%L conversions
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || bfd_seek (abfd, offset, SEEK_SET) != 0
302 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
303 shstrtab = NULL;
304 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
305 {
306 if (bfd_get_error () != bfd_error_system_call)
307 bfd_set_error (bfd_error_file_truncated);
308 bfd_release (abfd, shstrtab);
309 shstrtab = NULL;
310 /* Once we've failed to read it, make sure we don't keep
311 trying. Otherwise, we'll keep allocating space for
312 the string table over and over. */
313 i_shdrp[shindex]->sh_size = 0;
314 }
315 else
316 shstrtab[shstrtabsize] = '\0';
317 i_shdrp[shindex]->contents = shstrtab;
318 }
319 return (char *) shstrtab;
320 }
321
322 char *
323 bfd_elf_string_from_elf_section (bfd *abfd,
324 unsigned int shindex,
325 unsigned int strindex)
326 {
327 Elf_Internal_Shdr *hdr;
328
329 if (strindex == 0)
330 return "";
331
332 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
333 return NULL;
334
335 hdr = elf_elfsections (abfd)[shindex];
336
337 if (hdr->contents == NULL)
338 {
339 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
340 {
341 /* PR 17512: file: f057ec89. */
342 /* xgettext:c-format */
343 _bfd_error_handler (_("%pB: attempt to load strings from"
344 " a non-string section (number %d)"),
345 abfd, shindex);
346 return NULL;
347 }
348
349 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
350 return NULL;
351 }
352
353 if (strindex >= hdr->sh_size)
354 {
355 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
356 _bfd_error_handler
357 /* xgettext:c-format */
358 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
359 abfd, strindex, (uint64_t) hdr->sh_size,
360 (shindex == shstrndx && strindex == hdr->sh_name
361 ? ".shstrtab"
362 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
363 return NULL;
364 }
365
366 return ((char *) hdr->contents) + strindex;
367 }
368
369 /* Read and convert symbols to internal format.
370 SYMCOUNT specifies the number of symbols to read, starting from
371 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
372 are non-NULL, they are used to store the internal symbols, external
373 symbols, and symbol section index extensions, respectively.
374 Returns a pointer to the internal symbol buffer (malloced if necessary)
375 or NULL if there were no symbols or some kind of problem. */
376
377 Elf_Internal_Sym *
378 bfd_elf_get_elf_syms (bfd *ibfd,
379 Elf_Internal_Shdr *symtab_hdr,
380 size_t symcount,
381 size_t symoffset,
382 Elf_Internal_Sym *intsym_buf,
383 void *extsym_buf,
384 Elf_External_Sym_Shndx *extshndx_buf)
385 {
386 Elf_Internal_Shdr *shndx_hdr;
387 void *alloc_ext;
388 const bfd_byte *esym;
389 Elf_External_Sym_Shndx *alloc_extshndx;
390 Elf_External_Sym_Shndx *shndx;
391 Elf_Internal_Sym *alloc_intsym;
392 Elf_Internal_Sym *isym;
393 Elf_Internal_Sym *isymend;
394 const struct elf_backend_data *bed;
395 size_t extsym_size;
396 bfd_size_type amt;
397 file_ptr pos;
398
399 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
400 abort ();
401
402 if (symcount == 0)
403 return intsym_buf;
404
405 /* Normal syms might have section extension entries. */
406 shndx_hdr = NULL;
407 if (elf_symtab_shndx_list (ibfd) != NULL)
408 {
409 elf_section_list * entry;
410 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
411
412 /* Find an index section that is linked to this symtab section. */
413 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
414 {
415 /* PR 20063. */
416 if (entry->hdr.sh_link >= elf_numsections (ibfd))
417 continue;
418
419 if (sections[entry->hdr.sh_link] == symtab_hdr)
420 {
421 shndx_hdr = & entry->hdr;
422 break;
423 };
424 }
425
426 if (shndx_hdr == NULL)
427 {
428 if (symtab_hdr == & elf_symtab_hdr (ibfd))
429 /* Not really accurate, but this was how the old code used to work. */
430 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
431 /* Otherwise we do nothing. The assumption is that
432 the index table will not be needed. */
433 }
434 }
435
436 /* Read the symbols. */
437 alloc_ext = NULL;
438 alloc_extshndx = NULL;
439 alloc_intsym = NULL;
440 bed = get_elf_backend_data (ibfd);
441 extsym_size = bed->s->sizeof_sym;
442 amt = (bfd_size_type) symcount * extsym_size;
443 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
444 if (extsym_buf == NULL)
445 {
446 alloc_ext = bfd_malloc2 (symcount, extsym_size);
447 extsym_buf = alloc_ext;
448 }
449 if (extsym_buf == NULL
450 || bfd_seek (ibfd, pos, SEEK_SET) != 0
451 || bfd_bread (extsym_buf, amt, ibfd) != amt)
452 {
453 intsym_buf = NULL;
454 goto out;
455 }
456
457 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
458 extshndx_buf = NULL;
459 else
460 {
461 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
462 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
463 if (extshndx_buf == NULL)
464 {
465 alloc_extshndx = (Elf_External_Sym_Shndx *)
466 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
467 extshndx_buf = alloc_extshndx;
468 }
469 if (extshndx_buf == NULL
470 || bfd_seek (ibfd, pos, SEEK_SET) != 0
471 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
472 {
473 intsym_buf = NULL;
474 goto out;
475 }
476 }
477
478 if (intsym_buf == NULL)
479 {
480 alloc_intsym = (Elf_Internal_Sym *)
481 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
482 intsym_buf = alloc_intsym;
483 if (intsym_buf == NULL)
484 goto out;
485 }
486
487 /* Convert the symbols to internal form. */
488 isymend = intsym_buf + symcount;
489 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
490 shndx = extshndx_buf;
491 isym < isymend;
492 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
493 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
494 {
495 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
496 /* xgettext:c-format */
497 _bfd_error_handler (_("%pB symbol number %lu references"
498 " nonexistent SHT_SYMTAB_SHNDX section"),
499 ibfd, (unsigned long) symoffset);
500 if (alloc_intsym != NULL)
501 free (alloc_intsym);
502 intsym_buf = NULL;
503 goto out;
504 }
505
506 out:
507 if (alloc_ext != NULL)
508 free (alloc_ext);
509 if (alloc_extshndx != NULL)
510 free (alloc_extshndx);
511
512 return intsym_buf;
513 }
514
515 /* Look up a symbol name. */
516 const char *
517 bfd_elf_sym_name (bfd *abfd,
518 Elf_Internal_Shdr *symtab_hdr,
519 Elf_Internal_Sym *isym,
520 asection *sym_sec)
521 {
522 const char *name;
523 unsigned int iname = isym->st_name;
524 unsigned int shindex = symtab_hdr->sh_link;
525
526 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
527 /* Check for a bogus st_shndx to avoid crashing. */
528 && isym->st_shndx < elf_numsections (abfd))
529 {
530 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
531 shindex = elf_elfheader (abfd)->e_shstrndx;
532 }
533
534 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
535 if (name == NULL)
536 name = "(null)";
537 else if (sym_sec && *name == '\0')
538 name = bfd_section_name (abfd, sym_sec);
539
540 return name;
541 }
542
543 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
544 sections. The first element is the flags, the rest are section
545 pointers. */
546
547 typedef union elf_internal_group {
548 Elf_Internal_Shdr *shdr;
549 unsigned int flags;
550 } Elf_Internal_Group;
551
552 /* Return the name of the group signature symbol. Why isn't the
553 signature just a string? */
554
555 static const char *
556 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
557 {
558 Elf_Internal_Shdr *hdr;
559 unsigned char esym[sizeof (Elf64_External_Sym)];
560 Elf_External_Sym_Shndx eshndx;
561 Elf_Internal_Sym isym;
562
563 /* First we need to ensure the symbol table is available. Make sure
564 that it is a symbol table section. */
565 if (ghdr->sh_link >= elf_numsections (abfd))
566 return NULL;
567 hdr = elf_elfsections (abfd) [ghdr->sh_link];
568 if (hdr->sh_type != SHT_SYMTAB
569 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
570 return NULL;
571
572 /* Go read the symbol. */
573 hdr = &elf_tdata (abfd)->symtab_hdr;
574 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
575 &isym, esym, &eshndx) == NULL)
576 return NULL;
577
578 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
579 }
580
581 /* Set next_in_group list pointer, and group name for NEWSECT. */
582
583 static bfd_boolean
584 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
585 {
586 unsigned int num_group = elf_tdata (abfd)->num_group;
587
588 /* If num_group is zero, read in all SHT_GROUP sections. The count
589 is set to -1 if there are no SHT_GROUP sections. */
590 if (num_group == 0)
591 {
592 unsigned int i, shnum;
593
594 /* First count the number of groups. If we have a SHT_GROUP
595 section with just a flag word (ie. sh_size is 4), ignore it. */
596 shnum = elf_numsections (abfd);
597 num_group = 0;
598
599 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
600 ( (shdr)->sh_type == SHT_GROUP \
601 && (shdr)->sh_size >= minsize \
602 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
603 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
604
605 for (i = 0; i < shnum; i++)
606 {
607 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
608
609 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
610 num_group += 1;
611 }
612
613 if (num_group == 0)
614 {
615 num_group = (unsigned) -1;
616 elf_tdata (abfd)->num_group = num_group;
617 elf_tdata (abfd)->group_sect_ptr = NULL;
618 }
619 else
620 {
621 /* We keep a list of elf section headers for group sections,
622 so we can find them quickly. */
623 bfd_size_type amt;
624
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
627 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
628 if (elf_tdata (abfd)->group_sect_ptr == NULL)
629 return FALSE;
630 memset (elf_tdata (abfd)->group_sect_ptr, 0, num_group * sizeof (Elf_Internal_Shdr *));
631 num_group = 0;
632
633 for (i = 0; i < shnum; i++)
634 {
635 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
636
637 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
638 {
639 unsigned char *src;
640 Elf_Internal_Group *dest;
641
642 /* Make sure the group section has a BFD section
643 attached to it. */
644 if (!bfd_section_from_shdr (abfd, i))
645 return FALSE;
646
647 /* Add to list of sections. */
648 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
649 num_group += 1;
650
651 /* Read the raw contents. */
652 BFD_ASSERT (sizeof (*dest) >= 4);
653 amt = shdr->sh_size * sizeof (*dest) / 4;
654 shdr->contents = (unsigned char *)
655 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
656 /* PR binutils/4110: Handle corrupt group headers. */
657 if (shdr->contents == NULL)
658 {
659 _bfd_error_handler
660 /* xgettext:c-format */
661 (_("%pB: corrupt size field in group section"
662 " header: %#" PRIx64),
663 abfd, (uint64_t) shdr->sh_size);
664 bfd_set_error (bfd_error_bad_value);
665 -- num_group;
666 continue;
667 }
668
669 memset (shdr->contents, 0, amt);
670
671 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
672 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
673 != shdr->sh_size))
674 {
675 _bfd_error_handler
676 /* xgettext:c-format */
677 (_("%pB: invalid size field in group section"
678 " header: %#" PRIx64 ""),
679 abfd, (uint64_t) shdr->sh_size);
680 bfd_set_error (bfd_error_bad_value);
681 -- num_group;
682 /* PR 17510: If the group contents are even
683 partially corrupt, do not allow any of the
684 contents to be used. */
685 memset (shdr->contents, 0, amt);
686 continue;
687 }
688
689 /* Translate raw contents, a flag word followed by an
690 array of elf section indices all in target byte order,
691 to the flag word followed by an array of elf section
692 pointers. */
693 src = shdr->contents + shdr->sh_size;
694 dest = (Elf_Internal_Group *) (shdr->contents + amt);
695
696 while (1)
697 {
698 unsigned int idx;
699
700 src -= 4;
701 --dest;
702 idx = H_GET_32 (abfd, src);
703 if (src == shdr->contents)
704 {
705 dest->flags = idx;
706 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
707 shdr->bfd_section->flags
708 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
709 break;
710 }
711 if (idx >= shnum)
712 {
713 _bfd_error_handler
714 (_("%pB: invalid SHT_GROUP entry"), abfd);
715 idx = 0;
716 }
717 dest->shdr = elf_elfsections (abfd)[idx];
718 }
719 }
720 }
721
722 /* PR 17510: Corrupt binaries might contain invalid groups. */
723 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
724 {
725 elf_tdata (abfd)->num_group = num_group;
726
727 /* If all groups are invalid then fail. */
728 if (num_group == 0)
729 {
730 elf_tdata (abfd)->group_sect_ptr = NULL;
731 elf_tdata (abfd)->num_group = num_group = -1;
732 _bfd_error_handler
733 (_("%pB: no valid group sections found"), abfd);
734 bfd_set_error (bfd_error_bad_value);
735 }
736 }
737 }
738 }
739
740 if (num_group != (unsigned) -1)
741 {
742 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
743 unsigned int j;
744
745 for (j = 0; j < num_group; j++)
746 {
747 /* Begin search from previous found group. */
748 unsigned i = (j + search_offset) % num_group;
749
750 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
751 Elf_Internal_Group *idx;
752 bfd_size_type n_elt;
753
754 if (shdr == NULL)
755 continue;
756
757 idx = (Elf_Internal_Group *) shdr->contents;
758 if (idx == NULL || shdr->sh_size < 4)
759 {
760 /* See PR 21957 for a reproducer. */
761 /* xgettext:c-format */
762 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
763 abfd, shdr->bfd_section);
764 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
765 bfd_set_error (bfd_error_bad_value);
766 return FALSE;
767 }
768 n_elt = shdr->sh_size / 4;
769
770 /* Look through this group's sections to see if current
771 section is a member. */
772 while (--n_elt != 0)
773 if ((++idx)->shdr == hdr)
774 {
775 asection *s = NULL;
776
777 /* We are a member of this group. Go looking through
778 other members to see if any others are linked via
779 next_in_group. */
780 idx = (Elf_Internal_Group *) shdr->contents;
781 n_elt = shdr->sh_size / 4;
782 while (--n_elt != 0)
783 if ((s = (++idx)->shdr->bfd_section) != NULL
784 && elf_next_in_group (s) != NULL)
785 break;
786 if (n_elt != 0)
787 {
788 /* Snarf the group name from other member, and
789 insert current section in circular list. */
790 elf_group_name (newsect) = elf_group_name (s);
791 elf_next_in_group (newsect) = elf_next_in_group (s);
792 elf_next_in_group (s) = newsect;
793 }
794 else
795 {
796 const char *gname;
797
798 gname = group_signature (abfd, shdr);
799 if (gname == NULL)
800 return FALSE;
801 elf_group_name (newsect) = gname;
802
803 /* Start a circular list with one element. */
804 elf_next_in_group (newsect) = newsect;
805 }
806
807 /* If the group section has been created, point to the
808 new member. */
809 if (shdr->bfd_section != NULL)
810 elf_next_in_group (shdr->bfd_section) = newsect;
811
812 elf_tdata (abfd)->group_search_offset = i;
813 j = num_group - 1;
814 break;
815 }
816 }
817 }
818
819 if (elf_group_name (newsect) == NULL)
820 {
821 /* xgettext:c-format */
822 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
823 abfd, newsect);
824 return FALSE;
825 }
826 return TRUE;
827 }
828
829 bfd_boolean
830 _bfd_elf_setup_sections (bfd *abfd)
831 {
832 unsigned int i;
833 unsigned int num_group = elf_tdata (abfd)->num_group;
834 bfd_boolean result = TRUE;
835 asection *s;
836
837 /* Process SHF_LINK_ORDER. */
838 for (s = abfd->sections; s != NULL; s = s->next)
839 {
840 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
841 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
842 {
843 unsigned int elfsec = this_hdr->sh_link;
844 /* FIXME: The old Intel compiler and old strip/objcopy may
845 not set the sh_link or sh_info fields. Hence we could
846 get the situation where elfsec is 0. */
847 if (elfsec == 0)
848 {
849 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
850 if (bed->link_order_error_handler)
851 bed->link_order_error_handler
852 /* xgettext:c-format */
853 (_("%pB: warning: sh_link not set for section `%pA'"),
854 abfd, s);
855 }
856 else
857 {
858 asection *linksec = NULL;
859
860 if (elfsec < elf_numsections (abfd))
861 {
862 this_hdr = elf_elfsections (abfd)[elfsec];
863 linksec = this_hdr->bfd_section;
864 }
865
866 /* PR 1991, 2008:
867 Some strip/objcopy may leave an incorrect value in
868 sh_link. We don't want to proceed. */
869 if (linksec == NULL)
870 {
871 _bfd_error_handler
872 /* xgettext:c-format */
873 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
874 s->owner, elfsec, s);
875 result = FALSE;
876 }
877
878 elf_linked_to_section (s) = linksec;
879 }
880 }
881 else if (this_hdr->sh_type == SHT_GROUP
882 && elf_next_in_group (s) == NULL)
883 {
884 _bfd_error_handler
885 /* xgettext:c-format */
886 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
887 abfd, elf_section_data (s)->this_idx);
888 result = FALSE;
889 }
890 }
891
892 /* Process section groups. */
893 if (num_group == (unsigned) -1)
894 return result;
895
896 for (i = 0; i < num_group; i++)
897 {
898 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
899 Elf_Internal_Group *idx;
900 unsigned int n_elt;
901
902 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
903 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
904 {
905 _bfd_error_handler
906 /* xgettext:c-format */
907 (_("%pB: section group entry number %u is corrupt"),
908 abfd, i);
909 result = FALSE;
910 continue;
911 }
912
913 idx = (Elf_Internal_Group *) shdr->contents;
914 n_elt = shdr->sh_size / 4;
915
916 while (--n_elt != 0)
917 {
918 ++ idx;
919
920 if (idx->shdr == NULL)
921 continue;
922 else if (idx->shdr->bfd_section)
923 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
924 else if (idx->shdr->sh_type != SHT_RELA
925 && idx->shdr->sh_type != SHT_REL)
926 {
927 /* There are some unknown sections in the group. */
928 _bfd_error_handler
929 /* xgettext:c-format */
930 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
931 abfd,
932 idx->shdr->sh_type,
933 bfd_elf_string_from_elf_section (abfd,
934 (elf_elfheader (abfd)
935 ->e_shstrndx),
936 idx->shdr->sh_name),
937 shdr->bfd_section);
938 result = FALSE;
939 }
940 }
941 }
942
943 return result;
944 }
945
946 bfd_boolean
947 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
948 {
949 return elf_next_in_group (sec) != NULL;
950 }
951
952 static char *
953 convert_debug_to_zdebug (bfd *abfd, const char *name)
954 {
955 unsigned int len = strlen (name);
956 char *new_name = bfd_alloc (abfd, len + 2);
957 if (new_name == NULL)
958 return NULL;
959 new_name[0] = '.';
960 new_name[1] = 'z';
961 memcpy (new_name + 2, name + 1, len);
962 return new_name;
963 }
964
965 static char *
966 convert_zdebug_to_debug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 memcpy (new_name + 1, name + 2, len - 1);
974 return new_name;
975 }
976
977 /* Make a BFD section from an ELF section. We store a pointer to the
978 BFD section in the bfd_section field of the header. */
979
980 bfd_boolean
981 _bfd_elf_make_section_from_shdr (bfd *abfd,
982 Elf_Internal_Shdr *hdr,
983 const char *name,
984 int shindex)
985 {
986 asection *newsect;
987 flagword flags;
988 const struct elf_backend_data *bed;
989
990 if (hdr->bfd_section != NULL)
991 return TRUE;
992
993 newsect = bfd_make_section_anyway (abfd, name);
994 if (newsect == NULL)
995 return FALSE;
996
997 hdr->bfd_section = newsect;
998 elf_section_data (newsect)->this_hdr = *hdr;
999 elf_section_data (newsect)->this_idx = shindex;
1000
1001 /* Always use the real type/flags. */
1002 elf_section_type (newsect) = hdr->sh_type;
1003 elf_section_flags (newsect) = hdr->sh_flags;
1004
1005 newsect->filepos = hdr->sh_offset;
1006
1007 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1008 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1009 || ! bfd_set_section_alignment (abfd, newsect,
1010 bfd_log2 (hdr->sh_addralign)))
1011 return FALSE;
1012
1013 flags = SEC_NO_FLAGS;
1014 if (hdr->sh_type != SHT_NOBITS)
1015 flags |= SEC_HAS_CONTENTS;
1016 if (hdr->sh_type == SHT_GROUP)
1017 flags |= SEC_GROUP;
1018 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1019 {
1020 flags |= SEC_ALLOC;
1021 if (hdr->sh_type != SHT_NOBITS)
1022 flags |= SEC_LOAD;
1023 }
1024 if ((hdr->sh_flags & SHF_WRITE) == 0)
1025 flags |= SEC_READONLY;
1026 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1027 flags |= SEC_CODE;
1028 else if ((flags & SEC_LOAD) != 0)
1029 flags |= SEC_DATA;
1030 if ((hdr->sh_flags & SHF_MERGE) != 0)
1031 {
1032 flags |= SEC_MERGE;
1033 newsect->entsize = hdr->sh_entsize;
1034 }
1035 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1036 flags |= SEC_STRINGS;
1037 if (hdr->sh_flags & SHF_GROUP)
1038 if (!setup_group (abfd, hdr, newsect))
1039 return FALSE;
1040 if ((hdr->sh_flags & SHF_TLS) != 0)
1041 flags |= SEC_THREAD_LOCAL;
1042 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1043 flags |= SEC_EXCLUDE;
1044
1045 if ((flags & SEC_ALLOC) == 0)
1046 {
1047 /* The debugging sections appear to be recognized only by name,
1048 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1049 if (name [0] == '.')
1050 {
1051 const char *p;
1052 int n;
1053 if (name[1] == 'd')
1054 p = ".debug", n = 6;
1055 else if (name[1] == 'g' && name[2] == 'n')
1056 p = ".gnu.linkonce.wi.", n = 17;
1057 else if (name[1] == 'g' && name[2] == 'd')
1058 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1059 else if (name[1] == 'l')
1060 p = ".line", n = 5;
1061 else if (name[1] == 's')
1062 p = ".stab", n = 5;
1063 else if (name[1] == 'z')
1064 p = ".zdebug", n = 7;
1065 else
1066 p = NULL, n = 0;
1067 if (p != NULL && strncmp (name, p, n) == 0)
1068 flags |= SEC_DEBUGGING;
1069 }
1070 }
1071
1072 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1073 only link a single copy of the section. This is used to support
1074 g++. g++ will emit each template expansion in its own section.
1075 The symbols will be defined as weak, so that multiple definitions
1076 are permitted. The GNU linker extension is to actually discard
1077 all but one of the sections. */
1078 if (CONST_STRNEQ (name, ".gnu.linkonce")
1079 && elf_next_in_group (newsect) == NULL)
1080 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1081
1082 bed = get_elf_backend_data (abfd);
1083 if (bed->elf_backend_section_flags)
1084 if (! bed->elf_backend_section_flags (&flags, hdr))
1085 return FALSE;
1086
1087 if (! bfd_set_section_flags (abfd, newsect, flags))
1088 return FALSE;
1089
1090 /* We do not parse the PT_NOTE segments as we are interested even in the
1091 separate debug info files which may have the segments offsets corrupted.
1092 PT_NOTEs from the core files are currently not parsed using BFD. */
1093 if (hdr->sh_type == SHT_NOTE)
1094 {
1095 bfd_byte *contents;
1096
1097 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1098 return FALSE;
1099
1100 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1101 hdr->sh_offset, hdr->sh_addralign);
1102 free (contents);
1103 }
1104
1105 if ((flags & SEC_ALLOC) != 0)
1106 {
1107 Elf_Internal_Phdr *phdr;
1108 unsigned int i, nload;
1109
1110 /* Some ELF linkers produce binaries with all the program header
1111 p_paddr fields zero. If we have such a binary with more than
1112 one PT_LOAD header, then leave the section lma equal to vma
1113 so that we don't create sections with overlapping lma. */
1114 phdr = elf_tdata (abfd)->phdr;
1115 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1116 if (phdr->p_paddr != 0)
1117 break;
1118 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1119 ++nload;
1120 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1121 return TRUE;
1122
1123 phdr = elf_tdata (abfd)->phdr;
1124 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1125 {
1126 if (((phdr->p_type == PT_LOAD
1127 && (hdr->sh_flags & SHF_TLS) == 0)
1128 || phdr->p_type == PT_TLS)
1129 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1130 {
1131 if ((flags & SEC_LOAD) == 0)
1132 newsect->lma = (phdr->p_paddr
1133 + hdr->sh_addr - phdr->p_vaddr);
1134 else
1135 /* We used to use the same adjustment for SEC_LOAD
1136 sections, but that doesn't work if the segment
1137 is packed with code from multiple VMAs.
1138 Instead we calculate the section LMA based on
1139 the segment LMA. It is assumed that the
1140 segment will contain sections with contiguous
1141 LMAs, even if the VMAs are not. */
1142 newsect->lma = (phdr->p_paddr
1143 + hdr->sh_offset - phdr->p_offset);
1144
1145 /* With contiguous segments, we can't tell from file
1146 offsets whether a section with zero size should
1147 be placed at the end of one segment or the
1148 beginning of the next. Decide based on vaddr. */
1149 if (hdr->sh_addr >= phdr->p_vaddr
1150 && (hdr->sh_addr + hdr->sh_size
1151 <= phdr->p_vaddr + phdr->p_memsz))
1152 break;
1153 }
1154 }
1155 }
1156
1157 /* Compress/decompress DWARF debug sections with names: .debug_* and
1158 .zdebug_*, after the section flags is set. */
1159 if ((flags & SEC_DEBUGGING)
1160 && ((name[1] == 'd' && name[6] == '_')
1161 || (name[1] == 'z' && name[7] == '_')))
1162 {
1163 enum { nothing, compress, decompress } action = nothing;
1164 int compression_header_size;
1165 bfd_size_type uncompressed_size;
1166 bfd_boolean compressed
1167 = bfd_is_section_compressed_with_header (abfd, newsect,
1168 &compression_header_size,
1169 &uncompressed_size);
1170
1171 if (compressed)
1172 {
1173 /* Compressed section. Check if we should decompress. */
1174 if ((abfd->flags & BFD_DECOMPRESS))
1175 action = decompress;
1176 }
1177
1178 /* Compress the uncompressed section or convert from/to .zdebug*
1179 section. Check if we should compress. */
1180 if (action == nothing)
1181 {
1182 if (newsect->size != 0
1183 && (abfd->flags & BFD_COMPRESS)
1184 && compression_header_size >= 0
1185 && uncompressed_size > 0
1186 && (!compressed
1187 || ((compression_header_size > 0)
1188 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1189 action = compress;
1190 else
1191 return TRUE;
1192 }
1193
1194 if (action == compress)
1195 {
1196 if (!bfd_init_section_compress_status (abfd, newsect))
1197 {
1198 _bfd_error_handler
1199 /* xgettext:c-format */
1200 (_("%pB: unable to initialize compress status for section %s"),
1201 abfd, name);
1202 return FALSE;
1203 }
1204 }
1205 else
1206 {
1207 if (!bfd_init_section_decompress_status (abfd, newsect))
1208 {
1209 _bfd_error_handler
1210 /* xgettext:c-format */
1211 (_("%pB: unable to initialize decompress status for section %s"),
1212 abfd, name);
1213 return FALSE;
1214 }
1215 }
1216
1217 if (abfd->is_linker_input)
1218 {
1219 if (name[1] == 'z'
1220 && (action == decompress
1221 || (action == compress
1222 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1223 {
1224 /* Convert section name from .zdebug_* to .debug_* so
1225 that linker will consider this section as a debug
1226 section. */
1227 char *new_name = convert_zdebug_to_debug (abfd, name);
1228 if (new_name == NULL)
1229 return FALSE;
1230 bfd_rename_section (abfd, newsect, new_name);
1231 }
1232 }
1233 else
1234 /* For objdump, don't rename the section. For objcopy, delay
1235 section rename to elf_fake_sections. */
1236 newsect->flags |= SEC_ELF_RENAME;
1237 }
1238
1239 return TRUE;
1240 }
1241
1242 const char *const bfd_elf_section_type_names[] =
1243 {
1244 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1245 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1246 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1247 };
1248
1249 /* ELF relocs are against symbols. If we are producing relocatable
1250 output, and the reloc is against an external symbol, and nothing
1251 has given us any additional addend, the resulting reloc will also
1252 be against the same symbol. In such a case, we don't want to
1253 change anything about the way the reloc is handled, since it will
1254 all be done at final link time. Rather than put special case code
1255 into bfd_perform_relocation, all the reloc types use this howto
1256 function. It just short circuits the reloc if producing
1257 relocatable output against an external symbol. */
1258
1259 bfd_reloc_status_type
1260 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1261 arelent *reloc_entry,
1262 asymbol *symbol,
1263 void *data ATTRIBUTE_UNUSED,
1264 asection *input_section,
1265 bfd *output_bfd,
1266 char **error_message ATTRIBUTE_UNUSED)
1267 {
1268 if (output_bfd != NULL
1269 && (symbol->flags & BSF_SECTION_SYM) == 0
1270 && (! reloc_entry->howto->partial_inplace
1271 || reloc_entry->addend == 0))
1272 {
1273 reloc_entry->address += input_section->output_offset;
1274 return bfd_reloc_ok;
1275 }
1276
1277 return bfd_reloc_continue;
1278 }
1279 \f
1280 /* Returns TRUE if section A matches section B.
1281 Names, addresses and links may be different, but everything else
1282 should be the same. */
1283
1284 static bfd_boolean
1285 section_match (const Elf_Internal_Shdr * a,
1286 const Elf_Internal_Shdr * b)
1287 {
1288 return
1289 a->sh_type == b->sh_type
1290 && (a->sh_flags & ~ SHF_INFO_LINK)
1291 == (b->sh_flags & ~ SHF_INFO_LINK)
1292 && a->sh_addralign == b->sh_addralign
1293 && a->sh_size == b->sh_size
1294 && a->sh_entsize == b->sh_entsize
1295 /* FIXME: Check sh_addr ? */
1296 ;
1297 }
1298
1299 /* Find a section in OBFD that has the same characteristics
1300 as IHEADER. Return the index of this section or SHN_UNDEF if
1301 none can be found. Check's section HINT first, as this is likely
1302 to be the correct section. */
1303
1304 static unsigned int
1305 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1306 const unsigned int hint)
1307 {
1308 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1309 unsigned int i;
1310
1311 BFD_ASSERT (iheader != NULL);
1312
1313 /* See PR 20922 for a reproducer of the NULL test. */
1314 if (hint < elf_numsections (obfd)
1315 && oheaders[hint] != NULL
1316 && section_match (oheaders[hint], iheader))
1317 return hint;
1318
1319 for (i = 1; i < elf_numsections (obfd); i++)
1320 {
1321 Elf_Internal_Shdr * oheader = oheaders[i];
1322
1323 if (oheader == NULL)
1324 continue;
1325 if (section_match (oheader, iheader))
1326 /* FIXME: Do we care if there is a potential for
1327 multiple matches ? */
1328 return i;
1329 }
1330
1331 return SHN_UNDEF;
1332 }
1333
1334 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1335 Processor specific section, based upon a matching input section.
1336 Returns TRUE upon success, FALSE otherwise. */
1337
1338 static bfd_boolean
1339 copy_special_section_fields (const bfd *ibfd,
1340 bfd *obfd,
1341 const Elf_Internal_Shdr *iheader,
1342 Elf_Internal_Shdr *oheader,
1343 const unsigned int secnum)
1344 {
1345 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1346 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1347 bfd_boolean changed = FALSE;
1348 unsigned int sh_link;
1349
1350 if (oheader->sh_type == SHT_NOBITS)
1351 {
1352 /* This is a feature for objcopy --only-keep-debug:
1353 When a section's type is changed to NOBITS, we preserve
1354 the sh_link and sh_info fields so that they can be
1355 matched up with the original.
1356
1357 Note: Strictly speaking these assignments are wrong.
1358 The sh_link and sh_info fields should point to the
1359 relevent sections in the output BFD, which may not be in
1360 the same location as they were in the input BFD. But
1361 the whole point of this action is to preserve the
1362 original values of the sh_link and sh_info fields, so
1363 that they can be matched up with the section headers in
1364 the original file. So strictly speaking we may be
1365 creating an invalid ELF file, but it is only for a file
1366 that just contains debug info and only for sections
1367 without any contents. */
1368 if (oheader->sh_link == 0)
1369 oheader->sh_link = iheader->sh_link;
1370 if (oheader->sh_info == 0)
1371 oheader->sh_info = iheader->sh_info;
1372 return TRUE;
1373 }
1374
1375 /* Allow the target a chance to decide how these fields should be set. */
1376 if (bed->elf_backend_copy_special_section_fields != NULL
1377 && bed->elf_backend_copy_special_section_fields
1378 (ibfd, obfd, iheader, oheader))
1379 return TRUE;
1380
1381 /* We have an iheader which might match oheader, and which has non-zero
1382 sh_info and/or sh_link fields. Attempt to follow those links and find
1383 the section in the output bfd which corresponds to the linked section
1384 in the input bfd. */
1385 if (iheader->sh_link != SHN_UNDEF)
1386 {
1387 /* See PR 20931 for a reproducer. */
1388 if (iheader->sh_link >= elf_numsections (ibfd))
1389 {
1390 _bfd_error_handler
1391 /* xgettext:c-format */
1392 (_("%pB: Invalid sh_link field (%d) in section number %d"),
1393 ibfd, iheader->sh_link, secnum);
1394 return FALSE;
1395 }
1396
1397 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1398 if (sh_link != SHN_UNDEF)
1399 {
1400 oheader->sh_link = sh_link;
1401 changed = TRUE;
1402 }
1403 else
1404 /* FIXME: Should we install iheader->sh_link
1405 if we could not find a match ? */
1406 _bfd_error_handler
1407 /* xgettext:c-format */
1408 (_("%pB: Failed to find link section for section %d"), obfd, secnum);
1409 }
1410
1411 if (iheader->sh_info)
1412 {
1413 /* The sh_info field can hold arbitrary information, but if the
1414 SHF_LINK_INFO flag is set then it should be interpreted as a
1415 section index. */
1416 if (iheader->sh_flags & SHF_INFO_LINK)
1417 {
1418 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1419 iheader->sh_info);
1420 if (sh_link != SHN_UNDEF)
1421 oheader->sh_flags |= SHF_INFO_LINK;
1422 }
1423 else
1424 /* No idea what it means - just copy it. */
1425 sh_link = iheader->sh_info;
1426
1427 if (sh_link != SHN_UNDEF)
1428 {
1429 oheader->sh_info = sh_link;
1430 changed = TRUE;
1431 }
1432 else
1433 _bfd_error_handler
1434 /* xgettext:c-format */
1435 (_("%pB: Failed to find info section for section %d"), obfd, secnum);
1436 }
1437
1438 return changed;
1439 }
1440
1441 /* Copy the program header and other data from one object module to
1442 another. */
1443
1444 bfd_boolean
1445 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1446 {
1447 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1448 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1449 const struct elf_backend_data *bed;
1450 unsigned int i;
1451
1452 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1453 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1454 return TRUE;
1455
1456 if (!elf_flags_init (obfd))
1457 {
1458 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1459 elf_flags_init (obfd) = TRUE;
1460 }
1461
1462 elf_gp (obfd) = elf_gp (ibfd);
1463
1464 /* Also copy the EI_OSABI field. */
1465 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1466 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1467
1468 /* If set, copy the EI_ABIVERSION field. */
1469 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1470 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1471 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1472
1473 /* Copy object attributes. */
1474 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1475
1476 if (iheaders == NULL || oheaders == NULL)
1477 return TRUE;
1478
1479 bed = get_elf_backend_data (obfd);
1480
1481 /* Possibly copy other fields in the section header. */
1482 for (i = 1; i < elf_numsections (obfd); i++)
1483 {
1484 unsigned int j;
1485 Elf_Internal_Shdr * oheader = oheaders[i];
1486
1487 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1488 because of a special case need for generating separate debug info
1489 files. See below for more details. */
1490 if (oheader == NULL
1491 || (oheader->sh_type != SHT_NOBITS
1492 && oheader->sh_type < SHT_LOOS))
1493 continue;
1494
1495 /* Ignore empty sections, and sections whose
1496 fields have already been initialised. */
1497 if (oheader->sh_size == 0
1498 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1499 continue;
1500
1501 /* Scan for the matching section in the input bfd.
1502 First we try for a direct mapping between the input and output sections. */
1503 for (j = 1; j < elf_numsections (ibfd); j++)
1504 {
1505 const Elf_Internal_Shdr * iheader = iheaders[j];
1506
1507 if (iheader == NULL)
1508 continue;
1509
1510 if (oheader->bfd_section != NULL
1511 && iheader->bfd_section != NULL
1512 && iheader->bfd_section->output_section != NULL
1513 && iheader->bfd_section->output_section == oheader->bfd_section)
1514 {
1515 /* We have found a connection from the input section to the
1516 output section. Attempt to copy the header fields. If
1517 this fails then do not try any further sections - there
1518 should only be a one-to-one mapping between input and output. */
1519 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1520 j = elf_numsections (ibfd);
1521 break;
1522 }
1523 }
1524
1525 if (j < elf_numsections (ibfd))
1526 continue;
1527
1528 /* That failed. So try to deduce the corresponding input section.
1529 Unfortunately we cannot compare names as the output string table
1530 is empty, so instead we check size, address and type. */
1531 for (j = 1; j < elf_numsections (ibfd); j++)
1532 {
1533 const Elf_Internal_Shdr * iheader = iheaders[j];
1534
1535 if (iheader == NULL)
1536 continue;
1537
1538 /* Try matching fields in the input section's header.
1539 Since --only-keep-debug turns all non-debug sections into
1540 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1541 input type. */
1542 if ((oheader->sh_type == SHT_NOBITS
1543 || iheader->sh_type == oheader->sh_type)
1544 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1545 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1546 && iheader->sh_addralign == oheader->sh_addralign
1547 && iheader->sh_entsize == oheader->sh_entsize
1548 && iheader->sh_size == oheader->sh_size
1549 && iheader->sh_addr == oheader->sh_addr
1550 && (iheader->sh_info != oheader->sh_info
1551 || iheader->sh_link != oheader->sh_link))
1552 {
1553 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1554 break;
1555 }
1556 }
1557
1558 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1559 {
1560 /* Final attempt. Call the backend copy function
1561 with a NULL input section. */
1562 if (bed->elf_backend_copy_special_section_fields != NULL)
1563 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1564 }
1565 }
1566
1567 return TRUE;
1568 }
1569
1570 static const char *
1571 get_segment_type (unsigned int p_type)
1572 {
1573 const char *pt;
1574 switch (p_type)
1575 {
1576 case PT_NULL: pt = "NULL"; break;
1577 case PT_LOAD: pt = "LOAD"; break;
1578 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1579 case PT_INTERP: pt = "INTERP"; break;
1580 case PT_NOTE: pt = "NOTE"; break;
1581 case PT_SHLIB: pt = "SHLIB"; break;
1582 case PT_PHDR: pt = "PHDR"; break;
1583 case PT_TLS: pt = "TLS"; break;
1584 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1585 case PT_GNU_STACK: pt = "STACK"; break;
1586 case PT_GNU_RELRO: pt = "RELRO"; break;
1587 default: pt = NULL; break;
1588 }
1589 return pt;
1590 }
1591
1592 /* Print out the program headers. */
1593
1594 bfd_boolean
1595 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1596 {
1597 FILE *f = (FILE *) farg;
1598 Elf_Internal_Phdr *p;
1599 asection *s;
1600 bfd_byte *dynbuf = NULL;
1601
1602 p = elf_tdata (abfd)->phdr;
1603 if (p != NULL)
1604 {
1605 unsigned int i, c;
1606
1607 fprintf (f, _("\nProgram Header:\n"));
1608 c = elf_elfheader (abfd)->e_phnum;
1609 for (i = 0; i < c; i++, p++)
1610 {
1611 const char *pt = get_segment_type (p->p_type);
1612 char buf[20];
1613
1614 if (pt == NULL)
1615 {
1616 sprintf (buf, "0x%lx", p->p_type);
1617 pt = buf;
1618 }
1619 fprintf (f, "%8s off 0x", pt);
1620 bfd_fprintf_vma (abfd, f, p->p_offset);
1621 fprintf (f, " vaddr 0x");
1622 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1623 fprintf (f, " paddr 0x");
1624 bfd_fprintf_vma (abfd, f, p->p_paddr);
1625 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1626 fprintf (f, " filesz 0x");
1627 bfd_fprintf_vma (abfd, f, p->p_filesz);
1628 fprintf (f, " memsz 0x");
1629 bfd_fprintf_vma (abfd, f, p->p_memsz);
1630 fprintf (f, " flags %c%c%c",
1631 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1632 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1633 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1634 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1635 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1636 fprintf (f, "\n");
1637 }
1638 }
1639
1640 s = bfd_get_section_by_name (abfd, ".dynamic");
1641 if (s != NULL)
1642 {
1643 unsigned int elfsec;
1644 unsigned long shlink;
1645 bfd_byte *extdyn, *extdynend;
1646 size_t extdynsize;
1647 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1648
1649 fprintf (f, _("\nDynamic Section:\n"));
1650
1651 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1652 goto error_return;
1653
1654 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1655 if (elfsec == SHN_BAD)
1656 goto error_return;
1657 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1658
1659 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1660 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1661
1662 extdyn = dynbuf;
1663 /* PR 17512: file: 6f427532. */
1664 if (s->size < extdynsize)
1665 goto error_return;
1666 extdynend = extdyn + s->size;
1667 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1668 Fix range check. */
1669 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1670 {
1671 Elf_Internal_Dyn dyn;
1672 const char *name = "";
1673 char ab[20];
1674 bfd_boolean stringp;
1675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1676
1677 (*swap_dyn_in) (abfd, extdyn, &dyn);
1678
1679 if (dyn.d_tag == DT_NULL)
1680 break;
1681
1682 stringp = FALSE;
1683 switch (dyn.d_tag)
1684 {
1685 default:
1686 if (bed->elf_backend_get_target_dtag)
1687 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1688
1689 if (!strcmp (name, ""))
1690 {
1691 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1692 name = ab;
1693 }
1694 break;
1695
1696 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1697 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1698 case DT_PLTGOT: name = "PLTGOT"; break;
1699 case DT_HASH: name = "HASH"; break;
1700 case DT_STRTAB: name = "STRTAB"; break;
1701 case DT_SYMTAB: name = "SYMTAB"; break;
1702 case DT_RELA: name = "RELA"; break;
1703 case DT_RELASZ: name = "RELASZ"; break;
1704 case DT_RELAENT: name = "RELAENT"; break;
1705 case DT_STRSZ: name = "STRSZ"; break;
1706 case DT_SYMENT: name = "SYMENT"; break;
1707 case DT_INIT: name = "INIT"; break;
1708 case DT_FINI: name = "FINI"; break;
1709 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1710 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1711 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1712 case DT_REL: name = "REL"; break;
1713 case DT_RELSZ: name = "RELSZ"; break;
1714 case DT_RELENT: name = "RELENT"; break;
1715 case DT_PLTREL: name = "PLTREL"; break;
1716 case DT_DEBUG: name = "DEBUG"; break;
1717 case DT_TEXTREL: name = "TEXTREL"; break;
1718 case DT_JMPREL: name = "JMPREL"; break;
1719 case DT_BIND_NOW: name = "BIND_NOW"; break;
1720 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1721 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1722 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1723 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1724 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1725 case DT_FLAGS: name = "FLAGS"; break;
1726 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1727 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1728 case DT_CHECKSUM: name = "CHECKSUM"; break;
1729 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1730 case DT_MOVEENT: name = "MOVEENT"; break;
1731 case DT_MOVESZ: name = "MOVESZ"; break;
1732 case DT_FEATURE: name = "FEATURE"; break;
1733 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1734 case DT_SYMINSZ: name = "SYMINSZ"; break;
1735 case DT_SYMINENT: name = "SYMINENT"; break;
1736 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1737 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1738 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1739 case DT_PLTPAD: name = "PLTPAD"; break;
1740 case DT_MOVETAB: name = "MOVETAB"; break;
1741 case DT_SYMINFO: name = "SYMINFO"; break;
1742 case DT_RELACOUNT: name = "RELACOUNT"; break;
1743 case DT_RELCOUNT: name = "RELCOUNT"; break;
1744 case DT_FLAGS_1: name = "FLAGS_1"; break;
1745 case DT_VERSYM: name = "VERSYM"; break;
1746 case DT_VERDEF: name = "VERDEF"; break;
1747 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1748 case DT_VERNEED: name = "VERNEED"; break;
1749 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1750 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1751 case DT_USED: name = "USED"; break;
1752 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1753 case DT_GNU_HASH: name = "GNU_HASH"; break;
1754 }
1755
1756 fprintf (f, " %-20s ", name);
1757 if (! stringp)
1758 {
1759 fprintf (f, "0x");
1760 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1761 }
1762 else
1763 {
1764 const char *string;
1765 unsigned int tagv = dyn.d_un.d_val;
1766
1767 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1768 if (string == NULL)
1769 goto error_return;
1770 fprintf (f, "%s", string);
1771 }
1772 fprintf (f, "\n");
1773 }
1774
1775 free (dynbuf);
1776 dynbuf = NULL;
1777 }
1778
1779 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1780 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1781 {
1782 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1783 return FALSE;
1784 }
1785
1786 if (elf_dynverdef (abfd) != 0)
1787 {
1788 Elf_Internal_Verdef *t;
1789
1790 fprintf (f, _("\nVersion definitions:\n"));
1791 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1792 {
1793 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1794 t->vd_flags, t->vd_hash,
1795 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1796 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1797 {
1798 Elf_Internal_Verdaux *a;
1799
1800 fprintf (f, "\t");
1801 for (a = t->vd_auxptr->vda_nextptr;
1802 a != NULL;
1803 a = a->vda_nextptr)
1804 fprintf (f, "%s ",
1805 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1806 fprintf (f, "\n");
1807 }
1808 }
1809 }
1810
1811 if (elf_dynverref (abfd) != 0)
1812 {
1813 Elf_Internal_Verneed *t;
1814
1815 fprintf (f, _("\nVersion References:\n"));
1816 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1817 {
1818 Elf_Internal_Vernaux *a;
1819
1820 fprintf (f, _(" required from %s:\n"),
1821 t->vn_filename ? t->vn_filename : "<corrupt>");
1822 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1823 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1824 a->vna_flags, a->vna_other,
1825 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1826 }
1827 }
1828
1829 return TRUE;
1830
1831 error_return:
1832 if (dynbuf != NULL)
1833 free (dynbuf);
1834 return FALSE;
1835 }
1836
1837 /* Get version string. */
1838
1839 const char *
1840 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1841 bfd_boolean *hidden)
1842 {
1843 const char *version_string = NULL;
1844 if (elf_dynversym (abfd) != 0
1845 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1846 {
1847 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1848
1849 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1850 vernum &= VERSYM_VERSION;
1851
1852 if (vernum == 0)
1853 version_string = "";
1854 else if (vernum == 1)
1855 version_string = "Base";
1856 else if (vernum <= elf_tdata (abfd)->cverdefs)
1857 version_string =
1858 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1859 else
1860 {
1861 Elf_Internal_Verneed *t;
1862
1863 version_string = "";
1864 for (t = elf_tdata (abfd)->verref;
1865 t != NULL;
1866 t = t->vn_nextref)
1867 {
1868 Elf_Internal_Vernaux *a;
1869
1870 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1871 {
1872 if (a->vna_other == vernum)
1873 {
1874 version_string = a->vna_nodename;
1875 break;
1876 }
1877 }
1878 }
1879 }
1880 }
1881 return version_string;
1882 }
1883
1884 /* Display ELF-specific fields of a symbol. */
1885
1886 void
1887 bfd_elf_print_symbol (bfd *abfd,
1888 void *filep,
1889 asymbol *symbol,
1890 bfd_print_symbol_type how)
1891 {
1892 FILE *file = (FILE *) filep;
1893 switch (how)
1894 {
1895 case bfd_print_symbol_name:
1896 fprintf (file, "%s", symbol->name);
1897 break;
1898 case bfd_print_symbol_more:
1899 fprintf (file, "elf ");
1900 bfd_fprintf_vma (abfd, file, symbol->value);
1901 fprintf (file, " %x", symbol->flags);
1902 break;
1903 case bfd_print_symbol_all:
1904 {
1905 const char *section_name;
1906 const char *name = NULL;
1907 const struct elf_backend_data *bed;
1908 unsigned char st_other;
1909 bfd_vma val;
1910 const char *version_string;
1911 bfd_boolean hidden;
1912
1913 section_name = symbol->section ? symbol->section->name : "(*none*)";
1914
1915 bed = get_elf_backend_data (abfd);
1916 if (bed->elf_backend_print_symbol_all)
1917 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1918
1919 if (name == NULL)
1920 {
1921 name = symbol->name;
1922 bfd_print_symbol_vandf (abfd, file, symbol);
1923 }
1924
1925 fprintf (file, " %s\t", section_name);
1926 /* Print the "other" value for a symbol. For common symbols,
1927 we've already printed the size; now print the alignment.
1928 For other symbols, we have no specified alignment, and
1929 we've printed the address; now print the size. */
1930 if (symbol->section && bfd_is_com_section (symbol->section))
1931 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1932 else
1933 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1934 bfd_fprintf_vma (abfd, file, val);
1935
1936 /* If we have version information, print it. */
1937 version_string = _bfd_elf_get_symbol_version_string (abfd,
1938 symbol,
1939 &hidden);
1940 if (version_string)
1941 {
1942 if (!hidden)
1943 fprintf (file, " %-11s", version_string);
1944 else
1945 {
1946 int i;
1947
1948 fprintf (file, " (%s)", version_string);
1949 for (i = 10 - strlen (version_string); i > 0; --i)
1950 putc (' ', file);
1951 }
1952 }
1953
1954 /* If the st_other field is not zero, print it. */
1955 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1956
1957 switch (st_other)
1958 {
1959 case 0: break;
1960 case STV_INTERNAL: fprintf (file, " .internal"); break;
1961 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1962 case STV_PROTECTED: fprintf (file, " .protected"); break;
1963 default:
1964 /* Some other non-defined flags are also present, so print
1965 everything hex. */
1966 fprintf (file, " 0x%02x", (unsigned int) st_other);
1967 }
1968
1969 fprintf (file, " %s", name);
1970 }
1971 break;
1972 }
1973 }
1974 \f
1975 /* ELF .o/exec file reading */
1976
1977 /* Create a new bfd section from an ELF section header. */
1978
1979 bfd_boolean
1980 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1981 {
1982 Elf_Internal_Shdr *hdr;
1983 Elf_Internal_Ehdr *ehdr;
1984 const struct elf_backend_data *bed;
1985 const char *name;
1986 bfd_boolean ret = TRUE;
1987 static bfd_boolean * sections_being_created = NULL;
1988 static bfd * sections_being_created_abfd = NULL;
1989 static unsigned int nesting = 0;
1990
1991 if (shindex >= elf_numsections (abfd))
1992 return FALSE;
1993
1994 if (++ nesting > 3)
1995 {
1996 /* PR17512: A corrupt ELF binary might contain a recursive group of
1997 sections, with each the string indicies pointing to the next in the
1998 loop. Detect this here, by refusing to load a section that we are
1999 already in the process of loading. We only trigger this test if
2000 we have nested at least three sections deep as normal ELF binaries
2001 can expect to recurse at least once.
2002
2003 FIXME: It would be better if this array was attached to the bfd,
2004 rather than being held in a static pointer. */
2005
2006 if (sections_being_created_abfd != abfd)
2007 sections_being_created = NULL;
2008 if (sections_being_created == NULL)
2009 {
2010 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2011 sections_being_created = (bfd_boolean *)
2012 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2013 sections_being_created_abfd = abfd;
2014 }
2015 if (sections_being_created [shindex])
2016 {
2017 _bfd_error_handler
2018 (_("%pB: warning: loop in section dependencies detected"), abfd);
2019 return FALSE;
2020 }
2021 sections_being_created [shindex] = TRUE;
2022 }
2023
2024 hdr = elf_elfsections (abfd)[shindex];
2025 ehdr = elf_elfheader (abfd);
2026 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2027 hdr->sh_name);
2028 if (name == NULL)
2029 goto fail;
2030
2031 bed = get_elf_backend_data (abfd);
2032 switch (hdr->sh_type)
2033 {
2034 case SHT_NULL:
2035 /* Inactive section. Throw it away. */
2036 goto success;
2037
2038 case SHT_PROGBITS: /* Normal section with contents. */
2039 case SHT_NOBITS: /* .bss section. */
2040 case SHT_HASH: /* .hash section. */
2041 case SHT_NOTE: /* .note section. */
2042 case SHT_INIT_ARRAY: /* .init_array section. */
2043 case SHT_FINI_ARRAY: /* .fini_array section. */
2044 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2045 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2046 case SHT_GNU_HASH: /* .gnu.hash section. */
2047 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2048 goto success;
2049
2050 case SHT_DYNAMIC: /* Dynamic linking information. */
2051 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2052 goto fail;
2053
2054 if (hdr->sh_link > elf_numsections (abfd))
2055 {
2056 /* PR 10478: Accept Solaris binaries with a sh_link
2057 field set to SHN_BEFORE or SHN_AFTER. */
2058 switch (bfd_get_arch (abfd))
2059 {
2060 case bfd_arch_i386:
2061 case bfd_arch_sparc:
2062 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2063 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2064 break;
2065 /* Otherwise fall through. */
2066 default:
2067 goto fail;
2068 }
2069 }
2070 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2071 goto fail;
2072 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2073 {
2074 Elf_Internal_Shdr *dynsymhdr;
2075
2076 /* The shared libraries distributed with hpux11 have a bogus
2077 sh_link field for the ".dynamic" section. Find the
2078 string table for the ".dynsym" section instead. */
2079 if (elf_dynsymtab (abfd) != 0)
2080 {
2081 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2082 hdr->sh_link = dynsymhdr->sh_link;
2083 }
2084 else
2085 {
2086 unsigned int i, num_sec;
2087
2088 num_sec = elf_numsections (abfd);
2089 for (i = 1; i < num_sec; i++)
2090 {
2091 dynsymhdr = elf_elfsections (abfd)[i];
2092 if (dynsymhdr->sh_type == SHT_DYNSYM)
2093 {
2094 hdr->sh_link = dynsymhdr->sh_link;
2095 break;
2096 }
2097 }
2098 }
2099 }
2100 goto success;
2101
2102 case SHT_SYMTAB: /* A symbol table. */
2103 if (elf_onesymtab (abfd) == shindex)
2104 goto success;
2105
2106 if (hdr->sh_entsize != bed->s->sizeof_sym)
2107 goto fail;
2108
2109 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2110 {
2111 if (hdr->sh_size != 0)
2112 goto fail;
2113 /* Some assemblers erroneously set sh_info to one with a
2114 zero sh_size. ld sees this as a global symbol count
2115 of (unsigned) -1. Fix it here. */
2116 hdr->sh_info = 0;
2117 goto success;
2118 }
2119
2120 /* PR 18854: A binary might contain more than one symbol table.
2121 Unusual, but possible. Warn, but continue. */
2122 if (elf_onesymtab (abfd) != 0)
2123 {
2124 _bfd_error_handler
2125 /* xgettext:c-format */
2126 (_("%pB: warning: multiple symbol tables detected"
2127 " - ignoring the table in section %u"),
2128 abfd, shindex);
2129 goto success;
2130 }
2131 elf_onesymtab (abfd) = shindex;
2132 elf_symtab_hdr (abfd) = *hdr;
2133 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2134 abfd->flags |= HAS_SYMS;
2135
2136 /* Sometimes a shared object will map in the symbol table. If
2137 SHF_ALLOC is set, and this is a shared object, then we also
2138 treat this section as a BFD section. We can not base the
2139 decision purely on SHF_ALLOC, because that flag is sometimes
2140 set in a relocatable object file, which would confuse the
2141 linker. */
2142 if ((hdr->sh_flags & SHF_ALLOC) != 0
2143 && (abfd->flags & DYNAMIC) != 0
2144 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2145 shindex))
2146 goto fail;
2147
2148 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2149 can't read symbols without that section loaded as well. It
2150 is most likely specified by the next section header. */
2151 {
2152 elf_section_list * entry;
2153 unsigned int i, num_sec;
2154
2155 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2156 if (entry->hdr.sh_link == shindex)
2157 goto success;
2158
2159 num_sec = elf_numsections (abfd);
2160 for (i = shindex + 1; i < num_sec; i++)
2161 {
2162 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2163
2164 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2165 && hdr2->sh_link == shindex)
2166 break;
2167 }
2168
2169 if (i == num_sec)
2170 for (i = 1; i < shindex; i++)
2171 {
2172 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2173
2174 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2175 && hdr2->sh_link == shindex)
2176 break;
2177 }
2178
2179 if (i != shindex)
2180 ret = bfd_section_from_shdr (abfd, i);
2181 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2182 goto success;
2183 }
2184
2185 case SHT_DYNSYM: /* A dynamic symbol table. */
2186 if (elf_dynsymtab (abfd) == shindex)
2187 goto success;
2188
2189 if (hdr->sh_entsize != bed->s->sizeof_sym)
2190 goto fail;
2191
2192 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2193 {
2194 if (hdr->sh_size != 0)
2195 goto fail;
2196
2197 /* Some linkers erroneously set sh_info to one with a
2198 zero sh_size. ld sees this as a global symbol count
2199 of (unsigned) -1. Fix it here. */
2200 hdr->sh_info = 0;
2201 goto success;
2202 }
2203
2204 /* PR 18854: A binary might contain more than one dynamic symbol table.
2205 Unusual, but possible. Warn, but continue. */
2206 if (elf_dynsymtab (abfd) != 0)
2207 {
2208 _bfd_error_handler
2209 /* xgettext:c-format */
2210 (_("%pB: warning: multiple dynamic symbol tables detected"
2211 " - ignoring the table in section %u"),
2212 abfd, shindex);
2213 goto success;
2214 }
2215 elf_dynsymtab (abfd) = shindex;
2216 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2217 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2218 abfd->flags |= HAS_SYMS;
2219
2220 /* Besides being a symbol table, we also treat this as a regular
2221 section, so that objcopy can handle it. */
2222 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2223 goto success;
2224
2225 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2226 {
2227 elf_section_list * entry;
2228
2229 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2230 if (entry->ndx == shindex)
2231 goto success;
2232
2233 entry = bfd_alloc (abfd, sizeof * entry);
2234 if (entry == NULL)
2235 goto fail;
2236 entry->ndx = shindex;
2237 entry->hdr = * hdr;
2238 entry->next = elf_symtab_shndx_list (abfd);
2239 elf_symtab_shndx_list (abfd) = entry;
2240 elf_elfsections (abfd)[shindex] = & entry->hdr;
2241 goto success;
2242 }
2243
2244 case SHT_STRTAB: /* A string table. */
2245 if (hdr->bfd_section != NULL)
2246 goto success;
2247
2248 if (ehdr->e_shstrndx == shindex)
2249 {
2250 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2251 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2252 goto success;
2253 }
2254
2255 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2256 {
2257 symtab_strtab:
2258 elf_tdata (abfd)->strtab_hdr = *hdr;
2259 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2260 goto success;
2261 }
2262
2263 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2264 {
2265 dynsymtab_strtab:
2266 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2267 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2268 elf_elfsections (abfd)[shindex] = hdr;
2269 /* We also treat this as a regular section, so that objcopy
2270 can handle it. */
2271 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2272 shindex);
2273 goto success;
2274 }
2275
2276 /* If the string table isn't one of the above, then treat it as a
2277 regular section. We need to scan all the headers to be sure,
2278 just in case this strtab section appeared before the above. */
2279 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2280 {
2281 unsigned int i, num_sec;
2282
2283 num_sec = elf_numsections (abfd);
2284 for (i = 1; i < num_sec; i++)
2285 {
2286 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2287 if (hdr2->sh_link == shindex)
2288 {
2289 /* Prevent endless recursion on broken objects. */
2290 if (i == shindex)
2291 goto fail;
2292 if (! bfd_section_from_shdr (abfd, i))
2293 goto fail;
2294 if (elf_onesymtab (abfd) == i)
2295 goto symtab_strtab;
2296 if (elf_dynsymtab (abfd) == i)
2297 goto dynsymtab_strtab;
2298 }
2299 }
2300 }
2301 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2302 goto success;
2303
2304 case SHT_REL:
2305 case SHT_RELA:
2306 /* *These* do a lot of work -- but build no sections! */
2307 {
2308 asection *target_sect;
2309 Elf_Internal_Shdr *hdr2, **p_hdr;
2310 unsigned int num_sec = elf_numsections (abfd);
2311 struct bfd_elf_section_data *esdt;
2312
2313 if (hdr->sh_entsize
2314 != (bfd_size_type) (hdr->sh_type == SHT_REL
2315 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2316 goto fail;
2317
2318 /* Check for a bogus link to avoid crashing. */
2319 if (hdr->sh_link >= num_sec)
2320 {
2321 _bfd_error_handler
2322 /* xgettext:c-format */
2323 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2324 abfd, hdr->sh_link, name, shindex);
2325 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2326 shindex);
2327 goto success;
2328 }
2329
2330 /* For some incomprehensible reason Oracle distributes
2331 libraries for Solaris in which some of the objects have
2332 bogus sh_link fields. It would be nice if we could just
2333 reject them, but, unfortunately, some people need to use
2334 them. We scan through the section headers; if we find only
2335 one suitable symbol table, we clobber the sh_link to point
2336 to it. I hope this doesn't break anything.
2337
2338 Don't do it on executable nor shared library. */
2339 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2340 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2341 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2342 {
2343 unsigned int scan;
2344 int found;
2345
2346 found = 0;
2347 for (scan = 1; scan < num_sec; scan++)
2348 {
2349 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2350 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2351 {
2352 if (found != 0)
2353 {
2354 found = 0;
2355 break;
2356 }
2357 found = scan;
2358 }
2359 }
2360 if (found != 0)
2361 hdr->sh_link = found;
2362 }
2363
2364 /* Get the symbol table. */
2365 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2366 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2367 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2368 goto fail;
2369
2370 /* If this reloc section does not use the main symbol table we
2371 don't treat it as a reloc section. BFD can't adequately
2372 represent such a section, so at least for now, we don't
2373 try. We just present it as a normal section. We also
2374 can't use it as a reloc section if it points to the null
2375 section, an invalid section, another reloc section, or its
2376 sh_link points to the null section. */
2377 if (hdr->sh_link != elf_onesymtab (abfd)
2378 || hdr->sh_link == SHN_UNDEF
2379 || hdr->sh_info == SHN_UNDEF
2380 || hdr->sh_info >= num_sec
2381 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2382 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2383 {
2384 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2385 shindex);
2386 goto success;
2387 }
2388
2389 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2390 goto fail;
2391
2392 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2393 if (target_sect == NULL)
2394 goto fail;
2395
2396 esdt = elf_section_data (target_sect);
2397 if (hdr->sh_type == SHT_RELA)
2398 p_hdr = &esdt->rela.hdr;
2399 else
2400 p_hdr = &esdt->rel.hdr;
2401
2402 /* PR 17512: file: 0b4f81b7. */
2403 if (*p_hdr != NULL)
2404 goto fail;
2405 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2406 if (hdr2 == NULL)
2407 goto fail;
2408 *hdr2 = *hdr;
2409 *p_hdr = hdr2;
2410 elf_elfsections (abfd)[shindex] = hdr2;
2411 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2412 * bed->s->int_rels_per_ext_rel);
2413 target_sect->flags |= SEC_RELOC;
2414 target_sect->relocation = NULL;
2415 target_sect->rel_filepos = hdr->sh_offset;
2416 /* In the section to which the relocations apply, mark whether
2417 its relocations are of the REL or RELA variety. */
2418 if (hdr->sh_size != 0)
2419 {
2420 if (hdr->sh_type == SHT_RELA)
2421 target_sect->use_rela_p = 1;
2422 }
2423 abfd->flags |= HAS_RELOC;
2424 goto success;
2425 }
2426
2427 case SHT_GNU_verdef:
2428 elf_dynverdef (abfd) = shindex;
2429 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2430 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2431 goto success;
2432
2433 case SHT_GNU_versym:
2434 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2435 goto fail;
2436
2437 elf_dynversym (abfd) = shindex;
2438 elf_tdata (abfd)->dynversym_hdr = *hdr;
2439 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2440 goto success;
2441
2442 case SHT_GNU_verneed:
2443 elf_dynverref (abfd) = shindex;
2444 elf_tdata (abfd)->dynverref_hdr = *hdr;
2445 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2446 goto success;
2447
2448 case SHT_SHLIB:
2449 goto success;
2450
2451 case SHT_GROUP:
2452 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2453 goto fail;
2454
2455 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2456 goto fail;
2457
2458 goto success;
2459
2460 default:
2461 /* Possibly an attributes section. */
2462 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2463 || hdr->sh_type == bed->obj_attrs_section_type)
2464 {
2465 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2466 goto fail;
2467 _bfd_elf_parse_attributes (abfd, hdr);
2468 goto success;
2469 }
2470
2471 /* Check for any processor-specific section types. */
2472 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2473 goto success;
2474
2475 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2476 {
2477 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2478 /* FIXME: How to properly handle allocated section reserved
2479 for applications? */
2480 _bfd_error_handler
2481 /* xgettext:c-format */
2482 (_("%pB: unknown type [%#x] section `%s'"),
2483 abfd, hdr->sh_type, name);
2484 else
2485 {
2486 /* Allow sections reserved for applications. */
2487 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2488 shindex);
2489 goto success;
2490 }
2491 }
2492 else if (hdr->sh_type >= SHT_LOPROC
2493 && hdr->sh_type <= SHT_HIPROC)
2494 /* FIXME: We should handle this section. */
2495 _bfd_error_handler
2496 /* xgettext:c-format */
2497 (_("%pB: unknown type [%#x] section `%s'"),
2498 abfd, hdr->sh_type, name);
2499 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2500 {
2501 /* Unrecognised OS-specific sections. */
2502 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2503 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2504 required to correctly process the section and the file should
2505 be rejected with an error message. */
2506 _bfd_error_handler
2507 /* xgettext:c-format */
2508 (_("%pB: unknown type [%#x] section `%s'"),
2509 abfd, hdr->sh_type, name);
2510 else
2511 {
2512 /* Otherwise it should be processed. */
2513 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2514 goto success;
2515 }
2516 }
2517 else
2518 /* FIXME: We should handle this section. */
2519 _bfd_error_handler
2520 /* xgettext:c-format */
2521 (_("%pB: unknown type [%#x] section `%s'"),
2522 abfd, hdr->sh_type, name);
2523
2524 goto fail;
2525 }
2526
2527 fail:
2528 ret = FALSE;
2529 success:
2530 if (sections_being_created && sections_being_created_abfd == abfd)
2531 sections_being_created [shindex] = FALSE;
2532 if (-- nesting == 0)
2533 {
2534 sections_being_created = NULL;
2535 sections_being_created_abfd = abfd;
2536 }
2537 return ret;
2538 }
2539
2540 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2541
2542 Elf_Internal_Sym *
2543 bfd_sym_from_r_symndx (struct sym_cache *cache,
2544 bfd *abfd,
2545 unsigned long r_symndx)
2546 {
2547 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2548
2549 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2550 {
2551 Elf_Internal_Shdr *symtab_hdr;
2552 unsigned char esym[sizeof (Elf64_External_Sym)];
2553 Elf_External_Sym_Shndx eshndx;
2554
2555 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2556 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2557 &cache->sym[ent], esym, &eshndx) == NULL)
2558 return NULL;
2559
2560 if (cache->abfd != abfd)
2561 {
2562 memset (cache->indx, -1, sizeof (cache->indx));
2563 cache->abfd = abfd;
2564 }
2565 cache->indx[ent] = r_symndx;
2566 }
2567
2568 return &cache->sym[ent];
2569 }
2570
2571 /* Given an ELF section number, retrieve the corresponding BFD
2572 section. */
2573
2574 asection *
2575 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2576 {
2577 if (sec_index >= elf_numsections (abfd))
2578 return NULL;
2579 return elf_elfsections (abfd)[sec_index]->bfd_section;
2580 }
2581
2582 static const struct bfd_elf_special_section special_sections_b[] =
2583 {
2584 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2585 { NULL, 0, 0, 0, 0 }
2586 };
2587
2588 static const struct bfd_elf_special_section special_sections_c[] =
2589 {
2590 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2591 { NULL, 0, 0, 0, 0 }
2592 };
2593
2594 static const struct bfd_elf_special_section special_sections_d[] =
2595 {
2596 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2597 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2598 /* There are more DWARF sections than these, but they needn't be added here
2599 unless you have to cope with broken compilers that don't emit section
2600 attributes or you want to help the user writing assembler. */
2601 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2602 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2603 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2604 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2605 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2606 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2607 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2608 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2609 { NULL, 0, 0, 0, 0 }
2610 };
2611
2612 static const struct bfd_elf_special_section special_sections_f[] =
2613 {
2614 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2615 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2616 { NULL, 0 , 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_g[] =
2620 {
2621 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2622 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2623 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2624 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2625 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2626 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2627 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2628 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2629 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2630 { NULL, 0, 0, 0, 0 }
2631 };
2632
2633 static const struct bfd_elf_special_section special_sections_h[] =
2634 {
2635 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2636 { NULL, 0, 0, 0, 0 }
2637 };
2638
2639 static const struct bfd_elf_special_section special_sections_i[] =
2640 {
2641 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2642 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2643 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2644 { NULL, 0, 0, 0, 0 }
2645 };
2646
2647 static const struct bfd_elf_special_section special_sections_l[] =
2648 {
2649 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2650 { NULL, 0, 0, 0, 0 }
2651 };
2652
2653 static const struct bfd_elf_special_section special_sections_n[] =
2654 {
2655 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2656 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2657 { NULL, 0, 0, 0, 0 }
2658 };
2659
2660 static const struct bfd_elf_special_section special_sections_p[] =
2661 {
2662 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2663 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2664 { NULL, 0, 0, 0, 0 }
2665 };
2666
2667 static const struct bfd_elf_special_section special_sections_r[] =
2668 {
2669 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2670 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2671 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2672 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_s[] =
2677 {
2678 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2679 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2680 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2681 /* See struct bfd_elf_special_section declaration for the semantics of
2682 this special case where .prefix_length != strlen (.prefix). */
2683 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2684 { NULL, 0, 0, 0, 0 }
2685 };
2686
2687 static const struct bfd_elf_special_section special_sections_t[] =
2688 {
2689 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2690 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2691 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2692 { NULL, 0, 0, 0, 0 }
2693 };
2694
2695 static const struct bfd_elf_special_section special_sections_z[] =
2696 {
2697 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2698 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2699 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2700 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2701 { NULL, 0, 0, 0, 0 }
2702 };
2703
2704 static const struct bfd_elf_special_section * const special_sections[] =
2705 {
2706 special_sections_b, /* 'b' */
2707 special_sections_c, /* 'c' */
2708 special_sections_d, /* 'd' */
2709 NULL, /* 'e' */
2710 special_sections_f, /* 'f' */
2711 special_sections_g, /* 'g' */
2712 special_sections_h, /* 'h' */
2713 special_sections_i, /* 'i' */
2714 NULL, /* 'j' */
2715 NULL, /* 'k' */
2716 special_sections_l, /* 'l' */
2717 NULL, /* 'm' */
2718 special_sections_n, /* 'n' */
2719 NULL, /* 'o' */
2720 special_sections_p, /* 'p' */
2721 NULL, /* 'q' */
2722 special_sections_r, /* 'r' */
2723 special_sections_s, /* 's' */
2724 special_sections_t, /* 't' */
2725 NULL, /* 'u' */
2726 NULL, /* 'v' */
2727 NULL, /* 'w' */
2728 NULL, /* 'x' */
2729 NULL, /* 'y' */
2730 special_sections_z /* 'z' */
2731 };
2732
2733 const struct bfd_elf_special_section *
2734 _bfd_elf_get_special_section (const char *name,
2735 const struct bfd_elf_special_section *spec,
2736 unsigned int rela)
2737 {
2738 int i;
2739 int len;
2740
2741 len = strlen (name);
2742
2743 for (i = 0; spec[i].prefix != NULL; i++)
2744 {
2745 int suffix_len;
2746 int prefix_len = spec[i].prefix_length;
2747
2748 if (len < prefix_len)
2749 continue;
2750 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2751 continue;
2752
2753 suffix_len = spec[i].suffix_length;
2754 if (suffix_len <= 0)
2755 {
2756 if (name[prefix_len] != 0)
2757 {
2758 if (suffix_len == 0)
2759 continue;
2760 if (name[prefix_len] != '.'
2761 && (suffix_len == -2
2762 || (rela && spec[i].type == SHT_REL)))
2763 continue;
2764 }
2765 }
2766 else
2767 {
2768 if (len < prefix_len + suffix_len)
2769 continue;
2770 if (memcmp (name + len - suffix_len,
2771 spec[i].prefix + prefix_len,
2772 suffix_len) != 0)
2773 continue;
2774 }
2775 return &spec[i];
2776 }
2777
2778 return NULL;
2779 }
2780
2781 const struct bfd_elf_special_section *
2782 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2783 {
2784 int i;
2785 const struct bfd_elf_special_section *spec;
2786 const struct elf_backend_data *bed;
2787
2788 /* See if this is one of the special sections. */
2789 if (sec->name == NULL)
2790 return NULL;
2791
2792 bed = get_elf_backend_data (abfd);
2793 spec = bed->special_sections;
2794 if (spec)
2795 {
2796 spec = _bfd_elf_get_special_section (sec->name,
2797 bed->special_sections,
2798 sec->use_rela_p);
2799 if (spec != NULL)
2800 return spec;
2801 }
2802
2803 if (sec->name[0] != '.')
2804 return NULL;
2805
2806 i = sec->name[1] - 'b';
2807 if (i < 0 || i > 'z' - 'b')
2808 return NULL;
2809
2810 spec = special_sections[i];
2811
2812 if (spec == NULL)
2813 return NULL;
2814
2815 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2816 }
2817
2818 bfd_boolean
2819 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2820 {
2821 struct bfd_elf_section_data *sdata;
2822 const struct elf_backend_data *bed;
2823 const struct bfd_elf_special_section *ssect;
2824
2825 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2826 if (sdata == NULL)
2827 {
2828 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2829 sizeof (*sdata));
2830 if (sdata == NULL)
2831 return FALSE;
2832 sec->used_by_bfd = sdata;
2833 }
2834
2835 /* Indicate whether or not this section should use RELA relocations. */
2836 bed = get_elf_backend_data (abfd);
2837 sec->use_rela_p = bed->default_use_rela_p;
2838
2839 /* When we read a file, we don't need to set ELF section type and
2840 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2841 anyway. We will set ELF section type and flags for all linker
2842 created sections. If user specifies BFD section flags, we will
2843 set ELF section type and flags based on BFD section flags in
2844 elf_fake_sections. Special handling for .init_array/.fini_array
2845 output sections since they may contain .ctors/.dtors input
2846 sections. We don't want _bfd_elf_init_private_section_data to
2847 copy ELF section type from .ctors/.dtors input sections. */
2848 if (abfd->direction != read_direction
2849 || (sec->flags & SEC_LINKER_CREATED) != 0)
2850 {
2851 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2852 if (ssect != NULL
2853 && (!sec->flags
2854 || (sec->flags & SEC_LINKER_CREATED) != 0
2855 || ssect->type == SHT_INIT_ARRAY
2856 || ssect->type == SHT_FINI_ARRAY))
2857 {
2858 elf_section_type (sec) = ssect->type;
2859 elf_section_flags (sec) = ssect->attr;
2860 }
2861 }
2862
2863 return _bfd_generic_new_section_hook (abfd, sec);
2864 }
2865
2866 /* Create a new bfd section from an ELF program header.
2867
2868 Since program segments have no names, we generate a synthetic name
2869 of the form segment<NUM>, where NUM is generally the index in the
2870 program header table. For segments that are split (see below) we
2871 generate the names segment<NUM>a and segment<NUM>b.
2872
2873 Note that some program segments may have a file size that is different than
2874 (less than) the memory size. All this means is that at execution the
2875 system must allocate the amount of memory specified by the memory size,
2876 but only initialize it with the first "file size" bytes read from the
2877 file. This would occur for example, with program segments consisting
2878 of combined data+bss.
2879
2880 To handle the above situation, this routine generates TWO bfd sections
2881 for the single program segment. The first has the length specified by
2882 the file size of the segment, and the second has the length specified
2883 by the difference between the two sizes. In effect, the segment is split
2884 into its initialized and uninitialized parts.
2885
2886 */
2887
2888 bfd_boolean
2889 _bfd_elf_make_section_from_phdr (bfd *abfd,
2890 Elf_Internal_Phdr *hdr,
2891 int hdr_index,
2892 const char *type_name)
2893 {
2894 asection *newsect;
2895 char *name;
2896 char namebuf[64];
2897 size_t len;
2898 int split;
2899
2900 split = ((hdr->p_memsz > 0)
2901 && (hdr->p_filesz > 0)
2902 && (hdr->p_memsz > hdr->p_filesz));
2903
2904 if (hdr->p_filesz > 0)
2905 {
2906 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2907 len = strlen (namebuf) + 1;
2908 name = (char *) bfd_alloc (abfd, len);
2909 if (!name)
2910 return FALSE;
2911 memcpy (name, namebuf, len);
2912 newsect = bfd_make_section (abfd, name);
2913 if (newsect == NULL)
2914 return FALSE;
2915 newsect->vma = hdr->p_vaddr;
2916 newsect->lma = hdr->p_paddr;
2917 newsect->size = hdr->p_filesz;
2918 newsect->filepos = hdr->p_offset;
2919 newsect->flags |= SEC_HAS_CONTENTS;
2920 newsect->alignment_power = bfd_log2 (hdr->p_align);
2921 if (hdr->p_type == PT_LOAD)
2922 {
2923 newsect->flags |= SEC_ALLOC;
2924 newsect->flags |= SEC_LOAD;
2925 if (hdr->p_flags & PF_X)
2926 {
2927 /* FIXME: all we known is that it has execute PERMISSION,
2928 may be data. */
2929 newsect->flags |= SEC_CODE;
2930 }
2931 }
2932 if (!(hdr->p_flags & PF_W))
2933 {
2934 newsect->flags |= SEC_READONLY;
2935 }
2936 }
2937
2938 if (hdr->p_memsz > hdr->p_filesz)
2939 {
2940 bfd_vma align;
2941
2942 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2943 len = strlen (namebuf) + 1;
2944 name = (char *) bfd_alloc (abfd, len);
2945 if (!name)
2946 return FALSE;
2947 memcpy (name, namebuf, len);
2948 newsect = bfd_make_section (abfd, name);
2949 if (newsect == NULL)
2950 return FALSE;
2951 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2952 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2953 newsect->size = hdr->p_memsz - hdr->p_filesz;
2954 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2955 align = newsect->vma & -newsect->vma;
2956 if (align == 0 || align > hdr->p_align)
2957 align = hdr->p_align;
2958 newsect->alignment_power = bfd_log2 (align);
2959 if (hdr->p_type == PT_LOAD)
2960 {
2961 /* Hack for gdb. Segments that have not been modified do
2962 not have their contents written to a core file, on the
2963 assumption that a debugger can find the contents in the
2964 executable. We flag this case by setting the fake
2965 section size to zero. Note that "real" bss sections will
2966 always have their contents dumped to the core file. */
2967 if (bfd_get_format (abfd) == bfd_core)
2968 newsect->size = 0;
2969 newsect->flags |= SEC_ALLOC;
2970 if (hdr->p_flags & PF_X)
2971 newsect->flags |= SEC_CODE;
2972 }
2973 if (!(hdr->p_flags & PF_W))
2974 newsect->flags |= SEC_READONLY;
2975 }
2976
2977 return TRUE;
2978 }
2979
2980 bfd_boolean
2981 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2982 {
2983 const struct elf_backend_data *bed;
2984
2985 switch (hdr->p_type)
2986 {
2987 case PT_NULL:
2988 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2989
2990 case PT_LOAD:
2991 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2992
2993 case PT_DYNAMIC:
2994 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2995
2996 case PT_INTERP:
2997 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2998
2999 case PT_NOTE:
3000 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3001 return FALSE;
3002 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3003 hdr->p_align))
3004 return FALSE;
3005 return TRUE;
3006
3007 case PT_SHLIB:
3008 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3009
3010 case PT_PHDR:
3011 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3012
3013 case PT_GNU_EH_FRAME:
3014 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3015 "eh_frame_hdr");
3016
3017 case PT_GNU_STACK:
3018 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3019
3020 case PT_GNU_RELRO:
3021 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3022
3023 default:
3024 /* Check for any processor-specific program segment types. */
3025 bed = get_elf_backend_data (abfd);
3026 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3027 }
3028 }
3029
3030 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3031 REL or RELA. */
3032
3033 Elf_Internal_Shdr *
3034 _bfd_elf_single_rel_hdr (asection *sec)
3035 {
3036 if (elf_section_data (sec)->rel.hdr)
3037 {
3038 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3039 return elf_section_data (sec)->rel.hdr;
3040 }
3041 else
3042 return elf_section_data (sec)->rela.hdr;
3043 }
3044
3045 static bfd_boolean
3046 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3047 Elf_Internal_Shdr *rel_hdr,
3048 const char *sec_name,
3049 bfd_boolean use_rela_p)
3050 {
3051 char *name = (char *) bfd_alloc (abfd,
3052 sizeof ".rela" + strlen (sec_name));
3053 if (name == NULL)
3054 return FALSE;
3055
3056 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3057 rel_hdr->sh_name =
3058 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3059 FALSE);
3060 if (rel_hdr->sh_name == (unsigned int) -1)
3061 return FALSE;
3062
3063 return TRUE;
3064 }
3065
3066 /* Allocate and initialize a section-header for a new reloc section,
3067 containing relocations against ASECT. It is stored in RELDATA. If
3068 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3069 relocations. */
3070
3071 static bfd_boolean
3072 _bfd_elf_init_reloc_shdr (bfd *abfd,
3073 struct bfd_elf_section_reloc_data *reldata,
3074 const char *sec_name,
3075 bfd_boolean use_rela_p,
3076 bfd_boolean delay_st_name_p)
3077 {
3078 Elf_Internal_Shdr *rel_hdr;
3079 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3080
3081 BFD_ASSERT (reldata->hdr == NULL);
3082 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3083 reldata->hdr = rel_hdr;
3084
3085 if (delay_st_name_p)
3086 rel_hdr->sh_name = (unsigned int) -1;
3087 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3088 use_rela_p))
3089 return FALSE;
3090 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3091 rel_hdr->sh_entsize = (use_rela_p
3092 ? bed->s->sizeof_rela
3093 : bed->s->sizeof_rel);
3094 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3095 rel_hdr->sh_flags = 0;
3096 rel_hdr->sh_addr = 0;
3097 rel_hdr->sh_size = 0;
3098 rel_hdr->sh_offset = 0;
3099
3100 return TRUE;
3101 }
3102
3103 /* Return the default section type based on the passed in section flags. */
3104
3105 int
3106 bfd_elf_get_default_section_type (flagword flags)
3107 {
3108 if ((flags & SEC_ALLOC) != 0
3109 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3110 return SHT_NOBITS;
3111 return SHT_PROGBITS;
3112 }
3113
3114 struct fake_section_arg
3115 {
3116 struct bfd_link_info *link_info;
3117 bfd_boolean failed;
3118 };
3119
3120 /* Set up an ELF internal section header for a section. */
3121
3122 static void
3123 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3124 {
3125 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3127 struct bfd_elf_section_data *esd = elf_section_data (asect);
3128 Elf_Internal_Shdr *this_hdr;
3129 unsigned int sh_type;
3130 const char *name = asect->name;
3131 bfd_boolean delay_st_name_p = FALSE;
3132
3133 if (arg->failed)
3134 {
3135 /* We already failed; just get out of the bfd_map_over_sections
3136 loop. */
3137 return;
3138 }
3139
3140 this_hdr = &esd->this_hdr;
3141
3142 if (arg->link_info)
3143 {
3144 /* ld: compress DWARF debug sections with names: .debug_*. */
3145 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3146 && (asect->flags & SEC_DEBUGGING)
3147 && name[1] == 'd'
3148 && name[6] == '_')
3149 {
3150 /* Set SEC_ELF_COMPRESS to indicate this section should be
3151 compressed. */
3152 asect->flags |= SEC_ELF_COMPRESS;
3153
3154 /* If this section will be compressed, delay adding section
3155 name to section name section after it is compressed in
3156 _bfd_elf_assign_file_positions_for_non_load. */
3157 delay_st_name_p = TRUE;
3158 }
3159 }
3160 else if ((asect->flags & SEC_ELF_RENAME))
3161 {
3162 /* objcopy: rename output DWARF debug section. */
3163 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3164 {
3165 /* When we decompress or compress with SHF_COMPRESSED,
3166 convert section name from .zdebug_* to .debug_* if
3167 needed. */
3168 if (name[1] == 'z')
3169 {
3170 char *new_name = convert_zdebug_to_debug (abfd, name);
3171 if (new_name == NULL)
3172 {
3173 arg->failed = TRUE;
3174 return;
3175 }
3176 name = new_name;
3177 }
3178 }
3179 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3180 {
3181 /* PR binutils/18087: Compression does not always make a
3182 section smaller. So only rename the section when
3183 compression has actually taken place. If input section
3184 name is .zdebug_*, we should never compress it again. */
3185 char *new_name = convert_debug_to_zdebug (abfd, name);
3186 if (new_name == NULL)
3187 {
3188 arg->failed = TRUE;
3189 return;
3190 }
3191 BFD_ASSERT (name[1] != 'z');
3192 name = new_name;
3193 }
3194 }
3195
3196 if (delay_st_name_p)
3197 this_hdr->sh_name = (unsigned int) -1;
3198 else
3199 {
3200 this_hdr->sh_name
3201 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3202 name, FALSE);
3203 if (this_hdr->sh_name == (unsigned int) -1)
3204 {
3205 arg->failed = TRUE;
3206 return;
3207 }
3208 }
3209
3210 /* Don't clear sh_flags. Assembler may set additional bits. */
3211
3212 if ((asect->flags & SEC_ALLOC) != 0
3213 || asect->user_set_vma)
3214 this_hdr->sh_addr = asect->vma;
3215 else
3216 this_hdr->sh_addr = 0;
3217
3218 this_hdr->sh_offset = 0;
3219 this_hdr->sh_size = asect->size;
3220 this_hdr->sh_link = 0;
3221 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3222 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3223 {
3224 _bfd_error_handler
3225 /* xgettext:c-format */
3226 (_("%pB: error: Alignment power %d of section `%pA' is too big"),
3227 abfd, asect->alignment_power, asect);
3228 arg->failed = TRUE;
3229 return;
3230 }
3231 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3232 /* The sh_entsize and sh_info fields may have been set already by
3233 copy_private_section_data. */
3234
3235 this_hdr->bfd_section = asect;
3236 this_hdr->contents = NULL;
3237
3238 /* If the section type is unspecified, we set it based on
3239 asect->flags. */
3240 if ((asect->flags & SEC_GROUP) != 0)
3241 sh_type = SHT_GROUP;
3242 else
3243 sh_type = bfd_elf_get_default_section_type (asect->flags);
3244
3245 if (this_hdr->sh_type == SHT_NULL)
3246 this_hdr->sh_type = sh_type;
3247 else if (this_hdr->sh_type == SHT_NOBITS
3248 && sh_type == SHT_PROGBITS
3249 && (asect->flags & SEC_ALLOC) != 0)
3250 {
3251 /* Warn if we are changing a NOBITS section to PROGBITS, but
3252 allow the link to proceed. This can happen when users link
3253 non-bss input sections to bss output sections, or emit data
3254 to a bss output section via a linker script. */
3255 _bfd_error_handler
3256 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3257 this_hdr->sh_type = sh_type;
3258 }
3259
3260 switch (this_hdr->sh_type)
3261 {
3262 default:
3263 break;
3264
3265 case SHT_STRTAB:
3266 case SHT_NOTE:
3267 case SHT_NOBITS:
3268 case SHT_PROGBITS:
3269 break;
3270
3271 case SHT_INIT_ARRAY:
3272 case SHT_FINI_ARRAY:
3273 case SHT_PREINIT_ARRAY:
3274 this_hdr->sh_entsize = bed->s->arch_size / 8;
3275 break;
3276
3277 case SHT_HASH:
3278 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3279 break;
3280
3281 case SHT_DYNSYM:
3282 this_hdr->sh_entsize = bed->s->sizeof_sym;
3283 break;
3284
3285 case SHT_DYNAMIC:
3286 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3287 break;
3288
3289 case SHT_RELA:
3290 if (get_elf_backend_data (abfd)->may_use_rela_p)
3291 this_hdr->sh_entsize = bed->s->sizeof_rela;
3292 break;
3293
3294 case SHT_REL:
3295 if (get_elf_backend_data (abfd)->may_use_rel_p)
3296 this_hdr->sh_entsize = bed->s->sizeof_rel;
3297 break;
3298
3299 case SHT_GNU_versym:
3300 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3301 break;
3302
3303 case SHT_GNU_verdef:
3304 this_hdr->sh_entsize = 0;
3305 /* objcopy or strip will copy over sh_info, but may not set
3306 cverdefs. The linker will set cverdefs, but sh_info will be
3307 zero. */
3308 if (this_hdr->sh_info == 0)
3309 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3310 else
3311 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3312 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3313 break;
3314
3315 case SHT_GNU_verneed:
3316 this_hdr->sh_entsize = 0;
3317 /* objcopy or strip will copy over sh_info, but may not set
3318 cverrefs. The linker will set cverrefs, but sh_info will be
3319 zero. */
3320 if (this_hdr->sh_info == 0)
3321 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3322 else
3323 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3324 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3325 break;
3326
3327 case SHT_GROUP:
3328 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3329 break;
3330
3331 case SHT_GNU_HASH:
3332 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3333 break;
3334 }
3335
3336 if ((asect->flags & SEC_ALLOC) != 0)
3337 this_hdr->sh_flags |= SHF_ALLOC;
3338 if ((asect->flags & SEC_READONLY) == 0)
3339 this_hdr->sh_flags |= SHF_WRITE;
3340 if ((asect->flags & SEC_CODE) != 0)
3341 this_hdr->sh_flags |= SHF_EXECINSTR;
3342 if ((asect->flags & SEC_MERGE) != 0)
3343 {
3344 this_hdr->sh_flags |= SHF_MERGE;
3345 this_hdr->sh_entsize = asect->entsize;
3346 }
3347 if ((asect->flags & SEC_STRINGS) != 0)
3348 this_hdr->sh_flags |= SHF_STRINGS;
3349 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3350 this_hdr->sh_flags |= SHF_GROUP;
3351 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3352 {
3353 this_hdr->sh_flags |= SHF_TLS;
3354 if (asect->size == 0
3355 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3356 {
3357 struct bfd_link_order *o = asect->map_tail.link_order;
3358
3359 this_hdr->sh_size = 0;
3360 if (o != NULL)
3361 {
3362 this_hdr->sh_size = o->offset + o->size;
3363 if (this_hdr->sh_size != 0)
3364 this_hdr->sh_type = SHT_NOBITS;
3365 }
3366 }
3367 }
3368 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3369 this_hdr->sh_flags |= SHF_EXCLUDE;
3370
3371 /* If the section has relocs, set up a section header for the
3372 SHT_REL[A] section. If two relocation sections are required for
3373 this section, it is up to the processor-specific back-end to
3374 create the other. */
3375 if ((asect->flags & SEC_RELOC) != 0)
3376 {
3377 /* When doing a relocatable link, create both REL and RELA sections if
3378 needed. */
3379 if (arg->link_info
3380 /* Do the normal setup if we wouldn't create any sections here. */
3381 && esd->rel.count + esd->rela.count > 0
3382 && (bfd_link_relocatable (arg->link_info)
3383 || arg->link_info->emitrelocations))
3384 {
3385 if (esd->rel.count && esd->rel.hdr == NULL
3386 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3387 FALSE, delay_st_name_p))
3388 {
3389 arg->failed = TRUE;
3390 return;
3391 }
3392 if (esd->rela.count && esd->rela.hdr == NULL
3393 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3394 TRUE, delay_st_name_p))
3395 {
3396 arg->failed = TRUE;
3397 return;
3398 }
3399 }
3400 else if (!_bfd_elf_init_reloc_shdr (abfd,
3401 (asect->use_rela_p
3402 ? &esd->rela : &esd->rel),
3403 name,
3404 asect->use_rela_p,
3405 delay_st_name_p))
3406 {
3407 arg->failed = TRUE;
3408 return;
3409 }
3410 }
3411
3412 /* Check for processor-specific section types. */
3413 sh_type = this_hdr->sh_type;
3414 if (bed->elf_backend_fake_sections
3415 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3416 {
3417 arg->failed = TRUE;
3418 return;
3419 }
3420
3421 if (sh_type == SHT_NOBITS && asect->size != 0)
3422 {
3423 /* Don't change the header type from NOBITS if we are being
3424 called for objcopy --only-keep-debug. */
3425 this_hdr->sh_type = sh_type;
3426 }
3427 }
3428
3429 /* Fill in the contents of a SHT_GROUP section. Called from
3430 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3431 when ELF targets use the generic linker, ld. Called for ld -r
3432 from bfd_elf_final_link. */
3433
3434 void
3435 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3436 {
3437 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3438 asection *elt, *first;
3439 unsigned char *loc;
3440 bfd_boolean gas;
3441
3442 /* Ignore linker created group section. See elfNN_ia64_object_p in
3443 elfxx-ia64.c. */
3444 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3445 || *failedptr)
3446 return;
3447
3448 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3449 {
3450 unsigned long symindx = 0;
3451
3452 /* elf_group_id will have been set up by objcopy and the
3453 generic linker. */
3454 if (elf_group_id (sec) != NULL)
3455 symindx = elf_group_id (sec)->udata.i;
3456
3457 if (symindx == 0)
3458 {
3459 /* If called from the assembler, swap_out_syms will have set up
3460 elf_section_syms. */
3461 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3462 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3463 }
3464 elf_section_data (sec)->this_hdr.sh_info = symindx;
3465 }
3466 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3467 {
3468 /* The ELF backend linker sets sh_info to -2 when the group
3469 signature symbol is global, and thus the index can't be
3470 set until all local symbols are output. */
3471 asection *igroup;
3472 struct bfd_elf_section_data *sec_data;
3473 unsigned long symndx;
3474 unsigned long extsymoff;
3475 struct elf_link_hash_entry *h;
3476
3477 /* The point of this little dance to the first SHF_GROUP section
3478 then back to the SHT_GROUP section is that this gets us to
3479 the SHT_GROUP in the input object. */
3480 igroup = elf_sec_group (elf_next_in_group (sec));
3481 sec_data = elf_section_data (igroup);
3482 symndx = sec_data->this_hdr.sh_info;
3483 extsymoff = 0;
3484 if (!elf_bad_symtab (igroup->owner))
3485 {
3486 Elf_Internal_Shdr *symtab_hdr;
3487
3488 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3489 extsymoff = symtab_hdr->sh_info;
3490 }
3491 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3492 while (h->root.type == bfd_link_hash_indirect
3493 || h->root.type == bfd_link_hash_warning)
3494 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3495
3496 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3497 }
3498
3499 /* The contents won't be allocated for "ld -r" or objcopy. */
3500 gas = TRUE;
3501 if (sec->contents == NULL)
3502 {
3503 gas = FALSE;
3504 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3505
3506 /* Arrange for the section to be written out. */
3507 elf_section_data (sec)->this_hdr.contents = sec->contents;
3508 if (sec->contents == NULL)
3509 {
3510 *failedptr = TRUE;
3511 return;
3512 }
3513 }
3514
3515 loc = sec->contents + sec->size;
3516
3517 /* Get the pointer to the first section in the group that gas
3518 squirreled away here. objcopy arranges for this to be set to the
3519 start of the input section group. */
3520 first = elt = elf_next_in_group (sec);
3521
3522 /* First element is a flag word. Rest of section is elf section
3523 indices for all the sections of the group. Write them backwards
3524 just to keep the group in the same order as given in .section
3525 directives, not that it matters. */
3526 while (elt != NULL)
3527 {
3528 asection *s;
3529
3530 s = elt;
3531 if (!gas)
3532 s = s->output_section;
3533 if (s != NULL
3534 && !bfd_is_abs_section (s))
3535 {
3536 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3537 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3538
3539 if (elf_sec->rel.hdr != NULL
3540 && (gas
3541 || (input_elf_sec->rel.hdr != NULL
3542 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3543 {
3544 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3545 loc -= 4;
3546 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3547 }
3548 if (elf_sec->rela.hdr != NULL
3549 && (gas
3550 || (input_elf_sec->rela.hdr != NULL
3551 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3552 {
3553 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3554 loc -= 4;
3555 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3556 }
3557 loc -= 4;
3558 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3559 }
3560 elt = elf_next_in_group (elt);
3561 if (elt == first)
3562 break;
3563 }
3564
3565 loc -= 4;
3566 BFD_ASSERT (loc == sec->contents);
3567
3568 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3569 }
3570
3571 /* Given NAME, the name of a relocation section stripped of its
3572 .rel/.rela prefix, return the section in ABFD to which the
3573 relocations apply. */
3574
3575 asection *
3576 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3577 {
3578 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3579 section likely apply to .got.plt or .got section. */
3580 if (get_elf_backend_data (abfd)->want_got_plt
3581 && strcmp (name, ".plt") == 0)
3582 {
3583 asection *sec;
3584
3585 name = ".got.plt";
3586 sec = bfd_get_section_by_name (abfd, name);
3587 if (sec != NULL)
3588 return sec;
3589 name = ".got";
3590 }
3591
3592 return bfd_get_section_by_name (abfd, name);
3593 }
3594
3595 /* Return the section to which RELOC_SEC applies. */
3596
3597 static asection *
3598 elf_get_reloc_section (asection *reloc_sec)
3599 {
3600 const char *name;
3601 unsigned int type;
3602 bfd *abfd;
3603 const struct elf_backend_data *bed;
3604
3605 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3606 if (type != SHT_REL && type != SHT_RELA)
3607 return NULL;
3608
3609 /* We look up the section the relocs apply to by name. */
3610 name = reloc_sec->name;
3611 if (strncmp (name, ".rel", 4) != 0)
3612 return NULL;
3613 name += 4;
3614 if (type == SHT_RELA && *name++ != 'a')
3615 return NULL;
3616
3617 abfd = reloc_sec->owner;
3618 bed = get_elf_backend_data (abfd);
3619 return bed->get_reloc_section (abfd, name);
3620 }
3621
3622 /* Assign all ELF section numbers. The dummy first section is handled here
3623 too. The link/info pointers for the standard section types are filled
3624 in here too, while we're at it. */
3625
3626 static bfd_boolean
3627 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3628 {
3629 struct elf_obj_tdata *t = elf_tdata (abfd);
3630 asection *sec;
3631 unsigned int section_number;
3632 Elf_Internal_Shdr **i_shdrp;
3633 struct bfd_elf_section_data *d;
3634 bfd_boolean need_symtab;
3635
3636 section_number = 1;
3637
3638 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3639
3640 /* SHT_GROUP sections are in relocatable files only. */
3641 if (link_info == NULL || !link_info->resolve_section_groups)
3642 {
3643 size_t reloc_count = 0;
3644
3645 /* Put SHT_GROUP sections first. */
3646 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3647 {
3648 d = elf_section_data (sec);
3649
3650 if (d->this_hdr.sh_type == SHT_GROUP)
3651 {
3652 if (sec->flags & SEC_LINKER_CREATED)
3653 {
3654 /* Remove the linker created SHT_GROUP sections. */
3655 bfd_section_list_remove (abfd, sec);
3656 abfd->section_count--;
3657 }
3658 else
3659 d->this_idx = section_number++;
3660 }
3661
3662 /* Count relocations. */
3663 reloc_count += sec->reloc_count;
3664 }
3665
3666 /* Clear HAS_RELOC if there are no relocations. */
3667 if (reloc_count == 0)
3668 abfd->flags &= ~HAS_RELOC;
3669 }
3670
3671 for (sec = abfd->sections; sec; sec = sec->next)
3672 {
3673 d = elf_section_data (sec);
3674
3675 if (d->this_hdr.sh_type != SHT_GROUP)
3676 d->this_idx = section_number++;
3677 if (d->this_hdr.sh_name != (unsigned int) -1)
3678 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3679 if (d->rel.hdr)
3680 {
3681 d->rel.idx = section_number++;
3682 if (d->rel.hdr->sh_name != (unsigned int) -1)
3683 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3684 }
3685 else
3686 d->rel.idx = 0;
3687
3688 if (d->rela.hdr)
3689 {
3690 d->rela.idx = section_number++;
3691 if (d->rela.hdr->sh_name != (unsigned int) -1)
3692 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3693 }
3694 else
3695 d->rela.idx = 0;
3696 }
3697
3698 need_symtab = (bfd_get_symcount (abfd) > 0
3699 || (link_info == NULL
3700 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3701 == HAS_RELOC)));
3702 if (need_symtab)
3703 {
3704 elf_onesymtab (abfd) = section_number++;
3705 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3706 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3707 {
3708 elf_section_list * entry;
3709
3710 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3711
3712 entry = bfd_zalloc (abfd, sizeof * entry);
3713 entry->ndx = section_number++;
3714 elf_symtab_shndx_list (abfd) = entry;
3715 entry->hdr.sh_name
3716 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3717 ".symtab_shndx", FALSE);
3718 if (entry->hdr.sh_name == (unsigned int) -1)
3719 return FALSE;
3720 }
3721 elf_strtab_sec (abfd) = section_number++;
3722 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3723 }
3724
3725 elf_shstrtab_sec (abfd) = section_number++;
3726 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3727 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3728
3729 if (section_number >= SHN_LORESERVE)
3730 {
3731 /* xgettext:c-format */
3732 _bfd_error_handler (_("%pB: too many sections: %u"),
3733 abfd, section_number);
3734 return FALSE;
3735 }
3736
3737 elf_numsections (abfd) = section_number;
3738 elf_elfheader (abfd)->e_shnum = section_number;
3739
3740 /* Set up the list of section header pointers, in agreement with the
3741 indices. */
3742 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3743 sizeof (Elf_Internal_Shdr *));
3744 if (i_shdrp == NULL)
3745 return FALSE;
3746
3747 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3748 sizeof (Elf_Internal_Shdr));
3749 if (i_shdrp[0] == NULL)
3750 {
3751 bfd_release (abfd, i_shdrp);
3752 return FALSE;
3753 }
3754
3755 elf_elfsections (abfd) = i_shdrp;
3756
3757 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3758 if (need_symtab)
3759 {
3760 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3761 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3762 {
3763 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3764 BFD_ASSERT (entry != NULL);
3765 i_shdrp[entry->ndx] = & entry->hdr;
3766 entry->hdr.sh_link = elf_onesymtab (abfd);
3767 }
3768 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3769 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3770 }
3771
3772 for (sec = abfd->sections; sec; sec = sec->next)
3773 {
3774 asection *s;
3775
3776 d = elf_section_data (sec);
3777
3778 i_shdrp[d->this_idx] = &d->this_hdr;
3779 if (d->rel.idx != 0)
3780 i_shdrp[d->rel.idx] = d->rel.hdr;
3781 if (d->rela.idx != 0)
3782 i_shdrp[d->rela.idx] = d->rela.hdr;
3783
3784 /* Fill in the sh_link and sh_info fields while we're at it. */
3785
3786 /* sh_link of a reloc section is the section index of the symbol
3787 table. sh_info is the section index of the section to which
3788 the relocation entries apply. */
3789 if (d->rel.idx != 0)
3790 {
3791 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3792 d->rel.hdr->sh_info = d->this_idx;
3793 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3794 }
3795 if (d->rela.idx != 0)
3796 {
3797 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3798 d->rela.hdr->sh_info = d->this_idx;
3799 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3800 }
3801
3802 /* We need to set up sh_link for SHF_LINK_ORDER. */
3803 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3804 {
3805 s = elf_linked_to_section (sec);
3806 if (s)
3807 {
3808 /* elf_linked_to_section points to the input section. */
3809 if (link_info != NULL)
3810 {
3811 /* Check discarded linkonce section. */
3812 if (discarded_section (s))
3813 {
3814 asection *kept;
3815 _bfd_error_handler
3816 /* xgettext:c-format */
3817 (_("%pB: sh_link of section `%pA' points to"
3818 " discarded section `%pA' of `%pB'"),
3819 abfd, d->this_hdr.bfd_section,
3820 s, s->owner);
3821 /* Point to the kept section if it has the same
3822 size as the discarded one. */
3823 kept = _bfd_elf_check_kept_section (s, link_info);
3824 if (kept == NULL)
3825 {
3826 bfd_set_error (bfd_error_bad_value);
3827 return FALSE;
3828 }
3829 s = kept;
3830 }
3831
3832 s = s->output_section;
3833 BFD_ASSERT (s != NULL);
3834 }
3835 else
3836 {
3837 /* Handle objcopy. */
3838 if (s->output_section == NULL)
3839 {
3840 _bfd_error_handler
3841 /* xgettext:c-format */
3842 (_("%pB: sh_link of section `%pA' points to"
3843 " removed section `%pA' of `%pB'"),
3844 abfd, d->this_hdr.bfd_section, s, s->owner);
3845 bfd_set_error (bfd_error_bad_value);
3846 return FALSE;
3847 }
3848 s = s->output_section;
3849 }
3850 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3851 }
3852 else
3853 {
3854 /* PR 290:
3855 The Intel C compiler generates SHT_IA_64_UNWIND with
3856 SHF_LINK_ORDER. But it doesn't set the sh_link or
3857 sh_info fields. Hence we could get the situation
3858 where s is NULL. */
3859 const struct elf_backend_data *bed
3860 = get_elf_backend_data (abfd);
3861 if (bed->link_order_error_handler)
3862 bed->link_order_error_handler
3863 /* xgettext:c-format */
3864 (_("%pB: warning: sh_link not set for section `%pA'"),
3865 abfd, sec);
3866 }
3867 }
3868
3869 switch (d->this_hdr.sh_type)
3870 {
3871 case SHT_REL:
3872 case SHT_RELA:
3873 /* A reloc section which we are treating as a normal BFD
3874 section. sh_link is the section index of the symbol
3875 table. sh_info is the section index of the section to
3876 which the relocation entries apply. We assume that an
3877 allocated reloc section uses the dynamic symbol table.
3878 FIXME: How can we be sure? */
3879 s = bfd_get_section_by_name (abfd, ".dynsym");
3880 if (s != NULL)
3881 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3882
3883 s = elf_get_reloc_section (sec);
3884 if (s != NULL)
3885 {
3886 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3887 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3888 }
3889 break;
3890
3891 case SHT_STRTAB:
3892 /* We assume that a section named .stab*str is a stabs
3893 string section. We look for a section with the same name
3894 but without the trailing ``str'', and set its sh_link
3895 field to point to this section. */
3896 if (CONST_STRNEQ (sec->name, ".stab")
3897 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3898 {
3899 size_t len;
3900 char *alc;
3901
3902 len = strlen (sec->name);
3903 alc = (char *) bfd_malloc (len - 2);
3904 if (alc == NULL)
3905 return FALSE;
3906 memcpy (alc, sec->name, len - 3);
3907 alc[len - 3] = '\0';
3908 s = bfd_get_section_by_name (abfd, alc);
3909 free (alc);
3910 if (s != NULL)
3911 {
3912 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3913
3914 /* This is a .stab section. */
3915 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3916 elf_section_data (s)->this_hdr.sh_entsize
3917 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3918 }
3919 }
3920 break;
3921
3922 case SHT_DYNAMIC:
3923 case SHT_DYNSYM:
3924 case SHT_GNU_verneed:
3925 case SHT_GNU_verdef:
3926 /* sh_link is the section header index of the string table
3927 used for the dynamic entries, or the symbol table, or the
3928 version strings. */
3929 s = bfd_get_section_by_name (abfd, ".dynstr");
3930 if (s != NULL)
3931 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3932 break;
3933
3934 case SHT_GNU_LIBLIST:
3935 /* sh_link is the section header index of the prelink library
3936 list used for the dynamic entries, or the symbol table, or
3937 the version strings. */
3938 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3939 ? ".dynstr" : ".gnu.libstr");
3940 if (s != NULL)
3941 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3942 break;
3943
3944 case SHT_HASH:
3945 case SHT_GNU_HASH:
3946 case SHT_GNU_versym:
3947 /* sh_link is the section header index of the symbol table
3948 this hash table or version table is for. */
3949 s = bfd_get_section_by_name (abfd, ".dynsym");
3950 if (s != NULL)
3951 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3952 break;
3953
3954 case SHT_GROUP:
3955 d->this_hdr.sh_link = elf_onesymtab (abfd);
3956 }
3957 }
3958
3959 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3960 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3961 debug section name from .debug_* to .zdebug_* if needed. */
3962
3963 return TRUE;
3964 }
3965
3966 static bfd_boolean
3967 sym_is_global (bfd *abfd, asymbol *sym)
3968 {
3969 /* If the backend has a special mapping, use it. */
3970 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3971 if (bed->elf_backend_sym_is_global)
3972 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3973
3974 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3975 || bfd_is_und_section (bfd_get_section (sym))
3976 || bfd_is_com_section (bfd_get_section (sym)));
3977 }
3978
3979 /* Filter global symbols of ABFD to include in the import library. All
3980 SYMCOUNT symbols of ABFD can be examined from their pointers in
3981 SYMS. Pointers of symbols to keep should be stored contiguously at
3982 the beginning of that array.
3983
3984 Returns the number of symbols to keep. */
3985
3986 unsigned int
3987 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3988 asymbol **syms, long symcount)
3989 {
3990 long src_count, dst_count = 0;
3991
3992 for (src_count = 0; src_count < symcount; src_count++)
3993 {
3994 asymbol *sym = syms[src_count];
3995 char *name = (char *) bfd_asymbol_name (sym);
3996 struct bfd_link_hash_entry *h;
3997
3998 if (!sym_is_global (abfd, sym))
3999 continue;
4000
4001 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4002 if (h == NULL)
4003 continue;
4004 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4005 continue;
4006 if (h->linker_def || h->ldscript_def)
4007 continue;
4008
4009 syms[dst_count++] = sym;
4010 }
4011
4012 syms[dst_count] = NULL;
4013
4014 return dst_count;
4015 }
4016
4017 /* Don't output section symbols for sections that are not going to be
4018 output, that are duplicates or there is no BFD section. */
4019
4020 static bfd_boolean
4021 ignore_section_sym (bfd *abfd, asymbol *sym)
4022 {
4023 elf_symbol_type *type_ptr;
4024
4025 if ((sym->flags & BSF_SECTION_SYM) == 0)
4026 return FALSE;
4027
4028 type_ptr = elf_symbol_from (abfd, sym);
4029 return ((type_ptr != NULL
4030 && type_ptr->internal_elf_sym.st_shndx != 0
4031 && bfd_is_abs_section (sym->section))
4032 || !(sym->section->owner == abfd
4033 || (sym->section->output_section->owner == abfd
4034 && sym->section->output_offset == 0)
4035 || bfd_is_abs_section (sym->section)));
4036 }
4037
4038 /* Map symbol from it's internal number to the external number, moving
4039 all local symbols to be at the head of the list. */
4040
4041 static bfd_boolean
4042 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4043 {
4044 unsigned int symcount = bfd_get_symcount (abfd);
4045 asymbol **syms = bfd_get_outsymbols (abfd);
4046 asymbol **sect_syms;
4047 unsigned int num_locals = 0;
4048 unsigned int num_globals = 0;
4049 unsigned int num_locals2 = 0;
4050 unsigned int num_globals2 = 0;
4051 unsigned int max_index = 0;
4052 unsigned int idx;
4053 asection *asect;
4054 asymbol **new_syms;
4055
4056 #ifdef DEBUG
4057 fprintf (stderr, "elf_map_symbols\n");
4058 fflush (stderr);
4059 #endif
4060
4061 for (asect = abfd->sections; asect; asect = asect->next)
4062 {
4063 if (max_index < asect->index)
4064 max_index = asect->index;
4065 }
4066
4067 max_index++;
4068 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4069 if (sect_syms == NULL)
4070 return FALSE;
4071 elf_section_syms (abfd) = sect_syms;
4072 elf_num_section_syms (abfd) = max_index;
4073
4074 /* Init sect_syms entries for any section symbols we have already
4075 decided to output. */
4076 for (idx = 0; idx < symcount; idx++)
4077 {
4078 asymbol *sym = syms[idx];
4079
4080 if ((sym->flags & BSF_SECTION_SYM) != 0
4081 && sym->value == 0
4082 && !ignore_section_sym (abfd, sym)
4083 && !bfd_is_abs_section (sym->section))
4084 {
4085 asection *sec = sym->section;
4086
4087 if (sec->owner != abfd)
4088 sec = sec->output_section;
4089
4090 sect_syms[sec->index] = syms[idx];
4091 }
4092 }
4093
4094 /* Classify all of the symbols. */
4095 for (idx = 0; idx < symcount; idx++)
4096 {
4097 if (sym_is_global (abfd, syms[idx]))
4098 num_globals++;
4099 else if (!ignore_section_sym (abfd, syms[idx]))
4100 num_locals++;
4101 }
4102
4103 /* We will be adding a section symbol for each normal BFD section. Most
4104 sections will already have a section symbol in outsymbols, but
4105 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4106 at least in that case. */
4107 for (asect = abfd->sections; asect; asect = asect->next)
4108 {
4109 if (sect_syms[asect->index] == NULL)
4110 {
4111 if (!sym_is_global (abfd, asect->symbol))
4112 num_locals++;
4113 else
4114 num_globals++;
4115 }
4116 }
4117
4118 /* Now sort the symbols so the local symbols are first. */
4119 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4120 sizeof (asymbol *));
4121
4122 if (new_syms == NULL)
4123 return FALSE;
4124
4125 for (idx = 0; idx < symcount; idx++)
4126 {
4127 asymbol *sym = syms[idx];
4128 unsigned int i;
4129
4130 if (sym_is_global (abfd, sym))
4131 i = num_locals + num_globals2++;
4132 else if (!ignore_section_sym (abfd, sym))
4133 i = num_locals2++;
4134 else
4135 continue;
4136 new_syms[i] = sym;
4137 sym->udata.i = i + 1;
4138 }
4139 for (asect = abfd->sections; asect; asect = asect->next)
4140 {
4141 if (sect_syms[asect->index] == NULL)
4142 {
4143 asymbol *sym = asect->symbol;
4144 unsigned int i;
4145
4146 sect_syms[asect->index] = sym;
4147 if (!sym_is_global (abfd, sym))
4148 i = num_locals2++;
4149 else
4150 i = num_locals + num_globals2++;
4151 new_syms[i] = sym;
4152 sym->udata.i = i + 1;
4153 }
4154 }
4155
4156 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4157
4158 *pnum_locals = num_locals;
4159 return TRUE;
4160 }
4161
4162 /* Align to the maximum file alignment that could be required for any
4163 ELF data structure. */
4164
4165 static inline file_ptr
4166 align_file_position (file_ptr off, int align)
4167 {
4168 return (off + align - 1) & ~(align - 1);
4169 }
4170
4171 /* Assign a file position to a section, optionally aligning to the
4172 required section alignment. */
4173
4174 file_ptr
4175 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4176 file_ptr offset,
4177 bfd_boolean align)
4178 {
4179 if (align && i_shdrp->sh_addralign > 1)
4180 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4181 i_shdrp->sh_offset = offset;
4182 if (i_shdrp->bfd_section != NULL)
4183 i_shdrp->bfd_section->filepos = offset;
4184 if (i_shdrp->sh_type != SHT_NOBITS)
4185 offset += i_shdrp->sh_size;
4186 return offset;
4187 }
4188
4189 /* Compute the file positions we are going to put the sections at, and
4190 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4191 is not NULL, this is being called by the ELF backend linker. */
4192
4193 bfd_boolean
4194 _bfd_elf_compute_section_file_positions (bfd *abfd,
4195 struct bfd_link_info *link_info)
4196 {
4197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4198 struct fake_section_arg fsargs;
4199 bfd_boolean failed;
4200 struct elf_strtab_hash *strtab = NULL;
4201 Elf_Internal_Shdr *shstrtab_hdr;
4202 bfd_boolean need_symtab;
4203
4204 if (abfd->output_has_begun)
4205 return TRUE;
4206
4207 /* Do any elf backend specific processing first. */
4208 if (bed->elf_backend_begin_write_processing)
4209 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4210
4211 if (! prep_headers (abfd))
4212 return FALSE;
4213
4214 /* Post process the headers if necessary. */
4215 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4216
4217 fsargs.failed = FALSE;
4218 fsargs.link_info = link_info;
4219 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4220 if (fsargs.failed)
4221 return FALSE;
4222
4223 if (!assign_section_numbers (abfd, link_info))
4224 return FALSE;
4225
4226 /* The backend linker builds symbol table information itself. */
4227 need_symtab = (link_info == NULL
4228 && (bfd_get_symcount (abfd) > 0
4229 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4230 == HAS_RELOC)));
4231 if (need_symtab)
4232 {
4233 /* Non-zero if doing a relocatable link. */
4234 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4235
4236 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4237 return FALSE;
4238 }
4239
4240 failed = FALSE;
4241 if (link_info == NULL)
4242 {
4243 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4244 if (failed)
4245 return FALSE;
4246 }
4247
4248 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4249 /* sh_name was set in prep_headers. */
4250 shstrtab_hdr->sh_type = SHT_STRTAB;
4251 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4252 shstrtab_hdr->sh_addr = 0;
4253 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4254 shstrtab_hdr->sh_entsize = 0;
4255 shstrtab_hdr->sh_link = 0;
4256 shstrtab_hdr->sh_info = 0;
4257 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4258 shstrtab_hdr->sh_addralign = 1;
4259
4260 if (!assign_file_positions_except_relocs (abfd, link_info))
4261 return FALSE;
4262
4263 if (need_symtab)
4264 {
4265 file_ptr off;
4266 Elf_Internal_Shdr *hdr;
4267
4268 off = elf_next_file_pos (abfd);
4269
4270 hdr = & elf_symtab_hdr (abfd);
4271 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4272
4273 if (elf_symtab_shndx_list (abfd) != NULL)
4274 {
4275 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4276 if (hdr->sh_size != 0)
4277 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4278 /* FIXME: What about other symtab_shndx sections in the list ? */
4279 }
4280
4281 hdr = &elf_tdata (abfd)->strtab_hdr;
4282 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4283
4284 elf_next_file_pos (abfd) = off;
4285
4286 /* Now that we know where the .strtab section goes, write it
4287 out. */
4288 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4289 || ! _bfd_elf_strtab_emit (abfd, strtab))
4290 return FALSE;
4291 _bfd_elf_strtab_free (strtab);
4292 }
4293
4294 abfd->output_has_begun = TRUE;
4295
4296 return TRUE;
4297 }
4298
4299 /* Make an initial estimate of the size of the program header. If we
4300 get the number wrong here, we'll redo section placement. */
4301
4302 static bfd_size_type
4303 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4304 {
4305 size_t segs;
4306 asection *s;
4307 const struct elf_backend_data *bed;
4308
4309 /* Assume we will need exactly two PT_LOAD segments: one for text
4310 and one for data. */
4311 segs = 2;
4312
4313 s = bfd_get_section_by_name (abfd, ".interp");
4314 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4315 {
4316 /* If we have a loadable interpreter section, we need a
4317 PT_INTERP segment. In this case, assume we also need a
4318 PT_PHDR segment, although that may not be true for all
4319 targets. */
4320 segs += 2;
4321 }
4322
4323 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4324 {
4325 /* We need a PT_DYNAMIC segment. */
4326 ++segs;
4327 }
4328
4329 if (info != NULL && info->relro)
4330 {
4331 /* We need a PT_GNU_RELRO segment. */
4332 ++segs;
4333 }
4334
4335 if (elf_eh_frame_hdr (abfd))
4336 {
4337 /* We need a PT_GNU_EH_FRAME segment. */
4338 ++segs;
4339 }
4340
4341 if (elf_stack_flags (abfd))
4342 {
4343 /* We need a PT_GNU_STACK segment. */
4344 ++segs;
4345 }
4346
4347 for (s = abfd->sections; s != NULL; s = s->next)
4348 {
4349 if ((s->flags & SEC_LOAD) != 0
4350 && CONST_STRNEQ (s->name, ".note"))
4351 {
4352 /* We need a PT_NOTE segment. */
4353 ++segs;
4354 /* Try to create just one PT_NOTE segment
4355 for all adjacent loadable .note* sections.
4356 gABI requires that within a PT_NOTE segment
4357 (and also inside of each SHT_NOTE section)
4358 each note is padded to a multiple of 4 size,
4359 so we check whether the sections are correctly
4360 aligned. */
4361 if (s->alignment_power == 2)
4362 while (s->next != NULL
4363 && s->next->alignment_power == 2
4364 && (s->next->flags & SEC_LOAD) != 0
4365 && CONST_STRNEQ (s->next->name, ".note"))
4366 s = s->next;
4367 }
4368 }
4369
4370 for (s = abfd->sections; s != NULL; s = s->next)
4371 {
4372 if (s->flags & SEC_THREAD_LOCAL)
4373 {
4374 /* We need a PT_TLS segment. */
4375 ++segs;
4376 break;
4377 }
4378 }
4379
4380 bed = get_elf_backend_data (abfd);
4381
4382 if ((abfd->flags & D_PAGED) != 0)
4383 {
4384 /* Add a PT_GNU_MBIND segment for each mbind section. */
4385 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4386 for (s = abfd->sections; s != NULL; s = s->next)
4387 if (elf_section_flags (s) & SHF_GNU_MBIND)
4388 {
4389 if (elf_section_data (s)->this_hdr.sh_info
4390 > PT_GNU_MBIND_NUM)
4391 {
4392 _bfd_error_handler
4393 /* xgettext:c-format */
4394 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4395 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4396 continue;
4397 }
4398 /* Align mbind section to page size. */
4399 if (s->alignment_power < page_align_power)
4400 s->alignment_power = page_align_power;
4401 segs ++;
4402 }
4403 }
4404
4405 /* Let the backend count up any program headers it might need. */
4406 if (bed->elf_backend_additional_program_headers)
4407 {
4408 int a;
4409
4410 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4411 if (a == -1)
4412 abort ();
4413 segs += a;
4414 }
4415
4416 return segs * bed->s->sizeof_phdr;
4417 }
4418
4419 /* Find the segment that contains the output_section of section. */
4420
4421 Elf_Internal_Phdr *
4422 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4423 {
4424 struct elf_segment_map *m;
4425 Elf_Internal_Phdr *p;
4426
4427 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4428 m != NULL;
4429 m = m->next, p++)
4430 {
4431 int i;
4432
4433 for (i = m->count - 1; i >= 0; i--)
4434 if (m->sections[i] == section)
4435 return p;
4436 }
4437
4438 return NULL;
4439 }
4440
4441 /* Create a mapping from a set of sections to a program segment. */
4442
4443 static struct elf_segment_map *
4444 make_mapping (bfd *abfd,
4445 asection **sections,
4446 unsigned int from,
4447 unsigned int to,
4448 bfd_boolean phdr)
4449 {
4450 struct elf_segment_map *m;
4451 unsigned int i;
4452 asection **hdrpp;
4453 bfd_size_type amt;
4454
4455 amt = sizeof (struct elf_segment_map);
4456 amt += (to - from - 1) * sizeof (asection *);
4457 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4458 if (m == NULL)
4459 return NULL;
4460 m->next = NULL;
4461 m->p_type = PT_LOAD;
4462 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4463 m->sections[i - from] = *hdrpp;
4464 m->count = to - from;
4465
4466 if (from == 0 && phdr)
4467 {
4468 /* Include the headers in the first PT_LOAD segment. */
4469 m->includes_filehdr = 1;
4470 m->includes_phdrs = 1;
4471 }
4472
4473 return m;
4474 }
4475
4476 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4477 on failure. */
4478
4479 struct elf_segment_map *
4480 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4481 {
4482 struct elf_segment_map *m;
4483
4484 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4485 sizeof (struct elf_segment_map));
4486 if (m == NULL)
4487 return NULL;
4488 m->next = NULL;
4489 m->p_type = PT_DYNAMIC;
4490 m->count = 1;
4491 m->sections[0] = dynsec;
4492
4493 return m;
4494 }
4495
4496 /* Possibly add or remove segments from the segment map. */
4497
4498 static bfd_boolean
4499 elf_modify_segment_map (bfd *abfd,
4500 struct bfd_link_info *info,
4501 bfd_boolean remove_empty_load)
4502 {
4503 struct elf_segment_map **m;
4504 const struct elf_backend_data *bed;
4505
4506 /* The placement algorithm assumes that non allocated sections are
4507 not in PT_LOAD segments. We ensure this here by removing such
4508 sections from the segment map. We also remove excluded
4509 sections. Finally, any PT_LOAD segment without sections is
4510 removed. */
4511 m = &elf_seg_map (abfd);
4512 while (*m)
4513 {
4514 unsigned int i, new_count;
4515
4516 for (new_count = 0, i = 0; i < (*m)->count; i++)
4517 {
4518 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4519 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4520 || (*m)->p_type != PT_LOAD))
4521 {
4522 (*m)->sections[new_count] = (*m)->sections[i];
4523 new_count++;
4524 }
4525 }
4526 (*m)->count = new_count;
4527
4528 if (remove_empty_load
4529 && (*m)->p_type == PT_LOAD
4530 && (*m)->count == 0
4531 && !(*m)->includes_phdrs)
4532 *m = (*m)->next;
4533 else
4534 m = &(*m)->next;
4535 }
4536
4537 bed = get_elf_backend_data (abfd);
4538 if (bed->elf_backend_modify_segment_map != NULL)
4539 {
4540 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4541 return FALSE;
4542 }
4543
4544 return TRUE;
4545 }
4546
4547 #define IS_TBSS(s) \
4548 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4549
4550 /* Set up a mapping from BFD sections to program segments. */
4551
4552 bfd_boolean
4553 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4554 {
4555 unsigned int count;
4556 struct elf_segment_map *m;
4557 asection **sections = NULL;
4558 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4559 bfd_boolean no_user_phdrs;
4560
4561 no_user_phdrs = elf_seg_map (abfd) == NULL;
4562
4563 if (info != NULL)
4564 info->user_phdrs = !no_user_phdrs;
4565
4566 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4567 {
4568 asection *s;
4569 unsigned int i;
4570 struct elf_segment_map *mfirst;
4571 struct elf_segment_map **pm;
4572 asection *last_hdr;
4573 bfd_vma last_size;
4574 unsigned int phdr_index;
4575 bfd_vma maxpagesize;
4576 asection **hdrpp;
4577 bfd_boolean phdr_in_segment = TRUE;
4578 bfd_boolean writable;
4579 bfd_boolean executable;
4580 int tls_count = 0;
4581 asection *first_tls = NULL;
4582 asection *first_mbind = NULL;
4583 asection *dynsec, *eh_frame_hdr;
4584 bfd_size_type amt;
4585 bfd_vma addr_mask, wrap_to = 0;
4586 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4587
4588 /* Select the allocated sections, and sort them. */
4589
4590 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4591 sizeof (asection *));
4592 if (sections == NULL)
4593 goto error_return;
4594
4595 /* Calculate top address, avoiding undefined behaviour of shift
4596 left operator when shift count is equal to size of type
4597 being shifted. */
4598 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4599 addr_mask = (addr_mask << 1) + 1;
4600
4601 i = 0;
4602 for (s = abfd->sections; s != NULL; s = s->next)
4603 {
4604 if ((s->flags & SEC_ALLOC) != 0)
4605 {
4606 sections[i] = s;
4607 ++i;
4608 /* A wrapping section potentially clashes with header. */
4609 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4610 wrap_to = (s->lma + s->size) & addr_mask;
4611 }
4612 }
4613 BFD_ASSERT (i <= bfd_count_sections (abfd));
4614 count = i;
4615
4616 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4617
4618 /* Build the mapping. */
4619
4620 mfirst = NULL;
4621 pm = &mfirst;
4622
4623 /* If we have a .interp section, then create a PT_PHDR segment for
4624 the program headers and a PT_INTERP segment for the .interp
4625 section. */
4626 s = bfd_get_section_by_name (abfd, ".interp");
4627 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4628 {
4629 amt = sizeof (struct elf_segment_map);
4630 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4631 if (m == NULL)
4632 goto error_return;
4633 m->next = NULL;
4634 m->p_type = PT_PHDR;
4635 m->p_flags = PF_R;
4636 m->p_flags_valid = 1;
4637 m->includes_phdrs = 1;
4638 linker_created_pt_phdr_segment = TRUE;
4639 *pm = m;
4640 pm = &m->next;
4641
4642 amt = sizeof (struct elf_segment_map);
4643 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4644 if (m == NULL)
4645 goto error_return;
4646 m->next = NULL;
4647 m->p_type = PT_INTERP;
4648 m->count = 1;
4649 m->sections[0] = s;
4650
4651 *pm = m;
4652 pm = &m->next;
4653 }
4654
4655 /* Look through the sections. We put sections in the same program
4656 segment when the start of the second section can be placed within
4657 a few bytes of the end of the first section. */
4658 last_hdr = NULL;
4659 last_size = 0;
4660 phdr_index = 0;
4661 maxpagesize = bed->maxpagesize;
4662 /* PR 17512: file: c8455299.
4663 Avoid divide-by-zero errors later on.
4664 FIXME: Should we abort if the maxpagesize is zero ? */
4665 if (maxpagesize == 0)
4666 maxpagesize = 1;
4667 writable = FALSE;
4668 executable = FALSE;
4669 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4670 if (dynsec != NULL
4671 && (dynsec->flags & SEC_LOAD) == 0)
4672 dynsec = NULL;
4673
4674 /* Deal with -Ttext or something similar such that the first section
4675 is not adjacent to the program headers. This is an
4676 approximation, since at this point we don't know exactly how many
4677 program headers we will need. */
4678 if (count > 0)
4679 {
4680 bfd_size_type phdr_size = elf_program_header_size (abfd);
4681
4682 if (phdr_size == (bfd_size_type) -1)
4683 phdr_size = get_program_header_size (abfd, info);
4684 phdr_size += bed->s->sizeof_ehdr;
4685 if ((abfd->flags & D_PAGED) == 0
4686 || (sections[0]->lma & addr_mask) < phdr_size
4687 || ((sections[0]->lma & addr_mask) % maxpagesize
4688 < phdr_size % maxpagesize)
4689 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4690 {
4691 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4692 present, must be included as part of the memory image of the
4693 program. Ie it must be part of a PT_LOAD segment as well.
4694 If we have had to create our own PT_PHDR segment, but it is
4695 not going to be covered by the first PT_LOAD segment, then
4696 force the inclusion if we can... */
4697 if ((abfd->flags & D_PAGED) != 0
4698 && linker_created_pt_phdr_segment)
4699 phdr_in_segment = TRUE;
4700 else
4701 phdr_in_segment = FALSE;
4702 }
4703 }
4704
4705 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4706 {
4707 asection *hdr;
4708 bfd_boolean new_segment;
4709
4710 hdr = *hdrpp;
4711
4712 /* See if this section and the last one will fit in the same
4713 segment. */
4714
4715 if (last_hdr == NULL)
4716 {
4717 /* If we don't have a segment yet, then we don't need a new
4718 one (we build the last one after this loop). */
4719 new_segment = FALSE;
4720 }
4721 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4722 {
4723 /* If this section has a different relation between the
4724 virtual address and the load address, then we need a new
4725 segment. */
4726 new_segment = TRUE;
4727 }
4728 else if (hdr->lma < last_hdr->lma + last_size
4729 || last_hdr->lma + last_size < last_hdr->lma)
4730 {
4731 /* If this section has a load address that makes it overlap
4732 the previous section, then we need a new segment. */
4733 new_segment = TRUE;
4734 }
4735 else if ((abfd->flags & D_PAGED) != 0
4736 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4737 == (hdr->lma & -maxpagesize)))
4738 {
4739 /* If we are demand paged then we can't map two disk
4740 pages onto the same memory page. */
4741 new_segment = FALSE;
4742 }
4743 /* In the next test we have to be careful when last_hdr->lma is close
4744 to the end of the address space. If the aligned address wraps
4745 around to the start of the address space, then there are no more
4746 pages left in memory and it is OK to assume that the current
4747 section can be included in the current segment. */
4748 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4749 + maxpagesize > last_hdr->lma)
4750 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4751 + maxpagesize <= hdr->lma))
4752 {
4753 /* If putting this section in this segment would force us to
4754 skip a page in the segment, then we need a new segment. */
4755 new_segment = TRUE;
4756 }
4757 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4758 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4759 {
4760 /* We don't want to put a loaded section after a
4761 nonloaded (ie. bss style) section in the same segment
4762 as that will force the non-loaded section to be loaded.
4763 Consider .tbss sections as loaded for this purpose. */
4764 new_segment = TRUE;
4765 }
4766 else if ((abfd->flags & D_PAGED) == 0)
4767 {
4768 /* If the file is not demand paged, which means that we
4769 don't require the sections to be correctly aligned in the
4770 file, then there is no other reason for a new segment. */
4771 new_segment = FALSE;
4772 }
4773 else if (info != NULL
4774 && info->separate_code
4775 && executable != ((hdr->flags & SEC_CODE) != 0))
4776 {
4777 new_segment = TRUE;
4778 }
4779 else if (! writable
4780 && (hdr->flags & SEC_READONLY) == 0)
4781 {
4782 /* We don't want to put a writable section in a read only
4783 segment. */
4784 new_segment = TRUE;
4785 }
4786 else
4787 {
4788 /* Otherwise, we can use the same segment. */
4789 new_segment = FALSE;
4790 }
4791
4792 /* Allow interested parties a chance to override our decision. */
4793 if (last_hdr != NULL
4794 && info != NULL
4795 && info->callbacks->override_segment_assignment != NULL)
4796 new_segment
4797 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4798 last_hdr,
4799 new_segment);
4800
4801 if (! new_segment)
4802 {
4803 if ((hdr->flags & SEC_READONLY) == 0)
4804 writable = TRUE;
4805 if ((hdr->flags & SEC_CODE) != 0)
4806 executable = TRUE;
4807 last_hdr = hdr;
4808 /* .tbss sections effectively have zero size. */
4809 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4810 continue;
4811 }
4812
4813 /* We need a new program segment. We must create a new program
4814 header holding all the sections from phdr_index until hdr. */
4815
4816 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4817 if (m == NULL)
4818 goto error_return;
4819
4820 *pm = m;
4821 pm = &m->next;
4822
4823 if ((hdr->flags & SEC_READONLY) == 0)
4824 writable = TRUE;
4825 else
4826 writable = FALSE;
4827
4828 if ((hdr->flags & SEC_CODE) == 0)
4829 executable = FALSE;
4830 else
4831 executable = TRUE;
4832
4833 last_hdr = hdr;
4834 /* .tbss sections effectively have zero size. */
4835 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4836 phdr_index = i;
4837 phdr_in_segment = FALSE;
4838 }
4839
4840 /* Create a final PT_LOAD program segment, but not if it's just
4841 for .tbss. */
4842 if (last_hdr != NULL
4843 && (i - phdr_index != 1
4844 || !IS_TBSS (last_hdr)))
4845 {
4846 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4847 if (m == NULL)
4848 goto error_return;
4849
4850 *pm = m;
4851 pm = &m->next;
4852 }
4853
4854 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4855 if (dynsec != NULL)
4856 {
4857 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4858 if (m == NULL)
4859 goto error_return;
4860 *pm = m;
4861 pm = &m->next;
4862 }
4863
4864 /* For each batch of consecutive loadable .note sections,
4865 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4866 because if we link together nonloadable .note sections and
4867 loadable .note sections, we will generate two .note sections
4868 in the output file. FIXME: Using names for section types is
4869 bogus anyhow. */
4870 for (s = abfd->sections; s != NULL; s = s->next)
4871 {
4872 if ((s->flags & SEC_LOAD) != 0
4873 && CONST_STRNEQ (s->name, ".note"))
4874 {
4875 asection *s2;
4876
4877 count = 1;
4878 amt = sizeof (struct elf_segment_map);
4879 if (s->alignment_power == 2)
4880 for (s2 = s; s2->next != NULL; s2 = s2->next)
4881 {
4882 if (s2->next->alignment_power == 2
4883 && (s2->next->flags & SEC_LOAD) != 0
4884 && CONST_STRNEQ (s2->next->name, ".note")
4885 && align_power (s2->lma + s2->size, 2)
4886 == s2->next->lma)
4887 count++;
4888 else
4889 break;
4890 }
4891 amt += (count - 1) * sizeof (asection *);
4892 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4893 if (m == NULL)
4894 goto error_return;
4895 m->next = NULL;
4896 m->p_type = PT_NOTE;
4897 m->count = count;
4898 while (count > 1)
4899 {
4900 m->sections[m->count - count--] = s;
4901 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4902 s = s->next;
4903 }
4904 m->sections[m->count - 1] = s;
4905 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4906 *pm = m;
4907 pm = &m->next;
4908 }
4909 if (s->flags & SEC_THREAD_LOCAL)
4910 {
4911 if (! tls_count)
4912 first_tls = s;
4913 tls_count++;
4914 }
4915 if (first_mbind == NULL
4916 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4917 first_mbind = s;
4918 }
4919
4920 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4921 if (tls_count > 0)
4922 {
4923 amt = sizeof (struct elf_segment_map);
4924 amt += (tls_count - 1) * sizeof (asection *);
4925 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4926 if (m == NULL)
4927 goto error_return;
4928 m->next = NULL;
4929 m->p_type = PT_TLS;
4930 m->count = tls_count;
4931 /* Mandated PF_R. */
4932 m->p_flags = PF_R;
4933 m->p_flags_valid = 1;
4934 s = first_tls;
4935 for (i = 0; i < (unsigned int) tls_count; ++i)
4936 {
4937 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4938 {
4939 _bfd_error_handler
4940 (_("%pB: TLS sections are not adjacent:"), abfd);
4941 s = first_tls;
4942 i = 0;
4943 while (i < (unsigned int) tls_count)
4944 {
4945 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4946 {
4947 _bfd_error_handler (_(" TLS: %pA"), s);
4948 i++;
4949 }
4950 else
4951 _bfd_error_handler (_(" non-TLS: %pA"), s);
4952 s = s->next;
4953 }
4954 bfd_set_error (bfd_error_bad_value);
4955 goto error_return;
4956 }
4957 m->sections[i] = s;
4958 s = s->next;
4959 }
4960
4961 *pm = m;
4962 pm = &m->next;
4963 }
4964
4965 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4966 for (s = first_mbind; s != NULL; s = s->next)
4967 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4968 && (elf_section_data (s)->this_hdr.sh_info
4969 <= PT_GNU_MBIND_NUM))
4970 {
4971 /* Mandated PF_R. */
4972 unsigned long p_flags = PF_R;
4973 if ((s->flags & SEC_READONLY) == 0)
4974 p_flags |= PF_W;
4975 if ((s->flags & SEC_CODE) != 0)
4976 p_flags |= PF_X;
4977
4978 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4979 m = bfd_zalloc (abfd, amt);
4980 if (m == NULL)
4981 goto error_return;
4982 m->next = NULL;
4983 m->p_type = (PT_GNU_MBIND_LO
4984 + elf_section_data (s)->this_hdr.sh_info);
4985 m->count = 1;
4986 m->p_flags_valid = 1;
4987 m->sections[0] = s;
4988 m->p_flags = p_flags;
4989
4990 *pm = m;
4991 pm = &m->next;
4992 }
4993
4994 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4995 segment. */
4996 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4997 if (eh_frame_hdr != NULL
4998 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4999 {
5000 amt = sizeof (struct elf_segment_map);
5001 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5002 if (m == NULL)
5003 goto error_return;
5004 m->next = NULL;
5005 m->p_type = PT_GNU_EH_FRAME;
5006 m->count = 1;
5007 m->sections[0] = eh_frame_hdr->output_section;
5008
5009 *pm = m;
5010 pm = &m->next;
5011 }
5012
5013 if (elf_stack_flags (abfd))
5014 {
5015 amt = sizeof (struct elf_segment_map);
5016 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5017 if (m == NULL)
5018 goto error_return;
5019 m->next = NULL;
5020 m->p_type = PT_GNU_STACK;
5021 m->p_flags = elf_stack_flags (abfd);
5022 m->p_align = bed->stack_align;
5023 m->p_flags_valid = 1;
5024 m->p_align_valid = m->p_align != 0;
5025 if (info->stacksize > 0)
5026 {
5027 m->p_size = info->stacksize;
5028 m->p_size_valid = 1;
5029 }
5030
5031 *pm = m;
5032 pm = &m->next;
5033 }
5034
5035 if (info != NULL && info->relro)
5036 {
5037 for (m = mfirst; m != NULL; m = m->next)
5038 {
5039 if (m->p_type == PT_LOAD
5040 && m->count != 0
5041 && m->sections[0]->vma >= info->relro_start
5042 && m->sections[0]->vma < info->relro_end)
5043 {
5044 i = m->count;
5045 while (--i != (unsigned) -1)
5046 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5047 == (SEC_LOAD | SEC_HAS_CONTENTS))
5048 break;
5049
5050 if (i != (unsigned) -1)
5051 break;
5052 }
5053 }
5054
5055 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5056 if (m != NULL)
5057 {
5058 amt = sizeof (struct elf_segment_map);
5059 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5060 if (m == NULL)
5061 goto error_return;
5062 m->next = NULL;
5063 m->p_type = PT_GNU_RELRO;
5064 *pm = m;
5065 pm = &m->next;
5066 }
5067 }
5068
5069 free (sections);
5070 elf_seg_map (abfd) = mfirst;
5071 }
5072
5073 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5074 return FALSE;
5075
5076 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5077 ++count;
5078 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5079
5080 return TRUE;
5081
5082 error_return:
5083 if (sections != NULL)
5084 free (sections);
5085 return FALSE;
5086 }
5087
5088 /* Sort sections by address. */
5089
5090 static int
5091 elf_sort_sections (const void *arg1, const void *arg2)
5092 {
5093 const asection *sec1 = *(const asection **) arg1;
5094 const asection *sec2 = *(const asection **) arg2;
5095 bfd_size_type size1, size2;
5096
5097 /* Sort by LMA first, since this is the address used to
5098 place the section into a segment. */
5099 if (sec1->lma < sec2->lma)
5100 return -1;
5101 else if (sec1->lma > sec2->lma)
5102 return 1;
5103
5104 /* Then sort by VMA. Normally the LMA and the VMA will be
5105 the same, and this will do nothing. */
5106 if (sec1->vma < sec2->vma)
5107 return -1;
5108 else if (sec1->vma > sec2->vma)
5109 return 1;
5110
5111 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5112
5113 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5114
5115 if (TOEND (sec1))
5116 {
5117 if (TOEND (sec2))
5118 {
5119 /* If the indicies are the same, do not return 0
5120 here, but continue to try the next comparison. */
5121 if (sec1->target_index - sec2->target_index != 0)
5122 return sec1->target_index - sec2->target_index;
5123 }
5124 else
5125 return 1;
5126 }
5127 else if (TOEND (sec2))
5128 return -1;
5129
5130 #undef TOEND
5131
5132 /* Sort by size, to put zero sized sections
5133 before others at the same address. */
5134
5135 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5136 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5137
5138 if (size1 < size2)
5139 return -1;
5140 if (size1 > size2)
5141 return 1;
5142
5143 return sec1->target_index - sec2->target_index;
5144 }
5145
5146 /* Ian Lance Taylor writes:
5147
5148 We shouldn't be using % with a negative signed number. That's just
5149 not good. We have to make sure either that the number is not
5150 negative, or that the number has an unsigned type. When the types
5151 are all the same size they wind up as unsigned. When file_ptr is a
5152 larger signed type, the arithmetic winds up as signed long long,
5153 which is wrong.
5154
5155 What we're trying to say here is something like ``increase OFF by
5156 the least amount that will cause it to be equal to the VMA modulo
5157 the page size.'' */
5158 /* In other words, something like:
5159
5160 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5161 off_offset = off % bed->maxpagesize;
5162 if (vma_offset < off_offset)
5163 adjustment = vma_offset + bed->maxpagesize - off_offset;
5164 else
5165 adjustment = vma_offset - off_offset;
5166
5167 which can be collapsed into the expression below. */
5168
5169 static file_ptr
5170 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5171 {
5172 /* PR binutils/16199: Handle an alignment of zero. */
5173 if (maxpagesize == 0)
5174 maxpagesize = 1;
5175 return ((vma - off) % maxpagesize);
5176 }
5177
5178 static void
5179 print_segment_map (const struct elf_segment_map *m)
5180 {
5181 unsigned int j;
5182 const char *pt = get_segment_type (m->p_type);
5183 char buf[32];
5184
5185 if (pt == NULL)
5186 {
5187 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5188 sprintf (buf, "LOPROC+%7.7x",
5189 (unsigned int) (m->p_type - PT_LOPROC));
5190 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5191 sprintf (buf, "LOOS+%7.7x",
5192 (unsigned int) (m->p_type - PT_LOOS));
5193 else
5194 snprintf (buf, sizeof (buf), "%8.8x",
5195 (unsigned int) m->p_type);
5196 pt = buf;
5197 }
5198 fflush (stdout);
5199 fprintf (stderr, "%s:", pt);
5200 for (j = 0; j < m->count; j++)
5201 fprintf (stderr, " %s", m->sections [j]->name);
5202 putc ('\n',stderr);
5203 fflush (stderr);
5204 }
5205
5206 static bfd_boolean
5207 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5208 {
5209 void *buf;
5210 bfd_boolean ret;
5211
5212 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5213 return FALSE;
5214 buf = bfd_zmalloc (len);
5215 if (buf == NULL)
5216 return FALSE;
5217 ret = bfd_bwrite (buf, len, abfd) == len;
5218 free (buf);
5219 return ret;
5220 }
5221
5222 /* Assign file positions to the sections based on the mapping from
5223 sections to segments. This function also sets up some fields in
5224 the file header. */
5225
5226 static bfd_boolean
5227 assign_file_positions_for_load_sections (bfd *abfd,
5228 struct bfd_link_info *link_info)
5229 {
5230 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5231 struct elf_segment_map *m;
5232 Elf_Internal_Phdr *phdrs;
5233 Elf_Internal_Phdr *p;
5234 file_ptr off;
5235 bfd_size_type maxpagesize;
5236 unsigned int pt_load_count = 0;
5237 unsigned int alloc;
5238 unsigned int i, j;
5239 bfd_vma header_pad = 0;
5240
5241 if (link_info == NULL
5242 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5243 return FALSE;
5244
5245 alloc = 0;
5246 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5247 {
5248 ++alloc;
5249 if (m->header_size)
5250 header_pad = m->header_size;
5251 }
5252
5253 if (alloc)
5254 {
5255 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5256 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5257 }
5258 else
5259 {
5260 /* PR binutils/12467. */
5261 elf_elfheader (abfd)->e_phoff = 0;
5262 elf_elfheader (abfd)->e_phentsize = 0;
5263 }
5264
5265 elf_elfheader (abfd)->e_phnum = alloc;
5266
5267 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5268 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5269 else
5270 BFD_ASSERT (elf_program_header_size (abfd)
5271 >= alloc * bed->s->sizeof_phdr);
5272
5273 if (alloc == 0)
5274 {
5275 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5276 return TRUE;
5277 }
5278
5279 /* We're writing the size in elf_program_header_size (abfd),
5280 see assign_file_positions_except_relocs, so make sure we have
5281 that amount allocated, with trailing space cleared.
5282 The variable alloc contains the computed need, while
5283 elf_program_header_size (abfd) contains the size used for the
5284 layout.
5285 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5286 where the layout is forced to according to a larger size in the
5287 last iterations for the testcase ld-elf/header. */
5288 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5289 == 0);
5290 phdrs = (Elf_Internal_Phdr *)
5291 bfd_zalloc2 (abfd,
5292 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5293 sizeof (Elf_Internal_Phdr));
5294 elf_tdata (abfd)->phdr = phdrs;
5295 if (phdrs == NULL)
5296 return FALSE;
5297
5298 maxpagesize = 1;
5299 if ((abfd->flags & D_PAGED) != 0)
5300 maxpagesize = bed->maxpagesize;
5301
5302 off = bed->s->sizeof_ehdr;
5303 off += alloc * bed->s->sizeof_phdr;
5304 if (header_pad < (bfd_vma) off)
5305 header_pad = 0;
5306 else
5307 header_pad -= off;
5308 off += header_pad;
5309
5310 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5311 m != NULL;
5312 m = m->next, p++, j++)
5313 {
5314 asection **secpp;
5315 bfd_vma off_adjust;
5316 bfd_boolean no_contents;
5317
5318 /* If elf_segment_map is not from map_sections_to_segments, the
5319 sections may not be correctly ordered. NOTE: sorting should
5320 not be done to the PT_NOTE section of a corefile, which may
5321 contain several pseudo-sections artificially created by bfd.
5322 Sorting these pseudo-sections breaks things badly. */
5323 if (m->count > 1
5324 && !(elf_elfheader (abfd)->e_type == ET_CORE
5325 && m->p_type == PT_NOTE))
5326 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5327 elf_sort_sections);
5328
5329 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5330 number of sections with contents contributing to both p_filesz
5331 and p_memsz, followed by a number of sections with no contents
5332 that just contribute to p_memsz. In this loop, OFF tracks next
5333 available file offset for PT_LOAD and PT_NOTE segments. */
5334 p->p_type = m->p_type;
5335 p->p_flags = m->p_flags;
5336
5337 if (m->count == 0)
5338 p->p_vaddr = 0;
5339 else
5340 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5341
5342 if (m->p_paddr_valid)
5343 p->p_paddr = m->p_paddr;
5344 else if (m->count == 0)
5345 p->p_paddr = 0;
5346 else
5347 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5348
5349 if (p->p_type == PT_LOAD
5350 && (abfd->flags & D_PAGED) != 0)
5351 {
5352 /* p_align in demand paged PT_LOAD segments effectively stores
5353 the maximum page size. When copying an executable with
5354 objcopy, we set m->p_align from the input file. Use this
5355 value for maxpagesize rather than bed->maxpagesize, which
5356 may be different. Note that we use maxpagesize for PT_TLS
5357 segment alignment later in this function, so we are relying
5358 on at least one PT_LOAD segment appearing before a PT_TLS
5359 segment. */
5360 if (m->p_align_valid)
5361 maxpagesize = m->p_align;
5362
5363 p->p_align = maxpagesize;
5364 pt_load_count += 1;
5365 }
5366 else if (m->p_align_valid)
5367 p->p_align = m->p_align;
5368 else if (m->count == 0)
5369 p->p_align = 1 << bed->s->log_file_align;
5370 else
5371 p->p_align = 0;
5372
5373 no_contents = FALSE;
5374 off_adjust = 0;
5375 if (p->p_type == PT_LOAD
5376 && m->count > 0)
5377 {
5378 bfd_size_type align;
5379 unsigned int align_power = 0;
5380
5381 if (m->p_align_valid)
5382 align = p->p_align;
5383 else
5384 {
5385 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5386 {
5387 unsigned int secalign;
5388
5389 secalign = bfd_get_section_alignment (abfd, *secpp);
5390 if (secalign > align_power)
5391 align_power = secalign;
5392 }
5393 align = (bfd_size_type) 1 << align_power;
5394 if (align < maxpagesize)
5395 align = maxpagesize;
5396 }
5397
5398 for (i = 0; i < m->count; i++)
5399 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5400 /* If we aren't making room for this section, then
5401 it must be SHT_NOBITS regardless of what we've
5402 set via struct bfd_elf_special_section. */
5403 elf_section_type (m->sections[i]) = SHT_NOBITS;
5404
5405 /* Find out whether this segment contains any loadable
5406 sections. */
5407 no_contents = TRUE;
5408 for (i = 0; i < m->count; i++)
5409 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5410 {
5411 no_contents = FALSE;
5412 break;
5413 }
5414
5415 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5416
5417 /* Broken hardware and/or kernel require that files do not
5418 map the same page with different permissions on some hppa
5419 processors. */
5420 if (pt_load_count > 1
5421 && bed->no_page_alias
5422 && (off & (maxpagesize - 1)) != 0
5423 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5424 off_adjust += maxpagesize;
5425 off += off_adjust;
5426 if (no_contents)
5427 {
5428 /* We shouldn't need to align the segment on disk since
5429 the segment doesn't need file space, but the gABI
5430 arguably requires the alignment and glibc ld.so
5431 checks it. So to comply with the alignment
5432 requirement but not waste file space, we adjust
5433 p_offset for just this segment. (OFF_ADJUST is
5434 subtracted from OFF later.) This may put p_offset
5435 past the end of file, but that shouldn't matter. */
5436 }
5437 else
5438 off_adjust = 0;
5439 }
5440 /* Make sure the .dynamic section is the first section in the
5441 PT_DYNAMIC segment. */
5442 else if (p->p_type == PT_DYNAMIC
5443 && m->count > 1
5444 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5445 {
5446 _bfd_error_handler
5447 (_("%pB: The first section in the PT_DYNAMIC segment"
5448 " is not the .dynamic section"),
5449 abfd);
5450 bfd_set_error (bfd_error_bad_value);
5451 return FALSE;
5452 }
5453 /* Set the note section type to SHT_NOTE. */
5454 else if (p->p_type == PT_NOTE)
5455 for (i = 0; i < m->count; i++)
5456 elf_section_type (m->sections[i]) = SHT_NOTE;
5457
5458 p->p_offset = 0;
5459 p->p_filesz = 0;
5460 p->p_memsz = 0;
5461
5462 if (m->includes_filehdr)
5463 {
5464 if (!m->p_flags_valid)
5465 p->p_flags |= PF_R;
5466 p->p_filesz = bed->s->sizeof_ehdr;
5467 p->p_memsz = bed->s->sizeof_ehdr;
5468 if (m->count > 0)
5469 {
5470 if (p->p_vaddr < (bfd_vma) off
5471 || (!m->p_paddr_valid
5472 && p->p_paddr < (bfd_vma) off))
5473 {
5474 _bfd_error_handler
5475 (_("%pB: Not enough room for program headers,"
5476 " try linking with -N"),
5477 abfd);
5478 bfd_set_error (bfd_error_bad_value);
5479 return FALSE;
5480 }
5481
5482 p->p_vaddr -= off;
5483 if (!m->p_paddr_valid)
5484 p->p_paddr -= off;
5485 }
5486 }
5487
5488 if (m->includes_phdrs)
5489 {
5490 if (!m->p_flags_valid)
5491 p->p_flags |= PF_R;
5492
5493 if (!m->includes_filehdr)
5494 {
5495 p->p_offset = bed->s->sizeof_ehdr;
5496
5497 if (m->count > 0)
5498 {
5499 p->p_vaddr -= off - p->p_offset;
5500 if (!m->p_paddr_valid)
5501 p->p_paddr -= off - p->p_offset;
5502 }
5503 }
5504
5505 p->p_filesz += alloc * bed->s->sizeof_phdr;
5506 p->p_memsz += alloc * bed->s->sizeof_phdr;
5507 if (m->count)
5508 {
5509 p->p_filesz += header_pad;
5510 p->p_memsz += header_pad;
5511 }
5512 }
5513
5514 if (p->p_type == PT_LOAD
5515 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5516 {
5517 if (!m->includes_filehdr && !m->includes_phdrs)
5518 p->p_offset = off;
5519 else
5520 {
5521 file_ptr adjust;
5522
5523 adjust = off - (p->p_offset + p->p_filesz);
5524 if (!no_contents)
5525 p->p_filesz += adjust;
5526 p->p_memsz += adjust;
5527 }
5528 }
5529
5530 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5531 maps. Set filepos for sections in PT_LOAD segments, and in
5532 core files, for sections in PT_NOTE segments.
5533 assign_file_positions_for_non_load_sections will set filepos
5534 for other sections and update p_filesz for other segments. */
5535 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5536 {
5537 asection *sec;
5538 bfd_size_type align;
5539 Elf_Internal_Shdr *this_hdr;
5540
5541 sec = *secpp;
5542 this_hdr = &elf_section_data (sec)->this_hdr;
5543 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5544
5545 if ((p->p_type == PT_LOAD
5546 || p->p_type == PT_TLS)
5547 && (this_hdr->sh_type != SHT_NOBITS
5548 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5549 && ((this_hdr->sh_flags & SHF_TLS) == 0
5550 || p->p_type == PT_TLS))))
5551 {
5552 bfd_vma p_start = p->p_paddr;
5553 bfd_vma p_end = p_start + p->p_memsz;
5554 bfd_vma s_start = sec->lma;
5555 bfd_vma adjust = s_start - p_end;
5556
5557 if (adjust != 0
5558 && (s_start < p_end
5559 || p_end < p_start))
5560 {
5561 _bfd_error_handler
5562 /* xgettext:c-format */
5563 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5564 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5565 adjust = 0;
5566 sec->lma = p_end;
5567 }
5568 p->p_memsz += adjust;
5569
5570 if (this_hdr->sh_type != SHT_NOBITS)
5571 {
5572 if (p->p_filesz + adjust < p->p_memsz)
5573 {
5574 /* We have a PROGBITS section following NOBITS ones.
5575 Allocate file space for the NOBITS section(s) and
5576 zero it. */
5577 adjust = p->p_memsz - p->p_filesz;
5578 if (!write_zeros (abfd, off, adjust))
5579 return FALSE;
5580 }
5581 off += adjust;
5582 p->p_filesz += adjust;
5583 }
5584 }
5585
5586 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5587 {
5588 /* The section at i == 0 is the one that actually contains
5589 everything. */
5590 if (i == 0)
5591 {
5592 this_hdr->sh_offset = sec->filepos = off;
5593 off += this_hdr->sh_size;
5594 p->p_filesz = this_hdr->sh_size;
5595 p->p_memsz = 0;
5596 p->p_align = 1;
5597 }
5598 else
5599 {
5600 /* The rest are fake sections that shouldn't be written. */
5601 sec->filepos = 0;
5602 sec->size = 0;
5603 sec->flags = 0;
5604 continue;
5605 }
5606 }
5607 else
5608 {
5609 if (p->p_type == PT_LOAD)
5610 {
5611 this_hdr->sh_offset = sec->filepos = off;
5612 if (this_hdr->sh_type != SHT_NOBITS)
5613 off += this_hdr->sh_size;
5614 }
5615 else if (this_hdr->sh_type == SHT_NOBITS
5616 && (this_hdr->sh_flags & SHF_TLS) != 0
5617 && this_hdr->sh_offset == 0)
5618 {
5619 /* This is a .tbss section that didn't get a PT_LOAD.
5620 (See _bfd_elf_map_sections_to_segments "Create a
5621 final PT_LOAD".) Set sh_offset to the value it
5622 would have if we had created a zero p_filesz and
5623 p_memsz PT_LOAD header for the section. This
5624 also makes the PT_TLS header have the same
5625 p_offset value. */
5626 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5627 off, align);
5628 this_hdr->sh_offset = sec->filepos = off + adjust;
5629 }
5630
5631 if (this_hdr->sh_type != SHT_NOBITS)
5632 {
5633 p->p_filesz += this_hdr->sh_size;
5634 /* A load section without SHF_ALLOC is something like
5635 a note section in a PT_NOTE segment. These take
5636 file space but are not loaded into memory. */
5637 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5638 p->p_memsz += this_hdr->sh_size;
5639 }
5640 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5641 {
5642 if (p->p_type == PT_TLS)
5643 p->p_memsz += this_hdr->sh_size;
5644
5645 /* .tbss is special. It doesn't contribute to p_memsz of
5646 normal segments. */
5647 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5648 p->p_memsz += this_hdr->sh_size;
5649 }
5650
5651 if (align > p->p_align
5652 && !m->p_align_valid
5653 && (p->p_type != PT_LOAD
5654 || (abfd->flags & D_PAGED) == 0))
5655 p->p_align = align;
5656 }
5657
5658 if (!m->p_flags_valid)
5659 {
5660 p->p_flags |= PF_R;
5661 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5662 p->p_flags |= PF_X;
5663 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5664 p->p_flags |= PF_W;
5665 }
5666 }
5667
5668 off -= off_adjust;
5669
5670 /* Check that all sections are in a PT_LOAD segment.
5671 Don't check funky gdb generated core files. */
5672 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5673 {
5674 bfd_boolean check_vma = TRUE;
5675
5676 for (i = 1; i < m->count; i++)
5677 if (m->sections[i]->vma == m->sections[i - 1]->vma
5678 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5679 ->this_hdr), p) != 0
5680 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5681 ->this_hdr), p) != 0)
5682 {
5683 /* Looks like we have overlays packed into the segment. */
5684 check_vma = FALSE;
5685 break;
5686 }
5687
5688 for (i = 0; i < m->count; i++)
5689 {
5690 Elf_Internal_Shdr *this_hdr;
5691 asection *sec;
5692
5693 sec = m->sections[i];
5694 this_hdr = &(elf_section_data(sec)->this_hdr);
5695 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5696 && !ELF_TBSS_SPECIAL (this_hdr, p))
5697 {
5698 _bfd_error_handler
5699 /* xgettext:c-format */
5700 (_("%pB: section `%pA' can't be allocated in segment %d"),
5701 abfd, sec, j);
5702 print_segment_map (m);
5703 }
5704 }
5705 }
5706 }
5707
5708 elf_next_file_pos (abfd) = off;
5709 return TRUE;
5710 }
5711
5712 /* Assign file positions for the other sections. */
5713
5714 static bfd_boolean
5715 assign_file_positions_for_non_load_sections (bfd *abfd,
5716 struct bfd_link_info *link_info)
5717 {
5718 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5719 Elf_Internal_Shdr **i_shdrpp;
5720 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5721 Elf_Internal_Phdr *phdrs;
5722 Elf_Internal_Phdr *p;
5723 struct elf_segment_map *m;
5724 struct elf_segment_map *hdrs_segment;
5725 bfd_vma filehdr_vaddr, filehdr_paddr;
5726 bfd_vma phdrs_vaddr, phdrs_paddr;
5727 file_ptr off;
5728 unsigned int count;
5729
5730 i_shdrpp = elf_elfsections (abfd);
5731 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5732 off = elf_next_file_pos (abfd);
5733 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5734 {
5735 Elf_Internal_Shdr *hdr;
5736
5737 hdr = *hdrpp;
5738 if (hdr->bfd_section != NULL
5739 && (hdr->bfd_section->filepos != 0
5740 || (hdr->sh_type == SHT_NOBITS
5741 && hdr->contents == NULL)))
5742 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5743 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5744 {
5745 if (hdr->sh_size != 0)
5746 _bfd_error_handler
5747 /* xgettext:c-format */
5748 (_("%pB: warning: allocated section `%s' not in segment"),
5749 abfd,
5750 (hdr->bfd_section == NULL
5751 ? "*unknown*"
5752 : hdr->bfd_section->name));
5753 /* We don't need to page align empty sections. */
5754 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5755 off += vma_page_aligned_bias (hdr->sh_addr, off,
5756 bed->maxpagesize);
5757 else
5758 off += vma_page_aligned_bias (hdr->sh_addr, off,
5759 hdr->sh_addralign);
5760 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5761 FALSE);
5762 }
5763 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5764 && hdr->bfd_section == NULL)
5765 || (hdr->bfd_section != NULL
5766 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5767 /* Compress DWARF debug sections. */
5768 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5769 || (elf_symtab_shndx_list (abfd) != NULL
5770 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5771 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5772 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5773 hdr->sh_offset = -1;
5774 else
5775 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5776 }
5777
5778 /* Now that we have set the section file positions, we can set up
5779 the file positions for the non PT_LOAD segments. */
5780 count = 0;
5781 filehdr_vaddr = 0;
5782 filehdr_paddr = 0;
5783 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5784 phdrs_paddr = 0;
5785 hdrs_segment = NULL;
5786 phdrs = elf_tdata (abfd)->phdr;
5787 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5788 {
5789 ++count;
5790 if (p->p_type != PT_LOAD)
5791 continue;
5792
5793 if (m->includes_filehdr)
5794 {
5795 filehdr_vaddr = p->p_vaddr;
5796 filehdr_paddr = p->p_paddr;
5797 }
5798 if (m->includes_phdrs)
5799 {
5800 phdrs_vaddr = p->p_vaddr;
5801 phdrs_paddr = p->p_paddr;
5802 if (m->includes_filehdr)
5803 {
5804 hdrs_segment = m;
5805 phdrs_vaddr += bed->s->sizeof_ehdr;
5806 phdrs_paddr += bed->s->sizeof_ehdr;
5807 }
5808 }
5809 }
5810
5811 if (hdrs_segment != NULL && link_info != NULL)
5812 {
5813 /* There is a segment that contains both the file headers and the
5814 program headers, so provide a symbol __ehdr_start pointing there.
5815 A program can use this to examine itself robustly. */
5816
5817 struct elf_link_hash_entry *hash
5818 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5819 FALSE, FALSE, TRUE);
5820 /* If the symbol was referenced and not defined, define it. */
5821 if (hash != NULL
5822 && (hash->root.type == bfd_link_hash_new
5823 || hash->root.type == bfd_link_hash_undefined
5824 || hash->root.type == bfd_link_hash_undefweak
5825 || hash->root.type == bfd_link_hash_common))
5826 {
5827 asection *s = NULL;
5828 if (hdrs_segment->count != 0)
5829 /* The segment contains sections, so use the first one. */
5830 s = hdrs_segment->sections[0];
5831 else
5832 /* Use the first (i.e. lowest-addressed) section in any segment. */
5833 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5834 if (m->count != 0)
5835 {
5836 s = m->sections[0];
5837 break;
5838 }
5839
5840 if (s != NULL)
5841 {
5842 hash->root.u.def.value = filehdr_vaddr - s->vma;
5843 hash->root.u.def.section = s;
5844 }
5845 else
5846 {
5847 hash->root.u.def.value = filehdr_vaddr;
5848 hash->root.u.def.section = bfd_abs_section_ptr;
5849 }
5850
5851 hash->root.type = bfd_link_hash_defined;
5852 hash->def_regular = 1;
5853 hash->non_elf = 0;
5854 }
5855 }
5856
5857 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5858 {
5859 if (p->p_type == PT_GNU_RELRO)
5860 {
5861 bfd_vma start, end;
5862
5863 if (link_info != NULL)
5864 {
5865 /* During linking the range of the RELRO segment is passed
5866 in link_info. Note that there may be padding between
5867 relro_start and the first RELRO section. */
5868 start = link_info->relro_start;
5869 end = link_info->relro_end;
5870 }
5871 else if (m->count != 0)
5872 {
5873 if (!m->p_size_valid)
5874 abort ();
5875 start = m->sections[0]->vma;
5876 end = start + m->p_size;
5877 }
5878 else
5879 {
5880 start = 0;
5881 end = 0;
5882 }
5883
5884 if (start < end)
5885 {
5886 struct elf_segment_map *lm;
5887 const Elf_Internal_Phdr *lp;
5888 unsigned int i;
5889
5890 /* Find a LOAD segment containing a section in the RELRO
5891 segment. */
5892 for (lm = elf_seg_map (abfd), lp = phdrs;
5893 lm != NULL;
5894 lm = lm->next, lp++)
5895 {
5896 if (lp->p_type == PT_LOAD
5897 && lm->count != 0
5898 && (lm->sections[lm->count - 1]->vma
5899 + (!IS_TBSS (lm->sections[lm->count - 1])
5900 ? lm->sections[lm->count - 1]->size
5901 : 0)) > start
5902 && lm->sections[0]->vma < end)
5903 break;
5904 }
5905 BFD_ASSERT (lm != NULL);
5906
5907 /* Find the section starting the RELRO segment. */
5908 for (i = 0; i < lm->count; i++)
5909 {
5910 asection *s = lm->sections[i];
5911 if (s->vma >= start
5912 && s->vma < end
5913 && s->size != 0)
5914 break;
5915 }
5916 BFD_ASSERT (i < lm->count);
5917
5918 p->p_vaddr = lm->sections[i]->vma;
5919 p->p_paddr = lm->sections[i]->lma;
5920 p->p_offset = lm->sections[i]->filepos;
5921 p->p_memsz = end - p->p_vaddr;
5922 p->p_filesz = p->p_memsz;
5923
5924 /* The RELRO segment typically ends a few bytes into
5925 .got.plt but other layouts are possible. In cases
5926 where the end does not match any loaded section (for
5927 instance is in file padding), trim p_filesz back to
5928 correspond to the end of loaded section contents. */
5929 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
5930 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
5931
5932 /* Preserve the alignment and flags if they are valid. The
5933 gold linker generates RW/4 for the PT_GNU_RELRO section.
5934 It is better for objcopy/strip to honor these attributes
5935 otherwise gdb will choke when using separate debug files.
5936 */
5937 if (!m->p_align_valid)
5938 p->p_align = 1;
5939 if (!m->p_flags_valid)
5940 p->p_flags = PF_R;
5941 }
5942 else
5943 {
5944 memset (p, 0, sizeof *p);
5945 p->p_type = PT_NULL;
5946 }
5947 }
5948 else if (p->p_type == PT_GNU_STACK)
5949 {
5950 if (m->p_size_valid)
5951 p->p_memsz = m->p_size;
5952 }
5953 else if (m->count != 0)
5954 {
5955 unsigned int i;
5956
5957 if (p->p_type != PT_LOAD
5958 && (p->p_type != PT_NOTE
5959 || bfd_get_format (abfd) != bfd_core))
5960 {
5961 /* A user specified segment layout may include a PHDR
5962 segment that overlaps with a LOAD segment... */
5963 if (p->p_type == PT_PHDR)
5964 {
5965 m->count = 0;
5966 continue;
5967 }
5968
5969 if (m->includes_filehdr || m->includes_phdrs)
5970 {
5971 /* PR 17512: file: 2195325e. */
5972 _bfd_error_handler
5973 (_("%pB: error: non-load segment %d includes file header "
5974 "and/or program header"),
5975 abfd, (int) (p - phdrs));
5976 return FALSE;
5977 }
5978
5979 p->p_filesz = 0;
5980 p->p_offset = m->sections[0]->filepos;
5981 for (i = m->count; i-- != 0;)
5982 {
5983 asection *sect = m->sections[i];
5984 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5985 if (hdr->sh_type != SHT_NOBITS)
5986 {
5987 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5988 + hdr->sh_size);
5989 break;
5990 }
5991 }
5992 }
5993 }
5994 else if (m->includes_filehdr)
5995 {
5996 p->p_vaddr = filehdr_vaddr;
5997 if (! m->p_paddr_valid)
5998 p->p_paddr = filehdr_paddr;
5999 }
6000 else if (m->includes_phdrs)
6001 {
6002 p->p_vaddr = phdrs_vaddr;
6003 if (! m->p_paddr_valid)
6004 p->p_paddr = phdrs_paddr;
6005 }
6006 }
6007
6008 elf_next_file_pos (abfd) = off;
6009
6010 return TRUE;
6011 }
6012
6013 static elf_section_list *
6014 find_section_in_list (unsigned int i, elf_section_list * list)
6015 {
6016 for (;list != NULL; list = list->next)
6017 if (list->ndx == i)
6018 break;
6019 return list;
6020 }
6021
6022 /* Work out the file positions of all the sections. This is called by
6023 _bfd_elf_compute_section_file_positions. All the section sizes and
6024 VMAs must be known before this is called.
6025
6026 Reloc sections come in two flavours: Those processed specially as
6027 "side-channel" data attached to a section to which they apply, and
6028 those that bfd doesn't process as relocations. The latter sort are
6029 stored in a normal bfd section by bfd_section_from_shdr. We don't
6030 consider the former sort here, unless they form part of the loadable
6031 image. Reloc sections not assigned here will be handled later by
6032 assign_file_positions_for_relocs.
6033
6034 We also don't set the positions of the .symtab and .strtab here. */
6035
6036 static bfd_boolean
6037 assign_file_positions_except_relocs (bfd *abfd,
6038 struct bfd_link_info *link_info)
6039 {
6040 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6041 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6042 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6043
6044 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6045 && bfd_get_format (abfd) != bfd_core)
6046 {
6047 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6048 unsigned int num_sec = elf_numsections (abfd);
6049 Elf_Internal_Shdr **hdrpp;
6050 unsigned int i;
6051 file_ptr off;
6052
6053 /* Start after the ELF header. */
6054 off = i_ehdrp->e_ehsize;
6055
6056 /* We are not creating an executable, which means that we are
6057 not creating a program header, and that the actual order of
6058 the sections in the file is unimportant. */
6059 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6060 {
6061 Elf_Internal_Shdr *hdr;
6062
6063 hdr = *hdrpp;
6064 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6065 && hdr->bfd_section == NULL)
6066 || (hdr->bfd_section != NULL
6067 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6068 /* Compress DWARF debug sections. */
6069 || i == elf_onesymtab (abfd)
6070 || (elf_symtab_shndx_list (abfd) != NULL
6071 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6072 || i == elf_strtab_sec (abfd)
6073 || i == elf_shstrtab_sec (abfd))
6074 {
6075 hdr->sh_offset = -1;
6076 }
6077 else
6078 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6079 }
6080
6081 elf_next_file_pos (abfd) = off;
6082 }
6083 else
6084 {
6085 unsigned int alloc;
6086
6087 /* Assign file positions for the loaded sections based on the
6088 assignment of sections to segments. */
6089 if (!assign_file_positions_for_load_sections (abfd, link_info))
6090 return FALSE;
6091
6092 /* And for non-load sections. */
6093 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6094 return FALSE;
6095
6096 if (bed->elf_backend_modify_program_headers != NULL)
6097 {
6098 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6099 return FALSE;
6100 }
6101
6102 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6103 if (link_info != NULL && bfd_link_pie (link_info))
6104 {
6105 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6106 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6107 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6108
6109 /* Find the lowest p_vaddr in PT_LOAD segments. */
6110 bfd_vma p_vaddr = (bfd_vma) -1;
6111 for (; segment < end_segment; segment++)
6112 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6113 p_vaddr = segment->p_vaddr;
6114
6115 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6116 segments is non-zero. */
6117 if (p_vaddr)
6118 i_ehdrp->e_type = ET_EXEC;
6119 }
6120
6121 /* Write out the program headers. */
6122 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6123
6124 /* Sort the program headers into the ordering required by the ELF standard. */
6125 if (alloc == 0)
6126 return TRUE;
6127
6128 /* PR ld/20815 - Check that the program header segment, if present, will
6129 be loaded into memory. FIXME: The check below is not sufficient as
6130 really all PT_LOAD segments should be checked before issuing an error
6131 message. Plus the PHDR segment does not have to be the first segment
6132 in the program header table. But this version of the check should
6133 catch all real world use cases.
6134
6135 FIXME: We used to have code here to sort the PT_LOAD segments into
6136 ascending order, as per the ELF spec. But this breaks some programs,
6137 including the Linux kernel. But really either the spec should be
6138 changed or the programs updated. */
6139 if (alloc > 1
6140 && tdata->phdr[0].p_type == PT_PHDR
6141 && (bed->elf_backend_allow_non_load_phdr == NULL
6142 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6143 alloc))
6144 && tdata->phdr[1].p_type == PT_LOAD
6145 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6146 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6147 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6148 {
6149 /* The fix for this error is usually to edit the linker script being
6150 used and set up the program headers manually. Either that or
6151 leave room for the headers at the start of the SECTIONS. */
6152 _bfd_error_handler (_("\
6153 %pB: error: PHDR segment not covered by LOAD segment"),
6154 abfd);
6155 return FALSE;
6156 }
6157
6158 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6159 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6160 return FALSE;
6161 }
6162
6163 return TRUE;
6164 }
6165
6166 static bfd_boolean
6167 prep_headers (bfd *abfd)
6168 {
6169 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6170 struct elf_strtab_hash *shstrtab;
6171 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6172
6173 i_ehdrp = elf_elfheader (abfd);
6174
6175 shstrtab = _bfd_elf_strtab_init ();
6176 if (shstrtab == NULL)
6177 return FALSE;
6178
6179 elf_shstrtab (abfd) = shstrtab;
6180
6181 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6182 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6183 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6184 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6185
6186 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6187 i_ehdrp->e_ident[EI_DATA] =
6188 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6189 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6190
6191 if ((abfd->flags & DYNAMIC) != 0)
6192 i_ehdrp->e_type = ET_DYN;
6193 else if ((abfd->flags & EXEC_P) != 0)
6194 i_ehdrp->e_type = ET_EXEC;
6195 else if (bfd_get_format (abfd) == bfd_core)
6196 i_ehdrp->e_type = ET_CORE;
6197 else
6198 i_ehdrp->e_type = ET_REL;
6199
6200 switch (bfd_get_arch (abfd))
6201 {
6202 case bfd_arch_unknown:
6203 i_ehdrp->e_machine = EM_NONE;
6204 break;
6205
6206 /* There used to be a long list of cases here, each one setting
6207 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6208 in the corresponding bfd definition. To avoid duplication,
6209 the switch was removed. Machines that need special handling
6210 can generally do it in elf_backend_final_write_processing(),
6211 unless they need the information earlier than the final write.
6212 Such need can generally be supplied by replacing the tests for
6213 e_machine with the conditions used to determine it. */
6214 default:
6215 i_ehdrp->e_machine = bed->elf_machine_code;
6216 }
6217
6218 i_ehdrp->e_version = bed->s->ev_current;
6219 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6220
6221 /* No program header, for now. */
6222 i_ehdrp->e_phoff = 0;
6223 i_ehdrp->e_phentsize = 0;
6224 i_ehdrp->e_phnum = 0;
6225
6226 /* Each bfd section is section header entry. */
6227 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6228 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6229
6230 /* If we're building an executable, we'll need a program header table. */
6231 if (abfd->flags & EXEC_P)
6232 /* It all happens later. */
6233 ;
6234 else
6235 {
6236 i_ehdrp->e_phentsize = 0;
6237 i_ehdrp->e_phoff = 0;
6238 }
6239
6240 elf_tdata (abfd)->symtab_hdr.sh_name =
6241 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6242 elf_tdata (abfd)->strtab_hdr.sh_name =
6243 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6244 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6245 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6246 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6247 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6248 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6249 return FALSE;
6250
6251 return TRUE;
6252 }
6253
6254 /* Assign file positions for all the reloc sections which are not part
6255 of the loadable file image, and the file position of section headers. */
6256
6257 static bfd_boolean
6258 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6259 {
6260 file_ptr off;
6261 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6262 Elf_Internal_Shdr *shdrp;
6263 Elf_Internal_Ehdr *i_ehdrp;
6264 const struct elf_backend_data *bed;
6265
6266 off = elf_next_file_pos (abfd);
6267
6268 shdrpp = elf_elfsections (abfd);
6269 end_shdrpp = shdrpp + elf_numsections (abfd);
6270 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6271 {
6272 shdrp = *shdrpp;
6273 if (shdrp->sh_offset == -1)
6274 {
6275 asection *sec = shdrp->bfd_section;
6276 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6277 || shdrp->sh_type == SHT_RELA);
6278 if (is_rel
6279 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6280 {
6281 if (!is_rel)
6282 {
6283 const char *name = sec->name;
6284 struct bfd_elf_section_data *d;
6285
6286 /* Compress DWARF debug sections. */
6287 if (!bfd_compress_section (abfd, sec,
6288 shdrp->contents))
6289 return FALSE;
6290
6291 if (sec->compress_status == COMPRESS_SECTION_DONE
6292 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6293 {
6294 /* If section is compressed with zlib-gnu, convert
6295 section name from .debug_* to .zdebug_*. */
6296 char *new_name
6297 = convert_debug_to_zdebug (abfd, name);
6298 if (new_name == NULL)
6299 return FALSE;
6300 name = new_name;
6301 }
6302 /* Add section name to section name section. */
6303 if (shdrp->sh_name != (unsigned int) -1)
6304 abort ();
6305 shdrp->sh_name
6306 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6307 name, FALSE);
6308 d = elf_section_data (sec);
6309
6310 /* Add reloc section name to section name section. */
6311 if (d->rel.hdr
6312 && !_bfd_elf_set_reloc_sh_name (abfd,
6313 d->rel.hdr,
6314 name, FALSE))
6315 return FALSE;
6316 if (d->rela.hdr
6317 && !_bfd_elf_set_reloc_sh_name (abfd,
6318 d->rela.hdr,
6319 name, TRUE))
6320 return FALSE;
6321
6322 /* Update section size and contents. */
6323 shdrp->sh_size = sec->size;
6324 shdrp->contents = sec->contents;
6325 shdrp->bfd_section->contents = NULL;
6326 }
6327 off = _bfd_elf_assign_file_position_for_section (shdrp,
6328 off,
6329 TRUE);
6330 }
6331 }
6332 }
6333
6334 /* Place section name section after DWARF debug sections have been
6335 compressed. */
6336 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6337 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6338 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6339 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6340
6341 /* Place the section headers. */
6342 i_ehdrp = elf_elfheader (abfd);
6343 bed = get_elf_backend_data (abfd);
6344 off = align_file_position (off, 1 << bed->s->log_file_align);
6345 i_ehdrp->e_shoff = off;
6346 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6347 elf_next_file_pos (abfd) = off;
6348
6349 return TRUE;
6350 }
6351
6352 bfd_boolean
6353 _bfd_elf_write_object_contents (bfd *abfd)
6354 {
6355 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6356 Elf_Internal_Shdr **i_shdrp;
6357 bfd_boolean failed;
6358 unsigned int count, num_sec;
6359 struct elf_obj_tdata *t;
6360
6361 if (! abfd->output_has_begun
6362 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6363 return FALSE;
6364
6365 i_shdrp = elf_elfsections (abfd);
6366
6367 failed = FALSE;
6368 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6369 if (failed)
6370 return FALSE;
6371
6372 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6373 return FALSE;
6374
6375 /* After writing the headers, we need to write the sections too... */
6376 num_sec = elf_numsections (abfd);
6377 for (count = 1; count < num_sec; count++)
6378 {
6379 i_shdrp[count]->sh_name
6380 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6381 i_shdrp[count]->sh_name);
6382 if (bed->elf_backend_section_processing)
6383 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6384 return FALSE;
6385 if (i_shdrp[count]->contents)
6386 {
6387 bfd_size_type amt = i_shdrp[count]->sh_size;
6388
6389 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6390 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6391 return FALSE;
6392 }
6393 }
6394
6395 /* Write out the section header names. */
6396 t = elf_tdata (abfd);
6397 if (elf_shstrtab (abfd) != NULL
6398 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6399 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6400 return FALSE;
6401
6402 if (bed->elf_backend_final_write_processing)
6403 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6404
6405 if (!bed->s->write_shdrs_and_ehdr (abfd))
6406 return FALSE;
6407
6408 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6409 if (t->o->build_id.after_write_object_contents != NULL)
6410 return (*t->o->build_id.after_write_object_contents) (abfd);
6411
6412 return TRUE;
6413 }
6414
6415 bfd_boolean
6416 _bfd_elf_write_corefile_contents (bfd *abfd)
6417 {
6418 /* Hopefully this can be done just like an object file. */
6419 return _bfd_elf_write_object_contents (abfd);
6420 }
6421
6422 /* Given a section, search the header to find them. */
6423
6424 unsigned int
6425 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6426 {
6427 const struct elf_backend_data *bed;
6428 unsigned int sec_index;
6429
6430 if (elf_section_data (asect) != NULL
6431 && elf_section_data (asect)->this_idx != 0)
6432 return elf_section_data (asect)->this_idx;
6433
6434 if (bfd_is_abs_section (asect))
6435 sec_index = SHN_ABS;
6436 else if (bfd_is_com_section (asect))
6437 sec_index = SHN_COMMON;
6438 else if (bfd_is_und_section (asect))
6439 sec_index = SHN_UNDEF;
6440 else
6441 sec_index = SHN_BAD;
6442
6443 bed = get_elf_backend_data (abfd);
6444 if (bed->elf_backend_section_from_bfd_section)
6445 {
6446 int retval = sec_index;
6447
6448 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6449 return retval;
6450 }
6451
6452 if (sec_index == SHN_BAD)
6453 bfd_set_error (bfd_error_nonrepresentable_section);
6454
6455 return sec_index;
6456 }
6457
6458 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6459 on error. */
6460
6461 int
6462 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6463 {
6464 asymbol *asym_ptr = *asym_ptr_ptr;
6465 int idx;
6466 flagword flags = asym_ptr->flags;
6467
6468 /* When gas creates relocations against local labels, it creates its
6469 own symbol for the section, but does put the symbol into the
6470 symbol chain, so udata is 0. When the linker is generating
6471 relocatable output, this section symbol may be for one of the
6472 input sections rather than the output section. */
6473 if (asym_ptr->udata.i == 0
6474 && (flags & BSF_SECTION_SYM)
6475 && asym_ptr->section)
6476 {
6477 asection *sec;
6478 int indx;
6479
6480 sec = asym_ptr->section;
6481 if (sec->owner != abfd && sec->output_section != NULL)
6482 sec = sec->output_section;
6483 if (sec->owner == abfd
6484 && (indx = sec->index) < elf_num_section_syms (abfd)
6485 && elf_section_syms (abfd)[indx] != NULL)
6486 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6487 }
6488
6489 idx = asym_ptr->udata.i;
6490
6491 if (idx == 0)
6492 {
6493 /* This case can occur when using --strip-symbol on a symbol
6494 which is used in a relocation entry. */
6495 _bfd_error_handler
6496 /* xgettext:c-format */
6497 (_("%pB: symbol `%s' required but not present"),
6498 abfd, bfd_asymbol_name (asym_ptr));
6499 bfd_set_error (bfd_error_no_symbols);
6500 return -1;
6501 }
6502
6503 #if DEBUG & 4
6504 {
6505 fprintf (stderr,
6506 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6507 (long) asym_ptr, asym_ptr->name, idx, flags);
6508 fflush (stderr);
6509 }
6510 #endif
6511
6512 return idx;
6513 }
6514
6515 /* Rewrite program header information. */
6516
6517 static bfd_boolean
6518 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6519 {
6520 Elf_Internal_Ehdr *iehdr;
6521 struct elf_segment_map *map;
6522 struct elf_segment_map *map_first;
6523 struct elf_segment_map **pointer_to_map;
6524 Elf_Internal_Phdr *segment;
6525 asection *section;
6526 unsigned int i;
6527 unsigned int num_segments;
6528 bfd_boolean phdr_included = FALSE;
6529 bfd_boolean p_paddr_valid;
6530 bfd_vma maxpagesize;
6531 struct elf_segment_map *phdr_adjust_seg = NULL;
6532 unsigned int phdr_adjust_num = 0;
6533 const struct elf_backend_data *bed;
6534
6535 bed = get_elf_backend_data (ibfd);
6536 iehdr = elf_elfheader (ibfd);
6537
6538 map_first = NULL;
6539 pointer_to_map = &map_first;
6540
6541 num_segments = elf_elfheader (ibfd)->e_phnum;
6542 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6543
6544 /* Returns the end address of the segment + 1. */
6545 #define SEGMENT_END(segment, start) \
6546 (start + (segment->p_memsz > segment->p_filesz \
6547 ? segment->p_memsz : segment->p_filesz))
6548
6549 #define SECTION_SIZE(section, segment) \
6550 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6551 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6552 ? section->size : 0)
6553
6554 /* Returns TRUE if the given section is contained within
6555 the given segment. VMA addresses are compared. */
6556 #define IS_CONTAINED_BY_VMA(section, segment) \
6557 (section->vma >= segment->p_vaddr \
6558 && (section->vma + SECTION_SIZE (section, segment) \
6559 <= (SEGMENT_END (segment, segment->p_vaddr))))
6560
6561 /* Returns TRUE if the given section is contained within
6562 the given segment. LMA addresses are compared. */
6563 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6564 (section->lma >= base \
6565 && (section->lma + SECTION_SIZE (section, segment) \
6566 <= SEGMENT_END (segment, base)))
6567
6568 /* Handle PT_NOTE segment. */
6569 #define IS_NOTE(p, s) \
6570 (p->p_type == PT_NOTE \
6571 && elf_section_type (s) == SHT_NOTE \
6572 && (bfd_vma) s->filepos >= p->p_offset \
6573 && ((bfd_vma) s->filepos + s->size \
6574 <= p->p_offset + p->p_filesz))
6575
6576 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6577 etc. */
6578 #define IS_COREFILE_NOTE(p, s) \
6579 (IS_NOTE (p, s) \
6580 && bfd_get_format (ibfd) == bfd_core \
6581 && s->vma == 0 \
6582 && s->lma == 0)
6583
6584 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6585 linker, which generates a PT_INTERP section with p_vaddr and
6586 p_memsz set to 0. */
6587 #define IS_SOLARIS_PT_INTERP(p, s) \
6588 (p->p_vaddr == 0 \
6589 && p->p_paddr == 0 \
6590 && p->p_memsz == 0 \
6591 && p->p_filesz > 0 \
6592 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6593 && s->size > 0 \
6594 && (bfd_vma) s->filepos >= p->p_offset \
6595 && ((bfd_vma) s->filepos + s->size \
6596 <= p->p_offset + p->p_filesz))
6597
6598 /* Decide if the given section should be included in the given segment.
6599 A section will be included if:
6600 1. It is within the address space of the segment -- we use the LMA
6601 if that is set for the segment and the VMA otherwise,
6602 2. It is an allocated section or a NOTE section in a PT_NOTE
6603 segment.
6604 3. There is an output section associated with it,
6605 4. The section has not already been allocated to a previous segment.
6606 5. PT_GNU_STACK segments do not include any sections.
6607 6. PT_TLS segment includes only SHF_TLS sections.
6608 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6609 8. PT_DYNAMIC should not contain empty sections at the beginning
6610 (with the possible exception of .dynamic). */
6611 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6612 ((((segment->p_paddr \
6613 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6614 : IS_CONTAINED_BY_VMA (section, segment)) \
6615 && (section->flags & SEC_ALLOC) != 0) \
6616 || IS_NOTE (segment, section)) \
6617 && segment->p_type != PT_GNU_STACK \
6618 && (segment->p_type != PT_TLS \
6619 || (section->flags & SEC_THREAD_LOCAL)) \
6620 && (segment->p_type == PT_LOAD \
6621 || segment->p_type == PT_TLS \
6622 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6623 && (segment->p_type != PT_DYNAMIC \
6624 || SECTION_SIZE (section, segment) > 0 \
6625 || (segment->p_paddr \
6626 ? segment->p_paddr != section->lma \
6627 : segment->p_vaddr != section->vma) \
6628 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6629 == 0)) \
6630 && !section->segment_mark)
6631
6632 /* If the output section of a section in the input segment is NULL,
6633 it is removed from the corresponding output segment. */
6634 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6635 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6636 && section->output_section != NULL)
6637
6638 /* Returns TRUE iff seg1 starts after the end of seg2. */
6639 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6640 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6641
6642 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6643 their VMA address ranges and their LMA address ranges overlap.
6644 It is possible to have overlapping VMA ranges without overlapping LMA
6645 ranges. RedBoot images for example can have both .data and .bss mapped
6646 to the same VMA range, but with the .data section mapped to a different
6647 LMA. */
6648 #define SEGMENT_OVERLAPS(seg1, seg2) \
6649 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6650 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6651 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6652 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6653
6654 /* Initialise the segment mark field. */
6655 for (section = ibfd->sections; section != NULL; section = section->next)
6656 section->segment_mark = FALSE;
6657
6658 /* The Solaris linker creates program headers in which all the
6659 p_paddr fields are zero. When we try to objcopy or strip such a
6660 file, we get confused. Check for this case, and if we find it
6661 don't set the p_paddr_valid fields. */
6662 p_paddr_valid = FALSE;
6663 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6664 i < num_segments;
6665 i++, segment++)
6666 if (segment->p_paddr != 0)
6667 {
6668 p_paddr_valid = TRUE;
6669 break;
6670 }
6671
6672 /* Scan through the segments specified in the program header
6673 of the input BFD. For this first scan we look for overlaps
6674 in the loadable segments. These can be created by weird
6675 parameters to objcopy. Also, fix some solaris weirdness. */
6676 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6677 i < num_segments;
6678 i++, segment++)
6679 {
6680 unsigned int j;
6681 Elf_Internal_Phdr *segment2;
6682
6683 if (segment->p_type == PT_INTERP)
6684 for (section = ibfd->sections; section; section = section->next)
6685 if (IS_SOLARIS_PT_INTERP (segment, section))
6686 {
6687 /* Mininal change so that the normal section to segment
6688 assignment code will work. */
6689 segment->p_vaddr = section->vma;
6690 break;
6691 }
6692
6693 if (segment->p_type != PT_LOAD)
6694 {
6695 /* Remove PT_GNU_RELRO segment. */
6696 if (segment->p_type == PT_GNU_RELRO)
6697 segment->p_type = PT_NULL;
6698 continue;
6699 }
6700
6701 /* Determine if this segment overlaps any previous segments. */
6702 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6703 {
6704 bfd_signed_vma extra_length;
6705
6706 if (segment2->p_type != PT_LOAD
6707 || !SEGMENT_OVERLAPS (segment, segment2))
6708 continue;
6709
6710 /* Merge the two segments together. */
6711 if (segment2->p_vaddr < segment->p_vaddr)
6712 {
6713 /* Extend SEGMENT2 to include SEGMENT and then delete
6714 SEGMENT. */
6715 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6716 - SEGMENT_END (segment2, segment2->p_vaddr));
6717
6718 if (extra_length > 0)
6719 {
6720 segment2->p_memsz += extra_length;
6721 segment2->p_filesz += extra_length;
6722 }
6723
6724 segment->p_type = PT_NULL;
6725
6726 /* Since we have deleted P we must restart the outer loop. */
6727 i = 0;
6728 segment = elf_tdata (ibfd)->phdr;
6729 break;
6730 }
6731 else
6732 {
6733 /* Extend SEGMENT to include SEGMENT2 and then delete
6734 SEGMENT2. */
6735 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6736 - SEGMENT_END (segment, segment->p_vaddr));
6737
6738 if (extra_length > 0)
6739 {
6740 segment->p_memsz += extra_length;
6741 segment->p_filesz += extra_length;
6742 }
6743
6744 segment2->p_type = PT_NULL;
6745 }
6746 }
6747 }
6748
6749 /* The second scan attempts to assign sections to segments. */
6750 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6751 i < num_segments;
6752 i++, segment++)
6753 {
6754 unsigned int section_count;
6755 asection **sections;
6756 asection *output_section;
6757 unsigned int isec;
6758 bfd_vma matching_lma;
6759 bfd_vma suggested_lma;
6760 unsigned int j;
6761 bfd_size_type amt;
6762 asection *first_section;
6763 bfd_boolean first_matching_lma;
6764 bfd_boolean first_suggested_lma;
6765
6766 if (segment->p_type == PT_NULL)
6767 continue;
6768
6769 first_section = NULL;
6770 /* Compute how many sections might be placed into this segment. */
6771 for (section = ibfd->sections, section_count = 0;
6772 section != NULL;
6773 section = section->next)
6774 {
6775 /* Find the first section in the input segment, which may be
6776 removed from the corresponding output segment. */
6777 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6778 {
6779 if (first_section == NULL)
6780 first_section = section;
6781 if (section->output_section != NULL)
6782 ++section_count;
6783 }
6784 }
6785
6786 /* Allocate a segment map big enough to contain
6787 all of the sections we have selected. */
6788 amt = sizeof (struct elf_segment_map);
6789 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6790 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6791 if (map == NULL)
6792 return FALSE;
6793
6794 /* Initialise the fields of the segment map. Default to
6795 using the physical address of the segment in the input BFD. */
6796 map->next = NULL;
6797 map->p_type = segment->p_type;
6798 map->p_flags = segment->p_flags;
6799 map->p_flags_valid = 1;
6800
6801 /* If the first section in the input segment is removed, there is
6802 no need to preserve segment physical address in the corresponding
6803 output segment. */
6804 if (!first_section || first_section->output_section != NULL)
6805 {
6806 map->p_paddr = segment->p_paddr;
6807 map->p_paddr_valid = p_paddr_valid;
6808 }
6809
6810 /* Determine if this segment contains the ELF file header
6811 and if it contains the program headers themselves. */
6812 map->includes_filehdr = (segment->p_offset == 0
6813 && segment->p_filesz >= iehdr->e_ehsize);
6814 map->includes_phdrs = 0;
6815
6816 if (!phdr_included || segment->p_type != PT_LOAD)
6817 {
6818 map->includes_phdrs =
6819 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6820 && (segment->p_offset + segment->p_filesz
6821 >= ((bfd_vma) iehdr->e_phoff
6822 + iehdr->e_phnum * iehdr->e_phentsize)));
6823
6824 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6825 phdr_included = TRUE;
6826 }
6827
6828 if (section_count == 0)
6829 {
6830 /* Special segments, such as the PT_PHDR segment, may contain
6831 no sections, but ordinary, loadable segments should contain
6832 something. They are allowed by the ELF spec however, so only
6833 a warning is produced.
6834 There is however the valid use case of embedded systems which
6835 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6836 flash memory with zeros. No warning is shown for that case. */
6837 if (segment->p_type == PT_LOAD
6838 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6839 /* xgettext:c-format */
6840 _bfd_error_handler (_("%pB: warning: Empty loadable segment detected"
6841 " at vaddr=%#" PRIx64 ", is this intentional?"),
6842 ibfd, (uint64_t) segment->p_vaddr);
6843
6844 map->count = 0;
6845 *pointer_to_map = map;
6846 pointer_to_map = &map->next;
6847
6848 continue;
6849 }
6850
6851 /* Now scan the sections in the input BFD again and attempt
6852 to add their corresponding output sections to the segment map.
6853 The problem here is how to handle an output section which has
6854 been moved (ie had its LMA changed). There are four possibilities:
6855
6856 1. None of the sections have been moved.
6857 In this case we can continue to use the segment LMA from the
6858 input BFD.
6859
6860 2. All of the sections have been moved by the same amount.
6861 In this case we can change the segment's LMA to match the LMA
6862 of the first section.
6863
6864 3. Some of the sections have been moved, others have not.
6865 In this case those sections which have not been moved can be
6866 placed in the current segment which will have to have its size,
6867 and possibly its LMA changed, and a new segment or segments will
6868 have to be created to contain the other sections.
6869
6870 4. The sections have been moved, but not by the same amount.
6871 In this case we can change the segment's LMA to match the LMA
6872 of the first section and we will have to create a new segment
6873 or segments to contain the other sections.
6874
6875 In order to save time, we allocate an array to hold the section
6876 pointers that we are interested in. As these sections get assigned
6877 to a segment, they are removed from this array. */
6878
6879 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6880 if (sections == NULL)
6881 return FALSE;
6882
6883 /* Step One: Scan for segment vs section LMA conflicts.
6884 Also add the sections to the section array allocated above.
6885 Also add the sections to the current segment. In the common
6886 case, where the sections have not been moved, this means that
6887 we have completely filled the segment, and there is nothing
6888 more to do. */
6889 isec = 0;
6890 matching_lma = 0;
6891 suggested_lma = 0;
6892 first_matching_lma = TRUE;
6893 first_suggested_lma = TRUE;
6894
6895 for (section = first_section, j = 0;
6896 section != NULL;
6897 section = section->next)
6898 {
6899 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6900 {
6901 output_section = section->output_section;
6902
6903 sections[j++] = section;
6904
6905 /* The Solaris native linker always sets p_paddr to 0.
6906 We try to catch that case here, and set it to the
6907 correct value. Note - some backends require that
6908 p_paddr be left as zero. */
6909 if (!p_paddr_valid
6910 && segment->p_vaddr != 0
6911 && !bed->want_p_paddr_set_to_zero
6912 && isec == 0
6913 && output_section->lma != 0
6914 && output_section->vma == (segment->p_vaddr
6915 + (map->includes_filehdr
6916 ? iehdr->e_ehsize
6917 : 0)
6918 + (map->includes_phdrs
6919 ? (iehdr->e_phnum
6920 * iehdr->e_phentsize)
6921 : 0)))
6922 map->p_paddr = segment->p_vaddr;
6923
6924 /* Match up the physical address of the segment with the
6925 LMA address of the output section. */
6926 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6927 || IS_COREFILE_NOTE (segment, section)
6928 || (bed->want_p_paddr_set_to_zero
6929 && IS_CONTAINED_BY_VMA (output_section, segment)))
6930 {
6931 if (first_matching_lma || output_section->lma < matching_lma)
6932 {
6933 matching_lma = output_section->lma;
6934 first_matching_lma = FALSE;
6935 }
6936
6937 /* We assume that if the section fits within the segment
6938 then it does not overlap any other section within that
6939 segment. */
6940 map->sections[isec++] = output_section;
6941 }
6942 else if (first_suggested_lma)
6943 {
6944 suggested_lma = output_section->lma;
6945 first_suggested_lma = FALSE;
6946 }
6947
6948 if (j == section_count)
6949 break;
6950 }
6951 }
6952
6953 BFD_ASSERT (j == section_count);
6954
6955 /* Step Two: Adjust the physical address of the current segment,
6956 if necessary. */
6957 if (isec == section_count)
6958 {
6959 /* All of the sections fitted within the segment as currently
6960 specified. This is the default case. Add the segment to
6961 the list of built segments and carry on to process the next
6962 program header in the input BFD. */
6963 map->count = section_count;
6964 *pointer_to_map = map;
6965 pointer_to_map = &map->next;
6966
6967 if (p_paddr_valid
6968 && !bed->want_p_paddr_set_to_zero
6969 && matching_lma != map->p_paddr
6970 && !map->includes_filehdr
6971 && !map->includes_phdrs)
6972 /* There is some padding before the first section in the
6973 segment. So, we must account for that in the output
6974 segment's vma. */
6975 map->p_vaddr_offset = matching_lma - map->p_paddr;
6976
6977 free (sections);
6978 continue;
6979 }
6980 else
6981 {
6982 if (!first_matching_lma)
6983 {
6984 /* At least one section fits inside the current segment.
6985 Keep it, but modify its physical address to match the
6986 LMA of the first section that fitted. */
6987 map->p_paddr = matching_lma;
6988 }
6989 else
6990 {
6991 /* None of the sections fitted inside the current segment.
6992 Change the current segment's physical address to match
6993 the LMA of the first section. */
6994 map->p_paddr = suggested_lma;
6995 }
6996
6997 /* Offset the segment physical address from the lma
6998 to allow for space taken up by elf headers. */
6999 if (map->includes_filehdr)
7000 {
7001 if (map->p_paddr >= iehdr->e_ehsize)
7002 map->p_paddr -= iehdr->e_ehsize;
7003 else
7004 {
7005 map->includes_filehdr = FALSE;
7006 map->includes_phdrs = FALSE;
7007 }
7008 }
7009
7010 if (map->includes_phdrs)
7011 {
7012 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
7013 {
7014 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7015
7016 /* iehdr->e_phnum is just an estimate of the number
7017 of program headers that we will need. Make a note
7018 here of the number we used and the segment we chose
7019 to hold these headers, so that we can adjust the
7020 offset when we know the correct value. */
7021 phdr_adjust_num = iehdr->e_phnum;
7022 phdr_adjust_seg = map;
7023 }
7024 else
7025 map->includes_phdrs = FALSE;
7026 }
7027 }
7028
7029 /* Step Three: Loop over the sections again, this time assigning
7030 those that fit to the current segment and removing them from the
7031 sections array; but making sure not to leave large gaps. Once all
7032 possible sections have been assigned to the current segment it is
7033 added to the list of built segments and if sections still remain
7034 to be assigned, a new segment is constructed before repeating
7035 the loop. */
7036 isec = 0;
7037 do
7038 {
7039 map->count = 0;
7040 suggested_lma = 0;
7041 first_suggested_lma = TRUE;
7042
7043 /* Fill the current segment with sections that fit. */
7044 for (j = 0; j < section_count; j++)
7045 {
7046 section = sections[j];
7047
7048 if (section == NULL)
7049 continue;
7050
7051 output_section = section->output_section;
7052
7053 BFD_ASSERT (output_section != NULL);
7054
7055 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7056 || IS_COREFILE_NOTE (segment, section))
7057 {
7058 if (map->count == 0)
7059 {
7060 /* If the first section in a segment does not start at
7061 the beginning of the segment, then something is
7062 wrong. */
7063 if (output_section->lma
7064 != (map->p_paddr
7065 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
7066 + (map->includes_phdrs
7067 ? iehdr->e_phnum * iehdr->e_phentsize
7068 : 0)))
7069 abort ();
7070 }
7071 else
7072 {
7073 asection *prev_sec;
7074
7075 prev_sec = map->sections[map->count - 1];
7076
7077 /* If the gap between the end of the previous section
7078 and the start of this section is more than
7079 maxpagesize then we need to start a new segment. */
7080 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7081 maxpagesize)
7082 < BFD_ALIGN (output_section->lma, maxpagesize))
7083 || (prev_sec->lma + prev_sec->size
7084 > output_section->lma))
7085 {
7086 if (first_suggested_lma)
7087 {
7088 suggested_lma = output_section->lma;
7089 first_suggested_lma = FALSE;
7090 }
7091
7092 continue;
7093 }
7094 }
7095
7096 map->sections[map->count++] = output_section;
7097 ++isec;
7098 sections[j] = NULL;
7099 section->segment_mark = TRUE;
7100 }
7101 else if (first_suggested_lma)
7102 {
7103 suggested_lma = output_section->lma;
7104 first_suggested_lma = FALSE;
7105 }
7106 }
7107
7108 BFD_ASSERT (map->count > 0);
7109
7110 /* Add the current segment to the list of built segments. */
7111 *pointer_to_map = map;
7112 pointer_to_map = &map->next;
7113
7114 if (isec < section_count)
7115 {
7116 /* We still have not allocated all of the sections to
7117 segments. Create a new segment here, initialise it
7118 and carry on looping. */
7119 amt = sizeof (struct elf_segment_map);
7120 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7121 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7122 if (map == NULL)
7123 {
7124 free (sections);
7125 return FALSE;
7126 }
7127
7128 /* Initialise the fields of the segment map. Set the physical
7129 physical address to the LMA of the first section that has
7130 not yet been assigned. */
7131 map->next = NULL;
7132 map->p_type = segment->p_type;
7133 map->p_flags = segment->p_flags;
7134 map->p_flags_valid = 1;
7135 map->p_paddr = suggested_lma;
7136 map->p_paddr_valid = p_paddr_valid;
7137 map->includes_filehdr = 0;
7138 map->includes_phdrs = 0;
7139 }
7140 }
7141 while (isec < section_count);
7142
7143 free (sections);
7144 }
7145
7146 elf_seg_map (obfd) = map_first;
7147
7148 /* If we had to estimate the number of program headers that were
7149 going to be needed, then check our estimate now and adjust
7150 the offset if necessary. */
7151 if (phdr_adjust_seg != NULL)
7152 {
7153 unsigned int count;
7154
7155 for (count = 0, map = map_first; map != NULL; map = map->next)
7156 count++;
7157
7158 if (count > phdr_adjust_num)
7159 phdr_adjust_seg->p_paddr
7160 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7161 }
7162
7163 #undef SEGMENT_END
7164 #undef SECTION_SIZE
7165 #undef IS_CONTAINED_BY_VMA
7166 #undef IS_CONTAINED_BY_LMA
7167 #undef IS_NOTE
7168 #undef IS_COREFILE_NOTE
7169 #undef IS_SOLARIS_PT_INTERP
7170 #undef IS_SECTION_IN_INPUT_SEGMENT
7171 #undef INCLUDE_SECTION_IN_SEGMENT
7172 #undef SEGMENT_AFTER_SEGMENT
7173 #undef SEGMENT_OVERLAPS
7174 return TRUE;
7175 }
7176
7177 /* Copy ELF program header information. */
7178
7179 static bfd_boolean
7180 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7181 {
7182 Elf_Internal_Ehdr *iehdr;
7183 struct elf_segment_map *map;
7184 struct elf_segment_map *map_first;
7185 struct elf_segment_map **pointer_to_map;
7186 Elf_Internal_Phdr *segment;
7187 unsigned int i;
7188 unsigned int num_segments;
7189 bfd_boolean phdr_included = FALSE;
7190 bfd_boolean p_paddr_valid;
7191
7192 iehdr = elf_elfheader (ibfd);
7193
7194 map_first = NULL;
7195 pointer_to_map = &map_first;
7196
7197 /* If all the segment p_paddr fields are zero, don't set
7198 map->p_paddr_valid. */
7199 p_paddr_valid = FALSE;
7200 num_segments = elf_elfheader (ibfd)->e_phnum;
7201 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7202 i < num_segments;
7203 i++, segment++)
7204 if (segment->p_paddr != 0)
7205 {
7206 p_paddr_valid = TRUE;
7207 break;
7208 }
7209
7210 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7211 i < num_segments;
7212 i++, segment++)
7213 {
7214 asection *section;
7215 unsigned int section_count;
7216 bfd_size_type amt;
7217 Elf_Internal_Shdr *this_hdr;
7218 asection *first_section = NULL;
7219 asection *lowest_section;
7220
7221 /* Compute how many sections are in this segment. */
7222 for (section = ibfd->sections, section_count = 0;
7223 section != NULL;
7224 section = section->next)
7225 {
7226 this_hdr = &(elf_section_data(section)->this_hdr);
7227 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7228 {
7229 if (first_section == NULL)
7230 first_section = section;
7231 section_count++;
7232 }
7233 }
7234
7235 /* Allocate a segment map big enough to contain
7236 all of the sections we have selected. */
7237 amt = sizeof (struct elf_segment_map);
7238 if (section_count != 0)
7239 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7240 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7241 if (map == NULL)
7242 return FALSE;
7243
7244 /* Initialize the fields of the output segment map with the
7245 input segment. */
7246 map->next = NULL;
7247 map->p_type = segment->p_type;
7248 map->p_flags = segment->p_flags;
7249 map->p_flags_valid = 1;
7250 map->p_paddr = segment->p_paddr;
7251 map->p_paddr_valid = p_paddr_valid;
7252 map->p_align = segment->p_align;
7253 map->p_align_valid = 1;
7254 map->p_vaddr_offset = 0;
7255
7256 if (map->p_type == PT_GNU_RELRO
7257 || map->p_type == PT_GNU_STACK)
7258 {
7259 /* The PT_GNU_RELRO segment may contain the first a few
7260 bytes in the .got.plt section even if the whole .got.plt
7261 section isn't in the PT_GNU_RELRO segment. We won't
7262 change the size of the PT_GNU_RELRO segment.
7263 Similarly, PT_GNU_STACK size is significant on uclinux
7264 systems. */
7265 map->p_size = segment->p_memsz;
7266 map->p_size_valid = 1;
7267 }
7268
7269 /* Determine if this segment contains the ELF file header
7270 and if it contains the program headers themselves. */
7271 map->includes_filehdr = (segment->p_offset == 0
7272 && segment->p_filesz >= iehdr->e_ehsize);
7273
7274 map->includes_phdrs = 0;
7275 if (! phdr_included || segment->p_type != PT_LOAD)
7276 {
7277 map->includes_phdrs =
7278 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7279 && (segment->p_offset + segment->p_filesz
7280 >= ((bfd_vma) iehdr->e_phoff
7281 + iehdr->e_phnum * iehdr->e_phentsize)));
7282
7283 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7284 phdr_included = TRUE;
7285 }
7286
7287 lowest_section = NULL;
7288 if (section_count != 0)
7289 {
7290 unsigned int isec = 0;
7291
7292 for (section = first_section;
7293 section != NULL;
7294 section = section->next)
7295 {
7296 this_hdr = &(elf_section_data(section)->this_hdr);
7297 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7298 {
7299 map->sections[isec++] = section->output_section;
7300 if ((section->flags & SEC_ALLOC) != 0)
7301 {
7302 bfd_vma seg_off;
7303
7304 if (lowest_section == NULL
7305 || section->lma < lowest_section->lma)
7306 lowest_section = section;
7307
7308 /* Section lmas are set up from PT_LOAD header
7309 p_paddr in _bfd_elf_make_section_from_shdr.
7310 If this header has a p_paddr that disagrees
7311 with the section lma, flag the p_paddr as
7312 invalid. */
7313 if ((section->flags & SEC_LOAD) != 0)
7314 seg_off = this_hdr->sh_offset - segment->p_offset;
7315 else
7316 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7317 if (section->lma - segment->p_paddr != seg_off)
7318 map->p_paddr_valid = FALSE;
7319 }
7320 if (isec == section_count)
7321 break;
7322 }
7323 }
7324 }
7325
7326 if (map->includes_filehdr && lowest_section != NULL)
7327 /* We need to keep the space used by the headers fixed. */
7328 map->header_size = lowest_section->vma - segment->p_vaddr;
7329
7330 if (!map->includes_phdrs
7331 && !map->includes_filehdr
7332 && map->p_paddr_valid)
7333 /* There is some other padding before the first section. */
7334 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7335 - segment->p_paddr);
7336
7337 map->count = section_count;
7338 *pointer_to_map = map;
7339 pointer_to_map = &map->next;
7340 }
7341
7342 elf_seg_map (obfd) = map_first;
7343 return TRUE;
7344 }
7345
7346 /* Copy private BFD data. This copies or rewrites ELF program header
7347 information. */
7348
7349 static bfd_boolean
7350 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7351 {
7352 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7353 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7354 return TRUE;
7355
7356 if (elf_tdata (ibfd)->phdr == NULL)
7357 return TRUE;
7358
7359 if (ibfd->xvec == obfd->xvec)
7360 {
7361 /* Check to see if any sections in the input BFD
7362 covered by ELF program header have changed. */
7363 Elf_Internal_Phdr *segment;
7364 asection *section, *osec;
7365 unsigned int i, num_segments;
7366 Elf_Internal_Shdr *this_hdr;
7367 const struct elf_backend_data *bed;
7368
7369 bed = get_elf_backend_data (ibfd);
7370
7371 /* Regenerate the segment map if p_paddr is set to 0. */
7372 if (bed->want_p_paddr_set_to_zero)
7373 goto rewrite;
7374
7375 /* Initialize the segment mark field. */
7376 for (section = obfd->sections; section != NULL;
7377 section = section->next)
7378 section->segment_mark = FALSE;
7379
7380 num_segments = elf_elfheader (ibfd)->e_phnum;
7381 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7382 i < num_segments;
7383 i++, segment++)
7384 {
7385 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7386 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7387 which severly confuses things, so always regenerate the segment
7388 map in this case. */
7389 if (segment->p_paddr == 0
7390 && segment->p_memsz == 0
7391 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7392 goto rewrite;
7393
7394 for (section = ibfd->sections;
7395 section != NULL; section = section->next)
7396 {
7397 /* We mark the output section so that we know it comes
7398 from the input BFD. */
7399 osec = section->output_section;
7400 if (osec)
7401 osec->segment_mark = TRUE;
7402
7403 /* Check if this section is covered by the segment. */
7404 this_hdr = &(elf_section_data(section)->this_hdr);
7405 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7406 {
7407 /* FIXME: Check if its output section is changed or
7408 removed. What else do we need to check? */
7409 if (osec == NULL
7410 || section->flags != osec->flags
7411 || section->lma != osec->lma
7412 || section->vma != osec->vma
7413 || section->size != osec->size
7414 || section->rawsize != osec->rawsize
7415 || section->alignment_power != osec->alignment_power)
7416 goto rewrite;
7417 }
7418 }
7419 }
7420
7421 /* Check to see if any output section do not come from the
7422 input BFD. */
7423 for (section = obfd->sections; section != NULL;
7424 section = section->next)
7425 {
7426 if (!section->segment_mark)
7427 goto rewrite;
7428 else
7429 section->segment_mark = FALSE;
7430 }
7431
7432 return copy_elf_program_header (ibfd, obfd);
7433 }
7434
7435 rewrite:
7436 if (ibfd->xvec == obfd->xvec)
7437 {
7438 /* When rewriting program header, set the output maxpagesize to
7439 the maximum alignment of input PT_LOAD segments. */
7440 Elf_Internal_Phdr *segment;
7441 unsigned int i;
7442 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7443 bfd_vma maxpagesize = 0;
7444
7445 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7446 i < num_segments;
7447 i++, segment++)
7448 if (segment->p_type == PT_LOAD
7449 && maxpagesize < segment->p_align)
7450 {
7451 /* PR 17512: file: f17299af. */
7452 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7453 /* xgettext:c-format */
7454 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7455 PRIx64 " is too large"),
7456 ibfd, (uint64_t) segment->p_align);
7457 else
7458 maxpagesize = segment->p_align;
7459 }
7460
7461 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7462 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7463 }
7464
7465 return rewrite_elf_program_header (ibfd, obfd);
7466 }
7467
7468 /* Initialize private output section information from input section. */
7469
7470 bfd_boolean
7471 _bfd_elf_init_private_section_data (bfd *ibfd,
7472 asection *isec,
7473 bfd *obfd,
7474 asection *osec,
7475 struct bfd_link_info *link_info)
7476
7477 {
7478 Elf_Internal_Shdr *ihdr, *ohdr;
7479 bfd_boolean final_link = (link_info != NULL
7480 && !bfd_link_relocatable (link_info));
7481
7482 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7483 || obfd->xvec->flavour != bfd_target_elf_flavour)
7484 return TRUE;
7485
7486 BFD_ASSERT (elf_section_data (osec) != NULL);
7487
7488 /* For objcopy and relocatable link, don't copy the output ELF
7489 section type from input if the output BFD section flags have been
7490 set to something different. For a final link allow some flags
7491 that the linker clears to differ. */
7492 if (elf_section_type (osec) == SHT_NULL
7493 && (osec->flags == isec->flags
7494 || (final_link
7495 && ((osec->flags ^ isec->flags)
7496 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7497 elf_section_type (osec) = elf_section_type (isec);
7498
7499 /* FIXME: Is this correct for all OS/PROC specific flags? */
7500 elf_section_flags (osec) |= (elf_section_flags (isec)
7501 & (SHF_MASKOS | SHF_MASKPROC));
7502
7503 /* Copy sh_info from input for mbind section. */
7504 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7505 elf_section_data (osec)->this_hdr.sh_info
7506 = elf_section_data (isec)->this_hdr.sh_info;
7507
7508 /* Set things up for objcopy and relocatable link. The output
7509 SHT_GROUP section will have its elf_next_in_group pointing back
7510 to the input group members. Ignore linker created group section.
7511 See elfNN_ia64_object_p in elfxx-ia64.c. */
7512 if ((link_info == NULL
7513 || !link_info->resolve_section_groups)
7514 && (elf_sec_group (isec) == NULL
7515 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7516 {
7517 if (elf_section_flags (isec) & SHF_GROUP)
7518 elf_section_flags (osec) |= SHF_GROUP;
7519 elf_next_in_group (osec) = elf_next_in_group (isec);
7520 elf_section_data (osec)->group = elf_section_data (isec)->group;
7521 }
7522
7523 /* If not decompress, preserve SHF_COMPRESSED. */
7524 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7525 elf_section_flags (osec) |= (elf_section_flags (isec)
7526 & SHF_COMPRESSED);
7527
7528 ihdr = &elf_section_data (isec)->this_hdr;
7529
7530 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7531 don't use the output section of the linked-to section since it
7532 may be NULL at this point. */
7533 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7534 {
7535 ohdr = &elf_section_data (osec)->this_hdr;
7536 ohdr->sh_flags |= SHF_LINK_ORDER;
7537 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7538 }
7539
7540 osec->use_rela_p = isec->use_rela_p;
7541
7542 return TRUE;
7543 }
7544
7545 /* Copy private section information. This copies over the entsize
7546 field, and sometimes the info field. */
7547
7548 bfd_boolean
7549 _bfd_elf_copy_private_section_data (bfd *ibfd,
7550 asection *isec,
7551 bfd *obfd,
7552 asection *osec)
7553 {
7554 Elf_Internal_Shdr *ihdr, *ohdr;
7555
7556 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7557 || obfd->xvec->flavour != bfd_target_elf_flavour)
7558 return TRUE;
7559
7560 ihdr = &elf_section_data (isec)->this_hdr;
7561 ohdr = &elf_section_data (osec)->this_hdr;
7562
7563 ohdr->sh_entsize = ihdr->sh_entsize;
7564
7565 if (ihdr->sh_type == SHT_SYMTAB
7566 || ihdr->sh_type == SHT_DYNSYM
7567 || ihdr->sh_type == SHT_GNU_verneed
7568 || ihdr->sh_type == SHT_GNU_verdef)
7569 ohdr->sh_info = ihdr->sh_info;
7570
7571 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7572 NULL);
7573 }
7574
7575 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7576 necessary if we are removing either the SHT_GROUP section or any of
7577 the group member sections. DISCARDED is the value that a section's
7578 output_section has if the section will be discarded, NULL when this
7579 function is called from objcopy, bfd_abs_section_ptr when called
7580 from the linker. */
7581
7582 bfd_boolean
7583 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7584 {
7585 asection *isec;
7586
7587 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7588 if (elf_section_type (isec) == SHT_GROUP)
7589 {
7590 asection *first = elf_next_in_group (isec);
7591 asection *s = first;
7592 bfd_size_type removed = 0;
7593
7594 while (s != NULL)
7595 {
7596 /* If this member section is being output but the
7597 SHT_GROUP section is not, then clear the group info
7598 set up by _bfd_elf_copy_private_section_data. */
7599 if (s->output_section != discarded
7600 && isec->output_section == discarded)
7601 {
7602 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7603 elf_group_name (s->output_section) = NULL;
7604 }
7605 /* Conversely, if the member section is not being output
7606 but the SHT_GROUP section is, then adjust its size. */
7607 else if (s->output_section == discarded
7608 && isec->output_section != discarded)
7609 {
7610 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7611 removed += 4;
7612 if (elf_sec->rel.hdr != NULL
7613 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7614 removed += 4;
7615 if (elf_sec->rela.hdr != NULL
7616 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7617 removed += 4;
7618 }
7619 s = elf_next_in_group (s);
7620 if (s == first)
7621 break;
7622 }
7623 if (removed != 0)
7624 {
7625 if (discarded != NULL)
7626 {
7627 /* If we've been called for ld -r, then we need to
7628 adjust the input section size. */
7629 if (isec->rawsize == 0)
7630 isec->rawsize = isec->size;
7631 isec->size = isec->rawsize - removed;
7632 if (isec->size <= 4)
7633 {
7634 isec->size = 0;
7635 isec->flags |= SEC_EXCLUDE;
7636 }
7637 }
7638 else
7639 {
7640 /* Adjust the output section size when called from
7641 objcopy. */
7642 isec->output_section->size -= removed;
7643 if (isec->output_section->size <= 4)
7644 {
7645 isec->output_section->size = 0;
7646 isec->output_section->flags |= SEC_EXCLUDE;
7647 }
7648 }
7649 }
7650 }
7651
7652 return TRUE;
7653 }
7654
7655 /* Copy private header information. */
7656
7657 bfd_boolean
7658 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7659 {
7660 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7661 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7662 return TRUE;
7663
7664 /* Copy over private BFD data if it has not already been copied.
7665 This must be done here, rather than in the copy_private_bfd_data
7666 entry point, because the latter is called after the section
7667 contents have been set, which means that the program headers have
7668 already been worked out. */
7669 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7670 {
7671 if (! copy_private_bfd_data (ibfd, obfd))
7672 return FALSE;
7673 }
7674
7675 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7676 }
7677
7678 /* Copy private symbol information. If this symbol is in a section
7679 which we did not map into a BFD section, try to map the section
7680 index correctly. We use special macro definitions for the mapped
7681 section indices; these definitions are interpreted by the
7682 swap_out_syms function. */
7683
7684 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7685 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7686 #define MAP_STRTAB (SHN_HIOS + 3)
7687 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7688 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7689
7690 bfd_boolean
7691 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7692 asymbol *isymarg,
7693 bfd *obfd,
7694 asymbol *osymarg)
7695 {
7696 elf_symbol_type *isym, *osym;
7697
7698 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7699 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7700 return TRUE;
7701
7702 isym = elf_symbol_from (ibfd, isymarg);
7703 osym = elf_symbol_from (obfd, osymarg);
7704
7705 if (isym != NULL
7706 && isym->internal_elf_sym.st_shndx != 0
7707 && osym != NULL
7708 && bfd_is_abs_section (isym->symbol.section))
7709 {
7710 unsigned int shndx;
7711
7712 shndx = isym->internal_elf_sym.st_shndx;
7713 if (shndx == elf_onesymtab (ibfd))
7714 shndx = MAP_ONESYMTAB;
7715 else if (shndx == elf_dynsymtab (ibfd))
7716 shndx = MAP_DYNSYMTAB;
7717 else if (shndx == elf_strtab_sec (ibfd))
7718 shndx = MAP_STRTAB;
7719 else if (shndx == elf_shstrtab_sec (ibfd))
7720 shndx = MAP_SHSTRTAB;
7721 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7722 shndx = MAP_SYM_SHNDX;
7723 osym->internal_elf_sym.st_shndx = shndx;
7724 }
7725
7726 return TRUE;
7727 }
7728
7729 /* Swap out the symbols. */
7730
7731 static bfd_boolean
7732 swap_out_syms (bfd *abfd,
7733 struct elf_strtab_hash **sttp,
7734 int relocatable_p)
7735 {
7736 const struct elf_backend_data *bed;
7737 int symcount;
7738 asymbol **syms;
7739 struct elf_strtab_hash *stt;
7740 Elf_Internal_Shdr *symtab_hdr;
7741 Elf_Internal_Shdr *symtab_shndx_hdr;
7742 Elf_Internal_Shdr *symstrtab_hdr;
7743 struct elf_sym_strtab *symstrtab;
7744 bfd_byte *outbound_syms;
7745 bfd_byte *outbound_shndx;
7746 unsigned long outbound_syms_index;
7747 unsigned long outbound_shndx_index;
7748 int idx;
7749 unsigned int num_locals;
7750 bfd_size_type amt;
7751 bfd_boolean name_local_sections;
7752
7753 if (!elf_map_symbols (abfd, &num_locals))
7754 return FALSE;
7755
7756 /* Dump out the symtabs. */
7757 stt = _bfd_elf_strtab_init ();
7758 if (stt == NULL)
7759 return FALSE;
7760
7761 bed = get_elf_backend_data (abfd);
7762 symcount = bfd_get_symcount (abfd);
7763 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7764 symtab_hdr->sh_type = SHT_SYMTAB;
7765 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7766 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7767 symtab_hdr->sh_info = num_locals + 1;
7768 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7769
7770 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7771 symstrtab_hdr->sh_type = SHT_STRTAB;
7772
7773 /* Allocate buffer to swap out the .strtab section. */
7774 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7775 * sizeof (*symstrtab));
7776 if (symstrtab == NULL)
7777 {
7778 _bfd_elf_strtab_free (stt);
7779 return FALSE;
7780 }
7781
7782 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7783 bed->s->sizeof_sym);
7784 if (outbound_syms == NULL)
7785 {
7786 error_return:
7787 _bfd_elf_strtab_free (stt);
7788 free (symstrtab);
7789 return FALSE;
7790 }
7791 symtab_hdr->contents = outbound_syms;
7792 outbound_syms_index = 0;
7793
7794 outbound_shndx = NULL;
7795 outbound_shndx_index = 0;
7796
7797 if (elf_symtab_shndx_list (abfd))
7798 {
7799 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7800 if (symtab_shndx_hdr->sh_name != 0)
7801 {
7802 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7803 outbound_shndx = (bfd_byte *)
7804 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7805 if (outbound_shndx == NULL)
7806 goto error_return;
7807
7808 symtab_shndx_hdr->contents = outbound_shndx;
7809 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7810 symtab_shndx_hdr->sh_size = amt;
7811 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7812 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7813 }
7814 /* FIXME: What about any other headers in the list ? */
7815 }
7816
7817 /* Now generate the data (for "contents"). */
7818 {
7819 /* Fill in zeroth symbol and swap it out. */
7820 Elf_Internal_Sym sym;
7821 sym.st_name = 0;
7822 sym.st_value = 0;
7823 sym.st_size = 0;
7824 sym.st_info = 0;
7825 sym.st_other = 0;
7826 sym.st_shndx = SHN_UNDEF;
7827 sym.st_target_internal = 0;
7828 symstrtab[0].sym = sym;
7829 symstrtab[0].dest_index = outbound_syms_index;
7830 symstrtab[0].destshndx_index = outbound_shndx_index;
7831 outbound_syms_index++;
7832 if (outbound_shndx != NULL)
7833 outbound_shndx_index++;
7834 }
7835
7836 name_local_sections
7837 = (bed->elf_backend_name_local_section_symbols
7838 && bed->elf_backend_name_local_section_symbols (abfd));
7839
7840 syms = bfd_get_outsymbols (abfd);
7841 for (idx = 0; idx < symcount;)
7842 {
7843 Elf_Internal_Sym sym;
7844 bfd_vma value = syms[idx]->value;
7845 elf_symbol_type *type_ptr;
7846 flagword flags = syms[idx]->flags;
7847 int type;
7848
7849 if (!name_local_sections
7850 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7851 {
7852 /* Local section symbols have no name. */
7853 sym.st_name = (unsigned long) -1;
7854 }
7855 else
7856 {
7857 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7858 to get the final offset for st_name. */
7859 sym.st_name
7860 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7861 FALSE);
7862 if (sym.st_name == (unsigned long) -1)
7863 goto error_return;
7864 }
7865
7866 type_ptr = elf_symbol_from (abfd, syms[idx]);
7867
7868 if ((flags & BSF_SECTION_SYM) == 0
7869 && bfd_is_com_section (syms[idx]->section))
7870 {
7871 /* ELF common symbols put the alignment into the `value' field,
7872 and the size into the `size' field. This is backwards from
7873 how BFD handles it, so reverse it here. */
7874 sym.st_size = value;
7875 if (type_ptr == NULL
7876 || type_ptr->internal_elf_sym.st_value == 0)
7877 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7878 else
7879 sym.st_value = type_ptr->internal_elf_sym.st_value;
7880 sym.st_shndx = _bfd_elf_section_from_bfd_section
7881 (abfd, syms[idx]->section);
7882 }
7883 else
7884 {
7885 asection *sec = syms[idx]->section;
7886 unsigned int shndx;
7887
7888 if (sec->output_section)
7889 {
7890 value += sec->output_offset;
7891 sec = sec->output_section;
7892 }
7893
7894 /* Don't add in the section vma for relocatable output. */
7895 if (! relocatable_p)
7896 value += sec->vma;
7897 sym.st_value = value;
7898 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7899
7900 if (bfd_is_abs_section (sec)
7901 && type_ptr != NULL
7902 && type_ptr->internal_elf_sym.st_shndx != 0)
7903 {
7904 /* This symbol is in a real ELF section which we did
7905 not create as a BFD section. Undo the mapping done
7906 by copy_private_symbol_data. */
7907 shndx = type_ptr->internal_elf_sym.st_shndx;
7908 switch (shndx)
7909 {
7910 case MAP_ONESYMTAB:
7911 shndx = elf_onesymtab (abfd);
7912 break;
7913 case MAP_DYNSYMTAB:
7914 shndx = elf_dynsymtab (abfd);
7915 break;
7916 case MAP_STRTAB:
7917 shndx = elf_strtab_sec (abfd);
7918 break;
7919 case MAP_SHSTRTAB:
7920 shndx = elf_shstrtab_sec (abfd);
7921 break;
7922 case MAP_SYM_SHNDX:
7923 if (elf_symtab_shndx_list (abfd))
7924 shndx = elf_symtab_shndx_list (abfd)->ndx;
7925 break;
7926 default:
7927 shndx = SHN_ABS;
7928 break;
7929 }
7930 }
7931 else
7932 {
7933 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7934
7935 if (shndx == SHN_BAD)
7936 {
7937 asection *sec2;
7938
7939 /* Writing this would be a hell of a lot easier if
7940 we had some decent documentation on bfd, and
7941 knew what to expect of the library, and what to
7942 demand of applications. For example, it
7943 appears that `objcopy' might not set the
7944 section of a symbol to be a section that is
7945 actually in the output file. */
7946 sec2 = bfd_get_section_by_name (abfd, sec->name);
7947 if (sec2 != NULL)
7948 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7949 if (shndx == SHN_BAD)
7950 {
7951 /* xgettext:c-format */
7952 _bfd_error_handler (_("\
7953 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7954 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7955 sec->name);
7956 bfd_set_error (bfd_error_invalid_operation);
7957 goto error_return;
7958 }
7959 }
7960 }
7961
7962 sym.st_shndx = shndx;
7963 }
7964
7965 if ((flags & BSF_THREAD_LOCAL) != 0)
7966 type = STT_TLS;
7967 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7968 type = STT_GNU_IFUNC;
7969 else if ((flags & BSF_FUNCTION) != 0)
7970 type = STT_FUNC;
7971 else if ((flags & BSF_OBJECT) != 0)
7972 type = STT_OBJECT;
7973 else if ((flags & BSF_RELC) != 0)
7974 type = STT_RELC;
7975 else if ((flags & BSF_SRELC) != 0)
7976 type = STT_SRELC;
7977 else
7978 type = STT_NOTYPE;
7979
7980 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7981 type = STT_TLS;
7982
7983 /* Processor-specific types. */
7984 if (type_ptr != NULL
7985 && bed->elf_backend_get_symbol_type)
7986 type = ((*bed->elf_backend_get_symbol_type)
7987 (&type_ptr->internal_elf_sym, type));
7988
7989 if (flags & BSF_SECTION_SYM)
7990 {
7991 if (flags & BSF_GLOBAL)
7992 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7993 else
7994 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7995 }
7996 else if (bfd_is_com_section (syms[idx]->section))
7997 {
7998 if (type != STT_TLS)
7999 {
8000 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8001 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8002 ? STT_COMMON : STT_OBJECT);
8003 else
8004 type = ((flags & BSF_ELF_COMMON) != 0
8005 ? STT_COMMON : STT_OBJECT);
8006 }
8007 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8008 }
8009 else if (bfd_is_und_section (syms[idx]->section))
8010 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8011 ? STB_WEAK
8012 : STB_GLOBAL),
8013 type);
8014 else if (flags & BSF_FILE)
8015 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8016 else
8017 {
8018 int bind = STB_LOCAL;
8019
8020 if (flags & BSF_LOCAL)
8021 bind = STB_LOCAL;
8022 else if (flags & BSF_GNU_UNIQUE)
8023 bind = STB_GNU_UNIQUE;
8024 else if (flags & BSF_WEAK)
8025 bind = STB_WEAK;
8026 else if (flags & BSF_GLOBAL)
8027 bind = STB_GLOBAL;
8028
8029 sym.st_info = ELF_ST_INFO (bind, type);
8030 }
8031
8032 if (type_ptr != NULL)
8033 {
8034 sym.st_other = type_ptr->internal_elf_sym.st_other;
8035 sym.st_target_internal
8036 = type_ptr->internal_elf_sym.st_target_internal;
8037 }
8038 else
8039 {
8040 sym.st_other = 0;
8041 sym.st_target_internal = 0;
8042 }
8043
8044 idx++;
8045 symstrtab[idx].sym = sym;
8046 symstrtab[idx].dest_index = outbound_syms_index;
8047 symstrtab[idx].destshndx_index = outbound_shndx_index;
8048
8049 outbound_syms_index++;
8050 if (outbound_shndx != NULL)
8051 outbound_shndx_index++;
8052 }
8053
8054 /* Finalize the .strtab section. */
8055 _bfd_elf_strtab_finalize (stt);
8056
8057 /* Swap out the .strtab section. */
8058 for (idx = 0; idx <= symcount; idx++)
8059 {
8060 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8061 if (elfsym->sym.st_name == (unsigned long) -1)
8062 elfsym->sym.st_name = 0;
8063 else
8064 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8065 elfsym->sym.st_name);
8066 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8067 (outbound_syms
8068 + (elfsym->dest_index
8069 * bed->s->sizeof_sym)),
8070 (outbound_shndx
8071 + (elfsym->destshndx_index
8072 * sizeof (Elf_External_Sym_Shndx))));
8073 }
8074 free (symstrtab);
8075
8076 *sttp = stt;
8077 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8078 symstrtab_hdr->sh_type = SHT_STRTAB;
8079 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8080 symstrtab_hdr->sh_addr = 0;
8081 symstrtab_hdr->sh_entsize = 0;
8082 symstrtab_hdr->sh_link = 0;
8083 symstrtab_hdr->sh_info = 0;
8084 symstrtab_hdr->sh_addralign = 1;
8085
8086 return TRUE;
8087 }
8088
8089 /* Return the number of bytes required to hold the symtab vector.
8090
8091 Note that we base it on the count plus 1, since we will null terminate
8092 the vector allocated based on this size. However, the ELF symbol table
8093 always has a dummy entry as symbol #0, so it ends up even. */
8094
8095 long
8096 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8097 {
8098 long symcount;
8099 long symtab_size;
8100 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8101
8102 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8103 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8104 if (symcount > 0)
8105 symtab_size -= sizeof (asymbol *);
8106
8107 return symtab_size;
8108 }
8109
8110 long
8111 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8112 {
8113 long symcount;
8114 long symtab_size;
8115 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8116
8117 if (elf_dynsymtab (abfd) == 0)
8118 {
8119 bfd_set_error (bfd_error_invalid_operation);
8120 return -1;
8121 }
8122
8123 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8124 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8125 if (symcount > 0)
8126 symtab_size -= sizeof (asymbol *);
8127
8128 return symtab_size;
8129 }
8130
8131 long
8132 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8133 sec_ptr asect)
8134 {
8135 return (asect->reloc_count + 1) * sizeof (arelent *);
8136 }
8137
8138 /* Canonicalize the relocs. */
8139
8140 long
8141 _bfd_elf_canonicalize_reloc (bfd *abfd,
8142 sec_ptr section,
8143 arelent **relptr,
8144 asymbol **symbols)
8145 {
8146 arelent *tblptr;
8147 unsigned int i;
8148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8149
8150 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8151 return -1;
8152
8153 tblptr = section->relocation;
8154 for (i = 0; i < section->reloc_count; i++)
8155 *relptr++ = tblptr++;
8156
8157 *relptr = NULL;
8158
8159 return section->reloc_count;
8160 }
8161
8162 long
8163 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8164 {
8165 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8166 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8167
8168 if (symcount >= 0)
8169 bfd_get_symcount (abfd) = symcount;
8170 return symcount;
8171 }
8172
8173 long
8174 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8175 asymbol **allocation)
8176 {
8177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8178 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8179
8180 if (symcount >= 0)
8181 bfd_get_dynamic_symcount (abfd) = symcount;
8182 return symcount;
8183 }
8184
8185 /* Return the size required for the dynamic reloc entries. Any loadable
8186 section that was actually installed in the BFD, and has type SHT_REL
8187 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8188 dynamic reloc section. */
8189
8190 long
8191 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8192 {
8193 long ret;
8194 asection *s;
8195
8196 if (elf_dynsymtab (abfd) == 0)
8197 {
8198 bfd_set_error (bfd_error_invalid_operation);
8199 return -1;
8200 }
8201
8202 ret = sizeof (arelent *);
8203 for (s = abfd->sections; s != NULL; s = s->next)
8204 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8205 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8206 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8207 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8208 * sizeof (arelent *));
8209
8210 return ret;
8211 }
8212
8213 /* Canonicalize the dynamic relocation entries. Note that we return the
8214 dynamic relocations as a single block, although they are actually
8215 associated with particular sections; the interface, which was
8216 designed for SunOS style shared libraries, expects that there is only
8217 one set of dynamic relocs. Any loadable section that was actually
8218 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8219 dynamic symbol table, is considered to be a dynamic reloc section. */
8220
8221 long
8222 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8223 arelent **storage,
8224 asymbol **syms)
8225 {
8226 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8227 asection *s;
8228 long ret;
8229
8230 if (elf_dynsymtab (abfd) == 0)
8231 {
8232 bfd_set_error (bfd_error_invalid_operation);
8233 return -1;
8234 }
8235
8236 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8237 ret = 0;
8238 for (s = abfd->sections; s != NULL; s = s->next)
8239 {
8240 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8241 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8242 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8243 {
8244 arelent *p;
8245 long count, i;
8246
8247 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8248 return -1;
8249 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8250 p = s->relocation;
8251 for (i = 0; i < count; i++)
8252 *storage++ = p++;
8253 ret += count;
8254 }
8255 }
8256
8257 *storage = NULL;
8258
8259 return ret;
8260 }
8261 \f
8262 /* Read in the version information. */
8263
8264 bfd_boolean
8265 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8266 {
8267 bfd_byte *contents = NULL;
8268 unsigned int freeidx = 0;
8269
8270 if (elf_dynverref (abfd) != 0)
8271 {
8272 Elf_Internal_Shdr *hdr;
8273 Elf_External_Verneed *everneed;
8274 Elf_Internal_Verneed *iverneed;
8275 unsigned int i;
8276 bfd_byte *contents_end;
8277
8278 hdr = &elf_tdata (abfd)->dynverref_hdr;
8279
8280 if (hdr->sh_info == 0
8281 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8282 {
8283 error_return_bad_verref:
8284 _bfd_error_handler
8285 (_("%pB: .gnu.version_r invalid entry"), abfd);
8286 bfd_set_error (bfd_error_bad_value);
8287 error_return_verref:
8288 elf_tdata (abfd)->verref = NULL;
8289 elf_tdata (abfd)->cverrefs = 0;
8290 goto error_return;
8291 }
8292
8293 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8294 if (contents == NULL)
8295 goto error_return_verref;
8296
8297 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8298 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8299 goto error_return_verref;
8300
8301 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8302 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8303
8304 if (elf_tdata (abfd)->verref == NULL)
8305 goto error_return_verref;
8306
8307 BFD_ASSERT (sizeof (Elf_External_Verneed)
8308 == sizeof (Elf_External_Vernaux));
8309 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8310 everneed = (Elf_External_Verneed *) contents;
8311 iverneed = elf_tdata (abfd)->verref;
8312 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8313 {
8314 Elf_External_Vernaux *evernaux;
8315 Elf_Internal_Vernaux *ivernaux;
8316 unsigned int j;
8317
8318 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8319
8320 iverneed->vn_bfd = abfd;
8321
8322 iverneed->vn_filename =
8323 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8324 iverneed->vn_file);
8325 if (iverneed->vn_filename == NULL)
8326 goto error_return_bad_verref;
8327
8328 if (iverneed->vn_cnt == 0)
8329 iverneed->vn_auxptr = NULL;
8330 else
8331 {
8332 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8333 bfd_alloc2 (abfd, iverneed->vn_cnt,
8334 sizeof (Elf_Internal_Vernaux));
8335 if (iverneed->vn_auxptr == NULL)
8336 goto error_return_verref;
8337 }
8338
8339 if (iverneed->vn_aux
8340 > (size_t) (contents_end - (bfd_byte *) everneed))
8341 goto error_return_bad_verref;
8342
8343 evernaux = ((Elf_External_Vernaux *)
8344 ((bfd_byte *) everneed + iverneed->vn_aux));
8345 ivernaux = iverneed->vn_auxptr;
8346 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8347 {
8348 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8349
8350 ivernaux->vna_nodename =
8351 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8352 ivernaux->vna_name);
8353 if (ivernaux->vna_nodename == NULL)
8354 goto error_return_bad_verref;
8355
8356 if (ivernaux->vna_other > freeidx)
8357 freeidx = ivernaux->vna_other;
8358
8359 ivernaux->vna_nextptr = NULL;
8360 if (ivernaux->vna_next == 0)
8361 {
8362 iverneed->vn_cnt = j + 1;
8363 break;
8364 }
8365 if (j + 1 < iverneed->vn_cnt)
8366 ivernaux->vna_nextptr = ivernaux + 1;
8367
8368 if (ivernaux->vna_next
8369 > (size_t) (contents_end - (bfd_byte *) evernaux))
8370 goto error_return_bad_verref;
8371
8372 evernaux = ((Elf_External_Vernaux *)
8373 ((bfd_byte *) evernaux + ivernaux->vna_next));
8374 }
8375
8376 iverneed->vn_nextref = NULL;
8377 if (iverneed->vn_next == 0)
8378 break;
8379 if (i + 1 < hdr->sh_info)
8380 iverneed->vn_nextref = iverneed + 1;
8381
8382 if (iverneed->vn_next
8383 > (size_t) (contents_end - (bfd_byte *) everneed))
8384 goto error_return_bad_verref;
8385
8386 everneed = ((Elf_External_Verneed *)
8387 ((bfd_byte *) everneed + iverneed->vn_next));
8388 }
8389 elf_tdata (abfd)->cverrefs = i;
8390
8391 free (contents);
8392 contents = NULL;
8393 }
8394
8395 if (elf_dynverdef (abfd) != 0)
8396 {
8397 Elf_Internal_Shdr *hdr;
8398 Elf_External_Verdef *everdef;
8399 Elf_Internal_Verdef *iverdef;
8400 Elf_Internal_Verdef *iverdefarr;
8401 Elf_Internal_Verdef iverdefmem;
8402 unsigned int i;
8403 unsigned int maxidx;
8404 bfd_byte *contents_end_def, *contents_end_aux;
8405
8406 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8407
8408 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8409 {
8410 error_return_bad_verdef:
8411 _bfd_error_handler
8412 (_("%pB: .gnu.version_d invalid entry"), abfd);
8413 bfd_set_error (bfd_error_bad_value);
8414 error_return_verdef:
8415 elf_tdata (abfd)->verdef = NULL;
8416 elf_tdata (abfd)->cverdefs = 0;
8417 goto error_return;
8418 }
8419
8420 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8421 if (contents == NULL)
8422 goto error_return_verdef;
8423 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8424 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8425 goto error_return_verdef;
8426
8427 BFD_ASSERT (sizeof (Elf_External_Verdef)
8428 >= sizeof (Elf_External_Verdaux));
8429 contents_end_def = contents + hdr->sh_size
8430 - sizeof (Elf_External_Verdef);
8431 contents_end_aux = contents + hdr->sh_size
8432 - sizeof (Elf_External_Verdaux);
8433
8434 /* We know the number of entries in the section but not the maximum
8435 index. Therefore we have to run through all entries and find
8436 the maximum. */
8437 everdef = (Elf_External_Verdef *) contents;
8438 maxidx = 0;
8439 for (i = 0; i < hdr->sh_info; ++i)
8440 {
8441 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8442
8443 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8444 goto error_return_bad_verdef;
8445 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8446 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8447
8448 if (iverdefmem.vd_next == 0)
8449 break;
8450
8451 if (iverdefmem.vd_next
8452 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8453 goto error_return_bad_verdef;
8454
8455 everdef = ((Elf_External_Verdef *)
8456 ((bfd_byte *) everdef + iverdefmem.vd_next));
8457 }
8458
8459 if (default_imported_symver)
8460 {
8461 if (freeidx > maxidx)
8462 maxidx = ++freeidx;
8463 else
8464 freeidx = ++maxidx;
8465 }
8466
8467 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8468 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8469 if (elf_tdata (abfd)->verdef == NULL)
8470 goto error_return_verdef;
8471
8472 elf_tdata (abfd)->cverdefs = maxidx;
8473
8474 everdef = (Elf_External_Verdef *) contents;
8475 iverdefarr = elf_tdata (abfd)->verdef;
8476 for (i = 0; i < hdr->sh_info; i++)
8477 {
8478 Elf_External_Verdaux *everdaux;
8479 Elf_Internal_Verdaux *iverdaux;
8480 unsigned int j;
8481
8482 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8483
8484 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8485 goto error_return_bad_verdef;
8486
8487 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8488 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8489
8490 iverdef->vd_bfd = abfd;
8491
8492 if (iverdef->vd_cnt == 0)
8493 iverdef->vd_auxptr = NULL;
8494 else
8495 {
8496 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8497 bfd_alloc2 (abfd, iverdef->vd_cnt,
8498 sizeof (Elf_Internal_Verdaux));
8499 if (iverdef->vd_auxptr == NULL)
8500 goto error_return_verdef;
8501 }
8502
8503 if (iverdef->vd_aux
8504 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8505 goto error_return_bad_verdef;
8506
8507 everdaux = ((Elf_External_Verdaux *)
8508 ((bfd_byte *) everdef + iverdef->vd_aux));
8509 iverdaux = iverdef->vd_auxptr;
8510 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8511 {
8512 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8513
8514 iverdaux->vda_nodename =
8515 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8516 iverdaux->vda_name);
8517 if (iverdaux->vda_nodename == NULL)
8518 goto error_return_bad_verdef;
8519
8520 iverdaux->vda_nextptr = NULL;
8521 if (iverdaux->vda_next == 0)
8522 {
8523 iverdef->vd_cnt = j + 1;
8524 break;
8525 }
8526 if (j + 1 < iverdef->vd_cnt)
8527 iverdaux->vda_nextptr = iverdaux + 1;
8528
8529 if (iverdaux->vda_next
8530 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8531 goto error_return_bad_verdef;
8532
8533 everdaux = ((Elf_External_Verdaux *)
8534 ((bfd_byte *) everdaux + iverdaux->vda_next));
8535 }
8536
8537 iverdef->vd_nodename = NULL;
8538 if (iverdef->vd_cnt)
8539 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8540
8541 iverdef->vd_nextdef = NULL;
8542 if (iverdef->vd_next == 0)
8543 break;
8544 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8545 iverdef->vd_nextdef = iverdef + 1;
8546
8547 everdef = ((Elf_External_Verdef *)
8548 ((bfd_byte *) everdef + iverdef->vd_next));
8549 }
8550
8551 free (contents);
8552 contents = NULL;
8553 }
8554 else if (default_imported_symver)
8555 {
8556 if (freeidx < 3)
8557 freeidx = 3;
8558 else
8559 freeidx++;
8560
8561 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8562 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8563 if (elf_tdata (abfd)->verdef == NULL)
8564 goto error_return;
8565
8566 elf_tdata (abfd)->cverdefs = freeidx;
8567 }
8568
8569 /* Create a default version based on the soname. */
8570 if (default_imported_symver)
8571 {
8572 Elf_Internal_Verdef *iverdef;
8573 Elf_Internal_Verdaux *iverdaux;
8574
8575 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8576
8577 iverdef->vd_version = VER_DEF_CURRENT;
8578 iverdef->vd_flags = 0;
8579 iverdef->vd_ndx = freeidx;
8580 iverdef->vd_cnt = 1;
8581
8582 iverdef->vd_bfd = abfd;
8583
8584 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8585 if (iverdef->vd_nodename == NULL)
8586 goto error_return_verdef;
8587 iverdef->vd_nextdef = NULL;
8588 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8589 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8590 if (iverdef->vd_auxptr == NULL)
8591 goto error_return_verdef;
8592
8593 iverdaux = iverdef->vd_auxptr;
8594 iverdaux->vda_nodename = iverdef->vd_nodename;
8595 }
8596
8597 return TRUE;
8598
8599 error_return:
8600 if (contents != NULL)
8601 free (contents);
8602 return FALSE;
8603 }
8604 \f
8605 asymbol *
8606 _bfd_elf_make_empty_symbol (bfd *abfd)
8607 {
8608 elf_symbol_type *newsym;
8609
8610 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8611 if (!newsym)
8612 return NULL;
8613 newsym->symbol.the_bfd = abfd;
8614 return &newsym->symbol;
8615 }
8616
8617 void
8618 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8619 asymbol *symbol,
8620 symbol_info *ret)
8621 {
8622 bfd_symbol_info (symbol, ret);
8623 }
8624
8625 /* Return whether a symbol name implies a local symbol. Most targets
8626 use this function for the is_local_label_name entry point, but some
8627 override it. */
8628
8629 bfd_boolean
8630 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8631 const char *name)
8632 {
8633 /* Normal local symbols start with ``.L''. */
8634 if (name[0] == '.' && name[1] == 'L')
8635 return TRUE;
8636
8637 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8638 DWARF debugging symbols starting with ``..''. */
8639 if (name[0] == '.' && name[1] == '.')
8640 return TRUE;
8641
8642 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8643 emitting DWARF debugging output. I suspect this is actually a
8644 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8645 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8646 underscore to be emitted on some ELF targets). For ease of use,
8647 we treat such symbols as local. */
8648 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8649 return TRUE;
8650
8651 /* Treat assembler generated fake symbols, dollar local labels and
8652 forward-backward labels (aka local labels) as locals.
8653 These labels have the form:
8654
8655 L0^A.* (fake symbols)
8656
8657 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8658
8659 Versions which start with .L will have already been matched above,
8660 so we only need to match the rest. */
8661 if (name[0] == 'L' && ISDIGIT (name[1]))
8662 {
8663 bfd_boolean ret = FALSE;
8664 const char * p;
8665 char c;
8666
8667 for (p = name + 2; (c = *p); p++)
8668 {
8669 if (c == 1 || c == 2)
8670 {
8671 if (c == 1 && p == name + 2)
8672 /* A fake symbol. */
8673 return TRUE;
8674
8675 /* FIXME: We are being paranoid here and treating symbols like
8676 L0^Bfoo as if there were non-local, on the grounds that the
8677 assembler will never generate them. But can any symbol
8678 containing an ASCII value in the range 1-31 ever be anything
8679 other than some kind of local ? */
8680 ret = TRUE;
8681 }
8682
8683 if (! ISDIGIT (c))
8684 {
8685 ret = FALSE;
8686 break;
8687 }
8688 }
8689 return ret;
8690 }
8691
8692 return FALSE;
8693 }
8694
8695 alent *
8696 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8697 asymbol *symbol ATTRIBUTE_UNUSED)
8698 {
8699 abort ();
8700 return NULL;
8701 }
8702
8703 bfd_boolean
8704 _bfd_elf_set_arch_mach (bfd *abfd,
8705 enum bfd_architecture arch,
8706 unsigned long machine)
8707 {
8708 /* If this isn't the right architecture for this backend, and this
8709 isn't the generic backend, fail. */
8710 if (arch != get_elf_backend_data (abfd)->arch
8711 && arch != bfd_arch_unknown
8712 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8713 return FALSE;
8714
8715 return bfd_default_set_arch_mach (abfd, arch, machine);
8716 }
8717
8718 /* Find the nearest line to a particular section and offset,
8719 for error reporting. */
8720
8721 bfd_boolean
8722 _bfd_elf_find_nearest_line (bfd *abfd,
8723 asymbol **symbols,
8724 asection *section,
8725 bfd_vma offset,
8726 const char **filename_ptr,
8727 const char **functionname_ptr,
8728 unsigned int *line_ptr,
8729 unsigned int *discriminator_ptr)
8730 {
8731 bfd_boolean found;
8732
8733 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8734 filename_ptr, functionname_ptr,
8735 line_ptr, discriminator_ptr,
8736 dwarf_debug_sections, 0,
8737 &elf_tdata (abfd)->dwarf2_find_line_info)
8738 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8739 filename_ptr, functionname_ptr,
8740 line_ptr))
8741 {
8742 if (!*functionname_ptr)
8743 _bfd_elf_find_function (abfd, symbols, section, offset,
8744 *filename_ptr ? NULL : filename_ptr,
8745 functionname_ptr);
8746 return TRUE;
8747 }
8748
8749 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8750 &found, filename_ptr,
8751 functionname_ptr, line_ptr,
8752 &elf_tdata (abfd)->line_info))
8753 return FALSE;
8754 if (found && (*functionname_ptr || *line_ptr))
8755 return TRUE;
8756
8757 if (symbols == NULL)
8758 return FALSE;
8759
8760 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8761 filename_ptr, functionname_ptr))
8762 return FALSE;
8763
8764 *line_ptr = 0;
8765 return TRUE;
8766 }
8767
8768 /* Find the line for a symbol. */
8769
8770 bfd_boolean
8771 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8772 const char **filename_ptr, unsigned int *line_ptr)
8773 {
8774 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8775 filename_ptr, NULL, line_ptr, NULL,
8776 dwarf_debug_sections, 0,
8777 &elf_tdata (abfd)->dwarf2_find_line_info);
8778 }
8779
8780 /* After a call to bfd_find_nearest_line, successive calls to
8781 bfd_find_inliner_info can be used to get source information about
8782 each level of function inlining that terminated at the address
8783 passed to bfd_find_nearest_line. Currently this is only supported
8784 for DWARF2 with appropriate DWARF3 extensions. */
8785
8786 bfd_boolean
8787 _bfd_elf_find_inliner_info (bfd *abfd,
8788 const char **filename_ptr,
8789 const char **functionname_ptr,
8790 unsigned int *line_ptr)
8791 {
8792 bfd_boolean found;
8793 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8794 functionname_ptr, line_ptr,
8795 & elf_tdata (abfd)->dwarf2_find_line_info);
8796 return found;
8797 }
8798
8799 int
8800 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8801 {
8802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8803 int ret = bed->s->sizeof_ehdr;
8804
8805 if (!bfd_link_relocatable (info))
8806 {
8807 bfd_size_type phdr_size = elf_program_header_size (abfd);
8808
8809 if (phdr_size == (bfd_size_type) -1)
8810 {
8811 struct elf_segment_map *m;
8812
8813 phdr_size = 0;
8814 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8815 phdr_size += bed->s->sizeof_phdr;
8816
8817 if (phdr_size == 0)
8818 phdr_size = get_program_header_size (abfd, info);
8819 }
8820
8821 elf_program_header_size (abfd) = phdr_size;
8822 ret += phdr_size;
8823 }
8824
8825 return ret;
8826 }
8827
8828 bfd_boolean
8829 _bfd_elf_set_section_contents (bfd *abfd,
8830 sec_ptr section,
8831 const void *location,
8832 file_ptr offset,
8833 bfd_size_type count)
8834 {
8835 Elf_Internal_Shdr *hdr;
8836 file_ptr pos;
8837
8838 if (! abfd->output_has_begun
8839 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8840 return FALSE;
8841
8842 if (!count)
8843 return TRUE;
8844
8845 hdr = &elf_section_data (section)->this_hdr;
8846 if (hdr->sh_offset == (file_ptr) -1)
8847 {
8848 /* We must compress this section. Write output to the buffer. */
8849 unsigned char *contents = hdr->contents;
8850 if ((offset + count) > hdr->sh_size
8851 || (section->flags & SEC_ELF_COMPRESS) == 0
8852 || contents == NULL)
8853 abort ();
8854 memcpy (contents + offset, location, count);
8855 return TRUE;
8856 }
8857 pos = hdr->sh_offset + offset;
8858 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8859 || bfd_bwrite (location, count, abfd) != count)
8860 return FALSE;
8861
8862 return TRUE;
8863 }
8864
8865 void
8866 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8867 arelent *cache_ptr ATTRIBUTE_UNUSED,
8868 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8869 {
8870 abort ();
8871 }
8872
8873 /* Try to convert a non-ELF reloc into an ELF one. */
8874
8875 bfd_boolean
8876 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8877 {
8878 /* Check whether we really have an ELF howto. */
8879
8880 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8881 {
8882 bfd_reloc_code_real_type code;
8883 reloc_howto_type *howto;
8884
8885 /* Alien reloc: Try to determine its type to replace it with an
8886 equivalent ELF reloc. */
8887
8888 if (areloc->howto->pc_relative)
8889 {
8890 switch (areloc->howto->bitsize)
8891 {
8892 case 8:
8893 code = BFD_RELOC_8_PCREL;
8894 break;
8895 case 12:
8896 code = BFD_RELOC_12_PCREL;
8897 break;
8898 case 16:
8899 code = BFD_RELOC_16_PCREL;
8900 break;
8901 case 24:
8902 code = BFD_RELOC_24_PCREL;
8903 break;
8904 case 32:
8905 code = BFD_RELOC_32_PCREL;
8906 break;
8907 case 64:
8908 code = BFD_RELOC_64_PCREL;
8909 break;
8910 default:
8911 goto fail;
8912 }
8913
8914 howto = bfd_reloc_type_lookup (abfd, code);
8915
8916 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8917 {
8918 if (howto->pcrel_offset)
8919 areloc->addend += areloc->address;
8920 else
8921 areloc->addend -= areloc->address; /* addend is unsigned!! */
8922 }
8923 }
8924 else
8925 {
8926 switch (areloc->howto->bitsize)
8927 {
8928 case 8:
8929 code = BFD_RELOC_8;
8930 break;
8931 case 14:
8932 code = BFD_RELOC_14;
8933 break;
8934 case 16:
8935 code = BFD_RELOC_16;
8936 break;
8937 case 26:
8938 code = BFD_RELOC_26;
8939 break;
8940 case 32:
8941 code = BFD_RELOC_32;
8942 break;
8943 case 64:
8944 code = BFD_RELOC_64;
8945 break;
8946 default:
8947 goto fail;
8948 }
8949
8950 howto = bfd_reloc_type_lookup (abfd, code);
8951 }
8952
8953 if (howto)
8954 areloc->howto = howto;
8955 else
8956 goto fail;
8957 }
8958
8959 return TRUE;
8960
8961 fail:
8962 _bfd_error_handler
8963 /* xgettext:c-format */
8964 (_("%pB: unsupported relocation type %s"),
8965 abfd, areloc->howto->name);
8966 bfd_set_error (bfd_error_bad_value);
8967 return FALSE;
8968 }
8969
8970 bfd_boolean
8971 _bfd_elf_close_and_cleanup (bfd *abfd)
8972 {
8973 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8974 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8975 {
8976 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8977 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8978 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8979 }
8980
8981 return _bfd_generic_close_and_cleanup (abfd);
8982 }
8983
8984 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8985 in the relocation's offset. Thus we cannot allow any sort of sanity
8986 range-checking to interfere. There is nothing else to do in processing
8987 this reloc. */
8988
8989 bfd_reloc_status_type
8990 _bfd_elf_rel_vtable_reloc_fn
8991 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8992 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8993 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8994 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8995 {
8996 return bfd_reloc_ok;
8997 }
8998 \f
8999 /* Elf core file support. Much of this only works on native
9000 toolchains, since we rely on knowing the
9001 machine-dependent procfs structure in order to pick
9002 out details about the corefile. */
9003
9004 #ifdef HAVE_SYS_PROCFS_H
9005 /* Needed for new procfs interface on sparc-solaris. */
9006 # define _STRUCTURED_PROC 1
9007 # include <sys/procfs.h>
9008 #endif
9009
9010 /* Return a PID that identifies a "thread" for threaded cores, or the
9011 PID of the main process for non-threaded cores. */
9012
9013 static int
9014 elfcore_make_pid (bfd *abfd)
9015 {
9016 int pid;
9017
9018 pid = elf_tdata (abfd)->core->lwpid;
9019 if (pid == 0)
9020 pid = elf_tdata (abfd)->core->pid;
9021
9022 return pid;
9023 }
9024
9025 /* If there isn't a section called NAME, make one, using
9026 data from SECT. Note, this function will generate a
9027 reference to NAME, so you shouldn't deallocate or
9028 overwrite it. */
9029
9030 static bfd_boolean
9031 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9032 {
9033 asection *sect2;
9034
9035 if (bfd_get_section_by_name (abfd, name) != NULL)
9036 return TRUE;
9037
9038 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9039 if (sect2 == NULL)
9040 return FALSE;
9041
9042 sect2->size = sect->size;
9043 sect2->filepos = sect->filepos;
9044 sect2->alignment_power = sect->alignment_power;
9045 return TRUE;
9046 }
9047
9048 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9049 actually creates up to two pseudosections:
9050 - For the single-threaded case, a section named NAME, unless
9051 such a section already exists.
9052 - For the multi-threaded case, a section named "NAME/PID", where
9053 PID is elfcore_make_pid (abfd).
9054 Both pseudosections have identical contents. */
9055 bfd_boolean
9056 _bfd_elfcore_make_pseudosection (bfd *abfd,
9057 char *name,
9058 size_t size,
9059 ufile_ptr filepos)
9060 {
9061 char buf[100];
9062 char *threaded_name;
9063 size_t len;
9064 asection *sect;
9065
9066 /* Build the section name. */
9067
9068 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9069 len = strlen (buf) + 1;
9070 threaded_name = (char *) bfd_alloc (abfd, len);
9071 if (threaded_name == NULL)
9072 return FALSE;
9073 memcpy (threaded_name, buf, len);
9074
9075 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9076 SEC_HAS_CONTENTS);
9077 if (sect == NULL)
9078 return FALSE;
9079 sect->size = size;
9080 sect->filepos = filepos;
9081 sect->alignment_power = 2;
9082
9083 return elfcore_maybe_make_sect (abfd, name, sect);
9084 }
9085
9086 /* prstatus_t exists on:
9087 solaris 2.5+
9088 linux 2.[01] + glibc
9089 unixware 4.2
9090 */
9091
9092 #if defined (HAVE_PRSTATUS_T)
9093
9094 static bfd_boolean
9095 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9096 {
9097 size_t size;
9098 int offset;
9099
9100 if (note->descsz == sizeof (prstatus_t))
9101 {
9102 prstatus_t prstat;
9103
9104 size = sizeof (prstat.pr_reg);
9105 offset = offsetof (prstatus_t, pr_reg);
9106 memcpy (&prstat, note->descdata, sizeof (prstat));
9107
9108 /* Do not overwrite the core signal if it
9109 has already been set by another thread. */
9110 if (elf_tdata (abfd)->core->signal == 0)
9111 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9112 if (elf_tdata (abfd)->core->pid == 0)
9113 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9114
9115 /* pr_who exists on:
9116 solaris 2.5+
9117 unixware 4.2
9118 pr_who doesn't exist on:
9119 linux 2.[01]
9120 */
9121 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9122 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9123 #else
9124 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9125 #endif
9126 }
9127 #if defined (HAVE_PRSTATUS32_T)
9128 else if (note->descsz == sizeof (prstatus32_t))
9129 {
9130 /* 64-bit host, 32-bit corefile */
9131 prstatus32_t prstat;
9132
9133 size = sizeof (prstat.pr_reg);
9134 offset = offsetof (prstatus32_t, pr_reg);
9135 memcpy (&prstat, note->descdata, sizeof (prstat));
9136
9137 /* Do not overwrite the core signal if it
9138 has already been set by another thread. */
9139 if (elf_tdata (abfd)->core->signal == 0)
9140 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9141 if (elf_tdata (abfd)->core->pid == 0)
9142 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9143
9144 /* pr_who exists on:
9145 solaris 2.5+
9146 unixware 4.2
9147 pr_who doesn't exist on:
9148 linux 2.[01]
9149 */
9150 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9151 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9152 #else
9153 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9154 #endif
9155 }
9156 #endif /* HAVE_PRSTATUS32_T */
9157 else
9158 {
9159 /* Fail - we don't know how to handle any other
9160 note size (ie. data object type). */
9161 return TRUE;
9162 }
9163
9164 /* Make a ".reg/999" section and a ".reg" section. */
9165 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9166 size, note->descpos + offset);
9167 }
9168 #endif /* defined (HAVE_PRSTATUS_T) */
9169
9170 /* Create a pseudosection containing the exact contents of NOTE. */
9171 static bfd_boolean
9172 elfcore_make_note_pseudosection (bfd *abfd,
9173 char *name,
9174 Elf_Internal_Note *note)
9175 {
9176 return _bfd_elfcore_make_pseudosection (abfd, name,
9177 note->descsz, note->descpos);
9178 }
9179
9180 /* There isn't a consistent prfpregset_t across platforms,
9181 but it doesn't matter, because we don't have to pick this
9182 data structure apart. */
9183
9184 static bfd_boolean
9185 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9186 {
9187 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9188 }
9189
9190 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9191 type of NT_PRXFPREG. Just include the whole note's contents
9192 literally. */
9193
9194 static bfd_boolean
9195 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9196 {
9197 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9198 }
9199
9200 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9201 with a note type of NT_X86_XSTATE. Just include the whole note's
9202 contents literally. */
9203
9204 static bfd_boolean
9205 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9206 {
9207 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9208 }
9209
9210 static bfd_boolean
9211 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9212 {
9213 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9214 }
9215
9216 static bfd_boolean
9217 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9218 {
9219 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9220 }
9221
9222 static bfd_boolean
9223 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9224 {
9225 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9226 }
9227
9228 static bfd_boolean
9229 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9230 {
9231 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9232 }
9233
9234 static bfd_boolean
9235 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9236 {
9237 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9238 }
9239
9240 static bfd_boolean
9241 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9242 {
9243 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9244 }
9245
9246 static bfd_boolean
9247 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9248 {
9249 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9250 }
9251
9252 static bfd_boolean
9253 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9254 {
9255 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9256 }
9257
9258 static bfd_boolean
9259 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9260 {
9261 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9262 }
9263
9264 static bfd_boolean
9265 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9266 {
9267 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9268 }
9269
9270 static bfd_boolean
9271 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9272 {
9273 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9274 }
9275
9276 static bfd_boolean
9277 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9278 {
9279 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9280 }
9281
9282 static bfd_boolean
9283 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9284 {
9285 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9286 }
9287
9288 static bfd_boolean
9289 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9290 {
9291 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9292 }
9293
9294 static bfd_boolean
9295 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9296 {
9297 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9298 }
9299
9300 static bfd_boolean
9301 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9302 {
9303 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9304 }
9305
9306 static bfd_boolean
9307 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9308 {
9309 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9310 }
9311
9312 static bfd_boolean
9313 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9314 {
9315 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9316 }
9317
9318 static bfd_boolean
9319 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9320 {
9321 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9322 }
9323
9324 #if defined (HAVE_PRPSINFO_T)
9325 typedef prpsinfo_t elfcore_psinfo_t;
9326 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9327 typedef prpsinfo32_t elfcore_psinfo32_t;
9328 #endif
9329 #endif
9330
9331 #if defined (HAVE_PSINFO_T)
9332 typedef psinfo_t elfcore_psinfo_t;
9333 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9334 typedef psinfo32_t elfcore_psinfo32_t;
9335 #endif
9336 #endif
9337
9338 /* return a malloc'ed copy of a string at START which is at
9339 most MAX bytes long, possibly without a terminating '\0'.
9340 the copy will always have a terminating '\0'. */
9341
9342 char *
9343 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9344 {
9345 char *dups;
9346 char *end = (char *) memchr (start, '\0', max);
9347 size_t len;
9348
9349 if (end == NULL)
9350 len = max;
9351 else
9352 len = end - start;
9353
9354 dups = (char *) bfd_alloc (abfd, len + 1);
9355 if (dups == NULL)
9356 return NULL;
9357
9358 memcpy (dups, start, len);
9359 dups[len] = '\0';
9360
9361 return dups;
9362 }
9363
9364 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9365 static bfd_boolean
9366 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9367 {
9368 if (note->descsz == sizeof (elfcore_psinfo_t))
9369 {
9370 elfcore_psinfo_t psinfo;
9371
9372 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9373
9374 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9375 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9376 #endif
9377 elf_tdata (abfd)->core->program
9378 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9379 sizeof (psinfo.pr_fname));
9380
9381 elf_tdata (abfd)->core->command
9382 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9383 sizeof (psinfo.pr_psargs));
9384 }
9385 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9386 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9387 {
9388 /* 64-bit host, 32-bit corefile */
9389 elfcore_psinfo32_t psinfo;
9390
9391 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9392
9393 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9394 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9395 #endif
9396 elf_tdata (abfd)->core->program
9397 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9398 sizeof (psinfo.pr_fname));
9399
9400 elf_tdata (abfd)->core->command
9401 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9402 sizeof (psinfo.pr_psargs));
9403 }
9404 #endif
9405
9406 else
9407 {
9408 /* Fail - we don't know how to handle any other
9409 note size (ie. data object type). */
9410 return TRUE;
9411 }
9412
9413 /* Note that for some reason, a spurious space is tacked
9414 onto the end of the args in some (at least one anyway)
9415 implementations, so strip it off if it exists. */
9416
9417 {
9418 char *command = elf_tdata (abfd)->core->command;
9419 int n = strlen (command);
9420
9421 if (0 < n && command[n - 1] == ' ')
9422 command[n - 1] = '\0';
9423 }
9424
9425 return TRUE;
9426 }
9427 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9428
9429 #if defined (HAVE_PSTATUS_T)
9430 static bfd_boolean
9431 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9432 {
9433 if (note->descsz == sizeof (pstatus_t)
9434 #if defined (HAVE_PXSTATUS_T)
9435 || note->descsz == sizeof (pxstatus_t)
9436 #endif
9437 )
9438 {
9439 pstatus_t pstat;
9440
9441 memcpy (&pstat, note->descdata, sizeof (pstat));
9442
9443 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9444 }
9445 #if defined (HAVE_PSTATUS32_T)
9446 else if (note->descsz == sizeof (pstatus32_t))
9447 {
9448 /* 64-bit host, 32-bit corefile */
9449 pstatus32_t pstat;
9450
9451 memcpy (&pstat, note->descdata, sizeof (pstat));
9452
9453 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9454 }
9455 #endif
9456 /* Could grab some more details from the "representative"
9457 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9458 NT_LWPSTATUS note, presumably. */
9459
9460 return TRUE;
9461 }
9462 #endif /* defined (HAVE_PSTATUS_T) */
9463
9464 #if defined (HAVE_LWPSTATUS_T)
9465 static bfd_boolean
9466 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9467 {
9468 lwpstatus_t lwpstat;
9469 char buf[100];
9470 char *name;
9471 size_t len;
9472 asection *sect;
9473
9474 if (note->descsz != sizeof (lwpstat)
9475 #if defined (HAVE_LWPXSTATUS_T)
9476 && note->descsz != sizeof (lwpxstatus_t)
9477 #endif
9478 )
9479 return TRUE;
9480
9481 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9482
9483 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9484 /* Do not overwrite the core signal if it has already been set by
9485 another thread. */
9486 if (elf_tdata (abfd)->core->signal == 0)
9487 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9488
9489 /* Make a ".reg/999" section. */
9490
9491 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9492 len = strlen (buf) + 1;
9493 name = bfd_alloc (abfd, len);
9494 if (name == NULL)
9495 return FALSE;
9496 memcpy (name, buf, len);
9497
9498 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9499 if (sect == NULL)
9500 return FALSE;
9501
9502 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9503 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9504 sect->filepos = note->descpos
9505 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9506 #endif
9507
9508 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9509 sect->size = sizeof (lwpstat.pr_reg);
9510 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9511 #endif
9512
9513 sect->alignment_power = 2;
9514
9515 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9516 return FALSE;
9517
9518 /* Make a ".reg2/999" section */
9519
9520 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9521 len = strlen (buf) + 1;
9522 name = bfd_alloc (abfd, len);
9523 if (name == NULL)
9524 return FALSE;
9525 memcpy (name, buf, len);
9526
9527 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9528 if (sect == NULL)
9529 return FALSE;
9530
9531 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9532 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9533 sect->filepos = note->descpos
9534 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9535 #endif
9536
9537 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9538 sect->size = sizeof (lwpstat.pr_fpreg);
9539 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9540 #endif
9541
9542 sect->alignment_power = 2;
9543
9544 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9545 }
9546 #endif /* defined (HAVE_LWPSTATUS_T) */
9547
9548 static bfd_boolean
9549 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9550 {
9551 char buf[30];
9552 char *name;
9553 size_t len;
9554 asection *sect;
9555 int type;
9556 int is_active_thread;
9557 bfd_vma base_addr;
9558
9559 if (note->descsz < 728)
9560 return TRUE;
9561
9562 if (! CONST_STRNEQ (note->namedata, "win32"))
9563 return TRUE;
9564
9565 type = bfd_get_32 (abfd, note->descdata);
9566
9567 switch (type)
9568 {
9569 case 1 /* NOTE_INFO_PROCESS */:
9570 /* FIXME: need to add ->core->command. */
9571 /* process_info.pid */
9572 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9573 /* process_info.signal */
9574 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9575 break;
9576
9577 case 2 /* NOTE_INFO_THREAD */:
9578 /* Make a ".reg/999" section. */
9579 /* thread_info.tid */
9580 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9581
9582 len = strlen (buf) + 1;
9583 name = (char *) bfd_alloc (abfd, len);
9584 if (name == NULL)
9585 return FALSE;
9586
9587 memcpy (name, buf, len);
9588
9589 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9590 if (sect == NULL)
9591 return FALSE;
9592
9593 /* sizeof (thread_info.thread_context) */
9594 sect->size = 716;
9595 /* offsetof (thread_info.thread_context) */
9596 sect->filepos = note->descpos + 12;
9597 sect->alignment_power = 2;
9598
9599 /* thread_info.is_active_thread */
9600 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9601
9602 if (is_active_thread)
9603 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9604 return FALSE;
9605 break;
9606
9607 case 3 /* NOTE_INFO_MODULE */:
9608 /* Make a ".module/xxxxxxxx" section. */
9609 /* module_info.base_address */
9610 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9611 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9612
9613 len = strlen (buf) + 1;
9614 name = (char *) bfd_alloc (abfd, len);
9615 if (name == NULL)
9616 return FALSE;
9617
9618 memcpy (name, buf, len);
9619
9620 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9621
9622 if (sect == NULL)
9623 return FALSE;
9624
9625 sect->size = note->descsz;
9626 sect->filepos = note->descpos;
9627 sect->alignment_power = 2;
9628 break;
9629
9630 default:
9631 return TRUE;
9632 }
9633
9634 return TRUE;
9635 }
9636
9637 static bfd_boolean
9638 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9639 {
9640 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9641
9642 switch (note->type)
9643 {
9644 default:
9645 return TRUE;
9646
9647 case NT_PRSTATUS:
9648 if (bed->elf_backend_grok_prstatus)
9649 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9650 return TRUE;
9651 #if defined (HAVE_PRSTATUS_T)
9652 return elfcore_grok_prstatus (abfd, note);
9653 #else
9654 return TRUE;
9655 #endif
9656
9657 #if defined (HAVE_PSTATUS_T)
9658 case NT_PSTATUS:
9659 return elfcore_grok_pstatus (abfd, note);
9660 #endif
9661
9662 #if defined (HAVE_LWPSTATUS_T)
9663 case NT_LWPSTATUS:
9664 return elfcore_grok_lwpstatus (abfd, note);
9665 #endif
9666
9667 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9668 return elfcore_grok_prfpreg (abfd, note);
9669
9670 case NT_WIN32PSTATUS:
9671 return elfcore_grok_win32pstatus (abfd, note);
9672
9673 case NT_PRXFPREG: /* Linux SSE extension */
9674 if (note->namesz == 6
9675 && strcmp (note->namedata, "LINUX") == 0)
9676 return elfcore_grok_prxfpreg (abfd, note);
9677 else
9678 return TRUE;
9679
9680 case NT_X86_XSTATE: /* Linux XSAVE extension */
9681 if (note->namesz == 6
9682 && strcmp (note->namedata, "LINUX") == 0)
9683 return elfcore_grok_xstatereg (abfd, note);
9684 else
9685 return TRUE;
9686
9687 case NT_PPC_VMX:
9688 if (note->namesz == 6
9689 && strcmp (note->namedata, "LINUX") == 0)
9690 return elfcore_grok_ppc_vmx (abfd, note);
9691 else
9692 return TRUE;
9693
9694 case NT_PPC_VSX:
9695 if (note->namesz == 6
9696 && strcmp (note->namedata, "LINUX") == 0)
9697 return elfcore_grok_ppc_vsx (abfd, note);
9698 else
9699 return TRUE;
9700
9701 case NT_S390_HIGH_GPRS:
9702 if (note->namesz == 6
9703 && strcmp (note->namedata, "LINUX") == 0)
9704 return elfcore_grok_s390_high_gprs (abfd, note);
9705 else
9706 return TRUE;
9707
9708 case NT_S390_TIMER:
9709 if (note->namesz == 6
9710 && strcmp (note->namedata, "LINUX") == 0)
9711 return elfcore_grok_s390_timer (abfd, note);
9712 else
9713 return TRUE;
9714
9715 case NT_S390_TODCMP:
9716 if (note->namesz == 6
9717 && strcmp (note->namedata, "LINUX") == 0)
9718 return elfcore_grok_s390_todcmp (abfd, note);
9719 else
9720 return TRUE;
9721
9722 case NT_S390_TODPREG:
9723 if (note->namesz == 6
9724 && strcmp (note->namedata, "LINUX") == 0)
9725 return elfcore_grok_s390_todpreg (abfd, note);
9726 else
9727 return TRUE;
9728
9729 case NT_S390_CTRS:
9730 if (note->namesz == 6
9731 && strcmp (note->namedata, "LINUX") == 0)
9732 return elfcore_grok_s390_ctrs (abfd, note);
9733 else
9734 return TRUE;
9735
9736 case NT_S390_PREFIX:
9737 if (note->namesz == 6
9738 && strcmp (note->namedata, "LINUX") == 0)
9739 return elfcore_grok_s390_prefix (abfd, note);
9740 else
9741 return TRUE;
9742
9743 case NT_S390_LAST_BREAK:
9744 if (note->namesz == 6
9745 && strcmp (note->namedata, "LINUX") == 0)
9746 return elfcore_grok_s390_last_break (abfd, note);
9747 else
9748 return TRUE;
9749
9750 case NT_S390_SYSTEM_CALL:
9751 if (note->namesz == 6
9752 && strcmp (note->namedata, "LINUX") == 0)
9753 return elfcore_grok_s390_system_call (abfd, note);
9754 else
9755 return TRUE;
9756
9757 case NT_S390_TDB:
9758 if (note->namesz == 6
9759 && strcmp (note->namedata, "LINUX") == 0)
9760 return elfcore_grok_s390_tdb (abfd, note);
9761 else
9762 return TRUE;
9763
9764 case NT_S390_VXRS_LOW:
9765 if (note->namesz == 6
9766 && strcmp (note->namedata, "LINUX") == 0)
9767 return elfcore_grok_s390_vxrs_low (abfd, note);
9768 else
9769 return TRUE;
9770
9771 case NT_S390_VXRS_HIGH:
9772 if (note->namesz == 6
9773 && strcmp (note->namedata, "LINUX") == 0)
9774 return elfcore_grok_s390_vxrs_high (abfd, note);
9775 else
9776 return TRUE;
9777
9778 case NT_S390_GS_CB:
9779 if (note->namesz == 6
9780 && strcmp (note->namedata, "LINUX") == 0)
9781 return elfcore_grok_s390_gs_cb (abfd, note);
9782 else
9783 return TRUE;
9784
9785 case NT_S390_GS_BC:
9786 if (note->namesz == 6
9787 && strcmp (note->namedata, "LINUX") == 0)
9788 return elfcore_grok_s390_gs_bc (abfd, note);
9789 else
9790 return TRUE;
9791
9792 case NT_ARM_VFP:
9793 if (note->namesz == 6
9794 && strcmp (note->namedata, "LINUX") == 0)
9795 return elfcore_grok_arm_vfp (abfd, note);
9796 else
9797 return TRUE;
9798
9799 case NT_ARM_TLS:
9800 if (note->namesz == 6
9801 && strcmp (note->namedata, "LINUX") == 0)
9802 return elfcore_grok_aarch_tls (abfd, note);
9803 else
9804 return TRUE;
9805
9806 case NT_ARM_HW_BREAK:
9807 if (note->namesz == 6
9808 && strcmp (note->namedata, "LINUX") == 0)
9809 return elfcore_grok_aarch_hw_break (abfd, note);
9810 else
9811 return TRUE;
9812
9813 case NT_ARM_HW_WATCH:
9814 if (note->namesz == 6
9815 && strcmp (note->namedata, "LINUX") == 0)
9816 return elfcore_grok_aarch_hw_watch (abfd, note);
9817 else
9818 return TRUE;
9819
9820 case NT_PRPSINFO:
9821 case NT_PSINFO:
9822 if (bed->elf_backend_grok_psinfo)
9823 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9824 return TRUE;
9825 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9826 return elfcore_grok_psinfo (abfd, note);
9827 #else
9828 return TRUE;
9829 #endif
9830
9831 case NT_AUXV:
9832 {
9833 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9834 SEC_HAS_CONTENTS);
9835
9836 if (sect == NULL)
9837 return FALSE;
9838 sect->size = note->descsz;
9839 sect->filepos = note->descpos;
9840 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9841
9842 return TRUE;
9843 }
9844
9845 case NT_FILE:
9846 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9847 note);
9848
9849 case NT_SIGINFO:
9850 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9851 note);
9852
9853 }
9854 }
9855
9856 static bfd_boolean
9857 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9858 {
9859 struct bfd_build_id* build_id;
9860
9861 if (note->descsz == 0)
9862 return FALSE;
9863
9864 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9865 if (build_id == NULL)
9866 return FALSE;
9867
9868 build_id->size = note->descsz;
9869 memcpy (build_id->data, note->descdata, note->descsz);
9870 abfd->build_id = build_id;
9871
9872 return TRUE;
9873 }
9874
9875 static bfd_boolean
9876 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9877 {
9878 switch (note->type)
9879 {
9880 default:
9881 return TRUE;
9882
9883 case NT_GNU_PROPERTY_TYPE_0:
9884 return _bfd_elf_parse_gnu_properties (abfd, note);
9885
9886 case NT_GNU_BUILD_ID:
9887 return elfobj_grok_gnu_build_id (abfd, note);
9888 }
9889 }
9890
9891 static bfd_boolean
9892 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9893 {
9894 struct sdt_note *cur =
9895 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9896 + note->descsz);
9897
9898 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9899 cur->size = (bfd_size_type) note->descsz;
9900 memcpy (cur->data, note->descdata, note->descsz);
9901
9902 elf_tdata (abfd)->sdt_note_head = cur;
9903
9904 return TRUE;
9905 }
9906
9907 static bfd_boolean
9908 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9909 {
9910 switch (note->type)
9911 {
9912 case NT_STAPSDT:
9913 return elfobj_grok_stapsdt_note_1 (abfd, note);
9914
9915 default:
9916 return TRUE;
9917 }
9918 }
9919
9920 static bfd_boolean
9921 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9922 {
9923 size_t offset;
9924
9925 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9926 {
9927 case ELFCLASS32:
9928 if (note->descsz < 108)
9929 return FALSE;
9930 break;
9931
9932 case ELFCLASS64:
9933 if (note->descsz < 120)
9934 return FALSE;
9935 break;
9936
9937 default:
9938 return FALSE;
9939 }
9940
9941 /* Check for version 1 in pr_version. */
9942 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9943 return FALSE;
9944
9945 offset = 4;
9946
9947 /* Skip over pr_psinfosz. */
9948 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9949 offset += 4;
9950 else
9951 {
9952 offset += 4; /* Padding before pr_psinfosz. */
9953 offset += 8;
9954 }
9955
9956 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9957 elf_tdata (abfd)->core->program
9958 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9959 offset += 17;
9960
9961 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9962 elf_tdata (abfd)->core->command
9963 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9964 offset += 81;
9965
9966 /* Padding before pr_pid. */
9967 offset += 2;
9968
9969 /* The pr_pid field was added in version "1a". */
9970 if (note->descsz < offset + 4)
9971 return TRUE;
9972
9973 elf_tdata (abfd)->core->pid
9974 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9975
9976 return TRUE;
9977 }
9978
9979 static bfd_boolean
9980 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9981 {
9982 size_t offset;
9983 size_t size;
9984 size_t min_size;
9985
9986 /* Compute offset of pr_getregsz, skipping over pr_statussz.
9987 Also compute minimum size of this note. */
9988 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9989 {
9990 case ELFCLASS32:
9991 offset = 4 + 4;
9992 min_size = offset + (4 * 2) + 4 + 4 + 4;
9993 break;
9994
9995 case ELFCLASS64:
9996 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
9997 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
9998 break;
9999
10000 default:
10001 return FALSE;
10002 }
10003
10004 if (note->descsz < min_size)
10005 return FALSE;
10006
10007 /* Check for version 1 in pr_version. */
10008 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10009 return FALSE;
10010
10011 /* Extract size of pr_reg from pr_gregsetsz. */
10012 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10013 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10014 {
10015 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10016 offset += 4 * 2;
10017 }
10018 else
10019 {
10020 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10021 offset += 8 * 2;
10022 }
10023
10024 /* Skip over pr_osreldate. */
10025 offset += 4;
10026
10027 /* Read signal from pr_cursig. */
10028 if (elf_tdata (abfd)->core->signal == 0)
10029 elf_tdata (abfd)->core->signal
10030 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10031 offset += 4;
10032
10033 /* Read TID from pr_pid. */
10034 elf_tdata (abfd)->core->lwpid
10035 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10036 offset += 4;
10037
10038 /* Padding before pr_reg. */
10039 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10040 offset += 4;
10041
10042 /* Make sure that there is enough data remaining in the note. */
10043 if ((note->descsz - offset) < size)
10044 return FALSE;
10045
10046 /* Make a ".reg/999" section and a ".reg" section. */
10047 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10048 size, note->descpos + offset);
10049 }
10050
10051 static bfd_boolean
10052 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10053 {
10054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10055
10056 switch (note->type)
10057 {
10058 case NT_PRSTATUS:
10059 if (bed->elf_backend_grok_freebsd_prstatus)
10060 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10061 return TRUE;
10062 return elfcore_grok_freebsd_prstatus (abfd, note);
10063
10064 case NT_FPREGSET:
10065 return elfcore_grok_prfpreg (abfd, note);
10066
10067 case NT_PRPSINFO:
10068 return elfcore_grok_freebsd_psinfo (abfd, note);
10069
10070 case NT_FREEBSD_THRMISC:
10071 if (note->namesz == 8)
10072 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10073 else
10074 return TRUE;
10075
10076 case NT_FREEBSD_PROCSTAT_PROC:
10077 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10078 note);
10079
10080 case NT_FREEBSD_PROCSTAT_FILES:
10081 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10082 note);
10083
10084 case NT_FREEBSD_PROCSTAT_VMMAP:
10085 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10086 note);
10087
10088 case NT_FREEBSD_PROCSTAT_AUXV:
10089 {
10090 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10091 SEC_HAS_CONTENTS);
10092
10093 if (sect == NULL)
10094 return FALSE;
10095 sect->size = note->descsz - 4;
10096 sect->filepos = note->descpos + 4;
10097 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10098
10099 return TRUE;
10100 }
10101
10102 case NT_X86_XSTATE:
10103 if (note->namesz == 8)
10104 return elfcore_grok_xstatereg (abfd, note);
10105 else
10106 return TRUE;
10107
10108 case NT_FREEBSD_PTLWPINFO:
10109 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10110 note);
10111
10112 case NT_ARM_VFP:
10113 return elfcore_grok_arm_vfp (abfd, note);
10114
10115 default:
10116 return TRUE;
10117 }
10118 }
10119
10120 static bfd_boolean
10121 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10122 {
10123 char *cp;
10124
10125 cp = strchr (note->namedata, '@');
10126 if (cp != NULL)
10127 {
10128 *lwpidp = atoi(cp + 1);
10129 return TRUE;
10130 }
10131 return FALSE;
10132 }
10133
10134 static bfd_boolean
10135 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10136 {
10137 if (note->descsz <= 0x7c + 31)
10138 return FALSE;
10139
10140 /* Signal number at offset 0x08. */
10141 elf_tdata (abfd)->core->signal
10142 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10143
10144 /* Process ID at offset 0x50. */
10145 elf_tdata (abfd)->core->pid
10146 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10147
10148 /* Command name at 0x7c (max 32 bytes, including nul). */
10149 elf_tdata (abfd)->core->command
10150 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10151
10152 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10153 note);
10154 }
10155
10156 static bfd_boolean
10157 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10158 {
10159 int lwp;
10160
10161 if (elfcore_netbsd_get_lwpid (note, &lwp))
10162 elf_tdata (abfd)->core->lwpid = lwp;
10163
10164 if (note->type == NT_NETBSDCORE_PROCINFO)
10165 {
10166 /* NetBSD-specific core "procinfo". Note that we expect to
10167 find this note before any of the others, which is fine,
10168 since the kernel writes this note out first when it
10169 creates a core file. */
10170
10171 return elfcore_grok_netbsd_procinfo (abfd, note);
10172 }
10173
10174 /* As of Jan 2002 there are no other machine-independent notes
10175 defined for NetBSD core files. If the note type is less
10176 than the start of the machine-dependent note types, we don't
10177 understand it. */
10178
10179 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10180 return TRUE;
10181
10182
10183 switch (bfd_get_arch (abfd))
10184 {
10185 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10186 PT_GETFPREGS == mach+2. */
10187
10188 case bfd_arch_alpha:
10189 case bfd_arch_sparc:
10190 switch (note->type)
10191 {
10192 case NT_NETBSDCORE_FIRSTMACH+0:
10193 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10194
10195 case NT_NETBSDCORE_FIRSTMACH+2:
10196 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10197
10198 default:
10199 return TRUE;
10200 }
10201
10202 /* On all other arch's, PT_GETREGS == mach+1 and
10203 PT_GETFPREGS == mach+3. */
10204
10205 default:
10206 switch (note->type)
10207 {
10208 case NT_NETBSDCORE_FIRSTMACH+1:
10209 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10210
10211 case NT_NETBSDCORE_FIRSTMACH+3:
10212 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10213
10214 default:
10215 return TRUE;
10216 }
10217 }
10218 /* NOTREACHED */
10219 }
10220
10221 static bfd_boolean
10222 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10223 {
10224 if (note->descsz <= 0x48 + 31)
10225 return FALSE;
10226
10227 /* Signal number at offset 0x08. */
10228 elf_tdata (abfd)->core->signal
10229 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10230
10231 /* Process ID at offset 0x20. */
10232 elf_tdata (abfd)->core->pid
10233 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10234
10235 /* Command name at 0x48 (max 32 bytes, including nul). */
10236 elf_tdata (abfd)->core->command
10237 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10238
10239 return TRUE;
10240 }
10241
10242 static bfd_boolean
10243 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10244 {
10245 if (note->type == NT_OPENBSD_PROCINFO)
10246 return elfcore_grok_openbsd_procinfo (abfd, note);
10247
10248 if (note->type == NT_OPENBSD_REGS)
10249 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10250
10251 if (note->type == NT_OPENBSD_FPREGS)
10252 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10253
10254 if (note->type == NT_OPENBSD_XFPREGS)
10255 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10256
10257 if (note->type == NT_OPENBSD_AUXV)
10258 {
10259 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10260 SEC_HAS_CONTENTS);
10261
10262 if (sect == NULL)
10263 return FALSE;
10264 sect->size = note->descsz;
10265 sect->filepos = note->descpos;
10266 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10267
10268 return TRUE;
10269 }
10270
10271 if (note->type == NT_OPENBSD_WCOOKIE)
10272 {
10273 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10274 SEC_HAS_CONTENTS);
10275
10276 if (sect == NULL)
10277 return FALSE;
10278 sect->size = note->descsz;
10279 sect->filepos = note->descpos;
10280 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10281
10282 return TRUE;
10283 }
10284
10285 return TRUE;
10286 }
10287
10288 static bfd_boolean
10289 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10290 {
10291 void *ddata = note->descdata;
10292 char buf[100];
10293 char *name;
10294 asection *sect;
10295 short sig;
10296 unsigned flags;
10297
10298 if (note->descsz < 16)
10299 return FALSE;
10300
10301 /* nto_procfs_status 'pid' field is at offset 0. */
10302 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10303
10304 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10305 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10306
10307 /* nto_procfs_status 'flags' field is at offset 8. */
10308 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10309
10310 /* nto_procfs_status 'what' field is at offset 14. */
10311 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10312 {
10313 elf_tdata (abfd)->core->signal = sig;
10314 elf_tdata (abfd)->core->lwpid = *tid;
10315 }
10316
10317 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10318 do not come from signals so we make sure we set the current
10319 thread just in case. */
10320 if (flags & 0x00000080)
10321 elf_tdata (abfd)->core->lwpid = *tid;
10322
10323 /* Make a ".qnx_core_status/%d" section. */
10324 sprintf (buf, ".qnx_core_status/%ld", *tid);
10325
10326 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10327 if (name == NULL)
10328 return FALSE;
10329 strcpy (name, buf);
10330
10331 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10332 if (sect == NULL)
10333 return FALSE;
10334
10335 sect->size = note->descsz;
10336 sect->filepos = note->descpos;
10337 sect->alignment_power = 2;
10338
10339 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10340 }
10341
10342 static bfd_boolean
10343 elfcore_grok_nto_regs (bfd *abfd,
10344 Elf_Internal_Note *note,
10345 long tid,
10346 char *base)
10347 {
10348 char buf[100];
10349 char *name;
10350 asection *sect;
10351
10352 /* Make a "(base)/%d" section. */
10353 sprintf (buf, "%s/%ld", base, tid);
10354
10355 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10356 if (name == NULL)
10357 return FALSE;
10358 strcpy (name, buf);
10359
10360 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10361 if (sect == NULL)
10362 return FALSE;
10363
10364 sect->size = note->descsz;
10365 sect->filepos = note->descpos;
10366 sect->alignment_power = 2;
10367
10368 /* This is the current thread. */
10369 if (elf_tdata (abfd)->core->lwpid == tid)
10370 return elfcore_maybe_make_sect (abfd, base, sect);
10371
10372 return TRUE;
10373 }
10374
10375 #define BFD_QNT_CORE_INFO 7
10376 #define BFD_QNT_CORE_STATUS 8
10377 #define BFD_QNT_CORE_GREG 9
10378 #define BFD_QNT_CORE_FPREG 10
10379
10380 static bfd_boolean
10381 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10382 {
10383 /* Every GREG section has a STATUS section before it. Store the
10384 tid from the previous call to pass down to the next gregs
10385 function. */
10386 static long tid = 1;
10387
10388 switch (note->type)
10389 {
10390 case BFD_QNT_CORE_INFO:
10391 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10392 case BFD_QNT_CORE_STATUS:
10393 return elfcore_grok_nto_status (abfd, note, &tid);
10394 case BFD_QNT_CORE_GREG:
10395 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10396 case BFD_QNT_CORE_FPREG:
10397 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10398 default:
10399 return TRUE;
10400 }
10401 }
10402
10403 static bfd_boolean
10404 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10405 {
10406 char *name;
10407 asection *sect;
10408 size_t len;
10409
10410 /* Use note name as section name. */
10411 len = note->namesz;
10412 name = (char *) bfd_alloc (abfd, len);
10413 if (name == NULL)
10414 return FALSE;
10415 memcpy (name, note->namedata, len);
10416 name[len - 1] = '\0';
10417
10418 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10419 if (sect == NULL)
10420 return FALSE;
10421
10422 sect->size = note->descsz;
10423 sect->filepos = note->descpos;
10424 sect->alignment_power = 1;
10425
10426 return TRUE;
10427 }
10428
10429 /* Function: elfcore_write_note
10430
10431 Inputs:
10432 buffer to hold note, and current size of buffer
10433 name of note
10434 type of note
10435 data for note
10436 size of data for note
10437
10438 Writes note to end of buffer. ELF64 notes are written exactly as
10439 for ELF32, despite the current (as of 2006) ELF gabi specifying
10440 that they ought to have 8-byte namesz and descsz field, and have
10441 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10442
10443 Return:
10444 Pointer to realloc'd buffer, *BUFSIZ updated. */
10445
10446 char *
10447 elfcore_write_note (bfd *abfd,
10448 char *buf,
10449 int *bufsiz,
10450 const char *name,
10451 int type,
10452 const void *input,
10453 int size)
10454 {
10455 Elf_External_Note *xnp;
10456 size_t namesz;
10457 size_t newspace;
10458 char *dest;
10459
10460 namesz = 0;
10461 if (name != NULL)
10462 namesz = strlen (name) + 1;
10463
10464 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10465
10466 buf = (char *) realloc (buf, *bufsiz + newspace);
10467 if (buf == NULL)
10468 return buf;
10469 dest = buf + *bufsiz;
10470 *bufsiz += newspace;
10471 xnp = (Elf_External_Note *) dest;
10472 H_PUT_32 (abfd, namesz, xnp->namesz);
10473 H_PUT_32 (abfd, size, xnp->descsz);
10474 H_PUT_32 (abfd, type, xnp->type);
10475 dest = xnp->name;
10476 if (name != NULL)
10477 {
10478 memcpy (dest, name, namesz);
10479 dest += namesz;
10480 while (namesz & 3)
10481 {
10482 *dest++ = '\0';
10483 ++namesz;
10484 }
10485 }
10486 memcpy (dest, input, size);
10487 dest += size;
10488 while (size & 3)
10489 {
10490 *dest++ = '\0';
10491 ++size;
10492 }
10493 return buf;
10494 }
10495
10496 char *
10497 elfcore_write_prpsinfo (bfd *abfd,
10498 char *buf,
10499 int *bufsiz,
10500 const char *fname,
10501 const char *psargs)
10502 {
10503 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10504
10505 if (bed->elf_backend_write_core_note != NULL)
10506 {
10507 char *ret;
10508 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10509 NT_PRPSINFO, fname, psargs);
10510 if (ret != NULL)
10511 return ret;
10512 }
10513
10514 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10515 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10516 if (bed->s->elfclass == ELFCLASS32)
10517 {
10518 #if defined (HAVE_PSINFO32_T)
10519 psinfo32_t data;
10520 int note_type = NT_PSINFO;
10521 #else
10522 prpsinfo32_t data;
10523 int note_type = NT_PRPSINFO;
10524 #endif
10525
10526 memset (&data, 0, sizeof (data));
10527 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10528 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10529 return elfcore_write_note (abfd, buf, bufsiz,
10530 "CORE", note_type, &data, sizeof (data));
10531 }
10532 else
10533 #endif
10534 {
10535 #if defined (HAVE_PSINFO_T)
10536 psinfo_t data;
10537 int note_type = NT_PSINFO;
10538 #else
10539 prpsinfo_t data;
10540 int note_type = NT_PRPSINFO;
10541 #endif
10542
10543 memset (&data, 0, sizeof (data));
10544 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10545 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10546 return elfcore_write_note (abfd, buf, bufsiz,
10547 "CORE", note_type, &data, sizeof (data));
10548 }
10549 #endif /* PSINFO_T or PRPSINFO_T */
10550
10551 free (buf);
10552 return NULL;
10553 }
10554
10555 char *
10556 elfcore_write_linux_prpsinfo32
10557 (bfd *abfd, char *buf, int *bufsiz,
10558 const struct elf_internal_linux_prpsinfo *prpsinfo)
10559 {
10560 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10561 {
10562 struct elf_external_linux_prpsinfo32_ugid16 data;
10563
10564 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10565 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10566 &data, sizeof (data));
10567 }
10568 else
10569 {
10570 struct elf_external_linux_prpsinfo32_ugid32 data;
10571
10572 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10573 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10574 &data, sizeof (data));
10575 }
10576 }
10577
10578 char *
10579 elfcore_write_linux_prpsinfo64
10580 (bfd *abfd, char *buf, int *bufsiz,
10581 const struct elf_internal_linux_prpsinfo *prpsinfo)
10582 {
10583 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10584 {
10585 struct elf_external_linux_prpsinfo64_ugid16 data;
10586
10587 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10588 return elfcore_write_note (abfd, buf, bufsiz,
10589 "CORE", NT_PRPSINFO, &data, sizeof (data));
10590 }
10591 else
10592 {
10593 struct elf_external_linux_prpsinfo64_ugid32 data;
10594
10595 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10596 return elfcore_write_note (abfd, buf, bufsiz,
10597 "CORE", NT_PRPSINFO, &data, sizeof (data));
10598 }
10599 }
10600
10601 char *
10602 elfcore_write_prstatus (bfd *abfd,
10603 char *buf,
10604 int *bufsiz,
10605 long pid,
10606 int cursig,
10607 const void *gregs)
10608 {
10609 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10610
10611 if (bed->elf_backend_write_core_note != NULL)
10612 {
10613 char *ret;
10614 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10615 NT_PRSTATUS,
10616 pid, cursig, gregs);
10617 if (ret != NULL)
10618 return ret;
10619 }
10620
10621 #if defined (HAVE_PRSTATUS_T)
10622 #if defined (HAVE_PRSTATUS32_T)
10623 if (bed->s->elfclass == ELFCLASS32)
10624 {
10625 prstatus32_t prstat;
10626
10627 memset (&prstat, 0, sizeof (prstat));
10628 prstat.pr_pid = pid;
10629 prstat.pr_cursig = cursig;
10630 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10631 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10632 NT_PRSTATUS, &prstat, sizeof (prstat));
10633 }
10634 else
10635 #endif
10636 {
10637 prstatus_t prstat;
10638
10639 memset (&prstat, 0, sizeof (prstat));
10640 prstat.pr_pid = pid;
10641 prstat.pr_cursig = cursig;
10642 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10643 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10644 NT_PRSTATUS, &prstat, sizeof (prstat));
10645 }
10646 #endif /* HAVE_PRSTATUS_T */
10647
10648 free (buf);
10649 return NULL;
10650 }
10651
10652 #if defined (HAVE_LWPSTATUS_T)
10653 char *
10654 elfcore_write_lwpstatus (bfd *abfd,
10655 char *buf,
10656 int *bufsiz,
10657 long pid,
10658 int cursig,
10659 const void *gregs)
10660 {
10661 lwpstatus_t lwpstat;
10662 const char *note_name = "CORE";
10663
10664 memset (&lwpstat, 0, sizeof (lwpstat));
10665 lwpstat.pr_lwpid = pid >> 16;
10666 lwpstat.pr_cursig = cursig;
10667 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10668 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10669 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10670 #if !defined(gregs)
10671 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10672 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10673 #else
10674 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10675 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10676 #endif
10677 #endif
10678 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10679 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10680 }
10681 #endif /* HAVE_LWPSTATUS_T */
10682
10683 #if defined (HAVE_PSTATUS_T)
10684 char *
10685 elfcore_write_pstatus (bfd *abfd,
10686 char *buf,
10687 int *bufsiz,
10688 long pid,
10689 int cursig ATTRIBUTE_UNUSED,
10690 const void *gregs ATTRIBUTE_UNUSED)
10691 {
10692 const char *note_name = "CORE";
10693 #if defined (HAVE_PSTATUS32_T)
10694 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10695
10696 if (bed->s->elfclass == ELFCLASS32)
10697 {
10698 pstatus32_t pstat;
10699
10700 memset (&pstat, 0, sizeof (pstat));
10701 pstat.pr_pid = pid & 0xffff;
10702 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10703 NT_PSTATUS, &pstat, sizeof (pstat));
10704 return buf;
10705 }
10706 else
10707 #endif
10708 {
10709 pstatus_t pstat;
10710
10711 memset (&pstat, 0, sizeof (pstat));
10712 pstat.pr_pid = pid & 0xffff;
10713 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10714 NT_PSTATUS, &pstat, sizeof (pstat));
10715 return buf;
10716 }
10717 }
10718 #endif /* HAVE_PSTATUS_T */
10719
10720 char *
10721 elfcore_write_prfpreg (bfd *abfd,
10722 char *buf,
10723 int *bufsiz,
10724 const void *fpregs,
10725 int size)
10726 {
10727 const char *note_name = "CORE";
10728 return elfcore_write_note (abfd, buf, bufsiz,
10729 note_name, NT_FPREGSET, fpregs, size);
10730 }
10731
10732 char *
10733 elfcore_write_prxfpreg (bfd *abfd,
10734 char *buf,
10735 int *bufsiz,
10736 const void *xfpregs,
10737 int size)
10738 {
10739 char *note_name = "LINUX";
10740 return elfcore_write_note (abfd, buf, bufsiz,
10741 note_name, NT_PRXFPREG, xfpregs, size);
10742 }
10743
10744 char *
10745 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10746 const void *xfpregs, int size)
10747 {
10748 char *note_name;
10749 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10750 note_name = "FreeBSD";
10751 else
10752 note_name = "LINUX";
10753 return elfcore_write_note (abfd, buf, bufsiz,
10754 note_name, NT_X86_XSTATE, xfpregs, size);
10755 }
10756
10757 char *
10758 elfcore_write_ppc_vmx (bfd *abfd,
10759 char *buf,
10760 int *bufsiz,
10761 const void *ppc_vmx,
10762 int size)
10763 {
10764 char *note_name = "LINUX";
10765 return elfcore_write_note (abfd, buf, bufsiz,
10766 note_name, NT_PPC_VMX, ppc_vmx, size);
10767 }
10768
10769 char *
10770 elfcore_write_ppc_vsx (bfd *abfd,
10771 char *buf,
10772 int *bufsiz,
10773 const void *ppc_vsx,
10774 int size)
10775 {
10776 char *note_name = "LINUX";
10777 return elfcore_write_note (abfd, buf, bufsiz,
10778 note_name, NT_PPC_VSX, ppc_vsx, size);
10779 }
10780
10781 static char *
10782 elfcore_write_s390_high_gprs (bfd *abfd,
10783 char *buf,
10784 int *bufsiz,
10785 const void *s390_high_gprs,
10786 int size)
10787 {
10788 char *note_name = "LINUX";
10789 return elfcore_write_note (abfd, buf, bufsiz,
10790 note_name, NT_S390_HIGH_GPRS,
10791 s390_high_gprs, size);
10792 }
10793
10794 char *
10795 elfcore_write_s390_timer (bfd *abfd,
10796 char *buf,
10797 int *bufsiz,
10798 const void *s390_timer,
10799 int size)
10800 {
10801 char *note_name = "LINUX";
10802 return elfcore_write_note (abfd, buf, bufsiz,
10803 note_name, NT_S390_TIMER, s390_timer, size);
10804 }
10805
10806 char *
10807 elfcore_write_s390_todcmp (bfd *abfd,
10808 char *buf,
10809 int *bufsiz,
10810 const void *s390_todcmp,
10811 int size)
10812 {
10813 char *note_name = "LINUX";
10814 return elfcore_write_note (abfd, buf, bufsiz,
10815 note_name, NT_S390_TODCMP, s390_todcmp, size);
10816 }
10817
10818 char *
10819 elfcore_write_s390_todpreg (bfd *abfd,
10820 char *buf,
10821 int *bufsiz,
10822 const void *s390_todpreg,
10823 int size)
10824 {
10825 char *note_name = "LINUX";
10826 return elfcore_write_note (abfd, buf, bufsiz,
10827 note_name, NT_S390_TODPREG, s390_todpreg, size);
10828 }
10829
10830 char *
10831 elfcore_write_s390_ctrs (bfd *abfd,
10832 char *buf,
10833 int *bufsiz,
10834 const void *s390_ctrs,
10835 int size)
10836 {
10837 char *note_name = "LINUX";
10838 return elfcore_write_note (abfd, buf, bufsiz,
10839 note_name, NT_S390_CTRS, s390_ctrs, size);
10840 }
10841
10842 char *
10843 elfcore_write_s390_prefix (bfd *abfd,
10844 char *buf,
10845 int *bufsiz,
10846 const void *s390_prefix,
10847 int size)
10848 {
10849 char *note_name = "LINUX";
10850 return elfcore_write_note (abfd, buf, bufsiz,
10851 note_name, NT_S390_PREFIX, s390_prefix, size);
10852 }
10853
10854 char *
10855 elfcore_write_s390_last_break (bfd *abfd,
10856 char *buf,
10857 int *bufsiz,
10858 const void *s390_last_break,
10859 int size)
10860 {
10861 char *note_name = "LINUX";
10862 return elfcore_write_note (abfd, buf, bufsiz,
10863 note_name, NT_S390_LAST_BREAK,
10864 s390_last_break, size);
10865 }
10866
10867 char *
10868 elfcore_write_s390_system_call (bfd *abfd,
10869 char *buf,
10870 int *bufsiz,
10871 const void *s390_system_call,
10872 int size)
10873 {
10874 char *note_name = "LINUX";
10875 return elfcore_write_note (abfd, buf, bufsiz,
10876 note_name, NT_S390_SYSTEM_CALL,
10877 s390_system_call, size);
10878 }
10879
10880 char *
10881 elfcore_write_s390_tdb (bfd *abfd,
10882 char *buf,
10883 int *bufsiz,
10884 const void *s390_tdb,
10885 int size)
10886 {
10887 char *note_name = "LINUX";
10888 return elfcore_write_note (abfd, buf, bufsiz,
10889 note_name, NT_S390_TDB, s390_tdb, size);
10890 }
10891
10892 char *
10893 elfcore_write_s390_vxrs_low (bfd *abfd,
10894 char *buf,
10895 int *bufsiz,
10896 const void *s390_vxrs_low,
10897 int size)
10898 {
10899 char *note_name = "LINUX";
10900 return elfcore_write_note (abfd, buf, bufsiz,
10901 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10902 }
10903
10904 char *
10905 elfcore_write_s390_vxrs_high (bfd *abfd,
10906 char *buf,
10907 int *bufsiz,
10908 const void *s390_vxrs_high,
10909 int size)
10910 {
10911 char *note_name = "LINUX";
10912 return elfcore_write_note (abfd, buf, bufsiz,
10913 note_name, NT_S390_VXRS_HIGH,
10914 s390_vxrs_high, size);
10915 }
10916
10917 char *
10918 elfcore_write_s390_gs_cb (bfd *abfd,
10919 char *buf,
10920 int *bufsiz,
10921 const void *s390_gs_cb,
10922 int size)
10923 {
10924 char *note_name = "LINUX";
10925 return elfcore_write_note (abfd, buf, bufsiz,
10926 note_name, NT_S390_GS_CB,
10927 s390_gs_cb, size);
10928 }
10929
10930 char *
10931 elfcore_write_s390_gs_bc (bfd *abfd,
10932 char *buf,
10933 int *bufsiz,
10934 const void *s390_gs_bc,
10935 int size)
10936 {
10937 char *note_name = "LINUX";
10938 return elfcore_write_note (abfd, buf, bufsiz,
10939 note_name, NT_S390_GS_BC,
10940 s390_gs_bc, size);
10941 }
10942
10943 char *
10944 elfcore_write_arm_vfp (bfd *abfd,
10945 char *buf,
10946 int *bufsiz,
10947 const void *arm_vfp,
10948 int size)
10949 {
10950 char *note_name = "LINUX";
10951 return elfcore_write_note (abfd, buf, bufsiz,
10952 note_name, NT_ARM_VFP, arm_vfp, size);
10953 }
10954
10955 char *
10956 elfcore_write_aarch_tls (bfd *abfd,
10957 char *buf,
10958 int *bufsiz,
10959 const void *aarch_tls,
10960 int size)
10961 {
10962 char *note_name = "LINUX";
10963 return elfcore_write_note (abfd, buf, bufsiz,
10964 note_name, NT_ARM_TLS, aarch_tls, size);
10965 }
10966
10967 char *
10968 elfcore_write_aarch_hw_break (bfd *abfd,
10969 char *buf,
10970 int *bufsiz,
10971 const void *aarch_hw_break,
10972 int size)
10973 {
10974 char *note_name = "LINUX";
10975 return elfcore_write_note (abfd, buf, bufsiz,
10976 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10977 }
10978
10979 char *
10980 elfcore_write_aarch_hw_watch (bfd *abfd,
10981 char *buf,
10982 int *bufsiz,
10983 const void *aarch_hw_watch,
10984 int size)
10985 {
10986 char *note_name = "LINUX";
10987 return elfcore_write_note (abfd, buf, bufsiz,
10988 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10989 }
10990
10991 char *
10992 elfcore_write_register_note (bfd *abfd,
10993 char *buf,
10994 int *bufsiz,
10995 const char *section,
10996 const void *data,
10997 int size)
10998 {
10999 if (strcmp (section, ".reg2") == 0)
11000 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11001 if (strcmp (section, ".reg-xfp") == 0)
11002 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11003 if (strcmp (section, ".reg-xstate") == 0)
11004 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11005 if (strcmp (section, ".reg-ppc-vmx") == 0)
11006 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11007 if (strcmp (section, ".reg-ppc-vsx") == 0)
11008 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11009 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11010 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11011 if (strcmp (section, ".reg-s390-timer") == 0)
11012 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11013 if (strcmp (section, ".reg-s390-todcmp") == 0)
11014 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11015 if (strcmp (section, ".reg-s390-todpreg") == 0)
11016 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11017 if (strcmp (section, ".reg-s390-ctrs") == 0)
11018 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11019 if (strcmp (section, ".reg-s390-prefix") == 0)
11020 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11021 if (strcmp (section, ".reg-s390-last-break") == 0)
11022 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11023 if (strcmp (section, ".reg-s390-system-call") == 0)
11024 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11025 if (strcmp (section, ".reg-s390-tdb") == 0)
11026 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11027 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11028 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11029 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11030 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11031 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11032 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11033 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11034 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11035 if (strcmp (section, ".reg-arm-vfp") == 0)
11036 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11037 if (strcmp (section, ".reg-aarch-tls") == 0)
11038 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11039 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11040 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11041 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11042 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11043 return NULL;
11044 }
11045
11046 static bfd_boolean
11047 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11048 size_t align)
11049 {
11050 char *p;
11051
11052 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11053 gABI specifies that PT_NOTE alignment should be aligned to 4
11054 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11055 align is less than 4, we use 4 byte alignment. */
11056 if (align < 4)
11057 align = 4;
11058 if (align != 4 && align != 8)
11059 return FALSE;
11060
11061 p = buf;
11062 while (p < buf + size)
11063 {
11064 Elf_External_Note *xnp = (Elf_External_Note *) p;
11065 Elf_Internal_Note in;
11066
11067 if (offsetof (Elf_External_Note, name) > buf - p + size)
11068 return FALSE;
11069
11070 in.type = H_GET_32 (abfd, xnp->type);
11071
11072 in.namesz = H_GET_32 (abfd, xnp->namesz);
11073 in.namedata = xnp->name;
11074 if (in.namesz > buf - in.namedata + size)
11075 return FALSE;
11076
11077 in.descsz = H_GET_32 (abfd, xnp->descsz);
11078 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11079 in.descpos = offset + (in.descdata - buf);
11080 if (in.descsz != 0
11081 && (in.descdata >= buf + size
11082 || in.descsz > buf - in.descdata + size))
11083 return FALSE;
11084
11085 switch (bfd_get_format (abfd))
11086 {
11087 default:
11088 return TRUE;
11089
11090 case bfd_core:
11091 {
11092 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11093 struct
11094 {
11095 const char * string;
11096 size_t len;
11097 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11098 }
11099 grokers[] =
11100 {
11101 GROKER_ELEMENT ("", elfcore_grok_note),
11102 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11103 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11104 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11105 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11106 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11107 };
11108 #undef GROKER_ELEMENT
11109 int i;
11110
11111 for (i = ARRAY_SIZE (grokers); i--;)
11112 {
11113 if (in.namesz >= grokers[i].len
11114 && strncmp (in.namedata, grokers[i].string,
11115 grokers[i].len) == 0)
11116 {
11117 if (! grokers[i].func (abfd, & in))
11118 return FALSE;
11119 break;
11120 }
11121 }
11122 break;
11123 }
11124
11125 case bfd_object:
11126 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11127 {
11128 if (! elfobj_grok_gnu_note (abfd, &in))
11129 return FALSE;
11130 }
11131 else if (in.namesz == sizeof "stapsdt"
11132 && strcmp (in.namedata, "stapsdt") == 0)
11133 {
11134 if (! elfobj_grok_stapsdt_note (abfd, &in))
11135 return FALSE;
11136 }
11137 break;
11138 }
11139
11140 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11141 }
11142
11143 return TRUE;
11144 }
11145
11146 static bfd_boolean
11147 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11148 size_t align)
11149 {
11150 char *buf;
11151
11152 if (size == 0 || (size + 1) == 0)
11153 return TRUE;
11154
11155 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11156 return FALSE;
11157
11158 buf = (char *) bfd_malloc (size + 1);
11159 if (buf == NULL)
11160 return FALSE;
11161
11162 /* PR 17512: file: ec08f814
11163 0-termintate the buffer so that string searches will not overflow. */
11164 buf[size] = 0;
11165
11166 if (bfd_bread (buf, size, abfd) != size
11167 || !elf_parse_notes (abfd, buf, size, offset, align))
11168 {
11169 free (buf);
11170 return FALSE;
11171 }
11172
11173 free (buf);
11174 return TRUE;
11175 }
11176 \f
11177 /* Providing external access to the ELF program header table. */
11178
11179 /* Return an upper bound on the number of bytes required to store a
11180 copy of ABFD's program header table entries. Return -1 if an error
11181 occurs; bfd_get_error will return an appropriate code. */
11182
11183 long
11184 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11185 {
11186 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11187 {
11188 bfd_set_error (bfd_error_wrong_format);
11189 return -1;
11190 }
11191
11192 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11193 }
11194
11195 /* Copy ABFD's program header table entries to *PHDRS. The entries
11196 will be stored as an array of Elf_Internal_Phdr structures, as
11197 defined in include/elf/internal.h. To find out how large the
11198 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11199
11200 Return the number of program header table entries read, or -1 if an
11201 error occurs; bfd_get_error will return an appropriate code. */
11202
11203 int
11204 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11205 {
11206 int num_phdrs;
11207
11208 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11209 {
11210 bfd_set_error (bfd_error_wrong_format);
11211 return -1;
11212 }
11213
11214 num_phdrs = elf_elfheader (abfd)->e_phnum;
11215 memcpy (phdrs, elf_tdata (abfd)->phdr,
11216 num_phdrs * sizeof (Elf_Internal_Phdr));
11217
11218 return num_phdrs;
11219 }
11220
11221 enum elf_reloc_type_class
11222 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11223 const asection *rel_sec ATTRIBUTE_UNUSED,
11224 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11225 {
11226 return reloc_class_normal;
11227 }
11228
11229 /* For RELA architectures, return the relocation value for a
11230 relocation against a local symbol. */
11231
11232 bfd_vma
11233 _bfd_elf_rela_local_sym (bfd *abfd,
11234 Elf_Internal_Sym *sym,
11235 asection **psec,
11236 Elf_Internal_Rela *rel)
11237 {
11238 asection *sec = *psec;
11239 bfd_vma relocation;
11240
11241 relocation = (sec->output_section->vma
11242 + sec->output_offset
11243 + sym->st_value);
11244 if ((sec->flags & SEC_MERGE)
11245 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11246 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11247 {
11248 rel->r_addend =
11249 _bfd_merged_section_offset (abfd, psec,
11250 elf_section_data (sec)->sec_info,
11251 sym->st_value + rel->r_addend);
11252 if (sec != *psec)
11253 {
11254 /* If we have changed the section, and our original section is
11255 marked with SEC_EXCLUDE, it means that the original
11256 SEC_MERGE section has been completely subsumed in some
11257 other SEC_MERGE section. In this case, we need to leave
11258 some info around for --emit-relocs. */
11259 if ((sec->flags & SEC_EXCLUDE) != 0)
11260 sec->kept_section = *psec;
11261 sec = *psec;
11262 }
11263 rel->r_addend -= relocation;
11264 rel->r_addend += sec->output_section->vma + sec->output_offset;
11265 }
11266 return relocation;
11267 }
11268
11269 bfd_vma
11270 _bfd_elf_rel_local_sym (bfd *abfd,
11271 Elf_Internal_Sym *sym,
11272 asection **psec,
11273 bfd_vma addend)
11274 {
11275 asection *sec = *psec;
11276
11277 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11278 return sym->st_value + addend;
11279
11280 return _bfd_merged_section_offset (abfd, psec,
11281 elf_section_data (sec)->sec_info,
11282 sym->st_value + addend);
11283 }
11284
11285 /* Adjust an address within a section. Given OFFSET within SEC, return
11286 the new offset within the section, based upon changes made to the
11287 section. Returns -1 if the offset is now invalid.
11288 The offset (in abnd out) is in target sized bytes, however big a
11289 byte may be. */
11290
11291 bfd_vma
11292 _bfd_elf_section_offset (bfd *abfd,
11293 struct bfd_link_info *info,
11294 asection *sec,
11295 bfd_vma offset)
11296 {
11297 switch (sec->sec_info_type)
11298 {
11299 case SEC_INFO_TYPE_STABS:
11300 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11301 offset);
11302 case SEC_INFO_TYPE_EH_FRAME:
11303 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11304
11305 default:
11306 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11307 {
11308 /* Reverse the offset. */
11309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11310 bfd_size_type address_size = bed->s->arch_size / 8;
11311
11312 /* address_size and sec->size are in octets. Convert
11313 to bytes before subtracting the original offset. */
11314 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11315 }
11316 return offset;
11317 }
11318 }
11319 \f
11320 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11321 reconstruct an ELF file by reading the segments out of remote memory
11322 based on the ELF file header at EHDR_VMA and the ELF program headers it
11323 points to. If not null, *LOADBASEP is filled in with the difference
11324 between the VMAs from which the segments were read, and the VMAs the
11325 file headers (and hence BFD's idea of each section's VMA) put them at.
11326
11327 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11328 remote memory at target address VMA into the local buffer at MYADDR; it
11329 should return zero on success or an `errno' code on failure. TEMPL must
11330 be a BFD for an ELF target with the word size and byte order found in
11331 the remote memory. */
11332
11333 bfd *
11334 bfd_elf_bfd_from_remote_memory
11335 (bfd *templ,
11336 bfd_vma ehdr_vma,
11337 bfd_size_type size,
11338 bfd_vma *loadbasep,
11339 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11340 {
11341 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11342 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11343 }
11344 \f
11345 long
11346 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11347 long symcount ATTRIBUTE_UNUSED,
11348 asymbol **syms ATTRIBUTE_UNUSED,
11349 long dynsymcount,
11350 asymbol **dynsyms,
11351 asymbol **ret)
11352 {
11353 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11354 asection *relplt;
11355 asymbol *s;
11356 const char *relplt_name;
11357 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11358 arelent *p;
11359 long count, i, n;
11360 size_t size;
11361 Elf_Internal_Shdr *hdr;
11362 char *names;
11363 asection *plt;
11364
11365 *ret = NULL;
11366
11367 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11368 return 0;
11369
11370 if (dynsymcount <= 0)
11371 return 0;
11372
11373 if (!bed->plt_sym_val)
11374 return 0;
11375
11376 relplt_name = bed->relplt_name;
11377 if (relplt_name == NULL)
11378 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11379 relplt = bfd_get_section_by_name (abfd, relplt_name);
11380 if (relplt == NULL)
11381 return 0;
11382
11383 hdr = &elf_section_data (relplt)->this_hdr;
11384 if (hdr->sh_link != elf_dynsymtab (abfd)
11385 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11386 return 0;
11387
11388 plt = bfd_get_section_by_name (abfd, ".plt");
11389 if (plt == NULL)
11390 return 0;
11391
11392 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11393 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11394 return -1;
11395
11396 count = relplt->size / hdr->sh_entsize;
11397 size = count * sizeof (asymbol);
11398 p = relplt->relocation;
11399 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11400 {
11401 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11402 if (p->addend != 0)
11403 {
11404 #ifdef BFD64
11405 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11406 #else
11407 size += sizeof ("+0x") - 1 + 8;
11408 #endif
11409 }
11410 }
11411
11412 s = *ret = (asymbol *) bfd_malloc (size);
11413 if (s == NULL)
11414 return -1;
11415
11416 names = (char *) (s + count);
11417 p = relplt->relocation;
11418 n = 0;
11419 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11420 {
11421 size_t len;
11422 bfd_vma addr;
11423
11424 addr = bed->plt_sym_val (i, plt, p);
11425 if (addr == (bfd_vma) -1)
11426 continue;
11427
11428 *s = **p->sym_ptr_ptr;
11429 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11430 we are defining a symbol, ensure one of them is set. */
11431 if ((s->flags & BSF_LOCAL) == 0)
11432 s->flags |= BSF_GLOBAL;
11433 s->flags |= BSF_SYNTHETIC;
11434 s->section = plt;
11435 s->value = addr - plt->vma;
11436 s->name = names;
11437 s->udata.p = NULL;
11438 len = strlen ((*p->sym_ptr_ptr)->name);
11439 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11440 names += len;
11441 if (p->addend != 0)
11442 {
11443 char buf[30], *a;
11444
11445 memcpy (names, "+0x", sizeof ("+0x") - 1);
11446 names += sizeof ("+0x") - 1;
11447 bfd_sprintf_vma (abfd, buf, p->addend);
11448 for (a = buf; *a == '0'; ++a)
11449 ;
11450 len = strlen (a);
11451 memcpy (names, a, len);
11452 names += len;
11453 }
11454 memcpy (names, "@plt", sizeof ("@plt"));
11455 names += sizeof ("@plt");
11456 ++s, ++n;
11457 }
11458
11459 return n;
11460 }
11461
11462 /* It is only used by x86-64 so far.
11463 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11464 but current usage would allow all of _bfd_std_section to be zero. */
11465 static const asymbol lcomm_sym
11466 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11467 asection _bfd_elf_large_com_section
11468 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11469 "LARGE_COMMON", 0, SEC_IS_COMMON);
11470
11471 void
11472 _bfd_elf_post_process_headers (bfd * abfd,
11473 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11474 {
11475 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11476
11477 i_ehdrp = elf_elfheader (abfd);
11478
11479 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11480
11481 /* To make things simpler for the loader on Linux systems we set the
11482 osabi field to ELFOSABI_GNU if the binary contains symbols of
11483 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11484 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11485 && elf_tdata (abfd)->has_gnu_symbols)
11486 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11487 }
11488
11489
11490 /* Return TRUE for ELF symbol types that represent functions.
11491 This is the default version of this function, which is sufficient for
11492 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11493
11494 bfd_boolean
11495 _bfd_elf_is_function_type (unsigned int type)
11496 {
11497 return (type == STT_FUNC
11498 || type == STT_GNU_IFUNC);
11499 }
11500
11501 /* If the ELF symbol SYM might be a function in SEC, return the
11502 function size and set *CODE_OFF to the function's entry point,
11503 otherwise return zero. */
11504
11505 bfd_size_type
11506 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11507 bfd_vma *code_off)
11508 {
11509 bfd_size_type size;
11510
11511 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11512 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11513 || sym->section != sec)
11514 return 0;
11515
11516 *code_off = sym->value;
11517 size = 0;
11518 if (!(sym->flags & BSF_SYNTHETIC))
11519 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11520 if (size == 0)
11521 size = 1;
11522 return size;
11523 }
This page took 0.269418 seconds and 5 git commands to generate.