OOM in setup_group
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || shstrtabsize > bfd_get_file_size (abfd)
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%pB: attempt to load strings from"
343 " a non-string section (number %d)"),
344 abfd, shindex);
345 return NULL;
346 }
347
348 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
349 return NULL;
350 }
351 else
352 {
353 /* PR 24273: The string section's contents may have already
354 been loaded elsewhere, eg because a corrupt file has the
355 string section index in the ELF header pointing at a group
356 section. So be paranoid, and test that the last byte of
357 the section is zero. */
358 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
359 return NULL;
360 }
361
362 if (strindex >= hdr->sh_size)
363 {
364 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
365 _bfd_error_handler
366 /* xgettext:c-format */
367 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
368 abfd, strindex, (uint64_t) hdr->sh_size,
369 (shindex == shstrndx && strindex == hdr->sh_name
370 ? ".shstrtab"
371 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
372 return NULL;
373 }
374
375 return ((char *) hdr->contents) + strindex;
376 }
377
378 /* Read and convert symbols to internal format.
379 SYMCOUNT specifies the number of symbols to read, starting from
380 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
381 are non-NULL, they are used to store the internal symbols, external
382 symbols, and symbol section index extensions, respectively.
383 Returns a pointer to the internal symbol buffer (malloced if necessary)
384 or NULL if there were no symbols or some kind of problem. */
385
386 Elf_Internal_Sym *
387 bfd_elf_get_elf_syms (bfd *ibfd,
388 Elf_Internal_Shdr *symtab_hdr,
389 size_t symcount,
390 size_t symoffset,
391 Elf_Internal_Sym *intsym_buf,
392 void *extsym_buf,
393 Elf_External_Sym_Shndx *extshndx_buf)
394 {
395 Elf_Internal_Shdr *shndx_hdr;
396 void *alloc_ext;
397 const bfd_byte *esym;
398 Elf_External_Sym_Shndx *alloc_extshndx;
399 Elf_External_Sym_Shndx *shndx;
400 Elf_Internal_Sym *alloc_intsym;
401 Elf_Internal_Sym *isym;
402 Elf_Internal_Sym *isymend;
403 const struct elf_backend_data *bed;
404 size_t extsym_size;
405 bfd_size_type amt;
406 file_ptr pos;
407
408 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
409 abort ();
410
411 if (symcount == 0)
412 return intsym_buf;
413
414 /* Normal syms might have section extension entries. */
415 shndx_hdr = NULL;
416 if (elf_symtab_shndx_list (ibfd) != NULL)
417 {
418 elf_section_list * entry;
419 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
420
421 /* Find an index section that is linked to this symtab section. */
422 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
423 {
424 /* PR 20063. */
425 if (entry->hdr.sh_link >= elf_numsections (ibfd))
426 continue;
427
428 if (sections[entry->hdr.sh_link] == symtab_hdr)
429 {
430 shndx_hdr = & entry->hdr;
431 break;
432 };
433 }
434
435 if (shndx_hdr == NULL)
436 {
437 if (symtab_hdr == & elf_symtab_hdr (ibfd))
438 /* Not really accurate, but this was how the old code used to work. */
439 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
440 /* Otherwise we do nothing. The assumption is that
441 the index table will not be needed. */
442 }
443 }
444
445 /* Read the symbols. */
446 alloc_ext = NULL;
447 alloc_extshndx = NULL;
448 alloc_intsym = NULL;
449 bed = get_elf_backend_data (ibfd);
450 extsym_size = bed->s->sizeof_sym;
451 amt = (bfd_size_type) symcount * extsym_size;
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc2 (symcount, extsym_size);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
471 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
472 if (extshndx_buf == NULL)
473 {
474 alloc_extshndx = (Elf_External_Sym_Shndx *)
475 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
476 extshndx_buf = alloc_extshndx;
477 }
478 if (extshndx_buf == NULL
479 || bfd_seek (ibfd, pos, SEEK_SET) != 0
480 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
481 {
482 intsym_buf = NULL;
483 goto out;
484 }
485 }
486
487 if (intsym_buf == NULL)
488 {
489 alloc_intsym = (Elf_Internal_Sym *)
490 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
491 intsym_buf = alloc_intsym;
492 if (intsym_buf == NULL)
493 goto out;
494 }
495
496 /* Convert the symbols to internal form. */
497 isymend = intsym_buf + symcount;
498 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
499 shndx = extshndx_buf;
500 isym < isymend;
501 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
502 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
503 {
504 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
505 /* xgettext:c-format */
506 _bfd_error_handler (_("%pB symbol number %lu references"
507 " nonexistent SHT_SYMTAB_SHNDX section"),
508 ibfd, (unsigned long) symoffset);
509 if (alloc_intsym != NULL)
510 free (alloc_intsym);
511 intsym_buf = NULL;
512 goto out;
513 }
514
515 out:
516 if (alloc_ext != NULL)
517 free (alloc_ext);
518 if (alloc_extshndx != NULL)
519 free (alloc_extshndx);
520
521 return intsym_buf;
522 }
523
524 /* Look up a symbol name. */
525 const char *
526 bfd_elf_sym_name (bfd *abfd,
527 Elf_Internal_Shdr *symtab_hdr,
528 Elf_Internal_Sym *isym,
529 asection *sym_sec)
530 {
531 const char *name;
532 unsigned int iname = isym->st_name;
533 unsigned int shindex = symtab_hdr->sh_link;
534
535 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
536 /* Check for a bogus st_shndx to avoid crashing. */
537 && isym->st_shndx < elf_numsections (abfd))
538 {
539 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
540 shindex = elf_elfheader (abfd)->e_shstrndx;
541 }
542
543 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
544 if (name == NULL)
545 name = "(null)";
546 else if (sym_sec && *name == '\0')
547 name = bfd_section_name (sym_sec);
548
549 return name;
550 }
551
552 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
553 sections. The first element is the flags, the rest are section
554 pointers. */
555
556 typedef union elf_internal_group {
557 Elf_Internal_Shdr *shdr;
558 unsigned int flags;
559 } Elf_Internal_Group;
560
561 /* Return the name of the group signature symbol. Why isn't the
562 signature just a string? */
563
564 static const char *
565 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
566 {
567 Elf_Internal_Shdr *hdr;
568 unsigned char esym[sizeof (Elf64_External_Sym)];
569 Elf_External_Sym_Shndx eshndx;
570 Elf_Internal_Sym isym;
571
572 /* First we need to ensure the symbol table is available. Make sure
573 that it is a symbol table section. */
574 if (ghdr->sh_link >= elf_numsections (abfd))
575 return NULL;
576 hdr = elf_elfsections (abfd) [ghdr->sh_link];
577 if (hdr->sh_type != SHT_SYMTAB
578 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
579 return NULL;
580
581 /* Go read the symbol. */
582 hdr = &elf_tdata (abfd)->symtab_hdr;
583 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
584 &isym, esym, &eshndx) == NULL)
585 return NULL;
586
587 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
588 }
589
590 /* Set next_in_group list pointer, and group name for NEWSECT. */
591
592 static bfd_boolean
593 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
594 {
595 unsigned int num_group = elf_tdata (abfd)->num_group;
596
597 /* If num_group is zero, read in all SHT_GROUP sections. The count
598 is set to -1 if there are no SHT_GROUP sections. */
599 if (num_group == 0)
600 {
601 unsigned int i, shnum;
602
603 /* First count the number of groups. If we have a SHT_GROUP
604 section with just a flag word (ie. sh_size is 4), ignore it. */
605 shnum = elf_numsections (abfd);
606 num_group = 0;
607
608 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
609 ( (shdr)->sh_type == SHT_GROUP \
610 && (shdr)->sh_size >= minsize \
611 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
612 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
613
614 for (i = 0; i < shnum; i++)
615 {
616 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
617
618 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
619 num_group += 1;
620 }
621
622 if (num_group == 0)
623 {
624 num_group = (unsigned) -1;
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = NULL;
627 }
628 else
629 {
630 /* We keep a list of elf section headers for group sections,
631 so we can find them quickly. */
632 bfd_size_type amt;
633
634 elf_tdata (abfd)->num_group = num_group;
635 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
636 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
637 if (elf_tdata (abfd)->group_sect_ptr == NULL)
638 return FALSE;
639 memset (elf_tdata (abfd)->group_sect_ptr, 0,
640 num_group * sizeof (Elf_Internal_Shdr *));
641 num_group = 0;
642
643 for (i = 0; i < shnum; i++)
644 {
645 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
646
647 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
648 {
649 unsigned char *src;
650 Elf_Internal_Group *dest;
651
652 /* Make sure the group section has a BFD section
653 attached to it. */
654 if (!bfd_section_from_shdr (abfd, i))
655 return FALSE;
656
657 /* Add to list of sections. */
658 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
659 num_group += 1;
660
661 /* Read the raw contents. */
662 BFD_ASSERT (sizeof (*dest) >= 4);
663 amt = shdr->sh_size * sizeof (*dest) / 4;
664 shdr->contents = (unsigned char *)
665 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
666 /* PR binutils/4110: Handle corrupt group headers. */
667 if (shdr->contents == NULL)
668 {
669 _bfd_error_handler
670 /* xgettext:c-format */
671 (_("%pB: corrupt size field in group section"
672 " header: %#" PRIx64),
673 abfd, (uint64_t) shdr->sh_size);
674 bfd_set_error (bfd_error_bad_value);
675 -- num_group;
676 continue;
677 }
678
679 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
680 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
681 != shdr->sh_size))
682 {
683 _bfd_error_handler
684 /* xgettext:c-format */
685 (_("%pB: invalid size field in group section"
686 " header: %#" PRIx64 ""),
687 abfd, (uint64_t) shdr->sh_size);
688 bfd_set_error (bfd_error_bad_value);
689 -- num_group;
690 /* PR 17510: If the group contents are even
691 partially corrupt, do not allow any of the
692 contents to be used. */
693 bfd_release (abfd, shdr->contents);
694 shdr->contents = NULL;
695 continue;
696 }
697
698 /* Translate raw contents, a flag word followed by an
699 array of elf section indices all in target byte order,
700 to the flag word followed by an array of elf section
701 pointers. */
702 src = shdr->contents + shdr->sh_size;
703 dest = (Elf_Internal_Group *) (shdr->contents + amt);
704
705 while (1)
706 {
707 unsigned int idx;
708
709 src -= 4;
710 --dest;
711 idx = H_GET_32 (abfd, src);
712 if (src == shdr->contents)
713 {
714 dest->shdr = NULL;
715 dest->flags = idx;
716 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
717 shdr->bfd_section->flags
718 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
719 break;
720 }
721 if (idx < shnum)
722 {
723 dest->shdr = elf_elfsections (abfd)[idx];
724 /* PR binutils/23199: All sections in a
725 section group should be marked with
726 SHF_GROUP. But some tools generate
727 broken objects without SHF_GROUP. Fix
728 them up here. */
729 dest->shdr->sh_flags |= SHF_GROUP;
730 }
731 if (idx >= shnum
732 || dest->shdr->sh_type == SHT_GROUP)
733 {
734 _bfd_error_handler
735 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
736 abfd, i);
737 dest->shdr = NULL;
738 }
739 }
740 }
741 }
742
743 /* PR 17510: Corrupt binaries might contain invalid groups. */
744 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
745 {
746 elf_tdata (abfd)->num_group = num_group;
747
748 /* If all groups are invalid then fail. */
749 if (num_group == 0)
750 {
751 elf_tdata (abfd)->group_sect_ptr = NULL;
752 elf_tdata (abfd)->num_group = num_group = -1;
753 _bfd_error_handler
754 (_("%pB: no valid group sections found"), abfd);
755 bfd_set_error (bfd_error_bad_value);
756 }
757 }
758 }
759 }
760
761 if (num_group != (unsigned) -1)
762 {
763 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
764 unsigned int j;
765
766 for (j = 0; j < num_group; j++)
767 {
768 /* Begin search from previous found group. */
769 unsigned i = (j + search_offset) % num_group;
770
771 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
772 Elf_Internal_Group *idx;
773 bfd_size_type n_elt;
774
775 if (shdr == NULL)
776 continue;
777
778 idx = (Elf_Internal_Group *) shdr->contents;
779 if (idx == NULL || shdr->sh_size < 4)
780 {
781 /* See PR 21957 for a reproducer. */
782 /* xgettext:c-format */
783 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
784 abfd, shdr->bfd_section);
785 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
786 bfd_set_error (bfd_error_bad_value);
787 return FALSE;
788 }
789 n_elt = shdr->sh_size / 4;
790
791 /* Look through this group's sections to see if current
792 section is a member. */
793 while (--n_elt != 0)
794 if ((++idx)->shdr == hdr)
795 {
796 asection *s = NULL;
797
798 /* We are a member of this group. Go looking through
799 other members to see if any others are linked via
800 next_in_group. */
801 idx = (Elf_Internal_Group *) shdr->contents;
802 n_elt = shdr->sh_size / 4;
803 while (--n_elt != 0)
804 if ((++idx)->shdr != NULL
805 && (s = idx->shdr->bfd_section) != NULL
806 && elf_next_in_group (s) != NULL)
807 break;
808 if (n_elt != 0)
809 {
810 /* Snarf the group name from other member, and
811 insert current section in circular list. */
812 elf_group_name (newsect) = elf_group_name (s);
813 elf_next_in_group (newsect) = elf_next_in_group (s);
814 elf_next_in_group (s) = newsect;
815 }
816 else
817 {
818 const char *gname;
819
820 gname = group_signature (abfd, shdr);
821 if (gname == NULL)
822 return FALSE;
823 elf_group_name (newsect) = gname;
824
825 /* Start a circular list with one element. */
826 elf_next_in_group (newsect) = newsect;
827 }
828
829 /* If the group section has been created, point to the
830 new member. */
831 if (shdr->bfd_section != NULL)
832 elf_next_in_group (shdr->bfd_section) = newsect;
833
834 elf_tdata (abfd)->group_search_offset = i;
835 j = num_group - 1;
836 break;
837 }
838 }
839 }
840
841 if (elf_group_name (newsect) == NULL)
842 {
843 /* xgettext:c-format */
844 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
845 abfd, newsect);
846 return FALSE;
847 }
848 return TRUE;
849 }
850
851 bfd_boolean
852 _bfd_elf_setup_sections (bfd *abfd)
853 {
854 unsigned int i;
855 unsigned int num_group = elf_tdata (abfd)->num_group;
856 bfd_boolean result = TRUE;
857 asection *s;
858
859 /* Process SHF_LINK_ORDER. */
860 for (s = abfd->sections; s != NULL; s = s->next)
861 {
862 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
863 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
864 {
865 unsigned int elfsec = this_hdr->sh_link;
866 /* FIXME: The old Intel compiler and old strip/objcopy may
867 not set the sh_link or sh_info fields. Hence we could
868 get the situation where elfsec is 0. */
869 if (elfsec == 0)
870 {
871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
872 if (bed->link_order_error_handler)
873 bed->link_order_error_handler
874 /* xgettext:c-format */
875 (_("%pB: warning: sh_link not set for section `%pA'"),
876 abfd, s);
877 }
878 else
879 {
880 asection *linksec = NULL;
881
882 if (elfsec < elf_numsections (abfd))
883 {
884 this_hdr = elf_elfsections (abfd)[elfsec];
885 linksec = this_hdr->bfd_section;
886 }
887
888 /* PR 1991, 2008:
889 Some strip/objcopy may leave an incorrect value in
890 sh_link. We don't want to proceed. */
891 if (linksec == NULL)
892 {
893 _bfd_error_handler
894 /* xgettext:c-format */
895 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
896 s->owner, elfsec, s);
897 result = FALSE;
898 }
899
900 elf_linked_to_section (s) = linksec;
901 }
902 }
903 else if (this_hdr->sh_type == SHT_GROUP
904 && elf_next_in_group (s) == NULL)
905 {
906 _bfd_error_handler
907 /* xgettext:c-format */
908 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
909 abfd, elf_section_data (s)->this_idx);
910 result = FALSE;
911 }
912 }
913
914 /* Process section groups. */
915 if (num_group == (unsigned) -1)
916 return result;
917
918 for (i = 0; i < num_group; i++)
919 {
920 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
921 Elf_Internal_Group *idx;
922 unsigned int n_elt;
923
924 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
925 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
926 {
927 _bfd_error_handler
928 /* xgettext:c-format */
929 (_("%pB: section group entry number %u is corrupt"),
930 abfd, i);
931 result = FALSE;
932 continue;
933 }
934
935 idx = (Elf_Internal_Group *) shdr->contents;
936 n_elt = shdr->sh_size / 4;
937
938 while (--n_elt != 0)
939 {
940 ++ idx;
941
942 if (idx->shdr == NULL)
943 continue;
944 else if (idx->shdr->bfd_section)
945 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
946 else if (idx->shdr->sh_type != SHT_RELA
947 && idx->shdr->sh_type != SHT_REL)
948 {
949 /* There are some unknown sections in the group. */
950 _bfd_error_handler
951 /* xgettext:c-format */
952 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
953 abfd,
954 idx->shdr->sh_type,
955 bfd_elf_string_from_elf_section (abfd,
956 (elf_elfheader (abfd)
957 ->e_shstrndx),
958 idx->shdr->sh_name),
959 shdr->bfd_section);
960 result = FALSE;
961 }
962 }
963 }
964
965 return result;
966 }
967
968 bfd_boolean
969 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
970 {
971 return elf_next_in_group (sec) != NULL;
972 }
973
974 const char *
975 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
976 {
977 if (elf_sec_group (sec) != NULL)
978 return elf_group_name (sec);
979 return NULL;
980 }
981
982 static char *
983 convert_debug_to_zdebug (bfd *abfd, const char *name)
984 {
985 unsigned int len = strlen (name);
986 char *new_name = bfd_alloc (abfd, len + 2);
987 if (new_name == NULL)
988 return NULL;
989 new_name[0] = '.';
990 new_name[1] = 'z';
991 memcpy (new_name + 2, name + 1, len);
992 return new_name;
993 }
994
995 static char *
996 convert_zdebug_to_debug (bfd *abfd, const char *name)
997 {
998 unsigned int len = strlen (name);
999 char *new_name = bfd_alloc (abfd, len);
1000 if (new_name == NULL)
1001 return NULL;
1002 new_name[0] = '.';
1003 memcpy (new_name + 1, name + 2, len - 1);
1004 return new_name;
1005 }
1006
1007 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1008
1009 struct lto_section
1010 {
1011 int16_t major_version;
1012 int16_t minor_version;
1013 unsigned char slim_object;
1014
1015 /* Flags is a private field that is not defined publicly. */
1016 uint16_t flags;
1017 };
1018
1019 /* Make a BFD section from an ELF section. We store a pointer to the
1020 BFD section in the bfd_section field of the header. */
1021
1022 bfd_boolean
1023 _bfd_elf_make_section_from_shdr (bfd *abfd,
1024 Elf_Internal_Shdr *hdr,
1025 const char *name,
1026 int shindex)
1027 {
1028 asection *newsect;
1029 flagword flags;
1030 const struct elf_backend_data *bed;
1031
1032 if (hdr->bfd_section != NULL)
1033 return TRUE;
1034
1035 newsect = bfd_make_section_anyway (abfd, name);
1036 if (newsect == NULL)
1037 return FALSE;
1038
1039 hdr->bfd_section = newsect;
1040 elf_section_data (newsect)->this_hdr = *hdr;
1041 elf_section_data (newsect)->this_idx = shindex;
1042
1043 /* Always use the real type/flags. */
1044 elf_section_type (newsect) = hdr->sh_type;
1045 elf_section_flags (newsect) = hdr->sh_flags;
1046
1047 newsect->filepos = hdr->sh_offset;
1048
1049 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1050 || !bfd_set_section_size (newsect, hdr->sh_size)
1051 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1052 return FALSE;
1053
1054 flags = SEC_NO_FLAGS;
1055 if (hdr->sh_type != SHT_NOBITS)
1056 flags |= SEC_HAS_CONTENTS;
1057 if (hdr->sh_type == SHT_GROUP)
1058 flags |= SEC_GROUP;
1059 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1060 {
1061 flags |= SEC_ALLOC;
1062 if (hdr->sh_type != SHT_NOBITS)
1063 flags |= SEC_LOAD;
1064 }
1065 if ((hdr->sh_flags & SHF_WRITE) == 0)
1066 flags |= SEC_READONLY;
1067 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1068 flags |= SEC_CODE;
1069 else if ((flags & SEC_LOAD) != 0)
1070 flags |= SEC_DATA;
1071 if ((hdr->sh_flags & SHF_MERGE) != 0)
1072 {
1073 flags |= SEC_MERGE;
1074 newsect->entsize = hdr->sh_entsize;
1075 }
1076 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1077 flags |= SEC_STRINGS;
1078 if (hdr->sh_flags & SHF_GROUP)
1079 if (!setup_group (abfd, hdr, newsect))
1080 return FALSE;
1081 if ((hdr->sh_flags & SHF_TLS) != 0)
1082 flags |= SEC_THREAD_LOCAL;
1083 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1084 flags |= SEC_EXCLUDE;
1085
1086 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1087 {
1088 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1089 but binutils as of 2019-07-23 did not set the EI_OSABI header
1090 byte. */
1091 case ELFOSABI_NONE:
1092 case ELFOSABI_GNU:
1093 case ELFOSABI_FREEBSD:
1094 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1095 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1096 break;
1097 }
1098
1099 if ((flags & SEC_ALLOC) == 0)
1100 {
1101 /* The debugging sections appear to be recognized only by name,
1102 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1103 if (name [0] == '.')
1104 {
1105 if (strncmp (name, ".debug", 6) == 0
1106 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1107 || strncmp (name, ".zdebug", 7) == 0)
1108 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1109 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1110 || strncmp (name, ".note.gnu", 9) == 0)
1111 flags |= SEC_ELF_OCTETS;
1112 else if (strncmp (name, ".line", 5) == 0
1113 || strncmp (name, ".stab", 5) == 0
1114 || strcmp (name, ".gdb_index") == 0)
1115 flags |= SEC_DEBUGGING;
1116 }
1117 }
1118
1119 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1120 only link a single copy of the section. This is used to support
1121 g++. g++ will emit each template expansion in its own section.
1122 The symbols will be defined as weak, so that multiple definitions
1123 are permitted. The GNU linker extension is to actually discard
1124 all but one of the sections. */
1125 if (CONST_STRNEQ (name, ".gnu.linkonce")
1126 && elf_next_in_group (newsect) == NULL)
1127 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1128
1129 bed = get_elf_backend_data (abfd);
1130 if (bed->elf_backend_section_flags)
1131 if (! bed->elf_backend_section_flags (&flags, hdr))
1132 return FALSE;
1133
1134 if (!bfd_set_section_flags (newsect, flags))
1135 return FALSE;
1136
1137 /* We do not parse the PT_NOTE segments as we are interested even in the
1138 separate debug info files which may have the segments offsets corrupted.
1139 PT_NOTEs from the core files are currently not parsed using BFD. */
1140 if (hdr->sh_type == SHT_NOTE)
1141 {
1142 bfd_byte *contents;
1143
1144 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1145 return FALSE;
1146
1147 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1148 hdr->sh_offset, hdr->sh_addralign);
1149 free (contents);
1150 }
1151
1152 if ((flags & SEC_ALLOC) != 0)
1153 {
1154 Elf_Internal_Phdr *phdr;
1155 unsigned int i, nload;
1156
1157 /* Some ELF linkers produce binaries with all the program header
1158 p_paddr fields zero. If we have such a binary with more than
1159 one PT_LOAD header, then leave the section lma equal to vma
1160 so that we don't create sections with overlapping lma. */
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 if (phdr->p_paddr != 0)
1164 break;
1165 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1166 ++nload;
1167 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1168 return TRUE;
1169
1170 phdr = elf_tdata (abfd)->phdr;
1171 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1172 {
1173 if (((phdr->p_type == PT_LOAD
1174 && (hdr->sh_flags & SHF_TLS) == 0)
1175 || phdr->p_type == PT_TLS)
1176 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1177 {
1178 if ((flags & SEC_LOAD) == 0)
1179 newsect->lma = (phdr->p_paddr
1180 + hdr->sh_addr - phdr->p_vaddr);
1181 else
1182 /* We used to use the same adjustment for SEC_LOAD
1183 sections, but that doesn't work if the segment
1184 is packed with code from multiple VMAs.
1185 Instead we calculate the section LMA based on
1186 the segment LMA. It is assumed that the
1187 segment will contain sections with contiguous
1188 LMAs, even if the VMAs are not. */
1189 newsect->lma = (phdr->p_paddr
1190 + hdr->sh_offset - phdr->p_offset);
1191
1192 /* With contiguous segments, we can't tell from file
1193 offsets whether a section with zero size should
1194 be placed at the end of one segment or the
1195 beginning of the next. Decide based on vaddr. */
1196 if (hdr->sh_addr >= phdr->p_vaddr
1197 && (hdr->sh_addr + hdr->sh_size
1198 <= phdr->p_vaddr + phdr->p_memsz))
1199 break;
1200 }
1201 }
1202 }
1203
1204 /* Compress/decompress DWARF debug sections with names: .debug_* and
1205 .zdebug_*, after the section flags is set. */
1206 if ((flags & SEC_DEBUGGING)
1207 && ((name[1] == 'd' && name[6] == '_')
1208 || (name[1] == 'z' && name[7] == '_')))
1209 {
1210 enum { nothing, compress, decompress } action = nothing;
1211 int compression_header_size;
1212 bfd_size_type uncompressed_size;
1213 unsigned int uncompressed_align_power;
1214 bfd_boolean compressed
1215 = bfd_is_section_compressed_with_header (abfd, newsect,
1216 &compression_header_size,
1217 &uncompressed_size,
1218 &uncompressed_align_power);
1219 if (compressed)
1220 {
1221 /* Compressed section. Check if we should decompress. */
1222 if ((abfd->flags & BFD_DECOMPRESS))
1223 action = decompress;
1224 }
1225
1226 /* Compress the uncompressed section or convert from/to .zdebug*
1227 section. Check if we should compress. */
1228 if (action == nothing)
1229 {
1230 if (newsect->size != 0
1231 && (abfd->flags & BFD_COMPRESS)
1232 && compression_header_size >= 0
1233 && uncompressed_size > 0
1234 && (!compressed
1235 || ((compression_header_size > 0)
1236 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1237 action = compress;
1238 else
1239 return TRUE;
1240 }
1241
1242 if (action == compress)
1243 {
1244 if (!bfd_init_section_compress_status (abfd, newsect))
1245 {
1246 _bfd_error_handler
1247 /* xgettext:c-format */
1248 (_("%pB: unable to initialize compress status for section %s"),
1249 abfd, name);
1250 return FALSE;
1251 }
1252 }
1253 else
1254 {
1255 if (!bfd_init_section_decompress_status (abfd, newsect))
1256 {
1257 _bfd_error_handler
1258 /* xgettext:c-format */
1259 (_("%pB: unable to initialize decompress status for section %s"),
1260 abfd, name);
1261 return FALSE;
1262 }
1263 }
1264
1265 if (abfd->is_linker_input)
1266 {
1267 if (name[1] == 'z'
1268 && (action == decompress
1269 || (action == compress
1270 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1271 {
1272 /* Convert section name from .zdebug_* to .debug_* so
1273 that linker will consider this section as a debug
1274 section. */
1275 char *new_name = convert_zdebug_to_debug (abfd, name);
1276 if (new_name == NULL)
1277 return FALSE;
1278 bfd_rename_section (newsect, new_name);
1279 }
1280 }
1281 else
1282 /* For objdump, don't rename the section. For objcopy, delay
1283 section rename to elf_fake_sections. */
1284 newsect->flags |= SEC_ELF_RENAME;
1285 }
1286
1287 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1288 section. */
1289 const char *lto_section_name = ".gnu.lto_.lto.";
1290 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1291 {
1292 struct lto_section lsection;
1293 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1294 sizeof (struct lto_section)))
1295 abfd->lto_slim_object = lsection.slim_object;
1296 }
1297
1298 return TRUE;
1299 }
1300
1301 const char *const bfd_elf_section_type_names[] =
1302 {
1303 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1304 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1305 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1306 };
1307
1308 /* ELF relocs are against symbols. If we are producing relocatable
1309 output, and the reloc is against an external symbol, and nothing
1310 has given us any additional addend, the resulting reloc will also
1311 be against the same symbol. In such a case, we don't want to
1312 change anything about the way the reloc is handled, since it will
1313 all be done at final link time. Rather than put special case code
1314 into bfd_perform_relocation, all the reloc types use this howto
1315 function. It just short circuits the reloc if producing
1316 relocatable output against an external symbol. */
1317
1318 bfd_reloc_status_type
1319 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1320 arelent *reloc_entry,
1321 asymbol *symbol,
1322 void *data ATTRIBUTE_UNUSED,
1323 asection *input_section,
1324 bfd *output_bfd,
1325 char **error_message ATTRIBUTE_UNUSED)
1326 {
1327 if (output_bfd != NULL
1328 && (symbol->flags & BSF_SECTION_SYM) == 0
1329 && (! reloc_entry->howto->partial_inplace
1330 || reloc_entry->addend == 0))
1331 {
1332 reloc_entry->address += input_section->output_offset;
1333 return bfd_reloc_ok;
1334 }
1335
1336 return bfd_reloc_continue;
1337 }
1338 \f
1339 /* Returns TRUE if section A matches section B.
1340 Names, addresses and links may be different, but everything else
1341 should be the same. */
1342
1343 static bfd_boolean
1344 section_match (const Elf_Internal_Shdr * a,
1345 const Elf_Internal_Shdr * b)
1346 {
1347 if (a->sh_type != b->sh_type
1348 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1349 || a->sh_addralign != b->sh_addralign
1350 || a->sh_entsize != b->sh_entsize)
1351 return FALSE;
1352 if (a->sh_type == SHT_SYMTAB
1353 || a->sh_type == SHT_STRTAB)
1354 return TRUE;
1355 return a->sh_size == b->sh_size;
1356 }
1357
1358 /* Find a section in OBFD that has the same characteristics
1359 as IHEADER. Return the index of this section or SHN_UNDEF if
1360 none can be found. Check's section HINT first, as this is likely
1361 to be the correct section. */
1362
1363 static unsigned int
1364 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1365 const unsigned int hint)
1366 {
1367 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1368 unsigned int i;
1369
1370 BFD_ASSERT (iheader != NULL);
1371
1372 /* See PR 20922 for a reproducer of the NULL test. */
1373 if (hint < elf_numsections (obfd)
1374 && oheaders[hint] != NULL
1375 && section_match (oheaders[hint], iheader))
1376 return hint;
1377
1378 for (i = 1; i < elf_numsections (obfd); i++)
1379 {
1380 Elf_Internal_Shdr * oheader = oheaders[i];
1381
1382 if (oheader == NULL)
1383 continue;
1384 if (section_match (oheader, iheader))
1385 /* FIXME: Do we care if there is a potential for
1386 multiple matches ? */
1387 return i;
1388 }
1389
1390 return SHN_UNDEF;
1391 }
1392
1393 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1394 Processor specific section, based upon a matching input section.
1395 Returns TRUE upon success, FALSE otherwise. */
1396
1397 static bfd_boolean
1398 copy_special_section_fields (const bfd *ibfd,
1399 bfd *obfd,
1400 const Elf_Internal_Shdr *iheader,
1401 Elf_Internal_Shdr *oheader,
1402 const unsigned int secnum)
1403 {
1404 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1405 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1406 bfd_boolean changed = FALSE;
1407 unsigned int sh_link;
1408
1409 if (oheader->sh_type == SHT_NOBITS)
1410 {
1411 /* This is a feature for objcopy --only-keep-debug:
1412 When a section's type is changed to NOBITS, we preserve
1413 the sh_link and sh_info fields so that they can be
1414 matched up with the original.
1415
1416 Note: Strictly speaking these assignments are wrong.
1417 The sh_link and sh_info fields should point to the
1418 relevent sections in the output BFD, which may not be in
1419 the same location as they were in the input BFD. But
1420 the whole point of this action is to preserve the
1421 original values of the sh_link and sh_info fields, so
1422 that they can be matched up with the section headers in
1423 the original file. So strictly speaking we may be
1424 creating an invalid ELF file, but it is only for a file
1425 that just contains debug info and only for sections
1426 without any contents. */
1427 if (oheader->sh_link == 0)
1428 oheader->sh_link = iheader->sh_link;
1429 if (oheader->sh_info == 0)
1430 oheader->sh_info = iheader->sh_info;
1431 return TRUE;
1432 }
1433
1434 /* Allow the target a chance to decide how these fields should be set. */
1435 if (bed->elf_backend_copy_special_section_fields != NULL
1436 && bed->elf_backend_copy_special_section_fields
1437 (ibfd, obfd, iheader, oheader))
1438 return TRUE;
1439
1440 /* We have an iheader which might match oheader, and which has non-zero
1441 sh_info and/or sh_link fields. Attempt to follow those links and find
1442 the section in the output bfd which corresponds to the linked section
1443 in the input bfd. */
1444 if (iheader->sh_link != SHN_UNDEF)
1445 {
1446 /* See PR 20931 for a reproducer. */
1447 if (iheader->sh_link >= elf_numsections (ibfd))
1448 {
1449 _bfd_error_handler
1450 /* xgettext:c-format */
1451 (_("%pB: invalid sh_link field (%d) in section number %d"),
1452 ibfd, iheader->sh_link, secnum);
1453 return FALSE;
1454 }
1455
1456 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1457 if (sh_link != SHN_UNDEF)
1458 {
1459 oheader->sh_link = sh_link;
1460 changed = TRUE;
1461 }
1462 else
1463 /* FIXME: Should we install iheader->sh_link
1464 if we could not find a match ? */
1465 _bfd_error_handler
1466 /* xgettext:c-format */
1467 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1468 }
1469
1470 if (iheader->sh_info)
1471 {
1472 /* The sh_info field can hold arbitrary information, but if the
1473 SHF_LINK_INFO flag is set then it should be interpreted as a
1474 section index. */
1475 if (iheader->sh_flags & SHF_INFO_LINK)
1476 {
1477 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1478 iheader->sh_info);
1479 if (sh_link != SHN_UNDEF)
1480 oheader->sh_flags |= SHF_INFO_LINK;
1481 }
1482 else
1483 /* No idea what it means - just copy it. */
1484 sh_link = iheader->sh_info;
1485
1486 if (sh_link != SHN_UNDEF)
1487 {
1488 oheader->sh_info = sh_link;
1489 changed = TRUE;
1490 }
1491 else
1492 _bfd_error_handler
1493 /* xgettext:c-format */
1494 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1495 }
1496
1497 return changed;
1498 }
1499
1500 /* Copy the program header and other data from one object module to
1501 another. */
1502
1503 bfd_boolean
1504 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1505 {
1506 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1507 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1508 const struct elf_backend_data *bed;
1509 unsigned int i;
1510
1511 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1512 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1513 return TRUE;
1514
1515 if (!elf_flags_init (obfd))
1516 {
1517 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1518 elf_flags_init (obfd) = TRUE;
1519 }
1520
1521 elf_gp (obfd) = elf_gp (ibfd);
1522
1523 /* Also copy the EI_OSABI field. */
1524 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1525 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1526
1527 /* If set, copy the EI_ABIVERSION field. */
1528 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1529 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1530 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1531
1532 /* Copy object attributes. */
1533 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1534
1535 if (iheaders == NULL || oheaders == NULL)
1536 return TRUE;
1537
1538 bed = get_elf_backend_data (obfd);
1539
1540 /* Possibly copy other fields in the section header. */
1541 for (i = 1; i < elf_numsections (obfd); i++)
1542 {
1543 unsigned int j;
1544 Elf_Internal_Shdr * oheader = oheaders[i];
1545
1546 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1547 because of a special case need for generating separate debug info
1548 files. See below for more details. */
1549 if (oheader == NULL
1550 || (oheader->sh_type != SHT_NOBITS
1551 && oheader->sh_type < SHT_LOOS))
1552 continue;
1553
1554 /* Ignore empty sections, and sections whose
1555 fields have already been initialised. */
1556 if (oheader->sh_size == 0
1557 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1558 continue;
1559
1560 /* Scan for the matching section in the input bfd.
1561 First we try for a direct mapping between the input and output sections. */
1562 for (j = 1; j < elf_numsections (ibfd); j++)
1563 {
1564 const Elf_Internal_Shdr * iheader = iheaders[j];
1565
1566 if (iheader == NULL)
1567 continue;
1568
1569 if (oheader->bfd_section != NULL
1570 && iheader->bfd_section != NULL
1571 && iheader->bfd_section->output_section != NULL
1572 && iheader->bfd_section->output_section == oheader->bfd_section)
1573 {
1574 /* We have found a connection from the input section to the
1575 output section. Attempt to copy the header fields. If
1576 this fails then do not try any further sections - there
1577 should only be a one-to-one mapping between input and output. */
1578 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1579 j = elf_numsections (ibfd);
1580 break;
1581 }
1582 }
1583
1584 if (j < elf_numsections (ibfd))
1585 continue;
1586
1587 /* That failed. So try to deduce the corresponding input section.
1588 Unfortunately we cannot compare names as the output string table
1589 is empty, so instead we check size, address and type. */
1590 for (j = 1; j < elf_numsections (ibfd); j++)
1591 {
1592 const Elf_Internal_Shdr * iheader = iheaders[j];
1593
1594 if (iheader == NULL)
1595 continue;
1596
1597 /* Try matching fields in the input section's header.
1598 Since --only-keep-debug turns all non-debug sections into
1599 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1600 input type. */
1601 if ((oheader->sh_type == SHT_NOBITS
1602 || iheader->sh_type == oheader->sh_type)
1603 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1604 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1605 && iheader->sh_addralign == oheader->sh_addralign
1606 && iheader->sh_entsize == oheader->sh_entsize
1607 && iheader->sh_size == oheader->sh_size
1608 && iheader->sh_addr == oheader->sh_addr
1609 && (iheader->sh_info != oheader->sh_info
1610 || iheader->sh_link != oheader->sh_link))
1611 {
1612 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1613 break;
1614 }
1615 }
1616
1617 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1618 {
1619 /* Final attempt. Call the backend copy function
1620 with a NULL input section. */
1621 if (bed->elf_backend_copy_special_section_fields != NULL)
1622 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1623 }
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 static const char *
1630 get_segment_type (unsigned int p_type)
1631 {
1632 const char *pt;
1633 switch (p_type)
1634 {
1635 case PT_NULL: pt = "NULL"; break;
1636 case PT_LOAD: pt = "LOAD"; break;
1637 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1638 case PT_INTERP: pt = "INTERP"; break;
1639 case PT_NOTE: pt = "NOTE"; break;
1640 case PT_SHLIB: pt = "SHLIB"; break;
1641 case PT_PHDR: pt = "PHDR"; break;
1642 case PT_TLS: pt = "TLS"; break;
1643 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1644 case PT_GNU_STACK: pt = "STACK"; break;
1645 case PT_GNU_RELRO: pt = "RELRO"; break;
1646 default: pt = NULL; break;
1647 }
1648 return pt;
1649 }
1650
1651 /* Print out the program headers. */
1652
1653 bfd_boolean
1654 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1655 {
1656 FILE *f = (FILE *) farg;
1657 Elf_Internal_Phdr *p;
1658 asection *s;
1659 bfd_byte *dynbuf = NULL;
1660
1661 p = elf_tdata (abfd)->phdr;
1662 if (p != NULL)
1663 {
1664 unsigned int i, c;
1665
1666 fprintf (f, _("\nProgram Header:\n"));
1667 c = elf_elfheader (abfd)->e_phnum;
1668 for (i = 0; i < c; i++, p++)
1669 {
1670 const char *pt = get_segment_type (p->p_type);
1671 char buf[20];
1672
1673 if (pt == NULL)
1674 {
1675 sprintf (buf, "0x%lx", p->p_type);
1676 pt = buf;
1677 }
1678 fprintf (f, "%8s off 0x", pt);
1679 bfd_fprintf_vma (abfd, f, p->p_offset);
1680 fprintf (f, " vaddr 0x");
1681 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1682 fprintf (f, " paddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_paddr);
1684 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1685 fprintf (f, " filesz 0x");
1686 bfd_fprintf_vma (abfd, f, p->p_filesz);
1687 fprintf (f, " memsz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_memsz);
1689 fprintf (f, " flags %c%c%c",
1690 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1691 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1692 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1693 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1694 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1695 fprintf (f, "\n");
1696 }
1697 }
1698
1699 s = bfd_get_section_by_name (abfd, ".dynamic");
1700 if (s != NULL)
1701 {
1702 unsigned int elfsec;
1703 unsigned long shlink;
1704 bfd_byte *extdyn, *extdynend;
1705 size_t extdynsize;
1706 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1707
1708 fprintf (f, _("\nDynamic Section:\n"));
1709
1710 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1711 goto error_return;
1712
1713 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1714 if (elfsec == SHN_BAD)
1715 goto error_return;
1716 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1717
1718 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1719 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1720
1721 extdyn = dynbuf;
1722 /* PR 17512: file: 6f427532. */
1723 if (s->size < extdynsize)
1724 goto error_return;
1725 extdynend = extdyn + s->size;
1726 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1727 Fix range check. */
1728 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731 const char *name = "";
1732 char ab[20];
1733 bfd_boolean stringp;
1734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1735
1736 (*swap_dyn_in) (abfd, extdyn, &dyn);
1737
1738 if (dyn.d_tag == DT_NULL)
1739 break;
1740
1741 stringp = FALSE;
1742 switch (dyn.d_tag)
1743 {
1744 default:
1745 if (bed->elf_backend_get_target_dtag)
1746 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1747
1748 if (!strcmp (name, ""))
1749 {
1750 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1751 name = ab;
1752 }
1753 break;
1754
1755 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1756 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1757 case DT_PLTGOT: name = "PLTGOT"; break;
1758 case DT_HASH: name = "HASH"; break;
1759 case DT_STRTAB: name = "STRTAB"; break;
1760 case DT_SYMTAB: name = "SYMTAB"; break;
1761 case DT_RELA: name = "RELA"; break;
1762 case DT_RELASZ: name = "RELASZ"; break;
1763 case DT_RELAENT: name = "RELAENT"; break;
1764 case DT_STRSZ: name = "STRSZ"; break;
1765 case DT_SYMENT: name = "SYMENT"; break;
1766 case DT_INIT: name = "INIT"; break;
1767 case DT_FINI: name = "FINI"; break;
1768 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1769 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1770 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1771 case DT_REL: name = "REL"; break;
1772 case DT_RELSZ: name = "RELSZ"; break;
1773 case DT_RELENT: name = "RELENT"; break;
1774 case DT_PLTREL: name = "PLTREL"; break;
1775 case DT_DEBUG: name = "DEBUG"; break;
1776 case DT_TEXTREL: name = "TEXTREL"; break;
1777 case DT_JMPREL: name = "JMPREL"; break;
1778 case DT_BIND_NOW: name = "BIND_NOW"; break;
1779 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1780 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1781 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1782 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1783 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1784 case DT_FLAGS: name = "FLAGS"; break;
1785 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1786 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1787 case DT_CHECKSUM: name = "CHECKSUM"; break;
1788 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1789 case DT_MOVEENT: name = "MOVEENT"; break;
1790 case DT_MOVESZ: name = "MOVESZ"; break;
1791 case DT_FEATURE: name = "FEATURE"; break;
1792 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1793 case DT_SYMINSZ: name = "SYMINSZ"; break;
1794 case DT_SYMINENT: name = "SYMINENT"; break;
1795 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1796 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1797 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1798 case DT_PLTPAD: name = "PLTPAD"; break;
1799 case DT_MOVETAB: name = "MOVETAB"; break;
1800 case DT_SYMINFO: name = "SYMINFO"; break;
1801 case DT_RELACOUNT: name = "RELACOUNT"; break;
1802 case DT_RELCOUNT: name = "RELCOUNT"; break;
1803 case DT_FLAGS_1: name = "FLAGS_1"; break;
1804 case DT_VERSYM: name = "VERSYM"; break;
1805 case DT_VERDEF: name = "VERDEF"; break;
1806 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1807 case DT_VERNEED: name = "VERNEED"; break;
1808 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1809 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1810 case DT_USED: name = "USED"; break;
1811 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1812 case DT_GNU_HASH: name = "GNU_HASH"; break;
1813 }
1814
1815 fprintf (f, " %-20s ", name);
1816 if (! stringp)
1817 {
1818 fprintf (f, "0x");
1819 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1820 }
1821 else
1822 {
1823 const char *string;
1824 unsigned int tagv = dyn.d_un.d_val;
1825
1826 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1827 if (string == NULL)
1828 goto error_return;
1829 fprintf (f, "%s", string);
1830 }
1831 fprintf (f, "\n");
1832 }
1833
1834 free (dynbuf);
1835 dynbuf = NULL;
1836 }
1837
1838 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1839 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1840 {
1841 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1842 return FALSE;
1843 }
1844
1845 if (elf_dynverdef (abfd) != 0)
1846 {
1847 Elf_Internal_Verdef *t;
1848
1849 fprintf (f, _("\nVersion definitions:\n"));
1850 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1851 {
1852 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1853 t->vd_flags, t->vd_hash,
1854 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1855 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1856 {
1857 Elf_Internal_Verdaux *a;
1858
1859 fprintf (f, "\t");
1860 for (a = t->vd_auxptr->vda_nextptr;
1861 a != NULL;
1862 a = a->vda_nextptr)
1863 fprintf (f, "%s ",
1864 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1865 fprintf (f, "\n");
1866 }
1867 }
1868 }
1869
1870 if (elf_dynverref (abfd) != 0)
1871 {
1872 Elf_Internal_Verneed *t;
1873
1874 fprintf (f, _("\nVersion References:\n"));
1875 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1876 {
1877 Elf_Internal_Vernaux *a;
1878
1879 fprintf (f, _(" required from %s:\n"),
1880 t->vn_filename ? t->vn_filename : "<corrupt>");
1881 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1882 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1883 a->vna_flags, a->vna_other,
1884 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1885 }
1886 }
1887
1888 return TRUE;
1889
1890 error_return:
1891 if (dynbuf != NULL)
1892 free (dynbuf);
1893 return FALSE;
1894 }
1895
1896 /* Get version string. */
1897
1898 const char *
1899 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1900 bfd_boolean *hidden)
1901 {
1902 const char *version_string = NULL;
1903 if (elf_dynversym (abfd) != 0
1904 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1905 {
1906 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1907
1908 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1909 vernum &= VERSYM_VERSION;
1910
1911 if (vernum == 0)
1912 version_string = "";
1913 else if (vernum == 1
1914 && (vernum > elf_tdata (abfd)->cverdefs
1915 || (elf_tdata (abfd)->verdef[0].vd_flags
1916 == VER_FLG_BASE)))
1917 version_string = "Base";
1918 else if (vernum <= elf_tdata (abfd)->cverdefs)
1919 version_string =
1920 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1921 else
1922 {
1923 Elf_Internal_Verneed *t;
1924
1925 version_string = _("<corrupt>");
1926 for (t = elf_tdata (abfd)->verref;
1927 t != NULL;
1928 t = t->vn_nextref)
1929 {
1930 Elf_Internal_Vernaux *a;
1931
1932 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1933 {
1934 if (a->vna_other == vernum)
1935 {
1936 version_string = a->vna_nodename;
1937 break;
1938 }
1939 }
1940 }
1941 }
1942 }
1943 return version_string;
1944 }
1945
1946 /* Display ELF-specific fields of a symbol. */
1947
1948 void
1949 bfd_elf_print_symbol (bfd *abfd,
1950 void *filep,
1951 asymbol *symbol,
1952 bfd_print_symbol_type how)
1953 {
1954 FILE *file = (FILE *) filep;
1955 switch (how)
1956 {
1957 case bfd_print_symbol_name:
1958 fprintf (file, "%s", symbol->name);
1959 break;
1960 case bfd_print_symbol_more:
1961 fprintf (file, "elf ");
1962 bfd_fprintf_vma (abfd, file, symbol->value);
1963 fprintf (file, " %x", symbol->flags);
1964 break;
1965 case bfd_print_symbol_all:
1966 {
1967 const char *section_name;
1968 const char *name = NULL;
1969 const struct elf_backend_data *bed;
1970 unsigned char st_other;
1971 bfd_vma val;
1972 const char *version_string;
1973 bfd_boolean hidden;
1974
1975 section_name = symbol->section ? symbol->section->name : "(*none*)";
1976
1977 bed = get_elf_backend_data (abfd);
1978 if (bed->elf_backend_print_symbol_all)
1979 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1980
1981 if (name == NULL)
1982 {
1983 name = symbol->name;
1984 bfd_print_symbol_vandf (abfd, file, symbol);
1985 }
1986
1987 fprintf (file, " %s\t", section_name);
1988 /* Print the "other" value for a symbol. For common symbols,
1989 we've already printed the size; now print the alignment.
1990 For other symbols, we have no specified alignment, and
1991 we've printed the address; now print the size. */
1992 if (symbol->section && bfd_is_com_section (symbol->section))
1993 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1994 else
1995 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1996 bfd_fprintf_vma (abfd, file, val);
1997
1998 /* If we have version information, print it. */
1999 version_string = _bfd_elf_get_symbol_version_string (abfd,
2000 symbol,
2001 &hidden);
2002 if (version_string)
2003 {
2004 if (!hidden)
2005 fprintf (file, " %-11s", version_string);
2006 else
2007 {
2008 int i;
2009
2010 fprintf (file, " (%s)", version_string);
2011 for (i = 10 - strlen (version_string); i > 0; --i)
2012 putc (' ', file);
2013 }
2014 }
2015
2016 /* If the st_other field is not zero, print it. */
2017 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2018
2019 switch (st_other)
2020 {
2021 case 0: break;
2022 case STV_INTERNAL: fprintf (file, " .internal"); break;
2023 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2024 case STV_PROTECTED: fprintf (file, " .protected"); break;
2025 default:
2026 /* Some other non-defined flags are also present, so print
2027 everything hex. */
2028 fprintf (file, " 0x%02x", (unsigned int) st_other);
2029 }
2030
2031 fprintf (file, " %s", name);
2032 }
2033 break;
2034 }
2035 }
2036 \f
2037 /* ELF .o/exec file reading */
2038
2039 /* Create a new bfd section from an ELF section header. */
2040
2041 bfd_boolean
2042 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2043 {
2044 Elf_Internal_Shdr *hdr;
2045 Elf_Internal_Ehdr *ehdr;
2046 const struct elf_backend_data *bed;
2047 const char *name;
2048 bfd_boolean ret = TRUE;
2049 static bfd_boolean * sections_being_created = NULL;
2050 static bfd * sections_being_created_abfd = NULL;
2051 static unsigned int nesting = 0;
2052
2053 if (shindex >= elf_numsections (abfd))
2054 return FALSE;
2055
2056 if (++ nesting > 3)
2057 {
2058 /* PR17512: A corrupt ELF binary might contain a recursive group of
2059 sections, with each the string indices pointing to the next in the
2060 loop. Detect this here, by refusing to load a section that we are
2061 already in the process of loading. We only trigger this test if
2062 we have nested at least three sections deep as normal ELF binaries
2063 can expect to recurse at least once.
2064
2065 FIXME: It would be better if this array was attached to the bfd,
2066 rather than being held in a static pointer. */
2067
2068 if (sections_being_created_abfd != abfd)
2069 sections_being_created = NULL;
2070 if (sections_being_created == NULL)
2071 {
2072 sections_being_created = (bfd_boolean *)
2073 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2074 sections_being_created_abfd = abfd;
2075 }
2076 if (sections_being_created [shindex])
2077 {
2078 _bfd_error_handler
2079 (_("%pB: warning: loop in section dependencies detected"), abfd);
2080 return FALSE;
2081 }
2082 sections_being_created [shindex] = TRUE;
2083 }
2084
2085 hdr = elf_elfsections (abfd)[shindex];
2086 ehdr = elf_elfheader (abfd);
2087 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2088 hdr->sh_name);
2089 if (name == NULL)
2090 goto fail;
2091
2092 bed = get_elf_backend_data (abfd);
2093 switch (hdr->sh_type)
2094 {
2095 case SHT_NULL:
2096 /* Inactive section. Throw it away. */
2097 goto success;
2098
2099 case SHT_PROGBITS: /* Normal section with contents. */
2100 case SHT_NOBITS: /* .bss section. */
2101 case SHT_HASH: /* .hash section. */
2102 case SHT_NOTE: /* .note section. */
2103 case SHT_INIT_ARRAY: /* .init_array section. */
2104 case SHT_FINI_ARRAY: /* .fini_array section. */
2105 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2106 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2107 case SHT_GNU_HASH: /* .gnu.hash section. */
2108 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2109 goto success;
2110
2111 case SHT_DYNAMIC: /* Dynamic linking information. */
2112 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2113 goto fail;
2114
2115 if (hdr->sh_link > elf_numsections (abfd))
2116 {
2117 /* PR 10478: Accept Solaris binaries with a sh_link
2118 field set to SHN_BEFORE or SHN_AFTER. */
2119 switch (bfd_get_arch (abfd))
2120 {
2121 case bfd_arch_i386:
2122 case bfd_arch_sparc:
2123 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2124 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2125 break;
2126 /* Otherwise fall through. */
2127 default:
2128 goto fail;
2129 }
2130 }
2131 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2132 goto fail;
2133 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2134 {
2135 Elf_Internal_Shdr *dynsymhdr;
2136
2137 /* The shared libraries distributed with hpux11 have a bogus
2138 sh_link field for the ".dynamic" section. Find the
2139 string table for the ".dynsym" section instead. */
2140 if (elf_dynsymtab (abfd) != 0)
2141 {
2142 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2143 hdr->sh_link = dynsymhdr->sh_link;
2144 }
2145 else
2146 {
2147 unsigned int i, num_sec;
2148
2149 num_sec = elf_numsections (abfd);
2150 for (i = 1; i < num_sec; i++)
2151 {
2152 dynsymhdr = elf_elfsections (abfd)[i];
2153 if (dynsymhdr->sh_type == SHT_DYNSYM)
2154 {
2155 hdr->sh_link = dynsymhdr->sh_link;
2156 break;
2157 }
2158 }
2159 }
2160 }
2161 goto success;
2162
2163 case SHT_SYMTAB: /* A symbol table. */
2164 if (elf_onesymtab (abfd) == shindex)
2165 goto success;
2166
2167 if (hdr->sh_entsize != bed->s->sizeof_sym)
2168 goto fail;
2169
2170 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2171 {
2172 if (hdr->sh_size != 0)
2173 goto fail;
2174 /* Some assemblers erroneously set sh_info to one with a
2175 zero sh_size. ld sees this as a global symbol count
2176 of (unsigned) -1. Fix it here. */
2177 hdr->sh_info = 0;
2178 goto success;
2179 }
2180
2181 /* PR 18854: A binary might contain more than one symbol table.
2182 Unusual, but possible. Warn, but continue. */
2183 if (elf_onesymtab (abfd) != 0)
2184 {
2185 _bfd_error_handler
2186 /* xgettext:c-format */
2187 (_("%pB: warning: multiple symbol tables detected"
2188 " - ignoring the table in section %u"),
2189 abfd, shindex);
2190 goto success;
2191 }
2192 elf_onesymtab (abfd) = shindex;
2193 elf_symtab_hdr (abfd) = *hdr;
2194 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2195 abfd->flags |= HAS_SYMS;
2196
2197 /* Sometimes a shared object will map in the symbol table. If
2198 SHF_ALLOC is set, and this is a shared object, then we also
2199 treat this section as a BFD section. We can not base the
2200 decision purely on SHF_ALLOC, because that flag is sometimes
2201 set in a relocatable object file, which would confuse the
2202 linker. */
2203 if ((hdr->sh_flags & SHF_ALLOC) != 0
2204 && (abfd->flags & DYNAMIC) != 0
2205 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2206 shindex))
2207 goto fail;
2208
2209 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2210 can't read symbols without that section loaded as well. It
2211 is most likely specified by the next section header. */
2212 {
2213 elf_section_list * entry;
2214 unsigned int i, num_sec;
2215
2216 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2217 if (entry->hdr.sh_link == shindex)
2218 goto success;
2219
2220 num_sec = elf_numsections (abfd);
2221 for (i = shindex + 1; i < num_sec; i++)
2222 {
2223 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2224
2225 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2226 && hdr2->sh_link == shindex)
2227 break;
2228 }
2229
2230 if (i == num_sec)
2231 for (i = 1; i < shindex; i++)
2232 {
2233 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2234
2235 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2236 && hdr2->sh_link == shindex)
2237 break;
2238 }
2239
2240 if (i != shindex)
2241 ret = bfd_section_from_shdr (abfd, i);
2242 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2243 goto success;
2244 }
2245
2246 case SHT_DYNSYM: /* A dynamic symbol table. */
2247 if (elf_dynsymtab (abfd) == shindex)
2248 goto success;
2249
2250 if (hdr->sh_entsize != bed->s->sizeof_sym)
2251 goto fail;
2252
2253 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2254 {
2255 if (hdr->sh_size != 0)
2256 goto fail;
2257
2258 /* Some linkers erroneously set sh_info to one with a
2259 zero sh_size. ld sees this as a global symbol count
2260 of (unsigned) -1. Fix it here. */
2261 hdr->sh_info = 0;
2262 goto success;
2263 }
2264
2265 /* PR 18854: A binary might contain more than one dynamic symbol table.
2266 Unusual, but possible. Warn, but continue. */
2267 if (elf_dynsymtab (abfd) != 0)
2268 {
2269 _bfd_error_handler
2270 /* xgettext:c-format */
2271 (_("%pB: warning: multiple dynamic symbol tables detected"
2272 " - ignoring the table in section %u"),
2273 abfd, shindex);
2274 goto success;
2275 }
2276 elf_dynsymtab (abfd) = shindex;
2277 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2278 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2279 abfd->flags |= HAS_SYMS;
2280
2281 /* Besides being a symbol table, we also treat this as a regular
2282 section, so that objcopy can handle it. */
2283 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2284 goto success;
2285
2286 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2287 {
2288 elf_section_list * entry;
2289
2290 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2291 if (entry->ndx == shindex)
2292 goto success;
2293
2294 entry = bfd_alloc (abfd, sizeof (*entry));
2295 if (entry == NULL)
2296 goto fail;
2297 entry->ndx = shindex;
2298 entry->hdr = * hdr;
2299 entry->next = elf_symtab_shndx_list (abfd);
2300 elf_symtab_shndx_list (abfd) = entry;
2301 elf_elfsections (abfd)[shindex] = & entry->hdr;
2302 goto success;
2303 }
2304
2305 case SHT_STRTAB: /* A string table. */
2306 if (hdr->bfd_section != NULL)
2307 goto success;
2308
2309 if (ehdr->e_shstrndx == shindex)
2310 {
2311 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2312 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2313 goto success;
2314 }
2315
2316 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2317 {
2318 symtab_strtab:
2319 elf_tdata (abfd)->strtab_hdr = *hdr;
2320 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2321 goto success;
2322 }
2323
2324 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2325 {
2326 dynsymtab_strtab:
2327 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2328 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2329 elf_elfsections (abfd)[shindex] = hdr;
2330 /* We also treat this as a regular section, so that objcopy
2331 can handle it. */
2332 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2333 shindex);
2334 goto success;
2335 }
2336
2337 /* If the string table isn't one of the above, then treat it as a
2338 regular section. We need to scan all the headers to be sure,
2339 just in case this strtab section appeared before the above. */
2340 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2341 {
2342 unsigned int i, num_sec;
2343
2344 num_sec = elf_numsections (abfd);
2345 for (i = 1; i < num_sec; i++)
2346 {
2347 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2348 if (hdr2->sh_link == shindex)
2349 {
2350 /* Prevent endless recursion on broken objects. */
2351 if (i == shindex)
2352 goto fail;
2353 if (! bfd_section_from_shdr (abfd, i))
2354 goto fail;
2355 if (elf_onesymtab (abfd) == i)
2356 goto symtab_strtab;
2357 if (elf_dynsymtab (abfd) == i)
2358 goto dynsymtab_strtab;
2359 }
2360 }
2361 }
2362 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2363 goto success;
2364
2365 case SHT_REL:
2366 case SHT_RELA:
2367 /* *These* do a lot of work -- but build no sections! */
2368 {
2369 asection *target_sect;
2370 Elf_Internal_Shdr *hdr2, **p_hdr;
2371 unsigned int num_sec = elf_numsections (abfd);
2372 struct bfd_elf_section_data *esdt;
2373
2374 if (hdr->sh_entsize
2375 != (bfd_size_type) (hdr->sh_type == SHT_REL
2376 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2377 goto fail;
2378
2379 /* Check for a bogus link to avoid crashing. */
2380 if (hdr->sh_link >= num_sec)
2381 {
2382 _bfd_error_handler
2383 /* xgettext:c-format */
2384 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2385 abfd, hdr->sh_link, name, shindex);
2386 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2387 shindex);
2388 goto success;
2389 }
2390
2391 /* For some incomprehensible reason Oracle distributes
2392 libraries for Solaris in which some of the objects have
2393 bogus sh_link fields. It would be nice if we could just
2394 reject them, but, unfortunately, some people need to use
2395 them. We scan through the section headers; if we find only
2396 one suitable symbol table, we clobber the sh_link to point
2397 to it. I hope this doesn't break anything.
2398
2399 Don't do it on executable nor shared library. */
2400 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2401 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2402 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2403 {
2404 unsigned int scan;
2405 int found;
2406
2407 found = 0;
2408 for (scan = 1; scan < num_sec; scan++)
2409 {
2410 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2411 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2412 {
2413 if (found != 0)
2414 {
2415 found = 0;
2416 break;
2417 }
2418 found = scan;
2419 }
2420 }
2421 if (found != 0)
2422 hdr->sh_link = found;
2423 }
2424
2425 /* Get the symbol table. */
2426 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2427 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2428 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2429 goto fail;
2430
2431 /* If this is an alloc section in an executable or shared
2432 library, or the reloc section does not use the main symbol
2433 table we don't treat it as a reloc section. BFD can't
2434 adequately represent such a section, so at least for now,
2435 we don't try. We just present it as a normal section. We
2436 also can't use it as a reloc section if it points to the
2437 null section, an invalid section, another reloc section, or
2438 its sh_link points to the null section. */
2439 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2440 && (hdr->sh_flags & SHF_ALLOC) != 0)
2441 || hdr->sh_link == SHN_UNDEF
2442 || hdr->sh_link != elf_onesymtab (abfd)
2443 || hdr->sh_info == SHN_UNDEF
2444 || hdr->sh_info >= num_sec
2445 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2446 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2447 {
2448 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2449 shindex);
2450 goto success;
2451 }
2452
2453 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2454 goto fail;
2455
2456 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2457 if (target_sect == NULL)
2458 goto fail;
2459
2460 esdt = elf_section_data (target_sect);
2461 if (hdr->sh_type == SHT_RELA)
2462 p_hdr = &esdt->rela.hdr;
2463 else
2464 p_hdr = &esdt->rel.hdr;
2465
2466 /* PR 17512: file: 0b4f81b7.
2467 Also see PR 24456, for a file which deliberately has two reloc
2468 sections. */
2469 if (*p_hdr != NULL)
2470 {
2471 _bfd_error_handler
2472 /* xgettext:c-format */
2473 (_("%pB: warning: multiple relocation sections for section %pA \
2474 found - ignoring all but the first"),
2475 abfd, target_sect);
2476 goto success;
2477 }
2478 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2479 if (hdr2 == NULL)
2480 goto fail;
2481 *hdr2 = *hdr;
2482 *p_hdr = hdr2;
2483 elf_elfsections (abfd)[shindex] = hdr2;
2484 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2485 * bed->s->int_rels_per_ext_rel);
2486 target_sect->flags |= SEC_RELOC;
2487 target_sect->relocation = NULL;
2488 target_sect->rel_filepos = hdr->sh_offset;
2489 /* In the section to which the relocations apply, mark whether
2490 its relocations are of the REL or RELA variety. */
2491 if (hdr->sh_size != 0)
2492 {
2493 if (hdr->sh_type == SHT_RELA)
2494 target_sect->use_rela_p = 1;
2495 }
2496 abfd->flags |= HAS_RELOC;
2497 goto success;
2498 }
2499
2500 case SHT_GNU_verdef:
2501 elf_dynverdef (abfd) = shindex;
2502 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2503 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2504 goto success;
2505
2506 case SHT_GNU_versym:
2507 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2508 goto fail;
2509
2510 elf_dynversym (abfd) = shindex;
2511 elf_tdata (abfd)->dynversym_hdr = *hdr;
2512 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2513 goto success;
2514
2515 case SHT_GNU_verneed:
2516 elf_dynverref (abfd) = shindex;
2517 elf_tdata (abfd)->dynverref_hdr = *hdr;
2518 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2519 goto success;
2520
2521 case SHT_SHLIB:
2522 goto success;
2523
2524 case SHT_GROUP:
2525 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2526 goto fail;
2527
2528 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2529 goto fail;
2530
2531 goto success;
2532
2533 default:
2534 /* Possibly an attributes section. */
2535 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2536 || hdr->sh_type == bed->obj_attrs_section_type)
2537 {
2538 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2539 goto fail;
2540 _bfd_elf_parse_attributes (abfd, hdr);
2541 goto success;
2542 }
2543
2544 /* Check for any processor-specific section types. */
2545 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2546 goto success;
2547
2548 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2549 {
2550 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2551 /* FIXME: How to properly handle allocated section reserved
2552 for applications? */
2553 _bfd_error_handler
2554 /* xgettext:c-format */
2555 (_("%pB: unknown type [%#x] section `%s'"),
2556 abfd, hdr->sh_type, name);
2557 else
2558 {
2559 /* Allow sections reserved for applications. */
2560 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2561 shindex);
2562 goto success;
2563 }
2564 }
2565 else if (hdr->sh_type >= SHT_LOPROC
2566 && hdr->sh_type <= SHT_HIPROC)
2567 /* FIXME: We should handle this section. */
2568 _bfd_error_handler
2569 /* xgettext:c-format */
2570 (_("%pB: unknown type [%#x] section `%s'"),
2571 abfd, hdr->sh_type, name);
2572 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2573 {
2574 /* Unrecognised OS-specific sections. */
2575 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2576 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2577 required to correctly process the section and the file should
2578 be rejected with an error message. */
2579 _bfd_error_handler
2580 /* xgettext:c-format */
2581 (_("%pB: unknown type [%#x] section `%s'"),
2582 abfd, hdr->sh_type, name);
2583 else
2584 {
2585 /* Otherwise it should be processed. */
2586 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2587 goto success;
2588 }
2589 }
2590 else
2591 /* FIXME: We should handle this section. */
2592 _bfd_error_handler
2593 /* xgettext:c-format */
2594 (_("%pB: unknown type [%#x] section `%s'"),
2595 abfd, hdr->sh_type, name);
2596
2597 goto fail;
2598 }
2599
2600 fail:
2601 ret = FALSE;
2602 success:
2603 if (sections_being_created && sections_being_created_abfd == abfd)
2604 sections_being_created [shindex] = FALSE;
2605 if (-- nesting == 0)
2606 {
2607 sections_being_created = NULL;
2608 sections_being_created_abfd = abfd;
2609 }
2610 return ret;
2611 }
2612
2613 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2614
2615 Elf_Internal_Sym *
2616 bfd_sym_from_r_symndx (struct sym_cache *cache,
2617 bfd *abfd,
2618 unsigned long r_symndx)
2619 {
2620 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2621
2622 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2623 {
2624 Elf_Internal_Shdr *symtab_hdr;
2625 unsigned char esym[sizeof (Elf64_External_Sym)];
2626 Elf_External_Sym_Shndx eshndx;
2627
2628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2629 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2630 &cache->sym[ent], esym, &eshndx) == NULL)
2631 return NULL;
2632
2633 if (cache->abfd != abfd)
2634 {
2635 memset (cache->indx, -1, sizeof (cache->indx));
2636 cache->abfd = abfd;
2637 }
2638 cache->indx[ent] = r_symndx;
2639 }
2640
2641 return &cache->sym[ent];
2642 }
2643
2644 /* Given an ELF section number, retrieve the corresponding BFD
2645 section. */
2646
2647 asection *
2648 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2649 {
2650 if (sec_index >= elf_numsections (abfd))
2651 return NULL;
2652 return elf_elfsections (abfd)[sec_index]->bfd_section;
2653 }
2654
2655 static const struct bfd_elf_special_section special_sections_b[] =
2656 {
2657 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2658 { NULL, 0, 0, 0, 0 }
2659 };
2660
2661 static const struct bfd_elf_special_section special_sections_c[] =
2662 {
2663 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2664 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2665 { NULL, 0, 0, 0, 0 }
2666 };
2667
2668 static const struct bfd_elf_special_section special_sections_d[] =
2669 {
2670 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2671 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2672 /* There are more DWARF sections than these, but they needn't be added here
2673 unless you have to cope with broken compilers that don't emit section
2674 attributes or you want to help the user writing assembler. */
2675 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2676 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2681 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2682 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2683 { NULL, 0, 0, 0, 0 }
2684 };
2685
2686 static const struct bfd_elf_special_section special_sections_f[] =
2687 {
2688 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2689 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2690 { NULL, 0 , 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_g[] =
2694 {
2695 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2696 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2697 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2698 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2699 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2700 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2701 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2702 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2703 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2704 { NULL, 0, 0, 0, 0 }
2705 };
2706
2707 static const struct bfd_elf_special_section special_sections_h[] =
2708 {
2709 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2710 { NULL, 0, 0, 0, 0 }
2711 };
2712
2713 static const struct bfd_elf_special_section special_sections_i[] =
2714 {
2715 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2716 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2717 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_l[] =
2722 {
2723 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2724 { NULL, 0, 0, 0, 0 }
2725 };
2726
2727 static const struct bfd_elf_special_section special_sections_n[] =
2728 {
2729 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2730 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2731 { NULL, 0, 0, 0, 0 }
2732 };
2733
2734 static const struct bfd_elf_special_section special_sections_p[] =
2735 {
2736 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2737 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2738 { NULL, 0, 0, 0, 0 }
2739 };
2740
2741 static const struct bfd_elf_special_section special_sections_r[] =
2742 {
2743 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2744 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2745 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2746 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2747 { NULL, 0, 0, 0, 0 }
2748 };
2749
2750 static const struct bfd_elf_special_section special_sections_s[] =
2751 {
2752 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2753 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2754 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2755 /* See struct bfd_elf_special_section declaration for the semantics of
2756 this special case where .prefix_length != strlen (.prefix). */
2757 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2758 { NULL, 0, 0, 0, 0 }
2759 };
2760
2761 static const struct bfd_elf_special_section special_sections_t[] =
2762 {
2763 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2764 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2765 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2766 { NULL, 0, 0, 0, 0 }
2767 };
2768
2769 static const struct bfd_elf_special_section special_sections_z[] =
2770 {
2771 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2772 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2773 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2774 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2775 { NULL, 0, 0, 0, 0 }
2776 };
2777
2778 static const struct bfd_elf_special_section * const special_sections[] =
2779 {
2780 special_sections_b, /* 'b' */
2781 special_sections_c, /* 'c' */
2782 special_sections_d, /* 'd' */
2783 NULL, /* 'e' */
2784 special_sections_f, /* 'f' */
2785 special_sections_g, /* 'g' */
2786 special_sections_h, /* 'h' */
2787 special_sections_i, /* 'i' */
2788 NULL, /* 'j' */
2789 NULL, /* 'k' */
2790 special_sections_l, /* 'l' */
2791 NULL, /* 'm' */
2792 special_sections_n, /* 'n' */
2793 NULL, /* 'o' */
2794 special_sections_p, /* 'p' */
2795 NULL, /* 'q' */
2796 special_sections_r, /* 'r' */
2797 special_sections_s, /* 's' */
2798 special_sections_t, /* 't' */
2799 NULL, /* 'u' */
2800 NULL, /* 'v' */
2801 NULL, /* 'w' */
2802 NULL, /* 'x' */
2803 NULL, /* 'y' */
2804 special_sections_z /* 'z' */
2805 };
2806
2807 const struct bfd_elf_special_section *
2808 _bfd_elf_get_special_section (const char *name,
2809 const struct bfd_elf_special_section *spec,
2810 unsigned int rela)
2811 {
2812 int i;
2813 int len;
2814
2815 len = strlen (name);
2816
2817 for (i = 0; spec[i].prefix != NULL; i++)
2818 {
2819 int suffix_len;
2820 int prefix_len = spec[i].prefix_length;
2821
2822 if (len < prefix_len)
2823 continue;
2824 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2825 continue;
2826
2827 suffix_len = spec[i].suffix_length;
2828 if (suffix_len <= 0)
2829 {
2830 if (name[prefix_len] != 0)
2831 {
2832 if (suffix_len == 0)
2833 continue;
2834 if (name[prefix_len] != '.'
2835 && (suffix_len == -2
2836 || (rela && spec[i].type == SHT_REL)))
2837 continue;
2838 }
2839 }
2840 else
2841 {
2842 if (len < prefix_len + suffix_len)
2843 continue;
2844 if (memcmp (name + len - suffix_len,
2845 spec[i].prefix + prefix_len,
2846 suffix_len) != 0)
2847 continue;
2848 }
2849 return &spec[i];
2850 }
2851
2852 return NULL;
2853 }
2854
2855 const struct bfd_elf_special_section *
2856 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2857 {
2858 int i;
2859 const struct bfd_elf_special_section *spec;
2860 const struct elf_backend_data *bed;
2861
2862 /* See if this is one of the special sections. */
2863 if (sec->name == NULL)
2864 return NULL;
2865
2866 bed = get_elf_backend_data (abfd);
2867 spec = bed->special_sections;
2868 if (spec)
2869 {
2870 spec = _bfd_elf_get_special_section (sec->name,
2871 bed->special_sections,
2872 sec->use_rela_p);
2873 if (spec != NULL)
2874 return spec;
2875 }
2876
2877 if (sec->name[0] != '.')
2878 return NULL;
2879
2880 i = sec->name[1] - 'b';
2881 if (i < 0 || i > 'z' - 'b')
2882 return NULL;
2883
2884 spec = special_sections[i];
2885
2886 if (spec == NULL)
2887 return NULL;
2888
2889 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2890 }
2891
2892 bfd_boolean
2893 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2894 {
2895 struct bfd_elf_section_data *sdata;
2896 const struct elf_backend_data *bed;
2897 const struct bfd_elf_special_section *ssect;
2898
2899 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2900 if (sdata == NULL)
2901 {
2902 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2903 sizeof (*sdata));
2904 if (sdata == NULL)
2905 return FALSE;
2906 sec->used_by_bfd = sdata;
2907 }
2908
2909 /* Indicate whether or not this section should use RELA relocations. */
2910 bed = get_elf_backend_data (abfd);
2911 sec->use_rela_p = bed->default_use_rela_p;
2912
2913 /* When we read a file, we don't need to set ELF section type and
2914 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2915 anyway. We will set ELF section type and flags for all linker
2916 created sections. If user specifies BFD section flags, we will
2917 set ELF section type and flags based on BFD section flags in
2918 elf_fake_sections. Special handling for .init_array/.fini_array
2919 output sections since they may contain .ctors/.dtors input
2920 sections. We don't want _bfd_elf_init_private_section_data to
2921 copy ELF section type from .ctors/.dtors input sections. */
2922 if (abfd->direction != read_direction
2923 || (sec->flags & SEC_LINKER_CREATED) != 0)
2924 {
2925 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2926 if (ssect != NULL
2927 && (!sec->flags
2928 || (sec->flags & SEC_LINKER_CREATED) != 0
2929 || ssect->type == SHT_INIT_ARRAY
2930 || ssect->type == SHT_FINI_ARRAY))
2931 {
2932 elf_section_type (sec) = ssect->type;
2933 elf_section_flags (sec) = ssect->attr;
2934 }
2935 }
2936
2937 return _bfd_generic_new_section_hook (abfd, sec);
2938 }
2939
2940 /* Create a new bfd section from an ELF program header.
2941
2942 Since program segments have no names, we generate a synthetic name
2943 of the form segment<NUM>, where NUM is generally the index in the
2944 program header table. For segments that are split (see below) we
2945 generate the names segment<NUM>a and segment<NUM>b.
2946
2947 Note that some program segments may have a file size that is different than
2948 (less than) the memory size. All this means is that at execution the
2949 system must allocate the amount of memory specified by the memory size,
2950 but only initialize it with the first "file size" bytes read from the
2951 file. This would occur for example, with program segments consisting
2952 of combined data+bss.
2953
2954 To handle the above situation, this routine generates TWO bfd sections
2955 for the single program segment. The first has the length specified by
2956 the file size of the segment, and the second has the length specified
2957 by the difference between the two sizes. In effect, the segment is split
2958 into its initialized and uninitialized parts.
2959
2960 */
2961
2962 bfd_boolean
2963 _bfd_elf_make_section_from_phdr (bfd *abfd,
2964 Elf_Internal_Phdr *hdr,
2965 int hdr_index,
2966 const char *type_name)
2967 {
2968 asection *newsect;
2969 char *name;
2970 char namebuf[64];
2971 size_t len;
2972 int split;
2973
2974 split = ((hdr->p_memsz > 0)
2975 && (hdr->p_filesz > 0)
2976 && (hdr->p_memsz > hdr->p_filesz));
2977
2978 if (hdr->p_filesz > 0)
2979 {
2980 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2981 len = strlen (namebuf) + 1;
2982 name = (char *) bfd_alloc (abfd, len);
2983 if (!name)
2984 return FALSE;
2985 memcpy (name, namebuf, len);
2986 newsect = bfd_make_section (abfd, name);
2987 if (newsect == NULL)
2988 return FALSE;
2989 newsect->vma = hdr->p_vaddr;
2990 newsect->lma = hdr->p_paddr;
2991 newsect->size = hdr->p_filesz;
2992 newsect->filepos = hdr->p_offset;
2993 newsect->flags |= SEC_HAS_CONTENTS;
2994 newsect->alignment_power = bfd_log2 (hdr->p_align);
2995 if (hdr->p_type == PT_LOAD)
2996 {
2997 newsect->flags |= SEC_ALLOC;
2998 newsect->flags |= SEC_LOAD;
2999 if (hdr->p_flags & PF_X)
3000 {
3001 /* FIXME: all we known is that it has execute PERMISSION,
3002 may be data. */
3003 newsect->flags |= SEC_CODE;
3004 }
3005 }
3006 if (!(hdr->p_flags & PF_W))
3007 {
3008 newsect->flags |= SEC_READONLY;
3009 }
3010 }
3011
3012 if (hdr->p_memsz > hdr->p_filesz)
3013 {
3014 bfd_vma align;
3015
3016 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3017 len = strlen (namebuf) + 1;
3018 name = (char *) bfd_alloc (abfd, len);
3019 if (!name)
3020 return FALSE;
3021 memcpy (name, namebuf, len);
3022 newsect = bfd_make_section (abfd, name);
3023 if (newsect == NULL)
3024 return FALSE;
3025 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3026 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3027 newsect->size = hdr->p_memsz - hdr->p_filesz;
3028 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3029 align = newsect->vma & -newsect->vma;
3030 if (align == 0 || align > hdr->p_align)
3031 align = hdr->p_align;
3032 newsect->alignment_power = bfd_log2 (align);
3033 if (hdr->p_type == PT_LOAD)
3034 {
3035 /* Hack for gdb. Segments that have not been modified do
3036 not have their contents written to a core file, on the
3037 assumption that a debugger can find the contents in the
3038 executable. We flag this case by setting the fake
3039 section size to zero. Note that "real" bss sections will
3040 always have their contents dumped to the core file. */
3041 if (bfd_get_format (abfd) == bfd_core)
3042 newsect->size = 0;
3043 newsect->flags |= SEC_ALLOC;
3044 if (hdr->p_flags & PF_X)
3045 newsect->flags |= SEC_CODE;
3046 }
3047 if (!(hdr->p_flags & PF_W))
3048 newsect->flags |= SEC_READONLY;
3049 }
3050
3051 return TRUE;
3052 }
3053
3054 static bfd_boolean
3055 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3056 {
3057 /* The return value is ignored. Build-ids are considered optional. */
3058 if (templ->xvec->flavour == bfd_target_elf_flavour)
3059 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3060 (templ, offset);
3061 return FALSE;
3062 }
3063
3064 bfd_boolean
3065 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3066 {
3067 const struct elf_backend_data *bed;
3068
3069 switch (hdr->p_type)
3070 {
3071 case PT_NULL:
3072 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3073
3074 case PT_LOAD:
3075 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3076 return FALSE;
3077 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3078 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3079 return TRUE;
3080
3081 case PT_DYNAMIC:
3082 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3083
3084 case PT_INTERP:
3085 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3086
3087 case PT_NOTE:
3088 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3089 return FALSE;
3090 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3091 hdr->p_align))
3092 return FALSE;
3093 return TRUE;
3094
3095 case PT_SHLIB:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3097
3098 case PT_PHDR:
3099 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3100
3101 case PT_GNU_EH_FRAME:
3102 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3103 "eh_frame_hdr");
3104
3105 case PT_GNU_STACK:
3106 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3107
3108 case PT_GNU_RELRO:
3109 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3110
3111 default:
3112 /* Check for any processor-specific program segment types. */
3113 bed = get_elf_backend_data (abfd);
3114 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3115 }
3116 }
3117
3118 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3119 REL or RELA. */
3120
3121 Elf_Internal_Shdr *
3122 _bfd_elf_single_rel_hdr (asection *sec)
3123 {
3124 if (elf_section_data (sec)->rel.hdr)
3125 {
3126 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3127 return elf_section_data (sec)->rel.hdr;
3128 }
3129 else
3130 return elf_section_data (sec)->rela.hdr;
3131 }
3132
3133 static bfd_boolean
3134 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3135 Elf_Internal_Shdr *rel_hdr,
3136 const char *sec_name,
3137 bfd_boolean use_rela_p)
3138 {
3139 char *name = (char *) bfd_alloc (abfd,
3140 sizeof ".rela" + strlen (sec_name));
3141 if (name == NULL)
3142 return FALSE;
3143
3144 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3145 rel_hdr->sh_name =
3146 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3147 FALSE);
3148 if (rel_hdr->sh_name == (unsigned int) -1)
3149 return FALSE;
3150
3151 return TRUE;
3152 }
3153
3154 /* Allocate and initialize a section-header for a new reloc section,
3155 containing relocations against ASECT. It is stored in RELDATA. If
3156 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3157 relocations. */
3158
3159 static bfd_boolean
3160 _bfd_elf_init_reloc_shdr (bfd *abfd,
3161 struct bfd_elf_section_reloc_data *reldata,
3162 const char *sec_name,
3163 bfd_boolean use_rela_p,
3164 bfd_boolean delay_st_name_p)
3165 {
3166 Elf_Internal_Shdr *rel_hdr;
3167 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3168
3169 BFD_ASSERT (reldata->hdr == NULL);
3170 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3171 reldata->hdr = rel_hdr;
3172
3173 if (delay_st_name_p)
3174 rel_hdr->sh_name = (unsigned int) -1;
3175 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3176 use_rela_p))
3177 return FALSE;
3178 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3179 rel_hdr->sh_entsize = (use_rela_p
3180 ? bed->s->sizeof_rela
3181 : bed->s->sizeof_rel);
3182 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3183 rel_hdr->sh_flags = 0;
3184 rel_hdr->sh_addr = 0;
3185 rel_hdr->sh_size = 0;
3186 rel_hdr->sh_offset = 0;
3187
3188 return TRUE;
3189 }
3190
3191 /* Return the default section type based on the passed in section flags. */
3192
3193 int
3194 bfd_elf_get_default_section_type (flagword flags)
3195 {
3196 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3197 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3198 return SHT_NOBITS;
3199 return SHT_PROGBITS;
3200 }
3201
3202 struct fake_section_arg
3203 {
3204 struct bfd_link_info *link_info;
3205 bfd_boolean failed;
3206 };
3207
3208 /* Set up an ELF internal section header for a section. */
3209
3210 static void
3211 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3212 {
3213 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3214 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3215 struct bfd_elf_section_data *esd = elf_section_data (asect);
3216 Elf_Internal_Shdr *this_hdr;
3217 unsigned int sh_type;
3218 const char *name = asect->name;
3219 bfd_boolean delay_st_name_p = FALSE;
3220
3221 if (arg->failed)
3222 {
3223 /* We already failed; just get out of the bfd_map_over_sections
3224 loop. */
3225 return;
3226 }
3227
3228 this_hdr = &esd->this_hdr;
3229
3230 if (arg->link_info)
3231 {
3232 /* ld: compress DWARF debug sections with names: .debug_*. */
3233 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3234 && (asect->flags & SEC_DEBUGGING)
3235 && name[1] == 'd'
3236 && name[6] == '_')
3237 {
3238 /* Set SEC_ELF_COMPRESS to indicate this section should be
3239 compressed. */
3240 asect->flags |= SEC_ELF_COMPRESS;
3241
3242 /* If this section will be compressed, delay adding section
3243 name to section name section after it is compressed in
3244 _bfd_elf_assign_file_positions_for_non_load. */
3245 delay_st_name_p = TRUE;
3246 }
3247 }
3248 else if ((asect->flags & SEC_ELF_RENAME))
3249 {
3250 /* objcopy: rename output DWARF debug section. */
3251 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3252 {
3253 /* When we decompress or compress with SHF_COMPRESSED,
3254 convert section name from .zdebug_* to .debug_* if
3255 needed. */
3256 if (name[1] == 'z')
3257 {
3258 char *new_name = convert_zdebug_to_debug (abfd, name);
3259 if (new_name == NULL)
3260 {
3261 arg->failed = TRUE;
3262 return;
3263 }
3264 name = new_name;
3265 }
3266 }
3267 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3268 {
3269 /* PR binutils/18087: Compression does not always make a
3270 section smaller. So only rename the section when
3271 compression has actually taken place. If input section
3272 name is .zdebug_*, we should never compress it again. */
3273 char *new_name = convert_debug_to_zdebug (abfd, name);
3274 if (new_name == NULL)
3275 {
3276 arg->failed = TRUE;
3277 return;
3278 }
3279 BFD_ASSERT (name[1] != 'z');
3280 name = new_name;
3281 }
3282 }
3283
3284 if (delay_st_name_p)
3285 this_hdr->sh_name = (unsigned int) -1;
3286 else
3287 {
3288 this_hdr->sh_name
3289 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3290 name, FALSE);
3291 if (this_hdr->sh_name == (unsigned int) -1)
3292 {
3293 arg->failed = TRUE;
3294 return;
3295 }
3296 }
3297
3298 /* Don't clear sh_flags. Assembler may set additional bits. */
3299
3300 if ((asect->flags & SEC_ALLOC) != 0
3301 || asect->user_set_vma)
3302 this_hdr->sh_addr = asect->vma;
3303 else
3304 this_hdr->sh_addr = 0;
3305
3306 this_hdr->sh_offset = 0;
3307 this_hdr->sh_size = asect->size;
3308 this_hdr->sh_link = 0;
3309 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3310 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3311 {
3312 _bfd_error_handler
3313 /* xgettext:c-format */
3314 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3315 abfd, asect->alignment_power, asect);
3316 arg->failed = TRUE;
3317 return;
3318 }
3319 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3320 /* The sh_entsize and sh_info fields may have been set already by
3321 copy_private_section_data. */
3322
3323 this_hdr->bfd_section = asect;
3324 this_hdr->contents = NULL;
3325
3326 /* If the section type is unspecified, we set it based on
3327 asect->flags. */
3328 if ((asect->flags & SEC_GROUP) != 0)
3329 sh_type = SHT_GROUP;
3330 else
3331 sh_type = bfd_elf_get_default_section_type (asect->flags);
3332
3333 if (this_hdr->sh_type == SHT_NULL)
3334 this_hdr->sh_type = sh_type;
3335 else if (this_hdr->sh_type == SHT_NOBITS
3336 && sh_type == SHT_PROGBITS
3337 && (asect->flags & SEC_ALLOC) != 0)
3338 {
3339 /* Warn if we are changing a NOBITS section to PROGBITS, but
3340 allow the link to proceed. This can happen when users link
3341 non-bss input sections to bss output sections, or emit data
3342 to a bss output section via a linker script. */
3343 _bfd_error_handler
3344 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3345 this_hdr->sh_type = sh_type;
3346 }
3347
3348 switch (this_hdr->sh_type)
3349 {
3350 default:
3351 break;
3352
3353 case SHT_STRTAB:
3354 case SHT_NOTE:
3355 case SHT_NOBITS:
3356 case SHT_PROGBITS:
3357 break;
3358
3359 case SHT_INIT_ARRAY:
3360 case SHT_FINI_ARRAY:
3361 case SHT_PREINIT_ARRAY:
3362 this_hdr->sh_entsize = bed->s->arch_size / 8;
3363 break;
3364
3365 case SHT_HASH:
3366 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3367 break;
3368
3369 case SHT_DYNSYM:
3370 this_hdr->sh_entsize = bed->s->sizeof_sym;
3371 break;
3372
3373 case SHT_DYNAMIC:
3374 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3375 break;
3376
3377 case SHT_RELA:
3378 if (get_elf_backend_data (abfd)->may_use_rela_p)
3379 this_hdr->sh_entsize = bed->s->sizeof_rela;
3380 break;
3381
3382 case SHT_REL:
3383 if (get_elf_backend_data (abfd)->may_use_rel_p)
3384 this_hdr->sh_entsize = bed->s->sizeof_rel;
3385 break;
3386
3387 case SHT_GNU_versym:
3388 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3389 break;
3390
3391 case SHT_GNU_verdef:
3392 this_hdr->sh_entsize = 0;
3393 /* objcopy or strip will copy over sh_info, but may not set
3394 cverdefs. The linker will set cverdefs, but sh_info will be
3395 zero. */
3396 if (this_hdr->sh_info == 0)
3397 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3398 else
3399 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3400 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3401 break;
3402
3403 case SHT_GNU_verneed:
3404 this_hdr->sh_entsize = 0;
3405 /* objcopy or strip will copy over sh_info, but may not set
3406 cverrefs. The linker will set cverrefs, but sh_info will be
3407 zero. */
3408 if (this_hdr->sh_info == 0)
3409 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3410 else
3411 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3412 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3413 break;
3414
3415 case SHT_GROUP:
3416 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3417 break;
3418
3419 case SHT_GNU_HASH:
3420 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3421 break;
3422 }
3423
3424 if ((asect->flags & SEC_ALLOC) != 0)
3425 this_hdr->sh_flags |= SHF_ALLOC;
3426 if ((asect->flags & SEC_READONLY) == 0)
3427 this_hdr->sh_flags |= SHF_WRITE;
3428 if ((asect->flags & SEC_CODE) != 0)
3429 this_hdr->sh_flags |= SHF_EXECINSTR;
3430 if ((asect->flags & SEC_MERGE) != 0)
3431 {
3432 this_hdr->sh_flags |= SHF_MERGE;
3433 this_hdr->sh_entsize = asect->entsize;
3434 }
3435 if ((asect->flags & SEC_STRINGS) != 0)
3436 this_hdr->sh_flags |= SHF_STRINGS;
3437 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3438 this_hdr->sh_flags |= SHF_GROUP;
3439 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3440 {
3441 this_hdr->sh_flags |= SHF_TLS;
3442 if (asect->size == 0
3443 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3444 {
3445 struct bfd_link_order *o = asect->map_tail.link_order;
3446
3447 this_hdr->sh_size = 0;
3448 if (o != NULL)
3449 {
3450 this_hdr->sh_size = o->offset + o->size;
3451 if (this_hdr->sh_size != 0)
3452 this_hdr->sh_type = SHT_NOBITS;
3453 }
3454 }
3455 }
3456 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3457 this_hdr->sh_flags |= SHF_EXCLUDE;
3458
3459 /* If the section has relocs, set up a section header for the
3460 SHT_REL[A] section. If two relocation sections are required for
3461 this section, it is up to the processor-specific back-end to
3462 create the other. */
3463 if ((asect->flags & SEC_RELOC) != 0)
3464 {
3465 /* When doing a relocatable link, create both REL and RELA sections if
3466 needed. */
3467 if (arg->link_info
3468 /* Do the normal setup if we wouldn't create any sections here. */
3469 && esd->rel.count + esd->rela.count > 0
3470 && (bfd_link_relocatable (arg->link_info)
3471 || arg->link_info->emitrelocations))
3472 {
3473 if (esd->rel.count && esd->rel.hdr == NULL
3474 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3475 FALSE, delay_st_name_p))
3476 {
3477 arg->failed = TRUE;
3478 return;
3479 }
3480 if (esd->rela.count && esd->rela.hdr == NULL
3481 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3482 TRUE, delay_st_name_p))
3483 {
3484 arg->failed = TRUE;
3485 return;
3486 }
3487 }
3488 else if (!_bfd_elf_init_reloc_shdr (abfd,
3489 (asect->use_rela_p
3490 ? &esd->rela : &esd->rel),
3491 name,
3492 asect->use_rela_p,
3493 delay_st_name_p))
3494 {
3495 arg->failed = TRUE;
3496 return;
3497 }
3498 }
3499
3500 /* Check for processor-specific section types. */
3501 sh_type = this_hdr->sh_type;
3502 if (bed->elf_backend_fake_sections
3503 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3504 {
3505 arg->failed = TRUE;
3506 return;
3507 }
3508
3509 if (sh_type == SHT_NOBITS && asect->size != 0)
3510 {
3511 /* Don't change the header type from NOBITS if we are being
3512 called for objcopy --only-keep-debug. */
3513 this_hdr->sh_type = sh_type;
3514 }
3515 }
3516
3517 /* Fill in the contents of a SHT_GROUP section. Called from
3518 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3519 when ELF targets use the generic linker, ld. Called for ld -r
3520 from bfd_elf_final_link. */
3521
3522 void
3523 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3524 {
3525 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3526 asection *elt, *first;
3527 unsigned char *loc;
3528 bfd_boolean gas;
3529
3530 /* Ignore linker created group section. See elfNN_ia64_object_p in
3531 elfxx-ia64.c. */
3532 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3533 || sec->size == 0
3534 || *failedptr)
3535 return;
3536
3537 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3538 {
3539 unsigned long symindx = 0;
3540
3541 /* elf_group_id will have been set up by objcopy and the
3542 generic linker. */
3543 if (elf_group_id (sec) != NULL)
3544 symindx = elf_group_id (sec)->udata.i;
3545
3546 if (symindx == 0)
3547 {
3548 /* If called from the assembler, swap_out_syms will have set up
3549 elf_section_syms. */
3550 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3551 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3552 }
3553 elf_section_data (sec)->this_hdr.sh_info = symindx;
3554 }
3555 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3556 {
3557 /* The ELF backend linker sets sh_info to -2 when the group
3558 signature symbol is global, and thus the index can't be
3559 set until all local symbols are output. */
3560 asection *igroup;
3561 struct bfd_elf_section_data *sec_data;
3562 unsigned long symndx;
3563 unsigned long extsymoff;
3564 struct elf_link_hash_entry *h;
3565
3566 /* The point of this little dance to the first SHF_GROUP section
3567 then back to the SHT_GROUP section is that this gets us to
3568 the SHT_GROUP in the input object. */
3569 igroup = elf_sec_group (elf_next_in_group (sec));
3570 sec_data = elf_section_data (igroup);
3571 symndx = sec_data->this_hdr.sh_info;
3572 extsymoff = 0;
3573 if (!elf_bad_symtab (igroup->owner))
3574 {
3575 Elf_Internal_Shdr *symtab_hdr;
3576
3577 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3578 extsymoff = symtab_hdr->sh_info;
3579 }
3580 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3581 while (h->root.type == bfd_link_hash_indirect
3582 || h->root.type == bfd_link_hash_warning)
3583 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3584
3585 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3586 }
3587
3588 /* The contents won't be allocated for "ld -r" or objcopy. */
3589 gas = TRUE;
3590 if (sec->contents == NULL)
3591 {
3592 gas = FALSE;
3593 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3594
3595 /* Arrange for the section to be written out. */
3596 elf_section_data (sec)->this_hdr.contents = sec->contents;
3597 if (sec->contents == NULL)
3598 {
3599 *failedptr = TRUE;
3600 return;
3601 }
3602 }
3603
3604 loc = sec->contents + sec->size;
3605
3606 /* Get the pointer to the first section in the group that gas
3607 squirreled away here. objcopy arranges for this to be set to the
3608 start of the input section group. */
3609 first = elt = elf_next_in_group (sec);
3610
3611 /* First element is a flag word. Rest of section is elf section
3612 indices for all the sections of the group. Write them backwards
3613 just to keep the group in the same order as given in .section
3614 directives, not that it matters. */
3615 while (elt != NULL)
3616 {
3617 asection *s;
3618
3619 s = elt;
3620 if (!gas)
3621 s = s->output_section;
3622 if (s != NULL
3623 && !bfd_is_abs_section (s))
3624 {
3625 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3626 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3627
3628 if (elf_sec->rel.hdr != NULL
3629 && (gas
3630 || (input_elf_sec->rel.hdr != NULL
3631 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3632 {
3633 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3634 loc -= 4;
3635 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3636 }
3637 if (elf_sec->rela.hdr != NULL
3638 && (gas
3639 || (input_elf_sec->rela.hdr != NULL
3640 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3641 {
3642 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3643 loc -= 4;
3644 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3645 }
3646 loc -= 4;
3647 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3648 }
3649 elt = elf_next_in_group (elt);
3650 if (elt == first)
3651 break;
3652 }
3653
3654 loc -= 4;
3655 BFD_ASSERT (loc == sec->contents);
3656
3657 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3658 }
3659
3660 /* Given NAME, the name of a relocation section stripped of its
3661 .rel/.rela prefix, return the section in ABFD to which the
3662 relocations apply. */
3663
3664 asection *
3665 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3666 {
3667 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3668 section likely apply to .got.plt or .got section. */
3669 if (get_elf_backend_data (abfd)->want_got_plt
3670 && strcmp (name, ".plt") == 0)
3671 {
3672 asection *sec;
3673
3674 name = ".got.plt";
3675 sec = bfd_get_section_by_name (abfd, name);
3676 if (sec != NULL)
3677 return sec;
3678 name = ".got";
3679 }
3680
3681 return bfd_get_section_by_name (abfd, name);
3682 }
3683
3684 /* Return the section to which RELOC_SEC applies. */
3685
3686 static asection *
3687 elf_get_reloc_section (asection *reloc_sec)
3688 {
3689 const char *name;
3690 unsigned int type;
3691 bfd *abfd;
3692 const struct elf_backend_data *bed;
3693
3694 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3695 if (type != SHT_REL && type != SHT_RELA)
3696 return NULL;
3697
3698 /* We look up the section the relocs apply to by name. */
3699 name = reloc_sec->name;
3700 if (strncmp (name, ".rel", 4) != 0)
3701 return NULL;
3702 name += 4;
3703 if (type == SHT_RELA && *name++ != 'a')
3704 return NULL;
3705
3706 abfd = reloc_sec->owner;
3707 bed = get_elf_backend_data (abfd);
3708 return bed->get_reloc_section (abfd, name);
3709 }
3710
3711 /* Assign all ELF section numbers. The dummy first section is handled here
3712 too. The link/info pointers for the standard section types are filled
3713 in here too, while we're at it. */
3714
3715 static bfd_boolean
3716 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3717 {
3718 struct elf_obj_tdata *t = elf_tdata (abfd);
3719 asection *sec;
3720 unsigned int section_number;
3721 Elf_Internal_Shdr **i_shdrp;
3722 struct bfd_elf_section_data *d;
3723 bfd_boolean need_symtab;
3724
3725 section_number = 1;
3726
3727 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3728
3729 /* SHT_GROUP sections are in relocatable files only. */
3730 if (link_info == NULL || !link_info->resolve_section_groups)
3731 {
3732 size_t reloc_count = 0;
3733
3734 /* Put SHT_GROUP sections first. */
3735 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3736 {
3737 d = elf_section_data (sec);
3738
3739 if (d->this_hdr.sh_type == SHT_GROUP)
3740 {
3741 if (sec->flags & SEC_LINKER_CREATED)
3742 {
3743 /* Remove the linker created SHT_GROUP sections. */
3744 bfd_section_list_remove (abfd, sec);
3745 abfd->section_count--;
3746 }
3747 else
3748 d->this_idx = section_number++;
3749 }
3750
3751 /* Count relocations. */
3752 reloc_count += sec->reloc_count;
3753 }
3754
3755 /* Clear HAS_RELOC if there are no relocations. */
3756 if (reloc_count == 0)
3757 abfd->flags &= ~HAS_RELOC;
3758 }
3759
3760 for (sec = abfd->sections; sec; sec = sec->next)
3761 {
3762 d = elf_section_data (sec);
3763
3764 if (d->this_hdr.sh_type != SHT_GROUP)
3765 d->this_idx = section_number++;
3766 if (d->this_hdr.sh_name != (unsigned int) -1)
3767 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3768 if (d->rel.hdr)
3769 {
3770 d->rel.idx = section_number++;
3771 if (d->rel.hdr->sh_name != (unsigned int) -1)
3772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3773 }
3774 else
3775 d->rel.idx = 0;
3776
3777 if (d->rela.hdr)
3778 {
3779 d->rela.idx = section_number++;
3780 if (d->rela.hdr->sh_name != (unsigned int) -1)
3781 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3782 }
3783 else
3784 d->rela.idx = 0;
3785 }
3786
3787 need_symtab = (bfd_get_symcount (abfd) > 0
3788 || (link_info == NULL
3789 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3790 == HAS_RELOC)));
3791 if (need_symtab)
3792 {
3793 elf_onesymtab (abfd) = section_number++;
3794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3795 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3796 {
3797 elf_section_list *entry;
3798
3799 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3800
3801 entry = bfd_zalloc (abfd, sizeof (*entry));
3802 entry->ndx = section_number++;
3803 elf_symtab_shndx_list (abfd) = entry;
3804 entry->hdr.sh_name
3805 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3806 ".symtab_shndx", FALSE);
3807 if (entry->hdr.sh_name == (unsigned int) -1)
3808 return FALSE;
3809 }
3810 elf_strtab_sec (abfd) = section_number++;
3811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3812 }
3813
3814 elf_shstrtab_sec (abfd) = section_number++;
3815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3816 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3817
3818 if (section_number >= SHN_LORESERVE)
3819 {
3820 /* xgettext:c-format */
3821 _bfd_error_handler (_("%pB: too many sections: %u"),
3822 abfd, section_number);
3823 return FALSE;
3824 }
3825
3826 elf_numsections (abfd) = section_number;
3827 elf_elfheader (abfd)->e_shnum = section_number;
3828
3829 /* Set up the list of section header pointers, in agreement with the
3830 indices. */
3831 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3832 sizeof (Elf_Internal_Shdr *));
3833 if (i_shdrp == NULL)
3834 return FALSE;
3835
3836 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3837 sizeof (Elf_Internal_Shdr));
3838 if (i_shdrp[0] == NULL)
3839 {
3840 bfd_release (abfd, i_shdrp);
3841 return FALSE;
3842 }
3843
3844 elf_elfsections (abfd) = i_shdrp;
3845
3846 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3847 if (need_symtab)
3848 {
3849 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3850 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3851 {
3852 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3853 BFD_ASSERT (entry != NULL);
3854 i_shdrp[entry->ndx] = & entry->hdr;
3855 entry->hdr.sh_link = elf_onesymtab (abfd);
3856 }
3857 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3858 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3859 }
3860
3861 for (sec = abfd->sections; sec; sec = sec->next)
3862 {
3863 asection *s;
3864
3865 d = elf_section_data (sec);
3866
3867 i_shdrp[d->this_idx] = &d->this_hdr;
3868 if (d->rel.idx != 0)
3869 i_shdrp[d->rel.idx] = d->rel.hdr;
3870 if (d->rela.idx != 0)
3871 i_shdrp[d->rela.idx] = d->rela.hdr;
3872
3873 /* Fill in the sh_link and sh_info fields while we're at it. */
3874
3875 /* sh_link of a reloc section is the section index of the symbol
3876 table. sh_info is the section index of the section to which
3877 the relocation entries apply. */
3878 if (d->rel.idx != 0)
3879 {
3880 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3881 d->rel.hdr->sh_info = d->this_idx;
3882 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3883 }
3884 if (d->rela.idx != 0)
3885 {
3886 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3887 d->rela.hdr->sh_info = d->this_idx;
3888 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3889 }
3890
3891 /* We need to set up sh_link for SHF_LINK_ORDER. */
3892 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3893 {
3894 s = elf_linked_to_section (sec);
3895 if (s)
3896 {
3897 /* elf_linked_to_section points to the input section. */
3898 if (link_info != NULL)
3899 {
3900 /* Check discarded linkonce section. */
3901 if (discarded_section (s))
3902 {
3903 asection *kept;
3904 _bfd_error_handler
3905 /* xgettext:c-format */
3906 (_("%pB: sh_link of section `%pA' points to"
3907 " discarded section `%pA' of `%pB'"),
3908 abfd, d->this_hdr.bfd_section,
3909 s, s->owner);
3910 /* Point to the kept section if it has the same
3911 size as the discarded one. */
3912 kept = _bfd_elf_check_kept_section (s, link_info);
3913 if (kept == NULL)
3914 {
3915 bfd_set_error (bfd_error_bad_value);
3916 return FALSE;
3917 }
3918 s = kept;
3919 }
3920
3921 s = s->output_section;
3922 BFD_ASSERT (s != NULL);
3923 }
3924 else
3925 {
3926 /* Handle objcopy. */
3927 if (s->output_section == NULL)
3928 {
3929 _bfd_error_handler
3930 /* xgettext:c-format */
3931 (_("%pB: sh_link of section `%pA' points to"
3932 " removed section `%pA' of `%pB'"),
3933 abfd, d->this_hdr.bfd_section, s, s->owner);
3934 bfd_set_error (bfd_error_bad_value);
3935 return FALSE;
3936 }
3937 s = s->output_section;
3938 }
3939 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3940 }
3941 else
3942 {
3943 /* PR 290:
3944 The Intel C compiler generates SHT_IA_64_UNWIND with
3945 SHF_LINK_ORDER. But it doesn't set the sh_link or
3946 sh_info fields. Hence we could get the situation
3947 where s is NULL. */
3948 const struct elf_backend_data *bed
3949 = get_elf_backend_data (abfd);
3950 if (bed->link_order_error_handler)
3951 bed->link_order_error_handler
3952 /* xgettext:c-format */
3953 (_("%pB: warning: sh_link not set for section `%pA'"),
3954 abfd, sec);
3955 }
3956 }
3957
3958 switch (d->this_hdr.sh_type)
3959 {
3960 case SHT_REL:
3961 case SHT_RELA:
3962 /* A reloc section which we are treating as a normal BFD
3963 section. sh_link is the section index of the symbol
3964 table. sh_info is the section index of the section to
3965 which the relocation entries apply. We assume that an
3966 allocated reloc section uses the dynamic symbol table.
3967 FIXME: How can we be sure? */
3968 s = bfd_get_section_by_name (abfd, ".dynsym");
3969 if (s != NULL)
3970 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3971
3972 s = elf_get_reloc_section (sec);
3973 if (s != NULL)
3974 {
3975 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3976 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3977 }
3978 break;
3979
3980 case SHT_STRTAB:
3981 /* We assume that a section named .stab*str is a stabs
3982 string section. We look for a section with the same name
3983 but without the trailing ``str'', and set its sh_link
3984 field to point to this section. */
3985 if (CONST_STRNEQ (sec->name, ".stab")
3986 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3987 {
3988 size_t len;
3989 char *alc;
3990
3991 len = strlen (sec->name);
3992 alc = (char *) bfd_malloc (len - 2);
3993 if (alc == NULL)
3994 return FALSE;
3995 memcpy (alc, sec->name, len - 3);
3996 alc[len - 3] = '\0';
3997 s = bfd_get_section_by_name (abfd, alc);
3998 free (alc);
3999 if (s != NULL)
4000 {
4001 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4002
4003 /* This is a .stab section. */
4004 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4005 elf_section_data (s)->this_hdr.sh_entsize
4006 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4007 }
4008 }
4009 break;
4010
4011 case SHT_DYNAMIC:
4012 case SHT_DYNSYM:
4013 case SHT_GNU_verneed:
4014 case SHT_GNU_verdef:
4015 /* sh_link is the section header index of the string table
4016 used for the dynamic entries, or the symbol table, or the
4017 version strings. */
4018 s = bfd_get_section_by_name (abfd, ".dynstr");
4019 if (s != NULL)
4020 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4021 break;
4022
4023 case SHT_GNU_LIBLIST:
4024 /* sh_link is the section header index of the prelink library
4025 list used for the dynamic entries, or the symbol table, or
4026 the version strings. */
4027 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4028 ? ".dynstr" : ".gnu.libstr");
4029 if (s != NULL)
4030 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4031 break;
4032
4033 case SHT_HASH:
4034 case SHT_GNU_HASH:
4035 case SHT_GNU_versym:
4036 /* sh_link is the section header index of the symbol table
4037 this hash table or version table is for. */
4038 s = bfd_get_section_by_name (abfd, ".dynsym");
4039 if (s != NULL)
4040 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4041 break;
4042
4043 case SHT_GROUP:
4044 d->this_hdr.sh_link = elf_onesymtab (abfd);
4045 }
4046 }
4047
4048 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4049 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4050 debug section name from .debug_* to .zdebug_* if needed. */
4051
4052 return TRUE;
4053 }
4054
4055 static bfd_boolean
4056 sym_is_global (bfd *abfd, asymbol *sym)
4057 {
4058 /* If the backend has a special mapping, use it. */
4059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4060 if (bed->elf_backend_sym_is_global)
4061 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4062
4063 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4064 || bfd_is_und_section (bfd_asymbol_section (sym))
4065 || bfd_is_com_section (bfd_asymbol_section (sym)));
4066 }
4067
4068 /* Filter global symbols of ABFD to include in the import library. All
4069 SYMCOUNT symbols of ABFD can be examined from their pointers in
4070 SYMS. Pointers of symbols to keep should be stored contiguously at
4071 the beginning of that array.
4072
4073 Returns the number of symbols to keep. */
4074
4075 unsigned int
4076 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4077 asymbol **syms, long symcount)
4078 {
4079 long src_count, dst_count = 0;
4080
4081 for (src_count = 0; src_count < symcount; src_count++)
4082 {
4083 asymbol *sym = syms[src_count];
4084 char *name = (char *) bfd_asymbol_name (sym);
4085 struct bfd_link_hash_entry *h;
4086
4087 if (!sym_is_global (abfd, sym))
4088 continue;
4089
4090 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4091 if (h == NULL)
4092 continue;
4093 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4094 continue;
4095 if (h->linker_def || h->ldscript_def)
4096 continue;
4097
4098 syms[dst_count++] = sym;
4099 }
4100
4101 syms[dst_count] = NULL;
4102
4103 return dst_count;
4104 }
4105
4106 /* Don't output section symbols for sections that are not going to be
4107 output, that are duplicates or there is no BFD section. */
4108
4109 static bfd_boolean
4110 ignore_section_sym (bfd *abfd, asymbol *sym)
4111 {
4112 elf_symbol_type *type_ptr;
4113
4114 if (sym == NULL)
4115 return FALSE;
4116
4117 if ((sym->flags & BSF_SECTION_SYM) == 0)
4118 return FALSE;
4119
4120 if (sym->section == NULL)
4121 return TRUE;
4122
4123 type_ptr = elf_symbol_from (abfd, sym);
4124 return ((type_ptr != NULL
4125 && type_ptr->internal_elf_sym.st_shndx != 0
4126 && bfd_is_abs_section (sym->section))
4127 || !(sym->section->owner == abfd
4128 || (sym->section->output_section != NULL
4129 && sym->section->output_section->owner == abfd
4130 && sym->section->output_offset == 0)
4131 || bfd_is_abs_section (sym->section)));
4132 }
4133
4134 /* Map symbol from it's internal number to the external number, moving
4135 all local symbols to be at the head of the list. */
4136
4137 static bfd_boolean
4138 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4139 {
4140 unsigned int symcount = bfd_get_symcount (abfd);
4141 asymbol **syms = bfd_get_outsymbols (abfd);
4142 asymbol **sect_syms;
4143 unsigned int num_locals = 0;
4144 unsigned int num_globals = 0;
4145 unsigned int num_locals2 = 0;
4146 unsigned int num_globals2 = 0;
4147 unsigned int max_index = 0;
4148 unsigned int idx;
4149 asection *asect;
4150 asymbol **new_syms;
4151
4152 #ifdef DEBUG
4153 fprintf (stderr, "elf_map_symbols\n");
4154 fflush (stderr);
4155 #endif
4156
4157 for (asect = abfd->sections; asect; asect = asect->next)
4158 {
4159 if (max_index < asect->index)
4160 max_index = asect->index;
4161 }
4162
4163 max_index++;
4164 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4165 if (sect_syms == NULL)
4166 return FALSE;
4167 elf_section_syms (abfd) = sect_syms;
4168 elf_num_section_syms (abfd) = max_index;
4169
4170 /* Init sect_syms entries for any section symbols we have already
4171 decided to output. */
4172 for (idx = 0; idx < symcount; idx++)
4173 {
4174 asymbol *sym = syms[idx];
4175
4176 if ((sym->flags & BSF_SECTION_SYM) != 0
4177 && sym->value == 0
4178 && !ignore_section_sym (abfd, sym)
4179 && !bfd_is_abs_section (sym->section))
4180 {
4181 asection *sec = sym->section;
4182
4183 if (sec->owner != abfd)
4184 sec = sec->output_section;
4185
4186 sect_syms[sec->index] = syms[idx];
4187 }
4188 }
4189
4190 /* Classify all of the symbols. */
4191 for (idx = 0; idx < symcount; idx++)
4192 {
4193 if (sym_is_global (abfd, syms[idx]))
4194 num_globals++;
4195 else if (!ignore_section_sym (abfd, syms[idx]))
4196 num_locals++;
4197 }
4198
4199 /* We will be adding a section symbol for each normal BFD section. Most
4200 sections will already have a section symbol in outsymbols, but
4201 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4202 at least in that case. */
4203 for (asect = abfd->sections; asect; asect = asect->next)
4204 {
4205 if (sect_syms[asect->index] == NULL)
4206 {
4207 if (!sym_is_global (abfd, asect->symbol))
4208 num_locals++;
4209 else
4210 num_globals++;
4211 }
4212 }
4213
4214 /* Now sort the symbols so the local symbols are first. */
4215 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4216 sizeof (asymbol *));
4217
4218 if (new_syms == NULL)
4219 return FALSE;
4220
4221 for (idx = 0; idx < symcount; idx++)
4222 {
4223 asymbol *sym = syms[idx];
4224 unsigned int i;
4225
4226 if (sym_is_global (abfd, sym))
4227 i = num_locals + num_globals2++;
4228 else if (!ignore_section_sym (abfd, sym))
4229 i = num_locals2++;
4230 else
4231 continue;
4232 new_syms[i] = sym;
4233 sym->udata.i = i + 1;
4234 }
4235 for (asect = abfd->sections; asect; asect = asect->next)
4236 {
4237 if (sect_syms[asect->index] == NULL)
4238 {
4239 asymbol *sym = asect->symbol;
4240 unsigned int i;
4241
4242 sect_syms[asect->index] = sym;
4243 if (!sym_is_global (abfd, sym))
4244 i = num_locals2++;
4245 else
4246 i = num_locals + num_globals2++;
4247 new_syms[i] = sym;
4248 sym->udata.i = i + 1;
4249 }
4250 }
4251
4252 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4253
4254 *pnum_locals = num_locals;
4255 return TRUE;
4256 }
4257
4258 /* Align to the maximum file alignment that could be required for any
4259 ELF data structure. */
4260
4261 static inline file_ptr
4262 align_file_position (file_ptr off, int align)
4263 {
4264 return (off + align - 1) & ~(align - 1);
4265 }
4266
4267 /* Assign a file position to a section, optionally aligning to the
4268 required section alignment. */
4269
4270 file_ptr
4271 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4272 file_ptr offset,
4273 bfd_boolean align)
4274 {
4275 if (align && i_shdrp->sh_addralign > 1)
4276 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4277 i_shdrp->sh_offset = offset;
4278 if (i_shdrp->bfd_section != NULL)
4279 i_shdrp->bfd_section->filepos = offset;
4280 if (i_shdrp->sh_type != SHT_NOBITS)
4281 offset += i_shdrp->sh_size;
4282 return offset;
4283 }
4284
4285 /* Compute the file positions we are going to put the sections at, and
4286 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4287 is not NULL, this is being called by the ELF backend linker. */
4288
4289 bfd_boolean
4290 _bfd_elf_compute_section_file_positions (bfd *abfd,
4291 struct bfd_link_info *link_info)
4292 {
4293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4294 struct fake_section_arg fsargs;
4295 bfd_boolean failed;
4296 struct elf_strtab_hash *strtab = NULL;
4297 Elf_Internal_Shdr *shstrtab_hdr;
4298 bfd_boolean need_symtab;
4299
4300 if (abfd->output_has_begun)
4301 return TRUE;
4302
4303 /* Do any elf backend specific processing first. */
4304 if (bed->elf_backend_begin_write_processing)
4305 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4306
4307 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4308 return FALSE;
4309
4310 fsargs.failed = FALSE;
4311 fsargs.link_info = link_info;
4312 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4313 if (fsargs.failed)
4314 return FALSE;
4315
4316 if (!assign_section_numbers (abfd, link_info))
4317 return FALSE;
4318
4319 /* The backend linker builds symbol table information itself. */
4320 need_symtab = (link_info == NULL
4321 && (bfd_get_symcount (abfd) > 0
4322 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4323 == HAS_RELOC)));
4324 if (need_symtab)
4325 {
4326 /* Non-zero if doing a relocatable link. */
4327 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4328
4329 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4330 return FALSE;
4331 }
4332
4333 failed = FALSE;
4334 if (link_info == NULL)
4335 {
4336 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4337 if (failed)
4338 return FALSE;
4339 }
4340
4341 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4342 /* sh_name was set in init_file_header. */
4343 shstrtab_hdr->sh_type = SHT_STRTAB;
4344 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4345 shstrtab_hdr->sh_addr = 0;
4346 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4347 shstrtab_hdr->sh_entsize = 0;
4348 shstrtab_hdr->sh_link = 0;
4349 shstrtab_hdr->sh_info = 0;
4350 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4351 shstrtab_hdr->sh_addralign = 1;
4352
4353 if (!assign_file_positions_except_relocs (abfd, link_info))
4354 return FALSE;
4355
4356 if (need_symtab)
4357 {
4358 file_ptr off;
4359 Elf_Internal_Shdr *hdr;
4360
4361 off = elf_next_file_pos (abfd);
4362
4363 hdr = & elf_symtab_hdr (abfd);
4364 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4365
4366 if (elf_symtab_shndx_list (abfd) != NULL)
4367 {
4368 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4369 if (hdr->sh_size != 0)
4370 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4371 /* FIXME: What about other symtab_shndx sections in the list ? */
4372 }
4373
4374 hdr = &elf_tdata (abfd)->strtab_hdr;
4375 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4376
4377 elf_next_file_pos (abfd) = off;
4378
4379 /* Now that we know where the .strtab section goes, write it
4380 out. */
4381 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4382 || ! _bfd_elf_strtab_emit (abfd, strtab))
4383 return FALSE;
4384 _bfd_elf_strtab_free (strtab);
4385 }
4386
4387 abfd->output_has_begun = TRUE;
4388
4389 return TRUE;
4390 }
4391
4392 /* Make an initial estimate of the size of the program header. If we
4393 get the number wrong here, we'll redo section placement. */
4394
4395 static bfd_size_type
4396 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4397 {
4398 size_t segs;
4399 asection *s;
4400 const struct elf_backend_data *bed;
4401
4402 /* Assume we will need exactly two PT_LOAD segments: one for text
4403 and one for data. */
4404 segs = 2;
4405
4406 s = bfd_get_section_by_name (abfd, ".interp");
4407 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4408 {
4409 /* If we have a loadable interpreter section, we need a
4410 PT_INTERP segment. In this case, assume we also need a
4411 PT_PHDR segment, although that may not be true for all
4412 targets. */
4413 segs += 2;
4414 }
4415
4416 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4417 {
4418 /* We need a PT_DYNAMIC segment. */
4419 ++segs;
4420 }
4421
4422 if (info != NULL && info->relro)
4423 {
4424 /* We need a PT_GNU_RELRO segment. */
4425 ++segs;
4426 }
4427
4428 if (elf_eh_frame_hdr (abfd))
4429 {
4430 /* We need a PT_GNU_EH_FRAME segment. */
4431 ++segs;
4432 }
4433
4434 if (elf_stack_flags (abfd))
4435 {
4436 /* We need a PT_GNU_STACK segment. */
4437 ++segs;
4438 }
4439
4440 s = bfd_get_section_by_name (abfd,
4441 NOTE_GNU_PROPERTY_SECTION_NAME);
4442 if (s != NULL && s->size != 0)
4443 {
4444 /* We need a PT_GNU_PROPERTY segment. */
4445 ++segs;
4446 }
4447
4448 for (s = abfd->sections; s != NULL; s = s->next)
4449 {
4450 if ((s->flags & SEC_LOAD) != 0
4451 && elf_section_type (s) == SHT_NOTE)
4452 {
4453 unsigned int alignment_power;
4454 /* We need a PT_NOTE segment. */
4455 ++segs;
4456 /* Try to create just one PT_NOTE segment for all adjacent
4457 loadable SHT_NOTE sections. gABI requires that within a
4458 PT_NOTE segment (and also inside of each SHT_NOTE section)
4459 each note should have the same alignment. So we check
4460 whether the sections are correctly aligned. */
4461 alignment_power = s->alignment_power;
4462 while (s->next != NULL
4463 && s->next->alignment_power == alignment_power
4464 && (s->next->flags & SEC_LOAD) != 0
4465 && elf_section_type (s->next) == SHT_NOTE)
4466 s = s->next;
4467 }
4468 }
4469
4470 for (s = abfd->sections; s != NULL; s = s->next)
4471 {
4472 if (s->flags & SEC_THREAD_LOCAL)
4473 {
4474 /* We need a PT_TLS segment. */
4475 ++segs;
4476 break;
4477 }
4478 }
4479
4480 bed = get_elf_backend_data (abfd);
4481
4482 if ((abfd->flags & D_PAGED) != 0
4483 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4484 {
4485 /* Add a PT_GNU_MBIND segment for each mbind section. */
4486 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4487 for (s = abfd->sections; s != NULL; s = s->next)
4488 if (elf_section_flags (s) & SHF_GNU_MBIND)
4489 {
4490 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4491 {
4492 _bfd_error_handler
4493 /* xgettext:c-format */
4494 (_("%pB: GNU_MBIND section `%pA' has invalid "
4495 "sh_info field: %d"),
4496 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4497 continue;
4498 }
4499 /* Align mbind section to page size. */
4500 if (s->alignment_power < page_align_power)
4501 s->alignment_power = page_align_power;
4502 segs ++;
4503 }
4504 }
4505
4506 /* Let the backend count up any program headers it might need. */
4507 if (bed->elf_backend_additional_program_headers)
4508 {
4509 int a;
4510
4511 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4512 if (a == -1)
4513 abort ();
4514 segs += a;
4515 }
4516
4517 return segs * bed->s->sizeof_phdr;
4518 }
4519
4520 /* Find the segment that contains the output_section of section. */
4521
4522 Elf_Internal_Phdr *
4523 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4524 {
4525 struct elf_segment_map *m;
4526 Elf_Internal_Phdr *p;
4527
4528 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4529 m != NULL;
4530 m = m->next, p++)
4531 {
4532 int i;
4533
4534 for (i = m->count - 1; i >= 0; i--)
4535 if (m->sections[i] == section)
4536 return p;
4537 }
4538
4539 return NULL;
4540 }
4541
4542 /* Create a mapping from a set of sections to a program segment. */
4543
4544 static struct elf_segment_map *
4545 make_mapping (bfd *abfd,
4546 asection **sections,
4547 unsigned int from,
4548 unsigned int to,
4549 bfd_boolean phdr)
4550 {
4551 struct elf_segment_map *m;
4552 unsigned int i;
4553 asection **hdrpp;
4554 bfd_size_type amt;
4555
4556 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4557 amt += (to - from) * sizeof (asection *);
4558 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4559 if (m == NULL)
4560 return NULL;
4561 m->next = NULL;
4562 m->p_type = PT_LOAD;
4563 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4564 m->sections[i - from] = *hdrpp;
4565 m->count = to - from;
4566
4567 if (from == 0 && phdr)
4568 {
4569 /* Include the headers in the first PT_LOAD segment. */
4570 m->includes_filehdr = 1;
4571 m->includes_phdrs = 1;
4572 }
4573
4574 return m;
4575 }
4576
4577 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4578 on failure. */
4579
4580 struct elf_segment_map *
4581 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4582 {
4583 struct elf_segment_map *m;
4584
4585 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4586 sizeof (struct elf_segment_map));
4587 if (m == NULL)
4588 return NULL;
4589 m->next = NULL;
4590 m->p_type = PT_DYNAMIC;
4591 m->count = 1;
4592 m->sections[0] = dynsec;
4593
4594 return m;
4595 }
4596
4597 /* Possibly add or remove segments from the segment map. */
4598
4599 static bfd_boolean
4600 elf_modify_segment_map (bfd *abfd,
4601 struct bfd_link_info *info,
4602 bfd_boolean remove_empty_load)
4603 {
4604 struct elf_segment_map **m;
4605 const struct elf_backend_data *bed;
4606
4607 /* The placement algorithm assumes that non allocated sections are
4608 not in PT_LOAD segments. We ensure this here by removing such
4609 sections from the segment map. We also remove excluded
4610 sections. Finally, any PT_LOAD segment without sections is
4611 removed. */
4612 m = &elf_seg_map (abfd);
4613 while (*m)
4614 {
4615 unsigned int i, new_count;
4616
4617 for (new_count = 0, i = 0; i < (*m)->count; i++)
4618 {
4619 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4620 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4621 || (*m)->p_type != PT_LOAD))
4622 {
4623 (*m)->sections[new_count] = (*m)->sections[i];
4624 new_count++;
4625 }
4626 }
4627 (*m)->count = new_count;
4628
4629 if (remove_empty_load
4630 && (*m)->p_type == PT_LOAD
4631 && (*m)->count == 0
4632 && !(*m)->includes_phdrs)
4633 *m = (*m)->next;
4634 else
4635 m = &(*m)->next;
4636 }
4637
4638 bed = get_elf_backend_data (abfd);
4639 if (bed->elf_backend_modify_segment_map != NULL)
4640 {
4641 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4642 return FALSE;
4643 }
4644
4645 return TRUE;
4646 }
4647
4648 #define IS_TBSS(s) \
4649 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4650
4651 /* Set up a mapping from BFD sections to program segments. */
4652
4653 bfd_boolean
4654 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4655 {
4656 unsigned int count;
4657 struct elf_segment_map *m;
4658 asection **sections = NULL;
4659 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4660 bfd_boolean no_user_phdrs;
4661
4662 no_user_phdrs = elf_seg_map (abfd) == NULL;
4663
4664 if (info != NULL)
4665 info->user_phdrs = !no_user_phdrs;
4666
4667 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4668 {
4669 asection *s;
4670 unsigned int i;
4671 struct elf_segment_map *mfirst;
4672 struct elf_segment_map **pm;
4673 asection *last_hdr;
4674 bfd_vma last_size;
4675 unsigned int hdr_index;
4676 bfd_vma maxpagesize;
4677 asection **hdrpp;
4678 bfd_boolean phdr_in_segment;
4679 bfd_boolean writable;
4680 bfd_boolean executable;
4681 int tls_count = 0;
4682 asection *first_tls = NULL;
4683 asection *first_mbind = NULL;
4684 asection *dynsec, *eh_frame_hdr;
4685 bfd_size_type amt;
4686 bfd_vma addr_mask, wrap_to = 0;
4687 bfd_size_type phdr_size;
4688
4689 /* Select the allocated sections, and sort them. */
4690
4691 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4692 sizeof (asection *));
4693 if (sections == NULL)
4694 goto error_return;
4695
4696 /* Calculate top address, avoiding undefined behaviour of shift
4697 left operator when shift count is equal to size of type
4698 being shifted. */
4699 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4700 addr_mask = (addr_mask << 1) + 1;
4701
4702 i = 0;
4703 for (s = abfd->sections; s != NULL; s = s->next)
4704 {
4705 if ((s->flags & SEC_ALLOC) != 0)
4706 {
4707 /* target_index is unused until bfd_elf_final_link
4708 starts output of section symbols. Use it to make
4709 qsort stable. */
4710 s->target_index = i;
4711 sections[i] = s;
4712 ++i;
4713 /* A wrapping section potentially clashes with header. */
4714 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4715 wrap_to = (s->lma + s->size) & addr_mask;
4716 }
4717 }
4718 BFD_ASSERT (i <= bfd_count_sections (abfd));
4719 count = i;
4720
4721 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4722
4723 phdr_size = elf_program_header_size (abfd);
4724 if (phdr_size == (bfd_size_type) -1)
4725 phdr_size = get_program_header_size (abfd, info);
4726 phdr_size += bed->s->sizeof_ehdr;
4727 maxpagesize = bed->maxpagesize;
4728 if (maxpagesize == 0)
4729 maxpagesize = 1;
4730 phdr_in_segment = info != NULL && info->load_phdrs;
4731 if (count != 0
4732 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4733 >= (phdr_size & (maxpagesize - 1))))
4734 /* For compatibility with old scripts that may not be using
4735 SIZEOF_HEADERS, add headers when it looks like space has
4736 been left for them. */
4737 phdr_in_segment = TRUE;
4738
4739 /* Build the mapping. */
4740 mfirst = NULL;
4741 pm = &mfirst;
4742
4743 /* If we have a .interp section, then create a PT_PHDR segment for
4744 the program headers and a PT_INTERP segment for the .interp
4745 section. */
4746 s = bfd_get_section_by_name (abfd, ".interp");
4747 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4748 {
4749 amt = sizeof (struct elf_segment_map);
4750 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4751 if (m == NULL)
4752 goto error_return;
4753 m->next = NULL;
4754 m->p_type = PT_PHDR;
4755 m->p_flags = PF_R;
4756 m->p_flags_valid = 1;
4757 m->includes_phdrs = 1;
4758 phdr_in_segment = TRUE;
4759 *pm = m;
4760 pm = &m->next;
4761
4762 amt = sizeof (struct elf_segment_map);
4763 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4764 if (m == NULL)
4765 goto error_return;
4766 m->next = NULL;
4767 m->p_type = PT_INTERP;
4768 m->count = 1;
4769 m->sections[0] = s;
4770
4771 *pm = m;
4772 pm = &m->next;
4773 }
4774
4775 /* Look through the sections. We put sections in the same program
4776 segment when the start of the second section can be placed within
4777 a few bytes of the end of the first section. */
4778 last_hdr = NULL;
4779 last_size = 0;
4780 hdr_index = 0;
4781 writable = FALSE;
4782 executable = FALSE;
4783 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4784 if (dynsec != NULL
4785 && (dynsec->flags & SEC_LOAD) == 0)
4786 dynsec = NULL;
4787
4788 if ((abfd->flags & D_PAGED) == 0)
4789 phdr_in_segment = FALSE;
4790
4791 /* Deal with -Ttext or something similar such that the first section
4792 is not adjacent to the program headers. This is an
4793 approximation, since at this point we don't know exactly how many
4794 program headers we will need. */
4795 if (phdr_in_segment && count > 0)
4796 {
4797 bfd_vma phdr_lma;
4798 bfd_boolean separate_phdr = FALSE;
4799
4800 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4801 if (info != NULL
4802 && info->separate_code
4803 && (sections[0]->flags & SEC_CODE) != 0)
4804 {
4805 /* If data sections should be separate from code and
4806 thus not executable, and the first section is
4807 executable then put the file and program headers in
4808 their own PT_LOAD. */
4809 separate_phdr = TRUE;
4810 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4811 == (sections[0]->lma & addr_mask & -maxpagesize)))
4812 {
4813 /* The file and program headers are currently on the
4814 same page as the first section. Put them on the
4815 previous page if we can. */
4816 if (phdr_lma >= maxpagesize)
4817 phdr_lma -= maxpagesize;
4818 else
4819 separate_phdr = FALSE;
4820 }
4821 }
4822 if ((sections[0]->lma & addr_mask) < phdr_lma
4823 || (sections[0]->lma & addr_mask) < phdr_size)
4824 /* If file and program headers would be placed at the end
4825 of memory then it's probably better to omit them. */
4826 phdr_in_segment = FALSE;
4827 else if (phdr_lma < wrap_to)
4828 /* If a section wraps around to where we'll be placing
4829 file and program headers, then the headers will be
4830 overwritten. */
4831 phdr_in_segment = FALSE;
4832 else if (separate_phdr)
4833 {
4834 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4835 if (m == NULL)
4836 goto error_return;
4837 m->p_paddr = phdr_lma;
4838 m->p_vaddr_offset
4839 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4840 m->p_paddr_valid = 1;
4841 *pm = m;
4842 pm = &m->next;
4843 phdr_in_segment = FALSE;
4844 }
4845 }
4846
4847 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4848 {
4849 asection *hdr;
4850 bfd_boolean new_segment;
4851
4852 hdr = *hdrpp;
4853
4854 /* See if this section and the last one will fit in the same
4855 segment. */
4856
4857 if (last_hdr == NULL)
4858 {
4859 /* If we don't have a segment yet, then we don't need a new
4860 one (we build the last one after this loop). */
4861 new_segment = FALSE;
4862 }
4863 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4864 {
4865 /* If this section has a different relation between the
4866 virtual address and the load address, then we need a new
4867 segment. */
4868 new_segment = TRUE;
4869 }
4870 else if (hdr->lma < last_hdr->lma + last_size
4871 || last_hdr->lma + last_size < last_hdr->lma)
4872 {
4873 /* If this section has a load address that makes it overlap
4874 the previous section, then we need a new segment. */
4875 new_segment = TRUE;
4876 }
4877 else if ((abfd->flags & D_PAGED) != 0
4878 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4879 == (hdr->lma & -maxpagesize)))
4880 {
4881 /* If we are demand paged then we can't map two disk
4882 pages onto the same memory page. */
4883 new_segment = FALSE;
4884 }
4885 /* In the next test we have to be careful when last_hdr->lma is close
4886 to the end of the address space. If the aligned address wraps
4887 around to the start of the address space, then there are no more
4888 pages left in memory and it is OK to assume that the current
4889 section can be included in the current segment. */
4890 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4891 + maxpagesize > last_hdr->lma)
4892 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4893 + maxpagesize <= hdr->lma))
4894 {
4895 /* If putting this section in this segment would force us to
4896 skip a page in the segment, then we need a new segment. */
4897 new_segment = TRUE;
4898 }
4899 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4900 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4901 {
4902 /* We don't want to put a loaded section after a
4903 nonloaded (ie. bss style) section in the same segment
4904 as that will force the non-loaded section to be loaded.
4905 Consider .tbss sections as loaded for this purpose. */
4906 new_segment = TRUE;
4907 }
4908 else if ((abfd->flags & D_PAGED) == 0)
4909 {
4910 /* If the file is not demand paged, which means that we
4911 don't require the sections to be correctly aligned in the
4912 file, then there is no other reason for a new segment. */
4913 new_segment = FALSE;
4914 }
4915 else if (info != NULL
4916 && info->separate_code
4917 && executable != ((hdr->flags & SEC_CODE) != 0))
4918 {
4919 new_segment = TRUE;
4920 }
4921 else if (! writable
4922 && (hdr->flags & SEC_READONLY) == 0)
4923 {
4924 /* We don't want to put a writable section in a read only
4925 segment. */
4926 new_segment = TRUE;
4927 }
4928 else
4929 {
4930 /* Otherwise, we can use the same segment. */
4931 new_segment = FALSE;
4932 }
4933
4934 /* Allow interested parties a chance to override our decision. */
4935 if (last_hdr != NULL
4936 && info != NULL
4937 && info->callbacks->override_segment_assignment != NULL)
4938 new_segment
4939 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4940 last_hdr,
4941 new_segment);
4942
4943 if (! new_segment)
4944 {
4945 if ((hdr->flags & SEC_READONLY) == 0)
4946 writable = TRUE;
4947 if ((hdr->flags & SEC_CODE) != 0)
4948 executable = TRUE;
4949 last_hdr = hdr;
4950 /* .tbss sections effectively have zero size. */
4951 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4952 continue;
4953 }
4954
4955 /* We need a new program segment. We must create a new program
4956 header holding all the sections from hdr_index until hdr. */
4957
4958 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4959 if (m == NULL)
4960 goto error_return;
4961
4962 *pm = m;
4963 pm = &m->next;
4964
4965 if ((hdr->flags & SEC_READONLY) == 0)
4966 writable = TRUE;
4967 else
4968 writable = FALSE;
4969
4970 if ((hdr->flags & SEC_CODE) == 0)
4971 executable = FALSE;
4972 else
4973 executable = TRUE;
4974
4975 last_hdr = hdr;
4976 /* .tbss sections effectively have zero size. */
4977 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4978 hdr_index = i;
4979 phdr_in_segment = FALSE;
4980 }
4981
4982 /* Create a final PT_LOAD program segment, but not if it's just
4983 for .tbss. */
4984 if (last_hdr != NULL
4985 && (i - hdr_index != 1
4986 || !IS_TBSS (last_hdr)))
4987 {
4988 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4989 if (m == NULL)
4990 goto error_return;
4991
4992 *pm = m;
4993 pm = &m->next;
4994 }
4995
4996 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4997 if (dynsec != NULL)
4998 {
4999 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5000 if (m == NULL)
5001 goto error_return;
5002 *pm = m;
5003 pm = &m->next;
5004 }
5005
5006 /* For each batch of consecutive loadable SHT_NOTE sections,
5007 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5008 because if we link together nonloadable .note sections and
5009 loadable .note sections, we will generate two .note sections
5010 in the output file. */
5011 for (s = abfd->sections; s != NULL; s = s->next)
5012 {
5013 if ((s->flags & SEC_LOAD) != 0
5014 && elf_section_type (s) == SHT_NOTE)
5015 {
5016 asection *s2;
5017 unsigned int alignment_power = s->alignment_power;
5018
5019 count = 1;
5020 for (s2 = s; s2->next != NULL; s2 = s2->next)
5021 {
5022 if (s2->next->alignment_power == alignment_power
5023 && (s2->next->flags & SEC_LOAD) != 0
5024 && elf_section_type (s2->next) == SHT_NOTE
5025 && align_power (s2->lma + s2->size,
5026 alignment_power)
5027 == s2->next->lma)
5028 count++;
5029 else
5030 break;
5031 }
5032 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5033 amt += count * sizeof (asection *);
5034 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5035 if (m == NULL)
5036 goto error_return;
5037 m->next = NULL;
5038 m->p_type = PT_NOTE;
5039 m->count = count;
5040 while (count > 1)
5041 {
5042 m->sections[m->count - count--] = s;
5043 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5044 s = s->next;
5045 }
5046 m->sections[m->count - 1] = s;
5047 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5048 *pm = m;
5049 pm = &m->next;
5050 }
5051 if (s->flags & SEC_THREAD_LOCAL)
5052 {
5053 if (! tls_count)
5054 first_tls = s;
5055 tls_count++;
5056 }
5057 if (first_mbind == NULL
5058 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5059 first_mbind = s;
5060 }
5061
5062 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5063 if (tls_count > 0)
5064 {
5065 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5066 amt += tls_count * sizeof (asection *);
5067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5068 if (m == NULL)
5069 goto error_return;
5070 m->next = NULL;
5071 m->p_type = PT_TLS;
5072 m->count = tls_count;
5073 /* Mandated PF_R. */
5074 m->p_flags = PF_R;
5075 m->p_flags_valid = 1;
5076 s = first_tls;
5077 for (i = 0; i < (unsigned int) tls_count; ++i)
5078 {
5079 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5080 {
5081 _bfd_error_handler
5082 (_("%pB: TLS sections are not adjacent:"), abfd);
5083 s = first_tls;
5084 i = 0;
5085 while (i < (unsigned int) tls_count)
5086 {
5087 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5088 {
5089 _bfd_error_handler (_(" TLS: %pA"), s);
5090 i++;
5091 }
5092 else
5093 _bfd_error_handler (_(" non-TLS: %pA"), s);
5094 s = s->next;
5095 }
5096 bfd_set_error (bfd_error_bad_value);
5097 goto error_return;
5098 }
5099 m->sections[i] = s;
5100 s = s->next;
5101 }
5102
5103 *pm = m;
5104 pm = &m->next;
5105 }
5106
5107 if (first_mbind
5108 && (abfd->flags & D_PAGED) != 0
5109 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5110 for (s = first_mbind; s != NULL; s = s->next)
5111 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5112 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5113 {
5114 /* Mandated PF_R. */
5115 unsigned long p_flags = PF_R;
5116 if ((s->flags & SEC_READONLY) == 0)
5117 p_flags |= PF_W;
5118 if ((s->flags & SEC_CODE) != 0)
5119 p_flags |= PF_X;
5120
5121 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5122 m = bfd_zalloc (abfd, amt);
5123 if (m == NULL)
5124 goto error_return;
5125 m->next = NULL;
5126 m->p_type = (PT_GNU_MBIND_LO
5127 + elf_section_data (s)->this_hdr.sh_info);
5128 m->count = 1;
5129 m->p_flags_valid = 1;
5130 m->sections[0] = s;
5131 m->p_flags = p_flags;
5132
5133 *pm = m;
5134 pm = &m->next;
5135 }
5136
5137 s = bfd_get_section_by_name (abfd,
5138 NOTE_GNU_PROPERTY_SECTION_NAME);
5139 if (s != NULL && s->size != 0)
5140 {
5141 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5142 m = bfd_zalloc (abfd, amt);
5143 if (m == NULL)
5144 goto error_return;
5145 m->next = NULL;
5146 m->p_type = PT_GNU_PROPERTY;
5147 m->count = 1;
5148 m->p_flags_valid = 1;
5149 m->sections[0] = s;
5150 m->p_flags = PF_R;
5151 *pm = m;
5152 pm = &m->next;
5153 }
5154
5155 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5156 segment. */
5157 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5158 if (eh_frame_hdr != NULL
5159 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5160 {
5161 amt = sizeof (struct elf_segment_map);
5162 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5163 if (m == NULL)
5164 goto error_return;
5165 m->next = NULL;
5166 m->p_type = PT_GNU_EH_FRAME;
5167 m->count = 1;
5168 m->sections[0] = eh_frame_hdr->output_section;
5169
5170 *pm = m;
5171 pm = &m->next;
5172 }
5173
5174 if (elf_stack_flags (abfd))
5175 {
5176 amt = sizeof (struct elf_segment_map);
5177 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5178 if (m == NULL)
5179 goto error_return;
5180 m->next = NULL;
5181 m->p_type = PT_GNU_STACK;
5182 m->p_flags = elf_stack_flags (abfd);
5183 m->p_align = bed->stack_align;
5184 m->p_flags_valid = 1;
5185 m->p_align_valid = m->p_align != 0;
5186 if (info->stacksize > 0)
5187 {
5188 m->p_size = info->stacksize;
5189 m->p_size_valid = 1;
5190 }
5191
5192 *pm = m;
5193 pm = &m->next;
5194 }
5195
5196 if (info != NULL && info->relro)
5197 {
5198 for (m = mfirst; m != NULL; m = m->next)
5199 {
5200 if (m->p_type == PT_LOAD
5201 && m->count != 0
5202 && m->sections[0]->vma >= info->relro_start
5203 && m->sections[0]->vma < info->relro_end)
5204 {
5205 i = m->count;
5206 while (--i != (unsigned) -1)
5207 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5208 == (SEC_LOAD | SEC_HAS_CONTENTS))
5209 break;
5210
5211 if (i != (unsigned) -1)
5212 break;
5213 }
5214 }
5215
5216 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5217 if (m != NULL)
5218 {
5219 amt = sizeof (struct elf_segment_map);
5220 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5221 if (m == NULL)
5222 goto error_return;
5223 m->next = NULL;
5224 m->p_type = PT_GNU_RELRO;
5225 *pm = m;
5226 pm = &m->next;
5227 }
5228 }
5229
5230 free (sections);
5231 elf_seg_map (abfd) = mfirst;
5232 }
5233
5234 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5235 return FALSE;
5236
5237 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5238 ++count;
5239 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5240
5241 return TRUE;
5242
5243 error_return:
5244 if (sections != NULL)
5245 free (sections);
5246 return FALSE;
5247 }
5248
5249 /* Sort sections by address. */
5250
5251 static int
5252 elf_sort_sections (const void *arg1, const void *arg2)
5253 {
5254 const asection *sec1 = *(const asection **) arg1;
5255 const asection *sec2 = *(const asection **) arg2;
5256 bfd_size_type size1, size2;
5257
5258 /* Sort by LMA first, since this is the address used to
5259 place the section into a segment. */
5260 if (sec1->lma < sec2->lma)
5261 return -1;
5262 else if (sec1->lma > sec2->lma)
5263 return 1;
5264
5265 /* Then sort by VMA. Normally the LMA and the VMA will be
5266 the same, and this will do nothing. */
5267 if (sec1->vma < sec2->vma)
5268 return -1;
5269 else if (sec1->vma > sec2->vma)
5270 return 1;
5271
5272 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5273
5274 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5275
5276 if (TOEND (sec1))
5277 {
5278 if (!TOEND (sec2))
5279 return 1;
5280 }
5281 else if (TOEND (sec2))
5282 return -1;
5283
5284 #undef TOEND
5285
5286 /* Sort by size, to put zero sized sections
5287 before others at the same address. */
5288
5289 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5290 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5291
5292 if (size1 < size2)
5293 return -1;
5294 if (size1 > size2)
5295 return 1;
5296
5297 return sec1->target_index - sec2->target_index;
5298 }
5299
5300 /* This qsort comparison functions sorts PT_LOAD segments first and
5301 by p_paddr, for assign_file_positions_for_load_sections. */
5302
5303 static int
5304 elf_sort_segments (const void *arg1, const void *arg2)
5305 {
5306 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5307 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5308
5309 if (m1->p_type != m2->p_type)
5310 {
5311 if (m1->p_type == PT_NULL)
5312 return 1;
5313 if (m2->p_type == PT_NULL)
5314 return -1;
5315 return m1->p_type < m2->p_type ? -1 : 1;
5316 }
5317 if (m1->includes_filehdr != m2->includes_filehdr)
5318 return m1->includes_filehdr ? -1 : 1;
5319 if (m1->no_sort_lma != m2->no_sort_lma)
5320 return m1->no_sort_lma ? -1 : 1;
5321 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5322 {
5323 bfd_vma lma1, lma2;
5324 lma1 = 0;
5325 if (m1->p_paddr_valid)
5326 lma1 = m1->p_paddr;
5327 else if (m1->count != 0)
5328 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5329 lma2 = 0;
5330 if (m2->p_paddr_valid)
5331 lma2 = m2->p_paddr;
5332 else if (m2->count != 0)
5333 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5334 if (lma1 != lma2)
5335 return lma1 < lma2 ? -1 : 1;
5336 }
5337 if (m1->idx != m2->idx)
5338 return m1->idx < m2->idx ? -1 : 1;
5339 return 0;
5340 }
5341
5342 /* Ian Lance Taylor writes:
5343
5344 We shouldn't be using % with a negative signed number. That's just
5345 not good. We have to make sure either that the number is not
5346 negative, or that the number has an unsigned type. When the types
5347 are all the same size they wind up as unsigned. When file_ptr is a
5348 larger signed type, the arithmetic winds up as signed long long,
5349 which is wrong.
5350
5351 What we're trying to say here is something like ``increase OFF by
5352 the least amount that will cause it to be equal to the VMA modulo
5353 the page size.'' */
5354 /* In other words, something like:
5355
5356 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5357 off_offset = off % bed->maxpagesize;
5358 if (vma_offset < off_offset)
5359 adjustment = vma_offset + bed->maxpagesize - off_offset;
5360 else
5361 adjustment = vma_offset - off_offset;
5362
5363 which can be collapsed into the expression below. */
5364
5365 static file_ptr
5366 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5367 {
5368 /* PR binutils/16199: Handle an alignment of zero. */
5369 if (maxpagesize == 0)
5370 maxpagesize = 1;
5371 return ((vma - off) % maxpagesize);
5372 }
5373
5374 static void
5375 print_segment_map (const struct elf_segment_map *m)
5376 {
5377 unsigned int j;
5378 const char *pt = get_segment_type (m->p_type);
5379 char buf[32];
5380
5381 if (pt == NULL)
5382 {
5383 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5384 sprintf (buf, "LOPROC+%7.7x",
5385 (unsigned int) (m->p_type - PT_LOPROC));
5386 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5387 sprintf (buf, "LOOS+%7.7x",
5388 (unsigned int) (m->p_type - PT_LOOS));
5389 else
5390 snprintf (buf, sizeof (buf), "%8.8x",
5391 (unsigned int) m->p_type);
5392 pt = buf;
5393 }
5394 fflush (stdout);
5395 fprintf (stderr, "%s:", pt);
5396 for (j = 0; j < m->count; j++)
5397 fprintf (stderr, " %s", m->sections [j]->name);
5398 putc ('\n',stderr);
5399 fflush (stderr);
5400 }
5401
5402 static bfd_boolean
5403 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5404 {
5405 void *buf;
5406 bfd_boolean ret;
5407
5408 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5409 return FALSE;
5410 buf = bfd_zmalloc (len);
5411 if (buf == NULL)
5412 return FALSE;
5413 ret = bfd_bwrite (buf, len, abfd) == len;
5414 free (buf);
5415 return ret;
5416 }
5417
5418 /* Assign file positions to the sections based on the mapping from
5419 sections to segments. This function also sets up some fields in
5420 the file header. */
5421
5422 static bfd_boolean
5423 assign_file_positions_for_load_sections (bfd *abfd,
5424 struct bfd_link_info *link_info)
5425 {
5426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5427 struct elf_segment_map *m;
5428 struct elf_segment_map *phdr_load_seg;
5429 Elf_Internal_Phdr *phdrs;
5430 Elf_Internal_Phdr *p;
5431 file_ptr off;
5432 bfd_size_type maxpagesize;
5433 unsigned int alloc, actual;
5434 unsigned int i, j;
5435 struct elf_segment_map **sorted_seg_map;
5436
5437 if (link_info == NULL
5438 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5439 return FALSE;
5440
5441 alloc = 0;
5442 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5443 m->idx = alloc++;
5444
5445 if (alloc)
5446 {
5447 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5448 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5449 }
5450 else
5451 {
5452 /* PR binutils/12467. */
5453 elf_elfheader (abfd)->e_phoff = 0;
5454 elf_elfheader (abfd)->e_phentsize = 0;
5455 }
5456
5457 elf_elfheader (abfd)->e_phnum = alloc;
5458
5459 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5460 {
5461 actual = alloc;
5462 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5463 }
5464 else
5465 {
5466 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5467 BFD_ASSERT (elf_program_header_size (abfd)
5468 == actual * bed->s->sizeof_phdr);
5469 BFD_ASSERT (actual >= alloc);
5470 }
5471
5472 if (alloc == 0)
5473 {
5474 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5475 return TRUE;
5476 }
5477
5478 /* We're writing the size in elf_program_header_size (abfd),
5479 see assign_file_positions_except_relocs, so make sure we have
5480 that amount allocated, with trailing space cleared.
5481 The variable alloc contains the computed need, while
5482 elf_program_header_size (abfd) contains the size used for the
5483 layout.
5484 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5485 where the layout is forced to according to a larger size in the
5486 last iterations for the testcase ld-elf/header. */
5487 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5488 + alloc * sizeof (*sorted_seg_map)));
5489 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5490 elf_tdata (abfd)->phdr = phdrs;
5491 if (phdrs == NULL)
5492 return FALSE;
5493
5494 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5495 {
5496 sorted_seg_map[j] = m;
5497 /* If elf_segment_map is not from map_sections_to_segments, the
5498 sections may not be correctly ordered. NOTE: sorting should
5499 not be done to the PT_NOTE section of a corefile, which may
5500 contain several pseudo-sections artificially created by bfd.
5501 Sorting these pseudo-sections breaks things badly. */
5502 if (m->count > 1
5503 && !(elf_elfheader (abfd)->e_type == ET_CORE
5504 && m->p_type == PT_NOTE))
5505 {
5506 for (i = 0; i < m->count; i++)
5507 m->sections[i]->target_index = i;
5508 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5509 elf_sort_sections);
5510 }
5511 }
5512 if (alloc > 1)
5513 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5514 elf_sort_segments);
5515
5516 maxpagesize = 1;
5517 if ((abfd->flags & D_PAGED) != 0)
5518 maxpagesize = bed->maxpagesize;
5519
5520 /* Sections must map to file offsets past the ELF file header. */
5521 off = bed->s->sizeof_ehdr;
5522 /* And if one of the PT_LOAD headers doesn't include the program
5523 headers then we'll be mapping program headers in the usual
5524 position after the ELF file header. */
5525 phdr_load_seg = NULL;
5526 for (j = 0; j < alloc; j++)
5527 {
5528 m = sorted_seg_map[j];
5529 if (m->p_type != PT_LOAD)
5530 break;
5531 if (m->includes_phdrs)
5532 {
5533 phdr_load_seg = m;
5534 break;
5535 }
5536 }
5537 if (phdr_load_seg == NULL)
5538 off += actual * bed->s->sizeof_phdr;
5539
5540 for (j = 0; j < alloc; j++)
5541 {
5542 asection **secpp;
5543 bfd_vma off_adjust;
5544 bfd_boolean no_contents;
5545
5546 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5547 number of sections with contents contributing to both p_filesz
5548 and p_memsz, followed by a number of sections with no contents
5549 that just contribute to p_memsz. In this loop, OFF tracks next
5550 available file offset for PT_LOAD and PT_NOTE segments. */
5551 m = sorted_seg_map[j];
5552 p = phdrs + m->idx;
5553 p->p_type = m->p_type;
5554 p->p_flags = m->p_flags;
5555
5556 if (m->count == 0)
5557 p->p_vaddr = m->p_vaddr_offset;
5558 else
5559 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5560
5561 if (m->p_paddr_valid)
5562 p->p_paddr = m->p_paddr;
5563 else if (m->count == 0)
5564 p->p_paddr = 0;
5565 else
5566 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5567
5568 if (p->p_type == PT_LOAD
5569 && (abfd->flags & D_PAGED) != 0)
5570 {
5571 /* p_align in demand paged PT_LOAD segments effectively stores
5572 the maximum page size. When copying an executable with
5573 objcopy, we set m->p_align from the input file. Use this
5574 value for maxpagesize rather than bed->maxpagesize, which
5575 may be different. Note that we use maxpagesize for PT_TLS
5576 segment alignment later in this function, so we are relying
5577 on at least one PT_LOAD segment appearing before a PT_TLS
5578 segment. */
5579 if (m->p_align_valid)
5580 maxpagesize = m->p_align;
5581
5582 p->p_align = maxpagesize;
5583 }
5584 else if (m->p_align_valid)
5585 p->p_align = m->p_align;
5586 else if (m->count == 0)
5587 p->p_align = 1 << bed->s->log_file_align;
5588
5589 if (m == phdr_load_seg)
5590 {
5591 if (!m->includes_filehdr)
5592 p->p_offset = off;
5593 off += actual * bed->s->sizeof_phdr;
5594 }
5595
5596 no_contents = FALSE;
5597 off_adjust = 0;
5598 if (p->p_type == PT_LOAD
5599 && m->count > 0)
5600 {
5601 bfd_size_type align;
5602 unsigned int align_power = 0;
5603
5604 if (m->p_align_valid)
5605 align = p->p_align;
5606 else
5607 {
5608 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5609 {
5610 unsigned int secalign;
5611
5612 secalign = bfd_section_alignment (*secpp);
5613 if (secalign > align_power)
5614 align_power = secalign;
5615 }
5616 align = (bfd_size_type) 1 << align_power;
5617 if (align < maxpagesize)
5618 align = maxpagesize;
5619 }
5620
5621 for (i = 0; i < m->count; i++)
5622 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5623 /* If we aren't making room for this section, then
5624 it must be SHT_NOBITS regardless of what we've
5625 set via struct bfd_elf_special_section. */
5626 elf_section_type (m->sections[i]) = SHT_NOBITS;
5627
5628 /* Find out whether this segment contains any loadable
5629 sections. */
5630 no_contents = TRUE;
5631 for (i = 0; i < m->count; i++)
5632 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5633 {
5634 no_contents = FALSE;
5635 break;
5636 }
5637
5638 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5639
5640 /* Broken hardware and/or kernel require that files do not
5641 map the same page with different permissions on some hppa
5642 processors. */
5643 if (j != 0
5644 && (abfd->flags & D_PAGED) != 0
5645 && bed->no_page_alias
5646 && (off & (maxpagesize - 1)) != 0
5647 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5648 off_adjust += maxpagesize;
5649 off += off_adjust;
5650 if (no_contents)
5651 {
5652 /* We shouldn't need to align the segment on disk since
5653 the segment doesn't need file space, but the gABI
5654 arguably requires the alignment and glibc ld.so
5655 checks it. So to comply with the alignment
5656 requirement but not waste file space, we adjust
5657 p_offset for just this segment. (OFF_ADJUST is
5658 subtracted from OFF later.) This may put p_offset
5659 past the end of file, but that shouldn't matter. */
5660 }
5661 else
5662 off_adjust = 0;
5663 }
5664 /* Make sure the .dynamic section is the first section in the
5665 PT_DYNAMIC segment. */
5666 else if (p->p_type == PT_DYNAMIC
5667 && m->count > 1
5668 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5669 {
5670 _bfd_error_handler
5671 (_("%pB: The first section in the PT_DYNAMIC segment"
5672 " is not the .dynamic section"),
5673 abfd);
5674 bfd_set_error (bfd_error_bad_value);
5675 return FALSE;
5676 }
5677 /* Set the note section type to SHT_NOTE. */
5678 else if (p->p_type == PT_NOTE)
5679 for (i = 0; i < m->count; i++)
5680 elf_section_type (m->sections[i]) = SHT_NOTE;
5681
5682 if (m->includes_filehdr)
5683 {
5684 if (!m->p_flags_valid)
5685 p->p_flags |= PF_R;
5686 p->p_filesz = bed->s->sizeof_ehdr;
5687 p->p_memsz = bed->s->sizeof_ehdr;
5688 if (p->p_type == PT_LOAD)
5689 {
5690 if (m->count > 0)
5691 {
5692 if (p->p_vaddr < (bfd_vma) off
5693 || (!m->p_paddr_valid
5694 && p->p_paddr < (bfd_vma) off))
5695 {
5696 _bfd_error_handler
5697 (_("%pB: not enough room for program headers,"
5698 " try linking with -N"),
5699 abfd);
5700 bfd_set_error (bfd_error_bad_value);
5701 return FALSE;
5702 }
5703 p->p_vaddr -= off;
5704 if (!m->p_paddr_valid)
5705 p->p_paddr -= off;
5706 }
5707 }
5708 else if (sorted_seg_map[0]->includes_filehdr)
5709 {
5710 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5711 p->p_vaddr = filehdr->p_vaddr;
5712 if (!m->p_paddr_valid)
5713 p->p_paddr = filehdr->p_paddr;
5714 }
5715 }
5716
5717 if (m->includes_phdrs)
5718 {
5719 if (!m->p_flags_valid)
5720 p->p_flags |= PF_R;
5721 p->p_filesz += actual * bed->s->sizeof_phdr;
5722 p->p_memsz += actual * bed->s->sizeof_phdr;
5723 if (!m->includes_filehdr)
5724 {
5725 if (p->p_type == PT_LOAD)
5726 {
5727 elf_elfheader (abfd)->e_phoff = p->p_offset;
5728 if (m->count > 0)
5729 {
5730 p->p_vaddr -= off - p->p_offset;
5731 if (!m->p_paddr_valid)
5732 p->p_paddr -= off - p->p_offset;
5733 }
5734 }
5735 else if (phdr_load_seg != NULL)
5736 {
5737 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5738 bfd_vma phdr_off = 0;
5739 if (phdr_load_seg->includes_filehdr)
5740 phdr_off = bed->s->sizeof_ehdr;
5741 p->p_vaddr = phdr->p_vaddr + phdr_off;
5742 if (!m->p_paddr_valid)
5743 p->p_paddr = phdr->p_paddr + phdr_off;
5744 p->p_offset = phdr->p_offset + phdr_off;
5745 }
5746 else
5747 p->p_offset = bed->s->sizeof_ehdr;
5748 }
5749 }
5750
5751 if (p->p_type == PT_LOAD
5752 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5753 {
5754 if (!m->includes_filehdr && !m->includes_phdrs)
5755 {
5756 p->p_offset = off;
5757 if (no_contents)
5758 {
5759 /* Put meaningless p_offset for PT_LOAD segments
5760 without file contents somewhere within the first
5761 page, in an attempt to not point past EOF. */
5762 bfd_size_type align = maxpagesize;
5763 if (align < p->p_align)
5764 align = p->p_align;
5765 if (align < 1)
5766 align = 1;
5767 p->p_offset = off % align;
5768 }
5769 }
5770 else
5771 {
5772 file_ptr adjust;
5773
5774 adjust = off - (p->p_offset + p->p_filesz);
5775 if (!no_contents)
5776 p->p_filesz += adjust;
5777 p->p_memsz += adjust;
5778 }
5779 }
5780
5781 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5782 maps. Set filepos for sections in PT_LOAD segments, and in
5783 core files, for sections in PT_NOTE segments.
5784 assign_file_positions_for_non_load_sections will set filepos
5785 for other sections and update p_filesz for other segments. */
5786 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5787 {
5788 asection *sec;
5789 bfd_size_type align;
5790 Elf_Internal_Shdr *this_hdr;
5791
5792 sec = *secpp;
5793 this_hdr = &elf_section_data (sec)->this_hdr;
5794 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5795
5796 if ((p->p_type == PT_LOAD
5797 || p->p_type == PT_TLS)
5798 && (this_hdr->sh_type != SHT_NOBITS
5799 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5800 && ((this_hdr->sh_flags & SHF_TLS) == 0
5801 || p->p_type == PT_TLS))))
5802 {
5803 bfd_vma p_start = p->p_paddr;
5804 bfd_vma p_end = p_start + p->p_memsz;
5805 bfd_vma s_start = sec->lma;
5806 bfd_vma adjust = s_start - p_end;
5807
5808 if (adjust != 0
5809 && (s_start < p_end
5810 || p_end < p_start))
5811 {
5812 _bfd_error_handler
5813 /* xgettext:c-format */
5814 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5815 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5816 adjust = 0;
5817 sec->lma = p_end;
5818 }
5819 p->p_memsz += adjust;
5820
5821 if (this_hdr->sh_type != SHT_NOBITS)
5822 {
5823 if (p->p_type == PT_LOAD)
5824 {
5825 if (p->p_filesz + adjust < p->p_memsz)
5826 {
5827 /* We have a PROGBITS section following NOBITS ones.
5828 Allocate file space for the NOBITS section(s) and
5829 zero it. */
5830 adjust = p->p_memsz - p->p_filesz;
5831 if (!write_zeros (abfd, off, adjust))
5832 return FALSE;
5833 }
5834 off += adjust;
5835 }
5836 p->p_filesz += adjust;
5837 }
5838 }
5839
5840 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5841 {
5842 /* The section at i == 0 is the one that actually contains
5843 everything. */
5844 if (i == 0)
5845 {
5846 this_hdr->sh_offset = sec->filepos = off;
5847 off += this_hdr->sh_size;
5848 p->p_filesz = this_hdr->sh_size;
5849 p->p_memsz = 0;
5850 p->p_align = 1;
5851 }
5852 else
5853 {
5854 /* The rest are fake sections that shouldn't be written. */
5855 sec->filepos = 0;
5856 sec->size = 0;
5857 sec->flags = 0;
5858 continue;
5859 }
5860 }
5861 else
5862 {
5863 if (p->p_type == PT_LOAD)
5864 {
5865 this_hdr->sh_offset = sec->filepos = off;
5866 if (this_hdr->sh_type != SHT_NOBITS)
5867 off += this_hdr->sh_size;
5868 }
5869 else if (this_hdr->sh_type == SHT_NOBITS
5870 && (this_hdr->sh_flags & SHF_TLS) != 0
5871 && this_hdr->sh_offset == 0)
5872 {
5873 /* This is a .tbss section that didn't get a PT_LOAD.
5874 (See _bfd_elf_map_sections_to_segments "Create a
5875 final PT_LOAD".) Set sh_offset to the value it
5876 would have if we had created a zero p_filesz and
5877 p_memsz PT_LOAD header for the section. This
5878 also makes the PT_TLS header have the same
5879 p_offset value. */
5880 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5881 off, align);
5882 this_hdr->sh_offset = sec->filepos = off + adjust;
5883 }
5884
5885 if (this_hdr->sh_type != SHT_NOBITS)
5886 {
5887 p->p_filesz += this_hdr->sh_size;
5888 /* A load section without SHF_ALLOC is something like
5889 a note section in a PT_NOTE segment. These take
5890 file space but are not loaded into memory. */
5891 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5892 p->p_memsz += this_hdr->sh_size;
5893 }
5894 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5895 {
5896 if (p->p_type == PT_TLS)
5897 p->p_memsz += this_hdr->sh_size;
5898
5899 /* .tbss is special. It doesn't contribute to p_memsz of
5900 normal segments. */
5901 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5902 p->p_memsz += this_hdr->sh_size;
5903 }
5904
5905 if (align > p->p_align
5906 && !m->p_align_valid
5907 && (p->p_type != PT_LOAD
5908 || (abfd->flags & D_PAGED) == 0))
5909 p->p_align = align;
5910 }
5911
5912 if (!m->p_flags_valid)
5913 {
5914 p->p_flags |= PF_R;
5915 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5916 p->p_flags |= PF_X;
5917 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5918 p->p_flags |= PF_W;
5919 }
5920 }
5921
5922 off -= off_adjust;
5923
5924 /* PR ld/20815 - Check that the program header segment, if
5925 present, will be loaded into memory. */
5926 if (p->p_type == PT_PHDR
5927 && phdr_load_seg == NULL
5928 && !(bed->elf_backend_allow_non_load_phdr != NULL
5929 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5930 {
5931 /* The fix for this error is usually to edit the linker script being
5932 used and set up the program headers manually. Either that or
5933 leave room for the headers at the start of the SECTIONS. */
5934 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5935 " by LOAD segment"),
5936 abfd);
5937 return FALSE;
5938 }
5939
5940 /* Check that all sections are in a PT_LOAD segment.
5941 Don't check funky gdb generated core files. */
5942 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5943 {
5944 bfd_boolean check_vma = TRUE;
5945
5946 for (i = 1; i < m->count; i++)
5947 if (m->sections[i]->vma == m->sections[i - 1]->vma
5948 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5949 ->this_hdr), p) != 0
5950 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5951 ->this_hdr), p) != 0)
5952 {
5953 /* Looks like we have overlays packed into the segment. */
5954 check_vma = FALSE;
5955 break;
5956 }
5957
5958 for (i = 0; i < m->count; i++)
5959 {
5960 Elf_Internal_Shdr *this_hdr;
5961 asection *sec;
5962
5963 sec = m->sections[i];
5964 this_hdr = &(elf_section_data(sec)->this_hdr);
5965 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5966 && !ELF_TBSS_SPECIAL (this_hdr, p))
5967 {
5968 _bfd_error_handler
5969 /* xgettext:c-format */
5970 (_("%pB: section `%pA' can't be allocated in segment %d"),
5971 abfd, sec, j);
5972 print_segment_map (m);
5973 }
5974 }
5975 }
5976 }
5977
5978 elf_next_file_pos (abfd) = off;
5979
5980 if (link_info != NULL
5981 && phdr_load_seg != NULL
5982 && phdr_load_seg->includes_filehdr)
5983 {
5984 /* There is a segment that contains both the file headers and the
5985 program headers, so provide a symbol __ehdr_start pointing there.
5986 A program can use this to examine itself robustly. */
5987
5988 struct elf_link_hash_entry *hash
5989 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5990 FALSE, FALSE, TRUE);
5991 /* If the symbol was referenced and not defined, define it. */
5992 if (hash != NULL
5993 && (hash->root.type == bfd_link_hash_new
5994 || hash->root.type == bfd_link_hash_undefined
5995 || hash->root.type == bfd_link_hash_undefweak
5996 || hash->root.type == bfd_link_hash_common))
5997 {
5998 asection *s = NULL;
5999 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
6000
6001 if (phdr_load_seg->count != 0)
6002 /* The segment contains sections, so use the first one. */
6003 s = phdr_load_seg->sections[0];
6004 else
6005 /* Use the first (i.e. lowest-addressed) section in any segment. */
6006 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6007 if (m->p_type == PT_LOAD && m->count != 0)
6008 {
6009 s = m->sections[0];
6010 break;
6011 }
6012
6013 if (s != NULL)
6014 {
6015 hash->root.u.def.value = filehdr_vaddr - s->vma;
6016 hash->root.u.def.section = s;
6017 }
6018 else
6019 {
6020 hash->root.u.def.value = filehdr_vaddr;
6021 hash->root.u.def.section = bfd_abs_section_ptr;
6022 }
6023
6024 hash->root.type = bfd_link_hash_defined;
6025 hash->def_regular = 1;
6026 hash->non_elf = 0;
6027 }
6028 }
6029
6030 return TRUE;
6031 }
6032
6033 /* Determine if a bfd is a debuginfo file. Unfortunately there
6034 is no defined method for detecting such files, so we have to
6035 use heuristics instead. */
6036
6037 bfd_boolean
6038 is_debuginfo_file (bfd *abfd)
6039 {
6040 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6041 return FALSE;
6042
6043 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6044 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6045 Elf_Internal_Shdr **headerp;
6046
6047 for (headerp = start_headers; headerp < end_headers; headerp ++)
6048 {
6049 Elf_Internal_Shdr *header = * headerp;
6050
6051 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6052 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6053 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6054 && header->sh_type != SHT_NOBITS
6055 && header->sh_type != SHT_NOTE)
6056 return FALSE;
6057 }
6058
6059 return TRUE;
6060 }
6061
6062 /* Assign file positions for the other sections, except for compressed debugging
6063 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6064
6065 static bfd_boolean
6066 assign_file_positions_for_non_load_sections (bfd *abfd,
6067 struct bfd_link_info *link_info)
6068 {
6069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6070 Elf_Internal_Shdr **i_shdrpp;
6071 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6072 Elf_Internal_Phdr *phdrs;
6073 Elf_Internal_Phdr *p;
6074 struct elf_segment_map *m;
6075 file_ptr off;
6076
6077 i_shdrpp = elf_elfsections (abfd);
6078 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6079 off = elf_next_file_pos (abfd);
6080 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6081 {
6082 Elf_Internal_Shdr *hdr;
6083
6084 hdr = *hdrpp;
6085 if (hdr->bfd_section != NULL
6086 && (hdr->bfd_section->filepos != 0
6087 || (hdr->sh_type == SHT_NOBITS
6088 && hdr->contents == NULL)))
6089 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6090 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6091 {
6092 if (hdr->sh_size != 0
6093 /* PR 24717 - debuginfo files are known to be not strictly
6094 compliant with the ELF standard. In particular they often
6095 have .note.gnu.property sections that are outside of any
6096 loadable segment. This is not a problem for such files,
6097 so do not warn about them. */
6098 && ! is_debuginfo_file (abfd))
6099 _bfd_error_handler
6100 /* xgettext:c-format */
6101 (_("%pB: warning: allocated section `%s' not in segment"),
6102 abfd,
6103 (hdr->bfd_section == NULL
6104 ? "*unknown*"
6105 : hdr->bfd_section->name));
6106 /* We don't need to page align empty sections. */
6107 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6108 off += vma_page_aligned_bias (hdr->sh_addr, off,
6109 bed->maxpagesize);
6110 else
6111 off += vma_page_aligned_bias (hdr->sh_addr, off,
6112 hdr->sh_addralign);
6113 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6114 FALSE);
6115 }
6116 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6117 && hdr->bfd_section == NULL)
6118 /* We don't know the offset of these sections yet: their size has
6119 not been decided. */
6120 || (hdr->bfd_section != NULL
6121 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6122 || (bfd_section_is_ctf (hdr->bfd_section)
6123 && abfd->is_linker_output)))
6124 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6125 || (elf_symtab_shndx_list (abfd) != NULL
6126 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6127 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6128 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6129 hdr->sh_offset = -1;
6130 else
6131 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6132 }
6133 elf_next_file_pos (abfd) = off;
6134
6135 /* Now that we have set the section file positions, we can set up
6136 the file positions for the non PT_LOAD segments. */
6137 phdrs = elf_tdata (abfd)->phdr;
6138 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6139 {
6140 if (p->p_type == PT_GNU_RELRO)
6141 {
6142 bfd_vma start, end;
6143 bfd_boolean ok;
6144
6145 if (link_info != NULL)
6146 {
6147 /* During linking the range of the RELRO segment is passed
6148 in link_info. Note that there may be padding between
6149 relro_start and the first RELRO section. */
6150 start = link_info->relro_start;
6151 end = link_info->relro_end;
6152 }
6153 else if (m->count != 0)
6154 {
6155 if (!m->p_size_valid)
6156 abort ();
6157 start = m->sections[0]->vma;
6158 end = start + m->p_size;
6159 }
6160 else
6161 {
6162 start = 0;
6163 end = 0;
6164 }
6165
6166 ok = FALSE;
6167 if (start < end)
6168 {
6169 struct elf_segment_map *lm;
6170 const Elf_Internal_Phdr *lp;
6171 unsigned int i;
6172
6173 /* Find a LOAD segment containing a section in the RELRO
6174 segment. */
6175 for (lm = elf_seg_map (abfd), lp = phdrs;
6176 lm != NULL;
6177 lm = lm->next, lp++)
6178 {
6179 if (lp->p_type == PT_LOAD
6180 && lm->count != 0
6181 && (lm->sections[lm->count - 1]->vma
6182 + (!IS_TBSS (lm->sections[lm->count - 1])
6183 ? lm->sections[lm->count - 1]->size
6184 : 0)) > start
6185 && lm->sections[0]->vma < end)
6186 break;
6187 }
6188
6189 if (lm != NULL)
6190 {
6191 /* Find the section starting the RELRO segment. */
6192 for (i = 0; i < lm->count; i++)
6193 {
6194 asection *s = lm->sections[i];
6195 if (s->vma >= start
6196 && s->vma < end
6197 && s->size != 0)
6198 break;
6199 }
6200
6201 if (i < lm->count)
6202 {
6203 p->p_vaddr = lm->sections[i]->vma;
6204 p->p_paddr = lm->sections[i]->lma;
6205 p->p_offset = lm->sections[i]->filepos;
6206 p->p_memsz = end - p->p_vaddr;
6207 p->p_filesz = p->p_memsz;
6208
6209 /* The RELRO segment typically ends a few bytes
6210 into .got.plt but other layouts are possible.
6211 In cases where the end does not match any
6212 loaded section (for instance is in file
6213 padding), trim p_filesz back to correspond to
6214 the end of loaded section contents. */
6215 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6216 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6217
6218 /* Preserve the alignment and flags if they are
6219 valid. The gold linker generates RW/4 for
6220 the PT_GNU_RELRO section. It is better for
6221 objcopy/strip to honor these attributes
6222 otherwise gdb will choke when using separate
6223 debug files. */
6224 if (!m->p_align_valid)
6225 p->p_align = 1;
6226 if (!m->p_flags_valid)
6227 p->p_flags = PF_R;
6228 ok = TRUE;
6229 }
6230 }
6231 }
6232 if (link_info != NULL)
6233 BFD_ASSERT (ok);
6234 if (!ok)
6235 memset (p, 0, sizeof *p);
6236 }
6237 else if (p->p_type == PT_GNU_STACK)
6238 {
6239 if (m->p_size_valid)
6240 p->p_memsz = m->p_size;
6241 }
6242 else if (m->count != 0)
6243 {
6244 unsigned int i;
6245
6246 if (p->p_type != PT_LOAD
6247 && (p->p_type != PT_NOTE
6248 || bfd_get_format (abfd) != bfd_core))
6249 {
6250 /* A user specified segment layout may include a PHDR
6251 segment that overlaps with a LOAD segment... */
6252 if (p->p_type == PT_PHDR)
6253 {
6254 m->count = 0;
6255 continue;
6256 }
6257
6258 if (m->includes_filehdr || m->includes_phdrs)
6259 {
6260 /* PR 17512: file: 2195325e. */
6261 _bfd_error_handler
6262 (_("%pB: error: non-load segment %d includes file header "
6263 "and/or program header"),
6264 abfd, (int) (p - phdrs));
6265 return FALSE;
6266 }
6267
6268 p->p_filesz = 0;
6269 p->p_offset = m->sections[0]->filepos;
6270 for (i = m->count; i-- != 0;)
6271 {
6272 asection *sect = m->sections[i];
6273 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6274 if (hdr->sh_type != SHT_NOBITS)
6275 {
6276 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6277 + hdr->sh_size);
6278 break;
6279 }
6280 }
6281 }
6282 }
6283 }
6284
6285 return TRUE;
6286 }
6287
6288 static elf_section_list *
6289 find_section_in_list (unsigned int i, elf_section_list * list)
6290 {
6291 for (;list != NULL; list = list->next)
6292 if (list->ndx == i)
6293 break;
6294 return list;
6295 }
6296
6297 /* Work out the file positions of all the sections. This is called by
6298 _bfd_elf_compute_section_file_positions. All the section sizes and
6299 VMAs must be known before this is called.
6300
6301 Reloc sections come in two flavours: Those processed specially as
6302 "side-channel" data attached to a section to which they apply, and those that
6303 bfd doesn't process as relocations. The latter sort are stored in a normal
6304 bfd section by bfd_section_from_shdr. We don't consider the former sort
6305 here, unless they form part of the loadable image. Reloc sections not
6306 assigned here (and compressed debugging sections and CTF sections which
6307 nothing else in the file can rely upon) will be handled later by
6308 assign_file_positions_for_relocs.
6309
6310 We also don't set the positions of the .symtab and .strtab here. */
6311
6312 static bfd_boolean
6313 assign_file_positions_except_relocs (bfd *abfd,
6314 struct bfd_link_info *link_info)
6315 {
6316 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6317 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6318 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6319 unsigned int alloc;
6320
6321 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6322 && bfd_get_format (abfd) != bfd_core)
6323 {
6324 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6325 unsigned int num_sec = elf_numsections (abfd);
6326 Elf_Internal_Shdr **hdrpp;
6327 unsigned int i;
6328 file_ptr off;
6329
6330 /* Start after the ELF header. */
6331 off = i_ehdrp->e_ehsize;
6332
6333 /* We are not creating an executable, which means that we are
6334 not creating a program header, and that the actual order of
6335 the sections in the file is unimportant. */
6336 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6337 {
6338 Elf_Internal_Shdr *hdr;
6339
6340 hdr = *hdrpp;
6341 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6342 && hdr->bfd_section == NULL)
6343 /* Do not assign offsets for these sections yet: we don't know
6344 their sizes. */
6345 || (hdr->bfd_section != NULL
6346 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6347 || (bfd_section_is_ctf (hdr->bfd_section)
6348 && abfd->is_linker_output)))
6349 || i == elf_onesymtab (abfd)
6350 || (elf_symtab_shndx_list (abfd) != NULL
6351 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6352 || i == elf_strtab_sec (abfd)
6353 || i == elf_shstrtab_sec (abfd))
6354 {
6355 hdr->sh_offset = -1;
6356 }
6357 else
6358 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6359 }
6360
6361 elf_next_file_pos (abfd) = off;
6362 elf_program_header_size (abfd) = 0;
6363 }
6364 else
6365 {
6366 /* Assign file positions for the loaded sections based on the
6367 assignment of sections to segments. */
6368 if (!assign_file_positions_for_load_sections (abfd, link_info))
6369 return FALSE;
6370
6371 /* And for non-load sections. */
6372 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6373 return FALSE;
6374 }
6375
6376 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6377 return FALSE;
6378
6379 /* Write out the program headers. */
6380 alloc = i_ehdrp->e_phnum;
6381 if (alloc != 0)
6382 {
6383 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6384 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6385 return FALSE;
6386 }
6387
6388 return TRUE;
6389 }
6390
6391 bfd_boolean
6392 _bfd_elf_init_file_header (bfd *abfd,
6393 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6394 {
6395 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6396 struct elf_strtab_hash *shstrtab;
6397 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6398
6399 i_ehdrp = elf_elfheader (abfd);
6400
6401 shstrtab = _bfd_elf_strtab_init ();
6402 if (shstrtab == NULL)
6403 return FALSE;
6404
6405 elf_shstrtab (abfd) = shstrtab;
6406
6407 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6408 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6409 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6410 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6411
6412 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6413 i_ehdrp->e_ident[EI_DATA] =
6414 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6415 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6416
6417 if ((abfd->flags & DYNAMIC) != 0)
6418 i_ehdrp->e_type = ET_DYN;
6419 else if ((abfd->flags & EXEC_P) != 0)
6420 i_ehdrp->e_type = ET_EXEC;
6421 else if (bfd_get_format (abfd) == bfd_core)
6422 i_ehdrp->e_type = ET_CORE;
6423 else
6424 i_ehdrp->e_type = ET_REL;
6425
6426 switch (bfd_get_arch (abfd))
6427 {
6428 case bfd_arch_unknown:
6429 i_ehdrp->e_machine = EM_NONE;
6430 break;
6431
6432 /* There used to be a long list of cases here, each one setting
6433 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6434 in the corresponding bfd definition. To avoid duplication,
6435 the switch was removed. Machines that need special handling
6436 can generally do it in elf_backend_final_write_processing(),
6437 unless they need the information earlier than the final write.
6438 Such need can generally be supplied by replacing the tests for
6439 e_machine with the conditions used to determine it. */
6440 default:
6441 i_ehdrp->e_machine = bed->elf_machine_code;
6442 }
6443
6444 i_ehdrp->e_version = bed->s->ev_current;
6445 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6446
6447 /* No program header, for now. */
6448 i_ehdrp->e_phoff = 0;
6449 i_ehdrp->e_phentsize = 0;
6450 i_ehdrp->e_phnum = 0;
6451
6452 /* Each bfd section is section header entry. */
6453 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6454 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6455
6456 elf_tdata (abfd)->symtab_hdr.sh_name =
6457 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6458 elf_tdata (abfd)->strtab_hdr.sh_name =
6459 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6460 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6461 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6462 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6463 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6464 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6465 return FALSE;
6466
6467 return TRUE;
6468 }
6469
6470 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6471
6472 FIXME: We used to have code here to sort the PT_LOAD segments into
6473 ascending order, as per the ELF spec. But this breaks some programs,
6474 including the Linux kernel. But really either the spec should be
6475 changed or the programs updated. */
6476
6477 bfd_boolean
6478 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6479 {
6480 if (link_info != NULL && bfd_link_pie (link_info))
6481 {
6482 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6483 unsigned int num_segments = i_ehdrp->e_phnum;
6484 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6485 Elf_Internal_Phdr *segment = tdata->phdr;
6486 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6487
6488 /* Find the lowest p_vaddr in PT_LOAD segments. */
6489 bfd_vma p_vaddr = (bfd_vma) -1;
6490 for (; segment < end_segment; segment++)
6491 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6492 p_vaddr = segment->p_vaddr;
6493
6494 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6495 segments is non-zero. */
6496 if (p_vaddr)
6497 i_ehdrp->e_type = ET_EXEC;
6498 }
6499 return TRUE;
6500 }
6501
6502 /* Assign file positions for all the reloc sections which are not part
6503 of the loadable file image, and the file position of section headers. */
6504
6505 static bfd_boolean
6506 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6507 {
6508 file_ptr off;
6509 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6510 Elf_Internal_Shdr *shdrp;
6511 Elf_Internal_Ehdr *i_ehdrp;
6512 const struct elf_backend_data *bed;
6513
6514 off = elf_next_file_pos (abfd);
6515
6516 shdrpp = elf_elfsections (abfd);
6517 end_shdrpp = shdrpp + elf_numsections (abfd);
6518 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6519 {
6520 shdrp = *shdrpp;
6521 if (shdrp->sh_offset == -1)
6522 {
6523 asection *sec = shdrp->bfd_section;
6524 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6525 || shdrp->sh_type == SHT_RELA);
6526 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6527 if (is_rel
6528 || is_ctf
6529 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6530 {
6531 if (!is_rel && !is_ctf)
6532 {
6533 const char *name = sec->name;
6534 struct bfd_elf_section_data *d;
6535
6536 /* Compress DWARF debug sections. */
6537 if (!bfd_compress_section (abfd, sec,
6538 shdrp->contents))
6539 return FALSE;
6540
6541 if (sec->compress_status == COMPRESS_SECTION_DONE
6542 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6543 {
6544 /* If section is compressed with zlib-gnu, convert
6545 section name from .debug_* to .zdebug_*. */
6546 char *new_name
6547 = convert_debug_to_zdebug (abfd, name);
6548 if (new_name == NULL)
6549 return FALSE;
6550 name = new_name;
6551 }
6552 /* Add section name to section name section. */
6553 if (shdrp->sh_name != (unsigned int) -1)
6554 abort ();
6555 shdrp->sh_name
6556 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6557 name, FALSE);
6558 d = elf_section_data (sec);
6559
6560 /* Add reloc section name to section name section. */
6561 if (d->rel.hdr
6562 && !_bfd_elf_set_reloc_sh_name (abfd,
6563 d->rel.hdr,
6564 name, FALSE))
6565 return FALSE;
6566 if (d->rela.hdr
6567 && !_bfd_elf_set_reloc_sh_name (abfd,
6568 d->rela.hdr,
6569 name, TRUE))
6570 return FALSE;
6571
6572 /* Update section size and contents. */
6573 shdrp->sh_size = sec->size;
6574 shdrp->contents = sec->contents;
6575 shdrp->bfd_section->contents = NULL;
6576 }
6577 else if (is_ctf)
6578 {
6579 /* Update section size and contents. */
6580 shdrp->sh_size = sec->size;
6581 shdrp->contents = sec->contents;
6582 }
6583
6584 off = _bfd_elf_assign_file_position_for_section (shdrp,
6585 off,
6586 TRUE);
6587 }
6588 }
6589 }
6590
6591 /* Place section name section after DWARF debug sections have been
6592 compressed. */
6593 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6594 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6595 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6596 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6597
6598 /* Place the section headers. */
6599 i_ehdrp = elf_elfheader (abfd);
6600 bed = get_elf_backend_data (abfd);
6601 off = align_file_position (off, 1 << bed->s->log_file_align);
6602 i_ehdrp->e_shoff = off;
6603 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6604 elf_next_file_pos (abfd) = off;
6605
6606 return TRUE;
6607 }
6608
6609 bfd_boolean
6610 _bfd_elf_write_object_contents (bfd *abfd)
6611 {
6612 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6613 Elf_Internal_Shdr **i_shdrp;
6614 bfd_boolean failed;
6615 unsigned int count, num_sec;
6616 struct elf_obj_tdata *t;
6617
6618 if (! abfd->output_has_begun
6619 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6620 return FALSE;
6621 /* Do not rewrite ELF data when the BFD has been opened for update.
6622 abfd->output_has_begun was set to TRUE on opening, so creation of new
6623 sections, and modification of existing section sizes was restricted.
6624 This means the ELF header, program headers and section headers can't have
6625 changed.
6626 If the contents of any sections has been modified, then those changes have
6627 already been written to the BFD. */
6628 else if (abfd->direction == both_direction)
6629 {
6630 BFD_ASSERT (abfd->output_has_begun);
6631 return TRUE;
6632 }
6633
6634 i_shdrp = elf_elfsections (abfd);
6635
6636 failed = FALSE;
6637 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6638 if (failed)
6639 return FALSE;
6640
6641 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6642 return FALSE;
6643
6644 /* After writing the headers, we need to write the sections too... */
6645 num_sec = elf_numsections (abfd);
6646 for (count = 1; count < num_sec; count++)
6647 {
6648 i_shdrp[count]->sh_name
6649 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6650 i_shdrp[count]->sh_name);
6651 if (bed->elf_backend_section_processing)
6652 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6653 return FALSE;
6654 if (i_shdrp[count]->contents)
6655 {
6656 bfd_size_type amt = i_shdrp[count]->sh_size;
6657
6658 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6659 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6660 return FALSE;
6661 }
6662 }
6663
6664 /* Write out the section header names. */
6665 t = elf_tdata (abfd);
6666 if (elf_shstrtab (abfd) != NULL
6667 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6668 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6669 return FALSE;
6670
6671 if (!(*bed->elf_backend_final_write_processing) (abfd))
6672 return FALSE;
6673
6674 if (!bed->s->write_shdrs_and_ehdr (abfd))
6675 return FALSE;
6676
6677 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6678 if (t->o->build_id.after_write_object_contents != NULL)
6679 return (*t->o->build_id.after_write_object_contents) (abfd);
6680
6681 return TRUE;
6682 }
6683
6684 bfd_boolean
6685 _bfd_elf_write_corefile_contents (bfd *abfd)
6686 {
6687 /* Hopefully this can be done just like an object file. */
6688 return _bfd_elf_write_object_contents (abfd);
6689 }
6690
6691 /* Given a section, search the header to find them. */
6692
6693 unsigned int
6694 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6695 {
6696 const struct elf_backend_data *bed;
6697 unsigned int sec_index;
6698
6699 if (elf_section_data (asect) != NULL
6700 && elf_section_data (asect)->this_idx != 0)
6701 return elf_section_data (asect)->this_idx;
6702
6703 if (bfd_is_abs_section (asect))
6704 sec_index = SHN_ABS;
6705 else if (bfd_is_com_section (asect))
6706 sec_index = SHN_COMMON;
6707 else if (bfd_is_und_section (asect))
6708 sec_index = SHN_UNDEF;
6709 else
6710 sec_index = SHN_BAD;
6711
6712 bed = get_elf_backend_data (abfd);
6713 if (bed->elf_backend_section_from_bfd_section)
6714 {
6715 int retval = sec_index;
6716
6717 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6718 return retval;
6719 }
6720
6721 if (sec_index == SHN_BAD)
6722 bfd_set_error (bfd_error_nonrepresentable_section);
6723
6724 return sec_index;
6725 }
6726
6727 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6728 on error. */
6729
6730 int
6731 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6732 {
6733 asymbol *asym_ptr = *asym_ptr_ptr;
6734 int idx;
6735 flagword flags = asym_ptr->flags;
6736
6737 /* When gas creates relocations against local labels, it creates its
6738 own symbol for the section, but does put the symbol into the
6739 symbol chain, so udata is 0. When the linker is generating
6740 relocatable output, this section symbol may be for one of the
6741 input sections rather than the output section. */
6742 if (asym_ptr->udata.i == 0
6743 && (flags & BSF_SECTION_SYM)
6744 && asym_ptr->section)
6745 {
6746 asection *sec;
6747 int indx;
6748
6749 sec = asym_ptr->section;
6750 if (sec->owner != abfd && sec->output_section != NULL)
6751 sec = sec->output_section;
6752 if (sec->owner == abfd
6753 && (indx = sec->index) < elf_num_section_syms (abfd)
6754 && elf_section_syms (abfd)[indx] != NULL)
6755 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6756 }
6757
6758 idx = asym_ptr->udata.i;
6759
6760 if (idx == 0)
6761 {
6762 /* This case can occur when using --strip-symbol on a symbol
6763 which is used in a relocation entry. */
6764 _bfd_error_handler
6765 /* xgettext:c-format */
6766 (_("%pB: symbol `%s' required but not present"),
6767 abfd, bfd_asymbol_name (asym_ptr));
6768 bfd_set_error (bfd_error_no_symbols);
6769 return -1;
6770 }
6771
6772 #if DEBUG & 4
6773 {
6774 fprintf (stderr,
6775 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6776 (long) asym_ptr, asym_ptr->name, idx, flags);
6777 fflush (stderr);
6778 }
6779 #endif
6780
6781 return idx;
6782 }
6783
6784 /* Rewrite program header information. */
6785
6786 static bfd_boolean
6787 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6788 {
6789 Elf_Internal_Ehdr *iehdr;
6790 struct elf_segment_map *map;
6791 struct elf_segment_map *map_first;
6792 struct elf_segment_map **pointer_to_map;
6793 Elf_Internal_Phdr *segment;
6794 asection *section;
6795 unsigned int i;
6796 unsigned int num_segments;
6797 bfd_boolean phdr_included = FALSE;
6798 bfd_boolean p_paddr_valid;
6799 bfd_vma maxpagesize;
6800 struct elf_segment_map *phdr_adjust_seg = NULL;
6801 unsigned int phdr_adjust_num = 0;
6802 const struct elf_backend_data *bed;
6803
6804 bed = get_elf_backend_data (ibfd);
6805 iehdr = elf_elfheader (ibfd);
6806
6807 map_first = NULL;
6808 pointer_to_map = &map_first;
6809
6810 num_segments = elf_elfheader (ibfd)->e_phnum;
6811 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6812
6813 /* Returns the end address of the segment + 1. */
6814 #define SEGMENT_END(segment, start) \
6815 (start + (segment->p_memsz > segment->p_filesz \
6816 ? segment->p_memsz : segment->p_filesz))
6817
6818 #define SECTION_SIZE(section, segment) \
6819 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6820 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6821 ? section->size : 0)
6822
6823 /* Returns TRUE if the given section is contained within
6824 the given segment. VMA addresses are compared. */
6825 #define IS_CONTAINED_BY_VMA(section, segment) \
6826 (section->vma >= segment->p_vaddr \
6827 && (section->vma + SECTION_SIZE (section, segment) \
6828 <= (SEGMENT_END (segment, segment->p_vaddr))))
6829
6830 /* Returns TRUE if the given section is contained within
6831 the given segment. LMA addresses are compared. */
6832 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6833 (section->lma >= base \
6834 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6835 && (section->lma + SECTION_SIZE (section, segment) \
6836 <= SEGMENT_END (segment, base)))
6837
6838 /* Handle PT_NOTE segment. */
6839 #define IS_NOTE(p, s) \
6840 (p->p_type == PT_NOTE \
6841 && elf_section_type (s) == SHT_NOTE \
6842 && (bfd_vma) s->filepos >= p->p_offset \
6843 && ((bfd_vma) s->filepos + s->size \
6844 <= p->p_offset + p->p_filesz))
6845
6846 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6847 etc. */
6848 #define IS_COREFILE_NOTE(p, s) \
6849 (IS_NOTE (p, s) \
6850 && bfd_get_format (ibfd) == bfd_core \
6851 && s->vma == 0 \
6852 && s->lma == 0)
6853
6854 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6855 linker, which generates a PT_INTERP section with p_vaddr and
6856 p_memsz set to 0. */
6857 #define IS_SOLARIS_PT_INTERP(p, s) \
6858 (p->p_vaddr == 0 \
6859 && p->p_paddr == 0 \
6860 && p->p_memsz == 0 \
6861 && p->p_filesz > 0 \
6862 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6863 && s->size > 0 \
6864 && (bfd_vma) s->filepos >= p->p_offset \
6865 && ((bfd_vma) s->filepos + s->size \
6866 <= p->p_offset + p->p_filesz))
6867
6868 /* Decide if the given section should be included in the given segment.
6869 A section will be included if:
6870 1. It is within the address space of the segment -- we use the LMA
6871 if that is set for the segment and the VMA otherwise,
6872 2. It is an allocated section or a NOTE section in a PT_NOTE
6873 segment.
6874 3. There is an output section associated with it,
6875 4. The section has not already been allocated to a previous segment.
6876 5. PT_GNU_STACK segments do not include any sections.
6877 6. PT_TLS segment includes only SHF_TLS sections.
6878 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6879 8. PT_DYNAMIC should not contain empty sections at the beginning
6880 (with the possible exception of .dynamic). */
6881 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6882 ((((segment->p_paddr \
6883 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6884 : IS_CONTAINED_BY_VMA (section, segment)) \
6885 && (section->flags & SEC_ALLOC) != 0) \
6886 || IS_NOTE (segment, section)) \
6887 && segment->p_type != PT_GNU_STACK \
6888 && (segment->p_type != PT_TLS \
6889 || (section->flags & SEC_THREAD_LOCAL)) \
6890 && (segment->p_type == PT_LOAD \
6891 || segment->p_type == PT_TLS \
6892 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6893 && (segment->p_type != PT_DYNAMIC \
6894 || SECTION_SIZE (section, segment) > 0 \
6895 || (segment->p_paddr \
6896 ? segment->p_paddr != section->lma \
6897 : segment->p_vaddr != section->vma) \
6898 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6899 && (segment->p_type != PT_LOAD || !section->segment_mark))
6900
6901 /* If the output section of a section in the input segment is NULL,
6902 it is removed from the corresponding output segment. */
6903 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6904 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6905 && section->output_section != NULL)
6906
6907 /* Returns TRUE iff seg1 starts after the end of seg2. */
6908 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6909 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6910
6911 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6912 their VMA address ranges and their LMA address ranges overlap.
6913 It is possible to have overlapping VMA ranges without overlapping LMA
6914 ranges. RedBoot images for example can have both .data and .bss mapped
6915 to the same VMA range, but with the .data section mapped to a different
6916 LMA. */
6917 #define SEGMENT_OVERLAPS(seg1, seg2) \
6918 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6919 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6920 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6921 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6922
6923 /* Initialise the segment mark field. */
6924 for (section = ibfd->sections; section != NULL; section = section->next)
6925 section->segment_mark = FALSE;
6926
6927 /* The Solaris linker creates program headers in which all the
6928 p_paddr fields are zero. When we try to objcopy or strip such a
6929 file, we get confused. Check for this case, and if we find it
6930 don't set the p_paddr_valid fields. */
6931 p_paddr_valid = FALSE;
6932 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6933 i < num_segments;
6934 i++, segment++)
6935 if (segment->p_paddr != 0)
6936 {
6937 p_paddr_valid = TRUE;
6938 break;
6939 }
6940
6941 /* Scan through the segments specified in the program header
6942 of the input BFD. For this first scan we look for overlaps
6943 in the loadable segments. These can be created by weird
6944 parameters to objcopy. Also, fix some solaris weirdness. */
6945 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6946 i < num_segments;
6947 i++, segment++)
6948 {
6949 unsigned int j;
6950 Elf_Internal_Phdr *segment2;
6951
6952 if (segment->p_type == PT_INTERP)
6953 for (section = ibfd->sections; section; section = section->next)
6954 if (IS_SOLARIS_PT_INTERP (segment, section))
6955 {
6956 /* Mininal change so that the normal section to segment
6957 assignment code will work. */
6958 segment->p_vaddr = section->vma;
6959 break;
6960 }
6961
6962 if (segment->p_type != PT_LOAD)
6963 {
6964 /* Remove PT_GNU_RELRO segment. */
6965 if (segment->p_type == PT_GNU_RELRO)
6966 segment->p_type = PT_NULL;
6967 continue;
6968 }
6969
6970 /* Determine if this segment overlaps any previous segments. */
6971 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6972 {
6973 bfd_signed_vma extra_length;
6974
6975 if (segment2->p_type != PT_LOAD
6976 || !SEGMENT_OVERLAPS (segment, segment2))
6977 continue;
6978
6979 /* Merge the two segments together. */
6980 if (segment2->p_vaddr < segment->p_vaddr)
6981 {
6982 /* Extend SEGMENT2 to include SEGMENT and then delete
6983 SEGMENT. */
6984 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6985 - SEGMENT_END (segment2, segment2->p_vaddr));
6986
6987 if (extra_length > 0)
6988 {
6989 segment2->p_memsz += extra_length;
6990 segment2->p_filesz += extra_length;
6991 }
6992
6993 segment->p_type = PT_NULL;
6994
6995 /* Since we have deleted P we must restart the outer loop. */
6996 i = 0;
6997 segment = elf_tdata (ibfd)->phdr;
6998 break;
6999 }
7000 else
7001 {
7002 /* Extend SEGMENT to include SEGMENT2 and then delete
7003 SEGMENT2. */
7004 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7005 - SEGMENT_END (segment, segment->p_vaddr));
7006
7007 if (extra_length > 0)
7008 {
7009 segment->p_memsz += extra_length;
7010 segment->p_filesz += extra_length;
7011 }
7012
7013 segment2->p_type = PT_NULL;
7014 }
7015 }
7016 }
7017
7018 /* The second scan attempts to assign sections to segments. */
7019 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7020 i < num_segments;
7021 i++, segment++)
7022 {
7023 unsigned int section_count;
7024 asection **sections;
7025 asection *output_section;
7026 unsigned int isec;
7027 asection *matching_lma;
7028 asection *suggested_lma;
7029 unsigned int j;
7030 bfd_size_type amt;
7031 asection *first_section;
7032
7033 if (segment->p_type == PT_NULL)
7034 continue;
7035
7036 first_section = NULL;
7037 /* Compute how many sections might be placed into this segment. */
7038 for (section = ibfd->sections, section_count = 0;
7039 section != NULL;
7040 section = section->next)
7041 {
7042 /* Find the first section in the input segment, which may be
7043 removed from the corresponding output segment. */
7044 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7045 {
7046 if (first_section == NULL)
7047 first_section = section;
7048 if (section->output_section != NULL)
7049 ++section_count;
7050 }
7051 }
7052
7053 /* Allocate a segment map big enough to contain
7054 all of the sections we have selected. */
7055 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7056 amt += (bfd_size_type) section_count * sizeof (asection *);
7057 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7058 if (map == NULL)
7059 return FALSE;
7060
7061 /* Initialise the fields of the segment map. Default to
7062 using the physical address of the segment in the input BFD. */
7063 map->next = NULL;
7064 map->p_type = segment->p_type;
7065 map->p_flags = segment->p_flags;
7066 map->p_flags_valid = 1;
7067
7068 /* If the first section in the input segment is removed, there is
7069 no need to preserve segment physical address in the corresponding
7070 output segment. */
7071 if (!first_section || first_section->output_section != NULL)
7072 {
7073 map->p_paddr = segment->p_paddr;
7074 map->p_paddr_valid = p_paddr_valid;
7075 }
7076
7077 /* Determine if this segment contains the ELF file header
7078 and if it contains the program headers themselves. */
7079 map->includes_filehdr = (segment->p_offset == 0
7080 && segment->p_filesz >= iehdr->e_ehsize);
7081 map->includes_phdrs = 0;
7082
7083 if (!phdr_included || segment->p_type != PT_LOAD)
7084 {
7085 map->includes_phdrs =
7086 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7087 && (segment->p_offset + segment->p_filesz
7088 >= ((bfd_vma) iehdr->e_phoff
7089 + iehdr->e_phnum * iehdr->e_phentsize)));
7090
7091 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7092 phdr_included = TRUE;
7093 }
7094
7095 if (section_count == 0)
7096 {
7097 /* Special segments, such as the PT_PHDR segment, may contain
7098 no sections, but ordinary, loadable segments should contain
7099 something. They are allowed by the ELF spec however, so only
7100 a warning is produced.
7101 There is however the valid use case of embedded systems which
7102 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7103 flash memory with zeros. No warning is shown for that case. */
7104 if (segment->p_type == PT_LOAD
7105 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7106 /* xgettext:c-format */
7107 _bfd_error_handler
7108 (_("%pB: warning: empty loadable segment detected"
7109 " at vaddr=%#" PRIx64 ", is this intentional?"),
7110 ibfd, (uint64_t) segment->p_vaddr);
7111
7112 map->p_vaddr_offset = segment->p_vaddr;
7113 map->count = 0;
7114 *pointer_to_map = map;
7115 pointer_to_map = &map->next;
7116
7117 continue;
7118 }
7119
7120 /* Now scan the sections in the input BFD again and attempt
7121 to add their corresponding output sections to the segment map.
7122 The problem here is how to handle an output section which has
7123 been moved (ie had its LMA changed). There are four possibilities:
7124
7125 1. None of the sections have been moved.
7126 In this case we can continue to use the segment LMA from the
7127 input BFD.
7128
7129 2. All of the sections have been moved by the same amount.
7130 In this case we can change the segment's LMA to match the LMA
7131 of the first section.
7132
7133 3. Some of the sections have been moved, others have not.
7134 In this case those sections which have not been moved can be
7135 placed in the current segment which will have to have its size,
7136 and possibly its LMA changed, and a new segment or segments will
7137 have to be created to contain the other sections.
7138
7139 4. The sections have been moved, but not by the same amount.
7140 In this case we can change the segment's LMA to match the LMA
7141 of the first section and we will have to create a new segment
7142 or segments to contain the other sections.
7143
7144 In order to save time, we allocate an array to hold the section
7145 pointers that we are interested in. As these sections get assigned
7146 to a segment, they are removed from this array. */
7147
7148 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7149 if (sections == NULL)
7150 return FALSE;
7151
7152 /* Step One: Scan for segment vs section LMA conflicts.
7153 Also add the sections to the section array allocated above.
7154 Also add the sections to the current segment. In the common
7155 case, where the sections have not been moved, this means that
7156 we have completely filled the segment, and there is nothing
7157 more to do. */
7158 isec = 0;
7159 matching_lma = NULL;
7160 suggested_lma = NULL;
7161
7162 for (section = first_section, j = 0;
7163 section != NULL;
7164 section = section->next)
7165 {
7166 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7167 {
7168 output_section = section->output_section;
7169
7170 sections[j++] = section;
7171
7172 /* The Solaris native linker always sets p_paddr to 0.
7173 We try to catch that case here, and set it to the
7174 correct value. Note - some backends require that
7175 p_paddr be left as zero. */
7176 if (!p_paddr_valid
7177 && segment->p_vaddr != 0
7178 && !bed->want_p_paddr_set_to_zero
7179 && isec == 0
7180 && output_section->lma != 0
7181 && (align_power (segment->p_vaddr
7182 + (map->includes_filehdr
7183 ? iehdr->e_ehsize : 0)
7184 + (map->includes_phdrs
7185 ? iehdr->e_phnum * iehdr->e_phentsize
7186 : 0),
7187 output_section->alignment_power)
7188 == output_section->vma))
7189 map->p_paddr = segment->p_vaddr;
7190
7191 /* Match up the physical address of the segment with the
7192 LMA address of the output section. */
7193 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7194 || IS_COREFILE_NOTE (segment, section)
7195 || (bed->want_p_paddr_set_to_zero
7196 && IS_CONTAINED_BY_VMA (output_section, segment)))
7197 {
7198 if (matching_lma == NULL
7199 || output_section->lma < matching_lma->lma)
7200 matching_lma = output_section;
7201
7202 /* We assume that if the section fits within the segment
7203 then it does not overlap any other section within that
7204 segment. */
7205 map->sections[isec++] = output_section;
7206 }
7207 else if (suggested_lma == NULL)
7208 suggested_lma = output_section;
7209
7210 if (j == section_count)
7211 break;
7212 }
7213 }
7214
7215 BFD_ASSERT (j == section_count);
7216
7217 /* Step Two: Adjust the physical address of the current segment,
7218 if necessary. */
7219 if (isec == section_count)
7220 {
7221 /* All of the sections fitted within the segment as currently
7222 specified. This is the default case. Add the segment to
7223 the list of built segments and carry on to process the next
7224 program header in the input BFD. */
7225 map->count = section_count;
7226 *pointer_to_map = map;
7227 pointer_to_map = &map->next;
7228
7229 if (p_paddr_valid
7230 && !bed->want_p_paddr_set_to_zero)
7231 {
7232 bfd_vma hdr_size = 0;
7233 if (map->includes_filehdr)
7234 hdr_size = iehdr->e_ehsize;
7235 if (map->includes_phdrs)
7236 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7237
7238 /* Account for padding before the first section in the
7239 segment. */
7240 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7241 }
7242
7243 free (sections);
7244 continue;
7245 }
7246 else
7247 {
7248 /* Change the current segment's physical address to match
7249 the LMA of the first section that fitted, or if no
7250 section fitted, the first section. */
7251 if (matching_lma == NULL)
7252 matching_lma = suggested_lma;
7253
7254 map->p_paddr = matching_lma->lma;
7255
7256 /* Offset the segment physical address from the lma
7257 to allow for space taken up by elf headers. */
7258 if (map->includes_phdrs)
7259 {
7260 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7261
7262 /* iehdr->e_phnum is just an estimate of the number
7263 of program headers that we will need. Make a note
7264 here of the number we used and the segment we chose
7265 to hold these headers, so that we can adjust the
7266 offset when we know the correct value. */
7267 phdr_adjust_num = iehdr->e_phnum;
7268 phdr_adjust_seg = map;
7269 }
7270
7271 if (map->includes_filehdr)
7272 {
7273 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7274 map->p_paddr -= iehdr->e_ehsize;
7275 /* We've subtracted off the size of headers from the
7276 first section lma, but there may have been some
7277 alignment padding before that section too. Try to
7278 account for that by adjusting the segment lma down to
7279 the same alignment. */
7280 if (segment->p_align != 0 && segment->p_align < align)
7281 align = segment->p_align;
7282 map->p_paddr &= -align;
7283 }
7284 }
7285
7286 /* Step Three: Loop over the sections again, this time assigning
7287 those that fit to the current segment and removing them from the
7288 sections array; but making sure not to leave large gaps. Once all
7289 possible sections have been assigned to the current segment it is
7290 added to the list of built segments and if sections still remain
7291 to be assigned, a new segment is constructed before repeating
7292 the loop. */
7293 isec = 0;
7294 do
7295 {
7296 map->count = 0;
7297 suggested_lma = NULL;
7298
7299 /* Fill the current segment with sections that fit. */
7300 for (j = 0; j < section_count; j++)
7301 {
7302 section = sections[j];
7303
7304 if (section == NULL)
7305 continue;
7306
7307 output_section = section->output_section;
7308
7309 BFD_ASSERT (output_section != NULL);
7310
7311 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7312 || IS_COREFILE_NOTE (segment, section))
7313 {
7314 if (map->count == 0)
7315 {
7316 /* If the first section in a segment does not start at
7317 the beginning of the segment, then something is
7318 wrong. */
7319 if (align_power (map->p_paddr
7320 + (map->includes_filehdr
7321 ? iehdr->e_ehsize : 0)
7322 + (map->includes_phdrs
7323 ? iehdr->e_phnum * iehdr->e_phentsize
7324 : 0),
7325 output_section->alignment_power)
7326 != output_section->lma)
7327 goto sorry;
7328 }
7329 else
7330 {
7331 asection *prev_sec;
7332
7333 prev_sec = map->sections[map->count - 1];
7334
7335 /* If the gap between the end of the previous section
7336 and the start of this section is more than
7337 maxpagesize then we need to start a new segment. */
7338 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7339 maxpagesize)
7340 < BFD_ALIGN (output_section->lma, maxpagesize))
7341 || (prev_sec->lma + prev_sec->size
7342 > output_section->lma))
7343 {
7344 if (suggested_lma == NULL)
7345 suggested_lma = output_section;
7346
7347 continue;
7348 }
7349 }
7350
7351 map->sections[map->count++] = output_section;
7352 ++isec;
7353 sections[j] = NULL;
7354 if (segment->p_type == PT_LOAD)
7355 section->segment_mark = TRUE;
7356 }
7357 else if (suggested_lma == NULL)
7358 suggested_lma = output_section;
7359 }
7360
7361 /* PR 23932. A corrupt input file may contain sections that cannot
7362 be assigned to any segment - because for example they have a
7363 negative size - or segments that do not contain any sections. */
7364 if (map->count == 0)
7365 {
7366 sorry:
7367 bfd_set_error (bfd_error_sorry);
7368 free (sections);
7369 return FALSE;
7370 }
7371
7372 /* Add the current segment to the list of built segments. */
7373 *pointer_to_map = map;
7374 pointer_to_map = &map->next;
7375
7376 if (isec < section_count)
7377 {
7378 /* We still have not allocated all of the sections to
7379 segments. Create a new segment here, initialise it
7380 and carry on looping. */
7381 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7382 amt += (bfd_size_type) section_count * sizeof (asection *);
7383 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7384 if (map == NULL)
7385 {
7386 free (sections);
7387 return FALSE;
7388 }
7389
7390 /* Initialise the fields of the segment map. Set the physical
7391 physical address to the LMA of the first section that has
7392 not yet been assigned. */
7393 map->next = NULL;
7394 map->p_type = segment->p_type;
7395 map->p_flags = segment->p_flags;
7396 map->p_flags_valid = 1;
7397 map->p_paddr = suggested_lma->lma;
7398 map->p_paddr_valid = p_paddr_valid;
7399 map->includes_filehdr = 0;
7400 map->includes_phdrs = 0;
7401 }
7402 }
7403 while (isec < section_count);
7404
7405 free (sections);
7406 }
7407
7408 elf_seg_map (obfd) = map_first;
7409
7410 /* If we had to estimate the number of program headers that were
7411 going to be needed, then check our estimate now and adjust
7412 the offset if necessary. */
7413 if (phdr_adjust_seg != NULL)
7414 {
7415 unsigned int count;
7416
7417 for (count = 0, map = map_first; map != NULL; map = map->next)
7418 count++;
7419
7420 if (count > phdr_adjust_num)
7421 phdr_adjust_seg->p_paddr
7422 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7423
7424 for (map = map_first; map != NULL; map = map->next)
7425 if (map->p_type == PT_PHDR)
7426 {
7427 bfd_vma adjust
7428 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7429 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7430 break;
7431 }
7432 }
7433
7434 #undef SEGMENT_END
7435 #undef SECTION_SIZE
7436 #undef IS_CONTAINED_BY_VMA
7437 #undef IS_CONTAINED_BY_LMA
7438 #undef IS_NOTE
7439 #undef IS_COREFILE_NOTE
7440 #undef IS_SOLARIS_PT_INTERP
7441 #undef IS_SECTION_IN_INPUT_SEGMENT
7442 #undef INCLUDE_SECTION_IN_SEGMENT
7443 #undef SEGMENT_AFTER_SEGMENT
7444 #undef SEGMENT_OVERLAPS
7445 return TRUE;
7446 }
7447
7448 /* Copy ELF program header information. */
7449
7450 static bfd_boolean
7451 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7452 {
7453 Elf_Internal_Ehdr *iehdr;
7454 struct elf_segment_map *map;
7455 struct elf_segment_map *map_first;
7456 struct elf_segment_map **pointer_to_map;
7457 Elf_Internal_Phdr *segment;
7458 unsigned int i;
7459 unsigned int num_segments;
7460 bfd_boolean phdr_included = FALSE;
7461 bfd_boolean p_paddr_valid;
7462
7463 iehdr = elf_elfheader (ibfd);
7464
7465 map_first = NULL;
7466 pointer_to_map = &map_first;
7467
7468 /* If all the segment p_paddr fields are zero, don't set
7469 map->p_paddr_valid. */
7470 p_paddr_valid = FALSE;
7471 num_segments = elf_elfheader (ibfd)->e_phnum;
7472 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7473 i < num_segments;
7474 i++, segment++)
7475 if (segment->p_paddr != 0)
7476 {
7477 p_paddr_valid = TRUE;
7478 break;
7479 }
7480
7481 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7482 i < num_segments;
7483 i++, segment++)
7484 {
7485 asection *section;
7486 unsigned int section_count;
7487 bfd_size_type amt;
7488 Elf_Internal_Shdr *this_hdr;
7489 asection *first_section = NULL;
7490 asection *lowest_section;
7491
7492 /* Compute how many sections are in this segment. */
7493 for (section = ibfd->sections, section_count = 0;
7494 section != NULL;
7495 section = section->next)
7496 {
7497 this_hdr = &(elf_section_data(section)->this_hdr);
7498 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7499 {
7500 if (first_section == NULL)
7501 first_section = section;
7502 section_count++;
7503 }
7504 }
7505
7506 /* Allocate a segment map big enough to contain
7507 all of the sections we have selected. */
7508 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7509 amt += (bfd_size_type) section_count * sizeof (asection *);
7510 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7511 if (map == NULL)
7512 return FALSE;
7513
7514 /* Initialize the fields of the output segment map with the
7515 input segment. */
7516 map->next = NULL;
7517 map->p_type = segment->p_type;
7518 map->p_flags = segment->p_flags;
7519 map->p_flags_valid = 1;
7520 map->p_paddr = segment->p_paddr;
7521 map->p_paddr_valid = p_paddr_valid;
7522 map->p_align = segment->p_align;
7523 map->p_align_valid = 1;
7524 map->p_vaddr_offset = 0;
7525
7526 if (map->p_type == PT_GNU_RELRO
7527 || map->p_type == PT_GNU_STACK)
7528 {
7529 /* The PT_GNU_RELRO segment may contain the first a few
7530 bytes in the .got.plt section even if the whole .got.plt
7531 section isn't in the PT_GNU_RELRO segment. We won't
7532 change the size of the PT_GNU_RELRO segment.
7533 Similarly, PT_GNU_STACK size is significant on uclinux
7534 systems. */
7535 map->p_size = segment->p_memsz;
7536 map->p_size_valid = 1;
7537 }
7538
7539 /* Determine if this segment contains the ELF file header
7540 and if it contains the program headers themselves. */
7541 map->includes_filehdr = (segment->p_offset == 0
7542 && segment->p_filesz >= iehdr->e_ehsize);
7543
7544 map->includes_phdrs = 0;
7545 if (! phdr_included || segment->p_type != PT_LOAD)
7546 {
7547 map->includes_phdrs =
7548 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7549 && (segment->p_offset + segment->p_filesz
7550 >= ((bfd_vma) iehdr->e_phoff
7551 + iehdr->e_phnum * iehdr->e_phentsize)));
7552
7553 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7554 phdr_included = TRUE;
7555 }
7556
7557 lowest_section = NULL;
7558 if (section_count != 0)
7559 {
7560 unsigned int isec = 0;
7561
7562 for (section = first_section;
7563 section != NULL;
7564 section = section->next)
7565 {
7566 this_hdr = &(elf_section_data(section)->this_hdr);
7567 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7568 {
7569 map->sections[isec++] = section->output_section;
7570 if ((section->flags & SEC_ALLOC) != 0)
7571 {
7572 bfd_vma seg_off;
7573
7574 if (lowest_section == NULL
7575 || section->lma < lowest_section->lma)
7576 lowest_section = section;
7577
7578 /* Section lmas are set up from PT_LOAD header
7579 p_paddr in _bfd_elf_make_section_from_shdr.
7580 If this header has a p_paddr that disagrees
7581 with the section lma, flag the p_paddr as
7582 invalid. */
7583 if ((section->flags & SEC_LOAD) != 0)
7584 seg_off = this_hdr->sh_offset - segment->p_offset;
7585 else
7586 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7587 if (section->lma - segment->p_paddr != seg_off)
7588 map->p_paddr_valid = FALSE;
7589 }
7590 if (isec == section_count)
7591 break;
7592 }
7593 }
7594 }
7595
7596 if (section_count == 0)
7597 map->p_vaddr_offset = segment->p_vaddr;
7598 else if (map->p_paddr_valid)
7599 {
7600 /* Account for padding before the first section in the segment. */
7601 bfd_vma hdr_size = 0;
7602 if (map->includes_filehdr)
7603 hdr_size = iehdr->e_ehsize;
7604 if (map->includes_phdrs)
7605 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7606
7607 map->p_vaddr_offset = (map->p_paddr + hdr_size
7608 - (lowest_section ? lowest_section->lma : 0));
7609 }
7610
7611 map->count = section_count;
7612 *pointer_to_map = map;
7613 pointer_to_map = &map->next;
7614 }
7615
7616 elf_seg_map (obfd) = map_first;
7617 return TRUE;
7618 }
7619
7620 /* Copy private BFD data. This copies or rewrites ELF program header
7621 information. */
7622
7623 static bfd_boolean
7624 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7625 {
7626 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7627 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7628 return TRUE;
7629
7630 if (elf_tdata (ibfd)->phdr == NULL)
7631 return TRUE;
7632
7633 if (ibfd->xvec == obfd->xvec)
7634 {
7635 /* Check to see if any sections in the input BFD
7636 covered by ELF program header have changed. */
7637 Elf_Internal_Phdr *segment;
7638 asection *section, *osec;
7639 unsigned int i, num_segments;
7640 Elf_Internal_Shdr *this_hdr;
7641 const struct elf_backend_data *bed;
7642
7643 bed = get_elf_backend_data (ibfd);
7644
7645 /* Regenerate the segment map if p_paddr is set to 0. */
7646 if (bed->want_p_paddr_set_to_zero)
7647 goto rewrite;
7648
7649 /* Initialize the segment mark field. */
7650 for (section = obfd->sections; section != NULL;
7651 section = section->next)
7652 section->segment_mark = FALSE;
7653
7654 num_segments = elf_elfheader (ibfd)->e_phnum;
7655 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7656 i < num_segments;
7657 i++, segment++)
7658 {
7659 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7660 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7661 which severly confuses things, so always regenerate the segment
7662 map in this case. */
7663 if (segment->p_paddr == 0
7664 && segment->p_memsz == 0
7665 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7666 goto rewrite;
7667
7668 for (section = ibfd->sections;
7669 section != NULL; section = section->next)
7670 {
7671 /* We mark the output section so that we know it comes
7672 from the input BFD. */
7673 osec = section->output_section;
7674 if (osec)
7675 osec->segment_mark = TRUE;
7676
7677 /* Check if this section is covered by the segment. */
7678 this_hdr = &(elf_section_data(section)->this_hdr);
7679 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7680 {
7681 /* FIXME: Check if its output section is changed or
7682 removed. What else do we need to check? */
7683 if (osec == NULL
7684 || section->flags != osec->flags
7685 || section->lma != osec->lma
7686 || section->vma != osec->vma
7687 || section->size != osec->size
7688 || section->rawsize != osec->rawsize
7689 || section->alignment_power != osec->alignment_power)
7690 goto rewrite;
7691 }
7692 }
7693 }
7694
7695 /* Check to see if any output section do not come from the
7696 input BFD. */
7697 for (section = obfd->sections; section != NULL;
7698 section = section->next)
7699 {
7700 if (!section->segment_mark)
7701 goto rewrite;
7702 else
7703 section->segment_mark = FALSE;
7704 }
7705
7706 return copy_elf_program_header (ibfd, obfd);
7707 }
7708
7709 rewrite:
7710 if (ibfd->xvec == obfd->xvec)
7711 {
7712 /* When rewriting program header, set the output maxpagesize to
7713 the maximum alignment of input PT_LOAD segments. */
7714 Elf_Internal_Phdr *segment;
7715 unsigned int i;
7716 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7717 bfd_vma maxpagesize = 0;
7718
7719 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7720 i < num_segments;
7721 i++, segment++)
7722 if (segment->p_type == PT_LOAD
7723 && maxpagesize < segment->p_align)
7724 {
7725 /* PR 17512: file: f17299af. */
7726 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7727 /* xgettext:c-format */
7728 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7729 PRIx64 " is too large"),
7730 ibfd, (uint64_t) segment->p_align);
7731 else
7732 maxpagesize = segment->p_align;
7733 }
7734
7735 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7736 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7737 }
7738
7739 return rewrite_elf_program_header (ibfd, obfd);
7740 }
7741
7742 /* Initialize private output section information from input section. */
7743
7744 bfd_boolean
7745 _bfd_elf_init_private_section_data (bfd *ibfd,
7746 asection *isec,
7747 bfd *obfd,
7748 asection *osec,
7749 struct bfd_link_info *link_info)
7750
7751 {
7752 Elf_Internal_Shdr *ihdr, *ohdr;
7753 bfd_boolean final_link = (link_info != NULL
7754 && !bfd_link_relocatable (link_info));
7755
7756 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7757 || obfd->xvec->flavour != bfd_target_elf_flavour)
7758 return TRUE;
7759
7760 BFD_ASSERT (elf_section_data (osec) != NULL);
7761
7762 /* For objcopy and relocatable link, don't copy the output ELF
7763 section type from input if the output BFD section flags have been
7764 set to something different. For a final link allow some flags
7765 that the linker clears to differ. */
7766 if (elf_section_type (osec) == SHT_NULL
7767 && (osec->flags == isec->flags
7768 || (final_link
7769 && ((osec->flags ^ isec->flags)
7770 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7771 elf_section_type (osec) = elf_section_type (isec);
7772
7773 /* FIXME: Is this correct for all OS/PROC specific flags? */
7774 elf_section_flags (osec) |= (elf_section_flags (isec)
7775 & (SHF_MASKOS | SHF_MASKPROC));
7776
7777 /* Copy sh_info from input for mbind section. */
7778 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7779 && elf_section_flags (isec) & SHF_GNU_MBIND)
7780 elf_section_data (osec)->this_hdr.sh_info
7781 = elf_section_data (isec)->this_hdr.sh_info;
7782
7783 /* Set things up for objcopy and relocatable link. The output
7784 SHT_GROUP section will have its elf_next_in_group pointing back
7785 to the input group members. Ignore linker created group section.
7786 See elfNN_ia64_object_p in elfxx-ia64.c. */
7787 if ((link_info == NULL
7788 || !link_info->resolve_section_groups)
7789 && (elf_sec_group (isec) == NULL
7790 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7791 {
7792 if (elf_section_flags (isec) & SHF_GROUP)
7793 elf_section_flags (osec) |= SHF_GROUP;
7794 elf_next_in_group (osec) = elf_next_in_group (isec);
7795 elf_section_data (osec)->group = elf_section_data (isec)->group;
7796 }
7797
7798 /* If not decompress, preserve SHF_COMPRESSED. */
7799 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7800 elf_section_flags (osec) |= (elf_section_flags (isec)
7801 & SHF_COMPRESSED);
7802
7803 ihdr = &elf_section_data (isec)->this_hdr;
7804
7805 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7806 don't use the output section of the linked-to section since it
7807 may be NULL at this point. */
7808 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7809 {
7810 ohdr = &elf_section_data (osec)->this_hdr;
7811 ohdr->sh_flags |= SHF_LINK_ORDER;
7812 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7813 }
7814
7815 osec->use_rela_p = isec->use_rela_p;
7816
7817 return TRUE;
7818 }
7819
7820 /* Copy private section information. This copies over the entsize
7821 field, and sometimes the info field. */
7822
7823 bfd_boolean
7824 _bfd_elf_copy_private_section_data (bfd *ibfd,
7825 asection *isec,
7826 bfd *obfd,
7827 asection *osec)
7828 {
7829 Elf_Internal_Shdr *ihdr, *ohdr;
7830
7831 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7832 || obfd->xvec->flavour != bfd_target_elf_flavour)
7833 return TRUE;
7834
7835 ihdr = &elf_section_data (isec)->this_hdr;
7836 ohdr = &elf_section_data (osec)->this_hdr;
7837
7838 ohdr->sh_entsize = ihdr->sh_entsize;
7839
7840 if (ihdr->sh_type == SHT_SYMTAB
7841 || ihdr->sh_type == SHT_DYNSYM
7842 || ihdr->sh_type == SHT_GNU_verneed
7843 || ihdr->sh_type == SHT_GNU_verdef)
7844 ohdr->sh_info = ihdr->sh_info;
7845
7846 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7847 NULL);
7848 }
7849
7850 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7851 necessary if we are removing either the SHT_GROUP section or any of
7852 the group member sections. DISCARDED is the value that a section's
7853 output_section has if the section will be discarded, NULL when this
7854 function is called from objcopy, bfd_abs_section_ptr when called
7855 from the linker. */
7856
7857 bfd_boolean
7858 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7859 {
7860 asection *isec;
7861
7862 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7863 if (elf_section_type (isec) == SHT_GROUP)
7864 {
7865 asection *first = elf_next_in_group (isec);
7866 asection *s = first;
7867 bfd_size_type removed = 0;
7868
7869 while (s != NULL)
7870 {
7871 /* If this member section is being output but the
7872 SHT_GROUP section is not, then clear the group info
7873 set up by _bfd_elf_copy_private_section_data. */
7874 if (s->output_section != discarded
7875 && isec->output_section == discarded)
7876 {
7877 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7878 elf_group_name (s->output_section) = NULL;
7879 }
7880 /* Conversely, if the member section is not being output
7881 but the SHT_GROUP section is, then adjust its size. */
7882 else if (s->output_section == discarded
7883 && isec->output_section != discarded)
7884 {
7885 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7886 removed += 4;
7887 if (elf_sec->rel.hdr != NULL
7888 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7889 removed += 4;
7890 if (elf_sec->rela.hdr != NULL
7891 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7892 removed += 4;
7893 }
7894 s = elf_next_in_group (s);
7895 if (s == first)
7896 break;
7897 }
7898 if (removed != 0)
7899 {
7900 if (discarded != NULL)
7901 {
7902 /* If we've been called for ld -r, then we need to
7903 adjust the input section size. */
7904 if (isec->rawsize == 0)
7905 isec->rawsize = isec->size;
7906 isec->size = isec->rawsize - removed;
7907 if (isec->size <= 4)
7908 {
7909 isec->size = 0;
7910 isec->flags |= SEC_EXCLUDE;
7911 }
7912 }
7913 else
7914 {
7915 /* Adjust the output section size when called from
7916 objcopy. */
7917 isec->output_section->size -= removed;
7918 if (isec->output_section->size <= 4)
7919 {
7920 isec->output_section->size = 0;
7921 isec->output_section->flags |= SEC_EXCLUDE;
7922 }
7923 }
7924 }
7925 }
7926
7927 return TRUE;
7928 }
7929
7930 /* Copy private header information. */
7931
7932 bfd_boolean
7933 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7934 {
7935 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7936 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7937 return TRUE;
7938
7939 /* Copy over private BFD data if it has not already been copied.
7940 This must be done here, rather than in the copy_private_bfd_data
7941 entry point, because the latter is called after the section
7942 contents have been set, which means that the program headers have
7943 already been worked out. */
7944 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7945 {
7946 if (! copy_private_bfd_data (ibfd, obfd))
7947 return FALSE;
7948 }
7949
7950 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7951 }
7952
7953 /* Copy private symbol information. If this symbol is in a section
7954 which we did not map into a BFD section, try to map the section
7955 index correctly. We use special macro definitions for the mapped
7956 section indices; these definitions are interpreted by the
7957 swap_out_syms function. */
7958
7959 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7960 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7961 #define MAP_STRTAB (SHN_HIOS + 3)
7962 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7963 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7964
7965 bfd_boolean
7966 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7967 asymbol *isymarg,
7968 bfd *obfd,
7969 asymbol *osymarg)
7970 {
7971 elf_symbol_type *isym, *osym;
7972
7973 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7974 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7975 return TRUE;
7976
7977 isym = elf_symbol_from (ibfd, isymarg);
7978 osym = elf_symbol_from (obfd, osymarg);
7979
7980 if (isym != NULL
7981 && isym->internal_elf_sym.st_shndx != 0
7982 && osym != NULL
7983 && bfd_is_abs_section (isym->symbol.section))
7984 {
7985 unsigned int shndx;
7986
7987 shndx = isym->internal_elf_sym.st_shndx;
7988 if (shndx == elf_onesymtab (ibfd))
7989 shndx = MAP_ONESYMTAB;
7990 else if (shndx == elf_dynsymtab (ibfd))
7991 shndx = MAP_DYNSYMTAB;
7992 else if (shndx == elf_strtab_sec (ibfd))
7993 shndx = MAP_STRTAB;
7994 else if (shndx == elf_shstrtab_sec (ibfd))
7995 shndx = MAP_SHSTRTAB;
7996 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7997 shndx = MAP_SYM_SHNDX;
7998 osym->internal_elf_sym.st_shndx = shndx;
7999 }
8000
8001 return TRUE;
8002 }
8003
8004 /* Swap out the symbols. */
8005
8006 static bfd_boolean
8007 swap_out_syms (bfd *abfd,
8008 struct elf_strtab_hash **sttp,
8009 int relocatable_p)
8010 {
8011 const struct elf_backend_data *bed;
8012 int symcount;
8013 asymbol **syms;
8014 struct elf_strtab_hash *stt;
8015 Elf_Internal_Shdr *symtab_hdr;
8016 Elf_Internal_Shdr *symtab_shndx_hdr;
8017 Elf_Internal_Shdr *symstrtab_hdr;
8018 struct elf_sym_strtab *symstrtab;
8019 bfd_byte *outbound_syms;
8020 bfd_byte *outbound_shndx;
8021 unsigned long outbound_syms_index;
8022 unsigned long outbound_shndx_index;
8023 int idx;
8024 unsigned int num_locals;
8025 bfd_size_type amt;
8026 bfd_boolean name_local_sections;
8027
8028 if (!elf_map_symbols (abfd, &num_locals))
8029 return FALSE;
8030
8031 /* Dump out the symtabs. */
8032 stt = _bfd_elf_strtab_init ();
8033 if (stt == NULL)
8034 return FALSE;
8035
8036 bed = get_elf_backend_data (abfd);
8037 symcount = bfd_get_symcount (abfd);
8038 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8039 symtab_hdr->sh_type = SHT_SYMTAB;
8040 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8041 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8042 symtab_hdr->sh_info = num_locals + 1;
8043 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8044
8045 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8046 symstrtab_hdr->sh_type = SHT_STRTAB;
8047
8048 /* Allocate buffer to swap out the .strtab section. */
8049 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8050 sizeof (*symstrtab));
8051 if (symstrtab == NULL)
8052 {
8053 _bfd_elf_strtab_free (stt);
8054 return FALSE;
8055 }
8056
8057 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8058 bed->s->sizeof_sym);
8059 if (outbound_syms == NULL)
8060 {
8061 error_return:
8062 _bfd_elf_strtab_free (stt);
8063 free (symstrtab);
8064 return FALSE;
8065 }
8066 symtab_hdr->contents = outbound_syms;
8067 outbound_syms_index = 0;
8068
8069 outbound_shndx = NULL;
8070 outbound_shndx_index = 0;
8071
8072 if (elf_symtab_shndx_list (abfd))
8073 {
8074 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8075 if (symtab_shndx_hdr->sh_name != 0)
8076 {
8077 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8078 outbound_shndx = (bfd_byte *)
8079 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8080 if (outbound_shndx == NULL)
8081 goto error_return;
8082
8083 symtab_shndx_hdr->contents = outbound_shndx;
8084 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8085 symtab_shndx_hdr->sh_size = amt;
8086 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8087 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8088 }
8089 /* FIXME: What about any other headers in the list ? */
8090 }
8091
8092 /* Now generate the data (for "contents"). */
8093 {
8094 /* Fill in zeroth symbol and swap it out. */
8095 Elf_Internal_Sym sym;
8096 sym.st_name = 0;
8097 sym.st_value = 0;
8098 sym.st_size = 0;
8099 sym.st_info = 0;
8100 sym.st_other = 0;
8101 sym.st_shndx = SHN_UNDEF;
8102 sym.st_target_internal = 0;
8103 symstrtab[0].sym = sym;
8104 symstrtab[0].dest_index = outbound_syms_index;
8105 symstrtab[0].destshndx_index = outbound_shndx_index;
8106 outbound_syms_index++;
8107 if (outbound_shndx != NULL)
8108 outbound_shndx_index++;
8109 }
8110
8111 name_local_sections
8112 = (bed->elf_backend_name_local_section_symbols
8113 && bed->elf_backend_name_local_section_symbols (abfd));
8114
8115 syms = bfd_get_outsymbols (abfd);
8116 for (idx = 0; idx < symcount;)
8117 {
8118 Elf_Internal_Sym sym;
8119 bfd_vma value = syms[idx]->value;
8120 elf_symbol_type *type_ptr;
8121 flagword flags = syms[idx]->flags;
8122 int type;
8123
8124 if (!name_local_sections
8125 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8126 {
8127 /* Local section symbols have no name. */
8128 sym.st_name = (unsigned long) -1;
8129 }
8130 else
8131 {
8132 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8133 to get the final offset for st_name. */
8134 sym.st_name
8135 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8136 FALSE);
8137 if (sym.st_name == (unsigned long) -1)
8138 goto error_return;
8139 }
8140
8141 type_ptr = elf_symbol_from (abfd, syms[idx]);
8142
8143 if ((flags & BSF_SECTION_SYM) == 0
8144 && bfd_is_com_section (syms[idx]->section))
8145 {
8146 /* ELF common symbols put the alignment into the `value' field,
8147 and the size into the `size' field. This is backwards from
8148 how BFD handles it, so reverse it here. */
8149 sym.st_size = value;
8150 if (type_ptr == NULL
8151 || type_ptr->internal_elf_sym.st_value == 0)
8152 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8153 else
8154 sym.st_value = type_ptr->internal_elf_sym.st_value;
8155 sym.st_shndx = _bfd_elf_section_from_bfd_section
8156 (abfd, syms[idx]->section);
8157 }
8158 else
8159 {
8160 asection *sec = syms[idx]->section;
8161 unsigned int shndx;
8162
8163 if (sec->output_section)
8164 {
8165 value += sec->output_offset;
8166 sec = sec->output_section;
8167 }
8168
8169 /* Don't add in the section vma for relocatable output. */
8170 if (! relocatable_p)
8171 value += sec->vma;
8172 sym.st_value = value;
8173 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8174
8175 if (bfd_is_abs_section (sec)
8176 && type_ptr != NULL
8177 && type_ptr->internal_elf_sym.st_shndx != 0)
8178 {
8179 /* This symbol is in a real ELF section which we did
8180 not create as a BFD section. Undo the mapping done
8181 by copy_private_symbol_data. */
8182 shndx = type_ptr->internal_elf_sym.st_shndx;
8183 switch (shndx)
8184 {
8185 case MAP_ONESYMTAB:
8186 shndx = elf_onesymtab (abfd);
8187 break;
8188 case MAP_DYNSYMTAB:
8189 shndx = elf_dynsymtab (abfd);
8190 break;
8191 case MAP_STRTAB:
8192 shndx = elf_strtab_sec (abfd);
8193 break;
8194 case MAP_SHSTRTAB:
8195 shndx = elf_shstrtab_sec (abfd);
8196 break;
8197 case MAP_SYM_SHNDX:
8198 if (elf_symtab_shndx_list (abfd))
8199 shndx = elf_symtab_shndx_list (abfd)->ndx;
8200 break;
8201 default:
8202 shndx = SHN_ABS;
8203 break;
8204 }
8205 }
8206 else
8207 {
8208 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8209
8210 if (shndx == SHN_BAD)
8211 {
8212 asection *sec2;
8213
8214 /* Writing this would be a hell of a lot easier if
8215 we had some decent documentation on bfd, and
8216 knew what to expect of the library, and what to
8217 demand of applications. For example, it
8218 appears that `objcopy' might not set the
8219 section of a symbol to be a section that is
8220 actually in the output file. */
8221 sec2 = bfd_get_section_by_name (abfd, sec->name);
8222 if (sec2 != NULL)
8223 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8224 if (shndx == SHN_BAD)
8225 {
8226 /* xgettext:c-format */
8227 _bfd_error_handler
8228 (_("unable to find equivalent output section"
8229 " for symbol '%s' from section '%s'"),
8230 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8231 sec->name);
8232 bfd_set_error (bfd_error_invalid_operation);
8233 goto error_return;
8234 }
8235 }
8236 }
8237
8238 sym.st_shndx = shndx;
8239 }
8240
8241 if ((flags & BSF_THREAD_LOCAL) != 0)
8242 type = STT_TLS;
8243 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8244 type = STT_GNU_IFUNC;
8245 else if ((flags & BSF_FUNCTION) != 0)
8246 type = STT_FUNC;
8247 else if ((flags & BSF_OBJECT) != 0)
8248 type = STT_OBJECT;
8249 else if ((flags & BSF_RELC) != 0)
8250 type = STT_RELC;
8251 else if ((flags & BSF_SRELC) != 0)
8252 type = STT_SRELC;
8253 else
8254 type = STT_NOTYPE;
8255
8256 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8257 type = STT_TLS;
8258
8259 /* Processor-specific types. */
8260 if (type_ptr != NULL
8261 && bed->elf_backend_get_symbol_type)
8262 type = ((*bed->elf_backend_get_symbol_type)
8263 (&type_ptr->internal_elf_sym, type));
8264
8265 if (flags & BSF_SECTION_SYM)
8266 {
8267 if (flags & BSF_GLOBAL)
8268 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8269 else
8270 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8271 }
8272 else if (bfd_is_com_section (syms[idx]->section))
8273 {
8274 if (type != STT_TLS)
8275 {
8276 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8277 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8278 ? STT_COMMON : STT_OBJECT);
8279 else
8280 type = ((flags & BSF_ELF_COMMON) != 0
8281 ? STT_COMMON : STT_OBJECT);
8282 }
8283 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8284 }
8285 else if (bfd_is_und_section (syms[idx]->section))
8286 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8287 ? STB_WEAK
8288 : STB_GLOBAL),
8289 type);
8290 else if (flags & BSF_FILE)
8291 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8292 else
8293 {
8294 int bind = STB_LOCAL;
8295
8296 if (flags & BSF_LOCAL)
8297 bind = STB_LOCAL;
8298 else if (flags & BSF_GNU_UNIQUE)
8299 bind = STB_GNU_UNIQUE;
8300 else if (flags & BSF_WEAK)
8301 bind = STB_WEAK;
8302 else if (flags & BSF_GLOBAL)
8303 bind = STB_GLOBAL;
8304
8305 sym.st_info = ELF_ST_INFO (bind, type);
8306 }
8307
8308 if (type_ptr != NULL)
8309 {
8310 sym.st_other = type_ptr->internal_elf_sym.st_other;
8311 sym.st_target_internal
8312 = type_ptr->internal_elf_sym.st_target_internal;
8313 }
8314 else
8315 {
8316 sym.st_other = 0;
8317 sym.st_target_internal = 0;
8318 }
8319
8320 idx++;
8321 symstrtab[idx].sym = sym;
8322 symstrtab[idx].dest_index = outbound_syms_index;
8323 symstrtab[idx].destshndx_index = outbound_shndx_index;
8324
8325 outbound_syms_index++;
8326 if (outbound_shndx != NULL)
8327 outbound_shndx_index++;
8328 }
8329
8330 /* Finalize the .strtab section. */
8331 _bfd_elf_strtab_finalize (stt);
8332
8333 /* Swap out the .strtab section. */
8334 for (idx = 0; idx <= symcount; idx++)
8335 {
8336 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8337 if (elfsym->sym.st_name == (unsigned long) -1)
8338 elfsym->sym.st_name = 0;
8339 else
8340 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8341 elfsym->sym.st_name);
8342 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8343 (outbound_syms
8344 + (elfsym->dest_index
8345 * bed->s->sizeof_sym)),
8346 (outbound_shndx
8347 + (elfsym->destshndx_index
8348 * sizeof (Elf_External_Sym_Shndx))));
8349 }
8350 free (symstrtab);
8351
8352 *sttp = stt;
8353 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8354 symstrtab_hdr->sh_type = SHT_STRTAB;
8355 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8356 symstrtab_hdr->sh_addr = 0;
8357 symstrtab_hdr->sh_entsize = 0;
8358 symstrtab_hdr->sh_link = 0;
8359 symstrtab_hdr->sh_info = 0;
8360 symstrtab_hdr->sh_addralign = 1;
8361
8362 return TRUE;
8363 }
8364
8365 /* Return the number of bytes required to hold the symtab vector.
8366
8367 Note that we base it on the count plus 1, since we will null terminate
8368 the vector allocated based on this size. However, the ELF symbol table
8369 always has a dummy entry as symbol #0, so it ends up even. */
8370
8371 long
8372 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8373 {
8374 bfd_size_type symcount;
8375 long symtab_size;
8376 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8377
8378 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8379 if (symcount >= LONG_MAX / sizeof (asymbol *))
8380 {
8381 bfd_set_error (bfd_error_file_too_big);
8382 return -1;
8383 }
8384 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8385 if (symcount > 0)
8386 symtab_size -= sizeof (asymbol *);
8387
8388 return symtab_size;
8389 }
8390
8391 long
8392 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8393 {
8394 bfd_size_type symcount;
8395 long symtab_size;
8396 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8397
8398 if (elf_dynsymtab (abfd) == 0)
8399 {
8400 bfd_set_error (bfd_error_invalid_operation);
8401 return -1;
8402 }
8403
8404 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8405 if (symcount >= LONG_MAX / sizeof (asymbol *))
8406 {
8407 bfd_set_error (bfd_error_file_too_big);
8408 return -1;
8409 }
8410 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8411 if (symcount > 0)
8412 symtab_size -= sizeof (asymbol *);
8413
8414 return symtab_size;
8415 }
8416
8417 long
8418 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8419 sec_ptr asect)
8420 {
8421 #if SIZEOF_LONG == SIZEOF_INT
8422 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8423 {
8424 bfd_set_error (bfd_error_file_too_big);
8425 return -1;
8426 }
8427 #endif
8428 return (asect->reloc_count + 1) * sizeof (arelent *);
8429 }
8430
8431 /* Canonicalize the relocs. */
8432
8433 long
8434 _bfd_elf_canonicalize_reloc (bfd *abfd,
8435 sec_ptr section,
8436 arelent **relptr,
8437 asymbol **symbols)
8438 {
8439 arelent *tblptr;
8440 unsigned int i;
8441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8442
8443 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8444 return -1;
8445
8446 tblptr = section->relocation;
8447 for (i = 0; i < section->reloc_count; i++)
8448 *relptr++ = tblptr++;
8449
8450 *relptr = NULL;
8451
8452 return section->reloc_count;
8453 }
8454
8455 long
8456 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8457 {
8458 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8459 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8460
8461 if (symcount >= 0)
8462 abfd->symcount = symcount;
8463 return symcount;
8464 }
8465
8466 long
8467 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8468 asymbol **allocation)
8469 {
8470 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8471 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8472
8473 if (symcount >= 0)
8474 abfd->dynsymcount = symcount;
8475 return symcount;
8476 }
8477
8478 /* Return the size required for the dynamic reloc entries. Any loadable
8479 section that was actually installed in the BFD, and has type SHT_REL
8480 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8481 dynamic reloc section. */
8482
8483 long
8484 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8485 {
8486 bfd_size_type count;
8487 asection *s;
8488
8489 if (elf_dynsymtab (abfd) == 0)
8490 {
8491 bfd_set_error (bfd_error_invalid_operation);
8492 return -1;
8493 }
8494
8495 count = 1;
8496 for (s = abfd->sections; s != NULL; s = s->next)
8497 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8498 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8499 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8500 {
8501 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8502 if (count > LONG_MAX / sizeof (arelent *))
8503 {
8504 bfd_set_error (bfd_error_file_too_big);
8505 return -1;
8506 }
8507 }
8508 return count * sizeof (arelent *);
8509 }
8510
8511 /* Canonicalize the dynamic relocation entries. Note that we return the
8512 dynamic relocations as a single block, although they are actually
8513 associated with particular sections; the interface, which was
8514 designed for SunOS style shared libraries, expects that there is only
8515 one set of dynamic relocs. Any loadable section that was actually
8516 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8517 dynamic symbol table, is considered to be a dynamic reloc section. */
8518
8519 long
8520 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8521 arelent **storage,
8522 asymbol **syms)
8523 {
8524 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8525 asection *s;
8526 long ret;
8527
8528 if (elf_dynsymtab (abfd) == 0)
8529 {
8530 bfd_set_error (bfd_error_invalid_operation);
8531 return -1;
8532 }
8533
8534 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8535 ret = 0;
8536 for (s = abfd->sections; s != NULL; s = s->next)
8537 {
8538 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8539 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8540 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8541 {
8542 arelent *p;
8543 long count, i;
8544
8545 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8546 return -1;
8547 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8548 p = s->relocation;
8549 for (i = 0; i < count; i++)
8550 *storage++ = p++;
8551 ret += count;
8552 }
8553 }
8554
8555 *storage = NULL;
8556
8557 return ret;
8558 }
8559 \f
8560 /* Read in the version information. */
8561
8562 bfd_boolean
8563 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8564 {
8565 bfd_byte *contents = NULL;
8566 unsigned int freeidx = 0;
8567
8568 if (elf_dynverref (abfd) != 0)
8569 {
8570 Elf_Internal_Shdr *hdr;
8571 Elf_External_Verneed *everneed;
8572 Elf_Internal_Verneed *iverneed;
8573 unsigned int i;
8574 bfd_byte *contents_end;
8575
8576 hdr = &elf_tdata (abfd)->dynverref_hdr;
8577
8578 if (hdr->sh_info == 0
8579 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8580 {
8581 error_return_bad_verref:
8582 _bfd_error_handler
8583 (_("%pB: .gnu.version_r invalid entry"), abfd);
8584 bfd_set_error (bfd_error_bad_value);
8585 error_return_verref:
8586 elf_tdata (abfd)->verref = NULL;
8587 elf_tdata (abfd)->cverrefs = 0;
8588 goto error_return;
8589 }
8590
8591 ufile_ptr filesize = bfd_get_file_size (abfd);
8592 if (filesize > 0 && filesize < hdr->sh_size)
8593 {
8594 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8595 of memory. */
8596 bfd_set_error (bfd_error_no_memory);
8597 _bfd_error_handler
8598 /* xgettext:c-format */
8599 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8600 abfd, (uint64_t) hdr->sh_size);
8601 goto error_return_verref;
8602 }
8603 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8604 if (contents == NULL)
8605 goto error_return_verref;
8606
8607 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8608 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8609 goto error_return_verref;
8610
8611 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8612 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8613
8614 if (elf_tdata (abfd)->verref == NULL)
8615 goto error_return_verref;
8616
8617 BFD_ASSERT (sizeof (Elf_External_Verneed)
8618 == sizeof (Elf_External_Vernaux));
8619 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8620 everneed = (Elf_External_Verneed *) contents;
8621 iverneed = elf_tdata (abfd)->verref;
8622 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8623 {
8624 Elf_External_Vernaux *evernaux;
8625 Elf_Internal_Vernaux *ivernaux;
8626 unsigned int j;
8627
8628 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8629
8630 iverneed->vn_bfd = abfd;
8631
8632 iverneed->vn_filename =
8633 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8634 iverneed->vn_file);
8635 if (iverneed->vn_filename == NULL)
8636 goto error_return_bad_verref;
8637
8638 if (iverneed->vn_cnt == 0)
8639 iverneed->vn_auxptr = NULL;
8640 else
8641 {
8642 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8643 bfd_alloc2 (abfd, iverneed->vn_cnt,
8644 sizeof (Elf_Internal_Vernaux));
8645 if (iverneed->vn_auxptr == NULL)
8646 goto error_return_verref;
8647 }
8648
8649 if (iverneed->vn_aux
8650 > (size_t) (contents_end - (bfd_byte *) everneed))
8651 goto error_return_bad_verref;
8652
8653 evernaux = ((Elf_External_Vernaux *)
8654 ((bfd_byte *) everneed + iverneed->vn_aux));
8655 ivernaux = iverneed->vn_auxptr;
8656 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8657 {
8658 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8659
8660 ivernaux->vna_nodename =
8661 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8662 ivernaux->vna_name);
8663 if (ivernaux->vna_nodename == NULL)
8664 goto error_return_bad_verref;
8665
8666 if (ivernaux->vna_other > freeidx)
8667 freeidx = ivernaux->vna_other;
8668
8669 ivernaux->vna_nextptr = NULL;
8670 if (ivernaux->vna_next == 0)
8671 {
8672 iverneed->vn_cnt = j + 1;
8673 break;
8674 }
8675 if (j + 1 < iverneed->vn_cnt)
8676 ivernaux->vna_nextptr = ivernaux + 1;
8677
8678 if (ivernaux->vna_next
8679 > (size_t) (contents_end - (bfd_byte *) evernaux))
8680 goto error_return_bad_verref;
8681
8682 evernaux = ((Elf_External_Vernaux *)
8683 ((bfd_byte *) evernaux + ivernaux->vna_next));
8684 }
8685
8686 iverneed->vn_nextref = NULL;
8687 if (iverneed->vn_next == 0)
8688 break;
8689 if (i + 1 < hdr->sh_info)
8690 iverneed->vn_nextref = iverneed + 1;
8691
8692 if (iverneed->vn_next
8693 > (size_t) (contents_end - (bfd_byte *) everneed))
8694 goto error_return_bad_verref;
8695
8696 everneed = ((Elf_External_Verneed *)
8697 ((bfd_byte *) everneed + iverneed->vn_next));
8698 }
8699 elf_tdata (abfd)->cverrefs = i;
8700
8701 free (contents);
8702 contents = NULL;
8703 }
8704
8705 if (elf_dynverdef (abfd) != 0)
8706 {
8707 Elf_Internal_Shdr *hdr;
8708 Elf_External_Verdef *everdef;
8709 Elf_Internal_Verdef *iverdef;
8710 Elf_Internal_Verdef *iverdefarr;
8711 Elf_Internal_Verdef iverdefmem;
8712 unsigned int i;
8713 unsigned int maxidx;
8714 bfd_byte *contents_end_def, *contents_end_aux;
8715
8716 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8717
8718 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8719 {
8720 error_return_bad_verdef:
8721 _bfd_error_handler
8722 (_("%pB: .gnu.version_d invalid entry"), abfd);
8723 bfd_set_error (bfd_error_bad_value);
8724 error_return_verdef:
8725 elf_tdata (abfd)->verdef = NULL;
8726 elf_tdata (abfd)->cverdefs = 0;
8727 goto error_return;
8728 }
8729
8730 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8731 if (contents == NULL)
8732 goto error_return_verdef;
8733 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8734 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8735 goto error_return_verdef;
8736
8737 BFD_ASSERT (sizeof (Elf_External_Verdef)
8738 >= sizeof (Elf_External_Verdaux));
8739 contents_end_def = contents + hdr->sh_size
8740 - sizeof (Elf_External_Verdef);
8741 contents_end_aux = contents + hdr->sh_size
8742 - sizeof (Elf_External_Verdaux);
8743
8744 /* We know the number of entries in the section but not the maximum
8745 index. Therefore we have to run through all entries and find
8746 the maximum. */
8747 everdef = (Elf_External_Verdef *) contents;
8748 maxidx = 0;
8749 for (i = 0; i < hdr->sh_info; ++i)
8750 {
8751 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8752
8753 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8754 goto error_return_bad_verdef;
8755 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8756 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8757
8758 if (iverdefmem.vd_next == 0)
8759 break;
8760
8761 if (iverdefmem.vd_next
8762 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8763 goto error_return_bad_verdef;
8764
8765 everdef = ((Elf_External_Verdef *)
8766 ((bfd_byte *) everdef + iverdefmem.vd_next));
8767 }
8768
8769 if (default_imported_symver)
8770 {
8771 if (freeidx > maxidx)
8772 maxidx = ++freeidx;
8773 else
8774 freeidx = ++maxidx;
8775 }
8776
8777 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8778 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8779 if (elf_tdata (abfd)->verdef == NULL)
8780 goto error_return_verdef;
8781
8782 elf_tdata (abfd)->cverdefs = maxidx;
8783
8784 everdef = (Elf_External_Verdef *) contents;
8785 iverdefarr = elf_tdata (abfd)->verdef;
8786 for (i = 0; i < hdr->sh_info; i++)
8787 {
8788 Elf_External_Verdaux *everdaux;
8789 Elf_Internal_Verdaux *iverdaux;
8790 unsigned int j;
8791
8792 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8793
8794 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8795 goto error_return_bad_verdef;
8796
8797 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8798 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8799
8800 iverdef->vd_bfd = abfd;
8801
8802 if (iverdef->vd_cnt == 0)
8803 iverdef->vd_auxptr = NULL;
8804 else
8805 {
8806 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8807 bfd_alloc2 (abfd, iverdef->vd_cnt,
8808 sizeof (Elf_Internal_Verdaux));
8809 if (iverdef->vd_auxptr == NULL)
8810 goto error_return_verdef;
8811 }
8812
8813 if (iverdef->vd_aux
8814 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8815 goto error_return_bad_verdef;
8816
8817 everdaux = ((Elf_External_Verdaux *)
8818 ((bfd_byte *) everdef + iverdef->vd_aux));
8819 iverdaux = iverdef->vd_auxptr;
8820 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8821 {
8822 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8823
8824 iverdaux->vda_nodename =
8825 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8826 iverdaux->vda_name);
8827 if (iverdaux->vda_nodename == NULL)
8828 goto error_return_bad_verdef;
8829
8830 iverdaux->vda_nextptr = NULL;
8831 if (iverdaux->vda_next == 0)
8832 {
8833 iverdef->vd_cnt = j + 1;
8834 break;
8835 }
8836 if (j + 1 < iverdef->vd_cnt)
8837 iverdaux->vda_nextptr = iverdaux + 1;
8838
8839 if (iverdaux->vda_next
8840 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8841 goto error_return_bad_verdef;
8842
8843 everdaux = ((Elf_External_Verdaux *)
8844 ((bfd_byte *) everdaux + iverdaux->vda_next));
8845 }
8846
8847 iverdef->vd_nodename = NULL;
8848 if (iverdef->vd_cnt)
8849 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8850
8851 iverdef->vd_nextdef = NULL;
8852 if (iverdef->vd_next == 0)
8853 break;
8854 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8855 iverdef->vd_nextdef = iverdef + 1;
8856
8857 everdef = ((Elf_External_Verdef *)
8858 ((bfd_byte *) everdef + iverdef->vd_next));
8859 }
8860
8861 free (contents);
8862 contents = NULL;
8863 }
8864 else if (default_imported_symver)
8865 {
8866 if (freeidx < 3)
8867 freeidx = 3;
8868 else
8869 freeidx++;
8870
8871 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8872 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8873 if (elf_tdata (abfd)->verdef == NULL)
8874 goto error_return;
8875
8876 elf_tdata (abfd)->cverdefs = freeidx;
8877 }
8878
8879 /* Create a default version based on the soname. */
8880 if (default_imported_symver)
8881 {
8882 Elf_Internal_Verdef *iverdef;
8883 Elf_Internal_Verdaux *iverdaux;
8884
8885 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8886
8887 iverdef->vd_version = VER_DEF_CURRENT;
8888 iverdef->vd_flags = 0;
8889 iverdef->vd_ndx = freeidx;
8890 iverdef->vd_cnt = 1;
8891
8892 iverdef->vd_bfd = abfd;
8893
8894 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8895 if (iverdef->vd_nodename == NULL)
8896 goto error_return_verdef;
8897 iverdef->vd_nextdef = NULL;
8898 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8899 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8900 if (iverdef->vd_auxptr == NULL)
8901 goto error_return_verdef;
8902
8903 iverdaux = iverdef->vd_auxptr;
8904 iverdaux->vda_nodename = iverdef->vd_nodename;
8905 }
8906
8907 return TRUE;
8908
8909 error_return:
8910 if (contents != NULL)
8911 free (contents);
8912 return FALSE;
8913 }
8914 \f
8915 asymbol *
8916 _bfd_elf_make_empty_symbol (bfd *abfd)
8917 {
8918 elf_symbol_type *newsym;
8919
8920 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8921 if (!newsym)
8922 return NULL;
8923 newsym->symbol.the_bfd = abfd;
8924 return &newsym->symbol;
8925 }
8926
8927 void
8928 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8929 asymbol *symbol,
8930 symbol_info *ret)
8931 {
8932 bfd_symbol_info (symbol, ret);
8933 }
8934
8935 /* Return whether a symbol name implies a local symbol. Most targets
8936 use this function for the is_local_label_name entry point, but some
8937 override it. */
8938
8939 bfd_boolean
8940 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8941 const char *name)
8942 {
8943 /* Normal local symbols start with ``.L''. */
8944 if (name[0] == '.' && name[1] == 'L')
8945 return TRUE;
8946
8947 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8948 DWARF debugging symbols starting with ``..''. */
8949 if (name[0] == '.' && name[1] == '.')
8950 return TRUE;
8951
8952 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8953 emitting DWARF debugging output. I suspect this is actually a
8954 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8955 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8956 underscore to be emitted on some ELF targets). For ease of use,
8957 we treat such symbols as local. */
8958 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8959 return TRUE;
8960
8961 /* Treat assembler generated fake symbols, dollar local labels and
8962 forward-backward labels (aka local labels) as locals.
8963 These labels have the form:
8964
8965 L0^A.* (fake symbols)
8966
8967 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8968
8969 Versions which start with .L will have already been matched above,
8970 so we only need to match the rest. */
8971 if (name[0] == 'L' && ISDIGIT (name[1]))
8972 {
8973 bfd_boolean ret = FALSE;
8974 const char * p;
8975 char c;
8976
8977 for (p = name + 2; (c = *p); p++)
8978 {
8979 if (c == 1 || c == 2)
8980 {
8981 if (c == 1 && p == name + 2)
8982 /* A fake symbol. */
8983 return TRUE;
8984
8985 /* FIXME: We are being paranoid here and treating symbols like
8986 L0^Bfoo as if there were non-local, on the grounds that the
8987 assembler will never generate them. But can any symbol
8988 containing an ASCII value in the range 1-31 ever be anything
8989 other than some kind of local ? */
8990 ret = TRUE;
8991 }
8992
8993 if (! ISDIGIT (c))
8994 {
8995 ret = FALSE;
8996 break;
8997 }
8998 }
8999 return ret;
9000 }
9001
9002 return FALSE;
9003 }
9004
9005 alent *
9006 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9007 asymbol *symbol ATTRIBUTE_UNUSED)
9008 {
9009 abort ();
9010 return NULL;
9011 }
9012
9013 bfd_boolean
9014 _bfd_elf_set_arch_mach (bfd *abfd,
9015 enum bfd_architecture arch,
9016 unsigned long machine)
9017 {
9018 /* If this isn't the right architecture for this backend, and this
9019 isn't the generic backend, fail. */
9020 if (arch != get_elf_backend_data (abfd)->arch
9021 && arch != bfd_arch_unknown
9022 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9023 return FALSE;
9024
9025 return bfd_default_set_arch_mach (abfd, arch, machine);
9026 }
9027
9028 /* Find the nearest line to a particular section and offset,
9029 for error reporting. */
9030
9031 bfd_boolean
9032 _bfd_elf_find_nearest_line (bfd *abfd,
9033 asymbol **symbols,
9034 asection *section,
9035 bfd_vma offset,
9036 const char **filename_ptr,
9037 const char **functionname_ptr,
9038 unsigned int *line_ptr,
9039 unsigned int *discriminator_ptr)
9040 {
9041 bfd_boolean found;
9042
9043 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9044 filename_ptr, functionname_ptr,
9045 line_ptr, discriminator_ptr,
9046 dwarf_debug_sections,
9047 &elf_tdata (abfd)->dwarf2_find_line_info))
9048 return TRUE;
9049
9050 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9051 filename_ptr, functionname_ptr, line_ptr))
9052 {
9053 if (!*functionname_ptr)
9054 _bfd_elf_find_function (abfd, symbols, section, offset,
9055 *filename_ptr ? NULL : filename_ptr,
9056 functionname_ptr);
9057 return TRUE;
9058 }
9059
9060 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9061 &found, filename_ptr,
9062 functionname_ptr, line_ptr,
9063 &elf_tdata (abfd)->line_info))
9064 return FALSE;
9065 if (found && (*functionname_ptr || *line_ptr))
9066 return TRUE;
9067
9068 if (symbols == NULL)
9069 return FALSE;
9070
9071 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9072 filename_ptr, functionname_ptr))
9073 return FALSE;
9074
9075 *line_ptr = 0;
9076 return TRUE;
9077 }
9078
9079 /* Find the line for a symbol. */
9080
9081 bfd_boolean
9082 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9083 const char **filename_ptr, unsigned int *line_ptr)
9084 {
9085 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9086 filename_ptr, NULL, line_ptr, NULL,
9087 dwarf_debug_sections,
9088 &elf_tdata (abfd)->dwarf2_find_line_info);
9089 }
9090
9091 /* After a call to bfd_find_nearest_line, successive calls to
9092 bfd_find_inliner_info can be used to get source information about
9093 each level of function inlining that terminated at the address
9094 passed to bfd_find_nearest_line. Currently this is only supported
9095 for DWARF2 with appropriate DWARF3 extensions. */
9096
9097 bfd_boolean
9098 _bfd_elf_find_inliner_info (bfd *abfd,
9099 const char **filename_ptr,
9100 const char **functionname_ptr,
9101 unsigned int *line_ptr)
9102 {
9103 bfd_boolean found;
9104 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9105 functionname_ptr, line_ptr,
9106 & elf_tdata (abfd)->dwarf2_find_line_info);
9107 return found;
9108 }
9109
9110 int
9111 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9112 {
9113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9114 int ret = bed->s->sizeof_ehdr;
9115
9116 if (!bfd_link_relocatable (info))
9117 {
9118 bfd_size_type phdr_size = elf_program_header_size (abfd);
9119
9120 if (phdr_size == (bfd_size_type) -1)
9121 {
9122 struct elf_segment_map *m;
9123
9124 phdr_size = 0;
9125 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9126 phdr_size += bed->s->sizeof_phdr;
9127
9128 if (phdr_size == 0)
9129 phdr_size = get_program_header_size (abfd, info);
9130 }
9131
9132 elf_program_header_size (abfd) = phdr_size;
9133 ret += phdr_size;
9134 }
9135
9136 return ret;
9137 }
9138
9139 bfd_boolean
9140 _bfd_elf_set_section_contents (bfd *abfd,
9141 sec_ptr section,
9142 const void *location,
9143 file_ptr offset,
9144 bfd_size_type count)
9145 {
9146 Elf_Internal_Shdr *hdr;
9147 file_ptr pos;
9148
9149 if (! abfd->output_has_begun
9150 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9151 return FALSE;
9152
9153 if (!count)
9154 return TRUE;
9155
9156 hdr = &elf_section_data (section)->this_hdr;
9157 if (hdr->sh_offset == (file_ptr) -1)
9158 {
9159 if (bfd_section_is_ctf (section))
9160 /* Nothing to do with this section: the contents are generated
9161 later. */
9162 return TRUE;
9163
9164 /* We must compress this section. Write output to the buffer. */
9165 unsigned char *contents = hdr->contents;
9166 if ((offset + count) > hdr->sh_size
9167 || (section->flags & SEC_ELF_COMPRESS) == 0
9168 || contents == NULL)
9169 abort ();
9170 memcpy (contents + offset, location, count);
9171 return TRUE;
9172 }
9173 pos = hdr->sh_offset + offset;
9174 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9175 || bfd_bwrite (location, count, abfd) != count)
9176 return FALSE;
9177
9178 return TRUE;
9179 }
9180
9181 bfd_boolean
9182 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9183 arelent *cache_ptr ATTRIBUTE_UNUSED,
9184 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9185 {
9186 abort ();
9187 return FALSE;
9188 }
9189
9190 /* Try to convert a non-ELF reloc into an ELF one. */
9191
9192 bfd_boolean
9193 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9194 {
9195 /* Check whether we really have an ELF howto. */
9196
9197 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9198 {
9199 bfd_reloc_code_real_type code;
9200 reloc_howto_type *howto;
9201
9202 /* Alien reloc: Try to determine its type to replace it with an
9203 equivalent ELF reloc. */
9204
9205 if (areloc->howto->pc_relative)
9206 {
9207 switch (areloc->howto->bitsize)
9208 {
9209 case 8:
9210 code = BFD_RELOC_8_PCREL;
9211 break;
9212 case 12:
9213 code = BFD_RELOC_12_PCREL;
9214 break;
9215 case 16:
9216 code = BFD_RELOC_16_PCREL;
9217 break;
9218 case 24:
9219 code = BFD_RELOC_24_PCREL;
9220 break;
9221 case 32:
9222 code = BFD_RELOC_32_PCREL;
9223 break;
9224 case 64:
9225 code = BFD_RELOC_64_PCREL;
9226 break;
9227 default:
9228 goto fail;
9229 }
9230
9231 howto = bfd_reloc_type_lookup (abfd, code);
9232
9233 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9234 {
9235 if (howto->pcrel_offset)
9236 areloc->addend += areloc->address;
9237 else
9238 areloc->addend -= areloc->address; /* addend is unsigned!! */
9239 }
9240 }
9241 else
9242 {
9243 switch (areloc->howto->bitsize)
9244 {
9245 case 8:
9246 code = BFD_RELOC_8;
9247 break;
9248 case 14:
9249 code = BFD_RELOC_14;
9250 break;
9251 case 16:
9252 code = BFD_RELOC_16;
9253 break;
9254 case 26:
9255 code = BFD_RELOC_26;
9256 break;
9257 case 32:
9258 code = BFD_RELOC_32;
9259 break;
9260 case 64:
9261 code = BFD_RELOC_64;
9262 break;
9263 default:
9264 goto fail;
9265 }
9266
9267 howto = bfd_reloc_type_lookup (abfd, code);
9268 }
9269
9270 if (howto)
9271 areloc->howto = howto;
9272 else
9273 goto fail;
9274 }
9275
9276 return TRUE;
9277
9278 fail:
9279 /* xgettext:c-format */
9280 _bfd_error_handler (_("%pB: %s unsupported"),
9281 abfd, areloc->howto->name);
9282 bfd_set_error (bfd_error_sorry);
9283 return FALSE;
9284 }
9285
9286 bfd_boolean
9287 _bfd_elf_close_and_cleanup (bfd *abfd)
9288 {
9289 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9290 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9291 {
9292 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9293 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9294 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9295 }
9296
9297 return _bfd_generic_close_and_cleanup (abfd);
9298 }
9299
9300 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9301 in the relocation's offset. Thus we cannot allow any sort of sanity
9302 range-checking to interfere. There is nothing else to do in processing
9303 this reloc. */
9304
9305 bfd_reloc_status_type
9306 _bfd_elf_rel_vtable_reloc_fn
9307 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9308 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9309 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9310 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9311 {
9312 return bfd_reloc_ok;
9313 }
9314 \f
9315 /* Elf core file support. Much of this only works on native
9316 toolchains, since we rely on knowing the
9317 machine-dependent procfs structure in order to pick
9318 out details about the corefile. */
9319
9320 #ifdef HAVE_SYS_PROCFS_H
9321 /* Needed for new procfs interface on sparc-solaris. */
9322 # define _STRUCTURED_PROC 1
9323 # include <sys/procfs.h>
9324 #endif
9325
9326 /* Return a PID that identifies a "thread" for threaded cores, or the
9327 PID of the main process for non-threaded cores. */
9328
9329 static int
9330 elfcore_make_pid (bfd *abfd)
9331 {
9332 int pid;
9333
9334 pid = elf_tdata (abfd)->core->lwpid;
9335 if (pid == 0)
9336 pid = elf_tdata (abfd)->core->pid;
9337
9338 return pid;
9339 }
9340
9341 /* If there isn't a section called NAME, make one, using
9342 data from SECT. Note, this function will generate a
9343 reference to NAME, so you shouldn't deallocate or
9344 overwrite it. */
9345
9346 static bfd_boolean
9347 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9348 {
9349 asection *sect2;
9350
9351 if (bfd_get_section_by_name (abfd, name) != NULL)
9352 return TRUE;
9353
9354 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9355 if (sect2 == NULL)
9356 return FALSE;
9357
9358 sect2->size = sect->size;
9359 sect2->filepos = sect->filepos;
9360 sect2->alignment_power = sect->alignment_power;
9361 return TRUE;
9362 }
9363
9364 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9365 actually creates up to two pseudosections:
9366 - For the single-threaded case, a section named NAME, unless
9367 such a section already exists.
9368 - For the multi-threaded case, a section named "NAME/PID", where
9369 PID is elfcore_make_pid (abfd).
9370 Both pseudosections have identical contents. */
9371 bfd_boolean
9372 _bfd_elfcore_make_pseudosection (bfd *abfd,
9373 char *name,
9374 size_t size,
9375 ufile_ptr filepos)
9376 {
9377 char buf[100];
9378 char *threaded_name;
9379 size_t len;
9380 asection *sect;
9381
9382 /* Build the section name. */
9383
9384 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9385 len = strlen (buf) + 1;
9386 threaded_name = (char *) bfd_alloc (abfd, len);
9387 if (threaded_name == NULL)
9388 return FALSE;
9389 memcpy (threaded_name, buf, len);
9390
9391 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9392 SEC_HAS_CONTENTS);
9393 if (sect == NULL)
9394 return FALSE;
9395 sect->size = size;
9396 sect->filepos = filepos;
9397 sect->alignment_power = 2;
9398
9399 return elfcore_maybe_make_sect (abfd, name, sect);
9400 }
9401
9402 static bfd_boolean
9403 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9404 size_t offs)
9405 {
9406 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9407 SEC_HAS_CONTENTS);
9408
9409 if (sect == NULL)
9410 return FALSE;
9411
9412 sect->size = note->descsz - offs;
9413 sect->filepos = note->descpos + offs;
9414 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9415
9416 return TRUE;
9417 }
9418
9419 /* prstatus_t exists on:
9420 solaris 2.5+
9421 linux 2.[01] + glibc
9422 unixware 4.2
9423 */
9424
9425 #if defined (HAVE_PRSTATUS_T)
9426
9427 static bfd_boolean
9428 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9429 {
9430 size_t size;
9431 int offset;
9432
9433 if (note->descsz == sizeof (prstatus_t))
9434 {
9435 prstatus_t prstat;
9436
9437 size = sizeof (prstat.pr_reg);
9438 offset = offsetof (prstatus_t, pr_reg);
9439 memcpy (&prstat, note->descdata, sizeof (prstat));
9440
9441 /* Do not overwrite the core signal if it
9442 has already been set by another thread. */
9443 if (elf_tdata (abfd)->core->signal == 0)
9444 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9445 if (elf_tdata (abfd)->core->pid == 0)
9446 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9447
9448 /* pr_who exists on:
9449 solaris 2.5+
9450 unixware 4.2
9451 pr_who doesn't exist on:
9452 linux 2.[01]
9453 */
9454 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9455 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9456 #else
9457 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9458 #endif
9459 }
9460 #if defined (HAVE_PRSTATUS32_T)
9461 else if (note->descsz == sizeof (prstatus32_t))
9462 {
9463 /* 64-bit host, 32-bit corefile */
9464 prstatus32_t prstat;
9465
9466 size = sizeof (prstat.pr_reg);
9467 offset = offsetof (prstatus32_t, pr_reg);
9468 memcpy (&prstat, note->descdata, sizeof (prstat));
9469
9470 /* Do not overwrite the core signal if it
9471 has already been set by another thread. */
9472 if (elf_tdata (abfd)->core->signal == 0)
9473 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9474 if (elf_tdata (abfd)->core->pid == 0)
9475 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9476
9477 /* pr_who exists on:
9478 solaris 2.5+
9479 unixware 4.2
9480 pr_who doesn't exist on:
9481 linux 2.[01]
9482 */
9483 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9484 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9485 #else
9486 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9487 #endif
9488 }
9489 #endif /* HAVE_PRSTATUS32_T */
9490 else
9491 {
9492 /* Fail - we don't know how to handle any other
9493 note size (ie. data object type). */
9494 return TRUE;
9495 }
9496
9497 /* Make a ".reg/999" section and a ".reg" section. */
9498 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9499 size, note->descpos + offset);
9500 }
9501 #endif /* defined (HAVE_PRSTATUS_T) */
9502
9503 /* Create a pseudosection containing the exact contents of NOTE. */
9504 static bfd_boolean
9505 elfcore_make_note_pseudosection (bfd *abfd,
9506 char *name,
9507 Elf_Internal_Note *note)
9508 {
9509 return _bfd_elfcore_make_pseudosection (abfd, name,
9510 note->descsz, note->descpos);
9511 }
9512
9513 /* There isn't a consistent prfpregset_t across platforms,
9514 but it doesn't matter, because we don't have to pick this
9515 data structure apart. */
9516
9517 static bfd_boolean
9518 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9519 {
9520 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9521 }
9522
9523 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9524 type of NT_PRXFPREG. Just include the whole note's contents
9525 literally. */
9526
9527 static bfd_boolean
9528 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9529 {
9530 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9531 }
9532
9533 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9534 with a note type of NT_X86_XSTATE. Just include the whole note's
9535 contents literally. */
9536
9537 static bfd_boolean
9538 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9539 {
9540 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9541 }
9542
9543 static bfd_boolean
9544 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9545 {
9546 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9547 }
9548
9549 static bfd_boolean
9550 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9551 {
9552 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9553 }
9554
9555 static bfd_boolean
9556 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9557 {
9558 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9559 }
9560
9561 static bfd_boolean
9562 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9563 {
9564 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9565 }
9566
9567 static bfd_boolean
9568 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9569 {
9570 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9571 }
9572
9573 static bfd_boolean
9574 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9575 {
9576 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9577 }
9578
9579 static bfd_boolean
9580 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9581 {
9582 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9583 }
9584
9585 static bfd_boolean
9586 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9587 {
9588 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9589 }
9590
9591 static bfd_boolean
9592 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9593 {
9594 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9595 }
9596
9597 static bfd_boolean
9598 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9599 {
9600 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9601 }
9602
9603 static bfd_boolean
9604 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9605 {
9606 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9607 }
9608
9609 static bfd_boolean
9610 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9611 {
9612 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9613 }
9614
9615 static bfd_boolean
9616 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9617 {
9618 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9619 }
9620
9621 static bfd_boolean
9622 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9623 {
9624 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9625 }
9626
9627 static bfd_boolean
9628 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9629 {
9630 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9631 }
9632
9633 static bfd_boolean
9634 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9635 {
9636 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9637 }
9638
9639 static bfd_boolean
9640 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9641 {
9642 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9643 }
9644
9645 static bfd_boolean
9646 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9647 {
9648 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9649 }
9650
9651 static bfd_boolean
9652 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9653 {
9654 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9655 }
9656
9657 static bfd_boolean
9658 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9659 {
9660 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9661 }
9662
9663 static bfd_boolean
9664 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9665 {
9666 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9667 }
9668
9669 static bfd_boolean
9670 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9671 {
9672 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9673 }
9674
9675 static bfd_boolean
9676 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9677 {
9678 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9679 }
9680
9681 static bfd_boolean
9682 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9683 {
9684 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9685 }
9686
9687 static bfd_boolean
9688 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9689 {
9690 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9691 }
9692
9693 static bfd_boolean
9694 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9695 {
9696 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9697 }
9698
9699 static bfd_boolean
9700 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9701 {
9702 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9703 }
9704
9705 static bfd_boolean
9706 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9707 {
9708 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9709 }
9710
9711 static bfd_boolean
9712 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9713 {
9714 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9715 }
9716
9717 static bfd_boolean
9718 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9719 {
9720 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9721 }
9722
9723 static bfd_boolean
9724 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9725 {
9726 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9727 }
9728
9729 static bfd_boolean
9730 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9731 {
9732 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9733 }
9734
9735 static bfd_boolean
9736 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9737 {
9738 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9739 }
9740
9741 static bfd_boolean
9742 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9743 {
9744 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9745 }
9746
9747 #if defined (HAVE_PRPSINFO_T)
9748 typedef prpsinfo_t elfcore_psinfo_t;
9749 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9750 typedef prpsinfo32_t elfcore_psinfo32_t;
9751 #endif
9752 #endif
9753
9754 #if defined (HAVE_PSINFO_T)
9755 typedef psinfo_t elfcore_psinfo_t;
9756 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9757 typedef psinfo32_t elfcore_psinfo32_t;
9758 #endif
9759 #endif
9760
9761 /* return a malloc'ed copy of a string at START which is at
9762 most MAX bytes long, possibly without a terminating '\0'.
9763 the copy will always have a terminating '\0'. */
9764
9765 char *
9766 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9767 {
9768 char *dups;
9769 char *end = (char *) memchr (start, '\0', max);
9770 size_t len;
9771
9772 if (end == NULL)
9773 len = max;
9774 else
9775 len = end - start;
9776
9777 dups = (char *) bfd_alloc (abfd, len + 1);
9778 if (dups == NULL)
9779 return NULL;
9780
9781 memcpy (dups, start, len);
9782 dups[len] = '\0';
9783
9784 return dups;
9785 }
9786
9787 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9788 static bfd_boolean
9789 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9790 {
9791 if (note->descsz == sizeof (elfcore_psinfo_t))
9792 {
9793 elfcore_psinfo_t psinfo;
9794
9795 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9796
9797 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9798 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9799 #endif
9800 elf_tdata (abfd)->core->program
9801 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9802 sizeof (psinfo.pr_fname));
9803
9804 elf_tdata (abfd)->core->command
9805 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9806 sizeof (psinfo.pr_psargs));
9807 }
9808 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9809 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9810 {
9811 /* 64-bit host, 32-bit corefile */
9812 elfcore_psinfo32_t psinfo;
9813
9814 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9815
9816 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9817 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9818 #endif
9819 elf_tdata (abfd)->core->program
9820 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9821 sizeof (psinfo.pr_fname));
9822
9823 elf_tdata (abfd)->core->command
9824 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9825 sizeof (psinfo.pr_psargs));
9826 }
9827 #endif
9828
9829 else
9830 {
9831 /* Fail - we don't know how to handle any other
9832 note size (ie. data object type). */
9833 return TRUE;
9834 }
9835
9836 /* Note that for some reason, a spurious space is tacked
9837 onto the end of the args in some (at least one anyway)
9838 implementations, so strip it off if it exists. */
9839
9840 {
9841 char *command = elf_tdata (abfd)->core->command;
9842 int n = strlen (command);
9843
9844 if (0 < n && command[n - 1] == ' ')
9845 command[n - 1] = '\0';
9846 }
9847
9848 return TRUE;
9849 }
9850 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9851
9852 #if defined (HAVE_PSTATUS_T)
9853 static bfd_boolean
9854 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9855 {
9856 if (note->descsz == sizeof (pstatus_t)
9857 #if defined (HAVE_PXSTATUS_T)
9858 || note->descsz == sizeof (pxstatus_t)
9859 #endif
9860 )
9861 {
9862 pstatus_t pstat;
9863
9864 memcpy (&pstat, note->descdata, sizeof (pstat));
9865
9866 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9867 }
9868 #if defined (HAVE_PSTATUS32_T)
9869 else if (note->descsz == sizeof (pstatus32_t))
9870 {
9871 /* 64-bit host, 32-bit corefile */
9872 pstatus32_t pstat;
9873
9874 memcpy (&pstat, note->descdata, sizeof (pstat));
9875
9876 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9877 }
9878 #endif
9879 /* Could grab some more details from the "representative"
9880 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9881 NT_LWPSTATUS note, presumably. */
9882
9883 return TRUE;
9884 }
9885 #endif /* defined (HAVE_PSTATUS_T) */
9886
9887 #if defined (HAVE_LWPSTATUS_T)
9888 static bfd_boolean
9889 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9890 {
9891 lwpstatus_t lwpstat;
9892 char buf[100];
9893 char *name;
9894 size_t len;
9895 asection *sect;
9896
9897 if (note->descsz != sizeof (lwpstat)
9898 #if defined (HAVE_LWPXSTATUS_T)
9899 && note->descsz != sizeof (lwpxstatus_t)
9900 #endif
9901 )
9902 return TRUE;
9903
9904 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9905
9906 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9907 /* Do not overwrite the core signal if it has already been set by
9908 another thread. */
9909 if (elf_tdata (abfd)->core->signal == 0)
9910 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9911
9912 /* Make a ".reg/999" section. */
9913
9914 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9915 len = strlen (buf) + 1;
9916 name = bfd_alloc (abfd, len);
9917 if (name == NULL)
9918 return FALSE;
9919 memcpy (name, buf, len);
9920
9921 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9922 if (sect == NULL)
9923 return FALSE;
9924
9925 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9926 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9927 sect->filepos = note->descpos
9928 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9929 #endif
9930
9931 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9932 sect->size = sizeof (lwpstat.pr_reg);
9933 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9934 #endif
9935
9936 sect->alignment_power = 2;
9937
9938 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9939 return FALSE;
9940
9941 /* Make a ".reg2/999" section */
9942
9943 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9944 len = strlen (buf) + 1;
9945 name = bfd_alloc (abfd, len);
9946 if (name == NULL)
9947 return FALSE;
9948 memcpy (name, buf, len);
9949
9950 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9951 if (sect == NULL)
9952 return FALSE;
9953
9954 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9955 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9956 sect->filepos = note->descpos
9957 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9958 #endif
9959
9960 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9961 sect->size = sizeof (lwpstat.pr_fpreg);
9962 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9963 #endif
9964
9965 sect->alignment_power = 2;
9966
9967 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9968 }
9969 #endif /* defined (HAVE_LWPSTATUS_T) */
9970
9971 static bfd_boolean
9972 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9973 {
9974 char buf[30];
9975 char *name;
9976 size_t len;
9977 asection *sect;
9978 int type;
9979 int is_active_thread;
9980 bfd_vma base_addr;
9981
9982 if (note->descsz < 728)
9983 return TRUE;
9984
9985 if (! CONST_STRNEQ (note->namedata, "win32"))
9986 return TRUE;
9987
9988 type = bfd_get_32 (abfd, note->descdata);
9989
9990 switch (type)
9991 {
9992 case 1 /* NOTE_INFO_PROCESS */:
9993 /* FIXME: need to add ->core->command. */
9994 /* process_info.pid */
9995 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9996 /* process_info.signal */
9997 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9998 break;
9999
10000 case 2 /* NOTE_INFO_THREAD */:
10001 /* Make a ".reg/999" section. */
10002 /* thread_info.tid */
10003 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10004
10005 len = strlen (buf) + 1;
10006 name = (char *) bfd_alloc (abfd, len);
10007 if (name == NULL)
10008 return FALSE;
10009
10010 memcpy (name, buf, len);
10011
10012 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10013 if (sect == NULL)
10014 return FALSE;
10015
10016 /* sizeof (thread_info.thread_context) */
10017 sect->size = 716;
10018 /* offsetof (thread_info.thread_context) */
10019 sect->filepos = note->descpos + 12;
10020 sect->alignment_power = 2;
10021
10022 /* thread_info.is_active_thread */
10023 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10024
10025 if (is_active_thread)
10026 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10027 return FALSE;
10028 break;
10029
10030 case 3 /* NOTE_INFO_MODULE */:
10031 /* Make a ".module/xxxxxxxx" section. */
10032 /* module_info.base_address */
10033 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10034 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10035
10036 len = strlen (buf) + 1;
10037 name = (char *) bfd_alloc (abfd, len);
10038 if (name == NULL)
10039 return FALSE;
10040
10041 memcpy (name, buf, len);
10042
10043 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10044
10045 if (sect == NULL)
10046 return FALSE;
10047
10048 sect->size = note->descsz;
10049 sect->filepos = note->descpos;
10050 sect->alignment_power = 2;
10051 break;
10052
10053 default:
10054 return TRUE;
10055 }
10056
10057 return TRUE;
10058 }
10059
10060 static bfd_boolean
10061 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10062 {
10063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10064
10065 switch (note->type)
10066 {
10067 default:
10068 return TRUE;
10069
10070 case NT_PRSTATUS:
10071 if (bed->elf_backend_grok_prstatus)
10072 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10073 return TRUE;
10074 #if defined (HAVE_PRSTATUS_T)
10075 return elfcore_grok_prstatus (abfd, note);
10076 #else
10077 return TRUE;
10078 #endif
10079
10080 #if defined (HAVE_PSTATUS_T)
10081 case NT_PSTATUS:
10082 return elfcore_grok_pstatus (abfd, note);
10083 #endif
10084
10085 #if defined (HAVE_LWPSTATUS_T)
10086 case NT_LWPSTATUS:
10087 return elfcore_grok_lwpstatus (abfd, note);
10088 #endif
10089
10090 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10091 return elfcore_grok_prfpreg (abfd, note);
10092
10093 case NT_WIN32PSTATUS:
10094 return elfcore_grok_win32pstatus (abfd, note);
10095
10096 case NT_PRXFPREG: /* Linux SSE extension */
10097 if (note->namesz == 6
10098 && strcmp (note->namedata, "LINUX") == 0)
10099 return elfcore_grok_prxfpreg (abfd, note);
10100 else
10101 return TRUE;
10102
10103 case NT_X86_XSTATE: /* Linux XSAVE extension */
10104 if (note->namesz == 6
10105 && strcmp (note->namedata, "LINUX") == 0)
10106 return elfcore_grok_xstatereg (abfd, note);
10107 else
10108 return TRUE;
10109
10110 case NT_PPC_VMX:
10111 if (note->namesz == 6
10112 && strcmp (note->namedata, "LINUX") == 0)
10113 return elfcore_grok_ppc_vmx (abfd, note);
10114 else
10115 return TRUE;
10116
10117 case NT_PPC_VSX:
10118 if (note->namesz == 6
10119 && strcmp (note->namedata, "LINUX") == 0)
10120 return elfcore_grok_ppc_vsx (abfd, note);
10121 else
10122 return TRUE;
10123
10124 case NT_PPC_TAR:
10125 if (note->namesz == 6
10126 && strcmp (note->namedata, "LINUX") == 0)
10127 return elfcore_grok_ppc_tar (abfd, note);
10128 else
10129 return TRUE;
10130
10131 case NT_PPC_PPR:
10132 if (note->namesz == 6
10133 && strcmp (note->namedata, "LINUX") == 0)
10134 return elfcore_grok_ppc_ppr (abfd, note);
10135 else
10136 return TRUE;
10137
10138 case NT_PPC_DSCR:
10139 if (note->namesz == 6
10140 && strcmp (note->namedata, "LINUX") == 0)
10141 return elfcore_grok_ppc_dscr (abfd, note);
10142 else
10143 return TRUE;
10144
10145 case NT_PPC_EBB:
10146 if (note->namesz == 6
10147 && strcmp (note->namedata, "LINUX") == 0)
10148 return elfcore_grok_ppc_ebb (abfd, note);
10149 else
10150 return TRUE;
10151
10152 case NT_PPC_PMU:
10153 if (note->namesz == 6
10154 && strcmp (note->namedata, "LINUX") == 0)
10155 return elfcore_grok_ppc_pmu (abfd, note);
10156 else
10157 return TRUE;
10158
10159 case NT_PPC_TM_CGPR:
10160 if (note->namesz == 6
10161 && strcmp (note->namedata, "LINUX") == 0)
10162 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10163 else
10164 return TRUE;
10165
10166 case NT_PPC_TM_CFPR:
10167 if (note->namesz == 6
10168 && strcmp (note->namedata, "LINUX") == 0)
10169 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10170 else
10171 return TRUE;
10172
10173 case NT_PPC_TM_CVMX:
10174 if (note->namesz == 6
10175 && strcmp (note->namedata, "LINUX") == 0)
10176 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10177 else
10178 return TRUE;
10179
10180 case NT_PPC_TM_CVSX:
10181 if (note->namesz == 6
10182 && strcmp (note->namedata, "LINUX") == 0)
10183 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10184 else
10185 return TRUE;
10186
10187 case NT_PPC_TM_SPR:
10188 if (note->namesz == 6
10189 && strcmp (note->namedata, "LINUX") == 0)
10190 return elfcore_grok_ppc_tm_spr (abfd, note);
10191 else
10192 return TRUE;
10193
10194 case NT_PPC_TM_CTAR:
10195 if (note->namesz == 6
10196 && strcmp (note->namedata, "LINUX") == 0)
10197 return elfcore_grok_ppc_tm_ctar (abfd, note);
10198 else
10199 return TRUE;
10200
10201 case NT_PPC_TM_CPPR:
10202 if (note->namesz == 6
10203 && strcmp (note->namedata, "LINUX") == 0)
10204 return elfcore_grok_ppc_tm_cppr (abfd, note);
10205 else
10206 return TRUE;
10207
10208 case NT_PPC_TM_CDSCR:
10209 if (note->namesz == 6
10210 && strcmp (note->namedata, "LINUX") == 0)
10211 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10212 else
10213 return TRUE;
10214
10215 case NT_S390_HIGH_GPRS:
10216 if (note->namesz == 6
10217 && strcmp (note->namedata, "LINUX") == 0)
10218 return elfcore_grok_s390_high_gprs (abfd, note);
10219 else
10220 return TRUE;
10221
10222 case NT_S390_TIMER:
10223 if (note->namesz == 6
10224 && strcmp (note->namedata, "LINUX") == 0)
10225 return elfcore_grok_s390_timer (abfd, note);
10226 else
10227 return TRUE;
10228
10229 case NT_S390_TODCMP:
10230 if (note->namesz == 6
10231 && strcmp (note->namedata, "LINUX") == 0)
10232 return elfcore_grok_s390_todcmp (abfd, note);
10233 else
10234 return TRUE;
10235
10236 case NT_S390_TODPREG:
10237 if (note->namesz == 6
10238 && strcmp (note->namedata, "LINUX") == 0)
10239 return elfcore_grok_s390_todpreg (abfd, note);
10240 else
10241 return TRUE;
10242
10243 case NT_S390_CTRS:
10244 if (note->namesz == 6
10245 && strcmp (note->namedata, "LINUX") == 0)
10246 return elfcore_grok_s390_ctrs (abfd, note);
10247 else
10248 return TRUE;
10249
10250 case NT_S390_PREFIX:
10251 if (note->namesz == 6
10252 && strcmp (note->namedata, "LINUX") == 0)
10253 return elfcore_grok_s390_prefix (abfd, note);
10254 else
10255 return TRUE;
10256
10257 case NT_S390_LAST_BREAK:
10258 if (note->namesz == 6
10259 && strcmp (note->namedata, "LINUX") == 0)
10260 return elfcore_grok_s390_last_break (abfd, note);
10261 else
10262 return TRUE;
10263
10264 case NT_S390_SYSTEM_CALL:
10265 if (note->namesz == 6
10266 && strcmp (note->namedata, "LINUX") == 0)
10267 return elfcore_grok_s390_system_call (abfd, note);
10268 else
10269 return TRUE;
10270
10271 case NT_S390_TDB:
10272 if (note->namesz == 6
10273 && strcmp (note->namedata, "LINUX") == 0)
10274 return elfcore_grok_s390_tdb (abfd, note);
10275 else
10276 return TRUE;
10277
10278 case NT_S390_VXRS_LOW:
10279 if (note->namesz == 6
10280 && strcmp (note->namedata, "LINUX") == 0)
10281 return elfcore_grok_s390_vxrs_low (abfd, note);
10282 else
10283 return TRUE;
10284
10285 case NT_S390_VXRS_HIGH:
10286 if (note->namesz == 6
10287 && strcmp (note->namedata, "LINUX") == 0)
10288 return elfcore_grok_s390_vxrs_high (abfd, note);
10289 else
10290 return TRUE;
10291
10292 case NT_S390_GS_CB:
10293 if (note->namesz == 6
10294 && strcmp (note->namedata, "LINUX") == 0)
10295 return elfcore_grok_s390_gs_cb (abfd, note);
10296 else
10297 return TRUE;
10298
10299 case NT_S390_GS_BC:
10300 if (note->namesz == 6
10301 && strcmp (note->namedata, "LINUX") == 0)
10302 return elfcore_grok_s390_gs_bc (abfd, note);
10303 else
10304 return TRUE;
10305
10306 case NT_ARM_VFP:
10307 if (note->namesz == 6
10308 && strcmp (note->namedata, "LINUX") == 0)
10309 return elfcore_grok_arm_vfp (abfd, note);
10310 else
10311 return TRUE;
10312
10313 case NT_ARM_TLS:
10314 if (note->namesz == 6
10315 && strcmp (note->namedata, "LINUX") == 0)
10316 return elfcore_grok_aarch_tls (abfd, note);
10317 else
10318 return TRUE;
10319
10320 case NT_ARM_HW_BREAK:
10321 if (note->namesz == 6
10322 && strcmp (note->namedata, "LINUX") == 0)
10323 return elfcore_grok_aarch_hw_break (abfd, note);
10324 else
10325 return TRUE;
10326
10327 case NT_ARM_HW_WATCH:
10328 if (note->namesz == 6
10329 && strcmp (note->namedata, "LINUX") == 0)
10330 return elfcore_grok_aarch_hw_watch (abfd, note);
10331 else
10332 return TRUE;
10333
10334 case NT_ARM_SVE:
10335 if (note->namesz == 6
10336 && strcmp (note->namedata, "LINUX") == 0)
10337 return elfcore_grok_aarch_sve (abfd, note);
10338 else
10339 return TRUE;
10340
10341 case NT_ARM_PAC_MASK:
10342 if (note->namesz == 6
10343 && strcmp (note->namedata, "LINUX") == 0)
10344 return elfcore_grok_aarch_pauth (abfd, note);
10345 else
10346 return TRUE;
10347
10348 case NT_PRPSINFO:
10349 case NT_PSINFO:
10350 if (bed->elf_backend_grok_psinfo)
10351 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10352 return TRUE;
10353 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10354 return elfcore_grok_psinfo (abfd, note);
10355 #else
10356 return TRUE;
10357 #endif
10358
10359 case NT_AUXV:
10360 return elfcore_make_auxv_note_section (abfd, note, 0);
10361
10362 case NT_FILE:
10363 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10364 note);
10365
10366 case NT_SIGINFO:
10367 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10368 note);
10369
10370 }
10371 }
10372
10373 static bfd_boolean
10374 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10375 {
10376 struct bfd_build_id* build_id;
10377
10378 if (note->descsz == 0)
10379 return FALSE;
10380
10381 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10382 if (build_id == NULL)
10383 return FALSE;
10384
10385 build_id->size = note->descsz;
10386 memcpy (build_id->data, note->descdata, note->descsz);
10387 abfd->build_id = build_id;
10388
10389 return TRUE;
10390 }
10391
10392 static bfd_boolean
10393 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10394 {
10395 switch (note->type)
10396 {
10397 default:
10398 return TRUE;
10399
10400 case NT_GNU_PROPERTY_TYPE_0:
10401 return _bfd_elf_parse_gnu_properties (abfd, note);
10402
10403 case NT_GNU_BUILD_ID:
10404 return elfobj_grok_gnu_build_id (abfd, note);
10405 }
10406 }
10407
10408 static bfd_boolean
10409 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10410 {
10411 struct sdt_note *cur =
10412 (struct sdt_note *) bfd_alloc (abfd,
10413 sizeof (struct sdt_note) + note->descsz);
10414
10415 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10416 cur->size = (bfd_size_type) note->descsz;
10417 memcpy (cur->data, note->descdata, note->descsz);
10418
10419 elf_tdata (abfd)->sdt_note_head = cur;
10420
10421 return TRUE;
10422 }
10423
10424 static bfd_boolean
10425 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10426 {
10427 switch (note->type)
10428 {
10429 case NT_STAPSDT:
10430 return elfobj_grok_stapsdt_note_1 (abfd, note);
10431
10432 default:
10433 return TRUE;
10434 }
10435 }
10436
10437 static bfd_boolean
10438 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10439 {
10440 size_t offset;
10441
10442 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10443 {
10444 case ELFCLASS32:
10445 if (note->descsz < 108)
10446 return FALSE;
10447 break;
10448
10449 case ELFCLASS64:
10450 if (note->descsz < 120)
10451 return FALSE;
10452 break;
10453
10454 default:
10455 return FALSE;
10456 }
10457
10458 /* Check for version 1 in pr_version. */
10459 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10460 return FALSE;
10461
10462 offset = 4;
10463
10464 /* Skip over pr_psinfosz. */
10465 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10466 offset += 4;
10467 else
10468 {
10469 offset += 4; /* Padding before pr_psinfosz. */
10470 offset += 8;
10471 }
10472
10473 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10474 elf_tdata (abfd)->core->program
10475 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10476 offset += 17;
10477
10478 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10479 elf_tdata (abfd)->core->command
10480 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10481 offset += 81;
10482
10483 /* Padding before pr_pid. */
10484 offset += 2;
10485
10486 /* The pr_pid field was added in version "1a". */
10487 if (note->descsz < offset + 4)
10488 return TRUE;
10489
10490 elf_tdata (abfd)->core->pid
10491 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10492
10493 return TRUE;
10494 }
10495
10496 static bfd_boolean
10497 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10498 {
10499 size_t offset;
10500 size_t size;
10501 size_t min_size;
10502
10503 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10504 Also compute minimum size of this note. */
10505 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10506 {
10507 case ELFCLASS32:
10508 offset = 4 + 4;
10509 min_size = offset + (4 * 2) + 4 + 4 + 4;
10510 break;
10511
10512 case ELFCLASS64:
10513 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10514 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10515 break;
10516
10517 default:
10518 return FALSE;
10519 }
10520
10521 if (note->descsz < min_size)
10522 return FALSE;
10523
10524 /* Check for version 1 in pr_version. */
10525 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10526 return FALSE;
10527
10528 /* Extract size of pr_reg from pr_gregsetsz. */
10529 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10530 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10531 {
10532 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10533 offset += 4 * 2;
10534 }
10535 else
10536 {
10537 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10538 offset += 8 * 2;
10539 }
10540
10541 /* Skip over pr_osreldate. */
10542 offset += 4;
10543
10544 /* Read signal from pr_cursig. */
10545 if (elf_tdata (abfd)->core->signal == 0)
10546 elf_tdata (abfd)->core->signal
10547 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10548 offset += 4;
10549
10550 /* Read TID from pr_pid. */
10551 elf_tdata (abfd)->core->lwpid
10552 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10553 offset += 4;
10554
10555 /* Padding before pr_reg. */
10556 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10557 offset += 4;
10558
10559 /* Make sure that there is enough data remaining in the note. */
10560 if ((note->descsz - offset) < size)
10561 return FALSE;
10562
10563 /* Make a ".reg/999" section and a ".reg" section. */
10564 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10565 size, note->descpos + offset);
10566 }
10567
10568 static bfd_boolean
10569 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10570 {
10571 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10572
10573 switch (note->type)
10574 {
10575 case NT_PRSTATUS:
10576 if (bed->elf_backend_grok_freebsd_prstatus)
10577 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10578 return TRUE;
10579 return elfcore_grok_freebsd_prstatus (abfd, note);
10580
10581 case NT_FPREGSET:
10582 return elfcore_grok_prfpreg (abfd, note);
10583
10584 case NT_PRPSINFO:
10585 return elfcore_grok_freebsd_psinfo (abfd, note);
10586
10587 case NT_FREEBSD_THRMISC:
10588 if (note->namesz == 8)
10589 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10590 else
10591 return TRUE;
10592
10593 case NT_FREEBSD_PROCSTAT_PROC:
10594 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10595 note);
10596
10597 case NT_FREEBSD_PROCSTAT_FILES:
10598 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10599 note);
10600
10601 case NT_FREEBSD_PROCSTAT_VMMAP:
10602 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10603 note);
10604
10605 case NT_FREEBSD_PROCSTAT_AUXV:
10606 return elfcore_make_auxv_note_section (abfd, note, 4);
10607
10608 case NT_X86_XSTATE:
10609 if (note->namesz == 8)
10610 return elfcore_grok_xstatereg (abfd, note);
10611 else
10612 return TRUE;
10613
10614 case NT_FREEBSD_PTLWPINFO:
10615 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10616 note);
10617
10618 case NT_ARM_VFP:
10619 return elfcore_grok_arm_vfp (abfd, note);
10620
10621 default:
10622 return TRUE;
10623 }
10624 }
10625
10626 static bfd_boolean
10627 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10628 {
10629 char *cp;
10630
10631 cp = strchr (note->namedata, '@');
10632 if (cp != NULL)
10633 {
10634 *lwpidp = atoi(cp + 1);
10635 return TRUE;
10636 }
10637 return FALSE;
10638 }
10639
10640 static bfd_boolean
10641 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10642 {
10643 if (note->descsz <= 0x7c + 31)
10644 return FALSE;
10645
10646 /* Signal number at offset 0x08. */
10647 elf_tdata (abfd)->core->signal
10648 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10649
10650 /* Process ID at offset 0x50. */
10651 elf_tdata (abfd)->core->pid
10652 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10653
10654 /* Command name at 0x7c (max 32 bytes, including nul). */
10655 elf_tdata (abfd)->core->command
10656 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10657
10658 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10659 note);
10660 }
10661
10662 static bfd_boolean
10663 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10664 {
10665 int lwp;
10666
10667 if (elfcore_netbsd_get_lwpid (note, &lwp))
10668 elf_tdata (abfd)->core->lwpid = lwp;
10669
10670 switch (note->type)
10671 {
10672 case NT_NETBSDCORE_PROCINFO:
10673 /* NetBSD-specific core "procinfo". Note that we expect to
10674 find this note before any of the others, which is fine,
10675 since the kernel writes this note out first when it
10676 creates a core file. */
10677 return elfcore_grok_netbsd_procinfo (abfd, note);
10678 #ifdef NT_NETBSDCORE_AUXV
10679 case NT_NETBSDCORE_AUXV:
10680 /* NetBSD-specific Elf Auxiliary Vector data. */
10681 return elfcore_make_auxv_note_section (abfd, note, 4);
10682 #endif
10683 default:
10684 break;
10685 }
10686
10687 /* As of March 2017 there are no other machine-independent notes
10688 defined for NetBSD core files. If the note type is less
10689 than the start of the machine-dependent note types, we don't
10690 understand it. */
10691
10692 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10693 return TRUE;
10694
10695
10696 switch (bfd_get_arch (abfd))
10697 {
10698 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10699 PT_GETFPREGS == mach+2. */
10700
10701 case bfd_arch_alpha:
10702 case bfd_arch_sparc:
10703 switch (note->type)
10704 {
10705 case NT_NETBSDCORE_FIRSTMACH+0:
10706 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10707
10708 case NT_NETBSDCORE_FIRSTMACH+2:
10709 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10710
10711 default:
10712 return TRUE;
10713 }
10714
10715 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10716 There's also old PT___GETREGS40 == mach + 1 for old reg
10717 structure which lacks GBR. */
10718
10719 case bfd_arch_sh:
10720 switch (note->type)
10721 {
10722 case NT_NETBSDCORE_FIRSTMACH+3:
10723 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10724
10725 case NT_NETBSDCORE_FIRSTMACH+5:
10726 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10727
10728 default:
10729 return TRUE;
10730 }
10731
10732 /* On all other arch's, PT_GETREGS == mach+1 and
10733 PT_GETFPREGS == mach+3. */
10734
10735 default:
10736 switch (note->type)
10737 {
10738 case NT_NETBSDCORE_FIRSTMACH+1:
10739 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10740
10741 case NT_NETBSDCORE_FIRSTMACH+3:
10742 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10743
10744 default:
10745 return TRUE;
10746 }
10747 }
10748 /* NOTREACHED */
10749 }
10750
10751 static bfd_boolean
10752 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10753 {
10754 if (note->descsz <= 0x48 + 31)
10755 return FALSE;
10756
10757 /* Signal number at offset 0x08. */
10758 elf_tdata (abfd)->core->signal
10759 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10760
10761 /* Process ID at offset 0x20. */
10762 elf_tdata (abfd)->core->pid
10763 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10764
10765 /* Command name at 0x48 (max 32 bytes, including nul). */
10766 elf_tdata (abfd)->core->command
10767 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10768
10769 return TRUE;
10770 }
10771
10772 static bfd_boolean
10773 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10774 {
10775 if (note->type == NT_OPENBSD_PROCINFO)
10776 return elfcore_grok_openbsd_procinfo (abfd, note);
10777
10778 if (note->type == NT_OPENBSD_REGS)
10779 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10780
10781 if (note->type == NT_OPENBSD_FPREGS)
10782 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10783
10784 if (note->type == NT_OPENBSD_XFPREGS)
10785 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10786
10787 if (note->type == NT_OPENBSD_AUXV)
10788 return elfcore_make_auxv_note_section (abfd, note, 0);
10789
10790 if (note->type == NT_OPENBSD_WCOOKIE)
10791 {
10792 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10793 SEC_HAS_CONTENTS);
10794
10795 if (sect == NULL)
10796 return FALSE;
10797 sect->size = note->descsz;
10798 sect->filepos = note->descpos;
10799 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10800
10801 return TRUE;
10802 }
10803
10804 return TRUE;
10805 }
10806
10807 static bfd_boolean
10808 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10809 {
10810 void *ddata = note->descdata;
10811 char buf[100];
10812 char *name;
10813 asection *sect;
10814 short sig;
10815 unsigned flags;
10816
10817 if (note->descsz < 16)
10818 return FALSE;
10819
10820 /* nto_procfs_status 'pid' field is at offset 0. */
10821 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10822
10823 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10824 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10825
10826 /* nto_procfs_status 'flags' field is at offset 8. */
10827 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10828
10829 /* nto_procfs_status 'what' field is at offset 14. */
10830 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10831 {
10832 elf_tdata (abfd)->core->signal = sig;
10833 elf_tdata (abfd)->core->lwpid = *tid;
10834 }
10835
10836 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10837 do not come from signals so we make sure we set the current
10838 thread just in case. */
10839 if (flags & 0x00000080)
10840 elf_tdata (abfd)->core->lwpid = *tid;
10841
10842 /* Make a ".qnx_core_status/%d" section. */
10843 sprintf (buf, ".qnx_core_status/%ld", *tid);
10844
10845 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10846 if (name == NULL)
10847 return FALSE;
10848 strcpy (name, buf);
10849
10850 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10851 if (sect == NULL)
10852 return FALSE;
10853
10854 sect->size = note->descsz;
10855 sect->filepos = note->descpos;
10856 sect->alignment_power = 2;
10857
10858 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10859 }
10860
10861 static bfd_boolean
10862 elfcore_grok_nto_regs (bfd *abfd,
10863 Elf_Internal_Note *note,
10864 long tid,
10865 char *base)
10866 {
10867 char buf[100];
10868 char *name;
10869 asection *sect;
10870
10871 /* Make a "(base)/%d" section. */
10872 sprintf (buf, "%s/%ld", base, tid);
10873
10874 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10875 if (name == NULL)
10876 return FALSE;
10877 strcpy (name, buf);
10878
10879 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10880 if (sect == NULL)
10881 return FALSE;
10882
10883 sect->size = note->descsz;
10884 sect->filepos = note->descpos;
10885 sect->alignment_power = 2;
10886
10887 /* This is the current thread. */
10888 if (elf_tdata (abfd)->core->lwpid == tid)
10889 return elfcore_maybe_make_sect (abfd, base, sect);
10890
10891 return TRUE;
10892 }
10893
10894 #define BFD_QNT_CORE_INFO 7
10895 #define BFD_QNT_CORE_STATUS 8
10896 #define BFD_QNT_CORE_GREG 9
10897 #define BFD_QNT_CORE_FPREG 10
10898
10899 static bfd_boolean
10900 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10901 {
10902 /* Every GREG section has a STATUS section before it. Store the
10903 tid from the previous call to pass down to the next gregs
10904 function. */
10905 static long tid = 1;
10906
10907 switch (note->type)
10908 {
10909 case BFD_QNT_CORE_INFO:
10910 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10911 case BFD_QNT_CORE_STATUS:
10912 return elfcore_grok_nto_status (abfd, note, &tid);
10913 case BFD_QNT_CORE_GREG:
10914 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10915 case BFD_QNT_CORE_FPREG:
10916 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10917 default:
10918 return TRUE;
10919 }
10920 }
10921
10922 static bfd_boolean
10923 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10924 {
10925 char *name;
10926 asection *sect;
10927 size_t len;
10928
10929 /* Use note name as section name. */
10930 len = note->namesz;
10931 name = (char *) bfd_alloc (abfd, len);
10932 if (name == NULL)
10933 return FALSE;
10934 memcpy (name, note->namedata, len);
10935 name[len - 1] = '\0';
10936
10937 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10938 if (sect == NULL)
10939 return FALSE;
10940
10941 sect->size = note->descsz;
10942 sect->filepos = note->descpos;
10943 sect->alignment_power = 1;
10944
10945 return TRUE;
10946 }
10947
10948 /* Function: elfcore_write_note
10949
10950 Inputs:
10951 buffer to hold note, and current size of buffer
10952 name of note
10953 type of note
10954 data for note
10955 size of data for note
10956
10957 Writes note to end of buffer. ELF64 notes are written exactly as
10958 for ELF32, despite the current (as of 2006) ELF gabi specifying
10959 that they ought to have 8-byte namesz and descsz field, and have
10960 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10961
10962 Return:
10963 Pointer to realloc'd buffer, *BUFSIZ updated. */
10964
10965 char *
10966 elfcore_write_note (bfd *abfd,
10967 char *buf,
10968 int *bufsiz,
10969 const char *name,
10970 int type,
10971 const void *input,
10972 int size)
10973 {
10974 Elf_External_Note *xnp;
10975 size_t namesz;
10976 size_t newspace;
10977 char *dest;
10978
10979 namesz = 0;
10980 if (name != NULL)
10981 namesz = strlen (name) + 1;
10982
10983 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10984
10985 buf = (char *) realloc (buf, *bufsiz + newspace);
10986 if (buf == NULL)
10987 return buf;
10988 dest = buf + *bufsiz;
10989 *bufsiz += newspace;
10990 xnp = (Elf_External_Note *) dest;
10991 H_PUT_32 (abfd, namesz, xnp->namesz);
10992 H_PUT_32 (abfd, size, xnp->descsz);
10993 H_PUT_32 (abfd, type, xnp->type);
10994 dest = xnp->name;
10995 if (name != NULL)
10996 {
10997 memcpy (dest, name, namesz);
10998 dest += namesz;
10999 while (namesz & 3)
11000 {
11001 *dest++ = '\0';
11002 ++namesz;
11003 }
11004 }
11005 memcpy (dest, input, size);
11006 dest += size;
11007 while (size & 3)
11008 {
11009 *dest++ = '\0';
11010 ++size;
11011 }
11012 return buf;
11013 }
11014
11015 /* gcc-8 warns (*) on all the strncpy calls in this function about
11016 possible string truncation. The "truncation" is not a bug. We
11017 have an external representation of structs with fields that are not
11018 necessarily NULL terminated and corresponding internal
11019 representation fields that are one larger so that they can always
11020 be NULL terminated.
11021 gcc versions between 4.2 and 4.6 do not allow pragma control of
11022 diagnostics inside functions, giving a hard error if you try to use
11023 the finer control available with later versions.
11024 gcc prior to 4.2 warns about diagnostic push and pop.
11025 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11026 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11027 (*) Depending on your system header files! */
11028 #if GCC_VERSION >= 8000
11029 # pragma GCC diagnostic push
11030 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11031 #endif
11032 char *
11033 elfcore_write_prpsinfo (bfd *abfd,
11034 char *buf,
11035 int *bufsiz,
11036 const char *fname,
11037 const char *psargs)
11038 {
11039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11040
11041 if (bed->elf_backend_write_core_note != NULL)
11042 {
11043 char *ret;
11044 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11045 NT_PRPSINFO, fname, psargs);
11046 if (ret != NULL)
11047 return ret;
11048 }
11049
11050 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11051 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11052 if (bed->s->elfclass == ELFCLASS32)
11053 {
11054 # if defined (HAVE_PSINFO32_T)
11055 psinfo32_t data;
11056 int note_type = NT_PSINFO;
11057 # else
11058 prpsinfo32_t data;
11059 int note_type = NT_PRPSINFO;
11060 # endif
11061
11062 memset (&data, 0, sizeof (data));
11063 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11064 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11065 return elfcore_write_note (abfd, buf, bufsiz,
11066 "CORE", note_type, &data, sizeof (data));
11067 }
11068 else
11069 # endif
11070 {
11071 # if defined (HAVE_PSINFO_T)
11072 psinfo_t data;
11073 int note_type = NT_PSINFO;
11074 # else
11075 prpsinfo_t data;
11076 int note_type = NT_PRPSINFO;
11077 # endif
11078
11079 memset (&data, 0, sizeof (data));
11080 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11081 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11082 return elfcore_write_note (abfd, buf, bufsiz,
11083 "CORE", note_type, &data, sizeof (data));
11084 }
11085 #endif /* PSINFO_T or PRPSINFO_T */
11086
11087 free (buf);
11088 return NULL;
11089 }
11090 #if GCC_VERSION >= 8000
11091 # pragma GCC diagnostic pop
11092 #endif
11093
11094 char *
11095 elfcore_write_linux_prpsinfo32
11096 (bfd *abfd, char *buf, int *bufsiz,
11097 const struct elf_internal_linux_prpsinfo *prpsinfo)
11098 {
11099 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11100 {
11101 struct elf_external_linux_prpsinfo32_ugid16 data;
11102
11103 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11104 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11105 &data, sizeof (data));
11106 }
11107 else
11108 {
11109 struct elf_external_linux_prpsinfo32_ugid32 data;
11110
11111 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11112 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11113 &data, sizeof (data));
11114 }
11115 }
11116
11117 char *
11118 elfcore_write_linux_prpsinfo64
11119 (bfd *abfd, char *buf, int *bufsiz,
11120 const struct elf_internal_linux_prpsinfo *prpsinfo)
11121 {
11122 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11123 {
11124 struct elf_external_linux_prpsinfo64_ugid16 data;
11125
11126 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11127 return elfcore_write_note (abfd, buf, bufsiz,
11128 "CORE", NT_PRPSINFO, &data, sizeof (data));
11129 }
11130 else
11131 {
11132 struct elf_external_linux_prpsinfo64_ugid32 data;
11133
11134 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11135 return elfcore_write_note (abfd, buf, bufsiz,
11136 "CORE", NT_PRPSINFO, &data, sizeof (data));
11137 }
11138 }
11139
11140 char *
11141 elfcore_write_prstatus (bfd *abfd,
11142 char *buf,
11143 int *bufsiz,
11144 long pid,
11145 int cursig,
11146 const void *gregs)
11147 {
11148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11149
11150 if (bed->elf_backend_write_core_note != NULL)
11151 {
11152 char *ret;
11153 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11154 NT_PRSTATUS,
11155 pid, cursig, gregs);
11156 if (ret != NULL)
11157 return ret;
11158 }
11159
11160 #if defined (HAVE_PRSTATUS_T)
11161 #if defined (HAVE_PRSTATUS32_T)
11162 if (bed->s->elfclass == ELFCLASS32)
11163 {
11164 prstatus32_t prstat;
11165
11166 memset (&prstat, 0, sizeof (prstat));
11167 prstat.pr_pid = pid;
11168 prstat.pr_cursig = cursig;
11169 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11170 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11171 NT_PRSTATUS, &prstat, sizeof (prstat));
11172 }
11173 else
11174 #endif
11175 {
11176 prstatus_t prstat;
11177
11178 memset (&prstat, 0, sizeof (prstat));
11179 prstat.pr_pid = pid;
11180 prstat.pr_cursig = cursig;
11181 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11182 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11183 NT_PRSTATUS, &prstat, sizeof (prstat));
11184 }
11185 #endif /* HAVE_PRSTATUS_T */
11186
11187 free (buf);
11188 return NULL;
11189 }
11190
11191 #if defined (HAVE_LWPSTATUS_T)
11192 char *
11193 elfcore_write_lwpstatus (bfd *abfd,
11194 char *buf,
11195 int *bufsiz,
11196 long pid,
11197 int cursig,
11198 const void *gregs)
11199 {
11200 lwpstatus_t lwpstat;
11201 const char *note_name = "CORE";
11202
11203 memset (&lwpstat, 0, sizeof (lwpstat));
11204 lwpstat.pr_lwpid = pid >> 16;
11205 lwpstat.pr_cursig = cursig;
11206 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11207 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11208 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11209 #if !defined(gregs)
11210 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11211 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11212 #else
11213 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11214 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11215 #endif
11216 #endif
11217 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11218 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11219 }
11220 #endif /* HAVE_LWPSTATUS_T */
11221
11222 #if defined (HAVE_PSTATUS_T)
11223 char *
11224 elfcore_write_pstatus (bfd *abfd,
11225 char *buf,
11226 int *bufsiz,
11227 long pid,
11228 int cursig ATTRIBUTE_UNUSED,
11229 const void *gregs ATTRIBUTE_UNUSED)
11230 {
11231 const char *note_name = "CORE";
11232 #if defined (HAVE_PSTATUS32_T)
11233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11234
11235 if (bed->s->elfclass == ELFCLASS32)
11236 {
11237 pstatus32_t pstat;
11238
11239 memset (&pstat, 0, sizeof (pstat));
11240 pstat.pr_pid = pid & 0xffff;
11241 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11242 NT_PSTATUS, &pstat, sizeof (pstat));
11243 return buf;
11244 }
11245 else
11246 #endif
11247 {
11248 pstatus_t pstat;
11249
11250 memset (&pstat, 0, sizeof (pstat));
11251 pstat.pr_pid = pid & 0xffff;
11252 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11253 NT_PSTATUS, &pstat, sizeof (pstat));
11254 return buf;
11255 }
11256 }
11257 #endif /* HAVE_PSTATUS_T */
11258
11259 char *
11260 elfcore_write_prfpreg (bfd *abfd,
11261 char *buf,
11262 int *bufsiz,
11263 const void *fpregs,
11264 int size)
11265 {
11266 const char *note_name = "CORE";
11267 return elfcore_write_note (abfd, buf, bufsiz,
11268 note_name, NT_FPREGSET, fpregs, size);
11269 }
11270
11271 char *
11272 elfcore_write_prxfpreg (bfd *abfd,
11273 char *buf,
11274 int *bufsiz,
11275 const void *xfpregs,
11276 int size)
11277 {
11278 char *note_name = "LINUX";
11279 return elfcore_write_note (abfd, buf, bufsiz,
11280 note_name, NT_PRXFPREG, xfpregs, size);
11281 }
11282
11283 char *
11284 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11285 const void *xfpregs, int size)
11286 {
11287 char *note_name;
11288 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11289 note_name = "FreeBSD";
11290 else
11291 note_name = "LINUX";
11292 return elfcore_write_note (abfd, buf, bufsiz,
11293 note_name, NT_X86_XSTATE, xfpregs, size);
11294 }
11295
11296 char *
11297 elfcore_write_ppc_vmx (bfd *abfd,
11298 char *buf,
11299 int *bufsiz,
11300 const void *ppc_vmx,
11301 int size)
11302 {
11303 char *note_name = "LINUX";
11304 return elfcore_write_note (abfd, buf, bufsiz,
11305 note_name, NT_PPC_VMX, ppc_vmx, size);
11306 }
11307
11308 char *
11309 elfcore_write_ppc_vsx (bfd *abfd,
11310 char *buf,
11311 int *bufsiz,
11312 const void *ppc_vsx,
11313 int size)
11314 {
11315 char *note_name = "LINUX";
11316 return elfcore_write_note (abfd, buf, bufsiz,
11317 note_name, NT_PPC_VSX, ppc_vsx, size);
11318 }
11319
11320 char *
11321 elfcore_write_ppc_tar (bfd *abfd,
11322 char *buf,
11323 int *bufsiz,
11324 const void *ppc_tar,
11325 int size)
11326 {
11327 char *note_name = "LINUX";
11328 return elfcore_write_note (abfd, buf, bufsiz,
11329 note_name, NT_PPC_TAR, ppc_tar, size);
11330 }
11331
11332 char *
11333 elfcore_write_ppc_ppr (bfd *abfd,
11334 char *buf,
11335 int *bufsiz,
11336 const void *ppc_ppr,
11337 int size)
11338 {
11339 char *note_name = "LINUX";
11340 return elfcore_write_note (abfd, buf, bufsiz,
11341 note_name, NT_PPC_PPR, ppc_ppr, size);
11342 }
11343
11344 char *
11345 elfcore_write_ppc_dscr (bfd *abfd,
11346 char *buf,
11347 int *bufsiz,
11348 const void *ppc_dscr,
11349 int size)
11350 {
11351 char *note_name = "LINUX";
11352 return elfcore_write_note (abfd, buf, bufsiz,
11353 note_name, NT_PPC_DSCR, ppc_dscr, size);
11354 }
11355
11356 char *
11357 elfcore_write_ppc_ebb (bfd *abfd,
11358 char *buf,
11359 int *bufsiz,
11360 const void *ppc_ebb,
11361 int size)
11362 {
11363 char *note_name = "LINUX";
11364 return elfcore_write_note (abfd, buf, bufsiz,
11365 note_name, NT_PPC_EBB, ppc_ebb, size);
11366 }
11367
11368 char *
11369 elfcore_write_ppc_pmu (bfd *abfd,
11370 char *buf,
11371 int *bufsiz,
11372 const void *ppc_pmu,
11373 int size)
11374 {
11375 char *note_name = "LINUX";
11376 return elfcore_write_note (abfd, buf, bufsiz,
11377 note_name, NT_PPC_PMU, ppc_pmu, size);
11378 }
11379
11380 char *
11381 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11382 char *buf,
11383 int *bufsiz,
11384 const void *ppc_tm_cgpr,
11385 int size)
11386 {
11387 char *note_name = "LINUX";
11388 return elfcore_write_note (abfd, buf, bufsiz,
11389 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11390 }
11391
11392 char *
11393 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11394 char *buf,
11395 int *bufsiz,
11396 const void *ppc_tm_cfpr,
11397 int size)
11398 {
11399 char *note_name = "LINUX";
11400 return elfcore_write_note (abfd, buf, bufsiz,
11401 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11402 }
11403
11404 char *
11405 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11406 char *buf,
11407 int *bufsiz,
11408 const void *ppc_tm_cvmx,
11409 int size)
11410 {
11411 char *note_name = "LINUX";
11412 return elfcore_write_note (abfd, buf, bufsiz,
11413 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11414 }
11415
11416 char *
11417 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11418 char *buf,
11419 int *bufsiz,
11420 const void *ppc_tm_cvsx,
11421 int size)
11422 {
11423 char *note_name = "LINUX";
11424 return elfcore_write_note (abfd, buf, bufsiz,
11425 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11426 }
11427
11428 char *
11429 elfcore_write_ppc_tm_spr (bfd *abfd,
11430 char *buf,
11431 int *bufsiz,
11432 const void *ppc_tm_spr,
11433 int size)
11434 {
11435 char *note_name = "LINUX";
11436 return elfcore_write_note (abfd, buf, bufsiz,
11437 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11438 }
11439
11440 char *
11441 elfcore_write_ppc_tm_ctar (bfd *abfd,
11442 char *buf,
11443 int *bufsiz,
11444 const void *ppc_tm_ctar,
11445 int size)
11446 {
11447 char *note_name = "LINUX";
11448 return elfcore_write_note (abfd, buf, bufsiz,
11449 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11450 }
11451
11452 char *
11453 elfcore_write_ppc_tm_cppr (bfd *abfd,
11454 char *buf,
11455 int *bufsiz,
11456 const void *ppc_tm_cppr,
11457 int size)
11458 {
11459 char *note_name = "LINUX";
11460 return elfcore_write_note (abfd, buf, bufsiz,
11461 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11462 }
11463
11464 char *
11465 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11466 char *buf,
11467 int *bufsiz,
11468 const void *ppc_tm_cdscr,
11469 int size)
11470 {
11471 char *note_name = "LINUX";
11472 return elfcore_write_note (abfd, buf, bufsiz,
11473 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11474 }
11475
11476 static char *
11477 elfcore_write_s390_high_gprs (bfd *abfd,
11478 char *buf,
11479 int *bufsiz,
11480 const void *s390_high_gprs,
11481 int size)
11482 {
11483 char *note_name = "LINUX";
11484 return elfcore_write_note (abfd, buf, bufsiz,
11485 note_name, NT_S390_HIGH_GPRS,
11486 s390_high_gprs, size);
11487 }
11488
11489 char *
11490 elfcore_write_s390_timer (bfd *abfd,
11491 char *buf,
11492 int *bufsiz,
11493 const void *s390_timer,
11494 int size)
11495 {
11496 char *note_name = "LINUX";
11497 return elfcore_write_note (abfd, buf, bufsiz,
11498 note_name, NT_S390_TIMER, s390_timer, size);
11499 }
11500
11501 char *
11502 elfcore_write_s390_todcmp (bfd *abfd,
11503 char *buf,
11504 int *bufsiz,
11505 const void *s390_todcmp,
11506 int size)
11507 {
11508 char *note_name = "LINUX";
11509 return elfcore_write_note (abfd, buf, bufsiz,
11510 note_name, NT_S390_TODCMP, s390_todcmp, size);
11511 }
11512
11513 char *
11514 elfcore_write_s390_todpreg (bfd *abfd,
11515 char *buf,
11516 int *bufsiz,
11517 const void *s390_todpreg,
11518 int size)
11519 {
11520 char *note_name = "LINUX";
11521 return elfcore_write_note (abfd, buf, bufsiz,
11522 note_name, NT_S390_TODPREG, s390_todpreg, size);
11523 }
11524
11525 char *
11526 elfcore_write_s390_ctrs (bfd *abfd,
11527 char *buf,
11528 int *bufsiz,
11529 const void *s390_ctrs,
11530 int size)
11531 {
11532 char *note_name = "LINUX";
11533 return elfcore_write_note (abfd, buf, bufsiz,
11534 note_name, NT_S390_CTRS, s390_ctrs, size);
11535 }
11536
11537 char *
11538 elfcore_write_s390_prefix (bfd *abfd,
11539 char *buf,
11540 int *bufsiz,
11541 const void *s390_prefix,
11542 int size)
11543 {
11544 char *note_name = "LINUX";
11545 return elfcore_write_note (abfd, buf, bufsiz,
11546 note_name, NT_S390_PREFIX, s390_prefix, size);
11547 }
11548
11549 char *
11550 elfcore_write_s390_last_break (bfd *abfd,
11551 char *buf,
11552 int *bufsiz,
11553 const void *s390_last_break,
11554 int size)
11555 {
11556 char *note_name = "LINUX";
11557 return elfcore_write_note (abfd, buf, bufsiz,
11558 note_name, NT_S390_LAST_BREAK,
11559 s390_last_break, size);
11560 }
11561
11562 char *
11563 elfcore_write_s390_system_call (bfd *abfd,
11564 char *buf,
11565 int *bufsiz,
11566 const void *s390_system_call,
11567 int size)
11568 {
11569 char *note_name = "LINUX";
11570 return elfcore_write_note (abfd, buf, bufsiz,
11571 note_name, NT_S390_SYSTEM_CALL,
11572 s390_system_call, size);
11573 }
11574
11575 char *
11576 elfcore_write_s390_tdb (bfd *abfd,
11577 char *buf,
11578 int *bufsiz,
11579 const void *s390_tdb,
11580 int size)
11581 {
11582 char *note_name = "LINUX";
11583 return elfcore_write_note (abfd, buf, bufsiz,
11584 note_name, NT_S390_TDB, s390_tdb, size);
11585 }
11586
11587 char *
11588 elfcore_write_s390_vxrs_low (bfd *abfd,
11589 char *buf,
11590 int *bufsiz,
11591 const void *s390_vxrs_low,
11592 int size)
11593 {
11594 char *note_name = "LINUX";
11595 return elfcore_write_note (abfd, buf, bufsiz,
11596 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11597 }
11598
11599 char *
11600 elfcore_write_s390_vxrs_high (bfd *abfd,
11601 char *buf,
11602 int *bufsiz,
11603 const void *s390_vxrs_high,
11604 int size)
11605 {
11606 char *note_name = "LINUX";
11607 return elfcore_write_note (abfd, buf, bufsiz,
11608 note_name, NT_S390_VXRS_HIGH,
11609 s390_vxrs_high, size);
11610 }
11611
11612 char *
11613 elfcore_write_s390_gs_cb (bfd *abfd,
11614 char *buf,
11615 int *bufsiz,
11616 const void *s390_gs_cb,
11617 int size)
11618 {
11619 char *note_name = "LINUX";
11620 return elfcore_write_note (abfd, buf, bufsiz,
11621 note_name, NT_S390_GS_CB,
11622 s390_gs_cb, size);
11623 }
11624
11625 char *
11626 elfcore_write_s390_gs_bc (bfd *abfd,
11627 char *buf,
11628 int *bufsiz,
11629 const void *s390_gs_bc,
11630 int size)
11631 {
11632 char *note_name = "LINUX";
11633 return elfcore_write_note (abfd, buf, bufsiz,
11634 note_name, NT_S390_GS_BC,
11635 s390_gs_bc, size);
11636 }
11637
11638 char *
11639 elfcore_write_arm_vfp (bfd *abfd,
11640 char *buf,
11641 int *bufsiz,
11642 const void *arm_vfp,
11643 int size)
11644 {
11645 char *note_name = "LINUX";
11646 return elfcore_write_note (abfd, buf, bufsiz,
11647 note_name, NT_ARM_VFP, arm_vfp, size);
11648 }
11649
11650 char *
11651 elfcore_write_aarch_tls (bfd *abfd,
11652 char *buf,
11653 int *bufsiz,
11654 const void *aarch_tls,
11655 int size)
11656 {
11657 char *note_name = "LINUX";
11658 return elfcore_write_note (abfd, buf, bufsiz,
11659 note_name, NT_ARM_TLS, aarch_tls, size);
11660 }
11661
11662 char *
11663 elfcore_write_aarch_hw_break (bfd *abfd,
11664 char *buf,
11665 int *bufsiz,
11666 const void *aarch_hw_break,
11667 int size)
11668 {
11669 char *note_name = "LINUX";
11670 return elfcore_write_note (abfd, buf, bufsiz,
11671 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11672 }
11673
11674 char *
11675 elfcore_write_aarch_hw_watch (bfd *abfd,
11676 char *buf,
11677 int *bufsiz,
11678 const void *aarch_hw_watch,
11679 int size)
11680 {
11681 char *note_name = "LINUX";
11682 return elfcore_write_note (abfd, buf, bufsiz,
11683 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11684 }
11685
11686 char *
11687 elfcore_write_aarch_sve (bfd *abfd,
11688 char *buf,
11689 int *bufsiz,
11690 const void *aarch_sve,
11691 int size)
11692 {
11693 char *note_name = "LINUX";
11694 return elfcore_write_note (abfd, buf, bufsiz,
11695 note_name, NT_ARM_SVE, aarch_sve, size);
11696 }
11697
11698 char *
11699 elfcore_write_aarch_pauth (bfd *abfd,
11700 char *buf,
11701 int *bufsiz,
11702 const void *aarch_pauth,
11703 int size)
11704 {
11705 char *note_name = "LINUX";
11706 return elfcore_write_note (abfd, buf, bufsiz,
11707 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11708 }
11709
11710 char *
11711 elfcore_write_register_note (bfd *abfd,
11712 char *buf,
11713 int *bufsiz,
11714 const char *section,
11715 const void *data,
11716 int size)
11717 {
11718 if (strcmp (section, ".reg2") == 0)
11719 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11720 if (strcmp (section, ".reg-xfp") == 0)
11721 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11722 if (strcmp (section, ".reg-xstate") == 0)
11723 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11724 if (strcmp (section, ".reg-ppc-vmx") == 0)
11725 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11726 if (strcmp (section, ".reg-ppc-vsx") == 0)
11727 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11728 if (strcmp (section, ".reg-ppc-tar") == 0)
11729 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11730 if (strcmp (section, ".reg-ppc-ppr") == 0)
11731 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11732 if (strcmp (section, ".reg-ppc-dscr") == 0)
11733 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11734 if (strcmp (section, ".reg-ppc-ebb") == 0)
11735 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11736 if (strcmp (section, ".reg-ppc-pmu") == 0)
11737 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11738 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11739 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11740 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11741 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11742 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11743 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11744 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11745 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11746 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11747 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11748 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11749 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11750 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11751 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11752 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11753 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11754 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11755 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11756 if (strcmp (section, ".reg-s390-timer") == 0)
11757 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11758 if (strcmp (section, ".reg-s390-todcmp") == 0)
11759 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11760 if (strcmp (section, ".reg-s390-todpreg") == 0)
11761 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11762 if (strcmp (section, ".reg-s390-ctrs") == 0)
11763 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11764 if (strcmp (section, ".reg-s390-prefix") == 0)
11765 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11766 if (strcmp (section, ".reg-s390-last-break") == 0)
11767 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11768 if (strcmp (section, ".reg-s390-system-call") == 0)
11769 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11770 if (strcmp (section, ".reg-s390-tdb") == 0)
11771 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11772 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11773 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11774 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11775 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11776 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11777 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11778 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11779 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11780 if (strcmp (section, ".reg-arm-vfp") == 0)
11781 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11782 if (strcmp (section, ".reg-aarch-tls") == 0)
11783 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11784 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11785 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11786 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11787 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11788 if (strcmp (section, ".reg-aarch-sve") == 0)
11789 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11790 if (strcmp (section, ".reg-aarch-pauth") == 0)
11791 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11792 return NULL;
11793 }
11794
11795 static bfd_boolean
11796 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11797 size_t align)
11798 {
11799 char *p;
11800
11801 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11802 gABI specifies that PT_NOTE alignment should be aligned to 4
11803 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11804 align is less than 4, we use 4 byte alignment. */
11805 if (align < 4)
11806 align = 4;
11807 if (align != 4 && align != 8)
11808 return FALSE;
11809
11810 p = buf;
11811 while (p < buf + size)
11812 {
11813 Elf_External_Note *xnp = (Elf_External_Note *) p;
11814 Elf_Internal_Note in;
11815
11816 if (offsetof (Elf_External_Note, name) > buf - p + size)
11817 return FALSE;
11818
11819 in.type = H_GET_32 (abfd, xnp->type);
11820
11821 in.namesz = H_GET_32 (abfd, xnp->namesz);
11822 in.namedata = xnp->name;
11823 if (in.namesz > buf - in.namedata + size)
11824 return FALSE;
11825
11826 in.descsz = H_GET_32 (abfd, xnp->descsz);
11827 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11828 in.descpos = offset + (in.descdata - buf);
11829 if (in.descsz != 0
11830 && (in.descdata >= buf + size
11831 || in.descsz > buf - in.descdata + size))
11832 return FALSE;
11833
11834 switch (bfd_get_format (abfd))
11835 {
11836 default:
11837 return TRUE;
11838
11839 case bfd_core:
11840 {
11841 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11842 struct
11843 {
11844 const char * string;
11845 size_t len;
11846 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11847 }
11848 grokers[] =
11849 {
11850 GROKER_ELEMENT ("", elfcore_grok_note),
11851 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11852 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11853 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11854 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11855 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11856 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11857 };
11858 #undef GROKER_ELEMENT
11859 int i;
11860
11861 for (i = ARRAY_SIZE (grokers); i--;)
11862 {
11863 if (in.namesz >= grokers[i].len
11864 && strncmp (in.namedata, grokers[i].string,
11865 grokers[i].len) == 0)
11866 {
11867 if (! grokers[i].func (abfd, & in))
11868 return FALSE;
11869 break;
11870 }
11871 }
11872 break;
11873 }
11874
11875 case bfd_object:
11876 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11877 {
11878 if (! elfobj_grok_gnu_note (abfd, &in))
11879 return FALSE;
11880 }
11881 else if (in.namesz == sizeof "stapsdt"
11882 && strcmp (in.namedata, "stapsdt") == 0)
11883 {
11884 if (! elfobj_grok_stapsdt_note (abfd, &in))
11885 return FALSE;
11886 }
11887 break;
11888 }
11889
11890 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11891 }
11892
11893 return TRUE;
11894 }
11895
11896 bfd_boolean
11897 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11898 size_t align)
11899 {
11900 char *buf;
11901
11902 if (size == 0 || (size + 1) == 0)
11903 return TRUE;
11904
11905 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11906 return FALSE;
11907
11908 buf = (char *) bfd_malloc (size + 1);
11909 if (buf == NULL)
11910 return FALSE;
11911
11912 /* PR 17512: file: ec08f814
11913 0-termintate the buffer so that string searches will not overflow. */
11914 buf[size] = 0;
11915
11916 if (bfd_bread (buf, size, abfd) != size
11917 || !elf_parse_notes (abfd, buf, size, offset, align))
11918 {
11919 free (buf);
11920 return FALSE;
11921 }
11922
11923 free (buf);
11924 return TRUE;
11925 }
11926 \f
11927 /* Providing external access to the ELF program header table. */
11928
11929 /* Return an upper bound on the number of bytes required to store a
11930 copy of ABFD's program header table entries. Return -1 if an error
11931 occurs; bfd_get_error will return an appropriate code. */
11932
11933 long
11934 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11935 {
11936 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11937 {
11938 bfd_set_error (bfd_error_wrong_format);
11939 return -1;
11940 }
11941
11942 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11943 }
11944
11945 /* Copy ABFD's program header table entries to *PHDRS. The entries
11946 will be stored as an array of Elf_Internal_Phdr structures, as
11947 defined in include/elf/internal.h. To find out how large the
11948 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11949
11950 Return the number of program header table entries read, or -1 if an
11951 error occurs; bfd_get_error will return an appropriate code. */
11952
11953 int
11954 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11955 {
11956 int num_phdrs;
11957
11958 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11959 {
11960 bfd_set_error (bfd_error_wrong_format);
11961 return -1;
11962 }
11963
11964 num_phdrs = elf_elfheader (abfd)->e_phnum;
11965 if (num_phdrs != 0)
11966 memcpy (phdrs, elf_tdata (abfd)->phdr,
11967 num_phdrs * sizeof (Elf_Internal_Phdr));
11968
11969 return num_phdrs;
11970 }
11971
11972 enum elf_reloc_type_class
11973 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11974 const asection *rel_sec ATTRIBUTE_UNUSED,
11975 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11976 {
11977 return reloc_class_normal;
11978 }
11979
11980 /* For RELA architectures, return the relocation value for a
11981 relocation against a local symbol. */
11982
11983 bfd_vma
11984 _bfd_elf_rela_local_sym (bfd *abfd,
11985 Elf_Internal_Sym *sym,
11986 asection **psec,
11987 Elf_Internal_Rela *rel)
11988 {
11989 asection *sec = *psec;
11990 bfd_vma relocation;
11991
11992 relocation = (sec->output_section->vma
11993 + sec->output_offset
11994 + sym->st_value);
11995 if ((sec->flags & SEC_MERGE)
11996 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11997 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11998 {
11999 rel->r_addend =
12000 _bfd_merged_section_offset (abfd, psec,
12001 elf_section_data (sec)->sec_info,
12002 sym->st_value + rel->r_addend);
12003 if (sec != *psec)
12004 {
12005 /* If we have changed the section, and our original section is
12006 marked with SEC_EXCLUDE, it means that the original
12007 SEC_MERGE section has been completely subsumed in some
12008 other SEC_MERGE section. In this case, we need to leave
12009 some info around for --emit-relocs. */
12010 if ((sec->flags & SEC_EXCLUDE) != 0)
12011 sec->kept_section = *psec;
12012 sec = *psec;
12013 }
12014 rel->r_addend -= relocation;
12015 rel->r_addend += sec->output_section->vma + sec->output_offset;
12016 }
12017 return relocation;
12018 }
12019
12020 bfd_vma
12021 _bfd_elf_rel_local_sym (bfd *abfd,
12022 Elf_Internal_Sym *sym,
12023 asection **psec,
12024 bfd_vma addend)
12025 {
12026 asection *sec = *psec;
12027
12028 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12029 return sym->st_value + addend;
12030
12031 return _bfd_merged_section_offset (abfd, psec,
12032 elf_section_data (sec)->sec_info,
12033 sym->st_value + addend);
12034 }
12035
12036 /* Adjust an address within a section. Given OFFSET within SEC, return
12037 the new offset within the section, based upon changes made to the
12038 section. Returns -1 if the offset is now invalid.
12039 The offset (in abnd out) is in target sized bytes, however big a
12040 byte may be. */
12041
12042 bfd_vma
12043 _bfd_elf_section_offset (bfd *abfd,
12044 struct bfd_link_info *info,
12045 asection *sec,
12046 bfd_vma offset)
12047 {
12048 switch (sec->sec_info_type)
12049 {
12050 case SEC_INFO_TYPE_STABS:
12051 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12052 offset);
12053 case SEC_INFO_TYPE_EH_FRAME:
12054 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12055
12056 default:
12057 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12058 {
12059 /* Reverse the offset. */
12060 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12061 bfd_size_type address_size = bed->s->arch_size / 8;
12062
12063 /* address_size and sec->size are in octets. Convert
12064 to bytes before subtracting the original offset. */
12065 offset = ((sec->size - address_size)
12066 / bfd_octets_per_byte (abfd, sec) - offset);
12067 }
12068 return offset;
12069 }
12070 }
12071 \f
12072 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12073 reconstruct an ELF file by reading the segments out of remote memory
12074 based on the ELF file header at EHDR_VMA and the ELF program headers it
12075 points to. If not null, *LOADBASEP is filled in with the difference
12076 between the VMAs from which the segments were read, and the VMAs the
12077 file headers (and hence BFD's idea of each section's VMA) put them at.
12078
12079 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12080 remote memory at target address VMA into the local buffer at MYADDR; it
12081 should return zero on success or an `errno' code on failure. TEMPL must
12082 be a BFD for an ELF target with the word size and byte order found in
12083 the remote memory. */
12084
12085 bfd *
12086 bfd_elf_bfd_from_remote_memory
12087 (bfd *templ,
12088 bfd_vma ehdr_vma,
12089 bfd_size_type size,
12090 bfd_vma *loadbasep,
12091 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12092 {
12093 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12094 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12095 }
12096 \f
12097 long
12098 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12099 long symcount ATTRIBUTE_UNUSED,
12100 asymbol **syms ATTRIBUTE_UNUSED,
12101 long dynsymcount,
12102 asymbol **dynsyms,
12103 asymbol **ret)
12104 {
12105 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12106 asection *relplt;
12107 asymbol *s;
12108 const char *relplt_name;
12109 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12110 arelent *p;
12111 long count, i, n;
12112 size_t size;
12113 Elf_Internal_Shdr *hdr;
12114 char *names;
12115 asection *plt;
12116
12117 *ret = NULL;
12118
12119 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12120 return 0;
12121
12122 if (dynsymcount <= 0)
12123 return 0;
12124
12125 if (!bed->plt_sym_val)
12126 return 0;
12127
12128 relplt_name = bed->relplt_name;
12129 if (relplt_name == NULL)
12130 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12131 relplt = bfd_get_section_by_name (abfd, relplt_name);
12132 if (relplt == NULL)
12133 return 0;
12134
12135 hdr = &elf_section_data (relplt)->this_hdr;
12136 if (hdr->sh_link != elf_dynsymtab (abfd)
12137 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12138 return 0;
12139
12140 plt = bfd_get_section_by_name (abfd, ".plt");
12141 if (plt == NULL)
12142 return 0;
12143
12144 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12145 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12146 return -1;
12147
12148 count = relplt->size / hdr->sh_entsize;
12149 size = count * sizeof (asymbol);
12150 p = relplt->relocation;
12151 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12152 {
12153 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12154 if (p->addend != 0)
12155 {
12156 #ifdef BFD64
12157 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12158 #else
12159 size += sizeof ("+0x") - 1 + 8;
12160 #endif
12161 }
12162 }
12163
12164 s = *ret = (asymbol *) bfd_malloc (size);
12165 if (s == NULL)
12166 return -1;
12167
12168 names = (char *) (s + count);
12169 p = relplt->relocation;
12170 n = 0;
12171 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12172 {
12173 size_t len;
12174 bfd_vma addr;
12175
12176 addr = bed->plt_sym_val (i, plt, p);
12177 if (addr == (bfd_vma) -1)
12178 continue;
12179
12180 *s = **p->sym_ptr_ptr;
12181 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12182 we are defining a symbol, ensure one of them is set. */
12183 if ((s->flags & BSF_LOCAL) == 0)
12184 s->flags |= BSF_GLOBAL;
12185 s->flags |= BSF_SYNTHETIC;
12186 s->section = plt;
12187 s->value = addr - plt->vma;
12188 s->name = names;
12189 s->udata.p = NULL;
12190 len = strlen ((*p->sym_ptr_ptr)->name);
12191 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12192 names += len;
12193 if (p->addend != 0)
12194 {
12195 char buf[30], *a;
12196
12197 memcpy (names, "+0x", sizeof ("+0x") - 1);
12198 names += sizeof ("+0x") - 1;
12199 bfd_sprintf_vma (abfd, buf, p->addend);
12200 for (a = buf; *a == '0'; ++a)
12201 ;
12202 len = strlen (a);
12203 memcpy (names, a, len);
12204 names += len;
12205 }
12206 memcpy (names, "@plt", sizeof ("@plt"));
12207 names += sizeof ("@plt");
12208 ++s, ++n;
12209 }
12210
12211 return n;
12212 }
12213
12214 /* It is only used by x86-64 so far.
12215 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12216 but current usage would allow all of _bfd_std_section to be zero. */
12217 static const asymbol lcomm_sym
12218 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12219 asection _bfd_elf_large_com_section
12220 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12221 "LARGE_COMMON", 0, SEC_IS_COMMON);
12222
12223 bfd_boolean
12224 _bfd_elf_final_write_processing (bfd *abfd)
12225 {
12226 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12227
12228 i_ehdrp = elf_elfheader (abfd);
12229
12230 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12231 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12232
12233 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12234 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12235 STB_GNU_UNIQUE binding. */
12236 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12237 {
12238 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12239 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12240 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12241 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12242 {
12243 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12244 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12245 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12246 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12247 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12248 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12249 bfd_set_error (bfd_error_sorry);
12250 return FALSE;
12251 }
12252 }
12253 return TRUE;
12254 }
12255
12256
12257 /* Return TRUE for ELF symbol types that represent functions.
12258 This is the default version of this function, which is sufficient for
12259 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12260
12261 bfd_boolean
12262 _bfd_elf_is_function_type (unsigned int type)
12263 {
12264 return (type == STT_FUNC
12265 || type == STT_GNU_IFUNC);
12266 }
12267
12268 /* If the ELF symbol SYM might be a function in SEC, return the
12269 function size and set *CODE_OFF to the function's entry point,
12270 otherwise return zero. */
12271
12272 bfd_size_type
12273 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12274 bfd_vma *code_off)
12275 {
12276 bfd_size_type size;
12277
12278 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12279 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12280 || sym->section != sec)
12281 return 0;
12282
12283 *code_off = sym->value;
12284 size = 0;
12285 if (!(sym->flags & BSF_SYNTHETIC))
12286 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12287 if (size == 0)
12288 size = 1;
12289 return size;
12290 }
This page took 0.38433 seconds and 5 git commands to generate.