836 /* FIXME: The old Intel compiler and old strip/objcopy may
837 not set the sh_link or sh_info fields. Hence we could
838 get the situation where elfsec is 0. */
839 if (elfsec == 0)
840 {
841 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
842 if (bed->link_order_error_handler)
843 bed->link_order_error_handler
844 /* xgettext:c-format */
845 (_("%B: warning: sh_link not set for section `%A'"),
846 abfd, s);
847 }
848 else
849 {
850 asection *linksec = NULL;
851
852 if (elfsec < elf_numsections (abfd))
853 {
854 this_hdr = elf_elfsections (abfd)[elfsec];
855 linksec = this_hdr->bfd_section;
856 }
857
858 /* PR 1991, 2008:
859 Some strip/objcopy may leave an incorrect value in
860 sh_link. We don't want to proceed. */
861 if (linksec == NULL)
862 {
863 _bfd_error_handler
864 /* xgettext:c-format */
865 (_("%B: sh_link [%d] in section `%A' is incorrect"),
866 s->owner, elfsec, s);
867 result = FALSE;
868 }
869
870 elf_linked_to_section (s) = linksec;
871 }
872 }
873 else if (this_hdr->sh_type == SHT_GROUP
874 && elf_next_in_group (s) == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
879 abfd, elf_section_data (s)->this_idx);
880 result = FALSE;
881 }
882 }
883
884 /* Process section groups. */
885 if (num_group == (unsigned) -1)
886 return result;
887
888 for (i = 0; i < num_group; i++)
889 {
890 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
891 Elf_Internal_Group *idx;
892 unsigned int n_elt;
893
894 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
895 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
896 {
897 _bfd_error_handler
898 /* xgettext:c-format */
899 (_("%B: section group entry number %u is corrupt"),
900 abfd, i);
901 result = FALSE;
902 continue;
903 }
904
905 idx = (Elf_Internal_Group *) shdr->contents;
906 n_elt = shdr->sh_size / 4;
907
908 while (--n_elt != 0)
909 {
910 ++ idx;
911
912 if (idx->shdr == NULL)
913 continue;
914 else if (idx->shdr->bfd_section)
915 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
916 else if (idx->shdr->sh_type == SHT_RELA
917 || idx->shdr->sh_type == SHT_REL)
918 /* We won't include relocation sections in section groups in
919 output object files. We adjust the group section size here
920 so that relocatable link will work correctly when
921 relocation sections are in section group in input object
922 files. */
923 shdr->bfd_section->size -= 4;
924 else
925 {
926 /* There are some unknown sections in the group. */
927 _bfd_error_handler
928 /* xgettext:c-format */
929 (_("%B: unknown type [%#x] section `%s' in group [%A]"),
930 abfd,
931 idx->shdr->sh_type,
932 bfd_elf_string_from_elf_section (abfd,
933 (elf_elfheader (abfd)
934 ->e_shstrndx),
935 idx->shdr->sh_name),
936 shdr->bfd_section);
937 result = FALSE;
938 }
939 }
940 }
941
942 return result;
943 }
944
945 bfd_boolean
946 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
947 {
948 return elf_next_in_group (sec) != NULL;
949 }
950
951 static char *
952 convert_debug_to_zdebug (bfd *abfd, const char *name)
953 {
954 unsigned int len = strlen (name);
955 char *new_name = bfd_alloc (abfd, len + 2);
956 if (new_name == NULL)
957 return NULL;
958 new_name[0] = '.';
959 new_name[1] = 'z';
960 memcpy (new_name + 2, name + 1, len);
961 return new_name;
962 }
963
964 static char *
965 convert_zdebug_to_debug (bfd *abfd, const char *name)
966 {
967 unsigned int len = strlen (name);
968 char *new_name = bfd_alloc (abfd, len);
969 if (new_name == NULL)
970 return NULL;
971 new_name[0] = '.';
972 memcpy (new_name + 1, name + 2, len - 1);
973 return new_name;
974 }
975
976 /* Make a BFD section from an ELF section. We store a pointer to the
977 BFD section in the bfd_section field of the header. */
978
979 bfd_boolean
980 _bfd_elf_make_section_from_shdr (bfd *abfd,
981 Elf_Internal_Shdr *hdr,
982 const char *name,
983 int shindex)
984 {
985 asection *newsect;
986 flagword flags;
987 const struct elf_backend_data *bed;
988
989 if (hdr->bfd_section != NULL)
990 return TRUE;
991
992 newsect = bfd_make_section_anyway (abfd, name);
993 if (newsect == NULL)
994 return FALSE;
995
996 hdr->bfd_section = newsect;
997 elf_section_data (newsect)->this_hdr = *hdr;
998 elf_section_data (newsect)->this_idx = shindex;
999
1000 /* Always use the real type/flags. */
1001 elf_section_type (newsect) = hdr->sh_type;
1002 elf_section_flags (newsect) = hdr->sh_flags;
1003
1004 newsect->filepos = hdr->sh_offset;
1005
1006 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1007 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1008 || ! bfd_set_section_alignment (abfd, newsect,
1009 bfd_log2 (hdr->sh_addralign)))
1010 return FALSE;
1011
1012 flags = SEC_NO_FLAGS;
1013 if (hdr->sh_type != SHT_NOBITS)
1014 flags |= SEC_HAS_CONTENTS;
1015 if (hdr->sh_type == SHT_GROUP)
1016 flags |= SEC_GROUP;
1017 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1018 {
1019 flags |= SEC_ALLOC;
1020 if (hdr->sh_type != SHT_NOBITS)
1021 flags |= SEC_LOAD;
1022 }
1023 if ((hdr->sh_flags & SHF_WRITE) == 0)
1024 flags |= SEC_READONLY;
1025 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1026 flags |= SEC_CODE;
1027 else if ((flags & SEC_LOAD) != 0)
1028 flags |= SEC_DATA;
1029 if ((hdr->sh_flags & SHF_MERGE) != 0)
1030 {
1031 flags |= SEC_MERGE;
1032 newsect->entsize = hdr->sh_entsize;
1033 }
1034 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1035 flags |= SEC_STRINGS;
1036 if (hdr->sh_flags & SHF_GROUP)
1037 if (!setup_group (abfd, hdr, newsect))
1038 return FALSE;
1039 if ((hdr->sh_flags & SHF_TLS) != 0)
1040 flags |= SEC_THREAD_LOCAL;
1041 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1042 flags |= SEC_EXCLUDE;
1043
1044 if ((flags & SEC_ALLOC) == 0)
1045 {
1046 /* The debugging sections appear to be recognized only by name,
1047 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1048 if (name [0] == '.')
1049 {
1050 const char *p;
1051 int n;
1052 if (name[1] == 'd')
1053 p = ".debug", n = 6;
1054 else if (name[1] == 'g' && name[2] == 'n')
1055 p = ".gnu.linkonce.wi.", n = 17;
1056 else if (name[1] == 'g' && name[2] == 'd')
1057 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1058 else if (name[1] == 'l')
1059 p = ".line", n = 5;
1060 else if (name[1] == 's')
1061 p = ".stab", n = 5;
1062 else if (name[1] == 'z')
1063 p = ".zdebug", n = 7;
1064 else
1065 p = NULL, n = 0;
1066 if (p != NULL && strncmp (name, p, n) == 0)
1067 flags |= SEC_DEBUGGING;
1068 }
1069 }
1070
1071 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1072 only link a single copy of the section. This is used to support
1073 g++. g++ will emit each template expansion in its own section.
1074 The symbols will be defined as weak, so that multiple definitions
1075 are permitted. The GNU linker extension is to actually discard
1076 all but one of the sections. */
1077 if (CONST_STRNEQ (name, ".gnu.linkonce")
1078 && elf_next_in_group (newsect) == NULL)
1079 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1080
1081 bed = get_elf_backend_data (abfd);
1082 if (bed->elf_backend_section_flags)
1083 if (! bed->elf_backend_section_flags (&flags, hdr))
1084 return FALSE;
1085
1086 if (! bfd_set_section_flags (abfd, newsect, flags))
1087 return FALSE;
1088
1089 /* We do not parse the PT_NOTE segments as we are interested even in the
1090 separate debug info files which may have the segments offsets corrupted.
1091 PT_NOTEs from the core files are currently not parsed using BFD. */
1092 if (hdr->sh_type == SHT_NOTE)
1093 {
1094 bfd_byte *contents;
1095
1096 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1097 return FALSE;
1098
1099 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, hdr->sh_offset);
1100 free (contents);
1101 }
1102
1103 if ((flags & SEC_ALLOC) != 0)
1104 {
1105 Elf_Internal_Phdr *phdr;
1106 unsigned int i, nload;
1107
1108 /* Some ELF linkers produce binaries with all the program header
1109 p_paddr fields zero. If we have such a binary with more than
1110 one PT_LOAD header, then leave the section lma equal to vma
1111 so that we don't create sections with overlapping lma. */
1112 phdr = elf_tdata (abfd)->phdr;
1113 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1114 if (phdr->p_paddr != 0)
1115 break;
1116 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1117 ++nload;
1118 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1119 return TRUE;
1120
1121 phdr = elf_tdata (abfd)->phdr;
1122 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1123 {
1124 if (((phdr->p_type == PT_LOAD
1125 && (hdr->sh_flags & SHF_TLS) == 0)
1126 || phdr->p_type == PT_TLS)
1127 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1128 {
1129 if ((flags & SEC_LOAD) == 0)
1130 newsect->lma = (phdr->p_paddr
1131 + hdr->sh_addr - phdr->p_vaddr);
1132 else
1133 /* We used to use the same adjustment for SEC_LOAD
1134 sections, but that doesn't work if the segment
1135 is packed with code from multiple VMAs.
1136 Instead we calculate the section LMA based on
1137 the segment LMA. It is assumed that the
1138 segment will contain sections with contiguous
1139 LMAs, even if the VMAs are not. */
1140 newsect->lma = (phdr->p_paddr
1141 + hdr->sh_offset - phdr->p_offset);
1142
1143 /* With contiguous segments, we can't tell from file
1144 offsets whether a section with zero size should
1145 be placed at the end of one segment or the
1146 beginning of the next. Decide based on vaddr. */
1147 if (hdr->sh_addr >= phdr->p_vaddr
1148 && (hdr->sh_addr + hdr->sh_size
1149 <= phdr->p_vaddr + phdr->p_memsz))
1150 break;
1151 }
1152 }
1153 }
1154
1155 /* Compress/decompress DWARF debug sections with names: .debug_* and
1156 .zdebug_*, after the section flags is set. */
1157 if ((flags & SEC_DEBUGGING)
1158 && ((name[1] == 'd' && name[6] == '_')
1159 || (name[1] == 'z' && name[7] == '_')))
1160 {
1161 enum { nothing, compress, decompress } action = nothing;
1162 int compression_header_size;
1163 bfd_size_type uncompressed_size;
1164 bfd_boolean compressed
1165 = bfd_is_section_compressed_with_header (abfd, newsect,
1166 &compression_header_size,
1167 &uncompressed_size);
1168
1169 if (compressed)
1170 {
1171 /* Compressed section. Check if we should decompress. */
1172 if ((abfd->flags & BFD_DECOMPRESS))
1173 action = decompress;
1174 }
1175
1176 /* Compress the uncompressed section or convert from/to .zdebug*
1177 section. Check if we should compress. */
1178 if (action == nothing)
1179 {
1180 if (newsect->size != 0
1181 && (abfd->flags & BFD_COMPRESS)
1182 && compression_header_size >= 0
1183 && uncompressed_size > 0
1184 && (!compressed
1185 || ((compression_header_size > 0)
1186 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1187 action = compress;
1188 else
1189 return TRUE;
1190 }
1191
1192 if (action == compress)
1193 {
1194 if (!bfd_init_section_compress_status (abfd, newsect))
1195 {
1196 _bfd_error_handler
1197 /* xgettext:c-format */
1198 (_("%B: unable to initialize compress status for section %s"),
1199 abfd, name);
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 if (!bfd_init_section_decompress_status (abfd, newsect))
1206 {
1207 _bfd_error_handler
1208 /* xgettext:c-format */
1209 (_("%B: unable to initialize decompress status for section %s"),
1210 abfd, name);
1211 return FALSE;
1212 }
1213 }
1214
1215 if (abfd->is_linker_input)
1216 {
1217 if (name[1] == 'z'
1218 && (action == decompress
1219 || (action == compress
1220 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1221 {
1222 /* Convert section name from .zdebug_* to .debug_* so
1223 that linker will consider this section as a debug
1224 section. */
1225 char *new_name = convert_zdebug_to_debug (abfd, name);
1226 if (new_name == NULL)
1227 return FALSE;
1228 bfd_rename_section (abfd, newsect, new_name);
1229 }
1230 }
1231 else
1232 /* For objdump, don't rename the section. For objcopy, delay
1233 section rename to elf_fake_sections. */
1234 newsect->flags |= SEC_ELF_RENAME;
1235 }
1236
1237 return TRUE;
1238 }
1239
1240 const char *const bfd_elf_section_type_names[] =
1241 {
1242 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1243 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1244 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1245 };
1246
1247 /* ELF relocs are against symbols. If we are producing relocatable
1248 output, and the reloc is against an external symbol, and nothing
1249 has given us any additional addend, the resulting reloc will also
1250 be against the same symbol. In such a case, we don't want to
1251 change anything about the way the reloc is handled, since it will
1252 all be done at final link time. Rather than put special case code
1253 into bfd_perform_relocation, all the reloc types use this howto
1254 function. It just short circuits the reloc if producing
1255 relocatable output against an external symbol. */
1256
1257 bfd_reloc_status_type
1258 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1259 arelent *reloc_entry,
1260 asymbol *symbol,
1261 void *data ATTRIBUTE_UNUSED,
1262 asection *input_section,
1263 bfd *output_bfd,
1264 char **error_message ATTRIBUTE_UNUSED)
1265 {
1266 if (output_bfd != NULL
1267 && (symbol->flags & BSF_SECTION_SYM) == 0
1268 && (! reloc_entry->howto->partial_inplace
1269 || reloc_entry->addend == 0))
1270 {
1271 reloc_entry->address += input_section->output_offset;
1272 return bfd_reloc_ok;
1273 }
1274
1275 return bfd_reloc_continue;
1276 }
1277 \f
1278 /* Returns TRUE if section A matches section B.
1279 Names, addresses and links may be different, but everything else
1280 should be the same. */
1281
1282 static bfd_boolean
1283 section_match (const Elf_Internal_Shdr * a,
1284 const Elf_Internal_Shdr * b)
1285 {
1286 return
1287 a->sh_type == b->sh_type
1288 && (a->sh_flags & ~ SHF_INFO_LINK)
1289 == (b->sh_flags & ~ SHF_INFO_LINK)
1290 && a->sh_addralign == b->sh_addralign
1291 && a->sh_size == b->sh_size
1292 && a->sh_entsize == b->sh_entsize
1293 /* FIXME: Check sh_addr ? */
1294 ;
1295 }
1296
1297 /* Find a section in OBFD that has the same characteristics
1298 as IHEADER. Return the index of this section or SHN_UNDEF if
1299 none can be found. Check's section HINT first, as this is likely
1300 to be the correct section. */
1301
1302 static unsigned int
1303 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1304 const unsigned int hint)
1305 {
1306 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1307 unsigned int i;
1308
1309 BFD_ASSERT (iheader != NULL);
1310
1311 /* See PR 20922 for a reproducer of the NULL test. */
1312 if (hint < elf_numsections (obfd)
1313 && oheaders[hint] != NULL
1314 && section_match (oheaders[hint], iheader))
1315 return hint;
1316
1317 for (i = 1; i < elf_numsections (obfd); i++)
1318 {
1319 Elf_Internal_Shdr * oheader = oheaders[i];
1320
1321 if (oheader == NULL)
1322 continue;
1323 if (section_match (oheader, iheader))
1324 /* FIXME: Do we care if there is a potential for
1325 multiple matches ? */
1326 return i;
1327 }
1328
1329 return SHN_UNDEF;
1330 }
1331
1332 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1333 Processor specific section, based upon a matching input section.
1334 Returns TRUE upon success, FALSE otherwise. */
1335
1336 static bfd_boolean
1337 copy_special_section_fields (const bfd *ibfd,
1338 bfd *obfd,
1339 const Elf_Internal_Shdr *iheader,
1340 Elf_Internal_Shdr *oheader,
1341 const unsigned int secnum)
1342 {
1343 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1344 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1345 bfd_boolean changed = FALSE;
1346 unsigned int sh_link;
1347
1348 if (oheader->sh_type == SHT_NOBITS)
1349 {
1350 /* This is a feature for objcopy --only-keep-debug:
1351 When a section's type is changed to NOBITS, we preserve
1352 the sh_link and sh_info fields so that they can be
1353 matched up with the original.
1354
1355 Note: Strictly speaking these assignments are wrong.
1356 The sh_link and sh_info fields should point to the
1357 relevent sections in the output BFD, which may not be in
1358 the same location as they were in the input BFD. But
1359 the whole point of this action is to preserve the
1360 original values of the sh_link and sh_info fields, so
1361 that they can be matched up with the section headers in
1362 the original file. So strictly speaking we may be
1363 creating an invalid ELF file, but it is only for a file
1364 that just contains debug info and only for sections
1365 without any contents. */
1366 if (oheader->sh_link == 0)
1367 oheader->sh_link = iheader->sh_link;
1368 if (oheader->sh_info == 0)
1369 oheader->sh_info = iheader->sh_info;
1370 return TRUE;
1371 }
1372
1373 /* Allow the target a chance to decide how these fields should be set. */
1374 if (bed->elf_backend_copy_special_section_fields != NULL
1375 && bed->elf_backend_copy_special_section_fields
1376 (ibfd, obfd, iheader, oheader))
1377 return TRUE;
1378
1379 /* We have an iheader which might match oheader, and which has non-zero
1380 sh_info and/or sh_link fields. Attempt to follow those links and find
1381 the section in the output bfd which corresponds to the linked section
1382 in the input bfd. */
1383 if (iheader->sh_link != SHN_UNDEF)
1384 {
1385 /* See PR 20931 for a reproducer. */
1386 if (iheader->sh_link >= elf_numsections (ibfd))
1387 {
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%B: Invalid sh_link field (%d) in section number %d"),
1391 ibfd, iheader->sh_link, secnum);
1392 return FALSE;
1393 }
1394
1395 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1396 if (sh_link != SHN_UNDEF)
1397 {
1398 oheader->sh_link = sh_link;
1399 changed = TRUE;
1400 }
1401 else
1402 /* FIXME: Should we install iheader->sh_link
1403 if we could not find a match ? */
1404 _bfd_error_handler
1405 /* xgettext:c-format */
1406 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1407 }
1408
1409 if (iheader->sh_info)
1410 {
1411 /* The sh_info field can hold arbitrary information, but if the
1412 SHF_LINK_INFO flag is set then it should be interpreted as a
1413 section index. */
1414 if (iheader->sh_flags & SHF_INFO_LINK)
1415 {
1416 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1417 iheader->sh_info);
1418 if (sh_link != SHN_UNDEF)
1419 oheader->sh_flags |= SHF_INFO_LINK;
1420 }
1421 else
1422 /* No idea what it means - just copy it. */
1423 sh_link = iheader->sh_info;
1424
1425 if (sh_link != SHN_UNDEF)
1426 {
1427 oheader->sh_info = sh_link;
1428 changed = TRUE;
1429 }
1430 else
1431 _bfd_error_handler
1432 /* xgettext:c-format */
1433 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1434 }
1435
1436 return changed;
1437 }
1438
1439 /* Copy the program header and other data from one object module to
1440 another. */
1441
1442 bfd_boolean
1443 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1444 {
1445 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1446 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1447 const struct elf_backend_data *bed;
1448 unsigned int i;
1449
1450 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1451 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1452 return TRUE;
1453
1454 if (!elf_flags_init (obfd))
1455 {
1456 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1457 elf_flags_init (obfd) = TRUE;
1458 }
1459
1460 elf_gp (obfd) = elf_gp (ibfd);
1461
1462 /* Also copy the EI_OSABI field. */
1463 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1464 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1465
1466 /* If set, copy the EI_ABIVERSION field. */
1467 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1468 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1469 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1470
1471 /* Copy object attributes. */
1472 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1473
1474 if (iheaders == NULL || oheaders == NULL)
1475 return TRUE;
1476
1477 bed = get_elf_backend_data (obfd);
1478
1479 /* Possibly copy other fields in the section header. */
1480 for (i = 1; i < elf_numsections (obfd); i++)
1481 {
1482 unsigned int j;
1483 Elf_Internal_Shdr * oheader = oheaders[i];
1484
1485 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1486 because of a special case need for generating separate debug info
1487 files. See below for more details. */
1488 if (oheader == NULL
1489 || (oheader->sh_type != SHT_NOBITS
1490 && oheader->sh_type < SHT_LOOS))
1491 continue;
1492
1493 /* Ignore empty sections, and sections whose
1494 fields have already been initialised. */
1495 if (oheader->sh_size == 0
1496 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1497 continue;
1498
1499 /* Scan for the matching section in the input bfd.
1500 First we try for a direct mapping between the input and output sections. */
1501 for (j = 1; j < elf_numsections (ibfd); j++)
1502 {
1503 const Elf_Internal_Shdr * iheader = iheaders[j];
1504
1505 if (iheader == NULL)
1506 continue;
1507
1508 if (oheader->bfd_section != NULL
1509 && iheader->bfd_section != NULL
1510 && iheader->bfd_section->output_section != NULL
1511 && iheader->bfd_section->output_section == oheader->bfd_section)
1512 {
1513 /* We have found a connection from the input section to the
1514 output section. Attempt to copy the header fields. If
1515 this fails then do not try any further sections - there
1516 should only be a one-to-one mapping between input and output. */
1517 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1518 j = elf_numsections (ibfd);
1519 break;
1520 }
1521 }
1522
1523 if (j < elf_numsections (ibfd))
1524 continue;
1525
1526 /* That failed. So try to deduce the corresponding input section.
1527 Unfortunately we cannot compare names as the output string table
1528 is empty, so instead we check size, address and type. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 /* Try matching fields in the input section's header.
1537 Since --only-keep-debug turns all non-debug sections into
1538 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1539 input type. */
1540 if ((oheader->sh_type == SHT_NOBITS
1541 || iheader->sh_type == oheader->sh_type)
1542 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1543 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1544 && iheader->sh_addralign == oheader->sh_addralign
1545 && iheader->sh_entsize == oheader->sh_entsize
1546 && iheader->sh_size == oheader->sh_size
1547 && iheader->sh_addr == oheader->sh_addr
1548 && (iheader->sh_info != oheader->sh_info
1549 || iheader->sh_link != oheader->sh_link))
1550 {
1551 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1552 break;
1553 }
1554 }
1555
1556 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1557 {
1558 /* Final attempt. Call the backend copy function
1559 with a NULL input section. */
1560 if (bed->elf_backend_copy_special_section_fields != NULL)
1561 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1562 }
1563 }
1564
1565 return TRUE;
1566 }
1567
1568 static const char *
1569 get_segment_type (unsigned int p_type)
1570 {
1571 const char *pt;
1572 switch (p_type)
1573 {
1574 case PT_NULL: pt = "NULL"; break;
1575 case PT_LOAD: pt = "LOAD"; break;
1576 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1577 case PT_INTERP: pt = "INTERP"; break;
1578 case PT_NOTE: pt = "NOTE"; break;
1579 case PT_SHLIB: pt = "SHLIB"; break;
1580 case PT_PHDR: pt = "PHDR"; break;
1581 case PT_TLS: pt = "TLS"; break;
1582 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1583 case PT_GNU_STACK: pt = "STACK"; break;
1584 case PT_GNU_RELRO: pt = "RELRO"; break;
1585 default: pt = NULL; break;
1586 }
1587 return pt;
1588 }
1589
1590 /* Print out the program headers. */
1591
1592 bfd_boolean
1593 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1594 {
1595 FILE *f = (FILE *) farg;
1596 Elf_Internal_Phdr *p;
1597 asection *s;
1598 bfd_byte *dynbuf = NULL;
1599
1600 p = elf_tdata (abfd)->phdr;
1601 if (p != NULL)
1602 {
1603 unsigned int i, c;
1604
1605 fprintf (f, _("\nProgram Header:\n"));
1606 c = elf_elfheader (abfd)->e_phnum;
1607 for (i = 0; i < c; i++, p++)
1608 {
1609 const char *pt = get_segment_type (p->p_type);
1610 char buf[20];
1611
1612 if (pt == NULL)
1613 {
1614 sprintf (buf, "0x%lx", p->p_type);
1615 pt = buf;
1616 }
1617 fprintf (f, "%8s off 0x", pt);
1618 bfd_fprintf_vma (abfd, f, p->p_offset);
1619 fprintf (f, " vaddr 0x");
1620 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1621 fprintf (f, " paddr 0x");
1622 bfd_fprintf_vma (abfd, f, p->p_paddr);
1623 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1624 fprintf (f, " filesz 0x");
1625 bfd_fprintf_vma (abfd, f, p->p_filesz);
1626 fprintf (f, " memsz 0x");
1627 bfd_fprintf_vma (abfd, f, p->p_memsz);
1628 fprintf (f, " flags %c%c%c",
1629 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1630 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1631 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1632 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1633 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1634 fprintf (f, "\n");
1635 }
1636 }
1637
1638 s = bfd_get_section_by_name (abfd, ".dynamic");
1639 if (s != NULL)
1640 {
1641 unsigned int elfsec;
1642 unsigned long shlink;
1643 bfd_byte *extdyn, *extdynend;
1644 size_t extdynsize;
1645 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1646
1647 fprintf (f, _("\nDynamic Section:\n"));
1648
1649 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1650 goto error_return;
1651
1652 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1653 if (elfsec == SHN_BAD)
1654 goto error_return;
1655 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1656
1657 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1658 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1659
1660 extdyn = dynbuf;
1661 /* PR 17512: file: 6f427532. */
1662 if (s->size < extdynsize)
1663 goto error_return;
1664 extdynend = extdyn + s->size;
1665 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1666 Fix range check. */
1667 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1668 {
1669 Elf_Internal_Dyn dyn;
1670 const char *name = "";
1671 char ab[20];
1672 bfd_boolean stringp;
1673 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1674
1675 (*swap_dyn_in) (abfd, extdyn, &dyn);
1676
1677 if (dyn.d_tag == DT_NULL)
1678 break;
1679
1680 stringp = FALSE;
1681 switch (dyn.d_tag)
1682 {
1683 default:
1684 if (bed->elf_backend_get_target_dtag)
1685 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1686
1687 if (!strcmp (name, ""))
1688 {
1689 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1690 name = ab;
1691 }
1692 break;
1693
1694 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1695 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1696 case DT_PLTGOT: name = "PLTGOT"; break;
1697 case DT_HASH: name = "HASH"; break;
1698 case DT_STRTAB: name = "STRTAB"; break;
1699 case DT_SYMTAB: name = "SYMTAB"; break;
1700 case DT_RELA: name = "RELA"; break;
1701 case DT_RELASZ: name = "RELASZ"; break;
1702 case DT_RELAENT: name = "RELAENT"; break;
1703 case DT_STRSZ: name = "STRSZ"; break;
1704 case DT_SYMENT: name = "SYMENT"; break;
1705 case DT_INIT: name = "INIT"; break;
1706 case DT_FINI: name = "FINI"; break;
1707 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1708 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1709 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1710 case DT_REL: name = "REL"; break;
1711 case DT_RELSZ: name = "RELSZ"; break;
1712 case DT_RELENT: name = "RELENT"; break;
1713 case DT_PLTREL: name = "PLTREL"; break;
1714 case DT_DEBUG: name = "DEBUG"; break;
1715 case DT_TEXTREL: name = "TEXTREL"; break;
1716 case DT_JMPREL: name = "JMPREL"; break;
1717 case DT_BIND_NOW: name = "BIND_NOW"; break;
1718 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1719 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1720 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1721 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1722 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1723 case DT_FLAGS: name = "FLAGS"; break;
1724 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1725 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1726 case DT_CHECKSUM: name = "CHECKSUM"; break;
1727 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1728 case DT_MOVEENT: name = "MOVEENT"; break;
1729 case DT_MOVESZ: name = "MOVESZ"; break;
1730 case DT_FEATURE: name = "FEATURE"; break;
1731 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1732 case DT_SYMINSZ: name = "SYMINSZ"; break;
1733 case DT_SYMINENT: name = "SYMINENT"; break;
1734 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1735 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1736 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1737 case DT_PLTPAD: name = "PLTPAD"; break;
1738 case DT_MOVETAB: name = "MOVETAB"; break;
1739 case DT_SYMINFO: name = "SYMINFO"; break;
1740 case DT_RELACOUNT: name = "RELACOUNT"; break;
1741 case DT_RELCOUNT: name = "RELCOUNT"; break;
1742 case DT_FLAGS_1: name = "FLAGS_1"; break;
1743 case DT_VERSYM: name = "VERSYM"; break;
1744 case DT_VERDEF: name = "VERDEF"; break;
1745 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1746 case DT_VERNEED: name = "VERNEED"; break;
1747 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1748 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1749 case DT_USED: name = "USED"; break;
1750 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1751 case DT_GNU_HASH: name = "GNU_HASH"; break;
1752 }
1753
1754 fprintf (f, " %-20s ", name);
1755 if (! stringp)
1756 {
1757 fprintf (f, "0x");
1758 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1759 }
1760 else
1761 {
1762 const char *string;
1763 unsigned int tagv = dyn.d_un.d_val;
1764
1765 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1766 if (string == NULL)
1767 goto error_return;
1768 fprintf (f, "%s", string);
1769 }
1770 fprintf (f, "\n");
1771 }
1772
1773 free (dynbuf);
1774 dynbuf = NULL;
1775 }
1776
1777 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1778 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1779 {
1780 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1781 return FALSE;
1782 }
1783
1784 if (elf_dynverdef (abfd) != 0)
1785 {
1786 Elf_Internal_Verdef *t;
1787
1788 fprintf (f, _("\nVersion definitions:\n"));
1789 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1790 {
1791 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1792 t->vd_flags, t->vd_hash,
1793 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1794 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1795 {
1796 Elf_Internal_Verdaux *a;
1797
1798 fprintf (f, "\t");
1799 for (a = t->vd_auxptr->vda_nextptr;
1800 a != NULL;
1801 a = a->vda_nextptr)
1802 fprintf (f, "%s ",
1803 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1804 fprintf (f, "\n");
1805 }
1806 }
1807 }
1808
1809 if (elf_dynverref (abfd) != 0)
1810 {
1811 Elf_Internal_Verneed *t;
1812
1813 fprintf (f, _("\nVersion References:\n"));
1814 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1815 {
1816 Elf_Internal_Vernaux *a;
1817
1818 fprintf (f, _(" required from %s:\n"),
1819 t->vn_filename ? t->vn_filename : "<corrupt>");
1820 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1821 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1822 a->vna_flags, a->vna_other,
1823 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1824 }
1825 }
1826
1827 return TRUE;
1828
1829 error_return:
1830 if (dynbuf != NULL)
1831 free (dynbuf);
1832 return FALSE;
1833 }
1834
1835 /* Get version string. */
1836
1837 const char *
1838 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1839 bfd_boolean *hidden)
1840 {
1841 const char *version_string = NULL;
1842 if (elf_dynversym (abfd) != 0
1843 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1844 {
1845 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1846
1847 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1848 vernum &= VERSYM_VERSION;
1849
1850 if (vernum == 0)
1851 version_string = "";
1852 else if (vernum == 1)
1853 version_string = "Base";
1854 else if (vernum <= elf_tdata (abfd)->cverdefs)
1855 version_string =
1856 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1857 else
1858 {
1859 Elf_Internal_Verneed *t;
1860
1861 version_string = "";
1862 for (t = elf_tdata (abfd)->verref;
1863 t != NULL;
1864 t = t->vn_nextref)
1865 {
1866 Elf_Internal_Vernaux *a;
1867
1868 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1869 {
1870 if (a->vna_other == vernum)
1871 {
1872 version_string = a->vna_nodename;
1873 break;
1874 }
1875 }
1876 }
1877 }
1878 }
1879 return version_string;
1880 }
1881
1882 /* Display ELF-specific fields of a symbol. */
1883
1884 void
1885 bfd_elf_print_symbol (bfd *abfd,
1886 void *filep,
1887 asymbol *symbol,
1888 bfd_print_symbol_type how)
1889 {
1890 FILE *file = (FILE *) filep;
1891 switch (how)
1892 {
1893 case bfd_print_symbol_name:
1894 fprintf (file, "%s", symbol->name);
1895 break;
1896 case bfd_print_symbol_more:
1897 fprintf (file, "elf ");
1898 bfd_fprintf_vma (abfd, file, symbol->value);
1899 fprintf (file, " %x", symbol->flags);
1900 break;
1901 case bfd_print_symbol_all:
1902 {
1903 const char *section_name;
1904 const char *name = NULL;
1905 const struct elf_backend_data *bed;
1906 unsigned char st_other;
1907 bfd_vma val;
1908 const char *version_string;
1909 bfd_boolean hidden;
1910
1911 section_name = symbol->section ? symbol->section->name : "(*none*)";
1912
1913 bed = get_elf_backend_data (abfd);
1914 if (bed->elf_backend_print_symbol_all)
1915 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1916
1917 if (name == NULL)
1918 {
1919 name = symbol->name;
1920 bfd_print_symbol_vandf (abfd, file, symbol);
1921 }
1922
1923 fprintf (file, " %s\t", section_name);
1924 /* Print the "other" value for a symbol. For common symbols,
1925 we've already printed the size; now print the alignment.
1926 For other symbols, we have no specified alignment, and
1927 we've printed the address; now print the size. */
1928 if (symbol->section && bfd_is_com_section (symbol->section))
1929 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1930 else
1931 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1932 bfd_fprintf_vma (abfd, file, val);
1933
1934 /* If we have version information, print it. */
1935 version_string = _bfd_elf_get_symbol_version_string (abfd,
1936 symbol,
1937 &hidden);
1938 if (version_string)
1939 {
1940 if (!hidden)
1941 fprintf (file, " %-11s", version_string);
1942 else
1943 {
1944 int i;
1945
1946 fprintf (file, " (%s)", version_string);
1947 for (i = 10 - strlen (version_string); i > 0; --i)
1948 putc (' ', file);
1949 }
1950 }
1951
1952 /* If the st_other field is not zero, print it. */
1953 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1954
1955 switch (st_other)
1956 {
1957 case 0: break;
1958 case STV_INTERNAL: fprintf (file, " .internal"); break;
1959 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1960 case STV_PROTECTED: fprintf (file, " .protected"); break;
1961 default:
1962 /* Some other non-defined flags are also present, so print
1963 everything hex. */
1964 fprintf (file, " 0x%02x", (unsigned int) st_other);
1965 }
1966
1967 fprintf (file, " %s", name);
1968 }
1969 break;
1970 }
1971 }
1972 \f
1973 /* ELF .o/exec file reading */
1974
1975 /* Create a new bfd section from an ELF section header. */
1976
1977 bfd_boolean
1978 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1979 {
1980 Elf_Internal_Shdr *hdr;
1981 Elf_Internal_Ehdr *ehdr;
1982 const struct elf_backend_data *bed;
1983 const char *name;
1984 bfd_boolean ret = TRUE;
1985 static bfd_boolean * sections_being_created = NULL;
1986 static bfd * sections_being_created_abfd = NULL;
1987 static unsigned int nesting = 0;
1988
1989 if (shindex >= elf_numsections (abfd))
1990 return FALSE;
1991
1992 if (++ nesting > 3)
1993 {
1994 /* PR17512: A corrupt ELF binary might contain a recursive group of
1995 sections, with each the string indicies pointing to the next in the
1996 loop. Detect this here, by refusing to load a section that we are
1997 already in the process of loading. We only trigger this test if
1998 we have nested at least three sections deep as normal ELF binaries
1999 can expect to recurse at least once.
2000
2001 FIXME: It would be better if this array was attached to the bfd,
2002 rather than being held in a static pointer. */
2003
2004 if (sections_being_created_abfd != abfd)
2005 sections_being_created = NULL;
2006 if (sections_being_created == NULL)
2007 {
2008 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2009 sections_being_created = (bfd_boolean *)
2010 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2011 sections_being_created_abfd = abfd;
2012 }
2013 if (sections_being_created [shindex])
2014 {
2015 _bfd_error_handler
2016 (_("%B: warning: loop in section dependencies detected"), abfd);
2017 return FALSE;
2018 }
2019 sections_being_created [shindex] = TRUE;
2020 }
2021
2022 hdr = elf_elfsections (abfd)[shindex];
2023 ehdr = elf_elfheader (abfd);
2024 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2025 hdr->sh_name);
2026 if (name == NULL)
2027 goto fail;
2028
2029 bed = get_elf_backend_data (abfd);
2030 switch (hdr->sh_type)
2031 {
2032 case SHT_NULL:
2033 /* Inactive section. Throw it away. */
2034 goto success;
2035
2036 case SHT_PROGBITS: /* Normal section with contents. */
2037 case SHT_NOBITS: /* .bss section. */
2038 case SHT_HASH: /* .hash section. */
2039 case SHT_NOTE: /* .note section. */
2040 case SHT_INIT_ARRAY: /* .init_array section. */
2041 case SHT_FINI_ARRAY: /* .fini_array section. */
2042 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2043 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2044 case SHT_GNU_HASH: /* .gnu.hash section. */
2045 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2046 goto success;
2047
2048 case SHT_DYNAMIC: /* Dynamic linking information. */
2049 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2050 goto fail;
2051
2052 if (hdr->sh_link > elf_numsections (abfd))
2053 {
2054 /* PR 10478: Accept Solaris binaries with a sh_link
2055 field set to SHN_BEFORE or SHN_AFTER. */
2056 switch (bfd_get_arch (abfd))
2057 {
2058 case bfd_arch_i386:
2059 case bfd_arch_sparc:
2060 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2061 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2062 break;
2063 /* Otherwise fall through. */
2064 default:
2065 goto fail;
2066 }
2067 }
2068 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2069 goto fail;
2070 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2071 {
2072 Elf_Internal_Shdr *dynsymhdr;
2073
2074 /* The shared libraries distributed with hpux11 have a bogus
2075 sh_link field for the ".dynamic" section. Find the
2076 string table for the ".dynsym" section instead. */
2077 if (elf_dynsymtab (abfd) != 0)
2078 {
2079 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2080 hdr->sh_link = dynsymhdr->sh_link;
2081 }
2082 else
2083 {
2084 unsigned int i, num_sec;
2085
2086 num_sec = elf_numsections (abfd);
2087 for (i = 1; i < num_sec; i++)
2088 {
2089 dynsymhdr = elf_elfsections (abfd)[i];
2090 if (dynsymhdr->sh_type == SHT_DYNSYM)
2091 {
2092 hdr->sh_link = dynsymhdr->sh_link;
2093 break;
2094 }
2095 }
2096 }
2097 }
2098 goto success;
2099
2100 case SHT_SYMTAB: /* A symbol table. */
2101 if (elf_onesymtab (abfd) == shindex)
2102 goto success;
2103
2104 if (hdr->sh_entsize != bed->s->sizeof_sym)
2105 goto fail;
2106
2107 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2108 {
2109 if (hdr->sh_size != 0)
2110 goto fail;
2111 /* Some assemblers erroneously set sh_info to one with a
2112 zero sh_size. ld sees this as a global symbol count
2113 of (unsigned) -1. Fix it here. */
2114 hdr->sh_info = 0;
2115 goto success;
2116 }
2117
2118 /* PR 18854: A binary might contain more than one symbol table.
2119 Unusual, but possible. Warn, but continue. */
2120 if (elf_onesymtab (abfd) != 0)
2121 {
2122 _bfd_error_handler
2123 /* xgettext:c-format */
2124 (_("%B: warning: multiple symbol tables detected"
2125 " - ignoring the table in section %u"),
2126 abfd, shindex);
2127 goto success;
2128 }
2129 elf_onesymtab (abfd) = shindex;
2130 elf_symtab_hdr (abfd) = *hdr;
2131 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2132 abfd->flags |= HAS_SYMS;
2133
2134 /* Sometimes a shared object will map in the symbol table. If
2135 SHF_ALLOC is set, and this is a shared object, then we also
2136 treat this section as a BFD section. We can not base the
2137 decision purely on SHF_ALLOC, because that flag is sometimes
2138 set in a relocatable object file, which would confuse the
2139 linker. */
2140 if ((hdr->sh_flags & SHF_ALLOC) != 0
2141 && (abfd->flags & DYNAMIC) != 0
2142 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2143 shindex))
2144 goto fail;
2145
2146 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2147 can't read symbols without that section loaded as well. It
2148 is most likely specified by the next section header. */
2149 {
2150 elf_section_list * entry;
2151 unsigned int i, num_sec;
2152
2153 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2154 if (entry->hdr.sh_link == shindex)
2155 goto success;
2156
2157 num_sec = elf_numsections (abfd);
2158 for (i = shindex + 1; i < num_sec; i++)
2159 {
2160 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2161
2162 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2163 && hdr2->sh_link == shindex)
2164 break;
2165 }
2166
2167 if (i == num_sec)
2168 for (i = 1; i < shindex; i++)
2169 {
2170 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2171
2172 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2173 && hdr2->sh_link == shindex)
2174 break;
2175 }
2176
2177 if (i != shindex)
2178 ret = bfd_section_from_shdr (abfd, i);
2179 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2180 goto success;
2181 }
2182
2183 case SHT_DYNSYM: /* A dynamic symbol table. */
2184 if (elf_dynsymtab (abfd) == shindex)
2185 goto success;
2186
2187 if (hdr->sh_entsize != bed->s->sizeof_sym)
2188 goto fail;
2189
2190 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2191 {
2192 if (hdr->sh_size != 0)
2193 goto fail;
2194
2195 /* Some linkers erroneously set sh_info to one with a
2196 zero sh_size. ld sees this as a global symbol count
2197 of (unsigned) -1. Fix it here. */
2198 hdr->sh_info = 0;
2199 goto success;
2200 }
2201
2202 /* PR 18854: A binary might contain more than one dynamic symbol table.
2203 Unusual, but possible. Warn, but continue. */
2204 if (elf_dynsymtab (abfd) != 0)
2205 {
2206 _bfd_error_handler
2207 /* xgettext:c-format */
2208 (_("%B: warning: multiple dynamic symbol tables detected"
2209 " - ignoring the table in section %u"),
2210 abfd, shindex);
2211 goto success;
2212 }
2213 elf_dynsymtab (abfd) = shindex;
2214 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2215 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2216 abfd->flags |= HAS_SYMS;
2217
2218 /* Besides being a symbol table, we also treat this as a regular
2219 section, so that objcopy can handle it. */
2220 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2221 goto success;
2222
2223 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2224 {
2225 elf_section_list * entry;
2226
2227 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2228 if (entry->ndx == shindex)
2229 goto success;
2230
2231 entry = bfd_alloc (abfd, sizeof * entry);
2232 if (entry == NULL)
2233 goto fail;
2234 entry->ndx = shindex;
2235 entry->hdr = * hdr;
2236 entry->next = elf_symtab_shndx_list (abfd);
2237 elf_symtab_shndx_list (abfd) = entry;
2238 elf_elfsections (abfd)[shindex] = & entry->hdr;
2239 goto success;
2240 }
2241
2242 case SHT_STRTAB: /* A string table. */
2243 if (hdr->bfd_section != NULL)
2244 goto success;
2245
2246 if (ehdr->e_shstrndx == shindex)
2247 {
2248 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2249 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2250 goto success;
2251 }
2252
2253 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2254 {
2255 symtab_strtab:
2256 elf_tdata (abfd)->strtab_hdr = *hdr;
2257 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2258 goto success;
2259 }
2260
2261 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2262 {
2263 dynsymtab_strtab:
2264 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2265 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2266 elf_elfsections (abfd)[shindex] = hdr;
2267 /* We also treat this as a regular section, so that objcopy
2268 can handle it. */
2269 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2270 shindex);
2271 goto success;
2272 }
2273
2274 /* If the string table isn't one of the above, then treat it as a
2275 regular section. We need to scan all the headers to be sure,
2276 just in case this strtab section appeared before the above. */
2277 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2278 {
2279 unsigned int i, num_sec;
2280
2281 num_sec = elf_numsections (abfd);
2282 for (i = 1; i < num_sec; i++)
2283 {
2284 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2285 if (hdr2->sh_link == shindex)
2286 {
2287 /* Prevent endless recursion on broken objects. */
2288 if (i == shindex)
2289 goto fail;
2290 if (! bfd_section_from_shdr (abfd, i))
2291 goto fail;
2292 if (elf_onesymtab (abfd) == i)
2293 goto symtab_strtab;
2294 if (elf_dynsymtab (abfd) == i)
2295 goto dynsymtab_strtab;
2296 }
2297 }
2298 }
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2300 goto success;
2301
2302 case SHT_REL:
2303 case SHT_RELA:
2304 /* *These* do a lot of work -- but build no sections! */
2305 {
2306 asection *target_sect;
2307 Elf_Internal_Shdr *hdr2, **p_hdr;
2308 unsigned int num_sec = elf_numsections (abfd);
2309 struct bfd_elf_section_data *esdt;
2310
2311 if (hdr->sh_entsize
2312 != (bfd_size_type) (hdr->sh_type == SHT_REL
2313 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2314 goto fail;
2315
2316 /* Check for a bogus link to avoid crashing. */
2317 if (hdr->sh_link >= num_sec)
2318 {
2319 _bfd_error_handler
2320 /* xgettext:c-format */
2321 (_("%B: invalid link %u for reloc section %s (index %u)"),
2322 abfd, hdr->sh_link, name, shindex);
2323 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2324 shindex);
2325 goto success;
2326 }
2327
2328 /* For some incomprehensible reason Oracle distributes
2329 libraries for Solaris in which some of the objects have
2330 bogus sh_link fields. It would be nice if we could just
2331 reject them, but, unfortunately, some people need to use
2332 them. We scan through the section headers; if we find only
2333 one suitable symbol table, we clobber the sh_link to point
2334 to it. I hope this doesn't break anything.
2335
2336 Don't do it on executable nor shared library. */
2337 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2338 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2339 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2340 {
2341 unsigned int scan;
2342 int found;
2343
2344 found = 0;
2345 for (scan = 1; scan < num_sec; scan++)
2346 {
2347 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2348 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2349 {
2350 if (found != 0)
2351 {
2352 found = 0;
2353 break;
2354 }
2355 found = scan;
2356 }
2357 }
2358 if (found != 0)
2359 hdr->sh_link = found;
2360 }
2361
2362 /* Get the symbol table. */
2363 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2364 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2365 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2366 goto fail;
2367
2368 /* If this reloc section does not use the main symbol table we
2369 don't treat it as a reloc section. BFD can't adequately
2370 represent such a section, so at least for now, we don't
2371 try. We just present it as a normal section. We also
2372 can't use it as a reloc section if it points to the null
2373 section, an invalid section, another reloc section, or its
2374 sh_link points to the null section. */
2375 if (hdr->sh_link != elf_onesymtab (abfd)
2376 || hdr->sh_link == SHN_UNDEF
2377 || hdr->sh_info == SHN_UNDEF
2378 || hdr->sh_info >= num_sec
2379 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2380 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2381 {
2382 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2383 shindex);
2384 goto success;
2385 }
2386
2387 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2388 goto fail;
2389
2390 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2391 if (target_sect == NULL)
2392 goto fail;
2393
2394 esdt = elf_section_data (target_sect);
2395 if (hdr->sh_type == SHT_RELA)
2396 p_hdr = &esdt->rela.hdr;
2397 else
2398 p_hdr = &esdt->rel.hdr;
2399
2400 /* PR 17512: file: 0b4f81b7. */
2401 if (*p_hdr != NULL)
2402 goto fail;
2403 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2404 if (hdr2 == NULL)
2405 goto fail;
2406 *hdr2 = *hdr;
2407 *p_hdr = hdr2;
2408 elf_elfsections (abfd)[shindex] = hdr2;
2409 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2410 * bed->s->int_rels_per_ext_rel);
2411 target_sect->flags |= SEC_RELOC;
2412 target_sect->relocation = NULL;
2413 target_sect->rel_filepos = hdr->sh_offset;
2414 /* In the section to which the relocations apply, mark whether
2415 its relocations are of the REL or RELA variety. */
2416 if (hdr->sh_size != 0)
2417 {
2418 if (hdr->sh_type == SHT_RELA)
2419 target_sect->use_rela_p = 1;
2420 }
2421 abfd->flags |= HAS_RELOC;
2422 goto success;
2423 }
2424
2425 case SHT_GNU_verdef:
2426 elf_dynverdef (abfd) = shindex;
2427 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2428 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2429 goto success;
2430
2431 case SHT_GNU_versym:
2432 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2433 goto fail;
2434
2435 elf_dynversym (abfd) = shindex;
2436 elf_tdata (abfd)->dynversym_hdr = *hdr;
2437 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2438 goto success;
2439
2440 case SHT_GNU_verneed:
2441 elf_dynverref (abfd) = shindex;
2442 elf_tdata (abfd)->dynverref_hdr = *hdr;
2443 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2444 goto success;
2445
2446 case SHT_SHLIB:
2447 goto success;
2448
2449 case SHT_GROUP:
2450 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2451 goto fail;
2452
2453 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2454 goto fail;
2455
2456 goto success;
2457
2458 default:
2459 /* Possibly an attributes section. */
2460 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2461 || hdr->sh_type == bed->obj_attrs_section_type)
2462 {
2463 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2464 goto fail;
2465 _bfd_elf_parse_attributes (abfd, hdr);
2466 goto success;
2467 }
2468
2469 /* Check for any processor-specific section types. */
2470 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2471 goto success;
2472
2473 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2474 {
2475 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2476 /* FIXME: How to properly handle allocated section reserved
2477 for applications? */
2478 _bfd_error_handler
2479 /* xgettext:c-format */
2480 (_("%B: unknown type [%#x] section `%s'"),
2481 abfd, hdr->sh_type, name);
2482 else
2483 {
2484 /* Allow sections reserved for applications. */
2485 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2486 shindex);
2487 goto success;
2488 }
2489 }
2490 else if (hdr->sh_type >= SHT_LOPROC
2491 && hdr->sh_type <= SHT_HIPROC)
2492 /* FIXME: We should handle this section. */
2493 _bfd_error_handler
2494 /* xgettext:c-format */
2495 (_("%B: unknown type [%#x] section `%s'"),
2496 abfd, hdr->sh_type, name);
2497 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2498 {
2499 /* Unrecognised OS-specific sections. */
2500 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2501 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2502 required to correctly process the section and the file should
2503 be rejected with an error message. */
2504 _bfd_error_handler
2505 /* xgettext:c-format */
2506 (_("%B: unknown type [%#x] section `%s'"),
2507 abfd, hdr->sh_type, name);
2508 else
2509 {
2510 /* Otherwise it should be processed. */
2511 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2512 goto success;
2513 }
2514 }
2515 else
2516 /* FIXME: We should handle this section. */
2517 _bfd_error_handler
2518 /* xgettext:c-format */
2519 (_("%B: unknown type [%#x] section `%s'"),
2520 abfd, hdr->sh_type, name);
2521
2522 goto fail;
2523 }
2524
2525 fail:
2526 ret = FALSE;
2527 success:
2528 if (sections_being_created && sections_being_created_abfd == abfd)
2529 sections_being_created [shindex] = FALSE;
2530 if (-- nesting == 0)
2531 {
2532 sections_being_created = NULL;
2533 sections_being_created_abfd = abfd;
2534 }
2535 return ret;
2536 }
2537
2538 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2539
2540 Elf_Internal_Sym *
2541 bfd_sym_from_r_symndx (struct sym_cache *cache,
2542 bfd *abfd,
2543 unsigned long r_symndx)
2544 {
2545 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2546
2547 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2548 {
2549 Elf_Internal_Shdr *symtab_hdr;
2550 unsigned char esym[sizeof (Elf64_External_Sym)];
2551 Elf_External_Sym_Shndx eshndx;
2552
2553 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2554 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2555 &cache->sym[ent], esym, &eshndx) == NULL)
2556 return NULL;
2557
2558 if (cache->abfd != abfd)
2559 {
2560 memset (cache->indx, -1, sizeof (cache->indx));
2561 cache->abfd = abfd;
2562 }
2563 cache->indx[ent] = r_symndx;
2564 }
2565
2566 return &cache->sym[ent];
2567 }
2568
2569 /* Given an ELF section number, retrieve the corresponding BFD
2570 section. */
2571
2572 asection *
2573 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2574 {
2575 if (sec_index >= elf_numsections (abfd))
2576 return NULL;
2577 return elf_elfsections (abfd)[sec_index]->bfd_section;
2578 }
2579
2580 static const struct bfd_elf_special_section special_sections_b[] =
2581 {
2582 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2583 { NULL, 0, 0, 0, 0 }
2584 };
2585
2586 static const struct bfd_elf_special_section special_sections_c[] =
2587 {
2588 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2589 { NULL, 0, 0, 0, 0 }
2590 };
2591
2592 static const struct bfd_elf_special_section special_sections_d[] =
2593 {
2594 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2595 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2596 /* There are more DWARF sections than these, but they needn't be added here
2597 unless you have to cope with broken compilers that don't emit section
2598 attributes or you want to help the user writing assembler. */
2599 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2600 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2601 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2602 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2603 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2604 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2605 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2606 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2607 { NULL, 0, 0, 0, 0 }
2608 };
2609
2610 static const struct bfd_elf_special_section special_sections_f[] =
2611 {
2612 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2613 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2614 { NULL, 0 , 0, 0, 0 }
2615 };
2616
2617 static const struct bfd_elf_special_section special_sections_g[] =
2618 {
2619 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2620 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2621 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2622 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2623 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2624 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2625 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2626 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2627 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2628 { NULL, 0, 0, 0, 0 }
2629 };
2630
2631 static const struct bfd_elf_special_section special_sections_h[] =
2632 {
2633 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2634 { NULL, 0, 0, 0, 0 }
2635 };
2636
2637 static const struct bfd_elf_special_section special_sections_i[] =
2638 {
2639 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2640 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2641 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2642 { NULL, 0, 0, 0, 0 }
2643 };
2644
2645 static const struct bfd_elf_special_section special_sections_l[] =
2646 {
2647 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2648 { NULL, 0, 0, 0, 0 }
2649 };
2650
2651 static const struct bfd_elf_special_section special_sections_n[] =
2652 {
2653 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2654 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2655 { NULL, 0, 0, 0, 0 }
2656 };
2657
2658 static const struct bfd_elf_special_section special_sections_p[] =
2659 {
2660 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2661 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2662 { NULL, 0, 0, 0, 0 }
2663 };
2664
2665 static const struct bfd_elf_special_section special_sections_r[] =
2666 {
2667 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2668 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2669 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2670 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2671 { NULL, 0, 0, 0, 0 }
2672 };
2673
2674 static const struct bfd_elf_special_section special_sections_s[] =
2675 {
2676 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2677 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2678 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2679 /* See struct bfd_elf_special_section declaration for the semantics of
2680 this special case where .prefix_length != strlen (.prefix). */
2681 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section special_sections_t[] =
2686 {
2687 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2688 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2689 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2690 { NULL, 0, 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_z[] =
2694 {
2695 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2696 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2697 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2698 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2699 { NULL, 0, 0, 0, 0 }
2700 };
2701
2702 static const struct bfd_elf_special_section * const special_sections[] =
2703 {
2704 special_sections_b, /* 'b' */
2705 special_sections_c, /* 'c' */
2706 special_sections_d, /* 'd' */
2707 NULL, /* 'e' */
2708 special_sections_f, /* 'f' */
2709 special_sections_g, /* 'g' */
2710 special_sections_h, /* 'h' */
2711 special_sections_i, /* 'i' */
2712 NULL, /* 'j' */
2713 NULL, /* 'k' */
2714 special_sections_l, /* 'l' */
2715 NULL, /* 'm' */
2716 special_sections_n, /* 'n' */
2717 NULL, /* 'o' */
2718 special_sections_p, /* 'p' */
2719 NULL, /* 'q' */
2720 special_sections_r, /* 'r' */
2721 special_sections_s, /* 's' */
2722 special_sections_t, /* 't' */
2723 NULL, /* 'u' */
2724 NULL, /* 'v' */
2725 NULL, /* 'w' */
2726 NULL, /* 'x' */
2727 NULL, /* 'y' */
2728 special_sections_z /* 'z' */
2729 };
2730
2731 const struct bfd_elf_special_section *
2732 _bfd_elf_get_special_section (const char *name,
2733 const struct bfd_elf_special_section *spec,
2734 unsigned int rela)
2735 {
2736 int i;
2737 int len;
2738
2739 len = strlen (name);
2740
2741 for (i = 0; spec[i].prefix != NULL; i++)
2742 {
2743 int suffix_len;
2744 int prefix_len = spec[i].prefix_length;
2745
2746 if (len < prefix_len)
2747 continue;
2748 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2749 continue;
2750
2751 suffix_len = spec[i].suffix_length;
2752 if (suffix_len <= 0)
2753 {
2754 if (name[prefix_len] != 0)
2755 {
2756 if (suffix_len == 0)
2757 continue;
2758 if (name[prefix_len] != '.'
2759 && (suffix_len == -2
2760 || (rela && spec[i].type == SHT_REL)))
2761 continue;
2762 }
2763 }
2764 else
2765 {
2766 if (len < prefix_len + suffix_len)
2767 continue;
2768 if (memcmp (name + len - suffix_len,
2769 spec[i].prefix + prefix_len,
2770 suffix_len) != 0)
2771 continue;
2772 }
2773 return &spec[i];
2774 }
2775
2776 return NULL;
2777 }
2778
2779 const struct bfd_elf_special_section *
2780 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2781 {
2782 int i;
2783 const struct bfd_elf_special_section *spec;
2784 const struct elf_backend_data *bed;
2785
2786 /* See if this is one of the special sections. */
2787 if (sec->name == NULL)
2788 return NULL;
2789
2790 bed = get_elf_backend_data (abfd);
2791 spec = bed->special_sections;
2792 if (spec)
2793 {
2794 spec = _bfd_elf_get_special_section (sec->name,
2795 bed->special_sections,
2796 sec->use_rela_p);
2797 if (spec != NULL)
2798 return spec;
2799 }
2800
2801 if (sec->name[0] != '.')
2802 return NULL;
2803
2804 i = sec->name[1] - 'b';
2805 if (i < 0 || i > 'z' - 'b')
2806 return NULL;
2807
2808 spec = special_sections[i];
2809
2810 if (spec == NULL)
2811 return NULL;
2812
2813 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2814 }
2815
2816 bfd_boolean
2817 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2818 {
2819 struct bfd_elf_section_data *sdata;
2820 const struct elf_backend_data *bed;
2821 const struct bfd_elf_special_section *ssect;
2822
2823 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2824 if (sdata == NULL)
2825 {
2826 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2827 sizeof (*sdata));
2828 if (sdata == NULL)
2829 return FALSE;
2830 sec->used_by_bfd = sdata;
2831 }
2832
2833 /* Indicate whether or not this section should use RELA relocations. */
2834 bed = get_elf_backend_data (abfd);
2835 sec->use_rela_p = bed->default_use_rela_p;
2836
2837 /* When we read a file, we don't need to set ELF section type and
2838 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2839 anyway. We will set ELF section type and flags for all linker
2840 created sections. If user specifies BFD section flags, we will
2841 set ELF section type and flags based on BFD section flags in
2842 elf_fake_sections. Special handling for .init_array/.fini_array
2843 output sections since they may contain .ctors/.dtors input
2844 sections. We don't want _bfd_elf_init_private_section_data to
2845 copy ELF section type from .ctors/.dtors input sections. */
2846 if (abfd->direction != read_direction
2847 || (sec->flags & SEC_LINKER_CREATED) != 0)
2848 {
2849 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2850 if (ssect != NULL
2851 && (!sec->flags
2852 || (sec->flags & SEC_LINKER_CREATED) != 0
2853 || ssect->type == SHT_INIT_ARRAY
2854 || ssect->type == SHT_FINI_ARRAY))
2855 {
2856 elf_section_type (sec) = ssect->type;
2857 elf_section_flags (sec) = ssect->attr;
2858 }
2859 }
2860
2861 return _bfd_generic_new_section_hook (abfd, sec);
2862 }
2863
2864 /* Create a new bfd section from an ELF program header.
2865
2866 Since program segments have no names, we generate a synthetic name
2867 of the form segment<NUM>, where NUM is generally the index in the
2868 program header table. For segments that are split (see below) we
2869 generate the names segment<NUM>a and segment<NUM>b.
2870
2871 Note that some program segments may have a file size that is different than
2872 (less than) the memory size. All this means is that at execution the
2873 system must allocate the amount of memory specified by the memory size,
2874 but only initialize it with the first "file size" bytes read from the
2875 file. This would occur for example, with program segments consisting
2876 of combined data+bss.
2877
2878 To handle the above situation, this routine generates TWO bfd sections
2879 for the single program segment. The first has the length specified by
2880 the file size of the segment, and the second has the length specified
2881 by the difference between the two sizes. In effect, the segment is split
2882 into its initialized and uninitialized parts.
2883
2884 */
2885
2886 bfd_boolean
2887 _bfd_elf_make_section_from_phdr (bfd *abfd,
2888 Elf_Internal_Phdr *hdr,
2889 int hdr_index,
2890 const char *type_name)
2891 {
2892 asection *newsect;
2893 char *name;
2894 char namebuf[64];
2895 size_t len;
2896 int split;
2897
2898 split = ((hdr->p_memsz > 0)
2899 && (hdr->p_filesz > 0)
2900 && (hdr->p_memsz > hdr->p_filesz));
2901
2902 if (hdr->p_filesz > 0)
2903 {
2904 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2905 len = strlen (namebuf) + 1;
2906 name = (char *) bfd_alloc (abfd, len);
2907 if (!name)
2908 return FALSE;
2909 memcpy (name, namebuf, len);
2910 newsect = bfd_make_section (abfd, name);
2911 if (newsect == NULL)
2912 return FALSE;
2913 newsect->vma = hdr->p_vaddr;
2914 newsect->lma = hdr->p_paddr;
2915 newsect->size = hdr->p_filesz;
2916 newsect->filepos = hdr->p_offset;
2917 newsect->flags |= SEC_HAS_CONTENTS;
2918 newsect->alignment_power = bfd_log2 (hdr->p_align);
2919 if (hdr->p_type == PT_LOAD)
2920 {
2921 newsect->flags |= SEC_ALLOC;
2922 newsect->flags |= SEC_LOAD;
2923 if (hdr->p_flags & PF_X)
2924 {
2925 /* FIXME: all we known is that it has execute PERMISSION,
2926 may be data. */
2927 newsect->flags |= SEC_CODE;
2928 }
2929 }
2930 if (!(hdr->p_flags & PF_W))
2931 {
2932 newsect->flags |= SEC_READONLY;
2933 }
2934 }
2935
2936 if (hdr->p_memsz > hdr->p_filesz)
2937 {
2938 bfd_vma align;
2939
2940 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2941 len = strlen (namebuf) + 1;
2942 name = (char *) bfd_alloc (abfd, len);
2943 if (!name)
2944 return FALSE;
2945 memcpy (name, namebuf, len);
2946 newsect = bfd_make_section (abfd, name);
2947 if (newsect == NULL)
2948 return FALSE;
2949 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2950 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2951 newsect->size = hdr->p_memsz - hdr->p_filesz;
2952 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2953 align = newsect->vma & -newsect->vma;
2954 if (align == 0 || align > hdr->p_align)
2955 align = hdr->p_align;
2956 newsect->alignment_power = bfd_log2 (align);
2957 if (hdr->p_type == PT_LOAD)
2958 {
2959 /* Hack for gdb. Segments that have not been modified do
2960 not have their contents written to a core file, on the
2961 assumption that a debugger can find the contents in the
2962 executable. We flag this case by setting the fake
2963 section size to zero. Note that "real" bss sections will
2964 always have their contents dumped to the core file. */
2965 if (bfd_get_format (abfd) == bfd_core)
2966 newsect->size = 0;
2967 newsect->flags |= SEC_ALLOC;
2968 if (hdr->p_flags & PF_X)
2969 newsect->flags |= SEC_CODE;
2970 }
2971 if (!(hdr->p_flags & PF_W))
2972 newsect->flags |= SEC_READONLY;
2973 }
2974
2975 return TRUE;
2976 }
2977
2978 bfd_boolean
2979 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2980 {
2981 const struct elf_backend_data *bed;
2982
2983 switch (hdr->p_type)
2984 {
2985 case PT_NULL:
2986 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2987
2988 case PT_LOAD:
2989 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2990
2991 case PT_DYNAMIC:
2992 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2993
2994 case PT_INTERP:
2995 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2996
2997 case PT_NOTE:
2998 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2999 return FALSE;
3000 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
3001 return FALSE;
3002 return TRUE;
3003
3004 case PT_SHLIB:
3005 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3006
3007 case PT_PHDR:
3008 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3009
3010 case PT_GNU_EH_FRAME:
3011 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3012 "eh_frame_hdr");
3013
3014 case PT_GNU_STACK:
3015 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3016
3017 case PT_GNU_RELRO:
3018 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3019
3020 default:
3021 /* Check for any processor-specific program segment types. */
3022 bed = get_elf_backend_data (abfd);
3023 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3024 }
3025 }
3026
3027 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3028 REL or RELA. */
3029
3030 Elf_Internal_Shdr *
3031 _bfd_elf_single_rel_hdr (asection *sec)
3032 {
3033 if (elf_section_data (sec)->rel.hdr)
3034 {
3035 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3036 return elf_section_data (sec)->rel.hdr;
3037 }
3038 else
3039 return elf_section_data (sec)->rela.hdr;
3040 }
3041
3042 static bfd_boolean
3043 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3044 Elf_Internal_Shdr *rel_hdr,
3045 const char *sec_name,
3046 bfd_boolean use_rela_p)
3047 {
3048 char *name = (char *) bfd_alloc (abfd,
3049 sizeof ".rela" + strlen (sec_name));
3050 if (name == NULL)
3051 return FALSE;
3052
3053 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3054 rel_hdr->sh_name =
3055 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3056 FALSE);
3057 if (rel_hdr->sh_name == (unsigned int) -1)
3058 return FALSE;
3059
3060 return TRUE;
3061 }
3062
3063 /* Allocate and initialize a section-header for a new reloc section,
3064 containing relocations against ASECT. It is stored in RELDATA. If
3065 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3066 relocations. */
3067
3068 static bfd_boolean
3069 _bfd_elf_init_reloc_shdr (bfd *abfd,
3070 struct bfd_elf_section_reloc_data *reldata,
3071 const char *sec_name,
3072 bfd_boolean use_rela_p,
3073 bfd_boolean delay_st_name_p)
3074 {
3075 Elf_Internal_Shdr *rel_hdr;
3076 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3077
3078 BFD_ASSERT (reldata->hdr == NULL);
3079 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3080 reldata->hdr = rel_hdr;
3081
3082 if (delay_st_name_p)
3083 rel_hdr->sh_name = (unsigned int) -1;
3084 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3085 use_rela_p))
3086 return FALSE;
3087 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3088 rel_hdr->sh_entsize = (use_rela_p
3089 ? bed->s->sizeof_rela
3090 : bed->s->sizeof_rel);
3091 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3092 rel_hdr->sh_flags = 0;
3093 rel_hdr->sh_addr = 0;
3094 rel_hdr->sh_size = 0;
3095 rel_hdr->sh_offset = 0;
3096
3097 return TRUE;
3098 }
3099
3100 /* Return the default section type based on the passed in section flags. */
3101
3102 int
3103 bfd_elf_get_default_section_type (flagword flags)
3104 {
3105 if ((flags & SEC_ALLOC) != 0
3106 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3107 return SHT_NOBITS;
3108 return SHT_PROGBITS;
3109 }
3110
3111 struct fake_section_arg
3112 {
3113 struct bfd_link_info *link_info;
3114 bfd_boolean failed;
3115 };
3116
3117 /* Set up an ELF internal section header for a section. */
3118
3119 static void
3120 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3121 {
3122 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3123 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3124 struct bfd_elf_section_data *esd = elf_section_data (asect);
3125 Elf_Internal_Shdr *this_hdr;
3126 unsigned int sh_type;
3127 const char *name = asect->name;
3128 bfd_boolean delay_st_name_p = FALSE;
3129
3130 if (arg->failed)
3131 {
3132 /* We already failed; just get out of the bfd_map_over_sections
3133 loop. */
3134 return;
3135 }
3136
3137 this_hdr = &esd->this_hdr;
3138
3139 if (arg->link_info)
3140 {
3141 /* ld: compress DWARF debug sections with names: .debug_*. */
3142 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3143 && (asect->flags & SEC_DEBUGGING)
3144 && name[1] == 'd'
3145 && name[6] == '_')
3146 {
3147 /* Set SEC_ELF_COMPRESS to indicate this section should be
3148 compressed. */
3149 asect->flags |= SEC_ELF_COMPRESS;
3150
3151 /* If this section will be compressed, delay adding section
3152 name to section name section after it is compressed in
3153 _bfd_elf_assign_file_positions_for_non_load. */
3154 delay_st_name_p = TRUE;
3155 }
3156 }
3157 else if ((asect->flags & SEC_ELF_RENAME))
3158 {
3159 /* objcopy: rename output DWARF debug section. */
3160 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3161 {
3162 /* When we decompress or compress with SHF_COMPRESSED,
3163 convert section name from .zdebug_* to .debug_* if
3164 needed. */
3165 if (name[1] == 'z')
3166 {
3167 char *new_name = convert_zdebug_to_debug (abfd, name);
3168 if (new_name == NULL)
3169 {
3170 arg->failed = TRUE;
3171 return;
3172 }
3173 name = new_name;
3174 }
3175 }
3176 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3177 {
3178 /* PR binutils/18087: Compression does not always make a
3179 section smaller. So only rename the section when
3180 compression has actually taken place. If input section
3181 name is .zdebug_*, we should never compress it again. */
3182 char *new_name = convert_debug_to_zdebug (abfd, name);
3183 if (new_name == NULL)
3184 {
3185 arg->failed = TRUE;
3186 return;
3187 }
3188 BFD_ASSERT (name[1] != 'z');
3189 name = new_name;
3190 }
3191 }
3192
3193 if (delay_st_name_p)
3194 this_hdr->sh_name = (unsigned int) -1;
3195 else
3196 {
3197 this_hdr->sh_name
3198 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3199 name, FALSE);
3200 if (this_hdr->sh_name == (unsigned int) -1)
3201 {
3202 arg->failed = TRUE;
3203 return;
3204 }
3205 }
3206
3207 /* Don't clear sh_flags. Assembler may set additional bits. */
3208
3209 if ((asect->flags & SEC_ALLOC) != 0
3210 || asect->user_set_vma)
3211 this_hdr->sh_addr = asect->vma;
3212 else
3213 this_hdr->sh_addr = 0;
3214
3215 this_hdr->sh_offset = 0;
3216 this_hdr->sh_size = asect->size;
3217 this_hdr->sh_link = 0;
3218 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3219 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3220 {
3221 _bfd_error_handler
3222 /* xgettext:c-format */
3223 (_("%B: error: Alignment power %d of section `%A' is too big"),
3224 abfd, asect->alignment_power, asect);
3225 arg->failed = TRUE;
3226 return;
3227 }
3228 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3229 /* The sh_entsize and sh_info fields may have been set already by
3230 copy_private_section_data. */
3231
3232 this_hdr->bfd_section = asect;
3233 this_hdr->contents = NULL;
3234
3235 /* If the section type is unspecified, we set it based on
3236 asect->flags. */
3237 if ((asect->flags & SEC_GROUP) != 0)
3238 sh_type = SHT_GROUP;
3239 else
3240 sh_type = bfd_elf_get_default_section_type (asect->flags);
3241
3242 if (this_hdr->sh_type == SHT_NULL)
3243 this_hdr->sh_type = sh_type;
3244 else if (this_hdr->sh_type == SHT_NOBITS
3245 && sh_type == SHT_PROGBITS
3246 && (asect->flags & SEC_ALLOC) != 0)
3247 {
3248 /* Warn if we are changing a NOBITS section to PROGBITS, but
3249 allow the link to proceed. This can happen when users link
3250 non-bss input sections to bss output sections, or emit data
3251 to a bss output section via a linker script. */
3252 _bfd_error_handler
3253 (_("warning: section `%A' type changed to PROGBITS"), asect);
3254 this_hdr->sh_type = sh_type;
3255 }
3256
3257 switch (this_hdr->sh_type)
3258 {
3259 default:
3260 break;
3261
3262 case SHT_STRTAB:
3263 case SHT_NOTE:
3264 case SHT_NOBITS:
3265 case SHT_PROGBITS:
3266 break;
3267
3268 case SHT_INIT_ARRAY:
3269 case SHT_FINI_ARRAY:
3270 case SHT_PREINIT_ARRAY:
3271 this_hdr->sh_entsize = bed->s->arch_size / 8;
3272 break;
3273
3274 case SHT_HASH:
3275 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3276 break;
3277
3278 case SHT_DYNSYM:
3279 this_hdr->sh_entsize = bed->s->sizeof_sym;
3280 break;
3281
3282 case SHT_DYNAMIC:
3283 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3284 break;
3285
3286 case SHT_RELA:
3287 if (get_elf_backend_data (abfd)->may_use_rela_p)
3288 this_hdr->sh_entsize = bed->s->sizeof_rela;
3289 break;
3290
3291 case SHT_REL:
3292 if (get_elf_backend_data (abfd)->may_use_rel_p)
3293 this_hdr->sh_entsize = bed->s->sizeof_rel;
3294 break;
3295
3296 case SHT_GNU_versym:
3297 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3298 break;
3299
3300 case SHT_GNU_verdef:
3301 this_hdr->sh_entsize = 0;
3302 /* objcopy or strip will copy over sh_info, but may not set
3303 cverdefs. The linker will set cverdefs, but sh_info will be
3304 zero. */
3305 if (this_hdr->sh_info == 0)
3306 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3307 else
3308 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3309 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3310 break;
3311
3312 case SHT_GNU_verneed:
3313 this_hdr->sh_entsize = 0;
3314 /* objcopy or strip will copy over sh_info, but may not set
3315 cverrefs. The linker will set cverrefs, but sh_info will be
3316 zero. */
3317 if (this_hdr->sh_info == 0)
3318 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3319 else
3320 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3321 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3322 break;
3323
3324 case SHT_GROUP:
3325 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3326 break;
3327
3328 case SHT_GNU_HASH:
3329 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3330 break;
3331 }
3332
3333 if ((asect->flags & SEC_ALLOC) != 0)
3334 this_hdr->sh_flags |= SHF_ALLOC;
3335 if ((asect->flags & SEC_READONLY) == 0)
3336 this_hdr->sh_flags |= SHF_WRITE;
3337 if ((asect->flags & SEC_CODE) != 0)
3338 this_hdr->sh_flags |= SHF_EXECINSTR;
3339 if ((asect->flags & SEC_MERGE) != 0)
3340 {
3341 this_hdr->sh_flags |= SHF_MERGE;
3342 this_hdr->sh_entsize = asect->entsize;
3343 }
3344 if ((asect->flags & SEC_STRINGS) != 0)
3345 this_hdr->sh_flags |= SHF_STRINGS;
3346 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3347 this_hdr->sh_flags |= SHF_GROUP;
3348 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3349 {
3350 this_hdr->sh_flags |= SHF_TLS;
3351 if (asect->size == 0
3352 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3353 {
3354 struct bfd_link_order *o = asect->map_tail.link_order;
3355
3356 this_hdr->sh_size = 0;
3357 if (o != NULL)
3358 {
3359 this_hdr->sh_size = o->offset + o->size;
3360 if (this_hdr->sh_size != 0)
3361 this_hdr->sh_type = SHT_NOBITS;
3362 }
3363 }
3364 }
3365 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3366 this_hdr->sh_flags |= SHF_EXCLUDE;
3367
3368 /* If the section has relocs, set up a section header for the
3369 SHT_REL[A] section. If two relocation sections are required for
3370 this section, it is up to the processor-specific back-end to
3371 create the other. */
3372 if ((asect->flags & SEC_RELOC) != 0)
3373 {
3374 /* When doing a relocatable link, create both REL and RELA sections if
3375 needed. */
3376 if (arg->link_info
3377 /* Do the normal setup if we wouldn't create any sections here. */
3378 && esd->rel.count + esd->rela.count > 0
3379 && (bfd_link_relocatable (arg->link_info)
3380 || arg->link_info->emitrelocations))
3381 {
3382 if (esd->rel.count && esd->rel.hdr == NULL
3383 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3384 delay_st_name_p))
3385 {
3386 arg->failed = TRUE;
3387 return;
3388 }
3389 if (esd->rela.count && esd->rela.hdr == NULL
3390 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3391 delay_st_name_p))
3392 {
3393 arg->failed = TRUE;
3394 return;
3395 }
3396 }
3397 else if (!_bfd_elf_init_reloc_shdr (abfd,
3398 (asect->use_rela_p
3399 ? &esd->rela : &esd->rel),
3400 name,
3401 asect->use_rela_p,
3402 delay_st_name_p))
3403 arg->failed = TRUE;
3404 }
3405
3406 /* Check for processor-specific section types. */
3407 sh_type = this_hdr->sh_type;
3408 if (bed->elf_backend_fake_sections
3409 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3410 arg->failed = TRUE;
3411
3412 if (sh_type == SHT_NOBITS && asect->size != 0)
3413 {
3414 /* Don't change the header type from NOBITS if we are being
3415 called for objcopy --only-keep-debug. */
3416 this_hdr->sh_type = sh_type;
3417 }
3418 }
3419
3420 /* Fill in the contents of a SHT_GROUP section. Called from
3421 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3422 when ELF targets use the generic linker, ld. Called for ld -r
3423 from bfd_elf_final_link. */
3424
3425 void
3426 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3427 {
3428 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3429 asection *elt, *first;
3430 unsigned char *loc;
3431 bfd_boolean gas;
3432
3433 /* Ignore linker created group section. See elfNN_ia64_object_p in
3434 elfxx-ia64.c. */
3435 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3436 || *failedptr)
3437 return;
3438
3439 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3440 {
3441 unsigned long symindx = 0;
3442
3443 /* elf_group_id will have been set up by objcopy and the
3444 generic linker. */
3445 if (elf_group_id (sec) != NULL)
3446 symindx = elf_group_id (sec)->udata.i;
3447
3448 if (symindx == 0)
3449 {
3450 /* If called from the assembler, swap_out_syms will have set up
3451 elf_section_syms. */
3452 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3453 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3454 }
3455 elf_section_data (sec)->this_hdr.sh_info = symindx;
3456 }
3457 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3458 {
3459 /* The ELF backend linker sets sh_info to -2 when the group
3460 signature symbol is global, and thus the index can't be
3461 set until all local symbols are output. */
3462 asection *igroup;
3463 struct bfd_elf_section_data *sec_data;
3464 unsigned long symndx;
3465 unsigned long extsymoff;
3466 struct elf_link_hash_entry *h;
3467
3468 /* The point of this little dance to the first SHF_GROUP section
3469 then back to the SHT_GROUP section is that this gets us to
3470 the SHT_GROUP in the input object. */
3471 igroup = elf_sec_group (elf_next_in_group (sec));
3472 sec_data = elf_section_data (igroup);
3473 symndx = sec_data->this_hdr.sh_info;
3474 extsymoff = 0;
3475 if (!elf_bad_symtab (igroup->owner))
3476 {
3477 Elf_Internal_Shdr *symtab_hdr;
3478
3479 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3480 extsymoff = symtab_hdr->sh_info;
3481 }
3482 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3483 while (h->root.type == bfd_link_hash_indirect
3484 || h->root.type == bfd_link_hash_warning)
3485 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3486
3487 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3488 }
3489
3490 /* The contents won't be allocated for "ld -r" or objcopy. */
3491 gas = TRUE;
3492 if (sec->contents == NULL)
3493 {
3494 gas = FALSE;
3495 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3496
3497 /* Arrange for the section to be written out. */
3498 elf_section_data (sec)->this_hdr.contents = sec->contents;
3499 if (sec->contents == NULL)
3500 {
3501 *failedptr = TRUE;
3502 return;
3503 }
3504 }
3505
3506 loc = sec->contents + sec->size;
3507
3508 /* Get the pointer to the first section in the group that gas
3509 squirreled away here. objcopy arranges for this to be set to the
3510 start of the input section group. */
3511 first = elt = elf_next_in_group (sec);
3512
3513 /* First element is a flag word. Rest of section is elf section
3514 indices for all the sections of the group. Write them backwards
3515 just to keep the group in the same order as given in .section
3516 directives, not that it matters. */
3517 while (elt != NULL)
3518 {
3519 asection *s;
3520
3521 s = elt;
3522 if (!gas)
3523 s = s->output_section;
3524 if (s != NULL
3525 && !bfd_is_abs_section (s))
3526 {
3527 unsigned int idx = elf_section_data (s)->this_idx;
3528
3529 loc -= 4;
3530 H_PUT_32 (abfd, idx, loc);
3531 }
3532 elt = elf_next_in_group (elt);
3533 if (elt == first)
3534 break;
3535 }
3536
3537 loc -= 4;
3538 BFD_ASSERT (loc == sec->contents);
3539
3540 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3541 }
3542
3543 /* Given NAME, the name of a relocation section stripped of its
3544 .rel/.rela prefix, return the section in ABFD to which the
3545 relocations apply. */
3546
3547 asection *
3548 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3549 {
3550 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3551 section likely apply to .got.plt or .got section. */
3552 if (get_elf_backend_data (abfd)->want_got_plt
3553 && strcmp (name, ".plt") == 0)
3554 {
3555 asection *sec;
3556
3557 name = ".got.plt";
3558 sec = bfd_get_section_by_name (abfd, name);
3559 if (sec != NULL)
3560 return sec;
3561 name = ".got";
3562 }
3563
3564 return bfd_get_section_by_name (abfd, name);
3565 }
3566
3567 /* Return the section to which RELOC_SEC applies. */
3568
3569 static asection *
3570 elf_get_reloc_section (asection *reloc_sec)
3571 {
3572 const char *name;
3573 unsigned int type;
3574 bfd *abfd;
3575 const struct elf_backend_data *bed;
3576
3577 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3578 if (type != SHT_REL && type != SHT_RELA)
3579 return NULL;
3580
3581 /* We look up the section the relocs apply to by name. */
3582 name = reloc_sec->name;
3583 if (strncmp (name, ".rel", 4) != 0)
3584 return NULL;
3585 name += 4;
3586 if (type == SHT_RELA && *name++ != 'a')
3587 return NULL;
3588
3589 abfd = reloc_sec->owner;
3590 bed = get_elf_backend_data (abfd);
3591 return bed->get_reloc_section (abfd, name);
3592 }
3593
3594 /* Assign all ELF section numbers. The dummy first section is handled here
3595 too. The link/info pointers for the standard section types are filled
3596 in here too, while we're at it. */
3597
3598 static bfd_boolean
3599 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3600 {
3601 struct elf_obj_tdata *t = elf_tdata (abfd);
3602 asection *sec;
3603 unsigned int section_number;
3604 Elf_Internal_Shdr **i_shdrp;
3605 struct bfd_elf_section_data *d;
3606 bfd_boolean need_symtab;
3607
3608 section_number = 1;
3609
3610 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3611
3612 /* SHT_GROUP sections are in relocatable files only. */
3613 if (link_info == NULL || !link_info->resolve_section_groups)
3614 {
3615 size_t reloc_count = 0;
3616
3617 /* Put SHT_GROUP sections first. */
3618 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3619 {
3620 d = elf_section_data (sec);
3621
3622 if (d->this_hdr.sh_type == SHT_GROUP)
3623 {
3624 if (sec->flags & SEC_LINKER_CREATED)
3625 {
3626 /* Remove the linker created SHT_GROUP sections. */
3627 bfd_section_list_remove (abfd, sec);
3628 abfd->section_count--;
3629 }
3630 else
3631 d->this_idx = section_number++;
3632 }
3633
3634 /* Count relocations. */
3635 reloc_count += sec->reloc_count;
3636 }
3637
3638 /* Clear HAS_RELOC if there are no relocations. */
3639 if (reloc_count == 0)
3640 abfd->flags &= ~HAS_RELOC;
3641 }
3642
3643 for (sec = abfd->sections; sec; sec = sec->next)
3644 {
3645 d = elf_section_data (sec);
3646
3647 if (d->this_hdr.sh_type != SHT_GROUP)
3648 d->this_idx = section_number++;
3649 if (d->this_hdr.sh_name != (unsigned int) -1)
3650 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3651 if (d->rel.hdr)
3652 {
3653 d->rel.idx = section_number++;
3654 if (d->rel.hdr->sh_name != (unsigned int) -1)
3655 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3656 }
3657 else
3658 d->rel.idx = 0;
3659
3660 if (d->rela.hdr)
3661 {
3662 d->rela.idx = section_number++;
3663 if (d->rela.hdr->sh_name != (unsigned int) -1)
3664 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3665 }
3666 else
3667 d->rela.idx = 0;
3668 }
3669
3670 need_symtab = (bfd_get_symcount (abfd) > 0
3671 || (link_info == NULL
3672 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3673 == HAS_RELOC)));
3674 if (need_symtab)
3675 {
3676 elf_onesymtab (abfd) = section_number++;
3677 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3678 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3679 {
3680 elf_section_list * entry;
3681
3682 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3683
3684 entry = bfd_zalloc (abfd, sizeof * entry);
3685 entry->ndx = section_number++;
3686 elf_symtab_shndx_list (abfd) = entry;
3687 entry->hdr.sh_name
3688 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3689 ".symtab_shndx", FALSE);
3690 if (entry->hdr.sh_name == (unsigned int) -1)
3691 return FALSE;
3692 }
3693 elf_strtab_sec (abfd) = section_number++;
3694 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3695 }
3696
3697 elf_shstrtab_sec (abfd) = section_number++;
3698 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3699 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3700
3701 if (section_number >= SHN_LORESERVE)
3702 {
3703 /* xgettext:c-format */
3704 _bfd_error_handler (_("%B: too many sections: %u"),
3705 abfd, section_number);
3706 return FALSE;
3707 }
3708
3709 elf_numsections (abfd) = section_number;
3710 elf_elfheader (abfd)->e_shnum = section_number;
3711
3712 /* Set up the list of section header pointers, in agreement with the
3713 indices. */
3714 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3715 sizeof (Elf_Internal_Shdr *));
3716 if (i_shdrp == NULL)
3717 return FALSE;
3718
3719 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3720 sizeof (Elf_Internal_Shdr));
3721 if (i_shdrp[0] == NULL)
3722 {
3723 bfd_release (abfd, i_shdrp);
3724 return FALSE;
3725 }
3726
3727 elf_elfsections (abfd) = i_shdrp;
3728
3729 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3730 if (need_symtab)
3731 {
3732 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3733 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3734 {
3735 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3736 BFD_ASSERT (entry != NULL);
3737 i_shdrp[entry->ndx] = & entry->hdr;
3738 entry->hdr.sh_link = elf_onesymtab (abfd);
3739 }
3740 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3741 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3742 }
3743
3744 for (sec = abfd->sections; sec; sec = sec->next)
3745 {
3746 asection *s;
3747
3748 d = elf_section_data (sec);
3749
3750 i_shdrp[d->this_idx] = &d->this_hdr;
3751 if (d->rel.idx != 0)
3752 i_shdrp[d->rel.idx] = d->rel.hdr;
3753 if (d->rela.idx != 0)
3754 i_shdrp[d->rela.idx] = d->rela.hdr;
3755
3756 /* Fill in the sh_link and sh_info fields while we're at it. */
3757
3758 /* sh_link of a reloc section is the section index of the symbol
3759 table. sh_info is the section index of the section to which
3760 the relocation entries apply. */
3761 if (d->rel.idx != 0)
3762 {
3763 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3764 d->rel.hdr->sh_info = d->this_idx;
3765 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3766 }
3767 if (d->rela.idx != 0)
3768 {
3769 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3770 d->rela.hdr->sh_info = d->this_idx;
3771 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3772 }
3773
3774 /* We need to set up sh_link for SHF_LINK_ORDER. */
3775 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3776 {
3777 s = elf_linked_to_section (sec);
3778 if (s)
3779 {
3780 /* elf_linked_to_section points to the input section. */
3781 if (link_info != NULL)
3782 {
3783 /* Check discarded linkonce section. */
3784 if (discarded_section (s))
3785 {
3786 asection *kept;
3787 _bfd_error_handler
3788 /* xgettext:c-format */
3789 (_("%B: sh_link of section `%A' points to"
3790 " discarded section `%A' of `%B'"),
3791 abfd, d->this_hdr.bfd_section,
3792 s, s->owner);
3793 /* Point to the kept section if it has the same
3794 size as the discarded one. */
3795 kept = _bfd_elf_check_kept_section (s, link_info);
3796 if (kept == NULL)
3797 {
3798 bfd_set_error (bfd_error_bad_value);
3799 return FALSE;
3800 }
3801 s = kept;
3802 }
3803
3804 s = s->output_section;
3805 BFD_ASSERT (s != NULL);
3806 }
3807 else
3808 {
3809 /* Handle objcopy. */
3810 if (s->output_section == NULL)
3811 {
3812 _bfd_error_handler
3813 /* xgettext:c-format */
3814 (_("%B: sh_link of section `%A' points to"
3815 " removed section `%A' of `%B'"),
3816 abfd, d->this_hdr.bfd_section, s, s->owner);
3817 bfd_set_error (bfd_error_bad_value);
3818 return FALSE;
3819 }
3820 s = s->output_section;
3821 }
3822 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3823 }
3824 else
3825 {
3826 /* PR 290:
3827 The Intel C compiler generates SHT_IA_64_UNWIND with
3828 SHF_LINK_ORDER. But it doesn't set the sh_link or
3829 sh_info fields. Hence we could get the situation
3830 where s is NULL. */
3831 const struct elf_backend_data *bed
3832 = get_elf_backend_data (abfd);
3833 if (bed->link_order_error_handler)
3834 bed->link_order_error_handler
3835 /* xgettext:c-format */
3836 (_("%B: warning: sh_link not set for section `%A'"),
3837 abfd, sec);
3838 }
3839 }
3840
3841 switch (d->this_hdr.sh_type)
3842 {
3843 case SHT_REL:
3844 case SHT_RELA:
3845 /* A reloc section which we are treating as a normal BFD
3846 section. sh_link is the section index of the symbol
3847 table. sh_info is the section index of the section to
3848 which the relocation entries apply. We assume that an
3849 allocated reloc section uses the dynamic symbol table.
3850 FIXME: How can we be sure? */
3851 s = bfd_get_section_by_name (abfd, ".dynsym");
3852 if (s != NULL)
3853 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3854
3855 s = elf_get_reloc_section (sec);
3856 if (s != NULL)
3857 {
3858 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3859 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3860 }
3861 break;
3862
3863 case SHT_STRTAB:
3864 /* We assume that a section named .stab*str is a stabs
3865 string section. We look for a section with the same name
3866 but without the trailing ``str'', and set its sh_link
3867 field to point to this section. */
3868 if (CONST_STRNEQ (sec->name, ".stab")
3869 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3870 {
3871 size_t len;
3872 char *alc;
3873
3874 len = strlen (sec->name);
3875 alc = (char *) bfd_malloc (len - 2);
3876 if (alc == NULL)
3877 return FALSE;
3878 memcpy (alc, sec->name, len - 3);
3879 alc[len - 3] = '\0';
3880 s = bfd_get_section_by_name (abfd, alc);
3881 free (alc);
3882 if (s != NULL)
3883 {
3884 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3885
3886 /* This is a .stab section. */
3887 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3888 elf_section_data (s)->this_hdr.sh_entsize
3889 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3890 }
3891 }
3892 break;
3893
3894 case SHT_DYNAMIC:
3895 case SHT_DYNSYM:
3896 case SHT_GNU_verneed:
3897 case SHT_GNU_verdef:
3898 /* sh_link is the section header index of the string table
3899 used for the dynamic entries, or the symbol table, or the
3900 version strings. */
3901 s = bfd_get_section_by_name (abfd, ".dynstr");
3902 if (s != NULL)
3903 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3904 break;
3905
3906 case SHT_GNU_LIBLIST:
3907 /* sh_link is the section header index of the prelink library
3908 list used for the dynamic entries, or the symbol table, or
3909 the version strings. */
3910 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3911 ? ".dynstr" : ".gnu.libstr");
3912 if (s != NULL)
3913 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3914 break;
3915
3916 case SHT_HASH:
3917 case SHT_GNU_HASH:
3918 case SHT_GNU_versym:
3919 /* sh_link is the section header index of the symbol table
3920 this hash table or version table is for. */
3921 s = bfd_get_section_by_name (abfd, ".dynsym");
3922 if (s != NULL)
3923 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3924 break;
3925
3926 case SHT_GROUP:
3927 d->this_hdr.sh_link = elf_onesymtab (abfd);
3928 }
3929 }
3930
3931 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3932 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3933 debug section name from .debug_* to .zdebug_* if needed. */
3934
3935 return TRUE;
3936 }
3937
3938 static bfd_boolean
3939 sym_is_global (bfd *abfd, asymbol *sym)
3940 {
3941 /* If the backend has a special mapping, use it. */
3942 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3943 if (bed->elf_backend_sym_is_global)
3944 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3945
3946 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3947 || bfd_is_und_section (bfd_get_section (sym))
3948 || bfd_is_com_section (bfd_get_section (sym)));
3949 }
3950
3951 /* Filter global symbols of ABFD to include in the import library. All
3952 SYMCOUNT symbols of ABFD can be examined from their pointers in
3953 SYMS. Pointers of symbols to keep should be stored contiguously at
3954 the beginning of that array.
3955
3956 Returns the number of symbols to keep. */
3957
3958 unsigned int
3959 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3960 asymbol **syms, long symcount)
3961 {
3962 long src_count, dst_count = 0;
3963
3964 for (src_count = 0; src_count < symcount; src_count++)
3965 {
3966 asymbol *sym = syms[src_count];
3967 char *name = (char *) bfd_asymbol_name (sym);
3968 struct bfd_link_hash_entry *h;
3969
3970 if (!sym_is_global (abfd, sym))
3971 continue;
3972
3973 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3974 if (h == NULL)
3975 continue;
3976 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3977 continue;
3978 if (h->linker_def || h->ldscript_def)
3979 continue;
3980
3981 syms[dst_count++] = sym;
3982 }
3983
3984 syms[dst_count] = NULL;
3985
3986 return dst_count;
3987 }
3988
3989 /* Don't output section symbols for sections that are not going to be
3990 output, that are duplicates or there is no BFD section. */
3991
3992 static bfd_boolean
3993 ignore_section_sym (bfd *abfd, asymbol *sym)
3994 {
3995 elf_symbol_type *type_ptr;
3996
3997 if ((sym->flags & BSF_SECTION_SYM) == 0)
3998 return FALSE;
3999
4000 type_ptr = elf_symbol_from (abfd, sym);
4001 return ((type_ptr != NULL
4002 && type_ptr->internal_elf_sym.st_shndx != 0
4003 && bfd_is_abs_section (sym->section))
4004 || !(sym->section->owner == abfd
4005 || (sym->section->output_section->owner == abfd
4006 && sym->section->output_offset == 0)
4007 || bfd_is_abs_section (sym->section)));
4008 }
4009
4010 /* Map symbol from it's internal number to the external number, moving
4011 all local symbols to be at the head of the list. */
4012
4013 static bfd_boolean
4014 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4015 {
4016 unsigned int symcount = bfd_get_symcount (abfd);
4017 asymbol **syms = bfd_get_outsymbols (abfd);
4018 asymbol **sect_syms;
4019 unsigned int num_locals = 0;
4020 unsigned int num_globals = 0;
4021 unsigned int num_locals2 = 0;
4022 unsigned int num_globals2 = 0;
4023 unsigned int max_index = 0;
4024 unsigned int idx;
4025 asection *asect;
4026 asymbol **new_syms;
4027
4028 #ifdef DEBUG
4029 fprintf (stderr, "elf_map_symbols\n");
4030 fflush (stderr);
4031 #endif
4032
4033 for (asect = abfd->sections; asect; asect = asect->next)
4034 {
4035 if (max_index < asect->index)
4036 max_index = asect->index;
4037 }
4038
4039 max_index++;
4040 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4041 if (sect_syms == NULL)
4042 return FALSE;
4043 elf_section_syms (abfd) = sect_syms;
4044 elf_num_section_syms (abfd) = max_index;
4045
4046 /* Init sect_syms entries for any section symbols we have already
4047 decided to output. */
4048 for (idx = 0; idx < symcount; idx++)
4049 {
4050 asymbol *sym = syms[idx];
4051
4052 if ((sym->flags & BSF_SECTION_SYM) != 0
4053 && sym->value == 0
4054 && !ignore_section_sym (abfd, sym)
4055 && !bfd_is_abs_section (sym->section))
4056 {
4057 asection *sec = sym->section;
4058
4059 if (sec->owner != abfd)
4060 sec = sec->output_section;
4061
4062 sect_syms[sec->index] = syms[idx];
4063 }
4064 }
4065
4066 /* Classify all of the symbols. */
4067 for (idx = 0; idx < symcount; idx++)
4068 {
4069 if (sym_is_global (abfd, syms[idx]))
4070 num_globals++;
4071 else if (!ignore_section_sym (abfd, syms[idx]))
4072 num_locals++;
4073 }
4074
4075 /* We will be adding a section symbol for each normal BFD section. Most
4076 sections will already have a section symbol in outsymbols, but
4077 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4078 at least in that case. */
4079 for (asect = abfd->sections; asect; asect = asect->next)
4080 {
4081 if (sect_syms[asect->index] == NULL)
4082 {
4083 if (!sym_is_global (abfd, asect->symbol))
4084 num_locals++;
4085 else
4086 num_globals++;
4087 }
4088 }
4089
4090 /* Now sort the symbols so the local symbols are first. */
4091 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4092 sizeof (asymbol *));
4093
4094 if (new_syms == NULL)
4095 return FALSE;
4096
4097 for (idx = 0; idx < symcount; idx++)
4098 {
4099 asymbol *sym = syms[idx];
4100 unsigned int i;
4101
4102 if (sym_is_global (abfd, sym))
4103 i = num_locals + num_globals2++;
4104 else if (!ignore_section_sym (abfd, sym))
4105 i = num_locals2++;
4106 else
4107 continue;
4108 new_syms[i] = sym;
4109 sym->udata.i = i + 1;
4110 }
4111 for (asect = abfd->sections; asect; asect = asect->next)
4112 {
4113 if (sect_syms[asect->index] == NULL)
4114 {
4115 asymbol *sym = asect->symbol;
4116 unsigned int i;
4117
4118 sect_syms[asect->index] = sym;
4119 if (!sym_is_global (abfd, sym))
4120 i = num_locals2++;
4121 else
4122 i = num_locals + num_globals2++;
4123 new_syms[i] = sym;
4124 sym->udata.i = i + 1;
4125 }
4126 }
4127
4128 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4129
4130 *pnum_locals = num_locals;
4131 return TRUE;
4132 }
4133
4134 /* Align to the maximum file alignment that could be required for any
4135 ELF data structure. */
4136
4137 static inline file_ptr
4138 align_file_position (file_ptr off, int align)
4139 {
4140 return (off + align - 1) & ~(align - 1);
4141 }
4142
4143 /* Assign a file position to a section, optionally aligning to the
4144 required section alignment. */
4145
4146 file_ptr
4147 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4148 file_ptr offset,
4149 bfd_boolean align)
4150 {
4151 if (align && i_shdrp->sh_addralign > 1)
4152 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4153 i_shdrp->sh_offset = offset;
4154 if (i_shdrp->bfd_section != NULL)
4155 i_shdrp->bfd_section->filepos = offset;
4156 if (i_shdrp->sh_type != SHT_NOBITS)
4157 offset += i_shdrp->sh_size;
4158 return offset;
4159 }
4160
4161 /* Compute the file positions we are going to put the sections at, and
4162 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4163 is not NULL, this is being called by the ELF backend linker. */
4164
4165 bfd_boolean
4166 _bfd_elf_compute_section_file_positions (bfd *abfd,
4167 struct bfd_link_info *link_info)
4168 {
4169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4170 struct fake_section_arg fsargs;
4171 bfd_boolean failed;
4172 struct elf_strtab_hash *strtab = NULL;
4173 Elf_Internal_Shdr *shstrtab_hdr;
4174 bfd_boolean need_symtab;
4175
4176 if (abfd->output_has_begun)
4177 return TRUE;
4178
4179 /* Do any elf backend specific processing first. */
4180 if (bed->elf_backend_begin_write_processing)
4181 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4182
4183 if (! prep_headers (abfd))
4184 return FALSE;
4185
4186 /* Post process the headers if necessary. */
4187 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4188
4189 fsargs.failed = FALSE;
4190 fsargs.link_info = link_info;
4191 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4192 if (fsargs.failed)
4193 return FALSE;
4194
4195 if (!assign_section_numbers (abfd, link_info))
4196 return FALSE;
4197
4198 /* The backend linker builds symbol table information itself. */
4199 need_symtab = (link_info == NULL
4200 && (bfd_get_symcount (abfd) > 0
4201 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4202 == HAS_RELOC)));
4203 if (need_symtab)
4204 {
4205 /* Non-zero if doing a relocatable link. */
4206 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4207
4208 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4209 return FALSE;
4210 }
4211
4212 failed = FALSE;
4213 if (link_info == NULL)
4214 {
4215 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4216 if (failed)
4217 return FALSE;
4218 }
4219
4220 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4221 /* sh_name was set in prep_headers. */
4222 shstrtab_hdr->sh_type = SHT_STRTAB;
4223 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4224 shstrtab_hdr->sh_addr = 0;
4225 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4226 shstrtab_hdr->sh_entsize = 0;
4227 shstrtab_hdr->sh_link = 0;
4228 shstrtab_hdr->sh_info = 0;
4229 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4230 shstrtab_hdr->sh_addralign = 1;
4231
4232 if (!assign_file_positions_except_relocs (abfd, link_info))
4233 return FALSE;
4234
4235 if (need_symtab)
4236 {
4237 file_ptr off;
4238 Elf_Internal_Shdr *hdr;
4239
4240 off = elf_next_file_pos (abfd);
4241
4242 hdr = & elf_symtab_hdr (abfd);
4243 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4244
4245 if (elf_symtab_shndx_list (abfd) != NULL)
4246 {
4247 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4248 if (hdr->sh_size != 0)
4249 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4250 /* FIXME: What about other symtab_shndx sections in the list ? */
4251 }
4252
4253 hdr = &elf_tdata (abfd)->strtab_hdr;
4254 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4255
4256 elf_next_file_pos (abfd) = off;
4257
4258 /* Now that we know where the .strtab section goes, write it
4259 out. */
4260 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4261 || ! _bfd_elf_strtab_emit (abfd, strtab))
4262 return FALSE;
4263 _bfd_elf_strtab_free (strtab);
4264 }
4265
4266 abfd->output_has_begun = TRUE;
4267
4268 return TRUE;
4269 }
4270
4271 /* Make an initial estimate of the size of the program header. If we
4272 get the number wrong here, we'll redo section placement. */
4273
4274 static bfd_size_type
4275 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4276 {
4277 size_t segs;
4278 asection *s;
4279 const struct elf_backend_data *bed;
4280
4281 /* Assume we will need exactly two PT_LOAD segments: one for text
4282 and one for data. */
4283 segs = 2;
4284
4285 s = bfd_get_section_by_name (abfd, ".interp");
4286 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4287 {
4288 /* If we have a loadable interpreter section, we need a
4289 PT_INTERP segment. In this case, assume we also need a
4290 PT_PHDR segment, although that may not be true for all
4291 targets. */
4292 segs += 2;
4293 }
4294
4295 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4296 {
4297 /* We need a PT_DYNAMIC segment. */
4298 ++segs;
4299 }
4300
4301 if (info != NULL && info->relro)
4302 {
4303 /* We need a PT_GNU_RELRO segment. */
4304 ++segs;
4305 }
4306
4307 if (elf_eh_frame_hdr (abfd))
4308 {
4309 /* We need a PT_GNU_EH_FRAME segment. */
4310 ++segs;
4311 }
4312
4313 if (elf_stack_flags (abfd))
4314 {
4315 /* We need a PT_GNU_STACK segment. */
4316 ++segs;
4317 }
4318
4319 for (s = abfd->sections; s != NULL; s = s->next)
4320 {
4321 if ((s->flags & SEC_LOAD) != 0
4322 && CONST_STRNEQ (s->name, ".note"))
4323 {
4324 /* We need a PT_NOTE segment. */
4325 ++segs;
4326 /* Try to create just one PT_NOTE segment
4327 for all adjacent loadable .note* sections.
4328 gABI requires that within a PT_NOTE segment
4329 (and also inside of each SHT_NOTE section)
4330 each note is padded to a multiple of 4 size,
4331 so we check whether the sections are correctly
4332 aligned. */
4333 if (s->alignment_power == 2)
4334 while (s->next != NULL
4335 && s->next->alignment_power == 2
4336 && (s->next->flags & SEC_LOAD) != 0
4337 && CONST_STRNEQ (s->next->name, ".note"))
4338 s = s->next;
4339 }
4340 }
4341
4342 for (s = abfd->sections; s != NULL; s = s->next)
4343 {
4344 if (s->flags & SEC_THREAD_LOCAL)
4345 {
4346 /* We need a PT_TLS segment. */
4347 ++segs;
4348 break;
4349 }
4350 }
4351
4352 bed = get_elf_backend_data (abfd);
4353
4354 if ((abfd->flags & D_PAGED) != 0)
4355 {
4356 /* Add a PT_GNU_MBIND segment for each mbind section. */
4357 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4358 for (s = abfd->sections; s != NULL; s = s->next)
4359 if (elf_section_flags (s) & SHF_GNU_MBIND)
4360 {
4361 if (elf_section_data (s)->this_hdr.sh_info
4362 > PT_GNU_MBIND_NUM)
4363 {
4364 _bfd_error_handler
4365 /* xgettext:c-format */
4366 (_("%B: GNU_MBIN section `%A' has invalid sh_info field: %d"),
4367 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4368 continue;
4369 }
4370 /* Align mbind section to page size. */
4371 if (s->alignment_power < page_align_power)
4372 s->alignment_power = page_align_power;
4373 segs ++;
4374 }
4375 }
4376
4377 /* Let the backend count up any program headers it might need. */
4378 if (bed->elf_backend_additional_program_headers)
4379 {
4380 int a;
4381
4382 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4383 if (a == -1)
4384 abort ();
4385 segs += a;
4386 }
4387
4388 return segs * bed->s->sizeof_phdr;
4389 }
4390
4391 /* Find the segment that contains the output_section of section. */
4392
4393 Elf_Internal_Phdr *
4394 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4395 {
4396 struct elf_segment_map *m;
4397 Elf_Internal_Phdr *p;
4398
4399 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4400 m != NULL;
4401 m = m->next, p++)
4402 {
4403 int i;
4404
4405 for (i = m->count - 1; i >= 0; i--)
4406 if (m->sections[i] == section)
4407 return p;
4408 }
4409
4410 return NULL;
4411 }
4412
4413 /* Create a mapping from a set of sections to a program segment. */
4414
4415 static struct elf_segment_map *
4416 make_mapping (bfd *abfd,
4417 asection **sections,
4418 unsigned int from,
4419 unsigned int to,
4420 bfd_boolean phdr)
4421 {
4422 struct elf_segment_map *m;
4423 unsigned int i;
4424 asection **hdrpp;
4425 bfd_size_type amt;
4426
4427 amt = sizeof (struct elf_segment_map);
4428 amt += (to - from - 1) * sizeof (asection *);
4429 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4430 if (m == NULL)
4431 return NULL;
4432 m->next = NULL;
4433 m->p_type = PT_LOAD;
4434 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4435 m->sections[i - from] = *hdrpp;
4436 m->count = to - from;
4437
4438 if (from == 0 && phdr)
4439 {
4440 /* Include the headers in the first PT_LOAD segment. */
4441 m->includes_filehdr = 1;
4442 m->includes_phdrs = 1;
4443 }
4444
4445 return m;
4446 }
4447
4448 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4449 on failure. */
4450
4451 struct elf_segment_map *
4452 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4453 {
4454 struct elf_segment_map *m;
4455
4456 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4457 sizeof (struct elf_segment_map));
4458 if (m == NULL)
4459 return NULL;
4460 m->next = NULL;
4461 m->p_type = PT_DYNAMIC;
4462 m->count = 1;
4463 m->sections[0] = dynsec;
4464
4465 return m;
4466 }
4467
4468 /* Possibly add or remove segments from the segment map. */
4469
4470 static bfd_boolean
4471 elf_modify_segment_map (bfd *abfd,
4472 struct bfd_link_info *info,
4473 bfd_boolean remove_empty_load)
4474 {
4475 struct elf_segment_map **m;
4476 const struct elf_backend_data *bed;
4477
4478 /* The placement algorithm assumes that non allocated sections are
4479 not in PT_LOAD segments. We ensure this here by removing such
4480 sections from the segment map. We also remove excluded
4481 sections. Finally, any PT_LOAD segment without sections is
4482 removed. */
4483 m = &elf_seg_map (abfd);
4484 while (*m)
4485 {
4486 unsigned int i, new_count;
4487
4488 for (new_count = 0, i = 0; i < (*m)->count; i++)
4489 {
4490 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4491 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4492 || (*m)->p_type != PT_LOAD))
4493 {
4494 (*m)->sections[new_count] = (*m)->sections[i];
4495 new_count++;
4496 }
4497 }
4498 (*m)->count = new_count;
4499
4500 if (remove_empty_load
4501 && (*m)->p_type == PT_LOAD
4502 && (*m)->count == 0
4503 && !(*m)->includes_phdrs)
4504 *m = (*m)->next;
4505 else
4506 m = &(*m)->next;
4507 }
4508
4509 bed = get_elf_backend_data (abfd);
4510 if (bed->elf_backend_modify_segment_map != NULL)
4511 {
4512 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4513 return FALSE;
4514 }
4515
4516 return TRUE;
4517 }
4518
4519 /* Set up a mapping from BFD sections to program segments. */
4520
4521 bfd_boolean
4522 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4523 {
4524 unsigned int count;
4525 struct elf_segment_map *m;
4526 asection **sections = NULL;
4527 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4528 bfd_boolean no_user_phdrs;
4529
4530 no_user_phdrs = elf_seg_map (abfd) == NULL;
4531
4532 if (info != NULL)
4533 info->user_phdrs = !no_user_phdrs;
4534
4535 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4536 {
4537 asection *s;
4538 unsigned int i;
4539 struct elf_segment_map *mfirst;
4540 struct elf_segment_map **pm;
4541 asection *last_hdr;
4542 bfd_vma last_size;
4543 unsigned int phdr_index;
4544 bfd_vma maxpagesize;
4545 asection **hdrpp;
4546 bfd_boolean phdr_in_segment = TRUE;
4547 bfd_boolean writable;
4548 int tls_count = 0;
4549 asection *first_tls = NULL;
4550 asection *first_mbind = NULL;
4551 asection *dynsec, *eh_frame_hdr;
4552 bfd_size_type amt;
4553 bfd_vma addr_mask, wrap_to = 0;
4554 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4555
4556 /* Select the allocated sections, and sort them. */
4557
4558 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4559 sizeof (asection *));
4560 if (sections == NULL)
4561 goto error_return;
4562
4563 /* Calculate top address, avoiding undefined behaviour of shift
4564 left operator when shift count is equal to size of type
4565 being shifted. */
4566 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4567 addr_mask = (addr_mask << 1) + 1;
4568
4569 i = 0;
4570 for (s = abfd->sections; s != NULL; s = s->next)
4571 {
4572 if ((s->flags & SEC_ALLOC) != 0)
4573 {
4574 sections[i] = s;
4575 ++i;
4576 /* A wrapping section potentially clashes with header. */
4577 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4578 wrap_to = (s->lma + s->size) & addr_mask;
4579 }
4580 }
4581 BFD_ASSERT (i <= bfd_count_sections (abfd));
4582 count = i;
4583
4584 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4585
4586 /* Build the mapping. */
4587
4588 mfirst = NULL;
4589 pm = &mfirst;
4590
4591 /* If we have a .interp section, then create a PT_PHDR segment for
4592 the program headers and a PT_INTERP segment for the .interp
4593 section. */
4594 s = bfd_get_section_by_name (abfd, ".interp");
4595 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4596 {
4597 amt = sizeof (struct elf_segment_map);
4598 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4599 if (m == NULL)
4600 goto error_return;
4601 m->next = NULL;
4602 m->p_type = PT_PHDR;
4603 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4604 m->p_flags = PF_R | PF_X;
4605 m->p_flags_valid = 1;
4606 m->includes_phdrs = 1;
4607 linker_created_pt_phdr_segment = TRUE;
4608 *pm = m;
4609 pm = &m->next;
4610
4611 amt = sizeof (struct elf_segment_map);
4612 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4613 if (m == NULL)
4614 goto error_return;
4615 m->next = NULL;
4616 m->p_type = PT_INTERP;
4617 m->count = 1;
4618 m->sections[0] = s;
4619
4620 *pm = m;
4621 pm = &m->next;
4622 }
4623
4624 /* Look through the sections. We put sections in the same program
4625 segment when the start of the second section can be placed within
4626 a few bytes of the end of the first section. */
4627 last_hdr = NULL;
4628 last_size = 0;
4629 phdr_index = 0;
4630 maxpagesize = bed->maxpagesize;
4631 /* PR 17512: file: c8455299.
4632 Avoid divide-by-zero errors later on.
4633 FIXME: Should we abort if the maxpagesize is zero ? */
4634 if (maxpagesize == 0)
4635 maxpagesize = 1;
4636 writable = FALSE;
4637 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4638 if (dynsec != NULL
4639 && (dynsec->flags & SEC_LOAD) == 0)
4640 dynsec = NULL;
4641
4642 /* Deal with -Ttext or something similar such that the first section
4643 is not adjacent to the program headers. This is an
4644 approximation, since at this point we don't know exactly how many
4645 program headers we will need. */
4646 if (count > 0)
4647 {
4648 bfd_size_type phdr_size = elf_program_header_size (abfd);
4649
4650 if (phdr_size == (bfd_size_type) -1)
4651 phdr_size = get_program_header_size (abfd, info);
4652 phdr_size += bed->s->sizeof_ehdr;
4653 if ((abfd->flags & D_PAGED) == 0
4654 || (sections[0]->lma & addr_mask) < phdr_size
4655 || ((sections[0]->lma & addr_mask) % maxpagesize
4656 < phdr_size % maxpagesize)
4657 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4658 {
4659 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4660 present, must be included as part of the memory image of the
4661 program. Ie it must be part of a PT_LOAD segment as well.
4662 If we have had to create our own PT_PHDR segment, but it is
4663 not going to be covered by the first PT_LOAD segment, then
4664 force the inclusion if we can... */
4665 if ((abfd->flags & D_PAGED) != 0
4666 && linker_created_pt_phdr_segment)
4667 phdr_in_segment = TRUE;
4668 else
4669 phdr_in_segment = FALSE;
4670 }
4671 }
4672
4673 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4674 {
4675 asection *hdr;
4676 bfd_boolean new_segment;
4677
4678 hdr = *hdrpp;
4679
4680 /* See if this section and the last one will fit in the same
4681 segment. */
4682
4683 if (last_hdr == NULL)
4684 {
4685 /* If we don't have a segment yet, then we don't need a new
4686 one (we build the last one after this loop). */
4687 new_segment = FALSE;
4688 }
4689 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4690 {
4691 /* If this section has a different relation between the
4692 virtual address and the load address, then we need a new
4693 segment. */
4694 new_segment = TRUE;
4695 }
4696 else if (hdr->lma < last_hdr->lma + last_size
4697 || last_hdr->lma + last_size < last_hdr->lma)
4698 {
4699 /* If this section has a load address that makes it overlap
4700 the previous section, then we need a new segment. */
4701 new_segment = TRUE;
4702 }
4703 /* In the next test we have to be careful when last_hdr->lma is close
4704 to the end of the address space. If the aligned address wraps
4705 around to the start of the address space, then there are no more
4706 pages left in memory and it is OK to assume that the current
4707 section can be included in the current segment. */
4708 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4709 > last_hdr->lma)
4710 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4711 <= hdr->lma))
4712 {
4713 /* If putting this section in this segment would force us to
4714 skip a page in the segment, then we need a new segment. */
4715 new_segment = TRUE;
4716 }
4717 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4718 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4719 && ((abfd->flags & D_PAGED) == 0
4720 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4721 != (hdr->lma & -maxpagesize))))
4722 {
4723 /* We don't want to put a loaded section after a
4724 nonloaded (ie. bss style) section in the same segment
4725 as that will force the non-loaded section to be loaded.
4726 Consider .tbss sections as loaded for this purpose.
4727 However, like the writable/non-writable case below,
4728 if they are on the same page then they must be put
4729 in the same segment. */
4730 new_segment = TRUE;
4731 }
4732 else if ((abfd->flags & D_PAGED) == 0)
4733 {
4734 /* If the file is not demand paged, which means that we
4735 don't require the sections to be correctly aligned in the
4736 file, then there is no other reason for a new segment. */
4737 new_segment = FALSE;
4738 }
4739 else if (! writable
4740 && (hdr->flags & SEC_READONLY) == 0
4741 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4742 != (hdr->lma & -maxpagesize)))
4743 {
4744 /* We don't want to put a writable section in a read only
4745 segment, unless they are on the same page in memory
4746 anyhow. We already know that the last section does not
4747 bring us past the current section on the page, so the
4748 only case in which the new section is not on the same
4749 page as the previous section is when the previous section
4750 ends precisely on a page boundary. */
4751 new_segment = TRUE;
4752 }
4753 else
4754 {
4755 /* Otherwise, we can use the same segment. */
4756 new_segment = FALSE;
4757 }
4758
4759 /* Allow interested parties a chance to override our decision. */
4760 if (last_hdr != NULL
4761 && info != NULL
4762 && info->callbacks->override_segment_assignment != NULL)
4763 new_segment
4764 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4765 last_hdr,
4766 new_segment);
4767
4768 if (! new_segment)
4769 {
4770 if ((hdr->flags & SEC_READONLY) == 0)
4771 writable = TRUE;
4772 last_hdr = hdr;
4773 /* .tbss sections effectively have zero size. */
4774 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4775 != SEC_THREAD_LOCAL)
4776 last_size = hdr->size;
4777 else
4778 last_size = 0;
4779 continue;
4780 }
4781
4782 /* We need a new program segment. We must create a new program
4783 header holding all the sections from phdr_index until hdr. */
4784
4785 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4786 if (m == NULL)
4787 goto error_return;
4788
4789 *pm = m;
4790 pm = &m->next;
4791
4792 if ((hdr->flags & SEC_READONLY) == 0)
4793 writable = TRUE;
4794 else
4795 writable = FALSE;
4796
4797 last_hdr = hdr;
4798 /* .tbss sections effectively have zero size. */
4799 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4800 last_size = hdr->size;
4801 else
4802 last_size = 0;
4803 phdr_index = i;
4804 phdr_in_segment = FALSE;
4805 }
4806
4807 /* Create a final PT_LOAD program segment, but not if it's just
4808 for .tbss. */
4809 if (last_hdr != NULL
4810 && (i - phdr_index != 1
4811 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4812 != SEC_THREAD_LOCAL)))
4813 {
4814 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4815 if (m == NULL)
4816 goto error_return;
4817
4818 *pm = m;
4819 pm = &m->next;
4820 }
4821
4822 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4823 if (dynsec != NULL)
4824 {
4825 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4826 if (m == NULL)
4827 goto error_return;
4828 *pm = m;
4829 pm = &m->next;
4830 }
4831
4832 /* For each batch of consecutive loadable .note sections,
4833 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4834 because if we link together nonloadable .note sections and
4835 loadable .note sections, we will generate two .note sections
4836 in the output file. FIXME: Using names for section types is
4837 bogus anyhow. */
4838 for (s = abfd->sections; s != NULL; s = s->next)
4839 {
4840 if ((s->flags & SEC_LOAD) != 0
4841 && CONST_STRNEQ (s->name, ".note"))
4842 {
4843 asection *s2;
4844
4845 count = 1;
4846 amt = sizeof (struct elf_segment_map);
4847 if (s->alignment_power == 2)
4848 for (s2 = s; s2->next != NULL; s2 = s2->next)
4849 {
4850 if (s2->next->alignment_power == 2
4851 && (s2->next->flags & SEC_LOAD) != 0
4852 && CONST_STRNEQ (s2->next->name, ".note")
4853 && align_power (s2->lma + s2->size, 2)
4854 == s2->next->lma)
4855 count++;
4856 else
4857 break;
4858 }
4859 amt += (count - 1) * sizeof (asection *);
4860 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4861 if (m == NULL)
4862 goto error_return;
4863 m->next = NULL;
4864 m->p_type = PT_NOTE;
4865 m->count = count;
4866 while (count > 1)
4867 {
4868 m->sections[m->count - count--] = s;
4869 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4870 s = s->next;
4871 }
4872 m->sections[m->count - 1] = s;
4873 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4874 *pm = m;
4875 pm = &m->next;
4876 }
4877 if (s->flags & SEC_THREAD_LOCAL)
4878 {
4879 if (! tls_count)
4880 first_tls = s;
4881 tls_count++;
4882 }
4883 if (first_mbind == NULL
4884 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4885 first_mbind = s;
4886 }
4887
4888 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4889 if (tls_count > 0)
4890 {
4891 amt = sizeof (struct elf_segment_map);
4892 amt += (tls_count - 1) * sizeof (asection *);
4893 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4894 if (m == NULL)
4895 goto error_return;
4896 m->next = NULL;
4897 m->p_type = PT_TLS;
4898 m->count = tls_count;
4899 /* Mandated PF_R. */
4900 m->p_flags = PF_R;
4901 m->p_flags_valid = 1;
4902 s = first_tls;
4903 for (i = 0; i < (unsigned int) tls_count; ++i)
4904 {
4905 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4906 {
4907 _bfd_error_handler
4908 (_("%B: TLS sections are not adjacent:"), abfd);
4909 s = first_tls;
4910 i = 0;
4911 while (i < (unsigned int) tls_count)
4912 {
4913 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4914 {
4915 _bfd_error_handler (_(" TLS: %A"), s);
4916 i++;
4917 }
4918 else
4919 _bfd_error_handler (_(" non-TLS: %A"), s);
4920 s = s->next;
4921 }
4922 bfd_set_error (bfd_error_bad_value);
4923 goto error_return;
4924 }
4925 m->sections[i] = s;
4926 s = s->next;
4927 }
4928
4929 *pm = m;
4930 pm = &m->next;
4931 }
4932
4933 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4934 for (s = first_mbind; s != NULL; s = s->next)
4935 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4936 && (elf_section_data (s)->this_hdr.sh_info
4937 <= PT_GNU_MBIND_NUM))
4938 {
4939 /* Mandated PF_R. */
4940 unsigned long p_flags = PF_R;
4941 if ((s->flags & SEC_READONLY) == 0)
4942 p_flags |= PF_W;
4943 if ((s->flags & SEC_CODE) != 0)
4944 p_flags |= PF_X;
4945
4946 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4947 m = bfd_zalloc (abfd, amt);
4948 if (m == NULL)
4949 goto error_return;
4950 m->next = NULL;
4951 m->p_type = (PT_GNU_MBIND_LO
4952 + elf_section_data (s)->this_hdr.sh_info);
4953 m->count = 1;
4954 m->p_flags_valid = 1;
4955 m->sections[0] = s;
4956 m->p_flags = p_flags;
4957
4958 *pm = m;
4959 pm = &m->next;
4960 }
4961
4962 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4963 segment. */
4964 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4965 if (eh_frame_hdr != NULL
4966 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4967 {
4968 amt = sizeof (struct elf_segment_map);
4969 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4970 if (m == NULL)
4971 goto error_return;
4972 m->next = NULL;
4973 m->p_type = PT_GNU_EH_FRAME;
4974 m->count = 1;
4975 m->sections[0] = eh_frame_hdr->output_section;
4976
4977 *pm = m;
4978 pm = &m->next;
4979 }
4980
4981 if (elf_stack_flags (abfd))
4982 {
4983 amt = sizeof (struct elf_segment_map);
4984 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4985 if (m == NULL)
4986 goto error_return;
4987 m->next = NULL;
4988 m->p_type = PT_GNU_STACK;
4989 m->p_flags = elf_stack_flags (abfd);
4990 m->p_align = bed->stack_align;
4991 m->p_flags_valid = 1;
4992 m->p_align_valid = m->p_align != 0;
4993 if (info->stacksize > 0)
4994 {
4995 m->p_size = info->stacksize;
4996 m->p_size_valid = 1;
4997 }
4998
4999 *pm = m;
5000 pm = &m->next;
5001 }
5002
5003 if (info != NULL && info->relro)
5004 {
5005 for (m = mfirst; m != NULL; m = m->next)
5006 {
5007 if (m->p_type == PT_LOAD
5008 && m->count != 0
5009 && m->sections[0]->vma >= info->relro_start
5010 && m->sections[0]->vma < info->relro_end)
5011 {
5012 i = m->count;
5013 while (--i != (unsigned) -1)
5014 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5015 == (SEC_LOAD | SEC_HAS_CONTENTS))
5016 break;
5017
5018 if (i != (unsigned) -1)
5019 break;
5020 }
5021 }
5022
5023 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5024 if (m != NULL)
5025 {
5026 amt = sizeof (struct elf_segment_map);
5027 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5028 if (m == NULL)
5029 goto error_return;
5030 m->next = NULL;
5031 m->p_type = PT_GNU_RELRO;
5032 *pm = m;
5033 pm = &m->next;
5034 }
5035 }
5036
5037 free (sections);
5038 elf_seg_map (abfd) = mfirst;
5039 }
5040
5041 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5042 return FALSE;
5043
5044 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5045 ++count;
5046 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5047
5048 return TRUE;
5049
5050 error_return:
5051 if (sections != NULL)
5052 free (sections);
5053 return FALSE;
5054 }
5055
5056 /* Sort sections by address. */
5057
5058 static int
5059 elf_sort_sections (const void *arg1, const void *arg2)
5060 {
5061 const asection *sec1 = *(const asection **) arg1;
5062 const asection *sec2 = *(const asection **) arg2;
5063 bfd_size_type size1, size2;
5064
5065 /* Sort by LMA first, since this is the address used to
5066 place the section into a segment. */
5067 if (sec1->lma < sec2->lma)
5068 return -1;
5069 else if (sec1->lma > sec2->lma)
5070 return 1;
5071
5072 /* Then sort by VMA. Normally the LMA and the VMA will be
5073 the same, and this will do nothing. */
5074 if (sec1->vma < sec2->vma)
5075 return -1;
5076 else if (sec1->vma > sec2->vma)
5077 return 1;
5078
5079 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5080
5081 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5082
5083 if (TOEND (sec1))
5084 {
5085 if (TOEND (sec2))
5086 {
5087 /* If the indicies are the same, do not return 0
5088 here, but continue to try the next comparison. */
5089 if (sec1->target_index - sec2->target_index != 0)
5090 return sec1->target_index - sec2->target_index;
5091 }
5092 else
5093 return 1;
5094 }
5095 else if (TOEND (sec2))
5096 return -1;
5097
5098 #undef TOEND
5099
5100 /* Sort by size, to put zero sized sections
5101 before others at the same address. */
5102
5103 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5104 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5105
5106 if (size1 < size2)
5107 return -1;
5108 if (size1 > size2)
5109 return 1;
5110
5111 return sec1->target_index - sec2->target_index;
5112 }
5113
5114 /* Ian Lance Taylor writes:
5115
5116 We shouldn't be using % with a negative signed number. That's just
5117 not good. We have to make sure either that the number is not
5118 negative, or that the number has an unsigned type. When the types
5119 are all the same size they wind up as unsigned. When file_ptr is a
5120 larger signed type, the arithmetic winds up as signed long long,
5121 which is wrong.
5122
5123 What we're trying to say here is something like ``increase OFF by
5124 the least amount that will cause it to be equal to the VMA modulo
5125 the page size.'' */
5126 /* In other words, something like:
5127
5128 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5129 off_offset = off % bed->maxpagesize;
5130 if (vma_offset < off_offset)
5131 adjustment = vma_offset + bed->maxpagesize - off_offset;
5132 else
5133 adjustment = vma_offset - off_offset;
5134
5135 which can be collapsed into the expression below. */
5136
5137 static file_ptr
5138 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5139 {
5140 /* PR binutils/16199: Handle an alignment of zero. */
5141 if (maxpagesize == 0)
5142 maxpagesize = 1;
5143 return ((vma - off) % maxpagesize);
5144 }
5145
5146 static void
5147 print_segment_map (const struct elf_segment_map *m)
5148 {
5149 unsigned int j;
5150 const char *pt = get_segment_type (m->p_type);
5151 char buf[32];
5152
5153 if (pt == NULL)
5154 {
5155 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5156 sprintf (buf, "LOPROC+%7.7x",
5157 (unsigned int) (m->p_type - PT_LOPROC));
5158 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5159 sprintf (buf, "LOOS+%7.7x",
5160 (unsigned int) (m->p_type - PT_LOOS));
5161 else
5162 snprintf (buf, sizeof (buf), "%8.8x",
5163 (unsigned int) m->p_type);
5164 pt = buf;
5165 }
5166 fflush (stdout);
5167 fprintf (stderr, "%s:", pt);
5168 for (j = 0; j < m->count; j++)
5169 fprintf (stderr, " %s", m->sections [j]->name);
5170 putc ('\n',stderr);
5171 fflush (stderr);
5172 }
5173
5174 static bfd_boolean
5175 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5176 {
5177 void *buf;
5178 bfd_boolean ret;
5179
5180 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5181 return FALSE;
5182 buf = bfd_zmalloc (len);
5183 if (buf == NULL)
5184 return FALSE;
5185 ret = bfd_bwrite (buf, len, abfd) == len;
5186 free (buf);
5187 return ret;
5188 }
5189
5190 /* Assign file positions to the sections based on the mapping from
5191 sections to segments. This function also sets up some fields in
5192 the file header. */
5193
5194 static bfd_boolean
5195 assign_file_positions_for_load_sections (bfd *abfd,
5196 struct bfd_link_info *link_info)
5197 {
5198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5199 struct elf_segment_map *m;
5200 Elf_Internal_Phdr *phdrs;
5201 Elf_Internal_Phdr *p;
5202 file_ptr off;
5203 bfd_size_type maxpagesize;
5204 unsigned int pt_load_count = 0;
5205 unsigned int alloc;
5206 unsigned int i, j;
5207 bfd_vma header_pad = 0;
5208
5209 if (link_info == NULL
5210 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5211 return FALSE;
5212
5213 alloc = 0;
5214 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5215 {
5216 ++alloc;
5217 if (m->header_size)
5218 header_pad = m->header_size;
5219 }
5220
5221 if (alloc)
5222 {
5223 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5224 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5225 }
5226 else
5227 {
5228 /* PR binutils/12467. */
5229 elf_elfheader (abfd)->e_phoff = 0;
5230 elf_elfheader (abfd)->e_phentsize = 0;
5231 }
5232
5233 elf_elfheader (abfd)->e_phnum = alloc;
5234
5235 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5236 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5237 else
5238 BFD_ASSERT (elf_program_header_size (abfd)
5239 >= alloc * bed->s->sizeof_phdr);
5240
5241 if (alloc == 0)
5242 {
5243 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5244 return TRUE;
5245 }
5246
5247 /* We're writing the size in elf_program_header_size (abfd),
5248 see assign_file_positions_except_relocs, so make sure we have
5249 that amount allocated, with trailing space cleared.
5250 The variable alloc contains the computed need, while
5251 elf_program_header_size (abfd) contains the size used for the
5252 layout.
5253 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5254 where the layout is forced to according to a larger size in the
5255 last iterations for the testcase ld-elf/header. */
5256 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5257 == 0);
5258 phdrs = (Elf_Internal_Phdr *)
5259 bfd_zalloc2 (abfd,
5260 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5261 sizeof (Elf_Internal_Phdr));
5262 elf_tdata (abfd)->phdr = phdrs;
5263 if (phdrs == NULL)
5264 return FALSE;
5265
5266 maxpagesize = 1;
5267 if ((abfd->flags & D_PAGED) != 0)
5268 maxpagesize = bed->maxpagesize;
5269
5270 off = bed->s->sizeof_ehdr;
5271 off += alloc * bed->s->sizeof_phdr;
5272 if (header_pad < (bfd_vma) off)
5273 header_pad = 0;
5274 else
5275 header_pad -= off;
5276 off += header_pad;
5277
5278 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5279 m != NULL;
5280 m = m->next, p++, j++)
5281 {
5282 asection **secpp;
5283 bfd_vma off_adjust;
5284 bfd_boolean no_contents;
5285
5286 /* If elf_segment_map is not from map_sections_to_segments, the
5287 sections may not be correctly ordered. NOTE: sorting should
5288 not be done to the PT_NOTE section of a corefile, which may
5289 contain several pseudo-sections artificially created by bfd.
5290 Sorting these pseudo-sections breaks things badly. */
5291 if (m->count > 1
5292 && !(elf_elfheader (abfd)->e_type == ET_CORE
5293 && m->p_type == PT_NOTE))
5294 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5295 elf_sort_sections);
5296
5297 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5298 number of sections with contents contributing to both p_filesz
5299 and p_memsz, followed by a number of sections with no contents
5300 that just contribute to p_memsz. In this loop, OFF tracks next
5301 available file offset for PT_LOAD and PT_NOTE segments. */
5302 p->p_type = m->p_type;
5303 p->p_flags = m->p_flags;
5304
5305 if (m->count == 0)
5306 p->p_vaddr = 0;
5307 else
5308 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5309
5310 if (m->p_paddr_valid)
5311 p->p_paddr = m->p_paddr;
5312 else if (m->count == 0)
5313 p->p_paddr = 0;
5314 else
5315 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5316
5317 if (p->p_type == PT_LOAD
5318 && (abfd->flags & D_PAGED) != 0)
5319 {
5320 /* p_align in demand paged PT_LOAD segments effectively stores
5321 the maximum page size. When copying an executable with
5322 objcopy, we set m->p_align from the input file. Use this
5323 value for maxpagesize rather than bed->maxpagesize, which
5324 may be different. Note that we use maxpagesize for PT_TLS
5325 segment alignment later in this function, so we are relying
5326 on at least one PT_LOAD segment appearing before a PT_TLS
5327 segment. */
5328 if (m->p_align_valid)
5329 maxpagesize = m->p_align;
5330
5331 p->p_align = maxpagesize;
5332 pt_load_count += 1;
5333 }
5334 else if (m->p_align_valid)
5335 p->p_align = m->p_align;
5336 else if (m->count == 0)
5337 p->p_align = 1 << bed->s->log_file_align;
5338 else
5339 p->p_align = 0;
5340
5341 no_contents = FALSE;
5342 off_adjust = 0;
5343 if (p->p_type == PT_LOAD
5344 && m->count > 0)
5345 {
5346 bfd_size_type align;
5347 unsigned int align_power = 0;
5348
5349 if (m->p_align_valid)
5350 align = p->p_align;
5351 else
5352 {
5353 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5354 {
5355 unsigned int secalign;
5356
5357 secalign = bfd_get_section_alignment (abfd, *secpp);
5358 if (secalign > align_power)
5359 align_power = secalign;
5360 }
5361 align = (bfd_size_type) 1 << align_power;
5362 if (align < maxpagesize)
5363 align = maxpagesize;
5364 }
5365
5366 for (i = 0; i < m->count; i++)
5367 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5368 /* If we aren't making room for this section, then
5369 it must be SHT_NOBITS regardless of what we've
5370 set via struct bfd_elf_special_section. */
5371 elf_section_type (m->sections[i]) = SHT_NOBITS;
5372
5373 /* Find out whether this segment contains any loadable
5374 sections. */
5375 no_contents = TRUE;
5376 for (i = 0; i < m->count; i++)
5377 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5378 {
5379 no_contents = FALSE;
5380 break;
5381 }
5382
5383 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5384
5385 /* Broken hardware and/or kernel require that files do not
5386 map the same page with different permissions on some hppa
5387 processors. */
5388 if (pt_load_count > 1
5389 && bed->no_page_alias
5390 && (off & (maxpagesize - 1)) != 0
5391 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5392 off_adjust += maxpagesize;
5393 off += off_adjust;
5394 if (no_contents)
5395 {
5396 /* We shouldn't need to align the segment on disk since
5397 the segment doesn't need file space, but the gABI
5398 arguably requires the alignment and glibc ld.so
5399 checks it. So to comply with the alignment
5400 requirement but not waste file space, we adjust
5401 p_offset for just this segment. (OFF_ADJUST is
5402 subtracted from OFF later.) This may put p_offset
5403 past the end of file, but that shouldn't matter. */
5404 }
5405 else
5406 off_adjust = 0;
5407 }
5408 /* Make sure the .dynamic section is the first section in the
5409 PT_DYNAMIC segment. */
5410 else if (p->p_type == PT_DYNAMIC
5411 && m->count > 1
5412 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5413 {
5414 _bfd_error_handler
5415 (_("%B: The first section in the PT_DYNAMIC segment"
5416 " is not the .dynamic section"),
5417 abfd);
5418 bfd_set_error (bfd_error_bad_value);
5419 return FALSE;
5420 }
5421 /* Set the note section type to SHT_NOTE. */
5422 else if (p->p_type == PT_NOTE)
5423 for (i = 0; i < m->count; i++)
5424 elf_section_type (m->sections[i]) = SHT_NOTE;
5425
5426 p->p_offset = 0;
5427 p->p_filesz = 0;
5428 p->p_memsz = 0;
5429
5430 if (m->includes_filehdr)
5431 {
5432 if (!m->p_flags_valid)
5433 p->p_flags |= PF_R;
5434 p->p_filesz = bed->s->sizeof_ehdr;
5435 p->p_memsz = bed->s->sizeof_ehdr;
5436 if (m->count > 0)
5437 {
5438 if (p->p_vaddr < (bfd_vma) off
5439 || (!m->p_paddr_valid
5440 && p->p_paddr < (bfd_vma) off))
5441 {
5442 _bfd_error_handler
5443 (_("%B: Not enough room for program headers,"
5444 " try linking with -N"),
5445 abfd);
5446 bfd_set_error (bfd_error_bad_value);
5447 return FALSE;
5448 }
5449
5450 p->p_vaddr -= off;
5451 if (!m->p_paddr_valid)
5452 p->p_paddr -= off;
5453 }
5454 }
5455
5456 if (m->includes_phdrs)
5457 {
5458 if (!m->p_flags_valid)
5459 p->p_flags |= PF_R;
5460
5461 if (!m->includes_filehdr)
5462 {
5463 p->p_offset = bed->s->sizeof_ehdr;
5464
5465 if (m->count > 0)
5466 {
5467 p->p_vaddr -= off - p->p_offset;
5468 if (!m->p_paddr_valid)
5469 p->p_paddr -= off - p->p_offset;
5470 }
5471 }
5472
5473 p->p_filesz += alloc * bed->s->sizeof_phdr;
5474 p->p_memsz += alloc * bed->s->sizeof_phdr;
5475 if (m->count)
5476 {
5477 p->p_filesz += header_pad;
5478 p->p_memsz += header_pad;
5479 }
5480 }
5481
5482 if (p->p_type == PT_LOAD
5483 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5484 {
5485 if (!m->includes_filehdr && !m->includes_phdrs)
5486 p->p_offset = off;
5487 else
5488 {
5489 file_ptr adjust;
5490
5491 adjust = off - (p->p_offset + p->p_filesz);
5492 if (!no_contents)
5493 p->p_filesz += adjust;
5494 p->p_memsz += adjust;
5495 }
5496 }
5497
5498 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5499 maps. Set filepos for sections in PT_LOAD segments, and in
5500 core files, for sections in PT_NOTE segments.
5501 assign_file_positions_for_non_load_sections will set filepos
5502 for other sections and update p_filesz for other segments. */
5503 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5504 {
5505 asection *sec;
5506 bfd_size_type align;
5507 Elf_Internal_Shdr *this_hdr;
5508
5509 sec = *secpp;
5510 this_hdr = &elf_section_data (sec)->this_hdr;
5511 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5512
5513 if ((p->p_type == PT_LOAD
5514 || p->p_type == PT_TLS)
5515 && (this_hdr->sh_type != SHT_NOBITS
5516 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5517 && ((this_hdr->sh_flags & SHF_TLS) == 0
5518 || p->p_type == PT_TLS))))
5519 {
5520 bfd_vma p_start = p->p_paddr;
5521 bfd_vma p_end = p_start + p->p_memsz;
5522 bfd_vma s_start = sec->lma;
5523 bfd_vma adjust = s_start - p_end;
5524
5525 if (adjust != 0
5526 && (s_start < p_end
5527 || p_end < p_start))
5528 {
5529 _bfd_error_handler
5530 /* xgettext:c-format */
5531 (_("%B: section %A lma %#Lx adjusted to %#Lx"),
5532 abfd, sec, s_start, p_end);
5533 adjust = 0;
5534 sec->lma = p_end;
5535 }
5536 p->p_memsz += adjust;
5537
5538 if (this_hdr->sh_type != SHT_NOBITS)
5539 {
5540 if (p->p_filesz + adjust < p->p_memsz)
5541 {
5542 /* We have a PROGBITS section following NOBITS ones.
5543 Allocate file space for the NOBITS section(s) and
5544 zero it. */
5545 adjust = p->p_memsz - p->p_filesz;
5546 if (!write_zeros (abfd, off, adjust))
5547 return FALSE;
5548 }
5549 off += adjust;
5550 p->p_filesz += adjust;
5551 }
5552 }
5553
5554 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5555 {
5556 /* The section at i == 0 is the one that actually contains
5557 everything. */
5558 if (i == 0)
5559 {
5560 this_hdr->sh_offset = sec->filepos = off;
5561 off += this_hdr->sh_size;
5562 p->p_filesz = this_hdr->sh_size;
5563 p->p_memsz = 0;
5564 p->p_align = 1;
5565 }
5566 else
5567 {
5568 /* The rest are fake sections that shouldn't be written. */
5569 sec->filepos = 0;
5570 sec->size = 0;
5571 sec->flags = 0;
5572 continue;
5573 }
5574 }
5575 else
5576 {
5577 if (p->p_type == PT_LOAD)
5578 {
5579 this_hdr->sh_offset = sec->filepos = off;
5580 if (this_hdr->sh_type != SHT_NOBITS)
5581 off += this_hdr->sh_size;
5582 }
5583 else if (this_hdr->sh_type == SHT_NOBITS
5584 && (this_hdr->sh_flags & SHF_TLS) != 0
5585 && this_hdr->sh_offset == 0)
5586 {
5587 /* This is a .tbss section that didn't get a PT_LOAD.
5588 (See _bfd_elf_map_sections_to_segments "Create a
5589 final PT_LOAD".) Set sh_offset to the value it
5590 would have if we had created a zero p_filesz and
5591 p_memsz PT_LOAD header for the section. This
5592 also makes the PT_TLS header have the same
5593 p_offset value. */
5594 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5595 off, align);
5596 this_hdr->sh_offset = sec->filepos = off + adjust;
5597 }
5598
5599 if (this_hdr->sh_type != SHT_NOBITS)
5600 {
5601 p->p_filesz += this_hdr->sh_size;
5602 /* A load section without SHF_ALLOC is something like
5603 a note section in a PT_NOTE segment. These take
5604 file space but are not loaded into memory. */
5605 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5606 p->p_memsz += this_hdr->sh_size;
5607 }
5608 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5609 {
5610 if (p->p_type == PT_TLS)
5611 p->p_memsz += this_hdr->sh_size;
5612
5613 /* .tbss is special. It doesn't contribute to p_memsz of
5614 normal segments. */
5615 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5616 p->p_memsz += this_hdr->sh_size;
5617 }
5618
5619 if (align > p->p_align
5620 && !m->p_align_valid
5621 && (p->p_type != PT_LOAD
5622 || (abfd->flags & D_PAGED) == 0))
5623 p->p_align = align;
5624 }
5625
5626 if (!m->p_flags_valid)
5627 {
5628 p->p_flags |= PF_R;
5629 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5630 p->p_flags |= PF_X;
5631 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5632 p->p_flags |= PF_W;
5633 }
5634 }
5635
5636 off -= off_adjust;
5637
5638 /* Check that all sections are in a PT_LOAD segment.
5639 Don't check funky gdb generated core files. */
5640 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5641 {
5642 bfd_boolean check_vma = TRUE;
5643
5644 for (i = 1; i < m->count; i++)
5645 if (m->sections[i]->vma == m->sections[i - 1]->vma
5646 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5647 ->this_hdr), p) != 0
5648 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5649 ->this_hdr), p) != 0)
5650 {
5651 /* Looks like we have overlays packed into the segment. */
5652 check_vma = FALSE;
5653 break;
5654 }
5655
5656 for (i = 0; i < m->count; i++)
5657 {
5658 Elf_Internal_Shdr *this_hdr;
5659 asection *sec;
5660
5661 sec = m->sections[i];
5662 this_hdr = &(elf_section_data(sec)->this_hdr);
5663 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5664 && !ELF_TBSS_SPECIAL (this_hdr, p))
5665 {
5666 _bfd_error_handler
5667 /* xgettext:c-format */
5668 (_("%B: section `%A' can't be allocated in segment %d"),
5669 abfd, sec, j);
5670 print_segment_map (m);
5671 }
5672 }
5673 }
5674 }
5675
5676 elf_next_file_pos (abfd) = off;
5677 return TRUE;
5678 }
5679
5680 /* Assign file positions for the other sections. */
5681
5682 static bfd_boolean
5683 assign_file_positions_for_non_load_sections (bfd *abfd,
5684 struct bfd_link_info *link_info)
5685 {
5686 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5687 Elf_Internal_Shdr **i_shdrpp;
5688 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5689 Elf_Internal_Phdr *phdrs;
5690 Elf_Internal_Phdr *p;
5691 struct elf_segment_map *m;
5692 struct elf_segment_map *hdrs_segment;
5693 bfd_vma filehdr_vaddr, filehdr_paddr;
5694 bfd_vma phdrs_vaddr, phdrs_paddr;
5695 file_ptr off;
5696 unsigned int count;
5697
5698 i_shdrpp = elf_elfsections (abfd);
5699 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5700 off = elf_next_file_pos (abfd);
5701 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5702 {
5703 Elf_Internal_Shdr *hdr;
5704
5705 hdr = *hdrpp;
5706 if (hdr->bfd_section != NULL
5707 && (hdr->bfd_section->filepos != 0
5708 || (hdr->sh_type == SHT_NOBITS
5709 && hdr->contents == NULL)))
5710 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5711 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5712 {
5713 if (hdr->sh_size != 0)
5714 _bfd_error_handler
5715 /* xgettext:c-format */
5716 (_("%B: warning: allocated section `%s' not in segment"),
5717 abfd,
5718 (hdr->bfd_section == NULL
5719 ? "*unknown*"
5720 : hdr->bfd_section->name));
5721 /* We don't need to page align empty sections. */
5722 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5723 off += vma_page_aligned_bias (hdr->sh_addr, off,
5724 bed->maxpagesize);
5725 else
5726 off += vma_page_aligned_bias (hdr->sh_addr, off,
5727 hdr->sh_addralign);
5728 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5729 FALSE);
5730 }
5731 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5732 && hdr->bfd_section == NULL)
5733 || (hdr->bfd_section != NULL
5734 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5735 /* Compress DWARF debug sections. */
5736 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5737 || (elf_symtab_shndx_list (abfd) != NULL
5738 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5739 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5740 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5741 hdr->sh_offset = -1;
5742 else
5743 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5744 }
5745
5746 /* Now that we have set the section file positions, we can set up
5747 the file positions for the non PT_LOAD segments. */
5748 count = 0;
5749 filehdr_vaddr = 0;
5750 filehdr_paddr = 0;
5751 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5752 phdrs_paddr = 0;
5753 hdrs_segment = NULL;
5754 phdrs = elf_tdata (abfd)->phdr;
5755 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5756 {
5757 ++count;
5758 if (p->p_type != PT_LOAD)
5759 continue;
5760
5761 if (m->includes_filehdr)
5762 {
5763 filehdr_vaddr = p->p_vaddr;
5764 filehdr_paddr = p->p_paddr;
5765 }
5766 if (m->includes_phdrs)
5767 {
5768 phdrs_vaddr = p->p_vaddr;
5769 phdrs_paddr = p->p_paddr;
5770 if (m->includes_filehdr)
5771 {
5772 hdrs_segment = m;
5773 phdrs_vaddr += bed->s->sizeof_ehdr;
5774 phdrs_paddr += bed->s->sizeof_ehdr;
5775 }
5776 }
5777 }
5778
5779 if (hdrs_segment != NULL && link_info != NULL)
5780 {
5781 /* There is a segment that contains both the file headers and the
5782 program headers, so provide a symbol __ehdr_start pointing there.
5783 A program can use this to examine itself robustly. */
5784
5785 struct elf_link_hash_entry *hash
5786 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5787 FALSE, FALSE, TRUE);
5788 /* If the symbol was referenced and not defined, define it. */
5789 if (hash != NULL
5790 && (hash->root.type == bfd_link_hash_new
5791 || hash->root.type == bfd_link_hash_undefined
5792 || hash->root.type == bfd_link_hash_undefweak
5793 || hash->root.type == bfd_link_hash_common))
5794 {
5795 asection *s = NULL;
5796 if (hdrs_segment->count != 0)
5797 /* The segment contains sections, so use the first one. */
5798 s = hdrs_segment->sections[0];
5799 else
5800 /* Use the first (i.e. lowest-addressed) section in any segment. */
5801 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5802 if (m->count != 0)
5803 {
5804 s = m->sections[0];
5805 break;
5806 }
5807
5808 if (s != NULL)
5809 {
5810 hash->root.u.def.value = filehdr_vaddr - s->vma;
5811 hash->root.u.def.section = s;
5812 }
5813 else
5814 {
5815 hash->root.u.def.value = filehdr_vaddr;
5816 hash->root.u.def.section = bfd_abs_section_ptr;
5817 }
5818
5819 hash->root.type = bfd_link_hash_defined;
5820 hash->def_regular = 1;
5821 hash->non_elf = 0;
5822 }
5823 }
5824
5825 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5826 {
5827 if (p->p_type == PT_GNU_RELRO)
5828 {
5829 const Elf_Internal_Phdr *lp;
5830 struct elf_segment_map *lm;
5831
5832 if (link_info != NULL)
5833 {
5834 /* During linking the range of the RELRO segment is passed
5835 in link_info. */
5836 for (lm = elf_seg_map (abfd), lp = phdrs;
5837 lm != NULL;
5838 lm = lm->next, lp++)
5839 {
5840 if (lp->p_type == PT_LOAD
5841 && lp->p_vaddr < link_info->relro_end
5842 && lm->count != 0
5843 && lm->sections[0]->vma >= link_info->relro_start)
5844 break;
5845 }
5846
5847 BFD_ASSERT (lm != NULL);
5848 }
5849 else
5850 {
5851 /* Otherwise we are copying an executable or shared
5852 library, but we need to use the same linker logic. */
5853 for (lp = phdrs; lp < phdrs + count; ++lp)
5854 {
5855 if (lp->p_type == PT_LOAD
5856 && lp->p_paddr == p->p_paddr)
5857 break;
5858 }
5859 }
5860
5861 if (lp < phdrs + count)
5862 {
5863 p->p_vaddr = lp->p_vaddr;
5864 p->p_paddr = lp->p_paddr;
5865 p->p_offset = lp->p_offset;
5866 if (link_info != NULL)
5867 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5868 else if (m->p_size_valid)
5869 p->p_filesz = m->p_size;
5870 else
5871 abort ();
5872 p->p_memsz = p->p_filesz;
5873 /* Preserve the alignment and flags if they are valid. The
5874 gold linker generates RW/4 for the PT_GNU_RELRO section.
5875 It is better for objcopy/strip to honor these attributes
5876 otherwise gdb will choke when using separate debug files.
5877 */
5878 if (!m->p_align_valid)
5879 p->p_align = 1;
5880 if (!m->p_flags_valid)
5881 p->p_flags = PF_R;
5882 }
5883 else
5884 {
5885 memset (p, 0, sizeof *p);
5886 p->p_type = PT_NULL;
5887 }
5888 }
5889 else if (p->p_type == PT_GNU_STACK)
5890 {
5891 if (m->p_size_valid)
5892 p->p_memsz = m->p_size;
5893 }
5894 else if (m->count != 0)
5895 {
5896 unsigned int i;
5897
5898 if (p->p_type != PT_LOAD
5899 && (p->p_type != PT_NOTE
5900 || bfd_get_format (abfd) != bfd_core))
5901 {
5902 /* A user specified segment layout may include a PHDR
5903 segment that overlaps with a LOAD segment... */
5904 if (p->p_type == PT_PHDR)
5905 {
5906 m->count = 0;
5907 continue;
5908 }
5909
5910 if (m->includes_filehdr || m->includes_phdrs)
5911 {
5912 /* PR 17512: file: 2195325e. */
5913 _bfd_error_handler
5914 (_("%B: error: non-load segment %d includes file header "
5915 "and/or program header"),
5916 abfd, (int) (p - phdrs));
5917 return FALSE;
5918 }
5919
5920 p->p_filesz = 0;
5921 p->p_offset = m->sections[0]->filepos;
5922 for (i = m->count; i-- != 0;)
5923 {
5924 asection *sect = m->sections[i];
5925 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5926 if (hdr->sh_type != SHT_NOBITS)
5927 {
5928 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5929 + hdr->sh_size);
5930 break;
5931 }
5932 }
5933 }
5934 }
5935 else if (m->includes_filehdr)
5936 {
5937 p->p_vaddr = filehdr_vaddr;
5938 if (! m->p_paddr_valid)
5939 p->p_paddr = filehdr_paddr;
5940 }
5941 else if (m->includes_phdrs)
5942 {
5943 p->p_vaddr = phdrs_vaddr;
5944 if (! m->p_paddr_valid)
5945 p->p_paddr = phdrs_paddr;
5946 }
5947 }
5948
5949 elf_next_file_pos (abfd) = off;
5950
5951 return TRUE;
5952 }
5953
5954 static elf_section_list *
5955 find_section_in_list (unsigned int i, elf_section_list * list)
5956 {
5957 for (;list != NULL; list = list->next)
5958 if (list->ndx == i)
5959 break;
5960 return list;
5961 }
5962
5963 /* Work out the file positions of all the sections. This is called by
5964 _bfd_elf_compute_section_file_positions. All the section sizes and
5965 VMAs must be known before this is called.
5966
5967 Reloc sections come in two flavours: Those processed specially as
5968 "side-channel" data attached to a section to which they apply, and
5969 those that bfd doesn't process as relocations. The latter sort are
5970 stored in a normal bfd section by bfd_section_from_shdr. We don't
5971 consider the former sort here, unless they form part of the loadable
5972 image. Reloc sections not assigned here will be handled later by
5973 assign_file_positions_for_relocs.
5974
5975 We also don't set the positions of the .symtab and .strtab here. */
5976
5977 static bfd_boolean
5978 assign_file_positions_except_relocs (bfd *abfd,
5979 struct bfd_link_info *link_info)
5980 {
5981 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5982 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5983 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5984
5985 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5986 && bfd_get_format (abfd) != bfd_core)
5987 {
5988 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5989 unsigned int num_sec = elf_numsections (abfd);
5990 Elf_Internal_Shdr **hdrpp;
5991 unsigned int i;
5992 file_ptr off;
5993
5994 /* Start after the ELF header. */
5995 off = i_ehdrp->e_ehsize;
5996
5997 /* We are not creating an executable, which means that we are
5998 not creating a program header, and that the actual order of
5999 the sections in the file is unimportant. */
6000 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6001 {
6002 Elf_Internal_Shdr *hdr;
6003
6004 hdr = *hdrpp;
6005 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6006 && hdr->bfd_section == NULL)
6007 || (hdr->bfd_section != NULL
6008 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6009 /* Compress DWARF debug sections. */
6010 || i == elf_onesymtab (abfd)
6011 || (elf_symtab_shndx_list (abfd) != NULL
6012 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6013 || i == elf_strtab_sec (abfd)
6014 || i == elf_shstrtab_sec (abfd))
6015 {
6016 hdr->sh_offset = -1;
6017 }
6018 else
6019 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6020 }
6021
6022 elf_next_file_pos (abfd) = off;
6023 }
6024 else
6025 {
6026 unsigned int alloc;
6027
6028 /* Assign file positions for the loaded sections based on the
6029 assignment of sections to segments. */
6030 if (!assign_file_positions_for_load_sections (abfd, link_info))
6031 return FALSE;
6032
6033 /* And for non-load sections. */
6034 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6035 return FALSE;
6036
6037 if (bed->elf_backend_modify_program_headers != NULL)
6038 {
6039 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6040 return FALSE;
6041 }
6042
6043 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6044 if (link_info != NULL && bfd_link_pie (link_info))
6045 {
6046 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6047 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6048 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6049
6050 /* Find the lowest p_vaddr in PT_LOAD segments. */
6051 bfd_vma p_vaddr = (bfd_vma) -1;
6052 for (; segment < end_segment; segment++)
6053 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6054 p_vaddr = segment->p_vaddr;
6055
6056 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6057 segments is non-zero. */
6058 if (p_vaddr)
6059 i_ehdrp->e_type = ET_EXEC;
6060 }
6061
6062 /* Write out the program headers. */
6063 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6064
6065 /* Sort the program headers into the ordering required by the ELF standard. */
6066 if (alloc == 0)
6067 return TRUE;
6068
6069 /* PR ld/20815 - Check that the program header segment, if present, will
6070 be loaded into memory. FIXME: The check below is not sufficient as
6071 really all PT_LOAD segments should be checked before issuing an error
6072 message. Plus the PHDR segment does not have to be the first segment
6073 in the program header table. But this version of the check should
6074 catch all real world use cases.
6075
6076 FIXME: We used to have code here to sort the PT_LOAD segments into
6077 ascending order, as per the ELF spec. But this breaks some programs,
6078 including the Linux kernel. But really either the spec should be
6079 changed or the programs updated. */
6080 if (alloc > 1
6081 && tdata->phdr[0].p_type == PT_PHDR
6082 && ! bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr, alloc)
6083 && tdata->phdr[1].p_type == PT_LOAD
6084 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6085 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6086 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6087 {
6088 /* The fix for this error is usually to edit the linker script being
6089 used and set up the program headers manually. Either that or
6090 leave room for the headers at the start of the SECTIONS. */
6091 _bfd_error_handler (_("\
6092 %B: error: PHDR segment not covered by LOAD segment"),
6093 abfd);
6094 return FALSE;
6095 }
6096
6097 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6098 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6099 return FALSE;
6100 }
6101
6102 return TRUE;
6103 }
6104
6105 static bfd_boolean
6106 prep_headers (bfd *abfd)
6107 {
6108 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6109 struct elf_strtab_hash *shstrtab;
6110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6111
6112 i_ehdrp = elf_elfheader (abfd);
6113
6114 shstrtab = _bfd_elf_strtab_init ();
6115 if (shstrtab == NULL)
6116 return FALSE;
6117
6118 elf_shstrtab (abfd) = shstrtab;
6119
6120 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6121 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6122 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6123 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6124
6125 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6126 i_ehdrp->e_ident[EI_DATA] =
6127 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6128 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6129
6130 if ((abfd->flags & DYNAMIC) != 0)
6131 i_ehdrp->e_type = ET_DYN;
6132 else if ((abfd->flags & EXEC_P) != 0)
6133 i_ehdrp->e_type = ET_EXEC;
6134 else if (bfd_get_format (abfd) == bfd_core)
6135 i_ehdrp->e_type = ET_CORE;
6136 else
6137 i_ehdrp->e_type = ET_REL;
6138
6139 switch (bfd_get_arch (abfd))
6140 {
6141 case bfd_arch_unknown:
6142 i_ehdrp->e_machine = EM_NONE;
6143 break;
6144
6145 /* There used to be a long list of cases here, each one setting
6146 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6147 in the corresponding bfd definition. To avoid duplication,
6148 the switch was removed. Machines that need special handling
6149 can generally do it in elf_backend_final_write_processing(),
6150 unless they need the information earlier than the final write.
6151 Such need can generally be supplied by replacing the tests for
6152 e_machine with the conditions used to determine it. */
6153 default:
6154 i_ehdrp->e_machine = bed->elf_machine_code;
6155 }
6156
6157 i_ehdrp->e_version = bed->s->ev_current;
6158 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6159
6160 /* No program header, for now. */
6161 i_ehdrp->e_phoff = 0;
6162 i_ehdrp->e_phentsize = 0;
6163 i_ehdrp->e_phnum = 0;
6164
6165 /* Each bfd section is section header entry. */
6166 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6167 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6168
6169 /* If we're building an executable, we'll need a program header table. */
6170 if (abfd->flags & EXEC_P)
6171 /* It all happens later. */
6172 ;
6173 else
6174 {
6175 i_ehdrp->e_phentsize = 0;
6176 i_ehdrp->e_phoff = 0;
6177 }
6178
6179 elf_tdata (abfd)->symtab_hdr.sh_name =
6180 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6181 elf_tdata (abfd)->strtab_hdr.sh_name =
6182 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6183 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6184 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6185 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6186 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6187 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6188 return FALSE;
6189
6190 return TRUE;
6191 }
6192
6193 /* Assign file positions for all the reloc sections which are not part
6194 of the loadable file image, and the file position of section headers. */
6195
6196 static bfd_boolean
6197 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6198 {
6199 file_ptr off;
6200 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6201 Elf_Internal_Shdr *shdrp;
6202 Elf_Internal_Ehdr *i_ehdrp;
6203 const struct elf_backend_data *bed;
6204
6205 off = elf_next_file_pos (abfd);
6206
6207 shdrpp = elf_elfsections (abfd);
6208 end_shdrpp = shdrpp + elf_numsections (abfd);
6209 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6210 {
6211 shdrp = *shdrpp;
6212 if (shdrp->sh_offset == -1)
6213 {
6214 asection *sec = shdrp->bfd_section;
6215 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6216 || shdrp->sh_type == SHT_RELA);
6217 if (is_rel
6218 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6219 {
6220 if (!is_rel)
6221 {
6222 const char *name = sec->name;
6223 struct bfd_elf_section_data *d;
6224
6225 /* Compress DWARF debug sections. */
6226 if (!bfd_compress_section (abfd, sec,
6227 shdrp->contents))
6228 return FALSE;
6229
6230 if (sec->compress_status == COMPRESS_SECTION_DONE
6231 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6232 {
6233 /* If section is compressed with zlib-gnu, convert
6234 section name from .debug_* to .zdebug_*. */
6235 char *new_name
6236 = convert_debug_to_zdebug (abfd, name);
6237 if (new_name == NULL)
6238 return FALSE;
6239 name = new_name;
6240 }
6241 /* Add section name to section name section. */
6242 if (shdrp->sh_name != (unsigned int) -1)
6243 abort ();
6244 shdrp->sh_name
6245 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6246 name, FALSE);
6247 d = elf_section_data (sec);
6248
6249 /* Add reloc section name to section name section. */
6250 if (d->rel.hdr
6251 && !_bfd_elf_set_reloc_sh_name (abfd,
6252 d->rel.hdr,
6253 name, FALSE))
6254 return FALSE;
6255 if (d->rela.hdr
6256 && !_bfd_elf_set_reloc_sh_name (abfd,
6257 d->rela.hdr,
6258 name, TRUE))
6259 return FALSE;
6260
6261 /* Update section size and contents. */
6262 shdrp->sh_size = sec->size;
6263 shdrp->contents = sec->contents;
6264 shdrp->bfd_section->contents = NULL;
6265 }
6266 off = _bfd_elf_assign_file_position_for_section (shdrp,
6267 off,
6268 TRUE);
6269 }
6270 }
6271 }
6272
6273 /* Place section name section after DWARF debug sections have been
6274 compressed. */
6275 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6276 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6277 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6278 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6279
6280 /* Place the section headers. */
6281 i_ehdrp = elf_elfheader (abfd);
6282 bed = get_elf_backend_data (abfd);
6283 off = align_file_position (off, 1 << bed->s->log_file_align);
6284 i_ehdrp->e_shoff = off;
6285 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6286 elf_next_file_pos (abfd) = off;
6287
6288 return TRUE;
6289 }
6290
6291 bfd_boolean
6292 _bfd_elf_write_object_contents (bfd *abfd)
6293 {
6294 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6295 Elf_Internal_Shdr **i_shdrp;
6296 bfd_boolean failed;
6297 unsigned int count, num_sec;
6298 struct elf_obj_tdata *t;
6299
6300 if (! abfd->output_has_begun
6301 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6302 return FALSE;
6303
6304 i_shdrp = elf_elfsections (abfd);
6305
6306 failed = FALSE;
6307 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6308 if (failed)
6309 return FALSE;
6310
6311 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6312 return FALSE;
6313
6314 /* After writing the headers, we need to write the sections too... */
6315 num_sec = elf_numsections (abfd);
6316 for (count = 1; count < num_sec; count++)
6317 {
6318 i_shdrp[count]->sh_name
6319 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6320 i_shdrp[count]->sh_name);
6321 if (bed->elf_backend_section_processing)
6322 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6323 if (i_shdrp[count]->contents)
6324 {
6325 bfd_size_type amt = i_shdrp[count]->sh_size;
6326
6327 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6328 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6329 return FALSE;
6330 }
6331 }
6332
6333 /* Write out the section header names. */
6334 t = elf_tdata (abfd);
6335 if (elf_shstrtab (abfd) != NULL
6336 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6337 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6338 return FALSE;
6339
6340 if (bed->elf_backend_final_write_processing)
6341 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6342
6343 if (!bed->s->write_shdrs_and_ehdr (abfd))
6344 return FALSE;
6345
6346 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6347 if (t->o->build_id.after_write_object_contents != NULL)
6348 return (*t->o->build_id.after_write_object_contents) (abfd);
6349
6350 return TRUE;
6351 }
6352
6353 bfd_boolean
6354 _bfd_elf_write_corefile_contents (bfd *abfd)
6355 {
6356 /* Hopefully this can be done just like an object file. */
6357 return _bfd_elf_write_object_contents (abfd);
6358 }
6359
6360 /* Given a section, search the header to find them. */
6361
6362 unsigned int
6363 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6364 {
6365 const struct elf_backend_data *bed;
6366 unsigned int sec_index;
6367
6368 if (elf_section_data (asect) != NULL
6369 && elf_section_data (asect)->this_idx != 0)
6370 return elf_section_data (asect)->this_idx;
6371
6372 if (bfd_is_abs_section (asect))
6373 sec_index = SHN_ABS;
6374 else if (bfd_is_com_section (asect))
6375 sec_index = SHN_COMMON;
6376 else if (bfd_is_und_section (asect))
6377 sec_index = SHN_UNDEF;
6378 else
6379 sec_index = SHN_BAD;
6380
6381 bed = get_elf_backend_data (abfd);
6382 if (bed->elf_backend_section_from_bfd_section)
6383 {
6384 int retval = sec_index;
6385
6386 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6387 return retval;
6388 }
6389
6390 if (sec_index == SHN_BAD)
6391 bfd_set_error (bfd_error_nonrepresentable_section);
6392
6393 return sec_index;
6394 }
6395
6396 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6397 on error. */
6398
6399 int
6400 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6401 {
6402 asymbol *asym_ptr = *asym_ptr_ptr;
6403 int idx;
6404 flagword flags = asym_ptr->flags;
6405
6406 /* When gas creates relocations against local labels, it creates its
6407 own symbol for the section, but does put the symbol into the
6408 symbol chain, so udata is 0. When the linker is generating
6409 relocatable output, this section symbol may be for one of the
6410 input sections rather than the output section. */
6411 if (asym_ptr->udata.i == 0
6412 && (flags & BSF_SECTION_SYM)
6413 && asym_ptr->section)
6414 {
6415 asection *sec;
6416 int indx;
6417
6418 sec = asym_ptr->section;
6419 if (sec->owner != abfd && sec->output_section != NULL)
6420 sec = sec->output_section;
6421 if (sec->owner == abfd
6422 && (indx = sec->index) < elf_num_section_syms (abfd)
6423 && elf_section_syms (abfd)[indx] != NULL)
6424 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6425 }
6426
6427 idx = asym_ptr->udata.i;
6428
6429 if (idx == 0)
6430 {
6431 /* This case can occur when using --strip-symbol on a symbol
6432 which is used in a relocation entry. */
6433 _bfd_error_handler
6434 /* xgettext:c-format */
6435 (_("%B: symbol `%s' required but not present"),
6436 abfd, bfd_asymbol_name (asym_ptr));
6437 bfd_set_error (bfd_error_no_symbols);
6438 return -1;
6439 }
6440
6441 #if DEBUG & 4
6442 {
6443 fprintf (stderr,
6444 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6445 (long) asym_ptr, asym_ptr->name, idx, flags);
6446 fflush (stderr);
6447 }
6448 #endif
6449
6450 return idx;
6451 }
6452
6453 /* Rewrite program header information. */
6454
6455 static bfd_boolean
6456 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6457 {
6458 Elf_Internal_Ehdr *iehdr;
6459 struct elf_segment_map *map;
6460 struct elf_segment_map *map_first;
6461 struct elf_segment_map **pointer_to_map;
6462 Elf_Internal_Phdr *segment;
6463 asection *section;
6464 unsigned int i;
6465 unsigned int num_segments;
6466 bfd_boolean phdr_included = FALSE;
6467 bfd_boolean p_paddr_valid;
6468 bfd_vma maxpagesize;
6469 struct elf_segment_map *phdr_adjust_seg = NULL;
6470 unsigned int phdr_adjust_num = 0;
6471 const struct elf_backend_data *bed;
6472
6473 bed = get_elf_backend_data (ibfd);
6474 iehdr = elf_elfheader (ibfd);
6475
6476 map_first = NULL;
6477 pointer_to_map = &map_first;
6478
6479 num_segments = elf_elfheader (ibfd)->e_phnum;
6480 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6481
6482 /* Returns the end address of the segment + 1. */
6483 #define SEGMENT_END(segment, start) \
6484 (start + (segment->p_memsz > segment->p_filesz \
6485 ? segment->p_memsz : segment->p_filesz))
6486
6487 #define SECTION_SIZE(section, segment) \
6488 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6489 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6490 ? section->size : 0)
6491
6492 /* Returns TRUE if the given section is contained within
6493 the given segment. VMA addresses are compared. */
6494 #define IS_CONTAINED_BY_VMA(section, segment) \
6495 (section->vma >= segment->p_vaddr \
6496 && (section->vma + SECTION_SIZE (section, segment) \
6497 <= (SEGMENT_END (segment, segment->p_vaddr))))
6498
6499 /* Returns TRUE if the given section is contained within
6500 the given segment. LMA addresses are compared. */
6501 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6502 (section->lma >= base \
6503 && (section->lma + SECTION_SIZE (section, segment) \
6504 <= SEGMENT_END (segment, base)))
6505
6506 /* Handle PT_NOTE segment. */
6507 #define IS_NOTE(p, s) \
6508 (p->p_type == PT_NOTE \
6509 && elf_section_type (s) == SHT_NOTE \
6510 && (bfd_vma) s->filepos >= p->p_offset \
6511 && ((bfd_vma) s->filepos + s->size \
6512 <= p->p_offset + p->p_filesz))
6513
6514 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6515 etc. */
6516 #define IS_COREFILE_NOTE(p, s) \
6517 (IS_NOTE (p, s) \
6518 && bfd_get_format (ibfd) == bfd_core \
6519 && s->vma == 0 \
6520 && s->lma == 0)
6521
6522 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6523 linker, which generates a PT_INTERP section with p_vaddr and
6524 p_memsz set to 0. */
6525 #define IS_SOLARIS_PT_INTERP(p, s) \
6526 (p->p_vaddr == 0 \
6527 && p->p_paddr == 0 \
6528 && p->p_memsz == 0 \
6529 && p->p_filesz > 0 \
6530 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6531 && s->size > 0 \
6532 && (bfd_vma) s->filepos >= p->p_offset \
6533 && ((bfd_vma) s->filepos + s->size \
6534 <= p->p_offset + p->p_filesz))
6535
6536 /* Decide if the given section should be included in the given segment.
6537 A section will be included if:
6538 1. It is within the address space of the segment -- we use the LMA
6539 if that is set for the segment and the VMA otherwise,
6540 2. It is an allocated section or a NOTE section in a PT_NOTE
6541 segment.
6542 3. There is an output section associated with it,
6543 4. The section has not already been allocated to a previous segment.
6544 5. PT_GNU_STACK segments do not include any sections.
6545 6. PT_TLS segment includes only SHF_TLS sections.
6546 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6547 8. PT_DYNAMIC should not contain empty sections at the beginning
6548 (with the possible exception of .dynamic). */
6549 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6550 ((((segment->p_paddr \
6551 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6552 : IS_CONTAINED_BY_VMA (section, segment)) \
6553 && (section->flags & SEC_ALLOC) != 0) \
6554 || IS_NOTE (segment, section)) \
6555 && segment->p_type != PT_GNU_STACK \
6556 && (segment->p_type != PT_TLS \
6557 || (section->flags & SEC_THREAD_LOCAL)) \
6558 && (segment->p_type == PT_LOAD \
6559 || segment->p_type == PT_TLS \
6560 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6561 && (segment->p_type != PT_DYNAMIC \
6562 || SECTION_SIZE (section, segment) > 0 \
6563 || (segment->p_paddr \
6564 ? segment->p_paddr != section->lma \
6565 : segment->p_vaddr != section->vma) \
6566 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6567 == 0)) \
6568 && !section->segment_mark)
6569
6570 /* If the output section of a section in the input segment is NULL,
6571 it is removed from the corresponding output segment. */
6572 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6573 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6574 && section->output_section != NULL)
6575
6576 /* Returns TRUE iff seg1 starts after the end of seg2. */
6577 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6578 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6579
6580 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6581 their VMA address ranges and their LMA address ranges overlap.
6582 It is possible to have overlapping VMA ranges without overlapping LMA
6583 ranges. RedBoot images for example can have both .data and .bss mapped
6584 to the same VMA range, but with the .data section mapped to a different
6585 LMA. */
6586 #define SEGMENT_OVERLAPS(seg1, seg2) \
6587 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6588 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6589 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6590 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6591
6592 /* Initialise the segment mark field. */
6593 for (section = ibfd->sections; section != NULL; section = section->next)
6594 section->segment_mark = FALSE;
6595
6596 /* The Solaris linker creates program headers in which all the
6597 p_paddr fields are zero. When we try to objcopy or strip such a
6598 file, we get confused. Check for this case, and if we find it
6599 don't set the p_paddr_valid fields. */
6600 p_paddr_valid = FALSE;
6601 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6602 i < num_segments;
6603 i++, segment++)
6604 if (segment->p_paddr != 0)
6605 {
6606 p_paddr_valid = TRUE;
6607 break;
6608 }
6609
6610 /* Scan through the segments specified in the program header
6611 of the input BFD. For this first scan we look for overlaps
6612 in the loadable segments. These can be created by weird
6613 parameters to objcopy. Also, fix some solaris weirdness. */
6614 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6615 i < num_segments;
6616 i++, segment++)
6617 {
6618 unsigned int j;
6619 Elf_Internal_Phdr *segment2;
6620
6621 if (segment->p_type == PT_INTERP)
6622 for (section = ibfd->sections; section; section = section->next)
6623 if (IS_SOLARIS_PT_INTERP (segment, section))
6624 {
6625 /* Mininal change so that the normal section to segment
6626 assignment code will work. */
6627 segment->p_vaddr = section->vma;
6628 break;
6629 }
6630
6631 if (segment->p_type != PT_LOAD)
6632 {
6633 /* Remove PT_GNU_RELRO segment. */
6634 if (segment->p_type == PT_GNU_RELRO)
6635 segment->p_type = PT_NULL;
6636 continue;
6637 }
6638
6639 /* Determine if this segment overlaps any previous segments. */
6640 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6641 {
6642 bfd_signed_vma extra_length;
6643
6644 if (segment2->p_type != PT_LOAD
6645 || !SEGMENT_OVERLAPS (segment, segment2))
6646 continue;
6647
6648 /* Merge the two segments together. */
6649 if (segment2->p_vaddr < segment->p_vaddr)
6650 {
6651 /* Extend SEGMENT2 to include SEGMENT and then delete
6652 SEGMENT. */
6653 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6654 - SEGMENT_END (segment2, segment2->p_vaddr));
6655
6656 if (extra_length > 0)
6657 {
6658 segment2->p_memsz += extra_length;
6659 segment2->p_filesz += extra_length;
6660 }
6661
6662 segment->p_type = PT_NULL;
6663
6664 /* Since we have deleted P we must restart the outer loop. */
6665 i = 0;
6666 segment = elf_tdata (ibfd)->phdr;
6667 break;
6668 }
6669 else
6670 {
6671 /* Extend SEGMENT to include SEGMENT2 and then delete
6672 SEGMENT2. */
6673 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6674 - SEGMENT_END (segment, segment->p_vaddr));
6675
6676 if (extra_length > 0)
6677 {
6678 segment->p_memsz += extra_length;
6679 segment->p_filesz += extra_length;
6680 }
6681
6682 segment2->p_type = PT_NULL;
6683 }
6684 }
6685 }
6686
6687 /* The second scan attempts to assign sections to segments. */
6688 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6689 i < num_segments;
6690 i++, segment++)
6691 {
6692 unsigned int section_count;
6693 asection **sections;
6694 asection *output_section;
6695 unsigned int isec;
6696 bfd_vma matching_lma;
6697 bfd_vma suggested_lma;
6698 unsigned int j;
6699 bfd_size_type amt;
6700 asection *first_section;
6701 bfd_boolean first_matching_lma;
6702 bfd_boolean first_suggested_lma;
6703
6704 if (segment->p_type == PT_NULL)
6705 continue;
6706
6707 first_section = NULL;
6708 /* Compute how many sections might be placed into this segment. */
6709 for (section = ibfd->sections, section_count = 0;
6710 section != NULL;
6711 section = section->next)
6712 {
6713 /* Find the first section in the input segment, which may be
6714 removed from the corresponding output segment. */
6715 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6716 {
6717 if (first_section == NULL)
6718 first_section = section;
6719 if (section->output_section != NULL)
6720 ++section_count;
6721 }
6722 }
6723
6724 /* Allocate a segment map big enough to contain
6725 all of the sections we have selected. */
6726 amt = sizeof (struct elf_segment_map);
6727 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6728 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6729 if (map == NULL)
6730 return FALSE;
6731
6732 /* Initialise the fields of the segment map. Default to
6733 using the physical address of the segment in the input BFD. */
6734 map->next = NULL;
6735 map->p_type = segment->p_type;
6736 map->p_flags = segment->p_flags;
6737 map->p_flags_valid = 1;
6738
6739 /* If the first section in the input segment is removed, there is
6740 no need to preserve segment physical address in the corresponding
6741 output segment. */
6742 if (!first_section || first_section->output_section != NULL)
6743 {
6744 map->p_paddr = segment->p_paddr;
6745 map->p_paddr_valid = p_paddr_valid;
6746 }
6747
6748 /* Determine if this segment contains the ELF file header
6749 and if it contains the program headers themselves. */
6750 map->includes_filehdr = (segment->p_offset == 0
6751 && segment->p_filesz >= iehdr->e_ehsize);
6752 map->includes_phdrs = 0;
6753
6754 if (!phdr_included || segment->p_type != PT_LOAD)
6755 {
6756 map->includes_phdrs =
6757 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6758 && (segment->p_offset + segment->p_filesz
6759 >= ((bfd_vma) iehdr->e_phoff
6760 + iehdr->e_phnum * iehdr->e_phentsize)));
6761
6762 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6763 phdr_included = TRUE;
6764 }
6765
6766 if (section_count == 0)
6767 {
6768 /* Special segments, such as the PT_PHDR segment, may contain
6769 no sections, but ordinary, loadable segments should contain
6770 something. They are allowed by the ELF spec however, so only
6771 a warning is produced.
6772 There is however the valid use case of embedded systems which
6773 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6774 flash memory with zeros. No warning is shown for that case. */
6775 if (segment->p_type == PT_LOAD
6776 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6777 /* xgettext:c-format */
6778 _bfd_error_handler (_("%B: warning: Empty loadable segment detected"
6779 " at vaddr=%#Lx, is this intentional?"),
6780 ibfd, segment->p_vaddr);
6781
6782 map->count = 0;
6783 *pointer_to_map = map;
6784 pointer_to_map = &map->next;
6785
6786 continue;
6787 }
6788
6789 /* Now scan the sections in the input BFD again and attempt
6790 to add their corresponding output sections to the segment map.
6791 The problem here is how to handle an output section which has
6792 been moved (ie had its LMA changed). There are four possibilities:
6793
6794 1. None of the sections have been moved.
6795 In this case we can continue to use the segment LMA from the
6796 input BFD.
6797
6798 2. All of the sections have been moved by the same amount.
6799 In this case we can change the segment's LMA to match the LMA
6800 of the first section.
6801
6802 3. Some of the sections have been moved, others have not.
6803 In this case those sections which have not been moved can be
6804 placed in the current segment which will have to have its size,
6805 and possibly its LMA changed, and a new segment or segments will
6806 have to be created to contain the other sections.
6807
6808 4. The sections have been moved, but not by the same amount.
6809 In this case we can change the segment's LMA to match the LMA
6810 of the first section and we will have to create a new segment
6811 or segments to contain the other sections.
6812
6813 In order to save time, we allocate an array to hold the section
6814 pointers that we are interested in. As these sections get assigned
6815 to a segment, they are removed from this array. */
6816
6817 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6818 if (sections == NULL)
6819 return FALSE;
6820
6821 /* Step One: Scan for segment vs section LMA conflicts.
6822 Also add the sections to the section array allocated above.
6823 Also add the sections to the current segment. In the common
6824 case, where the sections have not been moved, this means that
6825 we have completely filled the segment, and there is nothing
6826 more to do. */
6827 isec = 0;
6828 matching_lma = 0;
6829 suggested_lma = 0;
6830 first_matching_lma = TRUE;
6831 first_suggested_lma = TRUE;
6832
6833 for (section = first_section, j = 0;
6834 section != NULL;
6835 section = section->next)
6836 {
6837 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6838 {
6839 output_section = section->output_section;
6840
6841 sections[j++] = section;
6842
6843 /* The Solaris native linker always sets p_paddr to 0.
6844 We try to catch that case here, and set it to the
6845 correct value. Note - some backends require that
6846 p_paddr be left as zero. */
6847 if (!p_paddr_valid
6848 && segment->p_vaddr != 0
6849 && !bed->want_p_paddr_set_to_zero
6850 && isec == 0
6851 && output_section->lma != 0
6852 && output_section->vma == (segment->p_vaddr
6853 + (map->includes_filehdr
6854 ? iehdr->e_ehsize
6855 : 0)
6856 + (map->includes_phdrs
6857 ? (iehdr->e_phnum
6858 * iehdr->e_phentsize)
6859 : 0)))
6860 map->p_paddr = segment->p_vaddr;
6861
6862 /* Match up the physical address of the segment with the
6863 LMA address of the output section. */
6864 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6865 || IS_COREFILE_NOTE (segment, section)
6866 || (bed->want_p_paddr_set_to_zero
6867 && IS_CONTAINED_BY_VMA (output_section, segment)))
6868 {
6869 if (first_matching_lma || output_section->lma < matching_lma)
6870 {
6871 matching_lma = output_section->lma;
6872 first_matching_lma = FALSE;
6873 }
6874
6875 /* We assume that if the section fits within the segment
6876 then it does not overlap any other section within that
6877 segment. */
6878 map->sections[isec++] = output_section;
6879 }
6880 else if (first_suggested_lma)
6881 {
6882 suggested_lma = output_section->lma;
6883 first_suggested_lma = FALSE;
6884 }
6885
6886 if (j == section_count)
6887 break;
6888 }
6889 }
6890
6891 BFD_ASSERT (j == section_count);
6892
6893 /* Step Two: Adjust the physical address of the current segment,
6894 if necessary. */
6895 if (isec == section_count)
6896 {
6897 /* All of the sections fitted within the segment as currently
6898 specified. This is the default case. Add the segment to
6899 the list of built segments and carry on to process the next
6900 program header in the input BFD. */
6901 map->count = section_count;
6902 *pointer_to_map = map;
6903 pointer_to_map = &map->next;
6904
6905 if (p_paddr_valid
6906 && !bed->want_p_paddr_set_to_zero
6907 && matching_lma != map->p_paddr
6908 && !map->includes_filehdr
6909 && !map->includes_phdrs)
6910 /* There is some padding before the first section in the
6911 segment. So, we must account for that in the output
6912 segment's vma. */
6913 map->p_vaddr_offset = matching_lma - map->p_paddr;
6914
6915 free (sections);
6916 continue;
6917 }
6918 else
6919 {
6920 if (!first_matching_lma)
6921 {
6922 /* At least one section fits inside the current segment.
6923 Keep it, but modify its physical address to match the
6924 LMA of the first section that fitted. */
6925 map->p_paddr = matching_lma;
6926 }
6927 else
6928 {
6929 /* None of the sections fitted inside the current segment.
6930 Change the current segment's physical address to match
6931 the LMA of the first section. */
6932 map->p_paddr = suggested_lma;
6933 }
6934
6935 /* Offset the segment physical address from the lma
6936 to allow for space taken up by elf headers. */
6937 if (map->includes_filehdr)
6938 {
6939 if (map->p_paddr >= iehdr->e_ehsize)
6940 map->p_paddr -= iehdr->e_ehsize;
6941 else
6942 {
6943 map->includes_filehdr = FALSE;
6944 map->includes_phdrs = FALSE;
6945 }
6946 }
6947
6948 if (map->includes_phdrs)
6949 {
6950 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6951 {
6952 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6953
6954 /* iehdr->e_phnum is just an estimate of the number
6955 of program headers that we will need. Make a note
6956 here of the number we used and the segment we chose
6957 to hold these headers, so that we can adjust the
6958 offset when we know the correct value. */
6959 phdr_adjust_num = iehdr->e_phnum;
6960 phdr_adjust_seg = map;
6961 }
6962 else
6963 map->includes_phdrs = FALSE;
6964 }
6965 }
6966
6967 /* Step Three: Loop over the sections again, this time assigning
6968 those that fit to the current segment and removing them from the
6969 sections array; but making sure not to leave large gaps. Once all
6970 possible sections have been assigned to the current segment it is
6971 added to the list of built segments and if sections still remain
6972 to be assigned, a new segment is constructed before repeating
6973 the loop. */
6974 isec = 0;
6975 do
6976 {
6977 map->count = 0;
6978 suggested_lma = 0;
6979 first_suggested_lma = TRUE;
6980
6981 /* Fill the current segment with sections that fit. */
6982 for (j = 0; j < section_count; j++)
6983 {
6984 section = sections[j];
6985
6986 if (section == NULL)
6987 continue;
6988
6989 output_section = section->output_section;
6990
6991 BFD_ASSERT (output_section != NULL);
6992
6993 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6994 || IS_COREFILE_NOTE (segment, section))
6995 {
6996 if (map->count == 0)
6997 {
6998 /* If the first section in a segment does not start at
6999 the beginning of the segment, then something is
7000 wrong. */
7001 if (output_section->lma
7002 != (map->p_paddr
7003 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
7004 + (map->includes_phdrs
7005 ? iehdr->e_phnum * iehdr->e_phentsize
7006 : 0)))
7007 abort ();
7008 }
7009 else
7010 {
7011 asection *prev_sec;
7012
7013 prev_sec = map->sections[map->count - 1];
7014
7015 /* If the gap between the end of the previous section
7016 and the start of this section is more than
7017 maxpagesize then we need to start a new segment. */
7018 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7019 maxpagesize)
7020 < BFD_ALIGN (output_section->lma, maxpagesize))
7021 || (prev_sec->lma + prev_sec->size
7022 > output_section->lma))
7023 {
7024 if (first_suggested_lma)
7025 {
7026 suggested_lma = output_section->lma;
7027 first_suggested_lma = FALSE;
7028 }
7029
7030 continue;
7031 }
7032 }
7033
7034 map->sections[map->count++] = output_section;
7035 ++isec;
7036 sections[j] = NULL;
7037 section->segment_mark = TRUE;
7038 }
7039 else if (first_suggested_lma)
7040 {
7041 suggested_lma = output_section->lma;
7042 first_suggested_lma = FALSE;
7043 }
7044 }
7045
7046 BFD_ASSERT (map->count > 0);
7047
7048 /* Add the current segment to the list of built segments. */
7049 *pointer_to_map = map;
7050 pointer_to_map = &map->next;
7051
7052 if (isec < section_count)
7053 {
7054 /* We still have not allocated all of the sections to
7055 segments. Create a new segment here, initialise it
7056 and carry on looping. */
7057 amt = sizeof (struct elf_segment_map);
7058 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7059 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7060 if (map == NULL)
7061 {
7062 free (sections);
7063 return FALSE;
7064 }
7065
7066 /* Initialise the fields of the segment map. Set the physical
7067 physical address to the LMA of the first section that has
7068 not yet been assigned. */
7069 map->next = NULL;
7070 map->p_type = segment->p_type;
7071 map->p_flags = segment->p_flags;
7072 map->p_flags_valid = 1;
7073 map->p_paddr = suggested_lma;
7074 map->p_paddr_valid = p_paddr_valid;
7075 map->includes_filehdr = 0;
7076 map->includes_phdrs = 0;
7077 }
7078 }
7079 while (isec < section_count);
7080
7081 free (sections);
7082 }
7083
7084 elf_seg_map (obfd) = map_first;
7085
7086 /* If we had to estimate the number of program headers that were
7087 going to be needed, then check our estimate now and adjust
7088 the offset if necessary. */
7089 if (phdr_adjust_seg != NULL)
7090 {
7091 unsigned int count;
7092
7093 for (count = 0, map = map_first; map != NULL; map = map->next)
7094 count++;
7095
7096 if (count > phdr_adjust_num)
7097 phdr_adjust_seg->p_paddr
7098 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7099 }
7100
7101 #undef SEGMENT_END
7102 #undef SECTION_SIZE
7103 #undef IS_CONTAINED_BY_VMA
7104 #undef IS_CONTAINED_BY_LMA
7105 #undef IS_NOTE
7106 #undef IS_COREFILE_NOTE
7107 #undef IS_SOLARIS_PT_INTERP
7108 #undef IS_SECTION_IN_INPUT_SEGMENT
7109 #undef INCLUDE_SECTION_IN_SEGMENT
7110 #undef SEGMENT_AFTER_SEGMENT
7111 #undef SEGMENT_OVERLAPS
7112 return TRUE;
7113 }
7114
7115 /* Copy ELF program header information. */
7116
7117 static bfd_boolean
7118 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7119 {
7120 Elf_Internal_Ehdr *iehdr;
7121 struct elf_segment_map *map;
7122 struct elf_segment_map *map_first;
7123 struct elf_segment_map **pointer_to_map;
7124 Elf_Internal_Phdr *segment;
7125 unsigned int i;
7126 unsigned int num_segments;
7127 bfd_boolean phdr_included = FALSE;
7128 bfd_boolean p_paddr_valid;
7129
7130 iehdr = elf_elfheader (ibfd);
7131
7132 map_first = NULL;
7133 pointer_to_map = &map_first;
7134
7135 /* If all the segment p_paddr fields are zero, don't set
7136 map->p_paddr_valid. */
7137 p_paddr_valid = FALSE;
7138 num_segments = elf_elfheader (ibfd)->e_phnum;
7139 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7140 i < num_segments;
7141 i++, segment++)
7142 if (segment->p_paddr != 0)
7143 {
7144 p_paddr_valid = TRUE;
7145 break;
7146 }
7147
7148 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7149 i < num_segments;
7150 i++, segment++)
7151 {
7152 asection *section;
7153 unsigned int section_count;
7154 bfd_size_type amt;
7155 Elf_Internal_Shdr *this_hdr;
7156 asection *first_section = NULL;
7157 asection *lowest_section;
7158
7159 /* Compute how many sections are in this segment. */
7160 for (section = ibfd->sections, section_count = 0;
7161 section != NULL;
7162 section = section->next)
7163 {
7164 this_hdr = &(elf_section_data(section)->this_hdr);
7165 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7166 {
7167 if (first_section == NULL)
7168 first_section = section;
7169 section_count++;
7170 }
7171 }
7172
7173 /* Allocate a segment map big enough to contain
7174 all of the sections we have selected. */
7175 amt = sizeof (struct elf_segment_map);
7176 if (section_count != 0)
7177 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7178 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7179 if (map == NULL)
7180 return FALSE;
7181
7182 /* Initialize the fields of the output segment map with the
7183 input segment. */
7184 map->next = NULL;
7185 map->p_type = segment->p_type;
7186 map->p_flags = segment->p_flags;
7187 map->p_flags_valid = 1;
7188 map->p_paddr = segment->p_paddr;
7189 map->p_paddr_valid = p_paddr_valid;
7190 map->p_align = segment->p_align;
7191 map->p_align_valid = 1;
7192 map->p_vaddr_offset = 0;
7193
7194 if (map->p_type == PT_GNU_RELRO
7195 || map->p_type == PT_GNU_STACK)
7196 {
7197 /* The PT_GNU_RELRO segment may contain the first a few
7198 bytes in the .got.plt section even if the whole .got.plt
7199 section isn't in the PT_GNU_RELRO segment. We won't
7200 change the size of the PT_GNU_RELRO segment.
7201 Similarly, PT_GNU_STACK size is significant on uclinux
7202 systems. */
7203 map->p_size = segment->p_memsz;
7204 map->p_size_valid = 1;
7205 }
7206
7207 /* Determine if this segment contains the ELF file header
7208 and if it contains the program headers themselves. */
7209 map->includes_filehdr = (segment->p_offset == 0
7210 && segment->p_filesz >= iehdr->e_ehsize);
7211
7212 map->includes_phdrs = 0;
7213 if (! phdr_included || segment->p_type != PT_LOAD)
7214 {
7215 map->includes_phdrs =
7216 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7217 && (segment->p_offset + segment->p_filesz
7218 >= ((bfd_vma) iehdr->e_phoff
7219 + iehdr->e_phnum * iehdr->e_phentsize)));
7220
7221 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7222 phdr_included = TRUE;
7223 }
7224
7225 lowest_section = NULL;
7226 if (section_count != 0)
7227 {
7228 unsigned int isec = 0;
7229
7230 for (section = first_section;
7231 section != NULL;
7232 section = section->next)
7233 {
7234 this_hdr = &(elf_section_data(section)->this_hdr);
7235 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7236 {
7237 map->sections[isec++] = section->output_section;
7238 if ((section->flags & SEC_ALLOC) != 0)
7239 {
7240 bfd_vma seg_off;
7241
7242 if (lowest_section == NULL
7243 || section->lma < lowest_section->lma)
7244 lowest_section = section;
7245
7246 /* Section lmas are set up from PT_LOAD header
7247 p_paddr in _bfd_elf_make_section_from_shdr.
7248 If this header has a p_paddr that disagrees
7249 with the section lma, flag the p_paddr as
7250 invalid. */
7251 if ((section->flags & SEC_LOAD) != 0)
7252 seg_off = this_hdr->sh_offset - segment->p_offset;
7253 else
7254 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7255 if (section->lma - segment->p_paddr != seg_off)
7256 map->p_paddr_valid = FALSE;
7257 }
7258 if (isec == section_count)
7259 break;
7260 }
7261 }
7262 }
7263
7264 if (map->includes_filehdr && lowest_section != NULL)
7265 /* We need to keep the space used by the headers fixed. */
7266 map->header_size = lowest_section->vma - segment->p_vaddr;
7267
7268 if (!map->includes_phdrs
7269 && !map->includes_filehdr
7270 && map->p_paddr_valid)
7271 /* There is some other padding before the first section. */
7272 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7273 - segment->p_paddr);
7274
7275 map->count = section_count;
7276 *pointer_to_map = map;
7277 pointer_to_map = &map->next;
7278 }
7279
7280 elf_seg_map (obfd) = map_first;
7281 return TRUE;
7282 }
7283
7284 /* Copy private BFD data. This copies or rewrites ELF program header
7285 information. */
7286
7287 static bfd_boolean
7288 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7289 {
7290 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7291 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7292 return TRUE;
7293
7294 if (elf_tdata (ibfd)->phdr == NULL)
7295 return TRUE;
7296
7297 if (ibfd->xvec == obfd->xvec)
7298 {
7299 /* Check to see if any sections in the input BFD
7300 covered by ELF program header have changed. */
7301 Elf_Internal_Phdr *segment;
7302 asection *section, *osec;
7303 unsigned int i, num_segments;
7304 Elf_Internal_Shdr *this_hdr;
7305 const struct elf_backend_data *bed;
7306
7307 bed = get_elf_backend_data (ibfd);
7308
7309 /* Regenerate the segment map if p_paddr is set to 0. */
7310 if (bed->want_p_paddr_set_to_zero)
7311 goto rewrite;
7312
7313 /* Initialize the segment mark field. */
7314 for (section = obfd->sections; section != NULL;
7315 section = section->next)
7316 section->segment_mark = FALSE;
7317
7318 num_segments = elf_elfheader (ibfd)->e_phnum;
7319 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7320 i < num_segments;
7321 i++, segment++)
7322 {
7323 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7324 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7325 which severly confuses things, so always regenerate the segment
7326 map in this case. */
7327 if (segment->p_paddr == 0
7328 && segment->p_memsz == 0
7329 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7330 goto rewrite;
7331
7332 for (section = ibfd->sections;
7333 section != NULL; section = section->next)
7334 {
7335 /* We mark the output section so that we know it comes
7336 from the input BFD. */
7337 osec = section->output_section;
7338 if (osec)
7339 osec->segment_mark = TRUE;
7340
7341 /* Check if this section is covered by the segment. */
7342 this_hdr = &(elf_section_data(section)->this_hdr);
7343 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7344 {
7345 /* FIXME: Check if its output section is changed or
7346 removed. What else do we need to check? */
7347 if (osec == NULL
7348 || section->flags != osec->flags
7349 || section->lma != osec->lma
7350 || section->vma != osec->vma
7351 || section->size != osec->size
7352 || section->rawsize != osec->rawsize
7353 || section->alignment_power != osec->alignment_power)
7354 goto rewrite;
7355 }
7356 }
7357 }
7358
7359 /* Check to see if any output section do not come from the
7360 input BFD. */
7361 for (section = obfd->sections; section != NULL;
7362 section = section->next)
7363 {
7364 if (!section->segment_mark)
7365 goto rewrite;
7366 else
7367 section->segment_mark = FALSE;
7368 }
7369
7370 return copy_elf_program_header (ibfd, obfd);
7371 }
7372
7373 rewrite:
7374 if (ibfd->xvec == obfd->xvec)
7375 {
7376 /* When rewriting program header, set the output maxpagesize to
7377 the maximum alignment of input PT_LOAD segments. */
7378 Elf_Internal_Phdr *segment;
7379 unsigned int i;
7380 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7381 bfd_vma maxpagesize = 0;
7382
7383 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7384 i < num_segments;
7385 i++, segment++)
7386 if (segment->p_type == PT_LOAD
7387 && maxpagesize < segment->p_align)
7388 {
7389 /* PR 17512: file: f17299af. */
7390 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7391 /* xgettext:c-format */
7392 _bfd_error_handler (_("%B: warning: segment alignment of %#Lx"
7393 " is too large"),
7394 ibfd, segment->p_align);
7395 else
7396 maxpagesize = segment->p_align;
7397 }
7398
7399 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7400 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7401 }
7402
7403 return rewrite_elf_program_header (ibfd, obfd);
7404 }
7405
7406 /* Initialize private output section information from input section. */
7407
7408 bfd_boolean
7409 _bfd_elf_init_private_section_data (bfd *ibfd,
7410 asection *isec,
7411 bfd *obfd,
7412 asection *osec,
7413 struct bfd_link_info *link_info)
7414
7415 {
7416 Elf_Internal_Shdr *ihdr, *ohdr;
7417 bfd_boolean final_link = (link_info != NULL
7418 && !bfd_link_relocatable (link_info));
7419
7420 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7421 || obfd->xvec->flavour != bfd_target_elf_flavour)
7422 return TRUE;
7423
7424 BFD_ASSERT (elf_section_data (osec) != NULL);
7425
7426 /* For objcopy and relocatable link, don't copy the output ELF
7427 section type from input if the output BFD section flags have been
7428 set to something different. For a final link allow some flags
7429 that the linker clears to differ. */
7430 if (elf_section_type (osec) == SHT_NULL
7431 && (osec->flags == isec->flags
7432 || (final_link
7433 && ((osec->flags ^ isec->flags)
7434 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7435 elf_section_type (osec) = elf_section_type (isec);
7436
7437 /* FIXME: Is this correct for all OS/PROC specific flags? */
7438 elf_section_flags (osec) |= (elf_section_flags (isec)
7439 & (SHF_MASKOS | SHF_MASKPROC));
7440
7441 /* Copy sh_info from input for mbind section. */
7442 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7443 elf_section_data (osec)->this_hdr.sh_info
7444 = elf_section_data (isec)->this_hdr.sh_info;
7445
7446 /* Set things up for objcopy and relocatable link. The output
7447 SHT_GROUP section will have its elf_next_in_group pointing back
7448 to the input group members. Ignore linker created group section.
7449 See elfNN_ia64_object_p in elfxx-ia64.c. */
7450 if ((link_info == NULL
7451 || !link_info->resolve_section_groups)
7452 && (elf_sec_group (isec) == NULL
7453 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7454 {
7455 if (elf_section_flags (isec) & SHF_GROUP)
7456 elf_section_flags (osec) |= SHF_GROUP;
7457 elf_next_in_group (osec) = elf_next_in_group (isec);
7458 elf_section_data (osec)->group = elf_section_data (isec)->group;
7459 }
7460
7461 /* If not decompress, preserve SHF_COMPRESSED. */
7462 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7463 elf_section_flags (osec) |= (elf_section_flags (isec)
7464 & SHF_COMPRESSED);
7465
7466 ihdr = &elf_section_data (isec)->this_hdr;
7467
7468 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7469 don't use the output section of the linked-to section since it
7470 may be NULL at this point. */
7471 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7472 {
7473 ohdr = &elf_section_data (osec)->this_hdr;
7474 ohdr->sh_flags |= SHF_LINK_ORDER;
7475 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7476 }
7477
7478 osec->use_rela_p = isec->use_rela_p;
7479
7480 return TRUE;
7481 }
7482
7483 /* Copy private section information. This copies over the entsize
7484 field, and sometimes the info field. */
7485
7486 bfd_boolean
7487 _bfd_elf_copy_private_section_data (bfd *ibfd,
7488 asection *isec,
7489 bfd *obfd,
7490 asection *osec)
7491 {
7492 Elf_Internal_Shdr *ihdr, *ohdr;
7493
7494 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7495 || obfd->xvec->flavour != bfd_target_elf_flavour)
7496 return TRUE;
7497
7498 ihdr = &elf_section_data (isec)->this_hdr;
7499 ohdr = &elf_section_data (osec)->this_hdr;
7500
7501 ohdr->sh_entsize = ihdr->sh_entsize;
7502
7503 if (ihdr->sh_type == SHT_SYMTAB
7504 || ihdr->sh_type == SHT_DYNSYM
7505 || ihdr->sh_type == SHT_GNU_verneed
7506 || ihdr->sh_type == SHT_GNU_verdef)
7507 ohdr->sh_info = ihdr->sh_info;
7508
7509 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7510 NULL);
7511 }
7512
7513 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7514 necessary if we are removing either the SHT_GROUP section or any of
7515 the group member sections. DISCARDED is the value that a section's
7516 output_section has if the section will be discarded, NULL when this
7517 function is called from objcopy, bfd_abs_section_ptr when called
7518 from the linker. */
7519
7520 bfd_boolean
7521 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7522 {
7523 asection *isec;
7524
7525 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7526 if (elf_section_type (isec) == SHT_GROUP)
7527 {
7528 asection *first = elf_next_in_group (isec);
7529 asection *s = first;
7530 bfd_size_type removed = 0;
7531
7532 while (s != NULL)
7533 {
7534 /* If this member section is being output but the
7535 SHT_GROUP section is not, then clear the group info
7536 set up by _bfd_elf_copy_private_section_data. */
7537 if (s->output_section != discarded
7538 && isec->output_section == discarded)
7539 {
7540 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7541 elf_group_name (s->output_section) = NULL;
7542 }
7543 /* Conversely, if the member section is not being output
7544 but the SHT_GROUP section is, then adjust its size. */
7545 else if (s->output_section == discarded
7546 && isec->output_section != discarded)
7547 removed += 4;
7548 s = elf_next_in_group (s);
7549 if (s == first)
7550 break;
7551 }
7552 if (removed != 0)
7553 {
7554 if (discarded != NULL)
7555 {
7556 /* If we've been called for ld -r, then we need to
7557 adjust the input section size. This function may
7558 be called multiple times, so save the original
7559 size. */
7560 if (isec->rawsize == 0)
7561 isec->rawsize = isec->size;
7562 isec->size = isec->rawsize - removed;
7563 }
7564 else
7565 {
7566 /* Adjust the output section size when called from
7567 objcopy. */
7568 isec->output_section->size -= removed;
7569 }
7570 }
7571 }
7572
7573 return TRUE;
7574 }
7575
7576 /* Copy private header information. */
7577
7578 bfd_boolean
7579 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7580 {
7581 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7582 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7583 return TRUE;
7584
7585 /* Copy over private BFD data if it has not already been copied.
7586 This must be done here, rather than in the copy_private_bfd_data
7587 entry point, because the latter is called after the section
7588 contents have been set, which means that the program headers have
7589 already been worked out. */
7590 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7591 {
7592 if (! copy_private_bfd_data (ibfd, obfd))
7593 return FALSE;
7594 }
7595
7596 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7597 }
7598
7599 /* Copy private symbol information. If this symbol is in a section
7600 which we did not map into a BFD section, try to map the section
7601 index correctly. We use special macro definitions for the mapped
7602 section indices; these definitions are interpreted by the
7603 swap_out_syms function. */
7604
7605 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7606 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7607 #define MAP_STRTAB (SHN_HIOS + 3)
7608 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7609 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7610
7611 bfd_boolean
7612 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7613 asymbol *isymarg,
7614 bfd *obfd,
7615 asymbol *osymarg)
7616 {
7617 elf_symbol_type *isym, *osym;
7618
7619 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7620 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7621 return TRUE;
7622
7623 isym = elf_symbol_from (ibfd, isymarg);
7624 osym = elf_symbol_from (obfd, osymarg);
7625
7626 if (isym != NULL
7627 && isym->internal_elf_sym.st_shndx != 0
7628 && osym != NULL
7629 && bfd_is_abs_section (isym->symbol.section))
7630 {
7631 unsigned int shndx;
7632
7633 shndx = isym->internal_elf_sym.st_shndx;
7634 if (shndx == elf_onesymtab (ibfd))
7635 shndx = MAP_ONESYMTAB;
7636 else if (shndx == elf_dynsymtab (ibfd))
7637 shndx = MAP_DYNSYMTAB;
7638 else if (shndx == elf_strtab_sec (ibfd))
7639 shndx = MAP_STRTAB;
7640 else if (shndx == elf_shstrtab_sec (ibfd))
7641 shndx = MAP_SHSTRTAB;
7642 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7643 shndx = MAP_SYM_SHNDX;
7644 osym->internal_elf_sym.st_shndx = shndx;
7645 }
7646
7647 return TRUE;
7648 }
7649
7650 /* Swap out the symbols. */
7651
7652 static bfd_boolean
7653 swap_out_syms (bfd *abfd,
7654 struct elf_strtab_hash **sttp,
7655 int relocatable_p)
7656 {
7657 const struct elf_backend_data *bed;
7658 int symcount;
7659 asymbol **syms;
7660 struct elf_strtab_hash *stt;
7661 Elf_Internal_Shdr *symtab_hdr;
7662 Elf_Internal_Shdr *symtab_shndx_hdr;
7663 Elf_Internal_Shdr *symstrtab_hdr;
7664 struct elf_sym_strtab *symstrtab;
7665 bfd_byte *outbound_syms;
7666 bfd_byte *outbound_shndx;
7667 unsigned long outbound_syms_index;
7668 unsigned long outbound_shndx_index;
7669 int idx;
7670 unsigned int num_locals;
7671 bfd_size_type amt;
7672 bfd_boolean name_local_sections;
7673
7674 if (!elf_map_symbols (abfd, &num_locals))
7675 return FALSE;
7676
7677 /* Dump out the symtabs. */
7678 stt = _bfd_elf_strtab_init ();
7679 if (stt == NULL)
7680 return FALSE;
7681
7682 bed = get_elf_backend_data (abfd);
7683 symcount = bfd_get_symcount (abfd);
7684 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7685 symtab_hdr->sh_type = SHT_SYMTAB;
7686 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7687 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7688 symtab_hdr->sh_info = num_locals + 1;
7689 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7690
7691 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7692 symstrtab_hdr->sh_type = SHT_STRTAB;
7693
7694 /* Allocate buffer to swap out the .strtab section. */
7695 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7696 * sizeof (*symstrtab));
7697 if (symstrtab == NULL)
7698 {
7699 _bfd_elf_strtab_free (stt);
7700 return FALSE;
7701 }
7702
7703 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7704 bed->s->sizeof_sym);
7705 if (outbound_syms == NULL)
7706 {
7707 error_return:
7708 _bfd_elf_strtab_free (stt);
7709 free (symstrtab);
7710 return FALSE;
7711 }
7712 symtab_hdr->contents = outbound_syms;
7713 outbound_syms_index = 0;
7714
7715 outbound_shndx = NULL;
7716 outbound_shndx_index = 0;
7717
7718 if (elf_symtab_shndx_list (abfd))
7719 {
7720 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7721 if (symtab_shndx_hdr->sh_name != 0)
7722 {
7723 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7724 outbound_shndx = (bfd_byte *)
7725 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7726 if (outbound_shndx == NULL)
7727 goto error_return;
7728
7729 symtab_shndx_hdr->contents = outbound_shndx;
7730 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7731 symtab_shndx_hdr->sh_size = amt;
7732 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7733 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7734 }
7735 /* FIXME: What about any other headers in the list ? */
7736 }
7737
7738 /* Now generate the data (for "contents"). */
7739 {
7740 /* Fill in zeroth symbol and swap it out. */
7741 Elf_Internal_Sym sym;
7742 sym.st_name = 0;
7743 sym.st_value = 0;
7744 sym.st_size = 0;
7745 sym.st_info = 0;
7746 sym.st_other = 0;
7747 sym.st_shndx = SHN_UNDEF;
7748 sym.st_target_internal = 0;
7749 symstrtab[0].sym = sym;
7750 symstrtab[0].dest_index = outbound_syms_index;
7751 symstrtab[0].destshndx_index = outbound_shndx_index;
7752 outbound_syms_index++;
7753 if (outbound_shndx != NULL)
7754 outbound_shndx_index++;
7755 }
7756
7757 name_local_sections
7758 = (bed->elf_backend_name_local_section_symbols
7759 && bed->elf_backend_name_local_section_symbols (abfd));
7760
7761 syms = bfd_get_outsymbols (abfd);
7762 for (idx = 0; idx < symcount;)
7763 {
7764 Elf_Internal_Sym sym;
7765 bfd_vma value = syms[idx]->value;
7766 elf_symbol_type *type_ptr;
7767 flagword flags = syms[idx]->flags;
7768 int type;
7769
7770 if (!name_local_sections
7771 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7772 {
7773 /* Local section symbols have no name. */
7774 sym.st_name = (unsigned long) -1;
7775 }
7776 else
7777 {
7778 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7779 to get the final offset for st_name. */
7780 sym.st_name
7781 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7782 FALSE);
7783 if (sym.st_name == (unsigned long) -1)
7784 goto error_return;
7785 }
7786
7787 type_ptr = elf_symbol_from (abfd, syms[idx]);
7788
7789 if ((flags & BSF_SECTION_SYM) == 0
7790 && bfd_is_com_section (syms[idx]->section))
7791 {
7792 /* ELF common symbols put the alignment into the `value' field,
7793 and the size into the `size' field. This is backwards from
7794 how BFD handles it, so reverse it here. */
7795 sym.st_size = value;
7796 if (type_ptr == NULL
7797 || type_ptr->internal_elf_sym.st_value == 0)
7798 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7799 else
7800 sym.st_value = type_ptr->internal_elf_sym.st_value;
7801 sym.st_shndx = _bfd_elf_section_from_bfd_section
7802 (abfd, syms[idx]->section);
7803 }
7804 else
7805 {
7806 asection *sec = syms[idx]->section;
7807 unsigned int shndx;
7808
7809 if (sec->output_section)
7810 {
7811 value += sec->output_offset;
7812 sec = sec->output_section;
7813 }
7814
7815 /* Don't add in the section vma for relocatable output. */
7816 if (! relocatable_p)
7817 value += sec->vma;
7818 sym.st_value = value;
7819 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7820
7821 if (bfd_is_abs_section (sec)
7822 && type_ptr != NULL
7823 && type_ptr->internal_elf_sym.st_shndx != 0)
7824 {
7825 /* This symbol is in a real ELF section which we did
7826 not create as a BFD section. Undo the mapping done
7827 by copy_private_symbol_data. */
7828 shndx = type_ptr->internal_elf_sym.st_shndx;
7829 switch (shndx)
7830 {
7831 case MAP_ONESYMTAB:
7832 shndx = elf_onesymtab (abfd);
7833 break;
7834 case MAP_DYNSYMTAB:
7835 shndx = elf_dynsymtab (abfd);
7836 break;
7837 case MAP_STRTAB:
7838 shndx = elf_strtab_sec (abfd);
7839 break;
7840 case MAP_SHSTRTAB:
7841 shndx = elf_shstrtab_sec (abfd);
7842 break;
7843 case MAP_SYM_SHNDX:
7844 if (elf_symtab_shndx_list (abfd))
7845 shndx = elf_symtab_shndx_list (abfd)->ndx;
7846 break;
7847 default:
7848 shndx = SHN_ABS;
7849 break;
7850 }
7851 }
7852 else
7853 {
7854 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7855
7856 if (shndx == SHN_BAD)
7857 {
7858 asection *sec2;
7859
7860 /* Writing this would be a hell of a lot easier if
7861 we had some decent documentation on bfd, and
7862 knew what to expect of the library, and what to
7863 demand of applications. For example, it
7864 appears that `objcopy' might not set the
7865 section of a symbol to be a section that is
7866 actually in the output file. */
7867 sec2 = bfd_get_section_by_name (abfd, sec->name);
7868 if (sec2 != NULL)
7869 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7870 if (shndx == SHN_BAD)
7871 {
7872 /* xgettext:c-format */
7873 _bfd_error_handler (_("\
7874 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7875 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7876 sec->name);
7877 bfd_set_error (bfd_error_invalid_operation);
7878 goto error_return;
7879 }
7880 }
7881 }
7882
7883 sym.st_shndx = shndx;
7884 }
7885
7886 if ((flags & BSF_THREAD_LOCAL) != 0)
7887 type = STT_TLS;
7888 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7889 type = STT_GNU_IFUNC;
7890 else if ((flags & BSF_FUNCTION) != 0)
7891 type = STT_FUNC;
7892 else if ((flags & BSF_OBJECT) != 0)
7893 type = STT_OBJECT;
7894 else if ((flags & BSF_RELC) != 0)
7895 type = STT_RELC;
7896 else if ((flags & BSF_SRELC) != 0)
7897 type = STT_SRELC;
7898 else
7899 type = STT_NOTYPE;
7900
7901 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7902 type = STT_TLS;
7903
7904 /* Processor-specific types. */
7905 if (type_ptr != NULL
7906 && bed->elf_backend_get_symbol_type)
7907 type = ((*bed->elf_backend_get_symbol_type)
7908 (&type_ptr->internal_elf_sym, type));
7909
7910 if (flags & BSF_SECTION_SYM)
7911 {
7912 if (flags & BSF_GLOBAL)
7913 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7914 else
7915 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7916 }
7917 else if (bfd_is_com_section (syms[idx]->section))
7918 {
7919 if (type != STT_TLS)
7920 {
7921 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7922 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7923 ? STT_COMMON : STT_OBJECT);
7924 else
7925 type = ((flags & BSF_ELF_COMMON) != 0
7926 ? STT_COMMON : STT_OBJECT);
7927 }
7928 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7929 }
7930 else if (bfd_is_und_section (syms[idx]->section))
7931 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7932 ? STB_WEAK
7933 : STB_GLOBAL),
7934 type);
7935 else if (flags & BSF_FILE)
7936 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7937 else
7938 {
7939 int bind = STB_LOCAL;
7940
7941 if (flags & BSF_LOCAL)
7942 bind = STB_LOCAL;
7943 else if (flags & BSF_GNU_UNIQUE)
7944 bind = STB_GNU_UNIQUE;
7945 else if (flags & BSF_WEAK)
7946 bind = STB_WEAK;
7947 else if (flags & BSF_GLOBAL)
7948 bind = STB_GLOBAL;
7949
7950 sym.st_info = ELF_ST_INFO (bind, type);
7951 }
7952
7953 if (type_ptr != NULL)
7954 {
7955 sym.st_other = type_ptr->internal_elf_sym.st_other;
7956 sym.st_target_internal
7957 = type_ptr->internal_elf_sym.st_target_internal;
7958 }
7959 else
7960 {
7961 sym.st_other = 0;
7962 sym.st_target_internal = 0;
7963 }
7964
7965 idx++;
7966 symstrtab[idx].sym = sym;
7967 symstrtab[idx].dest_index = outbound_syms_index;
7968 symstrtab[idx].destshndx_index = outbound_shndx_index;
7969
7970 outbound_syms_index++;
7971 if (outbound_shndx != NULL)
7972 outbound_shndx_index++;
7973 }
7974
7975 /* Finalize the .strtab section. */
7976 _bfd_elf_strtab_finalize (stt);
7977
7978 /* Swap out the .strtab section. */
7979 for (idx = 0; idx <= symcount; idx++)
7980 {
7981 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7982 if (elfsym->sym.st_name == (unsigned long) -1)
7983 elfsym->sym.st_name = 0;
7984 else
7985 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7986 elfsym->sym.st_name);
7987 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7988 (outbound_syms
7989 + (elfsym->dest_index
7990 * bed->s->sizeof_sym)),
7991 (outbound_shndx
7992 + (elfsym->destshndx_index
7993 * sizeof (Elf_External_Sym_Shndx))));
7994 }
7995 free (symstrtab);
7996
7997 *sttp = stt;
7998 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7999 symstrtab_hdr->sh_type = SHT_STRTAB;
8000 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8001 symstrtab_hdr->sh_addr = 0;
8002 symstrtab_hdr->sh_entsize = 0;
8003 symstrtab_hdr->sh_link = 0;
8004 symstrtab_hdr->sh_info = 0;
8005 symstrtab_hdr->sh_addralign = 1;
8006
8007 return TRUE;
8008 }
8009
8010 /* Return the number of bytes required to hold the symtab vector.
8011
8012 Note that we base it on the count plus 1, since we will null terminate
8013 the vector allocated based on this size. However, the ELF symbol table
8014 always has a dummy entry as symbol #0, so it ends up even. */
8015
8016 long
8017 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8018 {
8019 long symcount;
8020 long symtab_size;
8021 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8022
8023 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8024 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8025 if (symcount > 0)
8026 symtab_size -= sizeof (asymbol *);
8027
8028 return symtab_size;
8029 }
8030
8031 long
8032 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8033 {
8034 long symcount;
8035 long symtab_size;
8036 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8037
8038 if (elf_dynsymtab (abfd) == 0)
8039 {
8040 bfd_set_error (bfd_error_invalid_operation);
8041 return -1;
8042 }
8043
8044 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8045 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8046 if (symcount > 0)
8047 symtab_size -= sizeof (asymbol *);
8048
8049 return symtab_size;
8050 }
8051
8052 long
8053 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8054 sec_ptr asect)
8055 {
8056 return (asect->reloc_count + 1) * sizeof (arelent *);
8057 }
8058
8059 /* Canonicalize the relocs. */
8060
8061 long
8062 _bfd_elf_canonicalize_reloc (bfd *abfd,
8063 sec_ptr section,
8064 arelent **relptr,
8065 asymbol **symbols)
8066 {
8067 arelent *tblptr;
8068 unsigned int i;
8069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8070
8071 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8072 return -1;
8073
8074 tblptr = section->relocation;
8075 for (i = 0; i < section->reloc_count; i++)
8076 *relptr++ = tblptr++;
8077
8078 *relptr = NULL;
8079
8080 return section->reloc_count;
8081 }
8082
8083 long
8084 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8085 {
8086 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8087 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8088
8089 if (symcount >= 0)
8090 bfd_get_symcount (abfd) = symcount;
8091 return symcount;
8092 }
8093
8094 long
8095 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8096 asymbol **allocation)
8097 {
8098 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8099 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8100
8101 if (symcount >= 0)
8102 bfd_get_dynamic_symcount (abfd) = symcount;
8103 return symcount;
8104 }
8105
8106 /* Return the size required for the dynamic reloc entries. Any loadable
8107 section that was actually installed in the BFD, and has type SHT_REL
8108 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8109 dynamic reloc section. */
8110
8111 long
8112 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8113 {
8114 long ret;
8115 asection *s;
8116
8117 if (elf_dynsymtab (abfd) == 0)
8118 {
8119 bfd_set_error (bfd_error_invalid_operation);
8120 return -1;
8121 }
8122
8123 ret = sizeof (arelent *);
8124 for (s = abfd->sections; s != NULL; s = s->next)
8125 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8126 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8127 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8128 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8129 * sizeof (arelent *));
8130
8131 return ret;
8132 }
8133
8134 /* Canonicalize the dynamic relocation entries. Note that we return the
8135 dynamic relocations as a single block, although they are actually
8136 associated with particular sections; the interface, which was
8137 designed for SunOS style shared libraries, expects that there is only
8138 one set of dynamic relocs. Any loadable section that was actually
8139 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8140 dynamic symbol table, is considered to be a dynamic reloc section. */
8141
8142 long
8143 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8144 arelent **storage,
8145 asymbol **syms)
8146 {
8147 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8148 asection *s;
8149 long ret;
8150
8151 if (elf_dynsymtab (abfd) == 0)
8152 {
8153 bfd_set_error (bfd_error_invalid_operation);
8154 return -1;
8155 }
8156
8157 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8158 ret = 0;
8159 for (s = abfd->sections; s != NULL; s = s->next)
8160 {
8161 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8162 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8163 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8164 {
8165 arelent *p;
8166 long count, i;
8167
8168 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8169 return -1;
8170 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8171 p = s->relocation;
8172 for (i = 0; i < count; i++)
8173 *storage++ = p++;
8174 ret += count;
8175 }
8176 }
8177
8178 *storage = NULL;
8179
8180 return ret;
8181 }
8182 \f
8183 /* Read in the version information. */
8184
8185 bfd_boolean
8186 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8187 {
8188 bfd_byte *contents = NULL;
8189 unsigned int freeidx = 0;
8190
8191 if (elf_dynverref (abfd) != 0)
8192 {
8193 Elf_Internal_Shdr *hdr;
8194 Elf_External_Verneed *everneed;
8195 Elf_Internal_Verneed *iverneed;
8196 unsigned int i;
8197 bfd_byte *contents_end;
8198
8199 hdr = &elf_tdata (abfd)->dynverref_hdr;
8200
8201 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
8202 {
8203 error_return_bad_verref:
8204 _bfd_error_handler
8205 (_("%B: .gnu.version_r invalid entry"), abfd);
8206 bfd_set_error (bfd_error_bad_value);
8207 error_return_verref:
8208 elf_tdata (abfd)->verref = NULL;
8209 elf_tdata (abfd)->cverrefs = 0;
8210 goto error_return;
8211 }
8212
8213 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8214 if (contents == NULL)
8215 goto error_return_verref;
8216
8217 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8218 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8219 goto error_return_verref;
8220
8221 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8222 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8223
8224 if (elf_tdata (abfd)->verref == NULL)
8225 goto error_return_verref;
8226
8227 BFD_ASSERT (sizeof (Elf_External_Verneed)
8228 == sizeof (Elf_External_Vernaux));
8229 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8230 everneed = (Elf_External_Verneed *) contents;
8231 iverneed = elf_tdata (abfd)->verref;
8232 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8233 {
8234 Elf_External_Vernaux *evernaux;
8235 Elf_Internal_Vernaux *ivernaux;
8236 unsigned int j;
8237
8238 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8239
8240 iverneed->vn_bfd = abfd;
8241
8242 iverneed->vn_filename =
8243 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8244 iverneed->vn_file);
8245 if (iverneed->vn_filename == NULL)
8246 goto error_return_bad_verref;
8247
8248 if (iverneed->vn_cnt == 0)
8249 iverneed->vn_auxptr = NULL;
8250 else
8251 {
8252 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8253 bfd_alloc2 (abfd, iverneed->vn_cnt,
8254 sizeof (Elf_Internal_Vernaux));
8255 if (iverneed->vn_auxptr == NULL)
8256 goto error_return_verref;
8257 }
8258
8259 if (iverneed->vn_aux
8260 > (size_t) (contents_end - (bfd_byte *) everneed))
8261 goto error_return_bad_verref;
8262
8263 evernaux = ((Elf_External_Vernaux *)
8264 ((bfd_byte *) everneed + iverneed->vn_aux));
8265 ivernaux = iverneed->vn_auxptr;
8266 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8267 {
8268 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8269
8270 ivernaux->vna_nodename =
8271 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8272 ivernaux->vna_name);
8273 if (ivernaux->vna_nodename == NULL)
8274 goto error_return_bad_verref;
8275
8276 if (ivernaux->vna_other > freeidx)
8277 freeidx = ivernaux->vna_other;
8278
8279 ivernaux->vna_nextptr = NULL;
8280 if (ivernaux->vna_next == 0)
8281 {
8282 iverneed->vn_cnt = j + 1;
8283 break;
8284 }
8285 if (j + 1 < iverneed->vn_cnt)
8286 ivernaux->vna_nextptr = ivernaux + 1;
8287
8288 if (ivernaux->vna_next
8289 > (size_t) (contents_end - (bfd_byte *) evernaux))
8290 goto error_return_bad_verref;
8291
8292 evernaux = ((Elf_External_Vernaux *)
8293 ((bfd_byte *) evernaux + ivernaux->vna_next));
8294 }
8295
8296 iverneed->vn_nextref = NULL;
8297 if (iverneed->vn_next == 0)
8298 break;
8299 if (i + 1 < hdr->sh_info)
8300 iverneed->vn_nextref = iverneed + 1;
8301
8302 if (iverneed->vn_next
8303 > (size_t) (contents_end - (bfd_byte *) everneed))
8304 goto error_return_bad_verref;
8305
8306 everneed = ((Elf_External_Verneed *)
8307 ((bfd_byte *) everneed + iverneed->vn_next));
8308 }
8309 elf_tdata (abfd)->cverrefs = i;
8310
8311 free (contents);
8312 contents = NULL;
8313 }
8314
8315 if (elf_dynverdef (abfd) != 0)
8316 {
8317 Elf_Internal_Shdr *hdr;
8318 Elf_External_Verdef *everdef;
8319 Elf_Internal_Verdef *iverdef;
8320 Elf_Internal_Verdef *iverdefarr;
8321 Elf_Internal_Verdef iverdefmem;
8322 unsigned int i;
8323 unsigned int maxidx;
8324 bfd_byte *contents_end_def, *contents_end_aux;
8325
8326 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8327
8328 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8329 {
8330 error_return_bad_verdef:
8331 _bfd_error_handler
8332 (_("%B: .gnu.version_d invalid entry"), abfd);
8333 bfd_set_error (bfd_error_bad_value);
8334 error_return_verdef:
8335 elf_tdata (abfd)->verdef = NULL;
8336 elf_tdata (abfd)->cverdefs = 0;
8337 goto error_return;
8338 }
8339
8340 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8341 if (contents == NULL)
8342 goto error_return_verdef;
8343 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8344 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8345 goto error_return_verdef;
8346
8347 BFD_ASSERT (sizeof (Elf_External_Verdef)
8348 >= sizeof (Elf_External_Verdaux));
8349 contents_end_def = contents + hdr->sh_size
8350 - sizeof (Elf_External_Verdef);
8351 contents_end_aux = contents + hdr->sh_size
8352 - sizeof (Elf_External_Verdaux);
8353
8354 /* We know the number of entries in the section but not the maximum
8355 index. Therefore we have to run through all entries and find
8356 the maximum. */
8357 everdef = (Elf_External_Verdef *) contents;
8358 maxidx = 0;
8359 for (i = 0; i < hdr->sh_info; ++i)
8360 {
8361 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8362
8363 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8364 goto error_return_bad_verdef;
8365 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8366 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8367
8368 if (iverdefmem.vd_next == 0)
8369 break;
8370
8371 if (iverdefmem.vd_next
8372 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8373 goto error_return_bad_verdef;
8374
8375 everdef = ((Elf_External_Verdef *)
8376 ((bfd_byte *) everdef + iverdefmem.vd_next));
8377 }
8378
8379 if (default_imported_symver)
8380 {
8381 if (freeidx > maxidx)
8382 maxidx = ++freeidx;
8383 else
8384 freeidx = ++maxidx;
8385 }
8386
8387 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8388 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8389 if (elf_tdata (abfd)->verdef == NULL)
8390 goto error_return_verdef;
8391
8392 elf_tdata (abfd)->cverdefs = maxidx;
8393
8394 everdef = (Elf_External_Verdef *) contents;
8395 iverdefarr = elf_tdata (abfd)->verdef;
8396 for (i = 0; i < hdr->sh_info; i++)
8397 {
8398 Elf_External_Verdaux *everdaux;
8399 Elf_Internal_Verdaux *iverdaux;
8400 unsigned int j;
8401
8402 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8403
8404 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8405 goto error_return_bad_verdef;
8406
8407 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8408 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8409
8410 iverdef->vd_bfd = abfd;
8411
8412 if (iverdef->vd_cnt == 0)
8413 iverdef->vd_auxptr = NULL;
8414 else
8415 {
8416 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8417 bfd_alloc2 (abfd, iverdef->vd_cnt,
8418 sizeof (Elf_Internal_Verdaux));
8419 if (iverdef->vd_auxptr == NULL)
8420 goto error_return_verdef;
8421 }
8422
8423 if (iverdef->vd_aux
8424 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8425 goto error_return_bad_verdef;
8426
8427 everdaux = ((Elf_External_Verdaux *)
8428 ((bfd_byte *) everdef + iverdef->vd_aux));
8429 iverdaux = iverdef->vd_auxptr;
8430 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8431 {
8432 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8433
8434 iverdaux->vda_nodename =
8435 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8436 iverdaux->vda_name);
8437 if (iverdaux->vda_nodename == NULL)
8438 goto error_return_bad_verdef;
8439
8440 iverdaux->vda_nextptr = NULL;
8441 if (iverdaux->vda_next == 0)
8442 {
8443 iverdef->vd_cnt = j + 1;
8444 break;
8445 }
8446 if (j + 1 < iverdef->vd_cnt)
8447 iverdaux->vda_nextptr = iverdaux + 1;
8448
8449 if (iverdaux->vda_next
8450 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8451 goto error_return_bad_verdef;
8452
8453 everdaux = ((Elf_External_Verdaux *)
8454 ((bfd_byte *) everdaux + iverdaux->vda_next));
8455 }
8456
8457 iverdef->vd_nodename = NULL;
8458 if (iverdef->vd_cnt)
8459 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8460
8461 iverdef->vd_nextdef = NULL;
8462 if (iverdef->vd_next == 0)
8463 break;
8464 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8465 iverdef->vd_nextdef = iverdef + 1;
8466
8467 everdef = ((Elf_External_Verdef *)
8468 ((bfd_byte *) everdef + iverdef->vd_next));
8469 }
8470
8471 free (contents);
8472 contents = NULL;
8473 }
8474 else if (default_imported_symver)
8475 {
8476 if (freeidx < 3)
8477 freeidx = 3;
8478 else
8479 freeidx++;
8480
8481 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8482 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8483 if (elf_tdata (abfd)->verdef == NULL)
8484 goto error_return;
8485
8486 elf_tdata (abfd)->cverdefs = freeidx;
8487 }
8488
8489 /* Create a default version based on the soname. */
8490 if (default_imported_symver)
8491 {
8492 Elf_Internal_Verdef *iverdef;
8493 Elf_Internal_Verdaux *iverdaux;
8494
8495 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8496
8497 iverdef->vd_version = VER_DEF_CURRENT;
8498 iverdef->vd_flags = 0;
8499 iverdef->vd_ndx = freeidx;
8500 iverdef->vd_cnt = 1;
8501
8502 iverdef->vd_bfd = abfd;
8503
8504 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8505 if (iverdef->vd_nodename == NULL)
8506 goto error_return_verdef;
8507 iverdef->vd_nextdef = NULL;
8508 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8509 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8510 if (iverdef->vd_auxptr == NULL)
8511 goto error_return_verdef;
8512
8513 iverdaux = iverdef->vd_auxptr;
8514 iverdaux->vda_nodename = iverdef->vd_nodename;
8515 }
8516
8517 return TRUE;
8518
8519 error_return:
8520 if (contents != NULL)
8521 free (contents);
8522 return FALSE;
8523 }
8524 \f
8525 asymbol *
8526 _bfd_elf_make_empty_symbol (bfd *abfd)
8527 {
8528 elf_symbol_type *newsym;
8529
8530 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8531 if (!newsym)
8532 return NULL;
8533 newsym->symbol.the_bfd = abfd;
8534 return &newsym->symbol;
8535 }
8536
8537 void
8538 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8539 asymbol *symbol,
8540 symbol_info *ret)
8541 {
8542 bfd_symbol_info (symbol, ret);
8543 }
8544
8545 /* Return whether a symbol name implies a local symbol. Most targets
8546 use this function for the is_local_label_name entry point, but some
8547 override it. */
8548
8549 bfd_boolean
8550 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8551 const char *name)
8552 {
8553 /* Normal local symbols start with ``.L''. */
8554 if (name[0] == '.' && name[1] == 'L')
8555 return TRUE;
8556
8557 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8558 DWARF debugging symbols starting with ``..''. */
8559 if (name[0] == '.' && name[1] == '.')
8560 return TRUE;
8561
8562 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8563 emitting DWARF debugging output. I suspect this is actually a
8564 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8565 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8566 underscore to be emitted on some ELF targets). For ease of use,
8567 we treat such symbols as local. */
8568 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8569 return TRUE;
8570
8571 /* Treat assembler generated fake symbols, dollar local labels and
8572 forward-backward labels (aka local labels) as locals.
8573 These labels have the form:
8574
8575 L0^A.* (fake symbols)
8576
8577 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8578
8579 Versions which start with .L will have already been matched above,
8580 so we only need to match the rest. */
8581 if (name[0] == 'L' && ISDIGIT (name[1]))
8582 {
8583 bfd_boolean ret = FALSE;
8584 const char * p;
8585 char c;
8586
8587 for (p = name + 2; (c = *p); p++)
8588 {
8589 if (c == 1 || c == 2)
8590 {
8591 if (c == 1 && p == name + 2)
8592 /* A fake symbol. */
8593 return TRUE;
8594
8595 /* FIXME: We are being paranoid here and treating symbols like
8596 L0^Bfoo as if there were non-local, on the grounds that the
8597 assembler will never generate them. But can any symbol
8598 containing an ASCII value in the range 1-31 ever be anything
8599 other than some kind of local ? */
8600 ret = TRUE;
8601 }
8602
8603 if (! ISDIGIT (c))
8604 {
8605 ret = FALSE;
8606 break;
8607 }
8608 }
8609 return ret;
8610 }
8611
8612 return FALSE;
8613 }
8614
8615 alent *
8616 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8617 asymbol *symbol ATTRIBUTE_UNUSED)
8618 {
8619 abort ();
8620 return NULL;
8621 }
8622
8623 bfd_boolean
8624 _bfd_elf_set_arch_mach (bfd *abfd,
8625 enum bfd_architecture arch,
8626 unsigned long machine)
8627 {
8628 /* If this isn't the right architecture for this backend, and this
8629 isn't the generic backend, fail. */
8630 if (arch != get_elf_backend_data (abfd)->arch
8631 && arch != bfd_arch_unknown
8632 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8633 return FALSE;
8634
8635 return bfd_default_set_arch_mach (abfd, arch, machine);
8636 }
8637
8638 /* Find the nearest line to a particular section and offset,
8639 for error reporting. */
8640
8641 bfd_boolean
8642 _bfd_elf_find_nearest_line (bfd *abfd,
8643 asymbol **symbols,
8644 asection *section,
8645 bfd_vma offset,
8646 const char **filename_ptr,
8647 const char **functionname_ptr,
8648 unsigned int *line_ptr,
8649 unsigned int *discriminator_ptr)
8650 {
8651 bfd_boolean found;
8652
8653 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8654 filename_ptr, functionname_ptr,
8655 line_ptr, discriminator_ptr,
8656 dwarf_debug_sections, 0,
8657 &elf_tdata (abfd)->dwarf2_find_line_info)
8658 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8659 filename_ptr, functionname_ptr,
8660 line_ptr))
8661 {
8662 if (!*functionname_ptr)
8663 _bfd_elf_find_function (abfd, symbols, section, offset,
8664 *filename_ptr ? NULL : filename_ptr,
8665 functionname_ptr);
8666 return TRUE;
8667 }
8668
8669 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8670 &found, filename_ptr,
8671 functionname_ptr, line_ptr,
8672 &elf_tdata (abfd)->line_info))
8673 return FALSE;
8674 if (found && (*functionname_ptr || *line_ptr))
8675 return TRUE;
8676
8677 if (symbols == NULL)
8678 return FALSE;
8679
8680 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8681 filename_ptr, functionname_ptr))
8682 return FALSE;
8683
8684 *line_ptr = 0;
8685 return TRUE;
8686 }
8687
8688 /* Find the line for a symbol. */
8689
8690 bfd_boolean
8691 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8692 const char **filename_ptr, unsigned int *line_ptr)
8693 {
8694 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8695 filename_ptr, NULL, line_ptr, NULL,
8696 dwarf_debug_sections, 0,
8697 &elf_tdata (abfd)->dwarf2_find_line_info);
8698 }
8699
8700 /* After a call to bfd_find_nearest_line, successive calls to
8701 bfd_find_inliner_info can be used to get source information about
8702 each level of function inlining that terminated at the address
8703 passed to bfd_find_nearest_line. Currently this is only supported
8704 for DWARF2 with appropriate DWARF3 extensions. */
8705
8706 bfd_boolean
8707 _bfd_elf_find_inliner_info (bfd *abfd,
8708 const char **filename_ptr,
8709 const char **functionname_ptr,
8710 unsigned int *line_ptr)
8711 {
8712 bfd_boolean found;
8713 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8714 functionname_ptr, line_ptr,
8715 & elf_tdata (abfd)->dwarf2_find_line_info);
8716 return found;
8717 }
8718
8719 int
8720 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8721 {
8722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8723 int ret = bed->s->sizeof_ehdr;
8724
8725 if (!bfd_link_relocatable (info))
8726 {
8727 bfd_size_type phdr_size = elf_program_header_size (abfd);
8728
8729 if (phdr_size == (bfd_size_type) -1)
8730 {
8731 struct elf_segment_map *m;
8732
8733 phdr_size = 0;
8734 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8735 phdr_size += bed->s->sizeof_phdr;
8736
8737 if (phdr_size == 0)
8738 phdr_size = get_program_header_size (abfd, info);
8739 }
8740
8741 elf_program_header_size (abfd) = phdr_size;
8742 ret += phdr_size;
8743 }
8744
8745 return ret;
8746 }
8747
8748 bfd_boolean
8749 _bfd_elf_set_section_contents (bfd *abfd,
8750 sec_ptr section,
8751 const void *location,
8752 file_ptr offset,
8753 bfd_size_type count)
8754 {
8755 Elf_Internal_Shdr *hdr;
8756 file_ptr pos;
8757
8758 if (! abfd->output_has_begun
8759 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8760 return FALSE;
8761
8762 if (!count)
8763 return TRUE;
8764
8765 hdr = &elf_section_data (section)->this_hdr;
8766 if (hdr->sh_offset == (file_ptr) -1)
8767 {
8768 /* We must compress this section. Write output to the buffer. */
8769 unsigned char *contents = hdr->contents;
8770 if ((offset + count) > hdr->sh_size
8771 || (section->flags & SEC_ELF_COMPRESS) == 0
8772 || contents == NULL)
8773 abort ();
8774 memcpy (contents + offset, location, count);
8775 return TRUE;
8776 }
8777 pos = hdr->sh_offset + offset;
8778 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8779 || bfd_bwrite (location, count, abfd) != count)
8780 return FALSE;
8781
8782 return TRUE;
8783 }
8784
8785 void
8786 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8787 arelent *cache_ptr ATTRIBUTE_UNUSED,
8788 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8789 {
8790 abort ();
8791 }
8792
8793 /* Try to convert a non-ELF reloc into an ELF one. */
8794
8795 bfd_boolean
8796 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8797 {
8798 /* Check whether we really have an ELF howto. */
8799
8800 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8801 {
8802 bfd_reloc_code_real_type code;
8803 reloc_howto_type *howto;
8804
8805 /* Alien reloc: Try to determine its type to replace it with an
8806 equivalent ELF reloc. */
8807
8808 if (areloc->howto->pc_relative)
8809 {
8810 switch (areloc->howto->bitsize)
8811 {
8812 case 8:
8813 code = BFD_RELOC_8_PCREL;
8814 break;
8815 case 12:
8816 code = BFD_RELOC_12_PCREL;
8817 break;
8818 case 16:
8819 code = BFD_RELOC_16_PCREL;
8820 break;
8821 case 24:
8822 code = BFD_RELOC_24_PCREL;
8823 break;
8824 case 32:
8825 code = BFD_RELOC_32_PCREL;
8826 break;
8827 case 64:
8828 code = BFD_RELOC_64_PCREL;
8829 break;
8830 default:
8831 goto fail;
8832 }
8833
8834 howto = bfd_reloc_type_lookup (abfd, code);
8835
8836 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8837 {
8838 if (howto->pcrel_offset)
8839 areloc->addend += areloc->address;
8840 else
8841 areloc->addend -= areloc->address; /* addend is unsigned!! */
8842 }
8843 }
8844 else
8845 {
8846 switch (areloc->howto->bitsize)
8847 {
8848 case 8:
8849 code = BFD_RELOC_8;
8850 break;
8851 case 14:
8852 code = BFD_RELOC_14;
8853 break;
8854 case 16:
8855 code = BFD_RELOC_16;
8856 break;
8857 case 26:
8858 code = BFD_RELOC_26;
8859 break;
8860 case 32:
8861 code = BFD_RELOC_32;
8862 break;
8863 case 64:
8864 code = BFD_RELOC_64;
8865 break;
8866 default:
8867 goto fail;
8868 }
8869
8870 howto = bfd_reloc_type_lookup (abfd, code);
8871 }
8872
8873 if (howto)
8874 areloc->howto = howto;
8875 else
8876 goto fail;
8877 }
8878
8879 return TRUE;
8880
8881 fail:
8882 _bfd_error_handler
8883 /* xgettext:c-format */
8884 (_("%B: unsupported relocation type %s"),
8885 abfd, areloc->howto->name);
8886 bfd_set_error (bfd_error_bad_value);
8887 return FALSE;
8888 }
8889
8890 bfd_boolean
8891 _bfd_elf_close_and_cleanup (bfd *abfd)
8892 {
8893 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8894 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8895 {
8896 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8897 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8898 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8899 }
8900
8901 return _bfd_generic_close_and_cleanup (abfd);
8902 }
8903
8904 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8905 in the relocation's offset. Thus we cannot allow any sort of sanity
8906 range-checking to interfere. There is nothing else to do in processing
8907 this reloc. */
8908
8909 bfd_reloc_status_type
8910 _bfd_elf_rel_vtable_reloc_fn
8911 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8912 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8913 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8914 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8915 {
8916 return bfd_reloc_ok;
8917 }
8918 \f
8919 /* Elf core file support. Much of this only works on native
8920 toolchains, since we rely on knowing the
8921 machine-dependent procfs structure in order to pick
8922 out details about the corefile. */
8923
8924 #ifdef HAVE_SYS_PROCFS_H
8925 /* Needed for new procfs interface on sparc-solaris. */
8926 # define _STRUCTURED_PROC 1
8927 # include <sys/procfs.h>
8928 #endif
8929
8930 /* Return a PID that identifies a "thread" for threaded cores, or the
8931 PID of the main process for non-threaded cores. */
8932
8933 static int
8934 elfcore_make_pid (bfd *abfd)
8935 {
8936 int pid;
8937
8938 pid = elf_tdata (abfd)->core->lwpid;
8939 if (pid == 0)
8940 pid = elf_tdata (abfd)->core->pid;
8941
8942 return pid;
8943 }
8944
8945 /* If there isn't a section called NAME, make one, using
8946 data from SECT. Note, this function will generate a
8947 reference to NAME, so you shouldn't deallocate or
8948 overwrite it. */
8949
8950 static bfd_boolean
8951 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8952 {
8953 asection *sect2;
8954
8955 if (bfd_get_section_by_name (abfd, name) != NULL)
8956 return TRUE;
8957
8958 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8959 if (sect2 == NULL)
8960 return FALSE;
8961
8962 sect2->size = sect->size;
8963 sect2->filepos = sect->filepos;
8964 sect2->alignment_power = sect->alignment_power;
8965 return TRUE;
8966 }
8967
8968 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8969 actually creates up to two pseudosections:
8970 - For the single-threaded case, a section named NAME, unless
8971 such a section already exists.
8972 - For the multi-threaded case, a section named "NAME/PID", where
8973 PID is elfcore_make_pid (abfd).
8974 Both pseudosections have identical contents. */
8975 bfd_boolean
8976 _bfd_elfcore_make_pseudosection (bfd *abfd,
8977 char *name,
8978 size_t size,
8979 ufile_ptr filepos)
8980 {
8981 char buf[100];
8982 char *threaded_name;
8983 size_t len;
8984 asection *sect;
8985
8986 /* Build the section name. */
8987
8988 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8989 len = strlen (buf) + 1;
8990 threaded_name = (char *) bfd_alloc (abfd, len);
8991 if (threaded_name == NULL)
8992 return FALSE;
8993 memcpy (threaded_name, buf, len);
8994
8995 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8996 SEC_HAS_CONTENTS);
8997 if (sect == NULL)
8998 return FALSE;
8999 sect->size = size;
9000 sect->filepos = filepos;
9001 sect->alignment_power = 2;
9002
9003 return elfcore_maybe_make_sect (abfd, name, sect);
9004 }
9005
9006 /* prstatus_t exists on:
9007 solaris 2.5+
9008 linux 2.[01] + glibc
9009 unixware 4.2
9010 */
9011
9012 #if defined (HAVE_PRSTATUS_T)
9013
9014 static bfd_boolean
9015 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9016 {
9017 size_t size;
9018 int offset;
9019
9020 if (note->descsz == sizeof (prstatus_t))
9021 {
9022 prstatus_t prstat;
9023
9024 size = sizeof (prstat.pr_reg);
9025 offset = offsetof (prstatus_t, pr_reg);
9026 memcpy (&prstat, note->descdata, sizeof (prstat));
9027
9028 /* Do not overwrite the core signal if it
9029 has already been set by another thread. */
9030 if (elf_tdata (abfd)->core->signal == 0)
9031 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9032 if (elf_tdata (abfd)->core->pid == 0)
9033 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9034
9035 /* pr_who exists on:
9036 solaris 2.5+
9037 unixware 4.2
9038 pr_who doesn't exist on:
9039 linux 2.[01]
9040 */
9041 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9042 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9043 #else
9044 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9045 #endif
9046 }
9047 #if defined (HAVE_PRSTATUS32_T)
9048 else if (note->descsz == sizeof (prstatus32_t))
9049 {
9050 /* 64-bit host, 32-bit corefile */
9051 prstatus32_t prstat;
9052
9053 size = sizeof (prstat.pr_reg);
9054 offset = offsetof (prstatus32_t, pr_reg);
9055 memcpy (&prstat, note->descdata, sizeof (prstat));
9056
9057 /* Do not overwrite the core signal if it
9058 has already been set by another thread. */
9059 if (elf_tdata (abfd)->core->signal == 0)
9060 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9061 if (elf_tdata (abfd)->core->pid == 0)
9062 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9063
9064 /* pr_who exists on:
9065 solaris 2.5+
9066 unixware 4.2
9067 pr_who doesn't exist on:
9068 linux 2.[01]
9069 */
9070 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9071 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9072 #else
9073 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9074 #endif
9075 }
9076 #endif /* HAVE_PRSTATUS32_T */
9077 else
9078 {
9079 /* Fail - we don't know how to handle any other
9080 note size (ie. data object type). */
9081 return TRUE;
9082 }
9083
9084 /* Make a ".reg/999" section and a ".reg" section. */
9085 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9086 size, note->descpos + offset);
9087 }
9088 #endif /* defined (HAVE_PRSTATUS_T) */
9089
9090 /* Create a pseudosection containing the exact contents of NOTE. */
9091 static bfd_boolean
9092 elfcore_make_note_pseudosection (bfd *abfd,
9093 char *name,
9094 Elf_Internal_Note *note)
9095 {
9096 return _bfd_elfcore_make_pseudosection (abfd, name,
9097 note->descsz, note->descpos);
9098 }
9099
9100 /* There isn't a consistent prfpregset_t across platforms,
9101 but it doesn't matter, because we don't have to pick this
9102 data structure apart. */
9103
9104 static bfd_boolean
9105 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9106 {
9107 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9108 }
9109
9110 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9111 type of NT_PRXFPREG. Just include the whole note's contents
9112 literally. */
9113
9114 static bfd_boolean
9115 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9116 {
9117 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9118 }
9119
9120 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9121 with a note type of NT_X86_XSTATE. Just include the whole note's
9122 contents literally. */
9123
9124 static bfd_boolean
9125 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9126 {
9127 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9128 }
9129
9130 static bfd_boolean
9131 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9132 {
9133 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9134 }
9135
9136 static bfd_boolean
9137 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9138 {
9139 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9140 }
9141
9142 static bfd_boolean
9143 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9144 {
9145 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9146 }
9147
9148 static bfd_boolean
9149 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9150 {
9151 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9152 }
9153
9154 static bfd_boolean
9155 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9156 {
9157 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9158 }
9159
9160 static bfd_boolean
9161 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9162 {
9163 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9164 }
9165
9166 static bfd_boolean
9167 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9168 {
9169 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9170 }
9171
9172 static bfd_boolean
9173 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9174 {
9175 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9176 }
9177
9178 static bfd_boolean
9179 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9180 {
9181 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9182 }
9183
9184 static bfd_boolean
9185 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9186 {
9187 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9188 }
9189
9190 static bfd_boolean
9191 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9192 {
9193 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9194 }
9195
9196 static bfd_boolean
9197 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9198 {
9199 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9200 }
9201
9202 static bfd_boolean
9203 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9204 {
9205 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9206 }
9207
9208 static bfd_boolean
9209 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9210 {
9211 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9212 }
9213
9214 static bfd_boolean
9215 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9216 {
9217 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9218 }
9219
9220 static bfd_boolean
9221 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9222 {
9223 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9224 }
9225
9226 static bfd_boolean
9227 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9228 {
9229 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9230 }
9231
9232 static bfd_boolean
9233 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9234 {
9235 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9236 }
9237
9238 static bfd_boolean
9239 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9240 {
9241 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9242 }
9243
9244 #if defined (HAVE_PRPSINFO_T)
9245 typedef prpsinfo_t elfcore_psinfo_t;
9246 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9247 typedef prpsinfo32_t elfcore_psinfo32_t;
9248 #endif
9249 #endif
9250
9251 #if defined (HAVE_PSINFO_T)
9252 typedef psinfo_t elfcore_psinfo_t;
9253 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9254 typedef psinfo32_t elfcore_psinfo32_t;
9255 #endif
9256 #endif
9257
9258 /* return a malloc'ed copy of a string at START which is at
9259 most MAX bytes long, possibly without a terminating '\0'.
9260 the copy will always have a terminating '\0'. */
9261
9262 char *
9263 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9264 {
9265 char *dups;
9266 char *end = (char *) memchr (start, '\0', max);
9267 size_t len;
9268
9269 if (end == NULL)
9270 len = max;
9271 else
9272 len = end - start;
9273
9274 dups = (char *) bfd_alloc (abfd, len + 1);
9275 if (dups == NULL)
9276 return NULL;
9277
9278 memcpy (dups, start, len);
9279 dups[len] = '\0';
9280
9281 return dups;
9282 }
9283
9284 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9285 static bfd_boolean
9286 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9287 {
9288 if (note->descsz == sizeof (elfcore_psinfo_t))
9289 {
9290 elfcore_psinfo_t psinfo;
9291
9292 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9293
9294 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9295 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9296 #endif
9297 elf_tdata (abfd)->core->program
9298 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9299 sizeof (psinfo.pr_fname));
9300
9301 elf_tdata (abfd)->core->command
9302 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9303 sizeof (psinfo.pr_psargs));
9304 }
9305 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9306 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9307 {
9308 /* 64-bit host, 32-bit corefile */
9309 elfcore_psinfo32_t psinfo;
9310
9311 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9312
9313 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9314 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9315 #endif
9316 elf_tdata (abfd)->core->program
9317 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9318 sizeof (psinfo.pr_fname));
9319
9320 elf_tdata (abfd)->core->command
9321 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9322 sizeof (psinfo.pr_psargs));
9323 }
9324 #endif
9325
9326 else
9327 {
9328 /* Fail - we don't know how to handle any other
9329 note size (ie. data object type). */
9330 return TRUE;
9331 }
9332
9333 /* Note that for some reason, a spurious space is tacked
9334 onto the end of the args in some (at least one anyway)
9335 implementations, so strip it off if it exists. */
9336
9337 {
9338 char *command = elf_tdata (abfd)->core->command;
9339 int n = strlen (command);
9340
9341 if (0 < n && command[n - 1] == ' ')
9342 command[n - 1] = '\0';
9343 }
9344
9345 return TRUE;
9346 }
9347 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9348
9349 #if defined (HAVE_PSTATUS_T)
9350 static bfd_boolean
9351 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9352 {
9353 if (note->descsz == sizeof (pstatus_t)
9354 #if defined (HAVE_PXSTATUS_T)
9355 || note->descsz == sizeof (pxstatus_t)
9356 #endif
9357 )
9358 {
9359 pstatus_t pstat;
9360
9361 memcpy (&pstat, note->descdata, sizeof (pstat));
9362
9363 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9364 }
9365 #if defined (HAVE_PSTATUS32_T)
9366 else if (note->descsz == sizeof (pstatus32_t))
9367 {
9368 /* 64-bit host, 32-bit corefile */
9369 pstatus32_t pstat;
9370
9371 memcpy (&pstat, note->descdata, sizeof (pstat));
9372
9373 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9374 }
9375 #endif
9376 /* Could grab some more details from the "representative"
9377 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9378 NT_LWPSTATUS note, presumably. */
9379
9380 return TRUE;
9381 }
9382 #endif /* defined (HAVE_PSTATUS_T) */
9383
9384 #if defined (HAVE_LWPSTATUS_T)
9385 static bfd_boolean
9386 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9387 {
9388 lwpstatus_t lwpstat;
9389 char buf[100];
9390 char *name;
9391 size_t len;
9392 asection *sect;
9393
9394 if (note->descsz != sizeof (lwpstat)
9395 #if defined (HAVE_LWPXSTATUS_T)
9396 && note->descsz != sizeof (lwpxstatus_t)
9397 #endif
9398 )
9399 return TRUE;
9400
9401 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9402
9403 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9404 /* Do not overwrite the core signal if it has already been set by
9405 another thread. */
9406 if (elf_tdata (abfd)->core->signal == 0)
9407 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9408
9409 /* Make a ".reg/999" section. */
9410
9411 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9412 len = strlen (buf) + 1;
9413 name = bfd_alloc (abfd, len);
9414 if (name == NULL)
9415 return FALSE;
9416 memcpy (name, buf, len);
9417
9418 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9419 if (sect == NULL)
9420 return FALSE;
9421
9422 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9423 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9424 sect->filepos = note->descpos
9425 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9426 #endif
9427
9428 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9429 sect->size = sizeof (lwpstat.pr_reg);
9430 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9431 #endif
9432
9433 sect->alignment_power = 2;
9434
9435 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9436 return FALSE;
9437
9438 /* Make a ".reg2/999" section */
9439
9440 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9441 len = strlen (buf) + 1;
9442 name = bfd_alloc (abfd, len);
9443 if (name == NULL)
9444 return FALSE;
9445 memcpy (name, buf, len);
9446
9447 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9448 if (sect == NULL)
9449 return FALSE;
9450
9451 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9452 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9453 sect->filepos = note->descpos
9454 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9455 #endif
9456
9457 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9458 sect->size = sizeof (lwpstat.pr_fpreg);
9459 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9460 #endif
9461
9462 sect->alignment_power = 2;
9463
9464 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9465 }
9466 #endif /* defined (HAVE_LWPSTATUS_T) */
9467
9468 static bfd_boolean
9469 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9470 {
9471 char buf[30];
9472 char *name;
9473 size_t len;
9474 asection *sect;
9475 int type;
9476 int is_active_thread;
9477 bfd_vma base_addr;
9478
9479 if (note->descsz < 728)
9480 return TRUE;
9481
9482 if (! CONST_STRNEQ (note->namedata, "win32"))
9483 return TRUE;
9484
9485 type = bfd_get_32 (abfd, note->descdata);
9486
9487 switch (type)
9488 {
9489 case 1 /* NOTE_INFO_PROCESS */:
9490 /* FIXME: need to add ->core->command. */
9491 /* process_info.pid */
9492 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9493 /* process_info.signal */
9494 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9495 break;
9496
9497 case 2 /* NOTE_INFO_THREAD */:
9498 /* Make a ".reg/999" section. */
9499 /* thread_info.tid */
9500 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9501
9502 len = strlen (buf) + 1;
9503 name = (char *) bfd_alloc (abfd, len);
9504 if (name == NULL)
9505 return FALSE;
9506
9507 memcpy (name, buf, len);
9508
9509 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9510 if (sect == NULL)
9511 return FALSE;
9512
9513 /* sizeof (thread_info.thread_context) */
9514 sect->size = 716;
9515 /* offsetof (thread_info.thread_context) */
9516 sect->filepos = note->descpos + 12;
9517 sect->alignment_power = 2;
9518
9519 /* thread_info.is_active_thread */
9520 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9521
9522 if (is_active_thread)
9523 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9524 return FALSE;
9525 break;
9526
9527 case 3 /* NOTE_INFO_MODULE */:
9528 /* Make a ".module/xxxxxxxx" section. */
9529 /* module_info.base_address */
9530 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9531 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9532
9533 len = strlen (buf) + 1;
9534 name = (char *) bfd_alloc (abfd, len);
9535 if (name == NULL)
9536 return FALSE;
9537
9538 memcpy (name, buf, len);
9539
9540 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9541
9542 if (sect == NULL)
9543 return FALSE;
9544
9545 sect->size = note->descsz;
9546 sect->filepos = note->descpos;
9547 sect->alignment_power = 2;
9548 break;
9549
9550 default:
9551 return TRUE;
9552 }
9553
9554 return TRUE;
9555 }
9556
9557 static bfd_boolean
9558 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9559 {
9560 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9561
9562 switch (note->type)
9563 {
9564 default:
9565 return TRUE;
9566
9567 case NT_PRSTATUS:
9568 if (bed->elf_backend_grok_prstatus)
9569 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9570 return TRUE;
9571 #if defined (HAVE_PRSTATUS_T)
9572 return elfcore_grok_prstatus (abfd, note);
9573 #else
9574 return TRUE;
9575 #endif
9576
9577 #if defined (HAVE_PSTATUS_T)
9578 case NT_PSTATUS:
9579 return elfcore_grok_pstatus (abfd, note);
9580 #endif
9581
9582 #if defined (HAVE_LWPSTATUS_T)
9583 case NT_LWPSTATUS:
9584 return elfcore_grok_lwpstatus (abfd, note);
9585 #endif
9586
9587 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9588 return elfcore_grok_prfpreg (abfd, note);
9589
9590 case NT_WIN32PSTATUS:
9591 return elfcore_grok_win32pstatus (abfd, note);
9592
9593 case NT_PRXFPREG: /* Linux SSE extension */
9594 if (note->namesz == 6
9595 && strcmp (note->namedata, "LINUX") == 0)
9596 return elfcore_grok_prxfpreg (abfd, note);
9597 else
9598 return TRUE;
9599
9600 case NT_X86_XSTATE: /* Linux XSAVE extension */
9601 if (note->namesz == 6
9602 && strcmp (note->namedata, "LINUX") == 0)
9603 return elfcore_grok_xstatereg (abfd, note);
9604 else
9605 return TRUE;
9606
9607 case NT_PPC_VMX:
9608 if (note->namesz == 6
9609 && strcmp (note->namedata, "LINUX") == 0)
9610 return elfcore_grok_ppc_vmx (abfd, note);
9611 else
9612 return TRUE;
9613
9614 case NT_PPC_VSX:
9615 if (note->namesz == 6
9616 && strcmp (note->namedata, "LINUX") == 0)
9617 return elfcore_grok_ppc_vsx (abfd, note);
9618 else
9619 return TRUE;
9620
9621 case NT_S390_HIGH_GPRS:
9622 if (note->namesz == 6
9623 && strcmp (note->namedata, "LINUX") == 0)
9624 return elfcore_grok_s390_high_gprs (abfd, note);
9625 else
9626 return TRUE;
9627
9628 case NT_S390_TIMER:
9629 if (note->namesz == 6
9630 && strcmp (note->namedata, "LINUX") == 0)
9631 return elfcore_grok_s390_timer (abfd, note);
9632 else
9633 return TRUE;
9634
9635 case NT_S390_TODCMP:
9636 if (note->namesz == 6
9637 && strcmp (note->namedata, "LINUX") == 0)
9638 return elfcore_grok_s390_todcmp (abfd, note);
9639 else
9640 return TRUE;
9641
9642 case NT_S390_TODPREG:
9643 if (note->namesz == 6
9644 && strcmp (note->namedata, "LINUX") == 0)
9645 return elfcore_grok_s390_todpreg (abfd, note);
9646 else
9647 return TRUE;
9648
9649 case NT_S390_CTRS:
9650 if (note->namesz == 6
9651 && strcmp (note->namedata, "LINUX") == 0)
9652 return elfcore_grok_s390_ctrs (abfd, note);
9653 else
9654 return TRUE;
9655
9656 case NT_S390_PREFIX:
9657 if (note->namesz == 6
9658 && strcmp (note->namedata, "LINUX") == 0)
9659 return elfcore_grok_s390_prefix (abfd, note);
9660 else
9661 return TRUE;
9662
9663 case NT_S390_LAST_BREAK:
9664 if (note->namesz == 6
9665 && strcmp (note->namedata, "LINUX") == 0)
9666 return elfcore_grok_s390_last_break (abfd, note);
9667 else
9668 return TRUE;
9669
9670 case NT_S390_SYSTEM_CALL:
9671 if (note->namesz == 6
9672 && strcmp (note->namedata, "LINUX") == 0)
9673 return elfcore_grok_s390_system_call (abfd, note);
9674 else
9675 return TRUE;
9676
9677 case NT_S390_TDB:
9678 if (note->namesz == 6
9679 && strcmp (note->namedata, "LINUX") == 0)
9680 return elfcore_grok_s390_tdb (abfd, note);
9681 else
9682 return TRUE;
9683
9684 case NT_S390_VXRS_LOW:
9685 if (note->namesz == 6
9686 && strcmp (note->namedata, "LINUX") == 0)
9687 return elfcore_grok_s390_vxrs_low (abfd, note);
9688 else
9689 return TRUE;
9690
9691 case NT_S390_VXRS_HIGH:
9692 if (note->namesz == 6
9693 && strcmp (note->namedata, "LINUX") == 0)
9694 return elfcore_grok_s390_vxrs_high (abfd, note);
9695 else
9696 return TRUE;
9697
9698 case NT_S390_GS_CB:
9699 if (note->namesz == 6
9700 && strcmp (note->namedata, "LINUX") == 0)
9701 return elfcore_grok_s390_gs_bc (abfd, note);
9702 else
9703 return TRUE;
9704
9705 case NT_S390_GS_BC:
9706 if (note->namesz == 6
9707 && strcmp (note->namedata, "LINUX") == 0)
9708 return elfcore_grok_s390_gs_cb (abfd, note);
9709 else
9710 return TRUE;
9711
9712 case NT_ARM_VFP:
9713 if (note->namesz == 6
9714 && strcmp (note->namedata, "LINUX") == 0)
9715 return elfcore_grok_arm_vfp (abfd, note);
9716 else
9717 return TRUE;
9718
9719 case NT_ARM_TLS:
9720 if (note->namesz == 6
9721 && strcmp (note->namedata, "LINUX") == 0)
9722 return elfcore_grok_aarch_tls (abfd, note);
9723 else
9724 return TRUE;
9725
9726 case NT_ARM_HW_BREAK:
9727 if (note->namesz == 6
9728 && strcmp (note->namedata, "LINUX") == 0)
9729 return elfcore_grok_aarch_hw_break (abfd, note);
9730 else
9731 return TRUE;
9732
9733 case NT_ARM_HW_WATCH:
9734 if (note->namesz == 6
9735 && strcmp (note->namedata, "LINUX") == 0)
9736 return elfcore_grok_aarch_hw_watch (abfd, note);
9737 else
9738 return TRUE;
9739
9740 case NT_PRPSINFO:
9741 case NT_PSINFO:
9742 if (bed->elf_backend_grok_psinfo)
9743 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9744 return TRUE;
9745 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9746 return elfcore_grok_psinfo (abfd, note);
9747 #else
9748 return TRUE;
9749 #endif
9750
9751 case NT_AUXV:
9752 {
9753 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9754 SEC_HAS_CONTENTS);
9755
9756 if (sect == NULL)
9757 return FALSE;
9758 sect->size = note->descsz;
9759 sect->filepos = note->descpos;
9760 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9761
9762 return TRUE;
9763 }
9764
9765 case NT_FILE:
9766 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9767 note);
9768
9769 case NT_SIGINFO:
9770 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9771 note);
9772
9773 }
9774 }
9775
9776 static bfd_boolean
9777 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9778 {
9779 struct bfd_build_id* build_id;
9780
9781 if (note->descsz == 0)
9782 return FALSE;
9783
9784 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9785 if (build_id == NULL)
9786 return FALSE;
9787
9788 build_id->size = note->descsz;
9789 memcpy (build_id->data, note->descdata, note->descsz);
9790 abfd->build_id = build_id;
9791
9792 return TRUE;
9793 }
9794
9795 static bfd_boolean
9796 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9797 {
9798 switch (note->type)
9799 {
9800 default:
9801 return TRUE;
9802
9803 case NT_GNU_PROPERTY_TYPE_0:
9804 return _bfd_elf_parse_gnu_properties (abfd, note);
9805
9806 case NT_GNU_BUILD_ID:
9807 return elfobj_grok_gnu_build_id (abfd, note);
9808 }
9809 }
9810
9811 static bfd_boolean
9812 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9813 {
9814 struct sdt_note *cur =
9815 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9816 + note->descsz);
9817
9818 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9819 cur->size = (bfd_size_type) note->descsz;
9820 memcpy (cur->data, note->descdata, note->descsz);
9821
9822 elf_tdata (abfd)->sdt_note_head = cur;
9823
9824 return TRUE;
9825 }
9826
9827 static bfd_boolean
9828 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9829 {
9830 switch (note->type)
9831 {
9832 case NT_STAPSDT:
9833 return elfobj_grok_stapsdt_note_1 (abfd, note);
9834
9835 default:
9836 return TRUE;
9837 }
9838 }
9839
9840 static bfd_boolean
9841 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9842 {
9843 size_t offset;
9844
9845 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9846 {
9847 case ELFCLASS32:
9848 if (note->descsz < 108)
9849 return FALSE;
9850 break;
9851
9852 case ELFCLASS64:
9853 if (note->descsz < 120)
9854 return FALSE;
9855 break;
9856
9857 default:
9858 return FALSE;
9859 }
9860
9861 /* Check for version 1 in pr_version. */
9862 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9863 return FALSE;
9864 offset = 4;
9865
9866 /* Skip over pr_psinfosz. */
9867 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9868 offset += 4;
9869 else
9870 {
9871 offset += 4; /* Padding before pr_psinfosz. */
9872 offset += 8;
9873 }
9874
9875 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9876 elf_tdata (abfd)->core->program
9877 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9878 offset += 17;
9879
9880 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9881 elf_tdata (abfd)->core->command
9882 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9883 offset += 81;
9884
9885 /* Padding before pr_pid. */
9886 offset += 2;
9887
9888 /* The pr_pid field was added in version "1a". */
9889 if (note->descsz < offset + 4)
9890 return TRUE;
9891
9892 elf_tdata (abfd)->core->pid
9893 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9894
9895 return TRUE;
9896 }
9897
9898 static bfd_boolean
9899 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9900 {
9901 size_t offset;
9902 size_t size;
9903 size_t min_size;
9904
9905 /* Compute offset of pr_getregsz, skipping over pr_statussz.
9906 Also compute minimum size of this note. */
9907 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9908 {
9909 case ELFCLASS32:
9910 offset = 4 + 4;
9911 min_size = offset + (4 * 2) + 4 + 4 + 4;
9912 break;
9913
9914 case ELFCLASS64:
9915 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
9916 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
9917 break;
9918
9919 default:
9920 return FALSE;
9921 }
9922
9923 if (note->descsz < min_size)
9924 return FALSE;
9925
9926 /* Check for version 1 in pr_version. */
9927 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9928 return FALSE;
9929
9930 /* Extract size of pr_reg from pr_gregsetsz. */
9931 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9932 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9933 {
9934 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9935 offset += 4 * 2;
9936 }
9937 else
9938 {
9939 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9940 offset += 8 * 2;
9941 }
9942
9943 /* Skip over pr_osreldate. */
9944 offset += 4;
9945
9946 /* Read signal from pr_cursig. */
9947 if (elf_tdata (abfd)->core->signal == 0)
9948 elf_tdata (abfd)->core->signal
9949 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9950 offset += 4;
9951
9952 /* Read TID from pr_pid. */
9953 elf_tdata (abfd)->core->lwpid
9954 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9955 offset += 4;
9956
9957 /* Padding before pr_reg. */
9958 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
9959 offset += 4;
9960
9961 /* Make sure that there is enough data remaining in the note. */
9962 if ((note->descsz - offset) < size)
9963 return FALSE;
9964
9965 /* Make a ".reg/999" section and a ".reg" section. */
9966 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9967 size, note->descpos + offset);
9968 }
9969
9970 static bfd_boolean
9971 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9972 {
9973 switch (note->type)
9974 {
9975 case NT_PRSTATUS:
9976 return elfcore_grok_freebsd_prstatus (abfd, note);
9977
9978 case NT_FPREGSET:
9979 return elfcore_grok_prfpreg (abfd, note);
9980
9981 case NT_PRPSINFO:
9982 return elfcore_grok_freebsd_psinfo (abfd, note);
9983
9984 case NT_FREEBSD_THRMISC:
9985 if (note->namesz == 8)
9986 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9987 else
9988 return TRUE;
9989
9990 case NT_FREEBSD_PROCSTAT_AUXV:
9991 {
9992 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9993 SEC_HAS_CONTENTS);
9994
9995 if (sect == NULL)
9996 return FALSE;
9997 sect->size = note->descsz - 4;
9998 sect->filepos = note->descpos + 4;
9999 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10000
10001 return TRUE;
10002 }
10003
10004 case NT_X86_XSTATE:
10005 if (note->namesz == 8)
10006 return elfcore_grok_xstatereg (abfd, note);
10007 else
10008 return TRUE;
10009
10010 case NT_FREEBSD_PTLWPINFO:
10011 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10012 note);
10013
10014 default:
10015 return TRUE;
10016 }
10017 }
10018
10019 static bfd_boolean
10020 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10021 {
10022 char *cp;
10023
10024 cp = strchr (note->namedata, '@');
10025 if (cp != NULL)
10026 {
10027 *lwpidp = atoi(cp + 1);
10028 return TRUE;
10029 }
10030 return FALSE;
10031 }
10032
10033 static bfd_boolean
10034 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10035 {
10036 /* Signal number at offset 0x08. */
10037 elf_tdata (abfd)->core->signal
10038 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10039
10040 /* Process ID at offset 0x50. */
10041 elf_tdata (abfd)->core->pid
10042 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10043
10044 /* Command name at 0x7c (max 32 bytes, including nul). */
10045 elf_tdata (abfd)->core->command
10046 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10047
10048 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10049 note);
10050 }
10051
10052 static bfd_boolean
10053 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10054 {
10055 int lwp;
10056
10057 if (elfcore_netbsd_get_lwpid (note, &lwp))
10058 elf_tdata (abfd)->core->lwpid = lwp;
10059
10060 if (note->type == NT_NETBSDCORE_PROCINFO)
10061 {
10062 /* NetBSD-specific core "procinfo". Note that we expect to
10063 find this note before any of the others, which is fine,
10064 since the kernel writes this note out first when it
10065 creates a core file. */
10066
10067 return elfcore_grok_netbsd_procinfo (abfd, note);
10068 }
10069
10070 /* As of Jan 2002 there are no other machine-independent notes
10071 defined for NetBSD core files. If the note type is less
10072 than the start of the machine-dependent note types, we don't
10073 understand it. */
10074
10075 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10076 return TRUE;
10077
10078
10079 switch (bfd_get_arch (abfd))
10080 {
10081 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10082 PT_GETFPREGS == mach+2. */
10083
10084 case bfd_arch_alpha:
10085 case bfd_arch_sparc:
10086 switch (note->type)
10087 {
10088 case NT_NETBSDCORE_FIRSTMACH+0:
10089 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10090
10091 case NT_NETBSDCORE_FIRSTMACH+2:
10092 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10093
10094 default:
10095 return TRUE;
10096 }
10097
10098 /* On all other arch's, PT_GETREGS == mach+1 and
10099 PT_GETFPREGS == mach+3. */
10100
10101 default:
10102 switch (note->type)
10103 {
10104 case NT_NETBSDCORE_FIRSTMACH+1:
10105 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10106
10107 case NT_NETBSDCORE_FIRSTMACH+3:
10108 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10109
10110 default:
10111 return TRUE;
10112 }
10113 }
10114 /* NOTREACHED */
10115 }
10116
10117 static bfd_boolean
10118 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10119 {
10120 /* Signal number at offset 0x08. */
10121 elf_tdata (abfd)->core->signal
10122 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10123
10124 /* Process ID at offset 0x20. */
10125 elf_tdata (abfd)->core->pid
10126 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10127
10128 /* Command name at 0x48 (max 32 bytes, including nul). */
10129 elf_tdata (abfd)->core->command
10130 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10131
10132 return TRUE;
10133 }
10134
10135 static bfd_boolean
10136 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10137 {
10138 if (note->type == NT_OPENBSD_PROCINFO)
10139 return elfcore_grok_openbsd_procinfo (abfd, note);
10140
10141 if (note->type == NT_OPENBSD_REGS)
10142 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10143
10144 if (note->type == NT_OPENBSD_FPREGS)
10145 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10146
10147 if (note->type == NT_OPENBSD_XFPREGS)
10148 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10149
10150 if (note->type == NT_OPENBSD_AUXV)
10151 {
10152 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10153 SEC_HAS_CONTENTS);
10154
10155 if (sect == NULL)
10156 return FALSE;
10157 sect->size = note->descsz;
10158 sect->filepos = note->descpos;
10159 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10160
10161 return TRUE;
10162 }
10163
10164 if (note->type == NT_OPENBSD_WCOOKIE)
10165 {
10166 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10167 SEC_HAS_CONTENTS);
10168
10169 if (sect == NULL)
10170 return FALSE;
10171 sect->size = note->descsz;
10172 sect->filepos = note->descpos;
10173 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10174
10175 return TRUE;
10176 }
10177
10178 return TRUE;
10179 }
10180
10181 static bfd_boolean
10182 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10183 {
10184 void *ddata = note->descdata;
10185 char buf[100];
10186 char *name;
10187 asection *sect;
10188 short sig;
10189 unsigned flags;
10190
10191 /* nto_procfs_status 'pid' field is at offset 0. */
10192 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10193
10194 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10195 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10196
10197 /* nto_procfs_status 'flags' field is at offset 8. */
10198 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10199
10200 /* nto_procfs_status 'what' field is at offset 14. */
10201 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10202 {
10203 elf_tdata (abfd)->core->signal = sig;
10204 elf_tdata (abfd)->core->lwpid = *tid;
10205 }
10206
10207 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10208 do not come from signals so we make sure we set the current
10209 thread just in case. */
10210 if (flags & 0x00000080)
10211 elf_tdata (abfd)->core->lwpid = *tid;
10212
10213 /* Make a ".qnx_core_status/%d" section. */
10214 sprintf (buf, ".qnx_core_status/%ld", *tid);
10215
10216 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10217 if (name == NULL)
10218 return FALSE;
10219 strcpy (name, buf);
10220
10221 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10222 if (sect == NULL)
10223 return FALSE;
10224
10225 sect->size = note->descsz;
10226 sect->filepos = note->descpos;
10227 sect->alignment_power = 2;
10228
10229 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10230 }
10231
10232 static bfd_boolean
10233 elfcore_grok_nto_regs (bfd *abfd,
10234 Elf_Internal_Note *note,
10235 long tid,
10236 char *base)
10237 {
10238 char buf[100];
10239 char *name;
10240 asection *sect;
10241
10242 /* Make a "(base)/%d" section. */
10243 sprintf (buf, "%s/%ld", base, tid);
10244
10245 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10246 if (name == NULL)
10247 return FALSE;
10248 strcpy (name, buf);
10249
10250 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10251 if (sect == NULL)
10252 return FALSE;
10253
10254 sect->size = note->descsz;
10255 sect->filepos = note->descpos;
10256 sect->alignment_power = 2;
10257
10258 /* This is the current thread. */
10259 if (elf_tdata (abfd)->core->lwpid == tid)
10260 return elfcore_maybe_make_sect (abfd, base, sect);
10261
10262 return TRUE;
10263 }
10264
10265 #define BFD_QNT_CORE_INFO 7
10266 #define BFD_QNT_CORE_STATUS 8
10267 #define BFD_QNT_CORE_GREG 9
10268 #define BFD_QNT_CORE_FPREG 10
10269
10270 static bfd_boolean
10271 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10272 {
10273 /* Every GREG section has a STATUS section before it. Store the
10274 tid from the previous call to pass down to the next gregs
10275 function. */
10276 static long tid = 1;
10277
10278 switch (note->type)
10279 {
10280 case BFD_QNT_CORE_INFO:
10281 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10282 case BFD_QNT_CORE_STATUS:
10283 return elfcore_grok_nto_status (abfd, note, &tid);
10284 case BFD_QNT_CORE_GREG:
10285 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10286 case BFD_QNT_CORE_FPREG:
10287 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10288 default:
10289 return TRUE;
10290 }
10291 }
10292
10293 static bfd_boolean
10294 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10295 {
10296 char *name;
10297 asection *sect;
10298 size_t len;
10299
10300 /* Use note name as section name. */
10301 len = note->namesz;
10302 name = (char *) bfd_alloc (abfd, len);
10303 if (name == NULL)
10304 return FALSE;
10305 memcpy (name, note->namedata, len);
10306 name[len - 1] = '\0';
10307
10308 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10309 if (sect == NULL)
10310 return FALSE;
10311
10312 sect->size = note->descsz;
10313 sect->filepos = note->descpos;
10314 sect->alignment_power = 1;
10315
10316 return TRUE;
10317 }
10318
10319 /* Function: elfcore_write_note
10320
10321 Inputs:
10322 buffer to hold note, and current size of buffer
10323 name of note
10324 type of note
10325 data for note
10326 size of data for note
10327
10328 Writes note to end of buffer. ELF64 notes are written exactly as
10329 for ELF32, despite the current (as of 2006) ELF gabi specifying
10330 that they ought to have 8-byte namesz and descsz field, and have
10331 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10332
10333 Return:
10334 Pointer to realloc'd buffer, *BUFSIZ updated. */
10335
10336 char *
10337 elfcore_write_note (bfd *abfd,
10338 char *buf,
10339 int *bufsiz,
10340 const char *name,
10341 int type,
10342 const void *input,
10343 int size)
10344 {
10345 Elf_External_Note *xnp;
10346 size_t namesz;
10347 size_t newspace;
10348 char *dest;
10349
10350 namesz = 0;
10351 if (name != NULL)
10352 namesz = strlen (name) + 1;
10353
10354 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10355
10356 buf = (char *) realloc (buf, *bufsiz + newspace);
10357 if (buf == NULL)
10358 return buf;
10359 dest = buf + *bufsiz;
10360 *bufsiz += newspace;
10361 xnp = (Elf_External_Note *) dest;
10362 H_PUT_32 (abfd, namesz, xnp->namesz);
10363 H_PUT_32 (abfd, size, xnp->descsz);
10364 H_PUT_32 (abfd, type, xnp->type);
10365 dest = xnp->name;
10366 if (name != NULL)
10367 {
10368 memcpy (dest, name, namesz);
10369 dest += namesz;
10370 while (namesz & 3)
10371 {
10372 *dest++ = '\0';
10373 ++namesz;
10374 }
10375 }
10376 memcpy (dest, input, size);
10377 dest += size;
10378 while (size & 3)
10379 {
10380 *dest++ = '\0';
10381 ++size;
10382 }
10383 return buf;
10384 }
10385
10386 char *
10387 elfcore_write_prpsinfo (bfd *abfd,
10388 char *buf,
10389 int *bufsiz,
10390 const char *fname,
10391 const char *psargs)
10392 {
10393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10394
10395 if (bed->elf_backend_write_core_note != NULL)
10396 {
10397 char *ret;
10398 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10399 NT_PRPSINFO, fname, psargs);
10400 if (ret != NULL)
10401 return ret;
10402 }
10403
10404 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10405 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10406 if (bed->s->elfclass == ELFCLASS32)
10407 {
10408 #if defined (HAVE_PSINFO32_T)
10409 psinfo32_t data;
10410 int note_type = NT_PSINFO;
10411 #else
10412 prpsinfo32_t data;
10413 int note_type = NT_PRPSINFO;
10414 #endif
10415
10416 memset (&data, 0, sizeof (data));
10417 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10418 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10419 return elfcore_write_note (abfd, buf, bufsiz,
10420 "CORE", note_type, &data, sizeof (data));
10421 }
10422 else
10423 #endif
10424 {
10425 #if defined (HAVE_PSINFO_T)
10426 psinfo_t data;
10427 int note_type = NT_PSINFO;
10428 #else
10429 prpsinfo_t data;
10430 int note_type = NT_PRPSINFO;
10431 #endif
10432
10433 memset (&data, 0, sizeof (data));
10434 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10435 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10436 return elfcore_write_note (abfd, buf, bufsiz,
10437 "CORE", note_type, &data, sizeof (data));
10438 }
10439 #endif /* PSINFO_T or PRPSINFO_T */
10440
10441 free (buf);
10442 return NULL;
10443 }
10444
10445 char *
10446 elfcore_write_linux_prpsinfo32
10447 (bfd *abfd, char *buf, int *bufsiz,
10448 const struct elf_internal_linux_prpsinfo *prpsinfo)
10449 {
10450 struct elf_external_linux_prpsinfo32 data;
10451
10452 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10453 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10454 &data, sizeof (data));
10455 }
10456
10457 char *
10458 elfcore_write_linux_prpsinfo64
10459 (bfd *abfd, char *buf, int *bufsiz,
10460 const struct elf_internal_linux_prpsinfo *prpsinfo)
10461 {
10462 struct elf_external_linux_prpsinfo64 data;
10463
10464 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10465 return elfcore_write_note (abfd, buf, bufsiz,
10466 "CORE", NT_PRPSINFO, &data, sizeof (data));
10467 }
10468
10469 char *
10470 elfcore_write_prstatus (bfd *abfd,
10471 char *buf,
10472 int *bufsiz,
10473 long pid,
10474 int cursig,
10475 const void *gregs)
10476 {
10477 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10478
10479 if (bed->elf_backend_write_core_note != NULL)
10480 {
10481 char *ret;
10482 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10483 NT_PRSTATUS,
10484 pid, cursig, gregs);
10485 if (ret != NULL)
10486 return ret;
10487 }
10488
10489 #if defined (HAVE_PRSTATUS_T)
10490 #if defined (HAVE_PRSTATUS32_T)
10491 if (bed->s->elfclass == ELFCLASS32)
10492 {
10493 prstatus32_t prstat;
10494
10495 memset (&prstat, 0, sizeof (prstat));
10496 prstat.pr_pid = pid;
10497 prstat.pr_cursig = cursig;
10498 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10499 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10500 NT_PRSTATUS, &prstat, sizeof (prstat));
10501 }
10502 else
10503 #endif
10504 {
10505 prstatus_t prstat;
10506
10507 memset (&prstat, 0, sizeof (prstat));
10508 prstat.pr_pid = pid;
10509 prstat.pr_cursig = cursig;
10510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10511 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10512 NT_PRSTATUS, &prstat, sizeof (prstat));
10513 }
10514 #endif /* HAVE_PRSTATUS_T */
10515
10516 free (buf);
10517 return NULL;
10518 }
10519
10520 #if defined (HAVE_LWPSTATUS_T)
10521 char *
10522 elfcore_write_lwpstatus (bfd *abfd,
10523 char *buf,
10524 int *bufsiz,
10525 long pid,
10526 int cursig,
10527 const void *gregs)
10528 {
10529 lwpstatus_t lwpstat;
10530 const char *note_name = "CORE";
10531
10532 memset (&lwpstat, 0, sizeof (lwpstat));
10533 lwpstat.pr_lwpid = pid >> 16;
10534 lwpstat.pr_cursig = cursig;
10535 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10536 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10537 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10538 #if !defined(gregs)
10539 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10540 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10541 #else
10542 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10543 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10544 #endif
10545 #endif
10546 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10547 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10548 }
10549 #endif /* HAVE_LWPSTATUS_T */
10550
10551 #if defined (HAVE_PSTATUS_T)
10552 char *
10553 elfcore_write_pstatus (bfd *abfd,
10554 char *buf,
10555 int *bufsiz,
10556 long pid,
10557 int cursig ATTRIBUTE_UNUSED,
10558 const void *gregs ATTRIBUTE_UNUSED)
10559 {
10560 const char *note_name = "CORE";
10561 #if defined (HAVE_PSTATUS32_T)
10562 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10563
10564 if (bed->s->elfclass == ELFCLASS32)
10565 {
10566 pstatus32_t pstat;
10567
10568 memset (&pstat, 0, sizeof (pstat));
10569 pstat.pr_pid = pid & 0xffff;
10570 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10571 NT_PSTATUS, &pstat, sizeof (pstat));
10572 return buf;
10573 }
10574 else
10575 #endif
10576 {
10577 pstatus_t pstat;
10578
10579 memset (&pstat, 0, sizeof (pstat));
10580 pstat.pr_pid = pid & 0xffff;
10581 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10582 NT_PSTATUS, &pstat, sizeof (pstat));
10583 return buf;
10584 }
10585 }
10586 #endif /* HAVE_PSTATUS_T */
10587
10588 char *
10589 elfcore_write_prfpreg (bfd *abfd,
10590 char *buf,
10591 int *bufsiz,
10592 const void *fpregs,
10593 int size)
10594 {
10595 const char *note_name = "CORE";
10596 return elfcore_write_note (abfd, buf, bufsiz,
10597 note_name, NT_FPREGSET, fpregs, size);
10598 }
10599
10600 char *
10601 elfcore_write_prxfpreg (bfd *abfd,
10602 char *buf,
10603 int *bufsiz,
10604 const void *xfpregs,
10605 int size)
10606 {
10607 char *note_name = "LINUX";
10608 return elfcore_write_note (abfd, buf, bufsiz,
10609 note_name, NT_PRXFPREG, xfpregs, size);
10610 }
10611
10612 char *
10613 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10614 const void *xfpregs, int size)
10615 {
10616 char *note_name;
10617 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10618 note_name = "FreeBSD";
10619 else
10620 note_name = "LINUX";
10621 return elfcore_write_note (abfd, buf, bufsiz,
10622 note_name, NT_X86_XSTATE, xfpregs, size);
10623 }
10624
10625 char *
10626 elfcore_write_ppc_vmx (bfd *abfd,
10627 char *buf,
10628 int *bufsiz,
10629 const void *ppc_vmx,
10630 int size)
10631 {
10632 char *note_name = "LINUX";
10633 return elfcore_write_note (abfd, buf, bufsiz,
10634 note_name, NT_PPC_VMX, ppc_vmx, size);
10635 }
10636
10637 char *
10638 elfcore_write_ppc_vsx (bfd *abfd,
10639 char *buf,
10640 int *bufsiz,
10641 const void *ppc_vsx,
10642 int size)
10643 {
10644 char *note_name = "LINUX";
10645 return elfcore_write_note (abfd, buf, bufsiz,
10646 note_name, NT_PPC_VSX, ppc_vsx, size);
10647 }
10648
10649 static char *
10650 elfcore_write_s390_high_gprs (bfd *abfd,
10651 char *buf,
10652 int *bufsiz,
10653 const void *s390_high_gprs,
10654 int size)
10655 {
10656 char *note_name = "LINUX";
10657 return elfcore_write_note (abfd, buf, bufsiz,
10658 note_name, NT_S390_HIGH_GPRS,
10659 s390_high_gprs, size);
10660 }
10661
10662 char *
10663 elfcore_write_s390_timer (bfd *abfd,
10664 char *buf,
10665 int *bufsiz,
10666 const void *s390_timer,
10667 int size)
10668 {
10669 char *note_name = "LINUX";
10670 return elfcore_write_note (abfd, buf, bufsiz,
10671 note_name, NT_S390_TIMER, s390_timer, size);
10672 }
10673
10674 char *
10675 elfcore_write_s390_todcmp (bfd *abfd,
10676 char *buf,
10677 int *bufsiz,
10678 const void *s390_todcmp,
10679 int size)
10680 {
10681 char *note_name = "LINUX";
10682 return elfcore_write_note (abfd, buf, bufsiz,
10683 note_name, NT_S390_TODCMP, s390_todcmp, size);
10684 }
10685
10686 char *
10687 elfcore_write_s390_todpreg (bfd *abfd,
10688 char *buf,
10689 int *bufsiz,
10690 const void *s390_todpreg,
10691 int size)
10692 {
10693 char *note_name = "LINUX";
10694 return elfcore_write_note (abfd, buf, bufsiz,
10695 note_name, NT_S390_TODPREG, s390_todpreg, size);
10696 }
10697
10698 char *
10699 elfcore_write_s390_ctrs (bfd *abfd,
10700 char *buf,
10701 int *bufsiz,
10702 const void *s390_ctrs,
10703 int size)
10704 {
10705 char *note_name = "LINUX";
10706 return elfcore_write_note (abfd, buf, bufsiz,
10707 note_name, NT_S390_CTRS, s390_ctrs, size);
10708 }
10709
10710 char *
10711 elfcore_write_s390_prefix (bfd *abfd,
10712 char *buf,
10713 int *bufsiz,
10714 const void *s390_prefix,
10715 int size)
10716 {
10717 char *note_name = "LINUX";
10718 return elfcore_write_note (abfd, buf, bufsiz,
10719 note_name, NT_S390_PREFIX, s390_prefix, size);
10720 }
10721
10722 char *
10723 elfcore_write_s390_last_break (bfd *abfd,
10724 char *buf,
10725 int *bufsiz,
10726 const void *s390_last_break,
10727 int size)
10728 {
10729 char *note_name = "LINUX";
10730 return elfcore_write_note (abfd, buf, bufsiz,
10731 note_name, NT_S390_LAST_BREAK,
10732 s390_last_break, size);
10733 }
10734
10735 char *
10736 elfcore_write_s390_system_call (bfd *abfd,
10737 char *buf,
10738 int *bufsiz,
10739 const void *s390_system_call,
10740 int size)
10741 {
10742 char *note_name = "LINUX";
10743 return elfcore_write_note (abfd, buf, bufsiz,
10744 note_name, NT_S390_SYSTEM_CALL,
10745 s390_system_call, size);
10746 }
10747
10748 char *
10749 elfcore_write_s390_tdb (bfd *abfd,
10750 char *buf,
10751 int *bufsiz,
10752 const void *s390_tdb,
10753 int size)
10754 {
10755 char *note_name = "LINUX";
10756 return elfcore_write_note (abfd, buf, bufsiz,
10757 note_name, NT_S390_TDB, s390_tdb, size);
10758 }
10759
10760 char *
10761 elfcore_write_s390_vxrs_low (bfd *abfd,
10762 char *buf,
10763 int *bufsiz,
10764 const void *s390_vxrs_low,
10765 int size)
10766 {
10767 char *note_name = "LINUX";
10768 return elfcore_write_note (abfd, buf, bufsiz,
10769 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10770 }
10771
10772 char *
10773 elfcore_write_s390_vxrs_high (bfd *abfd,
10774 char *buf,
10775 int *bufsiz,
10776 const void *s390_vxrs_high,
10777 int size)
10778 {
10779 char *note_name = "LINUX";
10780 return elfcore_write_note (abfd, buf, bufsiz,
10781 note_name, NT_S390_VXRS_HIGH,
10782 s390_vxrs_high, size);
10783 }
10784
10785 char *
10786 elfcore_write_s390_gs_cb (bfd *abfd,
10787 char *buf,
10788 int *bufsiz,
10789 const void *s390_gs_cb,
10790 int size)
10791 {
10792 char *note_name = "LINUX";
10793 return elfcore_write_note (abfd, buf, bufsiz,
10794 note_name, NT_S390_GS_CB,
10795 s390_gs_cb, size);
10796 }
10797
10798 char *
10799 elfcore_write_s390_gs_bc (bfd *abfd,
10800 char *buf,
10801 int *bufsiz,
10802 const void *s390_gs_bc,
10803 int size)
10804 {
10805 char *note_name = "LINUX";
10806 return elfcore_write_note (abfd, buf, bufsiz,
10807 note_name, NT_S390_GS_BC,
10808 s390_gs_bc, size);
10809 }
10810
10811 char *
10812 elfcore_write_arm_vfp (bfd *abfd,
10813 char *buf,
10814 int *bufsiz,
10815 const void *arm_vfp,
10816 int size)
10817 {
10818 char *note_name = "LINUX";
10819 return elfcore_write_note (abfd, buf, bufsiz,
10820 note_name, NT_ARM_VFP, arm_vfp, size);
10821 }
10822
10823 char *
10824 elfcore_write_aarch_tls (bfd *abfd,
10825 char *buf,
10826 int *bufsiz,
10827 const void *aarch_tls,
10828 int size)
10829 {
10830 char *note_name = "LINUX";
10831 return elfcore_write_note (abfd, buf, bufsiz,
10832 note_name, NT_ARM_TLS, aarch_tls, size);
10833 }
10834
10835 char *
10836 elfcore_write_aarch_hw_break (bfd *abfd,
10837 char *buf,
10838 int *bufsiz,
10839 const void *aarch_hw_break,
10840 int size)
10841 {
10842 char *note_name = "LINUX";
10843 return elfcore_write_note (abfd, buf, bufsiz,
10844 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10845 }
10846
10847 char *
10848 elfcore_write_aarch_hw_watch (bfd *abfd,
10849 char *buf,
10850 int *bufsiz,
10851 const void *aarch_hw_watch,
10852 int size)
10853 {
10854 char *note_name = "LINUX";
10855 return elfcore_write_note (abfd, buf, bufsiz,
10856 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10857 }
10858
10859 char *
10860 elfcore_write_register_note (bfd *abfd,
10861 char *buf,
10862 int *bufsiz,
10863 const char *section,
10864 const void *data,
10865 int size)
10866 {
10867 if (strcmp (section, ".reg2") == 0)
10868 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10869 if (strcmp (section, ".reg-xfp") == 0)
10870 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10871 if (strcmp (section, ".reg-xstate") == 0)
10872 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10873 if (strcmp (section, ".reg-ppc-vmx") == 0)
10874 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10875 if (strcmp (section, ".reg-ppc-vsx") == 0)
10876 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10877 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10878 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10879 if (strcmp (section, ".reg-s390-timer") == 0)
10880 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10881 if (strcmp (section, ".reg-s390-todcmp") == 0)
10882 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10883 if (strcmp (section, ".reg-s390-todpreg") == 0)
10884 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10885 if (strcmp (section, ".reg-s390-ctrs") == 0)
10886 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10887 if (strcmp (section, ".reg-s390-prefix") == 0)
10888 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10889 if (strcmp (section, ".reg-s390-last-break") == 0)
10890 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10891 if (strcmp (section, ".reg-s390-system-call") == 0)
10892 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10893 if (strcmp (section, ".reg-s390-tdb") == 0)
10894 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10895 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10896 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10897 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10898 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10899 if (strcmp (section, ".reg-s390-gs-cb") == 0)
10900 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
10901 if (strcmp (section, ".reg-s390-gs-bc") == 0)
10902 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
10903 if (strcmp (section, ".reg-arm-vfp") == 0)
10904 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10905 if (strcmp (section, ".reg-aarch-tls") == 0)
10906 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10907 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10908 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10909 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10910 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10911 return NULL;
10912 }
10913
10914 static bfd_boolean
10915 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10916 {
10917 char *p;
10918
10919 p = buf;
10920 while (p < buf + size)
10921 {
10922 /* FIXME: bad alignment assumption. */
10923 Elf_External_Note *xnp = (Elf_External_Note *) p;
10924 Elf_Internal_Note in;
10925
10926 if (offsetof (Elf_External_Note, name) > buf - p + size)
10927 return FALSE;
10928
10929 in.type = H_GET_32 (abfd, xnp->type);
10930
10931 in.namesz = H_GET_32 (abfd, xnp->namesz);
10932 in.namedata = xnp->name;
10933 if (in.namesz > buf - in.namedata + size)
10934 return FALSE;
10935
10936 in.descsz = H_GET_32 (abfd, xnp->descsz);
10937 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10938 in.descpos = offset + (in.descdata - buf);
10939 if (in.descsz != 0
10940 && (in.descdata >= buf + size
10941 || in.descsz > buf - in.descdata + size))
10942 return FALSE;
10943
10944 switch (bfd_get_format (abfd))
10945 {
10946 default:
10947 return TRUE;
10948
10949 case bfd_core:
10950 {
10951 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10952 struct
10953 {
10954 const char * string;
10955 size_t len;
10956 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10957 }
10958 grokers[] =
10959 {
10960 GROKER_ELEMENT ("", elfcore_grok_note),
10961 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10962 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10963 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10964 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10965 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10966 };
10967 #undef GROKER_ELEMENT
10968 int i;
10969
10970 for (i = ARRAY_SIZE (grokers); i--;)
10971 {
10972 if (in.namesz >= grokers[i].len
10973 && strncmp (in.namedata, grokers[i].string,
10974 grokers[i].len) == 0)
10975 {
10976 if (! grokers[i].func (abfd, & in))
10977 return FALSE;
10978 break;
10979 }
10980 }
10981 break;
10982 }
10983
10984 case bfd_object:
10985 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10986 {
10987 if (! elfobj_grok_gnu_note (abfd, &in))
10988 return FALSE;
10989 }
10990 else if (in.namesz == sizeof "stapsdt"
10991 && strcmp (in.namedata, "stapsdt") == 0)
10992 {
10993 if (! elfobj_grok_stapsdt_note (abfd, &in))
10994 return FALSE;
10995 }
10996 break;
10997 }
10998
10999 p = in.descdata + BFD_ALIGN (in.descsz, 4);
11000 }
11001
11002 return TRUE;
11003 }
11004
11005 static bfd_boolean
11006 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
11007 {
11008 char *buf;
11009
11010 if (size == 0 || (size + 1) == 0)
11011 return TRUE;
11012
11013 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11014 return FALSE;
11015
11016 buf = (char *) bfd_malloc (size + 1);
11017 if (buf == NULL)
11018 return FALSE;
11019
11020 /* PR 17512: file: ec08f814
11021 0-termintate the buffer so that string searches will not overflow. */
11022 buf[size] = 0;
11023
11024 if (bfd_bread (buf, size, abfd) != size
11025 || !elf_parse_notes (abfd, buf, size, offset))
11026 {
11027 free (buf);
11028 return FALSE;
11029 }
11030
11031 free (buf);
11032 return TRUE;
11033 }
11034 \f
11035 /* Providing external access to the ELF program header table. */
11036
11037 /* Return an upper bound on the number of bytes required to store a
11038 copy of ABFD's program header table entries. Return -1 if an error
11039 occurs; bfd_get_error will return an appropriate code. */
11040
11041 long
11042 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11043 {
11044 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11045 {
11046 bfd_set_error (bfd_error_wrong_format);
11047 return -1;
11048 }
11049
11050 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11051 }
11052
11053 /* Copy ABFD's program header table entries to *PHDRS. The entries
11054 will be stored as an array of Elf_Internal_Phdr structures, as
11055 defined in include/elf/internal.h. To find out how large the
11056 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11057
11058 Return the number of program header table entries read, or -1 if an
11059 error occurs; bfd_get_error will return an appropriate code. */
11060
11061 int
11062 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11063 {
11064 int num_phdrs;
11065
11066 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11067 {
11068 bfd_set_error (bfd_error_wrong_format);
11069 return -1;
11070 }
11071
11072 num_phdrs = elf_elfheader (abfd)->e_phnum;
11073 memcpy (phdrs, elf_tdata (abfd)->phdr,
11074 num_phdrs * sizeof (Elf_Internal_Phdr));
11075
11076 return num_phdrs;
11077 }
11078
11079 enum elf_reloc_type_class
11080 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11081 const asection *rel_sec ATTRIBUTE_UNUSED,
11082 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11083 {
11084 return reloc_class_normal;
11085 }
11086
11087 /* For RELA architectures, return the relocation value for a
11088 relocation against a local symbol. */
11089
11090 bfd_vma
11091 _bfd_elf_rela_local_sym (bfd *abfd,
11092 Elf_Internal_Sym *sym,
11093 asection **psec,
11094 Elf_Internal_Rela *rel)
11095 {
11096 asection *sec = *psec;
11097 bfd_vma relocation;
11098
11099 relocation = (sec->output_section->vma
11100 + sec->output_offset
11101 + sym->st_value);
11102 if ((sec->flags & SEC_MERGE)
11103 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11104 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11105 {
11106 rel->r_addend =
11107 _bfd_merged_section_offset (abfd, psec,
11108 elf_section_data (sec)->sec_info,
11109 sym->st_value + rel->r_addend);
11110 if (sec != *psec)
11111 {
11112 /* If we have changed the section, and our original section is
11113 marked with SEC_EXCLUDE, it means that the original
11114 SEC_MERGE section has been completely subsumed in some
11115 other SEC_MERGE section. In this case, we need to leave
11116 some info around for --emit-relocs. */
11117 if ((sec->flags & SEC_EXCLUDE) != 0)
11118 sec->kept_section = *psec;
11119 sec = *psec;
11120 }
11121 rel->r_addend -= relocation;
11122 rel->r_addend += sec->output_section->vma + sec->output_offset;
11123 }
11124 return relocation;
11125 }
11126
11127 bfd_vma
11128 _bfd_elf_rel_local_sym (bfd *abfd,
11129 Elf_Internal_Sym *sym,
11130 asection **psec,
11131 bfd_vma addend)
11132 {
11133 asection *sec = *psec;
11134
11135 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11136 return sym->st_value + addend;
11137
11138 return _bfd_merged_section_offset (abfd, psec,
11139 elf_section_data (sec)->sec_info,
11140 sym->st_value + addend);
11141 }
11142
11143 /* Adjust an address within a section. Given OFFSET within SEC, return
11144 the new offset within the section, based upon changes made to the
11145 section. Returns -1 if the offset is now invalid.
11146 The offset (in abnd out) is in target sized bytes, however big a
11147 byte may be. */
11148
11149 bfd_vma
11150 _bfd_elf_section_offset (bfd *abfd,
11151 struct bfd_link_info *info,
11152 asection *sec,
11153 bfd_vma offset)
11154 {
11155 switch (sec->sec_info_type)
11156 {
11157 case SEC_INFO_TYPE_STABS:
11158 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11159 offset);
11160 case SEC_INFO_TYPE_EH_FRAME:
11161 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11162
11163 default:
11164 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11165 {
11166 /* Reverse the offset. */
11167 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11168 bfd_size_type address_size = bed->s->arch_size / 8;
11169
11170 /* address_size and sec->size are in octets. Convert
11171 to bytes before subtracting the original offset. */
11172 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11173 }
11174 return offset;
11175 }
11176 }
11177 \f
11178 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11179 reconstruct an ELF file by reading the segments out of remote memory
11180 based on the ELF file header at EHDR_VMA and the ELF program headers it
11181 points to. If not null, *LOADBASEP is filled in with the difference
11182 between the VMAs from which the segments were read, and the VMAs the
11183 file headers (and hence BFD's idea of each section's VMA) put them at.
11184
11185 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11186 remote memory at target address VMA into the local buffer at MYADDR; it
11187 should return zero on success or an `errno' code on failure. TEMPL must
11188 be a BFD for an ELF target with the word size and byte order found in
11189 the remote memory. */
11190
11191 bfd *
11192 bfd_elf_bfd_from_remote_memory
11193 (bfd *templ,
11194 bfd_vma ehdr_vma,
11195 bfd_size_type size,
11196 bfd_vma *loadbasep,
11197 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11198 {
11199 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11200 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11201 }
11202 \f
11203 long
11204 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11205 long symcount ATTRIBUTE_UNUSED,
11206 asymbol **syms ATTRIBUTE_UNUSED,
11207 long dynsymcount,
11208 asymbol **dynsyms,
11209 asymbol **ret)
11210 {
11211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11212 asection *relplt;
11213 asymbol *s;
11214 const char *relplt_name;
11215 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11216 arelent *p;
11217 long count, i, n;
11218 size_t size;
11219 Elf_Internal_Shdr *hdr;
11220 char *names;
11221 asection *plt;
11222
11223 *ret = NULL;
11224
11225 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11226 return 0;
11227
11228 if (dynsymcount <= 0)
11229 return 0;
11230
11231 if (!bed->plt_sym_val)
11232 return 0;
11233
11234 relplt_name = bed->relplt_name;
11235 if (relplt_name == NULL)
11236 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11237 relplt = bfd_get_section_by_name (abfd, relplt_name);
11238 if (relplt == NULL)
11239 return 0;
11240
11241 hdr = &elf_section_data (relplt)->this_hdr;
11242 if (hdr->sh_link != elf_dynsymtab (abfd)
11243 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11244 return 0;
11245
11246 plt = bfd_get_section_by_name (abfd, ".plt");
11247 if (plt == NULL)
11248 return 0;
11249
11250 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11251 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11252 return -1;
11253
11254 count = relplt->size / hdr->sh_entsize;
11255 size = count * sizeof (asymbol);
11256 p = relplt->relocation;
11257 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11258 {
11259 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11260 if (p->addend != 0)
11261 {
11262 #ifdef BFD64
11263 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11264 #else
11265 size += sizeof ("+0x") - 1 + 8;
11266 #endif
11267 }
11268 }
11269
11270 s = *ret = (asymbol *) bfd_malloc (size);
11271 if (s == NULL)
11272 return -1;
11273
11274 names = (char *) (s + count);
11275 p = relplt->relocation;
11276 n = 0;
11277 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11278 {
11279 size_t len;
11280 bfd_vma addr;
11281
11282 addr = bed->plt_sym_val (i, plt, p);
11283 if (addr == (bfd_vma) -1)
11284 continue;
11285
11286 *s = **p->sym_ptr_ptr;
11287 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11288 we are defining a symbol, ensure one of them is set. */
11289 if ((s->flags & BSF_LOCAL) == 0)
11290 s->flags |= BSF_GLOBAL;
11291 s->flags |= BSF_SYNTHETIC;
11292 s->section = plt;
11293 s->value = addr - plt->vma;
11294 s->name = names;
11295 s->udata.p = NULL;
11296 len = strlen ((*p->sym_ptr_ptr)->name);
11297 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11298 names += len;
11299 if (p->addend != 0)
11300 {
11301 char buf[30], *a;
11302
11303 memcpy (names, "+0x", sizeof ("+0x") - 1);
11304 names += sizeof ("+0x") - 1;
11305 bfd_sprintf_vma (abfd, buf, p->addend);
11306 for (a = buf; *a == '0'; ++a)
11307 ;
11308 len = strlen (a);
11309 memcpy (names, a, len);
11310 names += len;
11311 }
11312 memcpy (names, "@plt", sizeof ("@plt"));
11313 names += sizeof ("@plt");
11314 ++s, ++n;
11315 }
11316
11317 return n;
11318 }
11319
11320 /* It is only used by x86-64 so far.
11321 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11322 but current usage would allow all of _bfd_std_section to be zero. */
11323 static const asymbol lcomm_sym
11324 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11325 asection _bfd_elf_large_com_section
11326 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11327 "LARGE_COMMON", 0, SEC_IS_COMMON);
11328
11329 void
11330 _bfd_elf_post_process_headers (bfd * abfd,
11331 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11332 {
11333 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11334
11335 i_ehdrp = elf_elfheader (abfd);
11336
11337 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11338
11339 /* To make things simpler for the loader on Linux systems we set the
11340 osabi field to ELFOSABI_GNU if the binary contains symbols of
11341 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11342 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11343 && elf_tdata (abfd)->has_gnu_symbols)
11344 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11345 }
11346
11347
11348 /* Return TRUE for ELF symbol types that represent functions.
11349 This is the default version of this function, which is sufficient for
11350 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11351
11352 bfd_boolean
11353 _bfd_elf_is_function_type (unsigned int type)
11354 {
11355 return (type == STT_FUNC
11356 || type == STT_GNU_IFUNC);
11357 }
11358
11359 /* If the ELF symbol SYM might be a function in SEC, return the
11360 function size and set *CODE_OFF to the function's entry point,
11361 otherwise return zero. */
11362
11363 bfd_size_type
11364 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11365 bfd_vma *code_off)
11366 {
11367 bfd_size_type size;
11368
11369 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11370 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11371 || sym->section != sec)
11372 return 0;
11373
11374 *code_off = sym->value;
11375 size = 0;
11376 if (!(sym->flags & BSF_SYNTHETIC))
11377 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11378 if (size == 0)
11379 size = 1;
11380 return size;
11381 }
This page took 0.277512 seconds and 5 git commands to generate.