alloc2 used unnecessarily
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || shstrtabsize > bfd_get_file_size (abfd)
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%pB: attempt to load strings from"
343 " a non-string section (number %d)"),
344 abfd, shindex);
345 return NULL;
346 }
347
348 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
349 return NULL;
350 }
351 else
352 {
353 /* PR 24273: The string section's contents may have already
354 been loaded elsewhere, eg because a corrupt file has the
355 string section index in the ELF header pointing at a group
356 section. So be paranoid, and test that the last byte of
357 the section is zero. */
358 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
359 return NULL;
360 }
361
362 if (strindex >= hdr->sh_size)
363 {
364 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
365 _bfd_error_handler
366 /* xgettext:c-format */
367 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
368 abfd, strindex, (uint64_t) hdr->sh_size,
369 (shindex == shstrndx && strindex == hdr->sh_name
370 ? ".shstrtab"
371 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
372 return NULL;
373 }
374
375 return ((char *) hdr->contents) + strindex;
376 }
377
378 /* Read and convert symbols to internal format.
379 SYMCOUNT specifies the number of symbols to read, starting from
380 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
381 are non-NULL, they are used to store the internal symbols, external
382 symbols, and symbol section index extensions, respectively.
383 Returns a pointer to the internal symbol buffer (malloced if necessary)
384 or NULL if there were no symbols or some kind of problem. */
385
386 Elf_Internal_Sym *
387 bfd_elf_get_elf_syms (bfd *ibfd,
388 Elf_Internal_Shdr *symtab_hdr,
389 size_t symcount,
390 size_t symoffset,
391 Elf_Internal_Sym *intsym_buf,
392 void *extsym_buf,
393 Elf_External_Sym_Shndx *extshndx_buf)
394 {
395 Elf_Internal_Shdr *shndx_hdr;
396 void *alloc_ext;
397 const bfd_byte *esym;
398 Elf_External_Sym_Shndx *alloc_extshndx;
399 Elf_External_Sym_Shndx *shndx;
400 Elf_Internal_Sym *alloc_intsym;
401 Elf_Internal_Sym *isym;
402 Elf_Internal_Sym *isymend;
403 const struct elf_backend_data *bed;
404 size_t extsym_size;
405 bfd_size_type amt;
406 file_ptr pos;
407
408 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
409 abort ();
410
411 if (symcount == 0)
412 return intsym_buf;
413
414 /* Normal syms might have section extension entries. */
415 shndx_hdr = NULL;
416 if (elf_symtab_shndx_list (ibfd) != NULL)
417 {
418 elf_section_list * entry;
419 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
420
421 /* Find an index section that is linked to this symtab section. */
422 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
423 {
424 /* PR 20063. */
425 if (entry->hdr.sh_link >= elf_numsections (ibfd))
426 continue;
427
428 if (sections[entry->hdr.sh_link] == symtab_hdr)
429 {
430 shndx_hdr = & entry->hdr;
431 break;
432 };
433 }
434
435 if (shndx_hdr == NULL)
436 {
437 if (symtab_hdr == & elf_symtab_hdr (ibfd))
438 /* Not really accurate, but this was how the old code used to work. */
439 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
440 /* Otherwise we do nothing. The assumption is that
441 the index table will not be needed. */
442 }
443 }
444
445 /* Read the symbols. */
446 alloc_ext = NULL;
447 alloc_extshndx = NULL;
448 alloc_intsym = NULL;
449 bed = get_elf_backend_data (ibfd);
450 extsym_size = bed->s->sizeof_sym;
451 amt = (bfd_size_type) symcount * extsym_size;
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc2 (symcount, extsym_size);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
471 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
472 if (extshndx_buf == NULL)
473 {
474 alloc_extshndx = (Elf_External_Sym_Shndx *)
475 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
476 extshndx_buf = alloc_extshndx;
477 }
478 if (extshndx_buf == NULL
479 || bfd_seek (ibfd, pos, SEEK_SET) != 0
480 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
481 {
482 intsym_buf = NULL;
483 goto out;
484 }
485 }
486
487 if (intsym_buf == NULL)
488 {
489 alloc_intsym = (Elf_Internal_Sym *)
490 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
491 intsym_buf = alloc_intsym;
492 if (intsym_buf == NULL)
493 goto out;
494 }
495
496 /* Convert the symbols to internal form. */
497 isymend = intsym_buf + symcount;
498 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
499 shndx = extshndx_buf;
500 isym < isymend;
501 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
502 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
503 {
504 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
505 /* xgettext:c-format */
506 _bfd_error_handler (_("%pB symbol number %lu references"
507 " nonexistent SHT_SYMTAB_SHNDX section"),
508 ibfd, (unsigned long) symoffset);
509 if (alloc_intsym != NULL)
510 free (alloc_intsym);
511 intsym_buf = NULL;
512 goto out;
513 }
514
515 out:
516 if (alloc_ext != NULL)
517 free (alloc_ext);
518 if (alloc_extshndx != NULL)
519 free (alloc_extshndx);
520
521 return intsym_buf;
522 }
523
524 /* Look up a symbol name. */
525 const char *
526 bfd_elf_sym_name (bfd *abfd,
527 Elf_Internal_Shdr *symtab_hdr,
528 Elf_Internal_Sym *isym,
529 asection *sym_sec)
530 {
531 const char *name;
532 unsigned int iname = isym->st_name;
533 unsigned int shindex = symtab_hdr->sh_link;
534
535 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
536 /* Check for a bogus st_shndx to avoid crashing. */
537 && isym->st_shndx < elf_numsections (abfd))
538 {
539 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
540 shindex = elf_elfheader (abfd)->e_shstrndx;
541 }
542
543 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
544 if (name == NULL)
545 name = "(null)";
546 else if (sym_sec && *name == '\0')
547 name = bfd_section_name (sym_sec);
548
549 return name;
550 }
551
552 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
553 sections. The first element is the flags, the rest are section
554 pointers. */
555
556 typedef union elf_internal_group {
557 Elf_Internal_Shdr *shdr;
558 unsigned int flags;
559 } Elf_Internal_Group;
560
561 /* Return the name of the group signature symbol. Why isn't the
562 signature just a string? */
563
564 static const char *
565 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
566 {
567 Elf_Internal_Shdr *hdr;
568 unsigned char esym[sizeof (Elf64_External_Sym)];
569 Elf_External_Sym_Shndx eshndx;
570 Elf_Internal_Sym isym;
571
572 /* First we need to ensure the symbol table is available. Make sure
573 that it is a symbol table section. */
574 if (ghdr->sh_link >= elf_numsections (abfd))
575 return NULL;
576 hdr = elf_elfsections (abfd) [ghdr->sh_link];
577 if (hdr->sh_type != SHT_SYMTAB
578 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
579 return NULL;
580
581 /* Go read the symbol. */
582 hdr = &elf_tdata (abfd)->symtab_hdr;
583 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
584 &isym, esym, &eshndx) == NULL)
585 return NULL;
586
587 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
588 }
589
590 /* Set next_in_group list pointer, and group name for NEWSECT. */
591
592 static bfd_boolean
593 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
594 {
595 unsigned int num_group = elf_tdata (abfd)->num_group;
596
597 /* If num_group is zero, read in all SHT_GROUP sections. The count
598 is set to -1 if there are no SHT_GROUP sections. */
599 if (num_group == 0)
600 {
601 unsigned int i, shnum;
602
603 /* First count the number of groups. If we have a SHT_GROUP
604 section with just a flag word (ie. sh_size is 4), ignore it. */
605 shnum = elf_numsections (abfd);
606 num_group = 0;
607
608 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
609 ( (shdr)->sh_type == SHT_GROUP \
610 && (shdr)->sh_size >= minsize \
611 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
612 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
613
614 for (i = 0; i < shnum; i++)
615 {
616 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
617
618 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
619 num_group += 1;
620 }
621
622 if (num_group == 0)
623 {
624 num_group = (unsigned) -1;
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = NULL;
627 }
628 else
629 {
630 /* We keep a list of elf section headers for group sections,
631 so we can find them quickly. */
632 bfd_size_type amt;
633
634 elf_tdata (abfd)->num_group = num_group;
635 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
636 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
637 if (elf_tdata (abfd)->group_sect_ptr == NULL)
638 return FALSE;
639 memset (elf_tdata (abfd)->group_sect_ptr, 0,
640 num_group * sizeof (Elf_Internal_Shdr *));
641 num_group = 0;
642
643 for (i = 0; i < shnum; i++)
644 {
645 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
646
647 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
648 {
649 unsigned char *src;
650 Elf_Internal_Group *dest;
651
652 /* Make sure the group section has a BFD section
653 attached to it. */
654 if (!bfd_section_from_shdr (abfd, i))
655 return FALSE;
656
657 /* Add to list of sections. */
658 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
659 num_group += 1;
660
661 /* Read the raw contents. */
662 BFD_ASSERT (sizeof (*dest) >= 4);
663 amt = shdr->sh_size * sizeof (*dest) / 4;
664 shdr->contents = (unsigned char *)
665 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
666 /* PR binutils/4110: Handle corrupt group headers. */
667 if (shdr->contents == NULL)
668 {
669 _bfd_error_handler
670 /* xgettext:c-format */
671 (_("%pB: corrupt size field in group section"
672 " header: %#" PRIx64),
673 abfd, (uint64_t) shdr->sh_size);
674 bfd_set_error (bfd_error_bad_value);
675 -- num_group;
676 continue;
677 }
678
679 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
680 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
681 != shdr->sh_size))
682 {
683 _bfd_error_handler
684 /* xgettext:c-format */
685 (_("%pB: invalid size field in group section"
686 " header: %#" PRIx64 ""),
687 abfd, (uint64_t) shdr->sh_size);
688 bfd_set_error (bfd_error_bad_value);
689 -- num_group;
690 /* PR 17510: If the group contents are even
691 partially corrupt, do not allow any of the
692 contents to be used. */
693 bfd_release (abfd, shdr->contents);
694 shdr->contents = NULL;
695 continue;
696 }
697
698 /* Translate raw contents, a flag word followed by an
699 array of elf section indices all in target byte order,
700 to the flag word followed by an array of elf section
701 pointers. */
702 src = shdr->contents + shdr->sh_size;
703 dest = (Elf_Internal_Group *) (shdr->contents + amt);
704
705 while (1)
706 {
707 unsigned int idx;
708
709 src -= 4;
710 --dest;
711 idx = H_GET_32 (abfd, src);
712 if (src == shdr->contents)
713 {
714 dest->shdr = NULL;
715 dest->flags = idx;
716 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
717 shdr->bfd_section->flags
718 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
719 break;
720 }
721 if (idx < shnum)
722 {
723 dest->shdr = elf_elfsections (abfd)[idx];
724 /* PR binutils/23199: All sections in a
725 section group should be marked with
726 SHF_GROUP. But some tools generate
727 broken objects without SHF_GROUP. Fix
728 them up here. */
729 dest->shdr->sh_flags |= SHF_GROUP;
730 }
731 if (idx >= shnum
732 || dest->shdr->sh_type == SHT_GROUP)
733 {
734 _bfd_error_handler
735 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
736 abfd, i);
737 dest->shdr = NULL;
738 }
739 }
740 }
741 }
742
743 /* PR 17510: Corrupt binaries might contain invalid groups. */
744 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
745 {
746 elf_tdata (abfd)->num_group = num_group;
747
748 /* If all groups are invalid then fail. */
749 if (num_group == 0)
750 {
751 elf_tdata (abfd)->group_sect_ptr = NULL;
752 elf_tdata (abfd)->num_group = num_group = -1;
753 _bfd_error_handler
754 (_("%pB: no valid group sections found"), abfd);
755 bfd_set_error (bfd_error_bad_value);
756 }
757 }
758 }
759 }
760
761 if (num_group != (unsigned) -1)
762 {
763 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
764 unsigned int j;
765
766 for (j = 0; j < num_group; j++)
767 {
768 /* Begin search from previous found group. */
769 unsigned i = (j + search_offset) % num_group;
770
771 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
772 Elf_Internal_Group *idx;
773 bfd_size_type n_elt;
774
775 if (shdr == NULL)
776 continue;
777
778 idx = (Elf_Internal_Group *) shdr->contents;
779 if (idx == NULL || shdr->sh_size < 4)
780 {
781 /* See PR 21957 for a reproducer. */
782 /* xgettext:c-format */
783 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
784 abfd, shdr->bfd_section);
785 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
786 bfd_set_error (bfd_error_bad_value);
787 return FALSE;
788 }
789 n_elt = shdr->sh_size / 4;
790
791 /* Look through this group's sections to see if current
792 section is a member. */
793 while (--n_elt != 0)
794 if ((++idx)->shdr == hdr)
795 {
796 asection *s = NULL;
797
798 /* We are a member of this group. Go looking through
799 other members to see if any others are linked via
800 next_in_group. */
801 idx = (Elf_Internal_Group *) shdr->contents;
802 n_elt = shdr->sh_size / 4;
803 while (--n_elt != 0)
804 if ((++idx)->shdr != NULL
805 && (s = idx->shdr->bfd_section) != NULL
806 && elf_next_in_group (s) != NULL)
807 break;
808 if (n_elt != 0)
809 {
810 /* Snarf the group name from other member, and
811 insert current section in circular list. */
812 elf_group_name (newsect) = elf_group_name (s);
813 elf_next_in_group (newsect) = elf_next_in_group (s);
814 elf_next_in_group (s) = newsect;
815 }
816 else
817 {
818 const char *gname;
819
820 gname = group_signature (abfd, shdr);
821 if (gname == NULL)
822 return FALSE;
823 elf_group_name (newsect) = gname;
824
825 /* Start a circular list with one element. */
826 elf_next_in_group (newsect) = newsect;
827 }
828
829 /* If the group section has been created, point to the
830 new member. */
831 if (shdr->bfd_section != NULL)
832 elf_next_in_group (shdr->bfd_section) = newsect;
833
834 elf_tdata (abfd)->group_search_offset = i;
835 j = num_group - 1;
836 break;
837 }
838 }
839 }
840
841 if (elf_group_name (newsect) == NULL)
842 {
843 /* xgettext:c-format */
844 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
845 abfd, newsect);
846 return FALSE;
847 }
848 return TRUE;
849 }
850
851 bfd_boolean
852 _bfd_elf_setup_sections (bfd *abfd)
853 {
854 unsigned int i;
855 unsigned int num_group = elf_tdata (abfd)->num_group;
856 bfd_boolean result = TRUE;
857 asection *s;
858
859 /* Process SHF_LINK_ORDER. */
860 for (s = abfd->sections; s != NULL; s = s->next)
861 {
862 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
863 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
864 {
865 unsigned int elfsec = this_hdr->sh_link;
866 /* FIXME: The old Intel compiler and old strip/objcopy may
867 not set the sh_link or sh_info fields. Hence we could
868 get the situation where elfsec is 0. */
869 if (elfsec == 0)
870 {
871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
872 if (bed->link_order_error_handler)
873 bed->link_order_error_handler
874 /* xgettext:c-format */
875 (_("%pB: warning: sh_link not set for section `%pA'"),
876 abfd, s);
877 }
878 else
879 {
880 asection *linksec = NULL;
881
882 if (elfsec < elf_numsections (abfd))
883 {
884 this_hdr = elf_elfsections (abfd)[elfsec];
885 linksec = this_hdr->bfd_section;
886 }
887
888 /* PR 1991, 2008:
889 Some strip/objcopy may leave an incorrect value in
890 sh_link. We don't want to proceed. */
891 if (linksec == NULL)
892 {
893 _bfd_error_handler
894 /* xgettext:c-format */
895 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
896 s->owner, elfsec, s);
897 result = FALSE;
898 }
899
900 elf_linked_to_section (s) = linksec;
901 }
902 }
903 else if (this_hdr->sh_type == SHT_GROUP
904 && elf_next_in_group (s) == NULL)
905 {
906 _bfd_error_handler
907 /* xgettext:c-format */
908 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
909 abfd, elf_section_data (s)->this_idx);
910 result = FALSE;
911 }
912 }
913
914 /* Process section groups. */
915 if (num_group == (unsigned) -1)
916 return result;
917
918 for (i = 0; i < num_group; i++)
919 {
920 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
921 Elf_Internal_Group *idx;
922 unsigned int n_elt;
923
924 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
925 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
926 {
927 _bfd_error_handler
928 /* xgettext:c-format */
929 (_("%pB: section group entry number %u is corrupt"),
930 abfd, i);
931 result = FALSE;
932 continue;
933 }
934
935 idx = (Elf_Internal_Group *) shdr->contents;
936 n_elt = shdr->sh_size / 4;
937
938 while (--n_elt != 0)
939 {
940 ++ idx;
941
942 if (idx->shdr == NULL)
943 continue;
944 else if (idx->shdr->bfd_section)
945 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
946 else if (idx->shdr->sh_type != SHT_RELA
947 && idx->shdr->sh_type != SHT_REL)
948 {
949 /* There are some unknown sections in the group. */
950 _bfd_error_handler
951 /* xgettext:c-format */
952 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
953 abfd,
954 idx->shdr->sh_type,
955 bfd_elf_string_from_elf_section (abfd,
956 (elf_elfheader (abfd)
957 ->e_shstrndx),
958 idx->shdr->sh_name),
959 shdr->bfd_section);
960 result = FALSE;
961 }
962 }
963 }
964
965 return result;
966 }
967
968 bfd_boolean
969 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
970 {
971 return elf_next_in_group (sec) != NULL;
972 }
973
974 const char *
975 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
976 {
977 if (elf_sec_group (sec) != NULL)
978 return elf_group_name (sec);
979 return NULL;
980 }
981
982 static char *
983 convert_debug_to_zdebug (bfd *abfd, const char *name)
984 {
985 unsigned int len = strlen (name);
986 char *new_name = bfd_alloc (abfd, len + 2);
987 if (new_name == NULL)
988 return NULL;
989 new_name[0] = '.';
990 new_name[1] = 'z';
991 memcpy (new_name + 2, name + 1, len);
992 return new_name;
993 }
994
995 static char *
996 convert_zdebug_to_debug (bfd *abfd, const char *name)
997 {
998 unsigned int len = strlen (name);
999 char *new_name = bfd_alloc (abfd, len);
1000 if (new_name == NULL)
1001 return NULL;
1002 new_name[0] = '.';
1003 memcpy (new_name + 1, name + 2, len - 1);
1004 return new_name;
1005 }
1006
1007 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1008
1009 struct lto_section
1010 {
1011 int16_t major_version;
1012 int16_t minor_version;
1013 unsigned char slim_object;
1014
1015 /* Flags is a private field that is not defined publicly. */
1016 uint16_t flags;
1017 };
1018
1019 /* Make a BFD section from an ELF section. We store a pointer to the
1020 BFD section in the bfd_section field of the header. */
1021
1022 bfd_boolean
1023 _bfd_elf_make_section_from_shdr (bfd *abfd,
1024 Elf_Internal_Shdr *hdr,
1025 const char *name,
1026 int shindex)
1027 {
1028 asection *newsect;
1029 flagword flags;
1030 const struct elf_backend_data *bed;
1031
1032 if (hdr->bfd_section != NULL)
1033 return TRUE;
1034
1035 newsect = bfd_make_section_anyway (abfd, name);
1036 if (newsect == NULL)
1037 return FALSE;
1038
1039 hdr->bfd_section = newsect;
1040 elf_section_data (newsect)->this_hdr = *hdr;
1041 elf_section_data (newsect)->this_idx = shindex;
1042
1043 /* Always use the real type/flags. */
1044 elf_section_type (newsect) = hdr->sh_type;
1045 elf_section_flags (newsect) = hdr->sh_flags;
1046
1047 newsect->filepos = hdr->sh_offset;
1048
1049 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1050 || !bfd_set_section_size (newsect, hdr->sh_size)
1051 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1052 return FALSE;
1053
1054 flags = SEC_NO_FLAGS;
1055 if (hdr->sh_type != SHT_NOBITS)
1056 flags |= SEC_HAS_CONTENTS;
1057 if (hdr->sh_type == SHT_GROUP)
1058 flags |= SEC_GROUP;
1059 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1060 {
1061 flags |= SEC_ALLOC;
1062 if (hdr->sh_type != SHT_NOBITS)
1063 flags |= SEC_LOAD;
1064 }
1065 if ((hdr->sh_flags & SHF_WRITE) == 0)
1066 flags |= SEC_READONLY;
1067 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1068 flags |= SEC_CODE;
1069 else if ((flags & SEC_LOAD) != 0)
1070 flags |= SEC_DATA;
1071 if ((hdr->sh_flags & SHF_MERGE) != 0)
1072 {
1073 flags |= SEC_MERGE;
1074 newsect->entsize = hdr->sh_entsize;
1075 }
1076 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1077 flags |= SEC_STRINGS;
1078 if (hdr->sh_flags & SHF_GROUP)
1079 if (!setup_group (abfd, hdr, newsect))
1080 return FALSE;
1081 if ((hdr->sh_flags & SHF_TLS) != 0)
1082 flags |= SEC_THREAD_LOCAL;
1083 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1084 flags |= SEC_EXCLUDE;
1085
1086 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1087 {
1088 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1089 but binutils as of 2019-07-23 did not set the EI_OSABI header
1090 byte. */
1091 case ELFOSABI_NONE:
1092 case ELFOSABI_GNU:
1093 case ELFOSABI_FREEBSD:
1094 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1095 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1096 break;
1097 }
1098
1099 if ((flags & SEC_ALLOC) == 0)
1100 {
1101 /* The debugging sections appear to be recognized only by name,
1102 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1103 if (name [0] == '.')
1104 {
1105 if (strncmp (name, ".debug", 6) == 0
1106 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1107 || strncmp (name, ".zdebug", 7) == 0)
1108 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1109 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1110 || strncmp (name, ".note.gnu", 9) == 0)
1111 flags |= SEC_ELF_OCTETS;
1112 else if (strncmp (name, ".line", 5) == 0
1113 || strncmp (name, ".stab", 5) == 0
1114 || strcmp (name, ".gdb_index") == 0)
1115 flags |= SEC_DEBUGGING;
1116 }
1117 }
1118
1119 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1120 only link a single copy of the section. This is used to support
1121 g++. g++ will emit each template expansion in its own section.
1122 The symbols will be defined as weak, so that multiple definitions
1123 are permitted. The GNU linker extension is to actually discard
1124 all but one of the sections. */
1125 if (CONST_STRNEQ (name, ".gnu.linkonce")
1126 && elf_next_in_group (newsect) == NULL)
1127 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1128
1129 bed = get_elf_backend_data (abfd);
1130 if (bed->elf_backend_section_flags)
1131 if (! bed->elf_backend_section_flags (&flags, hdr))
1132 return FALSE;
1133
1134 if (!bfd_set_section_flags (newsect, flags))
1135 return FALSE;
1136
1137 /* We do not parse the PT_NOTE segments as we are interested even in the
1138 separate debug info files which may have the segments offsets corrupted.
1139 PT_NOTEs from the core files are currently not parsed using BFD. */
1140 if (hdr->sh_type == SHT_NOTE)
1141 {
1142 bfd_byte *contents;
1143
1144 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1145 return FALSE;
1146
1147 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1148 hdr->sh_offset, hdr->sh_addralign);
1149 free (contents);
1150 }
1151
1152 if ((flags & SEC_ALLOC) != 0)
1153 {
1154 Elf_Internal_Phdr *phdr;
1155 unsigned int i, nload;
1156
1157 /* Some ELF linkers produce binaries with all the program header
1158 p_paddr fields zero. If we have such a binary with more than
1159 one PT_LOAD header, then leave the section lma equal to vma
1160 so that we don't create sections with overlapping lma. */
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 if (phdr->p_paddr != 0)
1164 break;
1165 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1166 ++nload;
1167 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1168 return TRUE;
1169
1170 phdr = elf_tdata (abfd)->phdr;
1171 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1172 {
1173 if (((phdr->p_type == PT_LOAD
1174 && (hdr->sh_flags & SHF_TLS) == 0)
1175 || phdr->p_type == PT_TLS)
1176 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1177 {
1178 if ((flags & SEC_LOAD) == 0)
1179 newsect->lma = (phdr->p_paddr
1180 + hdr->sh_addr - phdr->p_vaddr);
1181 else
1182 /* We used to use the same adjustment for SEC_LOAD
1183 sections, but that doesn't work if the segment
1184 is packed with code from multiple VMAs.
1185 Instead we calculate the section LMA based on
1186 the segment LMA. It is assumed that the
1187 segment will contain sections with contiguous
1188 LMAs, even if the VMAs are not. */
1189 newsect->lma = (phdr->p_paddr
1190 + hdr->sh_offset - phdr->p_offset);
1191
1192 /* With contiguous segments, we can't tell from file
1193 offsets whether a section with zero size should
1194 be placed at the end of one segment or the
1195 beginning of the next. Decide based on vaddr. */
1196 if (hdr->sh_addr >= phdr->p_vaddr
1197 && (hdr->sh_addr + hdr->sh_size
1198 <= phdr->p_vaddr + phdr->p_memsz))
1199 break;
1200 }
1201 }
1202 }
1203
1204 /* Compress/decompress DWARF debug sections with names: .debug_* and
1205 .zdebug_*, after the section flags is set. */
1206 if ((flags & SEC_DEBUGGING)
1207 && ((name[1] == 'd' && name[6] == '_')
1208 || (name[1] == 'z' && name[7] == '_')))
1209 {
1210 enum { nothing, compress, decompress } action = nothing;
1211 int compression_header_size;
1212 bfd_size_type uncompressed_size;
1213 unsigned int uncompressed_align_power;
1214 bfd_boolean compressed
1215 = bfd_is_section_compressed_with_header (abfd, newsect,
1216 &compression_header_size,
1217 &uncompressed_size,
1218 &uncompressed_align_power);
1219 if (compressed)
1220 {
1221 /* Compressed section. Check if we should decompress. */
1222 if ((abfd->flags & BFD_DECOMPRESS))
1223 action = decompress;
1224 }
1225
1226 /* Compress the uncompressed section or convert from/to .zdebug*
1227 section. Check if we should compress. */
1228 if (action == nothing)
1229 {
1230 if (newsect->size != 0
1231 && (abfd->flags & BFD_COMPRESS)
1232 && compression_header_size >= 0
1233 && uncompressed_size > 0
1234 && (!compressed
1235 || ((compression_header_size > 0)
1236 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1237 action = compress;
1238 else
1239 return TRUE;
1240 }
1241
1242 if (action == compress)
1243 {
1244 if (!bfd_init_section_compress_status (abfd, newsect))
1245 {
1246 _bfd_error_handler
1247 /* xgettext:c-format */
1248 (_("%pB: unable to initialize compress status for section %s"),
1249 abfd, name);
1250 return FALSE;
1251 }
1252 }
1253 else
1254 {
1255 if (!bfd_init_section_decompress_status (abfd, newsect))
1256 {
1257 _bfd_error_handler
1258 /* xgettext:c-format */
1259 (_("%pB: unable to initialize decompress status for section %s"),
1260 abfd, name);
1261 return FALSE;
1262 }
1263 }
1264
1265 if (abfd->is_linker_input)
1266 {
1267 if (name[1] == 'z'
1268 && (action == decompress
1269 || (action == compress
1270 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1271 {
1272 /* Convert section name from .zdebug_* to .debug_* so
1273 that linker will consider this section as a debug
1274 section. */
1275 char *new_name = convert_zdebug_to_debug (abfd, name);
1276 if (new_name == NULL)
1277 return FALSE;
1278 bfd_rename_section (newsect, new_name);
1279 }
1280 }
1281 else
1282 /* For objdump, don't rename the section. For objcopy, delay
1283 section rename to elf_fake_sections. */
1284 newsect->flags |= SEC_ELF_RENAME;
1285 }
1286
1287 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1288 section. */
1289 const char *lto_section_name = ".gnu.lto_.lto.";
1290 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1291 {
1292 struct lto_section lsection;
1293 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1294 sizeof (struct lto_section)))
1295 abfd->lto_slim_object = lsection.slim_object;
1296 }
1297
1298 return TRUE;
1299 }
1300
1301 const char *const bfd_elf_section_type_names[] =
1302 {
1303 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1304 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1305 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1306 };
1307
1308 /* ELF relocs are against symbols. If we are producing relocatable
1309 output, and the reloc is against an external symbol, and nothing
1310 has given us any additional addend, the resulting reloc will also
1311 be against the same symbol. In such a case, we don't want to
1312 change anything about the way the reloc is handled, since it will
1313 all be done at final link time. Rather than put special case code
1314 into bfd_perform_relocation, all the reloc types use this howto
1315 function. It just short circuits the reloc if producing
1316 relocatable output against an external symbol. */
1317
1318 bfd_reloc_status_type
1319 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1320 arelent *reloc_entry,
1321 asymbol *symbol,
1322 void *data ATTRIBUTE_UNUSED,
1323 asection *input_section,
1324 bfd *output_bfd,
1325 char **error_message ATTRIBUTE_UNUSED)
1326 {
1327 if (output_bfd != NULL
1328 && (symbol->flags & BSF_SECTION_SYM) == 0
1329 && (! reloc_entry->howto->partial_inplace
1330 || reloc_entry->addend == 0))
1331 {
1332 reloc_entry->address += input_section->output_offset;
1333 return bfd_reloc_ok;
1334 }
1335
1336 return bfd_reloc_continue;
1337 }
1338 \f
1339 /* Returns TRUE if section A matches section B.
1340 Names, addresses and links may be different, but everything else
1341 should be the same. */
1342
1343 static bfd_boolean
1344 section_match (const Elf_Internal_Shdr * a,
1345 const Elf_Internal_Shdr * b)
1346 {
1347 if (a->sh_type != b->sh_type
1348 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1349 || a->sh_addralign != b->sh_addralign
1350 || a->sh_entsize != b->sh_entsize)
1351 return FALSE;
1352 if (a->sh_type == SHT_SYMTAB
1353 || a->sh_type == SHT_STRTAB)
1354 return TRUE;
1355 return a->sh_size == b->sh_size;
1356 }
1357
1358 /* Find a section in OBFD that has the same characteristics
1359 as IHEADER. Return the index of this section or SHN_UNDEF if
1360 none can be found. Check's section HINT first, as this is likely
1361 to be the correct section. */
1362
1363 static unsigned int
1364 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1365 const unsigned int hint)
1366 {
1367 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1368 unsigned int i;
1369
1370 BFD_ASSERT (iheader != NULL);
1371
1372 /* See PR 20922 for a reproducer of the NULL test. */
1373 if (hint < elf_numsections (obfd)
1374 && oheaders[hint] != NULL
1375 && section_match (oheaders[hint], iheader))
1376 return hint;
1377
1378 for (i = 1; i < elf_numsections (obfd); i++)
1379 {
1380 Elf_Internal_Shdr * oheader = oheaders[i];
1381
1382 if (oheader == NULL)
1383 continue;
1384 if (section_match (oheader, iheader))
1385 /* FIXME: Do we care if there is a potential for
1386 multiple matches ? */
1387 return i;
1388 }
1389
1390 return SHN_UNDEF;
1391 }
1392
1393 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1394 Processor specific section, based upon a matching input section.
1395 Returns TRUE upon success, FALSE otherwise. */
1396
1397 static bfd_boolean
1398 copy_special_section_fields (const bfd *ibfd,
1399 bfd *obfd,
1400 const Elf_Internal_Shdr *iheader,
1401 Elf_Internal_Shdr *oheader,
1402 const unsigned int secnum)
1403 {
1404 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1405 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1406 bfd_boolean changed = FALSE;
1407 unsigned int sh_link;
1408
1409 if (oheader->sh_type == SHT_NOBITS)
1410 {
1411 /* This is a feature for objcopy --only-keep-debug:
1412 When a section's type is changed to NOBITS, we preserve
1413 the sh_link and sh_info fields so that they can be
1414 matched up with the original.
1415
1416 Note: Strictly speaking these assignments are wrong.
1417 The sh_link and sh_info fields should point to the
1418 relevent sections in the output BFD, which may not be in
1419 the same location as they were in the input BFD. But
1420 the whole point of this action is to preserve the
1421 original values of the sh_link and sh_info fields, so
1422 that they can be matched up with the section headers in
1423 the original file. So strictly speaking we may be
1424 creating an invalid ELF file, but it is only for a file
1425 that just contains debug info and only for sections
1426 without any contents. */
1427 if (oheader->sh_link == 0)
1428 oheader->sh_link = iheader->sh_link;
1429 if (oheader->sh_info == 0)
1430 oheader->sh_info = iheader->sh_info;
1431 return TRUE;
1432 }
1433
1434 /* Allow the target a chance to decide how these fields should be set. */
1435 if (bed->elf_backend_copy_special_section_fields != NULL
1436 && bed->elf_backend_copy_special_section_fields
1437 (ibfd, obfd, iheader, oheader))
1438 return TRUE;
1439
1440 /* We have an iheader which might match oheader, and which has non-zero
1441 sh_info and/or sh_link fields. Attempt to follow those links and find
1442 the section in the output bfd which corresponds to the linked section
1443 in the input bfd. */
1444 if (iheader->sh_link != SHN_UNDEF)
1445 {
1446 /* See PR 20931 for a reproducer. */
1447 if (iheader->sh_link >= elf_numsections (ibfd))
1448 {
1449 _bfd_error_handler
1450 /* xgettext:c-format */
1451 (_("%pB: invalid sh_link field (%d) in section number %d"),
1452 ibfd, iheader->sh_link, secnum);
1453 return FALSE;
1454 }
1455
1456 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1457 if (sh_link != SHN_UNDEF)
1458 {
1459 oheader->sh_link = sh_link;
1460 changed = TRUE;
1461 }
1462 else
1463 /* FIXME: Should we install iheader->sh_link
1464 if we could not find a match ? */
1465 _bfd_error_handler
1466 /* xgettext:c-format */
1467 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1468 }
1469
1470 if (iheader->sh_info)
1471 {
1472 /* The sh_info field can hold arbitrary information, but if the
1473 SHF_LINK_INFO flag is set then it should be interpreted as a
1474 section index. */
1475 if (iheader->sh_flags & SHF_INFO_LINK)
1476 {
1477 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1478 iheader->sh_info);
1479 if (sh_link != SHN_UNDEF)
1480 oheader->sh_flags |= SHF_INFO_LINK;
1481 }
1482 else
1483 /* No idea what it means - just copy it. */
1484 sh_link = iheader->sh_info;
1485
1486 if (sh_link != SHN_UNDEF)
1487 {
1488 oheader->sh_info = sh_link;
1489 changed = TRUE;
1490 }
1491 else
1492 _bfd_error_handler
1493 /* xgettext:c-format */
1494 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1495 }
1496
1497 return changed;
1498 }
1499
1500 /* Copy the program header and other data from one object module to
1501 another. */
1502
1503 bfd_boolean
1504 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1505 {
1506 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1507 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1508 const struct elf_backend_data *bed;
1509 unsigned int i;
1510
1511 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1512 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1513 return TRUE;
1514
1515 if (!elf_flags_init (obfd))
1516 {
1517 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1518 elf_flags_init (obfd) = TRUE;
1519 }
1520
1521 elf_gp (obfd) = elf_gp (ibfd);
1522
1523 /* Also copy the EI_OSABI field. */
1524 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1525 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1526
1527 /* If set, copy the EI_ABIVERSION field. */
1528 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1529 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1530 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1531
1532 /* Copy object attributes. */
1533 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1534
1535 if (iheaders == NULL || oheaders == NULL)
1536 return TRUE;
1537
1538 bed = get_elf_backend_data (obfd);
1539
1540 /* Possibly copy other fields in the section header. */
1541 for (i = 1; i < elf_numsections (obfd); i++)
1542 {
1543 unsigned int j;
1544 Elf_Internal_Shdr * oheader = oheaders[i];
1545
1546 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1547 because of a special case need for generating separate debug info
1548 files. See below for more details. */
1549 if (oheader == NULL
1550 || (oheader->sh_type != SHT_NOBITS
1551 && oheader->sh_type < SHT_LOOS))
1552 continue;
1553
1554 /* Ignore empty sections, and sections whose
1555 fields have already been initialised. */
1556 if (oheader->sh_size == 0
1557 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1558 continue;
1559
1560 /* Scan for the matching section in the input bfd.
1561 First we try for a direct mapping between the input and output sections. */
1562 for (j = 1; j < elf_numsections (ibfd); j++)
1563 {
1564 const Elf_Internal_Shdr * iheader = iheaders[j];
1565
1566 if (iheader == NULL)
1567 continue;
1568
1569 if (oheader->bfd_section != NULL
1570 && iheader->bfd_section != NULL
1571 && iheader->bfd_section->output_section != NULL
1572 && iheader->bfd_section->output_section == oheader->bfd_section)
1573 {
1574 /* We have found a connection from the input section to the
1575 output section. Attempt to copy the header fields. If
1576 this fails then do not try any further sections - there
1577 should only be a one-to-one mapping between input and output. */
1578 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1579 j = elf_numsections (ibfd);
1580 break;
1581 }
1582 }
1583
1584 if (j < elf_numsections (ibfd))
1585 continue;
1586
1587 /* That failed. So try to deduce the corresponding input section.
1588 Unfortunately we cannot compare names as the output string table
1589 is empty, so instead we check size, address and type. */
1590 for (j = 1; j < elf_numsections (ibfd); j++)
1591 {
1592 const Elf_Internal_Shdr * iheader = iheaders[j];
1593
1594 if (iheader == NULL)
1595 continue;
1596
1597 /* Try matching fields in the input section's header.
1598 Since --only-keep-debug turns all non-debug sections into
1599 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1600 input type. */
1601 if ((oheader->sh_type == SHT_NOBITS
1602 || iheader->sh_type == oheader->sh_type)
1603 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1604 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1605 && iheader->sh_addralign == oheader->sh_addralign
1606 && iheader->sh_entsize == oheader->sh_entsize
1607 && iheader->sh_size == oheader->sh_size
1608 && iheader->sh_addr == oheader->sh_addr
1609 && (iheader->sh_info != oheader->sh_info
1610 || iheader->sh_link != oheader->sh_link))
1611 {
1612 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1613 break;
1614 }
1615 }
1616
1617 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1618 {
1619 /* Final attempt. Call the backend copy function
1620 with a NULL input section. */
1621 if (bed->elf_backend_copy_special_section_fields != NULL)
1622 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1623 }
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 static const char *
1630 get_segment_type (unsigned int p_type)
1631 {
1632 const char *pt;
1633 switch (p_type)
1634 {
1635 case PT_NULL: pt = "NULL"; break;
1636 case PT_LOAD: pt = "LOAD"; break;
1637 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1638 case PT_INTERP: pt = "INTERP"; break;
1639 case PT_NOTE: pt = "NOTE"; break;
1640 case PT_SHLIB: pt = "SHLIB"; break;
1641 case PT_PHDR: pt = "PHDR"; break;
1642 case PT_TLS: pt = "TLS"; break;
1643 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1644 case PT_GNU_STACK: pt = "STACK"; break;
1645 case PT_GNU_RELRO: pt = "RELRO"; break;
1646 default: pt = NULL; break;
1647 }
1648 return pt;
1649 }
1650
1651 /* Print out the program headers. */
1652
1653 bfd_boolean
1654 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1655 {
1656 FILE *f = (FILE *) farg;
1657 Elf_Internal_Phdr *p;
1658 asection *s;
1659 bfd_byte *dynbuf = NULL;
1660
1661 p = elf_tdata (abfd)->phdr;
1662 if (p != NULL)
1663 {
1664 unsigned int i, c;
1665
1666 fprintf (f, _("\nProgram Header:\n"));
1667 c = elf_elfheader (abfd)->e_phnum;
1668 for (i = 0; i < c; i++, p++)
1669 {
1670 const char *pt = get_segment_type (p->p_type);
1671 char buf[20];
1672
1673 if (pt == NULL)
1674 {
1675 sprintf (buf, "0x%lx", p->p_type);
1676 pt = buf;
1677 }
1678 fprintf (f, "%8s off 0x", pt);
1679 bfd_fprintf_vma (abfd, f, p->p_offset);
1680 fprintf (f, " vaddr 0x");
1681 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1682 fprintf (f, " paddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_paddr);
1684 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1685 fprintf (f, " filesz 0x");
1686 bfd_fprintf_vma (abfd, f, p->p_filesz);
1687 fprintf (f, " memsz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_memsz);
1689 fprintf (f, " flags %c%c%c",
1690 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1691 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1692 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1693 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1694 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1695 fprintf (f, "\n");
1696 }
1697 }
1698
1699 s = bfd_get_section_by_name (abfd, ".dynamic");
1700 if (s != NULL)
1701 {
1702 unsigned int elfsec;
1703 unsigned long shlink;
1704 bfd_byte *extdyn, *extdynend;
1705 size_t extdynsize;
1706 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1707
1708 fprintf (f, _("\nDynamic Section:\n"));
1709
1710 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1711 goto error_return;
1712
1713 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1714 if (elfsec == SHN_BAD)
1715 goto error_return;
1716 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1717
1718 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1719 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1720
1721 extdyn = dynbuf;
1722 /* PR 17512: file: 6f427532. */
1723 if (s->size < extdynsize)
1724 goto error_return;
1725 extdynend = extdyn + s->size;
1726 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1727 Fix range check. */
1728 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731 const char *name = "";
1732 char ab[20];
1733 bfd_boolean stringp;
1734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1735
1736 (*swap_dyn_in) (abfd, extdyn, &dyn);
1737
1738 if (dyn.d_tag == DT_NULL)
1739 break;
1740
1741 stringp = FALSE;
1742 switch (dyn.d_tag)
1743 {
1744 default:
1745 if (bed->elf_backend_get_target_dtag)
1746 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1747
1748 if (!strcmp (name, ""))
1749 {
1750 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1751 name = ab;
1752 }
1753 break;
1754
1755 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1756 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1757 case DT_PLTGOT: name = "PLTGOT"; break;
1758 case DT_HASH: name = "HASH"; break;
1759 case DT_STRTAB: name = "STRTAB"; break;
1760 case DT_SYMTAB: name = "SYMTAB"; break;
1761 case DT_RELA: name = "RELA"; break;
1762 case DT_RELASZ: name = "RELASZ"; break;
1763 case DT_RELAENT: name = "RELAENT"; break;
1764 case DT_STRSZ: name = "STRSZ"; break;
1765 case DT_SYMENT: name = "SYMENT"; break;
1766 case DT_INIT: name = "INIT"; break;
1767 case DT_FINI: name = "FINI"; break;
1768 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1769 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1770 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1771 case DT_REL: name = "REL"; break;
1772 case DT_RELSZ: name = "RELSZ"; break;
1773 case DT_RELENT: name = "RELENT"; break;
1774 case DT_PLTREL: name = "PLTREL"; break;
1775 case DT_DEBUG: name = "DEBUG"; break;
1776 case DT_TEXTREL: name = "TEXTREL"; break;
1777 case DT_JMPREL: name = "JMPREL"; break;
1778 case DT_BIND_NOW: name = "BIND_NOW"; break;
1779 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1780 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1781 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1782 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1783 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1784 case DT_FLAGS: name = "FLAGS"; break;
1785 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1786 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1787 case DT_CHECKSUM: name = "CHECKSUM"; break;
1788 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1789 case DT_MOVEENT: name = "MOVEENT"; break;
1790 case DT_MOVESZ: name = "MOVESZ"; break;
1791 case DT_FEATURE: name = "FEATURE"; break;
1792 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1793 case DT_SYMINSZ: name = "SYMINSZ"; break;
1794 case DT_SYMINENT: name = "SYMINENT"; break;
1795 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1796 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1797 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1798 case DT_PLTPAD: name = "PLTPAD"; break;
1799 case DT_MOVETAB: name = "MOVETAB"; break;
1800 case DT_SYMINFO: name = "SYMINFO"; break;
1801 case DT_RELACOUNT: name = "RELACOUNT"; break;
1802 case DT_RELCOUNT: name = "RELCOUNT"; break;
1803 case DT_FLAGS_1: name = "FLAGS_1"; break;
1804 case DT_VERSYM: name = "VERSYM"; break;
1805 case DT_VERDEF: name = "VERDEF"; break;
1806 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1807 case DT_VERNEED: name = "VERNEED"; break;
1808 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1809 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1810 case DT_USED: name = "USED"; break;
1811 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1812 case DT_GNU_HASH: name = "GNU_HASH"; break;
1813 }
1814
1815 fprintf (f, " %-20s ", name);
1816 if (! stringp)
1817 {
1818 fprintf (f, "0x");
1819 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1820 }
1821 else
1822 {
1823 const char *string;
1824 unsigned int tagv = dyn.d_un.d_val;
1825
1826 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1827 if (string == NULL)
1828 goto error_return;
1829 fprintf (f, "%s", string);
1830 }
1831 fprintf (f, "\n");
1832 }
1833
1834 free (dynbuf);
1835 dynbuf = NULL;
1836 }
1837
1838 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1839 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1840 {
1841 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1842 return FALSE;
1843 }
1844
1845 if (elf_dynverdef (abfd) != 0)
1846 {
1847 Elf_Internal_Verdef *t;
1848
1849 fprintf (f, _("\nVersion definitions:\n"));
1850 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1851 {
1852 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1853 t->vd_flags, t->vd_hash,
1854 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1855 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1856 {
1857 Elf_Internal_Verdaux *a;
1858
1859 fprintf (f, "\t");
1860 for (a = t->vd_auxptr->vda_nextptr;
1861 a != NULL;
1862 a = a->vda_nextptr)
1863 fprintf (f, "%s ",
1864 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1865 fprintf (f, "\n");
1866 }
1867 }
1868 }
1869
1870 if (elf_dynverref (abfd) != 0)
1871 {
1872 Elf_Internal_Verneed *t;
1873
1874 fprintf (f, _("\nVersion References:\n"));
1875 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1876 {
1877 Elf_Internal_Vernaux *a;
1878
1879 fprintf (f, _(" required from %s:\n"),
1880 t->vn_filename ? t->vn_filename : "<corrupt>");
1881 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1882 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1883 a->vna_flags, a->vna_other,
1884 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1885 }
1886 }
1887
1888 return TRUE;
1889
1890 error_return:
1891 if (dynbuf != NULL)
1892 free (dynbuf);
1893 return FALSE;
1894 }
1895
1896 /* Get version string. */
1897
1898 const char *
1899 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1900 bfd_boolean *hidden)
1901 {
1902 const char *version_string = NULL;
1903 if (elf_dynversym (abfd) != 0
1904 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1905 {
1906 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1907
1908 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1909 vernum &= VERSYM_VERSION;
1910
1911 if (vernum == 0)
1912 version_string = "";
1913 else if (vernum == 1
1914 && (vernum > elf_tdata (abfd)->cverdefs
1915 || (elf_tdata (abfd)->verdef[0].vd_flags
1916 == VER_FLG_BASE)))
1917 version_string = "Base";
1918 else if (vernum <= elf_tdata (abfd)->cverdefs)
1919 version_string =
1920 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1921 else
1922 {
1923 Elf_Internal_Verneed *t;
1924
1925 version_string = _("<corrupt>");
1926 for (t = elf_tdata (abfd)->verref;
1927 t != NULL;
1928 t = t->vn_nextref)
1929 {
1930 Elf_Internal_Vernaux *a;
1931
1932 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1933 {
1934 if (a->vna_other == vernum)
1935 {
1936 version_string = a->vna_nodename;
1937 break;
1938 }
1939 }
1940 }
1941 }
1942 }
1943 return version_string;
1944 }
1945
1946 /* Display ELF-specific fields of a symbol. */
1947
1948 void
1949 bfd_elf_print_symbol (bfd *abfd,
1950 void *filep,
1951 asymbol *symbol,
1952 bfd_print_symbol_type how)
1953 {
1954 FILE *file = (FILE *) filep;
1955 switch (how)
1956 {
1957 case bfd_print_symbol_name:
1958 fprintf (file, "%s", symbol->name);
1959 break;
1960 case bfd_print_symbol_more:
1961 fprintf (file, "elf ");
1962 bfd_fprintf_vma (abfd, file, symbol->value);
1963 fprintf (file, " %x", symbol->flags);
1964 break;
1965 case bfd_print_symbol_all:
1966 {
1967 const char *section_name;
1968 const char *name = NULL;
1969 const struct elf_backend_data *bed;
1970 unsigned char st_other;
1971 bfd_vma val;
1972 const char *version_string;
1973 bfd_boolean hidden;
1974
1975 section_name = symbol->section ? symbol->section->name : "(*none*)";
1976
1977 bed = get_elf_backend_data (abfd);
1978 if (bed->elf_backend_print_symbol_all)
1979 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1980
1981 if (name == NULL)
1982 {
1983 name = symbol->name;
1984 bfd_print_symbol_vandf (abfd, file, symbol);
1985 }
1986
1987 fprintf (file, " %s\t", section_name);
1988 /* Print the "other" value for a symbol. For common symbols,
1989 we've already printed the size; now print the alignment.
1990 For other symbols, we have no specified alignment, and
1991 we've printed the address; now print the size. */
1992 if (symbol->section && bfd_is_com_section (symbol->section))
1993 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1994 else
1995 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1996 bfd_fprintf_vma (abfd, file, val);
1997
1998 /* If we have version information, print it. */
1999 version_string = _bfd_elf_get_symbol_version_string (abfd,
2000 symbol,
2001 &hidden);
2002 if (version_string)
2003 {
2004 if (!hidden)
2005 fprintf (file, " %-11s", version_string);
2006 else
2007 {
2008 int i;
2009
2010 fprintf (file, " (%s)", version_string);
2011 for (i = 10 - strlen (version_string); i > 0; --i)
2012 putc (' ', file);
2013 }
2014 }
2015
2016 /* If the st_other field is not zero, print it. */
2017 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2018
2019 switch (st_other)
2020 {
2021 case 0: break;
2022 case STV_INTERNAL: fprintf (file, " .internal"); break;
2023 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2024 case STV_PROTECTED: fprintf (file, " .protected"); break;
2025 default:
2026 /* Some other non-defined flags are also present, so print
2027 everything hex. */
2028 fprintf (file, " 0x%02x", (unsigned int) st_other);
2029 }
2030
2031 fprintf (file, " %s", name);
2032 }
2033 break;
2034 }
2035 }
2036 \f
2037 /* ELF .o/exec file reading */
2038
2039 /* Create a new bfd section from an ELF section header. */
2040
2041 bfd_boolean
2042 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2043 {
2044 Elf_Internal_Shdr *hdr;
2045 Elf_Internal_Ehdr *ehdr;
2046 const struct elf_backend_data *bed;
2047 const char *name;
2048 bfd_boolean ret = TRUE;
2049 static bfd_boolean * sections_being_created = NULL;
2050 static bfd * sections_being_created_abfd = NULL;
2051 static unsigned int nesting = 0;
2052
2053 if (shindex >= elf_numsections (abfd))
2054 return FALSE;
2055
2056 if (++ nesting > 3)
2057 {
2058 /* PR17512: A corrupt ELF binary might contain a recursive group of
2059 sections, with each the string indices pointing to the next in the
2060 loop. Detect this here, by refusing to load a section that we are
2061 already in the process of loading. We only trigger this test if
2062 we have nested at least three sections deep as normal ELF binaries
2063 can expect to recurse at least once.
2064
2065 FIXME: It would be better if this array was attached to the bfd,
2066 rather than being held in a static pointer. */
2067
2068 if (sections_being_created_abfd != abfd)
2069 sections_being_created = NULL;
2070 if (sections_being_created == NULL)
2071 {
2072 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2073 sections_being_created = (bfd_boolean *) bfd_zalloc (abfd, amt);
2074 if (sections_being_created == NULL)
2075 return FALSE;
2076 sections_being_created_abfd = abfd;
2077 }
2078 if (sections_being_created [shindex])
2079 {
2080 _bfd_error_handler
2081 (_("%pB: warning: loop in section dependencies detected"), abfd);
2082 return FALSE;
2083 }
2084 sections_being_created [shindex] = TRUE;
2085 }
2086
2087 hdr = elf_elfsections (abfd)[shindex];
2088 ehdr = elf_elfheader (abfd);
2089 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2090 hdr->sh_name);
2091 if (name == NULL)
2092 goto fail;
2093
2094 bed = get_elf_backend_data (abfd);
2095 switch (hdr->sh_type)
2096 {
2097 case SHT_NULL:
2098 /* Inactive section. Throw it away. */
2099 goto success;
2100
2101 case SHT_PROGBITS: /* Normal section with contents. */
2102 case SHT_NOBITS: /* .bss section. */
2103 case SHT_HASH: /* .hash section. */
2104 case SHT_NOTE: /* .note section. */
2105 case SHT_INIT_ARRAY: /* .init_array section. */
2106 case SHT_FINI_ARRAY: /* .fini_array section. */
2107 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2108 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2109 case SHT_GNU_HASH: /* .gnu.hash section. */
2110 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2111 goto success;
2112
2113 case SHT_DYNAMIC: /* Dynamic linking information. */
2114 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2115 goto fail;
2116
2117 if (hdr->sh_link > elf_numsections (abfd))
2118 {
2119 /* PR 10478: Accept Solaris binaries with a sh_link
2120 field set to SHN_BEFORE or SHN_AFTER. */
2121 switch (bfd_get_arch (abfd))
2122 {
2123 case bfd_arch_i386:
2124 case bfd_arch_sparc:
2125 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2126 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2127 break;
2128 /* Otherwise fall through. */
2129 default:
2130 goto fail;
2131 }
2132 }
2133 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2134 goto fail;
2135 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2136 {
2137 Elf_Internal_Shdr *dynsymhdr;
2138
2139 /* The shared libraries distributed with hpux11 have a bogus
2140 sh_link field for the ".dynamic" section. Find the
2141 string table for the ".dynsym" section instead. */
2142 if (elf_dynsymtab (abfd) != 0)
2143 {
2144 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2145 hdr->sh_link = dynsymhdr->sh_link;
2146 }
2147 else
2148 {
2149 unsigned int i, num_sec;
2150
2151 num_sec = elf_numsections (abfd);
2152 for (i = 1; i < num_sec; i++)
2153 {
2154 dynsymhdr = elf_elfsections (abfd)[i];
2155 if (dynsymhdr->sh_type == SHT_DYNSYM)
2156 {
2157 hdr->sh_link = dynsymhdr->sh_link;
2158 break;
2159 }
2160 }
2161 }
2162 }
2163 goto success;
2164
2165 case SHT_SYMTAB: /* A symbol table. */
2166 if (elf_onesymtab (abfd) == shindex)
2167 goto success;
2168
2169 if (hdr->sh_entsize != bed->s->sizeof_sym)
2170 goto fail;
2171
2172 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2173 {
2174 if (hdr->sh_size != 0)
2175 goto fail;
2176 /* Some assemblers erroneously set sh_info to one with a
2177 zero sh_size. ld sees this as a global symbol count
2178 of (unsigned) -1. Fix it here. */
2179 hdr->sh_info = 0;
2180 goto success;
2181 }
2182
2183 /* PR 18854: A binary might contain more than one symbol table.
2184 Unusual, but possible. Warn, but continue. */
2185 if (elf_onesymtab (abfd) != 0)
2186 {
2187 _bfd_error_handler
2188 /* xgettext:c-format */
2189 (_("%pB: warning: multiple symbol tables detected"
2190 " - ignoring the table in section %u"),
2191 abfd, shindex);
2192 goto success;
2193 }
2194 elf_onesymtab (abfd) = shindex;
2195 elf_symtab_hdr (abfd) = *hdr;
2196 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2197 abfd->flags |= HAS_SYMS;
2198
2199 /* Sometimes a shared object will map in the symbol table. If
2200 SHF_ALLOC is set, and this is a shared object, then we also
2201 treat this section as a BFD section. We can not base the
2202 decision purely on SHF_ALLOC, because that flag is sometimes
2203 set in a relocatable object file, which would confuse the
2204 linker. */
2205 if ((hdr->sh_flags & SHF_ALLOC) != 0
2206 && (abfd->flags & DYNAMIC) != 0
2207 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2208 shindex))
2209 goto fail;
2210
2211 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2212 can't read symbols without that section loaded as well. It
2213 is most likely specified by the next section header. */
2214 {
2215 elf_section_list * entry;
2216 unsigned int i, num_sec;
2217
2218 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2219 if (entry->hdr.sh_link == shindex)
2220 goto success;
2221
2222 num_sec = elf_numsections (abfd);
2223 for (i = shindex + 1; i < num_sec; i++)
2224 {
2225 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2226
2227 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2228 && hdr2->sh_link == shindex)
2229 break;
2230 }
2231
2232 if (i == num_sec)
2233 for (i = 1; i < shindex; i++)
2234 {
2235 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2236
2237 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2238 && hdr2->sh_link == shindex)
2239 break;
2240 }
2241
2242 if (i != shindex)
2243 ret = bfd_section_from_shdr (abfd, i);
2244 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2245 goto success;
2246 }
2247
2248 case SHT_DYNSYM: /* A dynamic symbol table. */
2249 if (elf_dynsymtab (abfd) == shindex)
2250 goto success;
2251
2252 if (hdr->sh_entsize != bed->s->sizeof_sym)
2253 goto fail;
2254
2255 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2256 {
2257 if (hdr->sh_size != 0)
2258 goto fail;
2259
2260 /* Some linkers erroneously set sh_info to one with a
2261 zero sh_size. ld sees this as a global symbol count
2262 of (unsigned) -1. Fix it here. */
2263 hdr->sh_info = 0;
2264 goto success;
2265 }
2266
2267 /* PR 18854: A binary might contain more than one dynamic symbol table.
2268 Unusual, but possible. Warn, but continue. */
2269 if (elf_dynsymtab (abfd) != 0)
2270 {
2271 _bfd_error_handler
2272 /* xgettext:c-format */
2273 (_("%pB: warning: multiple dynamic symbol tables detected"
2274 " - ignoring the table in section %u"),
2275 abfd, shindex);
2276 goto success;
2277 }
2278 elf_dynsymtab (abfd) = shindex;
2279 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2280 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2281 abfd->flags |= HAS_SYMS;
2282
2283 /* Besides being a symbol table, we also treat this as a regular
2284 section, so that objcopy can handle it. */
2285 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2286 goto success;
2287
2288 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2289 {
2290 elf_section_list * entry;
2291
2292 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2293 if (entry->ndx == shindex)
2294 goto success;
2295
2296 entry = bfd_alloc (abfd, sizeof (*entry));
2297 if (entry == NULL)
2298 goto fail;
2299 entry->ndx = shindex;
2300 entry->hdr = * hdr;
2301 entry->next = elf_symtab_shndx_list (abfd);
2302 elf_symtab_shndx_list (abfd) = entry;
2303 elf_elfsections (abfd)[shindex] = & entry->hdr;
2304 goto success;
2305 }
2306
2307 case SHT_STRTAB: /* A string table. */
2308 if (hdr->bfd_section != NULL)
2309 goto success;
2310
2311 if (ehdr->e_shstrndx == shindex)
2312 {
2313 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2314 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2315 goto success;
2316 }
2317
2318 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2319 {
2320 symtab_strtab:
2321 elf_tdata (abfd)->strtab_hdr = *hdr;
2322 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2323 goto success;
2324 }
2325
2326 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2327 {
2328 dynsymtab_strtab:
2329 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2330 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2331 elf_elfsections (abfd)[shindex] = hdr;
2332 /* We also treat this as a regular section, so that objcopy
2333 can handle it. */
2334 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2335 shindex);
2336 goto success;
2337 }
2338
2339 /* If the string table isn't one of the above, then treat it as a
2340 regular section. We need to scan all the headers to be sure,
2341 just in case this strtab section appeared before the above. */
2342 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2343 {
2344 unsigned int i, num_sec;
2345
2346 num_sec = elf_numsections (abfd);
2347 for (i = 1; i < num_sec; i++)
2348 {
2349 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2350 if (hdr2->sh_link == shindex)
2351 {
2352 /* Prevent endless recursion on broken objects. */
2353 if (i == shindex)
2354 goto fail;
2355 if (! bfd_section_from_shdr (abfd, i))
2356 goto fail;
2357 if (elf_onesymtab (abfd) == i)
2358 goto symtab_strtab;
2359 if (elf_dynsymtab (abfd) == i)
2360 goto dynsymtab_strtab;
2361 }
2362 }
2363 }
2364 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2365 goto success;
2366
2367 case SHT_REL:
2368 case SHT_RELA:
2369 /* *These* do a lot of work -- but build no sections! */
2370 {
2371 asection *target_sect;
2372 Elf_Internal_Shdr *hdr2, **p_hdr;
2373 unsigned int num_sec = elf_numsections (abfd);
2374 struct bfd_elf_section_data *esdt;
2375
2376 if (hdr->sh_entsize
2377 != (bfd_size_type) (hdr->sh_type == SHT_REL
2378 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2379 goto fail;
2380
2381 /* Check for a bogus link to avoid crashing. */
2382 if (hdr->sh_link >= num_sec)
2383 {
2384 _bfd_error_handler
2385 /* xgettext:c-format */
2386 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2387 abfd, hdr->sh_link, name, shindex);
2388 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2389 shindex);
2390 goto success;
2391 }
2392
2393 /* For some incomprehensible reason Oracle distributes
2394 libraries for Solaris in which some of the objects have
2395 bogus sh_link fields. It would be nice if we could just
2396 reject them, but, unfortunately, some people need to use
2397 them. We scan through the section headers; if we find only
2398 one suitable symbol table, we clobber the sh_link to point
2399 to it. I hope this doesn't break anything.
2400
2401 Don't do it on executable nor shared library. */
2402 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2403 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2404 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2405 {
2406 unsigned int scan;
2407 int found;
2408
2409 found = 0;
2410 for (scan = 1; scan < num_sec; scan++)
2411 {
2412 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2413 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2414 {
2415 if (found != 0)
2416 {
2417 found = 0;
2418 break;
2419 }
2420 found = scan;
2421 }
2422 }
2423 if (found != 0)
2424 hdr->sh_link = found;
2425 }
2426
2427 /* Get the symbol table. */
2428 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2429 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2430 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2431 goto fail;
2432
2433 /* If this is an alloc section in an executable or shared
2434 library, or the reloc section does not use the main symbol
2435 table we don't treat it as a reloc section. BFD can't
2436 adequately represent such a section, so at least for now,
2437 we don't try. We just present it as a normal section. We
2438 also can't use it as a reloc section if it points to the
2439 null section, an invalid section, another reloc section, or
2440 its sh_link points to the null section. */
2441 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2442 && (hdr->sh_flags & SHF_ALLOC) != 0)
2443 || hdr->sh_link == SHN_UNDEF
2444 || hdr->sh_link != elf_onesymtab (abfd)
2445 || hdr->sh_info == SHN_UNDEF
2446 || hdr->sh_info >= num_sec
2447 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2448 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2449 {
2450 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2451 shindex);
2452 goto success;
2453 }
2454
2455 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2456 goto fail;
2457
2458 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2459 if (target_sect == NULL)
2460 goto fail;
2461
2462 esdt = elf_section_data (target_sect);
2463 if (hdr->sh_type == SHT_RELA)
2464 p_hdr = &esdt->rela.hdr;
2465 else
2466 p_hdr = &esdt->rel.hdr;
2467
2468 /* PR 17512: file: 0b4f81b7.
2469 Also see PR 24456, for a file which deliberately has two reloc
2470 sections. */
2471 if (*p_hdr != NULL)
2472 {
2473 _bfd_error_handler
2474 /* xgettext:c-format */
2475 (_("%pB: warning: multiple relocation sections for section %pA \
2476 found - ignoring all but the first"),
2477 abfd, target_sect);
2478 goto success;
2479 }
2480 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2481 if (hdr2 == NULL)
2482 goto fail;
2483 *hdr2 = *hdr;
2484 *p_hdr = hdr2;
2485 elf_elfsections (abfd)[shindex] = hdr2;
2486 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2487 * bed->s->int_rels_per_ext_rel);
2488 target_sect->flags |= SEC_RELOC;
2489 target_sect->relocation = NULL;
2490 target_sect->rel_filepos = hdr->sh_offset;
2491 /* In the section to which the relocations apply, mark whether
2492 its relocations are of the REL or RELA variety. */
2493 if (hdr->sh_size != 0)
2494 {
2495 if (hdr->sh_type == SHT_RELA)
2496 target_sect->use_rela_p = 1;
2497 }
2498 abfd->flags |= HAS_RELOC;
2499 goto success;
2500 }
2501
2502 case SHT_GNU_verdef:
2503 elf_dynverdef (abfd) = shindex;
2504 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2505 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2506 goto success;
2507
2508 case SHT_GNU_versym:
2509 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2510 goto fail;
2511
2512 elf_dynversym (abfd) = shindex;
2513 elf_tdata (abfd)->dynversym_hdr = *hdr;
2514 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2515 goto success;
2516
2517 case SHT_GNU_verneed:
2518 elf_dynverref (abfd) = shindex;
2519 elf_tdata (abfd)->dynverref_hdr = *hdr;
2520 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2521 goto success;
2522
2523 case SHT_SHLIB:
2524 goto success;
2525
2526 case SHT_GROUP:
2527 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2528 goto fail;
2529
2530 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2531 goto fail;
2532
2533 goto success;
2534
2535 default:
2536 /* Possibly an attributes section. */
2537 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2538 || hdr->sh_type == bed->obj_attrs_section_type)
2539 {
2540 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2541 goto fail;
2542 _bfd_elf_parse_attributes (abfd, hdr);
2543 goto success;
2544 }
2545
2546 /* Check for any processor-specific section types. */
2547 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2548 goto success;
2549
2550 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2551 {
2552 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2553 /* FIXME: How to properly handle allocated section reserved
2554 for applications? */
2555 _bfd_error_handler
2556 /* xgettext:c-format */
2557 (_("%pB: unknown type [%#x] section `%s'"),
2558 abfd, hdr->sh_type, name);
2559 else
2560 {
2561 /* Allow sections reserved for applications. */
2562 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2563 shindex);
2564 goto success;
2565 }
2566 }
2567 else if (hdr->sh_type >= SHT_LOPROC
2568 && hdr->sh_type <= SHT_HIPROC)
2569 /* FIXME: We should handle this section. */
2570 _bfd_error_handler
2571 /* xgettext:c-format */
2572 (_("%pB: unknown type [%#x] section `%s'"),
2573 abfd, hdr->sh_type, name);
2574 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2575 {
2576 /* Unrecognised OS-specific sections. */
2577 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2578 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2579 required to correctly process the section and the file should
2580 be rejected with an error message. */
2581 _bfd_error_handler
2582 /* xgettext:c-format */
2583 (_("%pB: unknown type [%#x] section `%s'"),
2584 abfd, hdr->sh_type, name);
2585 else
2586 {
2587 /* Otherwise it should be processed. */
2588 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2589 goto success;
2590 }
2591 }
2592 else
2593 /* FIXME: We should handle this section. */
2594 _bfd_error_handler
2595 /* xgettext:c-format */
2596 (_("%pB: unknown type [%#x] section `%s'"),
2597 abfd, hdr->sh_type, name);
2598
2599 goto fail;
2600 }
2601
2602 fail:
2603 ret = FALSE;
2604 success:
2605 if (sections_being_created && sections_being_created_abfd == abfd)
2606 sections_being_created [shindex] = FALSE;
2607 if (-- nesting == 0)
2608 {
2609 sections_being_created = NULL;
2610 sections_being_created_abfd = abfd;
2611 }
2612 return ret;
2613 }
2614
2615 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2616
2617 Elf_Internal_Sym *
2618 bfd_sym_from_r_symndx (struct sym_cache *cache,
2619 bfd *abfd,
2620 unsigned long r_symndx)
2621 {
2622 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2623
2624 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2625 {
2626 Elf_Internal_Shdr *symtab_hdr;
2627 unsigned char esym[sizeof (Elf64_External_Sym)];
2628 Elf_External_Sym_Shndx eshndx;
2629
2630 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2631 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2632 &cache->sym[ent], esym, &eshndx) == NULL)
2633 return NULL;
2634
2635 if (cache->abfd != abfd)
2636 {
2637 memset (cache->indx, -1, sizeof (cache->indx));
2638 cache->abfd = abfd;
2639 }
2640 cache->indx[ent] = r_symndx;
2641 }
2642
2643 return &cache->sym[ent];
2644 }
2645
2646 /* Given an ELF section number, retrieve the corresponding BFD
2647 section. */
2648
2649 asection *
2650 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2651 {
2652 if (sec_index >= elf_numsections (abfd))
2653 return NULL;
2654 return elf_elfsections (abfd)[sec_index]->bfd_section;
2655 }
2656
2657 static const struct bfd_elf_special_section special_sections_b[] =
2658 {
2659 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2660 { NULL, 0, 0, 0, 0 }
2661 };
2662
2663 static const struct bfd_elf_special_section special_sections_c[] =
2664 {
2665 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2666 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2667 { NULL, 0, 0, 0, 0 }
2668 };
2669
2670 static const struct bfd_elf_special_section special_sections_d[] =
2671 {
2672 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2673 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2674 /* There are more DWARF sections than these, but they needn't be added here
2675 unless you have to cope with broken compilers that don't emit section
2676 attributes or you want to help the user writing assembler. */
2677 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2681 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2682 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2683 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2684 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2685 { NULL, 0, 0, 0, 0 }
2686 };
2687
2688 static const struct bfd_elf_special_section special_sections_f[] =
2689 {
2690 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2691 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2692 { NULL, 0 , 0, 0, 0 }
2693 };
2694
2695 static const struct bfd_elf_special_section special_sections_g[] =
2696 {
2697 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2698 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2699 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2700 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2701 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2702 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2703 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2704 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2705 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2706 { NULL, 0, 0, 0, 0 }
2707 };
2708
2709 static const struct bfd_elf_special_section special_sections_h[] =
2710 {
2711 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2712 { NULL, 0, 0, 0, 0 }
2713 };
2714
2715 static const struct bfd_elf_special_section special_sections_i[] =
2716 {
2717 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2718 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2719 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2720 { NULL, 0, 0, 0, 0 }
2721 };
2722
2723 static const struct bfd_elf_special_section special_sections_l[] =
2724 {
2725 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2726 { NULL, 0, 0, 0, 0 }
2727 };
2728
2729 static const struct bfd_elf_special_section special_sections_n[] =
2730 {
2731 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2732 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2733 { NULL, 0, 0, 0, 0 }
2734 };
2735
2736 static const struct bfd_elf_special_section special_sections_p[] =
2737 {
2738 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2739 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2740 { NULL, 0, 0, 0, 0 }
2741 };
2742
2743 static const struct bfd_elf_special_section special_sections_r[] =
2744 {
2745 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2746 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2747 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2748 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2749 { NULL, 0, 0, 0, 0 }
2750 };
2751
2752 static const struct bfd_elf_special_section special_sections_s[] =
2753 {
2754 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2755 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2756 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2757 /* See struct bfd_elf_special_section declaration for the semantics of
2758 this special case where .prefix_length != strlen (.prefix). */
2759 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2760 { NULL, 0, 0, 0, 0 }
2761 };
2762
2763 static const struct bfd_elf_special_section special_sections_t[] =
2764 {
2765 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2766 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2767 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2768 { NULL, 0, 0, 0, 0 }
2769 };
2770
2771 static const struct bfd_elf_special_section special_sections_z[] =
2772 {
2773 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2774 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2775 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2776 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2777 { NULL, 0, 0, 0, 0 }
2778 };
2779
2780 static const struct bfd_elf_special_section * const special_sections[] =
2781 {
2782 special_sections_b, /* 'b' */
2783 special_sections_c, /* 'c' */
2784 special_sections_d, /* 'd' */
2785 NULL, /* 'e' */
2786 special_sections_f, /* 'f' */
2787 special_sections_g, /* 'g' */
2788 special_sections_h, /* 'h' */
2789 special_sections_i, /* 'i' */
2790 NULL, /* 'j' */
2791 NULL, /* 'k' */
2792 special_sections_l, /* 'l' */
2793 NULL, /* 'm' */
2794 special_sections_n, /* 'n' */
2795 NULL, /* 'o' */
2796 special_sections_p, /* 'p' */
2797 NULL, /* 'q' */
2798 special_sections_r, /* 'r' */
2799 special_sections_s, /* 's' */
2800 special_sections_t, /* 't' */
2801 NULL, /* 'u' */
2802 NULL, /* 'v' */
2803 NULL, /* 'w' */
2804 NULL, /* 'x' */
2805 NULL, /* 'y' */
2806 special_sections_z /* 'z' */
2807 };
2808
2809 const struct bfd_elf_special_section *
2810 _bfd_elf_get_special_section (const char *name,
2811 const struct bfd_elf_special_section *spec,
2812 unsigned int rela)
2813 {
2814 int i;
2815 int len;
2816
2817 len = strlen (name);
2818
2819 for (i = 0; spec[i].prefix != NULL; i++)
2820 {
2821 int suffix_len;
2822 int prefix_len = spec[i].prefix_length;
2823
2824 if (len < prefix_len)
2825 continue;
2826 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2827 continue;
2828
2829 suffix_len = spec[i].suffix_length;
2830 if (suffix_len <= 0)
2831 {
2832 if (name[prefix_len] != 0)
2833 {
2834 if (suffix_len == 0)
2835 continue;
2836 if (name[prefix_len] != '.'
2837 && (suffix_len == -2
2838 || (rela && spec[i].type == SHT_REL)))
2839 continue;
2840 }
2841 }
2842 else
2843 {
2844 if (len < prefix_len + suffix_len)
2845 continue;
2846 if (memcmp (name + len - suffix_len,
2847 spec[i].prefix + prefix_len,
2848 suffix_len) != 0)
2849 continue;
2850 }
2851 return &spec[i];
2852 }
2853
2854 return NULL;
2855 }
2856
2857 const struct bfd_elf_special_section *
2858 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2859 {
2860 int i;
2861 const struct bfd_elf_special_section *spec;
2862 const struct elf_backend_data *bed;
2863
2864 /* See if this is one of the special sections. */
2865 if (sec->name == NULL)
2866 return NULL;
2867
2868 bed = get_elf_backend_data (abfd);
2869 spec = bed->special_sections;
2870 if (spec)
2871 {
2872 spec = _bfd_elf_get_special_section (sec->name,
2873 bed->special_sections,
2874 sec->use_rela_p);
2875 if (spec != NULL)
2876 return spec;
2877 }
2878
2879 if (sec->name[0] != '.')
2880 return NULL;
2881
2882 i = sec->name[1] - 'b';
2883 if (i < 0 || i > 'z' - 'b')
2884 return NULL;
2885
2886 spec = special_sections[i];
2887
2888 if (spec == NULL)
2889 return NULL;
2890
2891 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2892 }
2893
2894 bfd_boolean
2895 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2896 {
2897 struct bfd_elf_section_data *sdata;
2898 const struct elf_backend_data *bed;
2899 const struct bfd_elf_special_section *ssect;
2900
2901 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2902 if (sdata == NULL)
2903 {
2904 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2905 sizeof (*sdata));
2906 if (sdata == NULL)
2907 return FALSE;
2908 sec->used_by_bfd = sdata;
2909 }
2910
2911 /* Indicate whether or not this section should use RELA relocations. */
2912 bed = get_elf_backend_data (abfd);
2913 sec->use_rela_p = bed->default_use_rela_p;
2914
2915 /* When we read a file, we don't need to set ELF section type and
2916 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2917 anyway. We will set ELF section type and flags for all linker
2918 created sections. If user specifies BFD section flags, we will
2919 set ELF section type and flags based on BFD section flags in
2920 elf_fake_sections. Special handling for .init_array/.fini_array
2921 output sections since they may contain .ctors/.dtors input
2922 sections. We don't want _bfd_elf_init_private_section_data to
2923 copy ELF section type from .ctors/.dtors input sections. */
2924 if (abfd->direction != read_direction
2925 || (sec->flags & SEC_LINKER_CREATED) != 0)
2926 {
2927 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2928 if (ssect != NULL
2929 && (!sec->flags
2930 || (sec->flags & SEC_LINKER_CREATED) != 0
2931 || ssect->type == SHT_INIT_ARRAY
2932 || ssect->type == SHT_FINI_ARRAY))
2933 {
2934 elf_section_type (sec) = ssect->type;
2935 elf_section_flags (sec) = ssect->attr;
2936 }
2937 }
2938
2939 return _bfd_generic_new_section_hook (abfd, sec);
2940 }
2941
2942 /* Create a new bfd section from an ELF program header.
2943
2944 Since program segments have no names, we generate a synthetic name
2945 of the form segment<NUM>, where NUM is generally the index in the
2946 program header table. For segments that are split (see below) we
2947 generate the names segment<NUM>a and segment<NUM>b.
2948
2949 Note that some program segments may have a file size that is different than
2950 (less than) the memory size. All this means is that at execution the
2951 system must allocate the amount of memory specified by the memory size,
2952 but only initialize it with the first "file size" bytes read from the
2953 file. This would occur for example, with program segments consisting
2954 of combined data+bss.
2955
2956 To handle the above situation, this routine generates TWO bfd sections
2957 for the single program segment. The first has the length specified by
2958 the file size of the segment, and the second has the length specified
2959 by the difference between the two sizes. In effect, the segment is split
2960 into its initialized and uninitialized parts.
2961
2962 */
2963
2964 bfd_boolean
2965 _bfd_elf_make_section_from_phdr (bfd *abfd,
2966 Elf_Internal_Phdr *hdr,
2967 int hdr_index,
2968 const char *type_name)
2969 {
2970 asection *newsect;
2971 char *name;
2972 char namebuf[64];
2973 size_t len;
2974 int split;
2975
2976 split = ((hdr->p_memsz > 0)
2977 && (hdr->p_filesz > 0)
2978 && (hdr->p_memsz > hdr->p_filesz));
2979
2980 if (hdr->p_filesz > 0)
2981 {
2982 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2983 len = strlen (namebuf) + 1;
2984 name = (char *) bfd_alloc (abfd, len);
2985 if (!name)
2986 return FALSE;
2987 memcpy (name, namebuf, len);
2988 newsect = bfd_make_section (abfd, name);
2989 if (newsect == NULL)
2990 return FALSE;
2991 newsect->vma = hdr->p_vaddr;
2992 newsect->lma = hdr->p_paddr;
2993 newsect->size = hdr->p_filesz;
2994 newsect->filepos = hdr->p_offset;
2995 newsect->flags |= SEC_HAS_CONTENTS;
2996 newsect->alignment_power = bfd_log2 (hdr->p_align);
2997 if (hdr->p_type == PT_LOAD)
2998 {
2999 newsect->flags |= SEC_ALLOC;
3000 newsect->flags |= SEC_LOAD;
3001 if (hdr->p_flags & PF_X)
3002 {
3003 /* FIXME: all we known is that it has execute PERMISSION,
3004 may be data. */
3005 newsect->flags |= SEC_CODE;
3006 }
3007 }
3008 if (!(hdr->p_flags & PF_W))
3009 {
3010 newsect->flags |= SEC_READONLY;
3011 }
3012 }
3013
3014 if (hdr->p_memsz > hdr->p_filesz)
3015 {
3016 bfd_vma align;
3017
3018 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3019 len = strlen (namebuf) + 1;
3020 name = (char *) bfd_alloc (abfd, len);
3021 if (!name)
3022 return FALSE;
3023 memcpy (name, namebuf, len);
3024 newsect = bfd_make_section (abfd, name);
3025 if (newsect == NULL)
3026 return FALSE;
3027 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3028 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3029 newsect->size = hdr->p_memsz - hdr->p_filesz;
3030 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3031 align = newsect->vma & -newsect->vma;
3032 if (align == 0 || align > hdr->p_align)
3033 align = hdr->p_align;
3034 newsect->alignment_power = bfd_log2 (align);
3035 if (hdr->p_type == PT_LOAD)
3036 {
3037 /* Hack for gdb. Segments that have not been modified do
3038 not have their contents written to a core file, on the
3039 assumption that a debugger can find the contents in the
3040 executable. We flag this case by setting the fake
3041 section size to zero. Note that "real" bss sections will
3042 always have their contents dumped to the core file. */
3043 if (bfd_get_format (abfd) == bfd_core)
3044 newsect->size = 0;
3045 newsect->flags |= SEC_ALLOC;
3046 if (hdr->p_flags & PF_X)
3047 newsect->flags |= SEC_CODE;
3048 }
3049 if (!(hdr->p_flags & PF_W))
3050 newsect->flags |= SEC_READONLY;
3051 }
3052
3053 return TRUE;
3054 }
3055
3056 static bfd_boolean
3057 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3058 {
3059 /* The return value is ignored. Build-ids are considered optional. */
3060 if (templ->xvec->flavour == bfd_target_elf_flavour)
3061 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3062 (templ, offset);
3063 return FALSE;
3064 }
3065
3066 bfd_boolean
3067 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3068 {
3069 const struct elf_backend_data *bed;
3070
3071 switch (hdr->p_type)
3072 {
3073 case PT_NULL:
3074 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3075
3076 case PT_LOAD:
3077 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3078 return FALSE;
3079 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3080 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3081 return TRUE;
3082
3083 case PT_DYNAMIC:
3084 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3085
3086 case PT_INTERP:
3087 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3088
3089 case PT_NOTE:
3090 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3091 return FALSE;
3092 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3093 hdr->p_align))
3094 return FALSE;
3095 return TRUE;
3096
3097 case PT_SHLIB:
3098 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3099
3100 case PT_PHDR:
3101 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3102
3103 case PT_GNU_EH_FRAME:
3104 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3105 "eh_frame_hdr");
3106
3107 case PT_GNU_STACK:
3108 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3109
3110 case PT_GNU_RELRO:
3111 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3112
3113 default:
3114 /* Check for any processor-specific program segment types. */
3115 bed = get_elf_backend_data (abfd);
3116 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3117 }
3118 }
3119
3120 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3121 REL or RELA. */
3122
3123 Elf_Internal_Shdr *
3124 _bfd_elf_single_rel_hdr (asection *sec)
3125 {
3126 if (elf_section_data (sec)->rel.hdr)
3127 {
3128 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3129 return elf_section_data (sec)->rel.hdr;
3130 }
3131 else
3132 return elf_section_data (sec)->rela.hdr;
3133 }
3134
3135 static bfd_boolean
3136 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3137 Elf_Internal_Shdr *rel_hdr,
3138 const char *sec_name,
3139 bfd_boolean use_rela_p)
3140 {
3141 char *name = (char *) bfd_alloc (abfd,
3142 sizeof ".rela" + strlen (sec_name));
3143 if (name == NULL)
3144 return FALSE;
3145
3146 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3147 rel_hdr->sh_name =
3148 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3149 FALSE);
3150 if (rel_hdr->sh_name == (unsigned int) -1)
3151 return FALSE;
3152
3153 return TRUE;
3154 }
3155
3156 /* Allocate and initialize a section-header for a new reloc section,
3157 containing relocations against ASECT. It is stored in RELDATA. If
3158 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3159 relocations. */
3160
3161 static bfd_boolean
3162 _bfd_elf_init_reloc_shdr (bfd *abfd,
3163 struct bfd_elf_section_reloc_data *reldata,
3164 const char *sec_name,
3165 bfd_boolean use_rela_p,
3166 bfd_boolean delay_st_name_p)
3167 {
3168 Elf_Internal_Shdr *rel_hdr;
3169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3170
3171 BFD_ASSERT (reldata->hdr == NULL);
3172 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3173 reldata->hdr = rel_hdr;
3174
3175 if (delay_st_name_p)
3176 rel_hdr->sh_name = (unsigned int) -1;
3177 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3178 use_rela_p))
3179 return FALSE;
3180 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3181 rel_hdr->sh_entsize = (use_rela_p
3182 ? bed->s->sizeof_rela
3183 : bed->s->sizeof_rel);
3184 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3185 rel_hdr->sh_flags = 0;
3186 rel_hdr->sh_addr = 0;
3187 rel_hdr->sh_size = 0;
3188 rel_hdr->sh_offset = 0;
3189
3190 return TRUE;
3191 }
3192
3193 /* Return the default section type based on the passed in section flags. */
3194
3195 int
3196 bfd_elf_get_default_section_type (flagword flags)
3197 {
3198 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3199 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3200 return SHT_NOBITS;
3201 return SHT_PROGBITS;
3202 }
3203
3204 struct fake_section_arg
3205 {
3206 struct bfd_link_info *link_info;
3207 bfd_boolean failed;
3208 };
3209
3210 /* Set up an ELF internal section header for a section. */
3211
3212 static void
3213 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3214 {
3215 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3217 struct bfd_elf_section_data *esd = elf_section_data (asect);
3218 Elf_Internal_Shdr *this_hdr;
3219 unsigned int sh_type;
3220 const char *name = asect->name;
3221 bfd_boolean delay_st_name_p = FALSE;
3222
3223 if (arg->failed)
3224 {
3225 /* We already failed; just get out of the bfd_map_over_sections
3226 loop. */
3227 return;
3228 }
3229
3230 this_hdr = &esd->this_hdr;
3231
3232 if (arg->link_info)
3233 {
3234 /* ld: compress DWARF debug sections with names: .debug_*. */
3235 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3236 && (asect->flags & SEC_DEBUGGING)
3237 && name[1] == 'd'
3238 && name[6] == '_')
3239 {
3240 /* Set SEC_ELF_COMPRESS to indicate this section should be
3241 compressed. */
3242 asect->flags |= SEC_ELF_COMPRESS;
3243
3244 /* If this section will be compressed, delay adding section
3245 name to section name section after it is compressed in
3246 _bfd_elf_assign_file_positions_for_non_load. */
3247 delay_st_name_p = TRUE;
3248 }
3249 }
3250 else if ((asect->flags & SEC_ELF_RENAME))
3251 {
3252 /* objcopy: rename output DWARF debug section. */
3253 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3254 {
3255 /* When we decompress or compress with SHF_COMPRESSED,
3256 convert section name from .zdebug_* to .debug_* if
3257 needed. */
3258 if (name[1] == 'z')
3259 {
3260 char *new_name = convert_zdebug_to_debug (abfd, name);
3261 if (new_name == NULL)
3262 {
3263 arg->failed = TRUE;
3264 return;
3265 }
3266 name = new_name;
3267 }
3268 }
3269 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3270 {
3271 /* PR binutils/18087: Compression does not always make a
3272 section smaller. So only rename the section when
3273 compression has actually taken place. If input section
3274 name is .zdebug_*, we should never compress it again. */
3275 char *new_name = convert_debug_to_zdebug (abfd, name);
3276 if (new_name == NULL)
3277 {
3278 arg->failed = TRUE;
3279 return;
3280 }
3281 BFD_ASSERT (name[1] != 'z');
3282 name = new_name;
3283 }
3284 }
3285
3286 if (delay_st_name_p)
3287 this_hdr->sh_name = (unsigned int) -1;
3288 else
3289 {
3290 this_hdr->sh_name
3291 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3292 name, FALSE);
3293 if (this_hdr->sh_name == (unsigned int) -1)
3294 {
3295 arg->failed = TRUE;
3296 return;
3297 }
3298 }
3299
3300 /* Don't clear sh_flags. Assembler may set additional bits. */
3301
3302 if ((asect->flags & SEC_ALLOC) != 0
3303 || asect->user_set_vma)
3304 this_hdr->sh_addr = asect->vma;
3305 else
3306 this_hdr->sh_addr = 0;
3307
3308 this_hdr->sh_offset = 0;
3309 this_hdr->sh_size = asect->size;
3310 this_hdr->sh_link = 0;
3311 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3312 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3313 {
3314 _bfd_error_handler
3315 /* xgettext:c-format */
3316 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3317 abfd, asect->alignment_power, asect);
3318 arg->failed = TRUE;
3319 return;
3320 }
3321 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3322 /* The sh_entsize and sh_info fields may have been set already by
3323 copy_private_section_data. */
3324
3325 this_hdr->bfd_section = asect;
3326 this_hdr->contents = NULL;
3327
3328 /* If the section type is unspecified, we set it based on
3329 asect->flags. */
3330 if ((asect->flags & SEC_GROUP) != 0)
3331 sh_type = SHT_GROUP;
3332 else
3333 sh_type = bfd_elf_get_default_section_type (asect->flags);
3334
3335 if (this_hdr->sh_type == SHT_NULL)
3336 this_hdr->sh_type = sh_type;
3337 else if (this_hdr->sh_type == SHT_NOBITS
3338 && sh_type == SHT_PROGBITS
3339 && (asect->flags & SEC_ALLOC) != 0)
3340 {
3341 /* Warn if we are changing a NOBITS section to PROGBITS, but
3342 allow the link to proceed. This can happen when users link
3343 non-bss input sections to bss output sections, or emit data
3344 to a bss output section via a linker script. */
3345 _bfd_error_handler
3346 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3347 this_hdr->sh_type = sh_type;
3348 }
3349
3350 switch (this_hdr->sh_type)
3351 {
3352 default:
3353 break;
3354
3355 case SHT_STRTAB:
3356 case SHT_NOTE:
3357 case SHT_NOBITS:
3358 case SHT_PROGBITS:
3359 break;
3360
3361 case SHT_INIT_ARRAY:
3362 case SHT_FINI_ARRAY:
3363 case SHT_PREINIT_ARRAY:
3364 this_hdr->sh_entsize = bed->s->arch_size / 8;
3365 break;
3366
3367 case SHT_HASH:
3368 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3369 break;
3370
3371 case SHT_DYNSYM:
3372 this_hdr->sh_entsize = bed->s->sizeof_sym;
3373 break;
3374
3375 case SHT_DYNAMIC:
3376 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3377 break;
3378
3379 case SHT_RELA:
3380 if (get_elf_backend_data (abfd)->may_use_rela_p)
3381 this_hdr->sh_entsize = bed->s->sizeof_rela;
3382 break;
3383
3384 case SHT_REL:
3385 if (get_elf_backend_data (abfd)->may_use_rel_p)
3386 this_hdr->sh_entsize = bed->s->sizeof_rel;
3387 break;
3388
3389 case SHT_GNU_versym:
3390 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3391 break;
3392
3393 case SHT_GNU_verdef:
3394 this_hdr->sh_entsize = 0;
3395 /* objcopy or strip will copy over sh_info, but may not set
3396 cverdefs. The linker will set cverdefs, but sh_info will be
3397 zero. */
3398 if (this_hdr->sh_info == 0)
3399 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3400 else
3401 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3402 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3403 break;
3404
3405 case SHT_GNU_verneed:
3406 this_hdr->sh_entsize = 0;
3407 /* objcopy or strip will copy over sh_info, but may not set
3408 cverrefs. The linker will set cverrefs, but sh_info will be
3409 zero. */
3410 if (this_hdr->sh_info == 0)
3411 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3412 else
3413 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3414 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3415 break;
3416
3417 case SHT_GROUP:
3418 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3419 break;
3420
3421 case SHT_GNU_HASH:
3422 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3423 break;
3424 }
3425
3426 if ((asect->flags & SEC_ALLOC) != 0)
3427 this_hdr->sh_flags |= SHF_ALLOC;
3428 if ((asect->flags & SEC_READONLY) == 0)
3429 this_hdr->sh_flags |= SHF_WRITE;
3430 if ((asect->flags & SEC_CODE) != 0)
3431 this_hdr->sh_flags |= SHF_EXECINSTR;
3432 if ((asect->flags & SEC_MERGE) != 0)
3433 {
3434 this_hdr->sh_flags |= SHF_MERGE;
3435 this_hdr->sh_entsize = asect->entsize;
3436 }
3437 if ((asect->flags & SEC_STRINGS) != 0)
3438 this_hdr->sh_flags |= SHF_STRINGS;
3439 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3440 this_hdr->sh_flags |= SHF_GROUP;
3441 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3442 {
3443 this_hdr->sh_flags |= SHF_TLS;
3444 if (asect->size == 0
3445 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3446 {
3447 struct bfd_link_order *o = asect->map_tail.link_order;
3448
3449 this_hdr->sh_size = 0;
3450 if (o != NULL)
3451 {
3452 this_hdr->sh_size = o->offset + o->size;
3453 if (this_hdr->sh_size != 0)
3454 this_hdr->sh_type = SHT_NOBITS;
3455 }
3456 }
3457 }
3458 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3459 this_hdr->sh_flags |= SHF_EXCLUDE;
3460
3461 /* If the section has relocs, set up a section header for the
3462 SHT_REL[A] section. If two relocation sections are required for
3463 this section, it is up to the processor-specific back-end to
3464 create the other. */
3465 if ((asect->flags & SEC_RELOC) != 0)
3466 {
3467 /* When doing a relocatable link, create both REL and RELA sections if
3468 needed. */
3469 if (arg->link_info
3470 /* Do the normal setup if we wouldn't create any sections here. */
3471 && esd->rel.count + esd->rela.count > 0
3472 && (bfd_link_relocatable (arg->link_info)
3473 || arg->link_info->emitrelocations))
3474 {
3475 if (esd->rel.count && esd->rel.hdr == NULL
3476 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3477 FALSE, delay_st_name_p))
3478 {
3479 arg->failed = TRUE;
3480 return;
3481 }
3482 if (esd->rela.count && esd->rela.hdr == NULL
3483 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3484 TRUE, delay_st_name_p))
3485 {
3486 arg->failed = TRUE;
3487 return;
3488 }
3489 }
3490 else if (!_bfd_elf_init_reloc_shdr (abfd,
3491 (asect->use_rela_p
3492 ? &esd->rela : &esd->rel),
3493 name,
3494 asect->use_rela_p,
3495 delay_st_name_p))
3496 {
3497 arg->failed = TRUE;
3498 return;
3499 }
3500 }
3501
3502 /* Check for processor-specific section types. */
3503 sh_type = this_hdr->sh_type;
3504 if (bed->elf_backend_fake_sections
3505 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3506 {
3507 arg->failed = TRUE;
3508 return;
3509 }
3510
3511 if (sh_type == SHT_NOBITS && asect->size != 0)
3512 {
3513 /* Don't change the header type from NOBITS if we are being
3514 called for objcopy --only-keep-debug. */
3515 this_hdr->sh_type = sh_type;
3516 }
3517 }
3518
3519 /* Fill in the contents of a SHT_GROUP section. Called from
3520 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3521 when ELF targets use the generic linker, ld. Called for ld -r
3522 from bfd_elf_final_link. */
3523
3524 void
3525 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3526 {
3527 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3528 asection *elt, *first;
3529 unsigned char *loc;
3530 bfd_boolean gas;
3531
3532 /* Ignore linker created group section. See elfNN_ia64_object_p in
3533 elfxx-ia64.c. */
3534 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3535 || sec->size == 0
3536 || *failedptr)
3537 return;
3538
3539 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3540 {
3541 unsigned long symindx = 0;
3542
3543 /* elf_group_id will have been set up by objcopy and the
3544 generic linker. */
3545 if (elf_group_id (sec) != NULL)
3546 symindx = elf_group_id (sec)->udata.i;
3547
3548 if (symindx == 0)
3549 {
3550 /* If called from the assembler, swap_out_syms will have set up
3551 elf_section_syms. */
3552 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3553 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3554 }
3555 elf_section_data (sec)->this_hdr.sh_info = symindx;
3556 }
3557 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3558 {
3559 /* The ELF backend linker sets sh_info to -2 when the group
3560 signature symbol is global, and thus the index can't be
3561 set until all local symbols are output. */
3562 asection *igroup;
3563 struct bfd_elf_section_data *sec_data;
3564 unsigned long symndx;
3565 unsigned long extsymoff;
3566 struct elf_link_hash_entry *h;
3567
3568 /* The point of this little dance to the first SHF_GROUP section
3569 then back to the SHT_GROUP section is that this gets us to
3570 the SHT_GROUP in the input object. */
3571 igroup = elf_sec_group (elf_next_in_group (sec));
3572 sec_data = elf_section_data (igroup);
3573 symndx = sec_data->this_hdr.sh_info;
3574 extsymoff = 0;
3575 if (!elf_bad_symtab (igroup->owner))
3576 {
3577 Elf_Internal_Shdr *symtab_hdr;
3578
3579 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3580 extsymoff = symtab_hdr->sh_info;
3581 }
3582 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3583 while (h->root.type == bfd_link_hash_indirect
3584 || h->root.type == bfd_link_hash_warning)
3585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3586
3587 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3588 }
3589
3590 /* The contents won't be allocated for "ld -r" or objcopy. */
3591 gas = TRUE;
3592 if (sec->contents == NULL)
3593 {
3594 gas = FALSE;
3595 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3596
3597 /* Arrange for the section to be written out. */
3598 elf_section_data (sec)->this_hdr.contents = sec->contents;
3599 if (sec->contents == NULL)
3600 {
3601 *failedptr = TRUE;
3602 return;
3603 }
3604 }
3605
3606 loc = sec->contents + sec->size;
3607
3608 /* Get the pointer to the first section in the group that gas
3609 squirreled away here. objcopy arranges for this to be set to the
3610 start of the input section group. */
3611 first = elt = elf_next_in_group (sec);
3612
3613 /* First element is a flag word. Rest of section is elf section
3614 indices for all the sections of the group. Write them backwards
3615 just to keep the group in the same order as given in .section
3616 directives, not that it matters. */
3617 while (elt != NULL)
3618 {
3619 asection *s;
3620
3621 s = elt;
3622 if (!gas)
3623 s = s->output_section;
3624 if (s != NULL
3625 && !bfd_is_abs_section (s))
3626 {
3627 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3628 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3629
3630 if (elf_sec->rel.hdr != NULL
3631 && (gas
3632 || (input_elf_sec->rel.hdr != NULL
3633 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3634 {
3635 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3636 loc -= 4;
3637 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3638 }
3639 if (elf_sec->rela.hdr != NULL
3640 && (gas
3641 || (input_elf_sec->rela.hdr != NULL
3642 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3643 {
3644 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3645 loc -= 4;
3646 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3647 }
3648 loc -= 4;
3649 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3650 }
3651 elt = elf_next_in_group (elt);
3652 if (elt == first)
3653 break;
3654 }
3655
3656 loc -= 4;
3657 BFD_ASSERT (loc == sec->contents);
3658
3659 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3660 }
3661
3662 /* Given NAME, the name of a relocation section stripped of its
3663 .rel/.rela prefix, return the section in ABFD to which the
3664 relocations apply. */
3665
3666 asection *
3667 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3668 {
3669 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3670 section likely apply to .got.plt or .got section. */
3671 if (get_elf_backend_data (abfd)->want_got_plt
3672 && strcmp (name, ".plt") == 0)
3673 {
3674 asection *sec;
3675
3676 name = ".got.plt";
3677 sec = bfd_get_section_by_name (abfd, name);
3678 if (sec != NULL)
3679 return sec;
3680 name = ".got";
3681 }
3682
3683 return bfd_get_section_by_name (abfd, name);
3684 }
3685
3686 /* Return the section to which RELOC_SEC applies. */
3687
3688 static asection *
3689 elf_get_reloc_section (asection *reloc_sec)
3690 {
3691 const char *name;
3692 unsigned int type;
3693 bfd *abfd;
3694 const struct elf_backend_data *bed;
3695
3696 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3697 if (type != SHT_REL && type != SHT_RELA)
3698 return NULL;
3699
3700 /* We look up the section the relocs apply to by name. */
3701 name = reloc_sec->name;
3702 if (strncmp (name, ".rel", 4) != 0)
3703 return NULL;
3704 name += 4;
3705 if (type == SHT_RELA && *name++ != 'a')
3706 return NULL;
3707
3708 abfd = reloc_sec->owner;
3709 bed = get_elf_backend_data (abfd);
3710 return bed->get_reloc_section (abfd, name);
3711 }
3712
3713 /* Assign all ELF section numbers. The dummy first section is handled here
3714 too. The link/info pointers for the standard section types are filled
3715 in here too, while we're at it. */
3716
3717 static bfd_boolean
3718 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3719 {
3720 struct elf_obj_tdata *t = elf_tdata (abfd);
3721 asection *sec;
3722 unsigned int section_number;
3723 Elf_Internal_Shdr **i_shdrp;
3724 struct bfd_elf_section_data *d;
3725 bfd_boolean need_symtab;
3726 size_t amt;
3727
3728 section_number = 1;
3729
3730 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3731
3732 /* SHT_GROUP sections are in relocatable files only. */
3733 if (link_info == NULL || !link_info->resolve_section_groups)
3734 {
3735 size_t reloc_count = 0;
3736
3737 /* Put SHT_GROUP sections first. */
3738 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3739 {
3740 d = elf_section_data (sec);
3741
3742 if (d->this_hdr.sh_type == SHT_GROUP)
3743 {
3744 if (sec->flags & SEC_LINKER_CREATED)
3745 {
3746 /* Remove the linker created SHT_GROUP sections. */
3747 bfd_section_list_remove (abfd, sec);
3748 abfd->section_count--;
3749 }
3750 else
3751 d->this_idx = section_number++;
3752 }
3753
3754 /* Count relocations. */
3755 reloc_count += sec->reloc_count;
3756 }
3757
3758 /* Clear HAS_RELOC if there are no relocations. */
3759 if (reloc_count == 0)
3760 abfd->flags &= ~HAS_RELOC;
3761 }
3762
3763 for (sec = abfd->sections; sec; sec = sec->next)
3764 {
3765 d = elf_section_data (sec);
3766
3767 if (d->this_hdr.sh_type != SHT_GROUP)
3768 d->this_idx = section_number++;
3769 if (d->this_hdr.sh_name != (unsigned int) -1)
3770 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3771 if (d->rel.hdr)
3772 {
3773 d->rel.idx = section_number++;
3774 if (d->rel.hdr->sh_name != (unsigned int) -1)
3775 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3776 }
3777 else
3778 d->rel.idx = 0;
3779
3780 if (d->rela.hdr)
3781 {
3782 d->rela.idx = section_number++;
3783 if (d->rela.hdr->sh_name != (unsigned int) -1)
3784 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3785 }
3786 else
3787 d->rela.idx = 0;
3788 }
3789
3790 need_symtab = (bfd_get_symcount (abfd) > 0
3791 || (link_info == NULL
3792 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3793 == HAS_RELOC)));
3794 if (need_symtab)
3795 {
3796 elf_onesymtab (abfd) = section_number++;
3797 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3798 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3799 {
3800 elf_section_list *entry;
3801
3802 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3803
3804 entry = bfd_zalloc (abfd, sizeof (*entry));
3805 entry->ndx = section_number++;
3806 elf_symtab_shndx_list (abfd) = entry;
3807 entry->hdr.sh_name
3808 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3809 ".symtab_shndx", FALSE);
3810 if (entry->hdr.sh_name == (unsigned int) -1)
3811 return FALSE;
3812 }
3813 elf_strtab_sec (abfd) = section_number++;
3814 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3815 }
3816
3817 elf_shstrtab_sec (abfd) = section_number++;
3818 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3819 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3820
3821 if (section_number >= SHN_LORESERVE)
3822 {
3823 /* xgettext:c-format */
3824 _bfd_error_handler (_("%pB: too many sections: %u"),
3825 abfd, section_number);
3826 return FALSE;
3827 }
3828
3829 elf_numsections (abfd) = section_number;
3830 elf_elfheader (abfd)->e_shnum = section_number;
3831
3832 /* Set up the list of section header pointers, in agreement with the
3833 indices. */
3834 amt = section_number * sizeof (Elf_Internal_Shdr *);
3835 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3836 if (i_shdrp == NULL)
3837 return FALSE;
3838
3839 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3840 sizeof (Elf_Internal_Shdr));
3841 if (i_shdrp[0] == NULL)
3842 {
3843 bfd_release (abfd, i_shdrp);
3844 return FALSE;
3845 }
3846
3847 elf_elfsections (abfd) = i_shdrp;
3848
3849 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3850 if (need_symtab)
3851 {
3852 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3853 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3854 {
3855 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3856 BFD_ASSERT (entry != NULL);
3857 i_shdrp[entry->ndx] = & entry->hdr;
3858 entry->hdr.sh_link = elf_onesymtab (abfd);
3859 }
3860 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3861 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3862 }
3863
3864 for (sec = abfd->sections; sec; sec = sec->next)
3865 {
3866 asection *s;
3867
3868 d = elf_section_data (sec);
3869
3870 i_shdrp[d->this_idx] = &d->this_hdr;
3871 if (d->rel.idx != 0)
3872 i_shdrp[d->rel.idx] = d->rel.hdr;
3873 if (d->rela.idx != 0)
3874 i_shdrp[d->rela.idx] = d->rela.hdr;
3875
3876 /* Fill in the sh_link and sh_info fields while we're at it. */
3877
3878 /* sh_link of a reloc section is the section index of the symbol
3879 table. sh_info is the section index of the section to which
3880 the relocation entries apply. */
3881 if (d->rel.idx != 0)
3882 {
3883 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3884 d->rel.hdr->sh_info = d->this_idx;
3885 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3886 }
3887 if (d->rela.idx != 0)
3888 {
3889 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3890 d->rela.hdr->sh_info = d->this_idx;
3891 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3892 }
3893
3894 /* We need to set up sh_link for SHF_LINK_ORDER. */
3895 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3896 {
3897 s = elf_linked_to_section (sec);
3898 if (s)
3899 {
3900 /* elf_linked_to_section points to the input section. */
3901 if (link_info != NULL)
3902 {
3903 /* Check discarded linkonce section. */
3904 if (discarded_section (s))
3905 {
3906 asection *kept;
3907 _bfd_error_handler
3908 /* xgettext:c-format */
3909 (_("%pB: sh_link of section `%pA' points to"
3910 " discarded section `%pA' of `%pB'"),
3911 abfd, d->this_hdr.bfd_section,
3912 s, s->owner);
3913 /* Point to the kept section if it has the same
3914 size as the discarded one. */
3915 kept = _bfd_elf_check_kept_section (s, link_info);
3916 if (kept == NULL)
3917 {
3918 bfd_set_error (bfd_error_bad_value);
3919 return FALSE;
3920 }
3921 s = kept;
3922 }
3923
3924 s = s->output_section;
3925 BFD_ASSERT (s != NULL);
3926 }
3927 else
3928 {
3929 /* Handle objcopy. */
3930 if (s->output_section == NULL)
3931 {
3932 _bfd_error_handler
3933 /* xgettext:c-format */
3934 (_("%pB: sh_link of section `%pA' points to"
3935 " removed section `%pA' of `%pB'"),
3936 abfd, d->this_hdr.bfd_section, s, s->owner);
3937 bfd_set_error (bfd_error_bad_value);
3938 return FALSE;
3939 }
3940 s = s->output_section;
3941 }
3942 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3943 }
3944 else
3945 {
3946 /* PR 290:
3947 The Intel C compiler generates SHT_IA_64_UNWIND with
3948 SHF_LINK_ORDER. But it doesn't set the sh_link or
3949 sh_info fields. Hence we could get the situation
3950 where s is NULL. */
3951 const struct elf_backend_data *bed
3952 = get_elf_backend_data (abfd);
3953 if (bed->link_order_error_handler)
3954 bed->link_order_error_handler
3955 /* xgettext:c-format */
3956 (_("%pB: warning: sh_link not set for section `%pA'"),
3957 abfd, sec);
3958 }
3959 }
3960
3961 switch (d->this_hdr.sh_type)
3962 {
3963 case SHT_REL:
3964 case SHT_RELA:
3965 /* A reloc section which we are treating as a normal BFD
3966 section. sh_link is the section index of the symbol
3967 table. sh_info is the section index of the section to
3968 which the relocation entries apply. We assume that an
3969 allocated reloc section uses the dynamic symbol table.
3970 FIXME: How can we be sure? */
3971 s = bfd_get_section_by_name (abfd, ".dynsym");
3972 if (s != NULL)
3973 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3974
3975 s = elf_get_reloc_section (sec);
3976 if (s != NULL)
3977 {
3978 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3979 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3980 }
3981 break;
3982
3983 case SHT_STRTAB:
3984 /* We assume that a section named .stab*str is a stabs
3985 string section. We look for a section with the same name
3986 but without the trailing ``str'', and set its sh_link
3987 field to point to this section. */
3988 if (CONST_STRNEQ (sec->name, ".stab")
3989 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3990 {
3991 size_t len;
3992 char *alc;
3993
3994 len = strlen (sec->name);
3995 alc = (char *) bfd_malloc (len - 2);
3996 if (alc == NULL)
3997 return FALSE;
3998 memcpy (alc, sec->name, len - 3);
3999 alc[len - 3] = '\0';
4000 s = bfd_get_section_by_name (abfd, alc);
4001 free (alc);
4002 if (s != NULL)
4003 {
4004 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4005
4006 /* This is a .stab section. */
4007 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4008 elf_section_data (s)->this_hdr.sh_entsize
4009 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4010 }
4011 }
4012 break;
4013
4014 case SHT_DYNAMIC:
4015 case SHT_DYNSYM:
4016 case SHT_GNU_verneed:
4017 case SHT_GNU_verdef:
4018 /* sh_link is the section header index of the string table
4019 used for the dynamic entries, or the symbol table, or the
4020 version strings. */
4021 s = bfd_get_section_by_name (abfd, ".dynstr");
4022 if (s != NULL)
4023 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4024 break;
4025
4026 case SHT_GNU_LIBLIST:
4027 /* sh_link is the section header index of the prelink library
4028 list used for the dynamic entries, or the symbol table, or
4029 the version strings. */
4030 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4031 ? ".dynstr" : ".gnu.libstr");
4032 if (s != NULL)
4033 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4034 break;
4035
4036 case SHT_HASH:
4037 case SHT_GNU_HASH:
4038 case SHT_GNU_versym:
4039 /* sh_link is the section header index of the symbol table
4040 this hash table or version table is for. */
4041 s = bfd_get_section_by_name (abfd, ".dynsym");
4042 if (s != NULL)
4043 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4044 break;
4045
4046 case SHT_GROUP:
4047 d->this_hdr.sh_link = elf_onesymtab (abfd);
4048 }
4049 }
4050
4051 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4052 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4053 debug section name from .debug_* to .zdebug_* if needed. */
4054
4055 return TRUE;
4056 }
4057
4058 static bfd_boolean
4059 sym_is_global (bfd *abfd, asymbol *sym)
4060 {
4061 /* If the backend has a special mapping, use it. */
4062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4063 if (bed->elf_backend_sym_is_global)
4064 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4065
4066 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4067 || bfd_is_und_section (bfd_asymbol_section (sym))
4068 || bfd_is_com_section (bfd_asymbol_section (sym)));
4069 }
4070
4071 /* Filter global symbols of ABFD to include in the import library. All
4072 SYMCOUNT symbols of ABFD can be examined from their pointers in
4073 SYMS. Pointers of symbols to keep should be stored contiguously at
4074 the beginning of that array.
4075
4076 Returns the number of symbols to keep. */
4077
4078 unsigned int
4079 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4080 asymbol **syms, long symcount)
4081 {
4082 long src_count, dst_count = 0;
4083
4084 for (src_count = 0; src_count < symcount; src_count++)
4085 {
4086 asymbol *sym = syms[src_count];
4087 char *name = (char *) bfd_asymbol_name (sym);
4088 struct bfd_link_hash_entry *h;
4089
4090 if (!sym_is_global (abfd, sym))
4091 continue;
4092
4093 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4094 if (h == NULL)
4095 continue;
4096 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4097 continue;
4098 if (h->linker_def || h->ldscript_def)
4099 continue;
4100
4101 syms[dst_count++] = sym;
4102 }
4103
4104 syms[dst_count] = NULL;
4105
4106 return dst_count;
4107 }
4108
4109 /* Don't output section symbols for sections that are not going to be
4110 output, that are duplicates or there is no BFD section. */
4111
4112 static bfd_boolean
4113 ignore_section_sym (bfd *abfd, asymbol *sym)
4114 {
4115 elf_symbol_type *type_ptr;
4116
4117 if (sym == NULL)
4118 return FALSE;
4119
4120 if ((sym->flags & BSF_SECTION_SYM) == 0)
4121 return FALSE;
4122
4123 if (sym->section == NULL)
4124 return TRUE;
4125
4126 type_ptr = elf_symbol_from (abfd, sym);
4127 return ((type_ptr != NULL
4128 && type_ptr->internal_elf_sym.st_shndx != 0
4129 && bfd_is_abs_section (sym->section))
4130 || !(sym->section->owner == abfd
4131 || (sym->section->output_section != NULL
4132 && sym->section->output_section->owner == abfd
4133 && sym->section->output_offset == 0)
4134 || bfd_is_abs_section (sym->section)));
4135 }
4136
4137 /* Map symbol from it's internal number to the external number, moving
4138 all local symbols to be at the head of the list. */
4139
4140 static bfd_boolean
4141 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4142 {
4143 unsigned int symcount = bfd_get_symcount (abfd);
4144 asymbol **syms = bfd_get_outsymbols (abfd);
4145 asymbol **sect_syms;
4146 unsigned int num_locals = 0;
4147 unsigned int num_globals = 0;
4148 unsigned int num_locals2 = 0;
4149 unsigned int num_globals2 = 0;
4150 unsigned int max_index = 0;
4151 unsigned int idx;
4152 asection *asect;
4153 asymbol **new_syms;
4154 size_t amt;
4155
4156 #ifdef DEBUG
4157 fprintf (stderr, "elf_map_symbols\n");
4158 fflush (stderr);
4159 #endif
4160
4161 for (asect = abfd->sections; asect; asect = asect->next)
4162 {
4163 if (max_index < asect->index)
4164 max_index = asect->index;
4165 }
4166
4167 max_index++;
4168 amt = max_index * sizeof (asymbol *);
4169 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4170 if (sect_syms == NULL)
4171 return FALSE;
4172 elf_section_syms (abfd) = sect_syms;
4173 elf_num_section_syms (abfd) = max_index;
4174
4175 /* Init sect_syms entries for any section symbols we have already
4176 decided to output. */
4177 for (idx = 0; idx < symcount; idx++)
4178 {
4179 asymbol *sym = syms[idx];
4180
4181 if ((sym->flags & BSF_SECTION_SYM) != 0
4182 && sym->value == 0
4183 && !ignore_section_sym (abfd, sym)
4184 && !bfd_is_abs_section (sym->section))
4185 {
4186 asection *sec = sym->section;
4187
4188 if (sec->owner != abfd)
4189 sec = sec->output_section;
4190
4191 sect_syms[sec->index] = syms[idx];
4192 }
4193 }
4194
4195 /* Classify all of the symbols. */
4196 for (idx = 0; idx < symcount; idx++)
4197 {
4198 if (sym_is_global (abfd, syms[idx]))
4199 num_globals++;
4200 else if (!ignore_section_sym (abfd, syms[idx]))
4201 num_locals++;
4202 }
4203
4204 /* We will be adding a section symbol for each normal BFD section. Most
4205 sections will already have a section symbol in outsymbols, but
4206 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4207 at least in that case. */
4208 for (asect = abfd->sections; asect; asect = asect->next)
4209 {
4210 if (sect_syms[asect->index] == NULL)
4211 {
4212 if (!sym_is_global (abfd, asect->symbol))
4213 num_locals++;
4214 else
4215 num_globals++;
4216 }
4217 }
4218
4219 /* Now sort the symbols so the local symbols are first. */
4220 amt = (num_locals + num_globals) * sizeof (asymbol *);
4221 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4222 if (new_syms == NULL)
4223 return FALSE;
4224
4225 for (idx = 0; idx < symcount; idx++)
4226 {
4227 asymbol *sym = syms[idx];
4228 unsigned int i;
4229
4230 if (sym_is_global (abfd, sym))
4231 i = num_locals + num_globals2++;
4232 else if (!ignore_section_sym (abfd, sym))
4233 i = num_locals2++;
4234 else
4235 continue;
4236 new_syms[i] = sym;
4237 sym->udata.i = i + 1;
4238 }
4239 for (asect = abfd->sections; asect; asect = asect->next)
4240 {
4241 if (sect_syms[asect->index] == NULL)
4242 {
4243 asymbol *sym = asect->symbol;
4244 unsigned int i;
4245
4246 sect_syms[asect->index] = sym;
4247 if (!sym_is_global (abfd, sym))
4248 i = num_locals2++;
4249 else
4250 i = num_locals + num_globals2++;
4251 new_syms[i] = sym;
4252 sym->udata.i = i + 1;
4253 }
4254 }
4255
4256 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4257
4258 *pnum_locals = num_locals;
4259 return TRUE;
4260 }
4261
4262 /* Align to the maximum file alignment that could be required for any
4263 ELF data structure. */
4264
4265 static inline file_ptr
4266 align_file_position (file_ptr off, int align)
4267 {
4268 return (off + align - 1) & ~(align - 1);
4269 }
4270
4271 /* Assign a file position to a section, optionally aligning to the
4272 required section alignment. */
4273
4274 file_ptr
4275 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4276 file_ptr offset,
4277 bfd_boolean align)
4278 {
4279 if (align && i_shdrp->sh_addralign > 1)
4280 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4281 i_shdrp->sh_offset = offset;
4282 if (i_shdrp->bfd_section != NULL)
4283 i_shdrp->bfd_section->filepos = offset;
4284 if (i_shdrp->sh_type != SHT_NOBITS)
4285 offset += i_shdrp->sh_size;
4286 return offset;
4287 }
4288
4289 /* Compute the file positions we are going to put the sections at, and
4290 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4291 is not NULL, this is being called by the ELF backend linker. */
4292
4293 bfd_boolean
4294 _bfd_elf_compute_section_file_positions (bfd *abfd,
4295 struct bfd_link_info *link_info)
4296 {
4297 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4298 struct fake_section_arg fsargs;
4299 bfd_boolean failed;
4300 struct elf_strtab_hash *strtab = NULL;
4301 Elf_Internal_Shdr *shstrtab_hdr;
4302 bfd_boolean need_symtab;
4303
4304 if (abfd->output_has_begun)
4305 return TRUE;
4306
4307 /* Do any elf backend specific processing first. */
4308 if (bed->elf_backend_begin_write_processing)
4309 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4310
4311 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4312 return FALSE;
4313
4314 fsargs.failed = FALSE;
4315 fsargs.link_info = link_info;
4316 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4317 if (fsargs.failed)
4318 return FALSE;
4319
4320 if (!assign_section_numbers (abfd, link_info))
4321 return FALSE;
4322
4323 /* The backend linker builds symbol table information itself. */
4324 need_symtab = (link_info == NULL
4325 && (bfd_get_symcount (abfd) > 0
4326 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4327 == HAS_RELOC)));
4328 if (need_symtab)
4329 {
4330 /* Non-zero if doing a relocatable link. */
4331 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4332
4333 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4334 return FALSE;
4335 }
4336
4337 failed = FALSE;
4338 if (link_info == NULL)
4339 {
4340 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4341 if (failed)
4342 return FALSE;
4343 }
4344
4345 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4346 /* sh_name was set in init_file_header. */
4347 shstrtab_hdr->sh_type = SHT_STRTAB;
4348 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4349 shstrtab_hdr->sh_addr = 0;
4350 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4351 shstrtab_hdr->sh_entsize = 0;
4352 shstrtab_hdr->sh_link = 0;
4353 shstrtab_hdr->sh_info = 0;
4354 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4355 shstrtab_hdr->sh_addralign = 1;
4356
4357 if (!assign_file_positions_except_relocs (abfd, link_info))
4358 return FALSE;
4359
4360 if (need_symtab)
4361 {
4362 file_ptr off;
4363 Elf_Internal_Shdr *hdr;
4364
4365 off = elf_next_file_pos (abfd);
4366
4367 hdr = & elf_symtab_hdr (abfd);
4368 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4369
4370 if (elf_symtab_shndx_list (abfd) != NULL)
4371 {
4372 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4373 if (hdr->sh_size != 0)
4374 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4375 /* FIXME: What about other symtab_shndx sections in the list ? */
4376 }
4377
4378 hdr = &elf_tdata (abfd)->strtab_hdr;
4379 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4380
4381 elf_next_file_pos (abfd) = off;
4382
4383 /* Now that we know where the .strtab section goes, write it
4384 out. */
4385 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4386 || ! _bfd_elf_strtab_emit (abfd, strtab))
4387 return FALSE;
4388 _bfd_elf_strtab_free (strtab);
4389 }
4390
4391 abfd->output_has_begun = TRUE;
4392
4393 return TRUE;
4394 }
4395
4396 /* Make an initial estimate of the size of the program header. If we
4397 get the number wrong here, we'll redo section placement. */
4398
4399 static bfd_size_type
4400 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4401 {
4402 size_t segs;
4403 asection *s;
4404 const struct elf_backend_data *bed;
4405
4406 /* Assume we will need exactly two PT_LOAD segments: one for text
4407 and one for data. */
4408 segs = 2;
4409
4410 s = bfd_get_section_by_name (abfd, ".interp");
4411 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4412 {
4413 /* If we have a loadable interpreter section, we need a
4414 PT_INTERP segment. In this case, assume we also need a
4415 PT_PHDR segment, although that may not be true for all
4416 targets. */
4417 segs += 2;
4418 }
4419
4420 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4421 {
4422 /* We need a PT_DYNAMIC segment. */
4423 ++segs;
4424 }
4425
4426 if (info != NULL && info->relro)
4427 {
4428 /* We need a PT_GNU_RELRO segment. */
4429 ++segs;
4430 }
4431
4432 if (elf_eh_frame_hdr (abfd))
4433 {
4434 /* We need a PT_GNU_EH_FRAME segment. */
4435 ++segs;
4436 }
4437
4438 if (elf_stack_flags (abfd))
4439 {
4440 /* We need a PT_GNU_STACK segment. */
4441 ++segs;
4442 }
4443
4444 s = bfd_get_section_by_name (abfd,
4445 NOTE_GNU_PROPERTY_SECTION_NAME);
4446 if (s != NULL && s->size != 0)
4447 {
4448 /* We need a PT_GNU_PROPERTY segment. */
4449 ++segs;
4450 }
4451
4452 for (s = abfd->sections; s != NULL; s = s->next)
4453 {
4454 if ((s->flags & SEC_LOAD) != 0
4455 && elf_section_type (s) == SHT_NOTE)
4456 {
4457 unsigned int alignment_power;
4458 /* We need a PT_NOTE segment. */
4459 ++segs;
4460 /* Try to create just one PT_NOTE segment for all adjacent
4461 loadable SHT_NOTE sections. gABI requires that within a
4462 PT_NOTE segment (and also inside of each SHT_NOTE section)
4463 each note should have the same alignment. So we check
4464 whether the sections are correctly aligned. */
4465 alignment_power = s->alignment_power;
4466 while (s->next != NULL
4467 && s->next->alignment_power == alignment_power
4468 && (s->next->flags & SEC_LOAD) != 0
4469 && elf_section_type (s->next) == SHT_NOTE)
4470 s = s->next;
4471 }
4472 }
4473
4474 for (s = abfd->sections; s != NULL; s = s->next)
4475 {
4476 if (s->flags & SEC_THREAD_LOCAL)
4477 {
4478 /* We need a PT_TLS segment. */
4479 ++segs;
4480 break;
4481 }
4482 }
4483
4484 bed = get_elf_backend_data (abfd);
4485
4486 if ((abfd->flags & D_PAGED) != 0
4487 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4488 {
4489 /* Add a PT_GNU_MBIND segment for each mbind section. */
4490 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4491 for (s = abfd->sections; s != NULL; s = s->next)
4492 if (elf_section_flags (s) & SHF_GNU_MBIND)
4493 {
4494 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4495 {
4496 _bfd_error_handler
4497 /* xgettext:c-format */
4498 (_("%pB: GNU_MBIND section `%pA' has invalid "
4499 "sh_info field: %d"),
4500 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4501 continue;
4502 }
4503 /* Align mbind section to page size. */
4504 if (s->alignment_power < page_align_power)
4505 s->alignment_power = page_align_power;
4506 segs ++;
4507 }
4508 }
4509
4510 /* Let the backend count up any program headers it might need. */
4511 if (bed->elf_backend_additional_program_headers)
4512 {
4513 int a;
4514
4515 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4516 if (a == -1)
4517 abort ();
4518 segs += a;
4519 }
4520
4521 return segs * bed->s->sizeof_phdr;
4522 }
4523
4524 /* Find the segment that contains the output_section of section. */
4525
4526 Elf_Internal_Phdr *
4527 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4528 {
4529 struct elf_segment_map *m;
4530 Elf_Internal_Phdr *p;
4531
4532 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4533 m != NULL;
4534 m = m->next, p++)
4535 {
4536 int i;
4537
4538 for (i = m->count - 1; i >= 0; i--)
4539 if (m->sections[i] == section)
4540 return p;
4541 }
4542
4543 return NULL;
4544 }
4545
4546 /* Create a mapping from a set of sections to a program segment. */
4547
4548 static struct elf_segment_map *
4549 make_mapping (bfd *abfd,
4550 asection **sections,
4551 unsigned int from,
4552 unsigned int to,
4553 bfd_boolean phdr)
4554 {
4555 struct elf_segment_map *m;
4556 unsigned int i;
4557 asection **hdrpp;
4558 size_t amt;
4559
4560 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4561 amt += (to - from) * sizeof (asection *);
4562 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4563 if (m == NULL)
4564 return NULL;
4565 m->next = NULL;
4566 m->p_type = PT_LOAD;
4567 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4568 m->sections[i - from] = *hdrpp;
4569 m->count = to - from;
4570
4571 if (from == 0 && phdr)
4572 {
4573 /* Include the headers in the first PT_LOAD segment. */
4574 m->includes_filehdr = 1;
4575 m->includes_phdrs = 1;
4576 }
4577
4578 return m;
4579 }
4580
4581 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4582 on failure. */
4583
4584 struct elf_segment_map *
4585 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4586 {
4587 struct elf_segment_map *m;
4588
4589 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4590 sizeof (struct elf_segment_map));
4591 if (m == NULL)
4592 return NULL;
4593 m->next = NULL;
4594 m->p_type = PT_DYNAMIC;
4595 m->count = 1;
4596 m->sections[0] = dynsec;
4597
4598 return m;
4599 }
4600
4601 /* Possibly add or remove segments from the segment map. */
4602
4603 static bfd_boolean
4604 elf_modify_segment_map (bfd *abfd,
4605 struct bfd_link_info *info,
4606 bfd_boolean remove_empty_load)
4607 {
4608 struct elf_segment_map **m;
4609 const struct elf_backend_data *bed;
4610
4611 /* The placement algorithm assumes that non allocated sections are
4612 not in PT_LOAD segments. We ensure this here by removing such
4613 sections from the segment map. We also remove excluded
4614 sections. Finally, any PT_LOAD segment without sections is
4615 removed. */
4616 m = &elf_seg_map (abfd);
4617 while (*m)
4618 {
4619 unsigned int i, new_count;
4620
4621 for (new_count = 0, i = 0; i < (*m)->count; i++)
4622 {
4623 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4624 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4625 || (*m)->p_type != PT_LOAD))
4626 {
4627 (*m)->sections[new_count] = (*m)->sections[i];
4628 new_count++;
4629 }
4630 }
4631 (*m)->count = new_count;
4632
4633 if (remove_empty_load
4634 && (*m)->p_type == PT_LOAD
4635 && (*m)->count == 0
4636 && !(*m)->includes_phdrs)
4637 *m = (*m)->next;
4638 else
4639 m = &(*m)->next;
4640 }
4641
4642 bed = get_elf_backend_data (abfd);
4643 if (bed->elf_backend_modify_segment_map != NULL)
4644 {
4645 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4646 return FALSE;
4647 }
4648
4649 return TRUE;
4650 }
4651
4652 #define IS_TBSS(s) \
4653 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4654
4655 /* Set up a mapping from BFD sections to program segments. */
4656
4657 bfd_boolean
4658 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4659 {
4660 unsigned int count;
4661 struct elf_segment_map *m;
4662 asection **sections = NULL;
4663 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4664 bfd_boolean no_user_phdrs;
4665
4666 no_user_phdrs = elf_seg_map (abfd) == NULL;
4667
4668 if (info != NULL)
4669 info->user_phdrs = !no_user_phdrs;
4670
4671 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4672 {
4673 asection *s;
4674 unsigned int i;
4675 struct elf_segment_map *mfirst;
4676 struct elf_segment_map **pm;
4677 asection *last_hdr;
4678 bfd_vma last_size;
4679 unsigned int hdr_index;
4680 bfd_vma maxpagesize;
4681 asection **hdrpp;
4682 bfd_boolean phdr_in_segment;
4683 bfd_boolean writable;
4684 bfd_boolean executable;
4685 unsigned int tls_count = 0;
4686 asection *first_tls = NULL;
4687 asection *first_mbind = NULL;
4688 asection *dynsec, *eh_frame_hdr;
4689 size_t amt;
4690 bfd_vma addr_mask, wrap_to = 0;
4691 bfd_size_type phdr_size;
4692
4693 /* Select the allocated sections, and sort them. */
4694
4695 amt = bfd_count_sections (abfd) * sizeof (asection *);
4696 sections = (asection **) bfd_malloc (amt);
4697 if (sections == NULL)
4698 goto error_return;
4699
4700 /* Calculate top address, avoiding undefined behaviour of shift
4701 left operator when shift count is equal to size of type
4702 being shifted. */
4703 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4704 addr_mask = (addr_mask << 1) + 1;
4705
4706 i = 0;
4707 for (s = abfd->sections; s != NULL; s = s->next)
4708 {
4709 if ((s->flags & SEC_ALLOC) != 0)
4710 {
4711 /* target_index is unused until bfd_elf_final_link
4712 starts output of section symbols. Use it to make
4713 qsort stable. */
4714 s->target_index = i;
4715 sections[i] = s;
4716 ++i;
4717 /* A wrapping section potentially clashes with header. */
4718 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4719 wrap_to = (s->lma + s->size) & addr_mask;
4720 }
4721 }
4722 BFD_ASSERT (i <= bfd_count_sections (abfd));
4723 count = i;
4724
4725 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4726
4727 phdr_size = elf_program_header_size (abfd);
4728 if (phdr_size == (bfd_size_type) -1)
4729 phdr_size = get_program_header_size (abfd, info);
4730 phdr_size += bed->s->sizeof_ehdr;
4731 maxpagesize = bed->maxpagesize;
4732 if (maxpagesize == 0)
4733 maxpagesize = 1;
4734 phdr_in_segment = info != NULL && info->load_phdrs;
4735 if (count != 0
4736 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4737 >= (phdr_size & (maxpagesize - 1))))
4738 /* For compatibility with old scripts that may not be using
4739 SIZEOF_HEADERS, add headers when it looks like space has
4740 been left for them. */
4741 phdr_in_segment = TRUE;
4742
4743 /* Build the mapping. */
4744 mfirst = NULL;
4745 pm = &mfirst;
4746
4747 /* If we have a .interp section, then create a PT_PHDR segment for
4748 the program headers and a PT_INTERP segment for the .interp
4749 section. */
4750 s = bfd_get_section_by_name (abfd, ".interp");
4751 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4752 {
4753 amt = sizeof (struct elf_segment_map);
4754 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4755 if (m == NULL)
4756 goto error_return;
4757 m->next = NULL;
4758 m->p_type = PT_PHDR;
4759 m->p_flags = PF_R;
4760 m->p_flags_valid = 1;
4761 m->includes_phdrs = 1;
4762 phdr_in_segment = TRUE;
4763 *pm = m;
4764 pm = &m->next;
4765
4766 amt = sizeof (struct elf_segment_map);
4767 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4768 if (m == NULL)
4769 goto error_return;
4770 m->next = NULL;
4771 m->p_type = PT_INTERP;
4772 m->count = 1;
4773 m->sections[0] = s;
4774
4775 *pm = m;
4776 pm = &m->next;
4777 }
4778
4779 /* Look through the sections. We put sections in the same program
4780 segment when the start of the second section can be placed within
4781 a few bytes of the end of the first section. */
4782 last_hdr = NULL;
4783 last_size = 0;
4784 hdr_index = 0;
4785 writable = FALSE;
4786 executable = FALSE;
4787 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4788 if (dynsec != NULL
4789 && (dynsec->flags & SEC_LOAD) == 0)
4790 dynsec = NULL;
4791
4792 if ((abfd->flags & D_PAGED) == 0)
4793 phdr_in_segment = FALSE;
4794
4795 /* Deal with -Ttext or something similar such that the first section
4796 is not adjacent to the program headers. This is an
4797 approximation, since at this point we don't know exactly how many
4798 program headers we will need. */
4799 if (phdr_in_segment && count > 0)
4800 {
4801 bfd_vma phdr_lma;
4802 bfd_boolean separate_phdr = FALSE;
4803
4804 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4805 if (info != NULL
4806 && info->separate_code
4807 && (sections[0]->flags & SEC_CODE) != 0)
4808 {
4809 /* If data sections should be separate from code and
4810 thus not executable, and the first section is
4811 executable then put the file and program headers in
4812 their own PT_LOAD. */
4813 separate_phdr = TRUE;
4814 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4815 == (sections[0]->lma & addr_mask & -maxpagesize)))
4816 {
4817 /* The file and program headers are currently on the
4818 same page as the first section. Put them on the
4819 previous page if we can. */
4820 if (phdr_lma >= maxpagesize)
4821 phdr_lma -= maxpagesize;
4822 else
4823 separate_phdr = FALSE;
4824 }
4825 }
4826 if ((sections[0]->lma & addr_mask) < phdr_lma
4827 || (sections[0]->lma & addr_mask) < phdr_size)
4828 /* If file and program headers would be placed at the end
4829 of memory then it's probably better to omit them. */
4830 phdr_in_segment = FALSE;
4831 else if (phdr_lma < wrap_to)
4832 /* If a section wraps around to where we'll be placing
4833 file and program headers, then the headers will be
4834 overwritten. */
4835 phdr_in_segment = FALSE;
4836 else if (separate_phdr)
4837 {
4838 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4839 if (m == NULL)
4840 goto error_return;
4841 m->p_paddr = phdr_lma;
4842 m->p_vaddr_offset
4843 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4844 m->p_paddr_valid = 1;
4845 *pm = m;
4846 pm = &m->next;
4847 phdr_in_segment = FALSE;
4848 }
4849 }
4850
4851 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4852 {
4853 asection *hdr;
4854 bfd_boolean new_segment;
4855
4856 hdr = *hdrpp;
4857
4858 /* See if this section and the last one will fit in the same
4859 segment. */
4860
4861 if (last_hdr == NULL)
4862 {
4863 /* If we don't have a segment yet, then we don't need a new
4864 one (we build the last one after this loop). */
4865 new_segment = FALSE;
4866 }
4867 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4868 {
4869 /* If this section has a different relation between the
4870 virtual address and the load address, then we need a new
4871 segment. */
4872 new_segment = TRUE;
4873 }
4874 else if (hdr->lma < last_hdr->lma + last_size
4875 || last_hdr->lma + last_size < last_hdr->lma)
4876 {
4877 /* If this section has a load address that makes it overlap
4878 the previous section, then we need a new segment. */
4879 new_segment = TRUE;
4880 }
4881 else if ((abfd->flags & D_PAGED) != 0
4882 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4883 == (hdr->lma & -maxpagesize)))
4884 {
4885 /* If we are demand paged then we can't map two disk
4886 pages onto the same memory page. */
4887 new_segment = FALSE;
4888 }
4889 /* In the next test we have to be careful when last_hdr->lma is close
4890 to the end of the address space. If the aligned address wraps
4891 around to the start of the address space, then there are no more
4892 pages left in memory and it is OK to assume that the current
4893 section can be included in the current segment. */
4894 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4895 + maxpagesize > last_hdr->lma)
4896 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4897 + maxpagesize <= hdr->lma))
4898 {
4899 /* If putting this section in this segment would force us to
4900 skip a page in the segment, then we need a new segment. */
4901 new_segment = TRUE;
4902 }
4903 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4904 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4905 {
4906 /* We don't want to put a loaded section after a
4907 nonloaded (ie. bss style) section in the same segment
4908 as that will force the non-loaded section to be loaded.
4909 Consider .tbss sections as loaded for this purpose. */
4910 new_segment = TRUE;
4911 }
4912 else if ((abfd->flags & D_PAGED) == 0)
4913 {
4914 /* If the file is not demand paged, which means that we
4915 don't require the sections to be correctly aligned in the
4916 file, then there is no other reason for a new segment. */
4917 new_segment = FALSE;
4918 }
4919 else if (info != NULL
4920 && info->separate_code
4921 && executable != ((hdr->flags & SEC_CODE) != 0))
4922 {
4923 new_segment = TRUE;
4924 }
4925 else if (! writable
4926 && (hdr->flags & SEC_READONLY) == 0)
4927 {
4928 /* We don't want to put a writable section in a read only
4929 segment. */
4930 new_segment = TRUE;
4931 }
4932 else
4933 {
4934 /* Otherwise, we can use the same segment. */
4935 new_segment = FALSE;
4936 }
4937
4938 /* Allow interested parties a chance to override our decision. */
4939 if (last_hdr != NULL
4940 && info != NULL
4941 && info->callbacks->override_segment_assignment != NULL)
4942 new_segment
4943 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4944 last_hdr,
4945 new_segment);
4946
4947 if (! new_segment)
4948 {
4949 if ((hdr->flags & SEC_READONLY) == 0)
4950 writable = TRUE;
4951 if ((hdr->flags & SEC_CODE) != 0)
4952 executable = TRUE;
4953 last_hdr = hdr;
4954 /* .tbss sections effectively have zero size. */
4955 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4956 continue;
4957 }
4958
4959 /* We need a new program segment. We must create a new program
4960 header holding all the sections from hdr_index until hdr. */
4961
4962 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4963 if (m == NULL)
4964 goto error_return;
4965
4966 *pm = m;
4967 pm = &m->next;
4968
4969 if ((hdr->flags & SEC_READONLY) == 0)
4970 writable = TRUE;
4971 else
4972 writable = FALSE;
4973
4974 if ((hdr->flags & SEC_CODE) == 0)
4975 executable = FALSE;
4976 else
4977 executable = TRUE;
4978
4979 last_hdr = hdr;
4980 /* .tbss sections effectively have zero size. */
4981 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4982 hdr_index = i;
4983 phdr_in_segment = FALSE;
4984 }
4985
4986 /* Create a final PT_LOAD program segment, but not if it's just
4987 for .tbss. */
4988 if (last_hdr != NULL
4989 && (i - hdr_index != 1
4990 || !IS_TBSS (last_hdr)))
4991 {
4992 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4993 if (m == NULL)
4994 goto error_return;
4995
4996 *pm = m;
4997 pm = &m->next;
4998 }
4999
5000 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
5001 if (dynsec != NULL)
5002 {
5003 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5004 if (m == NULL)
5005 goto error_return;
5006 *pm = m;
5007 pm = &m->next;
5008 }
5009
5010 /* For each batch of consecutive loadable SHT_NOTE sections,
5011 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5012 because if we link together nonloadable .note sections and
5013 loadable .note sections, we will generate two .note sections
5014 in the output file. */
5015 for (s = abfd->sections; s != NULL; s = s->next)
5016 {
5017 if ((s->flags & SEC_LOAD) != 0
5018 && elf_section_type (s) == SHT_NOTE)
5019 {
5020 asection *s2;
5021 unsigned int alignment_power = s->alignment_power;
5022
5023 count = 1;
5024 for (s2 = s; s2->next != NULL; s2 = s2->next)
5025 {
5026 if (s2->next->alignment_power == alignment_power
5027 && (s2->next->flags & SEC_LOAD) != 0
5028 && elf_section_type (s2->next) == SHT_NOTE
5029 && align_power (s2->lma + s2->size,
5030 alignment_power)
5031 == s2->next->lma)
5032 count++;
5033 else
5034 break;
5035 }
5036 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5037 amt += count * sizeof (asection *);
5038 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5039 if (m == NULL)
5040 goto error_return;
5041 m->next = NULL;
5042 m->p_type = PT_NOTE;
5043 m->count = count;
5044 while (count > 1)
5045 {
5046 m->sections[m->count - count--] = s;
5047 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5048 s = s->next;
5049 }
5050 m->sections[m->count - 1] = s;
5051 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5052 *pm = m;
5053 pm = &m->next;
5054 }
5055 if (s->flags & SEC_THREAD_LOCAL)
5056 {
5057 if (! tls_count)
5058 first_tls = s;
5059 tls_count++;
5060 }
5061 if (first_mbind == NULL
5062 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5063 first_mbind = s;
5064 }
5065
5066 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5067 if (tls_count > 0)
5068 {
5069 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5070 amt += tls_count * sizeof (asection *);
5071 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5072 if (m == NULL)
5073 goto error_return;
5074 m->next = NULL;
5075 m->p_type = PT_TLS;
5076 m->count = tls_count;
5077 /* Mandated PF_R. */
5078 m->p_flags = PF_R;
5079 m->p_flags_valid = 1;
5080 s = first_tls;
5081 for (i = 0; i < tls_count; ++i)
5082 {
5083 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5084 {
5085 _bfd_error_handler
5086 (_("%pB: TLS sections are not adjacent:"), abfd);
5087 s = first_tls;
5088 i = 0;
5089 while (i < tls_count)
5090 {
5091 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5092 {
5093 _bfd_error_handler (_(" TLS: %pA"), s);
5094 i++;
5095 }
5096 else
5097 _bfd_error_handler (_(" non-TLS: %pA"), s);
5098 s = s->next;
5099 }
5100 bfd_set_error (bfd_error_bad_value);
5101 goto error_return;
5102 }
5103 m->sections[i] = s;
5104 s = s->next;
5105 }
5106
5107 *pm = m;
5108 pm = &m->next;
5109 }
5110
5111 if (first_mbind
5112 && (abfd->flags & D_PAGED) != 0
5113 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5114 for (s = first_mbind; s != NULL; s = s->next)
5115 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5116 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5117 {
5118 /* Mandated PF_R. */
5119 unsigned long p_flags = PF_R;
5120 if ((s->flags & SEC_READONLY) == 0)
5121 p_flags |= PF_W;
5122 if ((s->flags & SEC_CODE) != 0)
5123 p_flags |= PF_X;
5124
5125 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5126 m = bfd_zalloc (abfd, amt);
5127 if (m == NULL)
5128 goto error_return;
5129 m->next = NULL;
5130 m->p_type = (PT_GNU_MBIND_LO
5131 + elf_section_data (s)->this_hdr.sh_info);
5132 m->count = 1;
5133 m->p_flags_valid = 1;
5134 m->sections[0] = s;
5135 m->p_flags = p_flags;
5136
5137 *pm = m;
5138 pm = &m->next;
5139 }
5140
5141 s = bfd_get_section_by_name (abfd,
5142 NOTE_GNU_PROPERTY_SECTION_NAME);
5143 if (s != NULL && s->size != 0)
5144 {
5145 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5146 m = bfd_zalloc (abfd, amt);
5147 if (m == NULL)
5148 goto error_return;
5149 m->next = NULL;
5150 m->p_type = PT_GNU_PROPERTY;
5151 m->count = 1;
5152 m->p_flags_valid = 1;
5153 m->sections[0] = s;
5154 m->p_flags = PF_R;
5155 *pm = m;
5156 pm = &m->next;
5157 }
5158
5159 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5160 segment. */
5161 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5162 if (eh_frame_hdr != NULL
5163 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5164 {
5165 amt = sizeof (struct elf_segment_map);
5166 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5167 if (m == NULL)
5168 goto error_return;
5169 m->next = NULL;
5170 m->p_type = PT_GNU_EH_FRAME;
5171 m->count = 1;
5172 m->sections[0] = eh_frame_hdr->output_section;
5173
5174 *pm = m;
5175 pm = &m->next;
5176 }
5177
5178 if (elf_stack_flags (abfd))
5179 {
5180 amt = sizeof (struct elf_segment_map);
5181 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5182 if (m == NULL)
5183 goto error_return;
5184 m->next = NULL;
5185 m->p_type = PT_GNU_STACK;
5186 m->p_flags = elf_stack_flags (abfd);
5187 m->p_align = bed->stack_align;
5188 m->p_flags_valid = 1;
5189 m->p_align_valid = m->p_align != 0;
5190 if (info->stacksize > 0)
5191 {
5192 m->p_size = info->stacksize;
5193 m->p_size_valid = 1;
5194 }
5195
5196 *pm = m;
5197 pm = &m->next;
5198 }
5199
5200 if (info != NULL && info->relro)
5201 {
5202 for (m = mfirst; m != NULL; m = m->next)
5203 {
5204 if (m->p_type == PT_LOAD
5205 && m->count != 0
5206 && m->sections[0]->vma >= info->relro_start
5207 && m->sections[0]->vma < info->relro_end)
5208 {
5209 i = m->count;
5210 while (--i != (unsigned) -1)
5211 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5212 == (SEC_LOAD | SEC_HAS_CONTENTS))
5213 break;
5214
5215 if (i != (unsigned) -1)
5216 break;
5217 }
5218 }
5219
5220 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5221 if (m != NULL)
5222 {
5223 amt = sizeof (struct elf_segment_map);
5224 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5225 if (m == NULL)
5226 goto error_return;
5227 m->next = NULL;
5228 m->p_type = PT_GNU_RELRO;
5229 *pm = m;
5230 pm = &m->next;
5231 }
5232 }
5233
5234 free (sections);
5235 elf_seg_map (abfd) = mfirst;
5236 }
5237
5238 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5239 return FALSE;
5240
5241 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5242 ++count;
5243 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5244
5245 return TRUE;
5246
5247 error_return:
5248 if (sections != NULL)
5249 free (sections);
5250 return FALSE;
5251 }
5252
5253 /* Sort sections by address. */
5254
5255 static int
5256 elf_sort_sections (const void *arg1, const void *arg2)
5257 {
5258 const asection *sec1 = *(const asection **) arg1;
5259 const asection *sec2 = *(const asection **) arg2;
5260 bfd_size_type size1, size2;
5261
5262 /* Sort by LMA first, since this is the address used to
5263 place the section into a segment. */
5264 if (sec1->lma < sec2->lma)
5265 return -1;
5266 else if (sec1->lma > sec2->lma)
5267 return 1;
5268
5269 /* Then sort by VMA. Normally the LMA and the VMA will be
5270 the same, and this will do nothing. */
5271 if (sec1->vma < sec2->vma)
5272 return -1;
5273 else if (sec1->vma > sec2->vma)
5274 return 1;
5275
5276 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5277
5278 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5279
5280 if (TOEND (sec1))
5281 {
5282 if (!TOEND (sec2))
5283 return 1;
5284 }
5285 else if (TOEND (sec2))
5286 return -1;
5287
5288 #undef TOEND
5289
5290 /* Sort by size, to put zero sized sections
5291 before others at the same address. */
5292
5293 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5294 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5295
5296 if (size1 < size2)
5297 return -1;
5298 if (size1 > size2)
5299 return 1;
5300
5301 return sec1->target_index - sec2->target_index;
5302 }
5303
5304 /* This qsort comparison functions sorts PT_LOAD segments first and
5305 by p_paddr, for assign_file_positions_for_load_sections. */
5306
5307 static int
5308 elf_sort_segments (const void *arg1, const void *arg2)
5309 {
5310 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5311 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5312
5313 if (m1->p_type != m2->p_type)
5314 {
5315 if (m1->p_type == PT_NULL)
5316 return 1;
5317 if (m2->p_type == PT_NULL)
5318 return -1;
5319 return m1->p_type < m2->p_type ? -1 : 1;
5320 }
5321 if (m1->includes_filehdr != m2->includes_filehdr)
5322 return m1->includes_filehdr ? -1 : 1;
5323 if (m1->no_sort_lma != m2->no_sort_lma)
5324 return m1->no_sort_lma ? -1 : 1;
5325 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5326 {
5327 bfd_vma lma1, lma2;
5328 lma1 = 0;
5329 if (m1->p_paddr_valid)
5330 lma1 = m1->p_paddr;
5331 else if (m1->count != 0)
5332 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5333 lma2 = 0;
5334 if (m2->p_paddr_valid)
5335 lma2 = m2->p_paddr;
5336 else if (m2->count != 0)
5337 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5338 if (lma1 != lma2)
5339 return lma1 < lma2 ? -1 : 1;
5340 }
5341 if (m1->idx != m2->idx)
5342 return m1->idx < m2->idx ? -1 : 1;
5343 return 0;
5344 }
5345
5346 /* Ian Lance Taylor writes:
5347
5348 We shouldn't be using % with a negative signed number. That's just
5349 not good. We have to make sure either that the number is not
5350 negative, or that the number has an unsigned type. When the types
5351 are all the same size they wind up as unsigned. When file_ptr is a
5352 larger signed type, the arithmetic winds up as signed long long,
5353 which is wrong.
5354
5355 What we're trying to say here is something like ``increase OFF by
5356 the least amount that will cause it to be equal to the VMA modulo
5357 the page size.'' */
5358 /* In other words, something like:
5359
5360 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5361 off_offset = off % bed->maxpagesize;
5362 if (vma_offset < off_offset)
5363 adjustment = vma_offset + bed->maxpagesize - off_offset;
5364 else
5365 adjustment = vma_offset - off_offset;
5366
5367 which can be collapsed into the expression below. */
5368
5369 static file_ptr
5370 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5371 {
5372 /* PR binutils/16199: Handle an alignment of zero. */
5373 if (maxpagesize == 0)
5374 maxpagesize = 1;
5375 return ((vma - off) % maxpagesize);
5376 }
5377
5378 static void
5379 print_segment_map (const struct elf_segment_map *m)
5380 {
5381 unsigned int j;
5382 const char *pt = get_segment_type (m->p_type);
5383 char buf[32];
5384
5385 if (pt == NULL)
5386 {
5387 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5388 sprintf (buf, "LOPROC+%7.7x",
5389 (unsigned int) (m->p_type - PT_LOPROC));
5390 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5391 sprintf (buf, "LOOS+%7.7x",
5392 (unsigned int) (m->p_type - PT_LOOS));
5393 else
5394 snprintf (buf, sizeof (buf), "%8.8x",
5395 (unsigned int) m->p_type);
5396 pt = buf;
5397 }
5398 fflush (stdout);
5399 fprintf (stderr, "%s:", pt);
5400 for (j = 0; j < m->count; j++)
5401 fprintf (stderr, " %s", m->sections [j]->name);
5402 putc ('\n',stderr);
5403 fflush (stderr);
5404 }
5405
5406 static bfd_boolean
5407 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5408 {
5409 void *buf;
5410 bfd_boolean ret;
5411
5412 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5413 return FALSE;
5414 buf = bfd_zmalloc (len);
5415 if (buf == NULL)
5416 return FALSE;
5417 ret = bfd_bwrite (buf, len, abfd) == len;
5418 free (buf);
5419 return ret;
5420 }
5421
5422 /* Assign file positions to the sections based on the mapping from
5423 sections to segments. This function also sets up some fields in
5424 the file header. */
5425
5426 static bfd_boolean
5427 assign_file_positions_for_load_sections (bfd *abfd,
5428 struct bfd_link_info *link_info)
5429 {
5430 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5431 struct elf_segment_map *m;
5432 struct elf_segment_map *phdr_load_seg;
5433 Elf_Internal_Phdr *phdrs;
5434 Elf_Internal_Phdr *p;
5435 file_ptr off;
5436 bfd_size_type maxpagesize;
5437 unsigned int alloc, actual;
5438 unsigned int i, j;
5439 struct elf_segment_map **sorted_seg_map;
5440
5441 if (link_info == NULL
5442 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5443 return FALSE;
5444
5445 alloc = 0;
5446 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5447 m->idx = alloc++;
5448
5449 if (alloc)
5450 {
5451 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5452 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5453 }
5454 else
5455 {
5456 /* PR binutils/12467. */
5457 elf_elfheader (abfd)->e_phoff = 0;
5458 elf_elfheader (abfd)->e_phentsize = 0;
5459 }
5460
5461 elf_elfheader (abfd)->e_phnum = alloc;
5462
5463 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5464 {
5465 actual = alloc;
5466 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5467 }
5468 else
5469 {
5470 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5471 BFD_ASSERT (elf_program_header_size (abfd)
5472 == actual * bed->s->sizeof_phdr);
5473 BFD_ASSERT (actual >= alloc);
5474 }
5475
5476 if (alloc == 0)
5477 {
5478 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5479 return TRUE;
5480 }
5481
5482 /* We're writing the size in elf_program_header_size (abfd),
5483 see assign_file_positions_except_relocs, so make sure we have
5484 that amount allocated, with trailing space cleared.
5485 The variable alloc contains the computed need, while
5486 elf_program_header_size (abfd) contains the size used for the
5487 layout.
5488 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5489 where the layout is forced to according to a larger size in the
5490 last iterations for the testcase ld-elf/header. */
5491 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5492 + alloc * sizeof (*sorted_seg_map)));
5493 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5494 elf_tdata (abfd)->phdr = phdrs;
5495 if (phdrs == NULL)
5496 return FALSE;
5497
5498 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5499 {
5500 sorted_seg_map[j] = m;
5501 /* If elf_segment_map is not from map_sections_to_segments, the
5502 sections may not be correctly ordered. NOTE: sorting should
5503 not be done to the PT_NOTE section of a corefile, which may
5504 contain several pseudo-sections artificially created by bfd.
5505 Sorting these pseudo-sections breaks things badly. */
5506 if (m->count > 1
5507 && !(elf_elfheader (abfd)->e_type == ET_CORE
5508 && m->p_type == PT_NOTE))
5509 {
5510 for (i = 0; i < m->count; i++)
5511 m->sections[i]->target_index = i;
5512 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5513 elf_sort_sections);
5514 }
5515 }
5516 if (alloc > 1)
5517 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5518 elf_sort_segments);
5519
5520 maxpagesize = 1;
5521 if ((abfd->flags & D_PAGED) != 0)
5522 maxpagesize = bed->maxpagesize;
5523
5524 /* Sections must map to file offsets past the ELF file header. */
5525 off = bed->s->sizeof_ehdr;
5526 /* And if one of the PT_LOAD headers doesn't include the program
5527 headers then we'll be mapping program headers in the usual
5528 position after the ELF file header. */
5529 phdr_load_seg = NULL;
5530 for (j = 0; j < alloc; j++)
5531 {
5532 m = sorted_seg_map[j];
5533 if (m->p_type != PT_LOAD)
5534 break;
5535 if (m->includes_phdrs)
5536 {
5537 phdr_load_seg = m;
5538 break;
5539 }
5540 }
5541 if (phdr_load_seg == NULL)
5542 off += actual * bed->s->sizeof_phdr;
5543
5544 for (j = 0; j < alloc; j++)
5545 {
5546 asection **secpp;
5547 bfd_vma off_adjust;
5548 bfd_boolean no_contents;
5549
5550 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5551 number of sections with contents contributing to both p_filesz
5552 and p_memsz, followed by a number of sections with no contents
5553 that just contribute to p_memsz. In this loop, OFF tracks next
5554 available file offset for PT_LOAD and PT_NOTE segments. */
5555 m = sorted_seg_map[j];
5556 p = phdrs + m->idx;
5557 p->p_type = m->p_type;
5558 p->p_flags = m->p_flags;
5559
5560 if (m->count == 0)
5561 p->p_vaddr = m->p_vaddr_offset;
5562 else
5563 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5564
5565 if (m->p_paddr_valid)
5566 p->p_paddr = m->p_paddr;
5567 else if (m->count == 0)
5568 p->p_paddr = 0;
5569 else
5570 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5571
5572 if (p->p_type == PT_LOAD
5573 && (abfd->flags & D_PAGED) != 0)
5574 {
5575 /* p_align in demand paged PT_LOAD segments effectively stores
5576 the maximum page size. When copying an executable with
5577 objcopy, we set m->p_align from the input file. Use this
5578 value for maxpagesize rather than bed->maxpagesize, which
5579 may be different. Note that we use maxpagesize for PT_TLS
5580 segment alignment later in this function, so we are relying
5581 on at least one PT_LOAD segment appearing before a PT_TLS
5582 segment. */
5583 if (m->p_align_valid)
5584 maxpagesize = m->p_align;
5585
5586 p->p_align = maxpagesize;
5587 }
5588 else if (m->p_align_valid)
5589 p->p_align = m->p_align;
5590 else if (m->count == 0)
5591 p->p_align = 1 << bed->s->log_file_align;
5592
5593 if (m == phdr_load_seg)
5594 {
5595 if (!m->includes_filehdr)
5596 p->p_offset = off;
5597 off += actual * bed->s->sizeof_phdr;
5598 }
5599
5600 no_contents = FALSE;
5601 off_adjust = 0;
5602 if (p->p_type == PT_LOAD
5603 && m->count > 0)
5604 {
5605 bfd_size_type align;
5606 unsigned int align_power = 0;
5607
5608 if (m->p_align_valid)
5609 align = p->p_align;
5610 else
5611 {
5612 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5613 {
5614 unsigned int secalign;
5615
5616 secalign = bfd_section_alignment (*secpp);
5617 if (secalign > align_power)
5618 align_power = secalign;
5619 }
5620 align = (bfd_size_type) 1 << align_power;
5621 if (align < maxpagesize)
5622 align = maxpagesize;
5623 }
5624
5625 for (i = 0; i < m->count; i++)
5626 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5627 /* If we aren't making room for this section, then
5628 it must be SHT_NOBITS regardless of what we've
5629 set via struct bfd_elf_special_section. */
5630 elf_section_type (m->sections[i]) = SHT_NOBITS;
5631
5632 /* Find out whether this segment contains any loadable
5633 sections. */
5634 no_contents = TRUE;
5635 for (i = 0; i < m->count; i++)
5636 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5637 {
5638 no_contents = FALSE;
5639 break;
5640 }
5641
5642 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5643
5644 /* Broken hardware and/or kernel require that files do not
5645 map the same page with different permissions on some hppa
5646 processors. */
5647 if (j != 0
5648 && (abfd->flags & D_PAGED) != 0
5649 && bed->no_page_alias
5650 && (off & (maxpagesize - 1)) != 0
5651 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5652 off_adjust += maxpagesize;
5653 off += off_adjust;
5654 if (no_contents)
5655 {
5656 /* We shouldn't need to align the segment on disk since
5657 the segment doesn't need file space, but the gABI
5658 arguably requires the alignment and glibc ld.so
5659 checks it. So to comply with the alignment
5660 requirement but not waste file space, we adjust
5661 p_offset for just this segment. (OFF_ADJUST is
5662 subtracted from OFF later.) This may put p_offset
5663 past the end of file, but that shouldn't matter. */
5664 }
5665 else
5666 off_adjust = 0;
5667 }
5668 /* Make sure the .dynamic section is the first section in the
5669 PT_DYNAMIC segment. */
5670 else if (p->p_type == PT_DYNAMIC
5671 && m->count > 1
5672 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5673 {
5674 _bfd_error_handler
5675 (_("%pB: The first section in the PT_DYNAMIC segment"
5676 " is not the .dynamic section"),
5677 abfd);
5678 bfd_set_error (bfd_error_bad_value);
5679 return FALSE;
5680 }
5681 /* Set the note section type to SHT_NOTE. */
5682 else if (p->p_type == PT_NOTE)
5683 for (i = 0; i < m->count; i++)
5684 elf_section_type (m->sections[i]) = SHT_NOTE;
5685
5686 if (m->includes_filehdr)
5687 {
5688 if (!m->p_flags_valid)
5689 p->p_flags |= PF_R;
5690 p->p_filesz = bed->s->sizeof_ehdr;
5691 p->p_memsz = bed->s->sizeof_ehdr;
5692 if (p->p_type == PT_LOAD)
5693 {
5694 if (m->count > 0)
5695 {
5696 if (p->p_vaddr < (bfd_vma) off
5697 || (!m->p_paddr_valid
5698 && p->p_paddr < (bfd_vma) off))
5699 {
5700 _bfd_error_handler
5701 (_("%pB: not enough room for program headers,"
5702 " try linking with -N"),
5703 abfd);
5704 bfd_set_error (bfd_error_bad_value);
5705 return FALSE;
5706 }
5707 p->p_vaddr -= off;
5708 if (!m->p_paddr_valid)
5709 p->p_paddr -= off;
5710 }
5711 }
5712 else if (sorted_seg_map[0]->includes_filehdr)
5713 {
5714 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5715 p->p_vaddr = filehdr->p_vaddr;
5716 if (!m->p_paddr_valid)
5717 p->p_paddr = filehdr->p_paddr;
5718 }
5719 }
5720
5721 if (m->includes_phdrs)
5722 {
5723 if (!m->p_flags_valid)
5724 p->p_flags |= PF_R;
5725 p->p_filesz += actual * bed->s->sizeof_phdr;
5726 p->p_memsz += actual * bed->s->sizeof_phdr;
5727 if (!m->includes_filehdr)
5728 {
5729 if (p->p_type == PT_LOAD)
5730 {
5731 elf_elfheader (abfd)->e_phoff = p->p_offset;
5732 if (m->count > 0)
5733 {
5734 p->p_vaddr -= off - p->p_offset;
5735 if (!m->p_paddr_valid)
5736 p->p_paddr -= off - p->p_offset;
5737 }
5738 }
5739 else if (phdr_load_seg != NULL)
5740 {
5741 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5742 bfd_vma phdr_off = 0;
5743 if (phdr_load_seg->includes_filehdr)
5744 phdr_off = bed->s->sizeof_ehdr;
5745 p->p_vaddr = phdr->p_vaddr + phdr_off;
5746 if (!m->p_paddr_valid)
5747 p->p_paddr = phdr->p_paddr + phdr_off;
5748 p->p_offset = phdr->p_offset + phdr_off;
5749 }
5750 else
5751 p->p_offset = bed->s->sizeof_ehdr;
5752 }
5753 }
5754
5755 if (p->p_type == PT_LOAD
5756 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5757 {
5758 if (!m->includes_filehdr && !m->includes_phdrs)
5759 {
5760 p->p_offset = off;
5761 if (no_contents)
5762 {
5763 /* Put meaningless p_offset for PT_LOAD segments
5764 without file contents somewhere within the first
5765 page, in an attempt to not point past EOF. */
5766 bfd_size_type align = maxpagesize;
5767 if (align < p->p_align)
5768 align = p->p_align;
5769 if (align < 1)
5770 align = 1;
5771 p->p_offset = off % align;
5772 }
5773 }
5774 else
5775 {
5776 file_ptr adjust;
5777
5778 adjust = off - (p->p_offset + p->p_filesz);
5779 if (!no_contents)
5780 p->p_filesz += adjust;
5781 p->p_memsz += adjust;
5782 }
5783 }
5784
5785 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5786 maps. Set filepos for sections in PT_LOAD segments, and in
5787 core files, for sections in PT_NOTE segments.
5788 assign_file_positions_for_non_load_sections will set filepos
5789 for other sections and update p_filesz for other segments. */
5790 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5791 {
5792 asection *sec;
5793 bfd_size_type align;
5794 Elf_Internal_Shdr *this_hdr;
5795
5796 sec = *secpp;
5797 this_hdr = &elf_section_data (sec)->this_hdr;
5798 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5799
5800 if ((p->p_type == PT_LOAD
5801 || p->p_type == PT_TLS)
5802 && (this_hdr->sh_type != SHT_NOBITS
5803 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5804 && ((this_hdr->sh_flags & SHF_TLS) == 0
5805 || p->p_type == PT_TLS))))
5806 {
5807 bfd_vma p_start = p->p_paddr;
5808 bfd_vma p_end = p_start + p->p_memsz;
5809 bfd_vma s_start = sec->lma;
5810 bfd_vma adjust = s_start - p_end;
5811
5812 if (adjust != 0
5813 && (s_start < p_end
5814 || p_end < p_start))
5815 {
5816 _bfd_error_handler
5817 /* xgettext:c-format */
5818 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5819 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5820 adjust = 0;
5821 sec->lma = p_end;
5822 }
5823 p->p_memsz += adjust;
5824
5825 if (this_hdr->sh_type != SHT_NOBITS)
5826 {
5827 if (p->p_type == PT_LOAD)
5828 {
5829 if (p->p_filesz + adjust < p->p_memsz)
5830 {
5831 /* We have a PROGBITS section following NOBITS ones.
5832 Allocate file space for the NOBITS section(s) and
5833 zero it. */
5834 adjust = p->p_memsz - p->p_filesz;
5835 if (!write_zeros (abfd, off, adjust))
5836 return FALSE;
5837 }
5838 off += adjust;
5839 }
5840 p->p_filesz += adjust;
5841 }
5842 }
5843
5844 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5845 {
5846 /* The section at i == 0 is the one that actually contains
5847 everything. */
5848 if (i == 0)
5849 {
5850 this_hdr->sh_offset = sec->filepos = off;
5851 off += this_hdr->sh_size;
5852 p->p_filesz = this_hdr->sh_size;
5853 p->p_memsz = 0;
5854 p->p_align = 1;
5855 }
5856 else
5857 {
5858 /* The rest are fake sections that shouldn't be written. */
5859 sec->filepos = 0;
5860 sec->size = 0;
5861 sec->flags = 0;
5862 continue;
5863 }
5864 }
5865 else
5866 {
5867 if (p->p_type == PT_LOAD)
5868 {
5869 this_hdr->sh_offset = sec->filepos = off;
5870 if (this_hdr->sh_type != SHT_NOBITS)
5871 off += this_hdr->sh_size;
5872 }
5873 else if (this_hdr->sh_type == SHT_NOBITS
5874 && (this_hdr->sh_flags & SHF_TLS) != 0
5875 && this_hdr->sh_offset == 0)
5876 {
5877 /* This is a .tbss section that didn't get a PT_LOAD.
5878 (See _bfd_elf_map_sections_to_segments "Create a
5879 final PT_LOAD".) Set sh_offset to the value it
5880 would have if we had created a zero p_filesz and
5881 p_memsz PT_LOAD header for the section. This
5882 also makes the PT_TLS header have the same
5883 p_offset value. */
5884 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5885 off, align);
5886 this_hdr->sh_offset = sec->filepos = off + adjust;
5887 }
5888
5889 if (this_hdr->sh_type != SHT_NOBITS)
5890 {
5891 p->p_filesz += this_hdr->sh_size;
5892 /* A load section without SHF_ALLOC is something like
5893 a note section in a PT_NOTE segment. These take
5894 file space but are not loaded into memory. */
5895 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5896 p->p_memsz += this_hdr->sh_size;
5897 }
5898 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5899 {
5900 if (p->p_type == PT_TLS)
5901 p->p_memsz += this_hdr->sh_size;
5902
5903 /* .tbss is special. It doesn't contribute to p_memsz of
5904 normal segments. */
5905 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5906 p->p_memsz += this_hdr->sh_size;
5907 }
5908
5909 if (align > p->p_align
5910 && !m->p_align_valid
5911 && (p->p_type != PT_LOAD
5912 || (abfd->flags & D_PAGED) == 0))
5913 p->p_align = align;
5914 }
5915
5916 if (!m->p_flags_valid)
5917 {
5918 p->p_flags |= PF_R;
5919 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5920 p->p_flags |= PF_X;
5921 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5922 p->p_flags |= PF_W;
5923 }
5924 }
5925
5926 off -= off_adjust;
5927
5928 /* PR ld/20815 - Check that the program header segment, if
5929 present, will be loaded into memory. */
5930 if (p->p_type == PT_PHDR
5931 && phdr_load_seg == NULL
5932 && !(bed->elf_backend_allow_non_load_phdr != NULL
5933 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5934 {
5935 /* The fix for this error is usually to edit the linker script being
5936 used and set up the program headers manually. Either that or
5937 leave room for the headers at the start of the SECTIONS. */
5938 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5939 " by LOAD segment"),
5940 abfd);
5941 return FALSE;
5942 }
5943
5944 /* Check that all sections are in a PT_LOAD segment.
5945 Don't check funky gdb generated core files. */
5946 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5947 {
5948 bfd_boolean check_vma = TRUE;
5949
5950 for (i = 1; i < m->count; i++)
5951 if (m->sections[i]->vma == m->sections[i - 1]->vma
5952 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5953 ->this_hdr), p) != 0
5954 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5955 ->this_hdr), p) != 0)
5956 {
5957 /* Looks like we have overlays packed into the segment. */
5958 check_vma = FALSE;
5959 break;
5960 }
5961
5962 for (i = 0; i < m->count; i++)
5963 {
5964 Elf_Internal_Shdr *this_hdr;
5965 asection *sec;
5966
5967 sec = m->sections[i];
5968 this_hdr = &(elf_section_data(sec)->this_hdr);
5969 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5970 && !ELF_TBSS_SPECIAL (this_hdr, p))
5971 {
5972 _bfd_error_handler
5973 /* xgettext:c-format */
5974 (_("%pB: section `%pA' can't be allocated in segment %d"),
5975 abfd, sec, j);
5976 print_segment_map (m);
5977 }
5978 }
5979 }
5980 }
5981
5982 elf_next_file_pos (abfd) = off;
5983
5984 if (link_info != NULL
5985 && phdr_load_seg != NULL
5986 && phdr_load_seg->includes_filehdr)
5987 {
5988 /* There is a segment that contains both the file headers and the
5989 program headers, so provide a symbol __ehdr_start pointing there.
5990 A program can use this to examine itself robustly. */
5991
5992 struct elf_link_hash_entry *hash
5993 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5994 FALSE, FALSE, TRUE);
5995 /* If the symbol was referenced and not defined, define it. */
5996 if (hash != NULL
5997 && (hash->root.type == bfd_link_hash_new
5998 || hash->root.type == bfd_link_hash_undefined
5999 || hash->root.type == bfd_link_hash_undefweak
6000 || hash->root.type == bfd_link_hash_common))
6001 {
6002 asection *s = NULL;
6003 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
6004
6005 if (phdr_load_seg->count != 0)
6006 /* The segment contains sections, so use the first one. */
6007 s = phdr_load_seg->sections[0];
6008 else
6009 /* Use the first (i.e. lowest-addressed) section in any segment. */
6010 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6011 if (m->p_type == PT_LOAD && m->count != 0)
6012 {
6013 s = m->sections[0];
6014 break;
6015 }
6016
6017 if (s != NULL)
6018 {
6019 hash->root.u.def.value = filehdr_vaddr - s->vma;
6020 hash->root.u.def.section = s;
6021 }
6022 else
6023 {
6024 hash->root.u.def.value = filehdr_vaddr;
6025 hash->root.u.def.section = bfd_abs_section_ptr;
6026 }
6027
6028 hash->root.type = bfd_link_hash_defined;
6029 hash->def_regular = 1;
6030 hash->non_elf = 0;
6031 }
6032 }
6033
6034 return TRUE;
6035 }
6036
6037 /* Determine if a bfd is a debuginfo file. Unfortunately there
6038 is no defined method for detecting such files, so we have to
6039 use heuristics instead. */
6040
6041 bfd_boolean
6042 is_debuginfo_file (bfd *abfd)
6043 {
6044 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6045 return FALSE;
6046
6047 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6048 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6049 Elf_Internal_Shdr **headerp;
6050
6051 for (headerp = start_headers; headerp < end_headers; headerp ++)
6052 {
6053 Elf_Internal_Shdr *header = * headerp;
6054
6055 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6056 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6057 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6058 && header->sh_type != SHT_NOBITS
6059 && header->sh_type != SHT_NOTE)
6060 return FALSE;
6061 }
6062
6063 return TRUE;
6064 }
6065
6066 /* Assign file positions for the other sections, except for compressed debugging
6067 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6068
6069 static bfd_boolean
6070 assign_file_positions_for_non_load_sections (bfd *abfd,
6071 struct bfd_link_info *link_info)
6072 {
6073 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6074 Elf_Internal_Shdr **i_shdrpp;
6075 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6076 Elf_Internal_Phdr *phdrs;
6077 Elf_Internal_Phdr *p;
6078 struct elf_segment_map *m;
6079 file_ptr off;
6080
6081 i_shdrpp = elf_elfsections (abfd);
6082 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6083 off = elf_next_file_pos (abfd);
6084 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6085 {
6086 Elf_Internal_Shdr *hdr;
6087
6088 hdr = *hdrpp;
6089 if (hdr->bfd_section != NULL
6090 && (hdr->bfd_section->filepos != 0
6091 || (hdr->sh_type == SHT_NOBITS
6092 && hdr->contents == NULL)))
6093 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6094 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6095 {
6096 if (hdr->sh_size != 0
6097 /* PR 24717 - debuginfo files are known to be not strictly
6098 compliant with the ELF standard. In particular they often
6099 have .note.gnu.property sections that are outside of any
6100 loadable segment. This is not a problem for such files,
6101 so do not warn about them. */
6102 && ! is_debuginfo_file (abfd))
6103 _bfd_error_handler
6104 /* xgettext:c-format */
6105 (_("%pB: warning: allocated section `%s' not in segment"),
6106 abfd,
6107 (hdr->bfd_section == NULL
6108 ? "*unknown*"
6109 : hdr->bfd_section->name));
6110 /* We don't need to page align empty sections. */
6111 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6112 off += vma_page_aligned_bias (hdr->sh_addr, off,
6113 bed->maxpagesize);
6114 else
6115 off += vma_page_aligned_bias (hdr->sh_addr, off,
6116 hdr->sh_addralign);
6117 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6118 FALSE);
6119 }
6120 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6121 && hdr->bfd_section == NULL)
6122 /* We don't know the offset of these sections yet: their size has
6123 not been decided. */
6124 || (hdr->bfd_section != NULL
6125 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6126 || (bfd_section_is_ctf (hdr->bfd_section)
6127 && abfd->is_linker_output)))
6128 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6129 || (elf_symtab_shndx_list (abfd) != NULL
6130 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6131 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6132 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6133 hdr->sh_offset = -1;
6134 else
6135 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6136 }
6137 elf_next_file_pos (abfd) = off;
6138
6139 /* Now that we have set the section file positions, we can set up
6140 the file positions for the non PT_LOAD segments. */
6141 phdrs = elf_tdata (abfd)->phdr;
6142 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6143 {
6144 if (p->p_type == PT_GNU_RELRO)
6145 {
6146 bfd_vma start, end;
6147 bfd_boolean ok;
6148
6149 if (link_info != NULL)
6150 {
6151 /* During linking the range of the RELRO segment is passed
6152 in link_info. Note that there may be padding between
6153 relro_start and the first RELRO section. */
6154 start = link_info->relro_start;
6155 end = link_info->relro_end;
6156 }
6157 else if (m->count != 0)
6158 {
6159 if (!m->p_size_valid)
6160 abort ();
6161 start = m->sections[0]->vma;
6162 end = start + m->p_size;
6163 }
6164 else
6165 {
6166 start = 0;
6167 end = 0;
6168 }
6169
6170 ok = FALSE;
6171 if (start < end)
6172 {
6173 struct elf_segment_map *lm;
6174 const Elf_Internal_Phdr *lp;
6175 unsigned int i;
6176
6177 /* Find a LOAD segment containing a section in the RELRO
6178 segment. */
6179 for (lm = elf_seg_map (abfd), lp = phdrs;
6180 lm != NULL;
6181 lm = lm->next, lp++)
6182 {
6183 if (lp->p_type == PT_LOAD
6184 && lm->count != 0
6185 && (lm->sections[lm->count - 1]->vma
6186 + (!IS_TBSS (lm->sections[lm->count - 1])
6187 ? lm->sections[lm->count - 1]->size
6188 : 0)) > start
6189 && lm->sections[0]->vma < end)
6190 break;
6191 }
6192
6193 if (lm != NULL)
6194 {
6195 /* Find the section starting the RELRO segment. */
6196 for (i = 0; i < lm->count; i++)
6197 {
6198 asection *s = lm->sections[i];
6199 if (s->vma >= start
6200 && s->vma < end
6201 && s->size != 0)
6202 break;
6203 }
6204
6205 if (i < lm->count)
6206 {
6207 p->p_vaddr = lm->sections[i]->vma;
6208 p->p_paddr = lm->sections[i]->lma;
6209 p->p_offset = lm->sections[i]->filepos;
6210 p->p_memsz = end - p->p_vaddr;
6211 p->p_filesz = p->p_memsz;
6212
6213 /* The RELRO segment typically ends a few bytes
6214 into .got.plt but other layouts are possible.
6215 In cases where the end does not match any
6216 loaded section (for instance is in file
6217 padding), trim p_filesz back to correspond to
6218 the end of loaded section contents. */
6219 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6220 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6221
6222 /* Preserve the alignment and flags if they are
6223 valid. The gold linker generates RW/4 for
6224 the PT_GNU_RELRO section. It is better for
6225 objcopy/strip to honor these attributes
6226 otherwise gdb will choke when using separate
6227 debug files. */
6228 if (!m->p_align_valid)
6229 p->p_align = 1;
6230 if (!m->p_flags_valid)
6231 p->p_flags = PF_R;
6232 ok = TRUE;
6233 }
6234 }
6235 }
6236 if (link_info != NULL)
6237 BFD_ASSERT (ok);
6238 if (!ok)
6239 memset (p, 0, sizeof *p);
6240 }
6241 else if (p->p_type == PT_GNU_STACK)
6242 {
6243 if (m->p_size_valid)
6244 p->p_memsz = m->p_size;
6245 }
6246 else if (m->count != 0)
6247 {
6248 unsigned int i;
6249
6250 if (p->p_type != PT_LOAD
6251 && (p->p_type != PT_NOTE
6252 || bfd_get_format (abfd) != bfd_core))
6253 {
6254 /* A user specified segment layout may include a PHDR
6255 segment that overlaps with a LOAD segment... */
6256 if (p->p_type == PT_PHDR)
6257 {
6258 m->count = 0;
6259 continue;
6260 }
6261
6262 if (m->includes_filehdr || m->includes_phdrs)
6263 {
6264 /* PR 17512: file: 2195325e. */
6265 _bfd_error_handler
6266 (_("%pB: error: non-load segment %d includes file header "
6267 "and/or program header"),
6268 abfd, (int) (p - phdrs));
6269 return FALSE;
6270 }
6271
6272 p->p_filesz = 0;
6273 p->p_offset = m->sections[0]->filepos;
6274 for (i = m->count; i-- != 0;)
6275 {
6276 asection *sect = m->sections[i];
6277 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6278 if (hdr->sh_type != SHT_NOBITS)
6279 {
6280 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6281 + hdr->sh_size);
6282 break;
6283 }
6284 }
6285 }
6286 }
6287 }
6288
6289 return TRUE;
6290 }
6291
6292 static elf_section_list *
6293 find_section_in_list (unsigned int i, elf_section_list * list)
6294 {
6295 for (;list != NULL; list = list->next)
6296 if (list->ndx == i)
6297 break;
6298 return list;
6299 }
6300
6301 /* Work out the file positions of all the sections. This is called by
6302 _bfd_elf_compute_section_file_positions. All the section sizes and
6303 VMAs must be known before this is called.
6304
6305 Reloc sections come in two flavours: Those processed specially as
6306 "side-channel" data attached to a section to which they apply, and those that
6307 bfd doesn't process as relocations. The latter sort are stored in a normal
6308 bfd section by bfd_section_from_shdr. We don't consider the former sort
6309 here, unless they form part of the loadable image. Reloc sections not
6310 assigned here (and compressed debugging sections and CTF sections which
6311 nothing else in the file can rely upon) will be handled later by
6312 assign_file_positions_for_relocs.
6313
6314 We also don't set the positions of the .symtab and .strtab here. */
6315
6316 static bfd_boolean
6317 assign_file_positions_except_relocs (bfd *abfd,
6318 struct bfd_link_info *link_info)
6319 {
6320 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6321 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6322 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6323 unsigned int alloc;
6324
6325 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6326 && bfd_get_format (abfd) != bfd_core)
6327 {
6328 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6329 unsigned int num_sec = elf_numsections (abfd);
6330 Elf_Internal_Shdr **hdrpp;
6331 unsigned int i;
6332 file_ptr off;
6333
6334 /* Start after the ELF header. */
6335 off = i_ehdrp->e_ehsize;
6336
6337 /* We are not creating an executable, which means that we are
6338 not creating a program header, and that the actual order of
6339 the sections in the file is unimportant. */
6340 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6341 {
6342 Elf_Internal_Shdr *hdr;
6343
6344 hdr = *hdrpp;
6345 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6346 && hdr->bfd_section == NULL)
6347 /* Do not assign offsets for these sections yet: we don't know
6348 their sizes. */
6349 || (hdr->bfd_section != NULL
6350 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6351 || (bfd_section_is_ctf (hdr->bfd_section)
6352 && abfd->is_linker_output)))
6353 || i == elf_onesymtab (abfd)
6354 || (elf_symtab_shndx_list (abfd) != NULL
6355 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6356 || i == elf_strtab_sec (abfd)
6357 || i == elf_shstrtab_sec (abfd))
6358 {
6359 hdr->sh_offset = -1;
6360 }
6361 else
6362 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6363 }
6364
6365 elf_next_file_pos (abfd) = off;
6366 elf_program_header_size (abfd) = 0;
6367 }
6368 else
6369 {
6370 /* Assign file positions for the loaded sections based on the
6371 assignment of sections to segments. */
6372 if (!assign_file_positions_for_load_sections (abfd, link_info))
6373 return FALSE;
6374
6375 /* And for non-load sections. */
6376 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6377 return FALSE;
6378 }
6379
6380 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6381 return FALSE;
6382
6383 /* Write out the program headers. */
6384 alloc = i_ehdrp->e_phnum;
6385 if (alloc != 0)
6386 {
6387 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6388 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6389 return FALSE;
6390 }
6391
6392 return TRUE;
6393 }
6394
6395 bfd_boolean
6396 _bfd_elf_init_file_header (bfd *abfd,
6397 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6398 {
6399 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6400 struct elf_strtab_hash *shstrtab;
6401 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6402
6403 i_ehdrp = elf_elfheader (abfd);
6404
6405 shstrtab = _bfd_elf_strtab_init ();
6406 if (shstrtab == NULL)
6407 return FALSE;
6408
6409 elf_shstrtab (abfd) = shstrtab;
6410
6411 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6412 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6413 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6414 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6415
6416 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6417 i_ehdrp->e_ident[EI_DATA] =
6418 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6419 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6420
6421 if ((abfd->flags & DYNAMIC) != 0)
6422 i_ehdrp->e_type = ET_DYN;
6423 else if ((abfd->flags & EXEC_P) != 0)
6424 i_ehdrp->e_type = ET_EXEC;
6425 else if (bfd_get_format (abfd) == bfd_core)
6426 i_ehdrp->e_type = ET_CORE;
6427 else
6428 i_ehdrp->e_type = ET_REL;
6429
6430 switch (bfd_get_arch (abfd))
6431 {
6432 case bfd_arch_unknown:
6433 i_ehdrp->e_machine = EM_NONE;
6434 break;
6435
6436 /* There used to be a long list of cases here, each one setting
6437 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6438 in the corresponding bfd definition. To avoid duplication,
6439 the switch was removed. Machines that need special handling
6440 can generally do it in elf_backend_final_write_processing(),
6441 unless they need the information earlier than the final write.
6442 Such need can generally be supplied by replacing the tests for
6443 e_machine with the conditions used to determine it. */
6444 default:
6445 i_ehdrp->e_machine = bed->elf_machine_code;
6446 }
6447
6448 i_ehdrp->e_version = bed->s->ev_current;
6449 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6450
6451 /* No program header, for now. */
6452 i_ehdrp->e_phoff = 0;
6453 i_ehdrp->e_phentsize = 0;
6454 i_ehdrp->e_phnum = 0;
6455
6456 /* Each bfd section is section header entry. */
6457 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6458 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6459
6460 elf_tdata (abfd)->symtab_hdr.sh_name =
6461 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6462 elf_tdata (abfd)->strtab_hdr.sh_name =
6463 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6464 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6465 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6466 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6467 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6468 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6469 return FALSE;
6470
6471 return TRUE;
6472 }
6473
6474 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6475
6476 FIXME: We used to have code here to sort the PT_LOAD segments into
6477 ascending order, as per the ELF spec. But this breaks some programs,
6478 including the Linux kernel. But really either the spec should be
6479 changed or the programs updated. */
6480
6481 bfd_boolean
6482 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6483 {
6484 if (link_info != NULL && bfd_link_pie (link_info))
6485 {
6486 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6487 unsigned int num_segments = i_ehdrp->e_phnum;
6488 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6489 Elf_Internal_Phdr *segment = tdata->phdr;
6490 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6491
6492 /* Find the lowest p_vaddr in PT_LOAD segments. */
6493 bfd_vma p_vaddr = (bfd_vma) -1;
6494 for (; segment < end_segment; segment++)
6495 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6496 p_vaddr = segment->p_vaddr;
6497
6498 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6499 segments is non-zero. */
6500 if (p_vaddr)
6501 i_ehdrp->e_type = ET_EXEC;
6502 }
6503 return TRUE;
6504 }
6505
6506 /* Assign file positions for all the reloc sections which are not part
6507 of the loadable file image, and the file position of section headers. */
6508
6509 static bfd_boolean
6510 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6511 {
6512 file_ptr off;
6513 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6514 Elf_Internal_Shdr *shdrp;
6515 Elf_Internal_Ehdr *i_ehdrp;
6516 const struct elf_backend_data *bed;
6517
6518 off = elf_next_file_pos (abfd);
6519
6520 shdrpp = elf_elfsections (abfd);
6521 end_shdrpp = shdrpp + elf_numsections (abfd);
6522 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6523 {
6524 shdrp = *shdrpp;
6525 if (shdrp->sh_offset == -1)
6526 {
6527 asection *sec = shdrp->bfd_section;
6528 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6529 || shdrp->sh_type == SHT_RELA);
6530 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6531 if (is_rel
6532 || is_ctf
6533 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6534 {
6535 if (!is_rel && !is_ctf)
6536 {
6537 const char *name = sec->name;
6538 struct bfd_elf_section_data *d;
6539
6540 /* Compress DWARF debug sections. */
6541 if (!bfd_compress_section (abfd, sec,
6542 shdrp->contents))
6543 return FALSE;
6544
6545 if (sec->compress_status == COMPRESS_SECTION_DONE
6546 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6547 {
6548 /* If section is compressed with zlib-gnu, convert
6549 section name from .debug_* to .zdebug_*. */
6550 char *new_name
6551 = convert_debug_to_zdebug (abfd, name);
6552 if (new_name == NULL)
6553 return FALSE;
6554 name = new_name;
6555 }
6556 /* Add section name to section name section. */
6557 if (shdrp->sh_name != (unsigned int) -1)
6558 abort ();
6559 shdrp->sh_name
6560 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6561 name, FALSE);
6562 d = elf_section_data (sec);
6563
6564 /* Add reloc section name to section name section. */
6565 if (d->rel.hdr
6566 && !_bfd_elf_set_reloc_sh_name (abfd,
6567 d->rel.hdr,
6568 name, FALSE))
6569 return FALSE;
6570 if (d->rela.hdr
6571 && !_bfd_elf_set_reloc_sh_name (abfd,
6572 d->rela.hdr,
6573 name, TRUE))
6574 return FALSE;
6575
6576 /* Update section size and contents. */
6577 shdrp->sh_size = sec->size;
6578 shdrp->contents = sec->contents;
6579 shdrp->bfd_section->contents = NULL;
6580 }
6581 else if (is_ctf)
6582 {
6583 /* Update section size and contents. */
6584 shdrp->sh_size = sec->size;
6585 shdrp->contents = sec->contents;
6586 }
6587
6588 off = _bfd_elf_assign_file_position_for_section (shdrp,
6589 off,
6590 TRUE);
6591 }
6592 }
6593 }
6594
6595 /* Place section name section after DWARF debug sections have been
6596 compressed. */
6597 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6598 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6599 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6600 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6601
6602 /* Place the section headers. */
6603 i_ehdrp = elf_elfheader (abfd);
6604 bed = get_elf_backend_data (abfd);
6605 off = align_file_position (off, 1 << bed->s->log_file_align);
6606 i_ehdrp->e_shoff = off;
6607 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6608 elf_next_file_pos (abfd) = off;
6609
6610 return TRUE;
6611 }
6612
6613 bfd_boolean
6614 _bfd_elf_write_object_contents (bfd *abfd)
6615 {
6616 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6617 Elf_Internal_Shdr **i_shdrp;
6618 bfd_boolean failed;
6619 unsigned int count, num_sec;
6620 struct elf_obj_tdata *t;
6621
6622 if (! abfd->output_has_begun
6623 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6624 return FALSE;
6625 /* Do not rewrite ELF data when the BFD has been opened for update.
6626 abfd->output_has_begun was set to TRUE on opening, so creation of new
6627 sections, and modification of existing section sizes was restricted.
6628 This means the ELF header, program headers and section headers can't have
6629 changed.
6630 If the contents of any sections has been modified, then those changes have
6631 already been written to the BFD. */
6632 else if (abfd->direction == both_direction)
6633 {
6634 BFD_ASSERT (abfd->output_has_begun);
6635 return TRUE;
6636 }
6637
6638 i_shdrp = elf_elfsections (abfd);
6639
6640 failed = FALSE;
6641 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6642 if (failed)
6643 return FALSE;
6644
6645 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6646 return FALSE;
6647
6648 /* After writing the headers, we need to write the sections too... */
6649 num_sec = elf_numsections (abfd);
6650 for (count = 1; count < num_sec; count++)
6651 {
6652 i_shdrp[count]->sh_name
6653 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6654 i_shdrp[count]->sh_name);
6655 if (bed->elf_backend_section_processing)
6656 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6657 return FALSE;
6658 if (i_shdrp[count]->contents)
6659 {
6660 bfd_size_type amt = i_shdrp[count]->sh_size;
6661
6662 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6663 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6664 return FALSE;
6665 }
6666 }
6667
6668 /* Write out the section header names. */
6669 t = elf_tdata (abfd);
6670 if (elf_shstrtab (abfd) != NULL
6671 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6672 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6673 return FALSE;
6674
6675 if (!(*bed->elf_backend_final_write_processing) (abfd))
6676 return FALSE;
6677
6678 if (!bed->s->write_shdrs_and_ehdr (abfd))
6679 return FALSE;
6680
6681 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6682 if (t->o->build_id.after_write_object_contents != NULL)
6683 return (*t->o->build_id.after_write_object_contents) (abfd);
6684
6685 return TRUE;
6686 }
6687
6688 bfd_boolean
6689 _bfd_elf_write_corefile_contents (bfd *abfd)
6690 {
6691 /* Hopefully this can be done just like an object file. */
6692 return _bfd_elf_write_object_contents (abfd);
6693 }
6694
6695 /* Given a section, search the header to find them. */
6696
6697 unsigned int
6698 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6699 {
6700 const struct elf_backend_data *bed;
6701 unsigned int sec_index;
6702
6703 if (elf_section_data (asect) != NULL
6704 && elf_section_data (asect)->this_idx != 0)
6705 return elf_section_data (asect)->this_idx;
6706
6707 if (bfd_is_abs_section (asect))
6708 sec_index = SHN_ABS;
6709 else if (bfd_is_com_section (asect))
6710 sec_index = SHN_COMMON;
6711 else if (bfd_is_und_section (asect))
6712 sec_index = SHN_UNDEF;
6713 else
6714 sec_index = SHN_BAD;
6715
6716 bed = get_elf_backend_data (abfd);
6717 if (bed->elf_backend_section_from_bfd_section)
6718 {
6719 int retval = sec_index;
6720
6721 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6722 return retval;
6723 }
6724
6725 if (sec_index == SHN_BAD)
6726 bfd_set_error (bfd_error_nonrepresentable_section);
6727
6728 return sec_index;
6729 }
6730
6731 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6732 on error. */
6733
6734 int
6735 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6736 {
6737 asymbol *asym_ptr = *asym_ptr_ptr;
6738 int idx;
6739 flagword flags = asym_ptr->flags;
6740
6741 /* When gas creates relocations against local labels, it creates its
6742 own symbol for the section, but does put the symbol into the
6743 symbol chain, so udata is 0. When the linker is generating
6744 relocatable output, this section symbol may be for one of the
6745 input sections rather than the output section. */
6746 if (asym_ptr->udata.i == 0
6747 && (flags & BSF_SECTION_SYM)
6748 && asym_ptr->section)
6749 {
6750 asection *sec;
6751 int indx;
6752
6753 sec = asym_ptr->section;
6754 if (sec->owner != abfd && sec->output_section != NULL)
6755 sec = sec->output_section;
6756 if (sec->owner == abfd
6757 && (indx = sec->index) < elf_num_section_syms (abfd)
6758 && elf_section_syms (abfd)[indx] != NULL)
6759 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6760 }
6761
6762 idx = asym_ptr->udata.i;
6763
6764 if (idx == 0)
6765 {
6766 /* This case can occur when using --strip-symbol on a symbol
6767 which is used in a relocation entry. */
6768 _bfd_error_handler
6769 /* xgettext:c-format */
6770 (_("%pB: symbol `%s' required but not present"),
6771 abfd, bfd_asymbol_name (asym_ptr));
6772 bfd_set_error (bfd_error_no_symbols);
6773 return -1;
6774 }
6775
6776 #if DEBUG & 4
6777 {
6778 fprintf (stderr,
6779 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6780 (long) asym_ptr, asym_ptr->name, idx, flags);
6781 fflush (stderr);
6782 }
6783 #endif
6784
6785 return idx;
6786 }
6787
6788 /* Rewrite program header information. */
6789
6790 static bfd_boolean
6791 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6792 {
6793 Elf_Internal_Ehdr *iehdr;
6794 struct elf_segment_map *map;
6795 struct elf_segment_map *map_first;
6796 struct elf_segment_map **pointer_to_map;
6797 Elf_Internal_Phdr *segment;
6798 asection *section;
6799 unsigned int i;
6800 unsigned int num_segments;
6801 bfd_boolean phdr_included = FALSE;
6802 bfd_boolean p_paddr_valid;
6803 bfd_vma maxpagesize;
6804 struct elf_segment_map *phdr_adjust_seg = NULL;
6805 unsigned int phdr_adjust_num = 0;
6806 const struct elf_backend_data *bed;
6807
6808 bed = get_elf_backend_data (ibfd);
6809 iehdr = elf_elfheader (ibfd);
6810
6811 map_first = NULL;
6812 pointer_to_map = &map_first;
6813
6814 num_segments = elf_elfheader (ibfd)->e_phnum;
6815 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6816
6817 /* Returns the end address of the segment + 1. */
6818 #define SEGMENT_END(segment, start) \
6819 (start + (segment->p_memsz > segment->p_filesz \
6820 ? segment->p_memsz : segment->p_filesz))
6821
6822 #define SECTION_SIZE(section, segment) \
6823 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6824 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6825 ? section->size : 0)
6826
6827 /* Returns TRUE if the given section is contained within
6828 the given segment. VMA addresses are compared. */
6829 #define IS_CONTAINED_BY_VMA(section, segment) \
6830 (section->vma >= segment->p_vaddr \
6831 && (section->vma + SECTION_SIZE (section, segment) \
6832 <= (SEGMENT_END (segment, segment->p_vaddr))))
6833
6834 /* Returns TRUE if the given section is contained within
6835 the given segment. LMA addresses are compared. */
6836 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6837 (section->lma >= base \
6838 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6839 && (section->lma + SECTION_SIZE (section, segment) \
6840 <= SEGMENT_END (segment, base)))
6841
6842 /* Handle PT_NOTE segment. */
6843 #define IS_NOTE(p, s) \
6844 (p->p_type == PT_NOTE \
6845 && elf_section_type (s) == SHT_NOTE \
6846 && (bfd_vma) s->filepos >= p->p_offset \
6847 && ((bfd_vma) s->filepos + s->size \
6848 <= p->p_offset + p->p_filesz))
6849
6850 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6851 etc. */
6852 #define IS_COREFILE_NOTE(p, s) \
6853 (IS_NOTE (p, s) \
6854 && bfd_get_format (ibfd) == bfd_core \
6855 && s->vma == 0 \
6856 && s->lma == 0)
6857
6858 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6859 linker, which generates a PT_INTERP section with p_vaddr and
6860 p_memsz set to 0. */
6861 #define IS_SOLARIS_PT_INTERP(p, s) \
6862 (p->p_vaddr == 0 \
6863 && p->p_paddr == 0 \
6864 && p->p_memsz == 0 \
6865 && p->p_filesz > 0 \
6866 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6867 && s->size > 0 \
6868 && (bfd_vma) s->filepos >= p->p_offset \
6869 && ((bfd_vma) s->filepos + s->size \
6870 <= p->p_offset + p->p_filesz))
6871
6872 /* Decide if the given section should be included in the given segment.
6873 A section will be included if:
6874 1. It is within the address space of the segment -- we use the LMA
6875 if that is set for the segment and the VMA otherwise,
6876 2. It is an allocated section or a NOTE section in a PT_NOTE
6877 segment.
6878 3. There is an output section associated with it,
6879 4. The section has not already been allocated to a previous segment.
6880 5. PT_GNU_STACK segments do not include any sections.
6881 6. PT_TLS segment includes only SHF_TLS sections.
6882 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6883 8. PT_DYNAMIC should not contain empty sections at the beginning
6884 (with the possible exception of .dynamic). */
6885 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6886 ((((segment->p_paddr \
6887 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6888 : IS_CONTAINED_BY_VMA (section, segment)) \
6889 && (section->flags & SEC_ALLOC) != 0) \
6890 || IS_NOTE (segment, section)) \
6891 && segment->p_type != PT_GNU_STACK \
6892 && (segment->p_type != PT_TLS \
6893 || (section->flags & SEC_THREAD_LOCAL)) \
6894 && (segment->p_type == PT_LOAD \
6895 || segment->p_type == PT_TLS \
6896 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6897 && (segment->p_type != PT_DYNAMIC \
6898 || SECTION_SIZE (section, segment) > 0 \
6899 || (segment->p_paddr \
6900 ? segment->p_paddr != section->lma \
6901 : segment->p_vaddr != section->vma) \
6902 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6903 && (segment->p_type != PT_LOAD || !section->segment_mark))
6904
6905 /* If the output section of a section in the input segment is NULL,
6906 it is removed from the corresponding output segment. */
6907 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6908 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6909 && section->output_section != NULL)
6910
6911 /* Returns TRUE iff seg1 starts after the end of seg2. */
6912 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6913 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6914
6915 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6916 their VMA address ranges and their LMA address ranges overlap.
6917 It is possible to have overlapping VMA ranges without overlapping LMA
6918 ranges. RedBoot images for example can have both .data and .bss mapped
6919 to the same VMA range, but with the .data section mapped to a different
6920 LMA. */
6921 #define SEGMENT_OVERLAPS(seg1, seg2) \
6922 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6923 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6924 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6925 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6926
6927 /* Initialise the segment mark field. */
6928 for (section = ibfd->sections; section != NULL; section = section->next)
6929 section->segment_mark = FALSE;
6930
6931 /* The Solaris linker creates program headers in which all the
6932 p_paddr fields are zero. When we try to objcopy or strip such a
6933 file, we get confused. Check for this case, and if we find it
6934 don't set the p_paddr_valid fields. */
6935 p_paddr_valid = FALSE;
6936 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6937 i < num_segments;
6938 i++, segment++)
6939 if (segment->p_paddr != 0)
6940 {
6941 p_paddr_valid = TRUE;
6942 break;
6943 }
6944
6945 /* Scan through the segments specified in the program header
6946 of the input BFD. For this first scan we look for overlaps
6947 in the loadable segments. These can be created by weird
6948 parameters to objcopy. Also, fix some solaris weirdness. */
6949 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6950 i < num_segments;
6951 i++, segment++)
6952 {
6953 unsigned int j;
6954 Elf_Internal_Phdr *segment2;
6955
6956 if (segment->p_type == PT_INTERP)
6957 for (section = ibfd->sections; section; section = section->next)
6958 if (IS_SOLARIS_PT_INTERP (segment, section))
6959 {
6960 /* Mininal change so that the normal section to segment
6961 assignment code will work. */
6962 segment->p_vaddr = section->vma;
6963 break;
6964 }
6965
6966 if (segment->p_type != PT_LOAD)
6967 {
6968 /* Remove PT_GNU_RELRO segment. */
6969 if (segment->p_type == PT_GNU_RELRO)
6970 segment->p_type = PT_NULL;
6971 continue;
6972 }
6973
6974 /* Determine if this segment overlaps any previous segments. */
6975 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6976 {
6977 bfd_signed_vma extra_length;
6978
6979 if (segment2->p_type != PT_LOAD
6980 || !SEGMENT_OVERLAPS (segment, segment2))
6981 continue;
6982
6983 /* Merge the two segments together. */
6984 if (segment2->p_vaddr < segment->p_vaddr)
6985 {
6986 /* Extend SEGMENT2 to include SEGMENT and then delete
6987 SEGMENT. */
6988 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6989 - SEGMENT_END (segment2, segment2->p_vaddr));
6990
6991 if (extra_length > 0)
6992 {
6993 segment2->p_memsz += extra_length;
6994 segment2->p_filesz += extra_length;
6995 }
6996
6997 segment->p_type = PT_NULL;
6998
6999 /* Since we have deleted P we must restart the outer loop. */
7000 i = 0;
7001 segment = elf_tdata (ibfd)->phdr;
7002 break;
7003 }
7004 else
7005 {
7006 /* Extend SEGMENT to include SEGMENT2 and then delete
7007 SEGMENT2. */
7008 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7009 - SEGMENT_END (segment, segment->p_vaddr));
7010
7011 if (extra_length > 0)
7012 {
7013 segment->p_memsz += extra_length;
7014 segment->p_filesz += extra_length;
7015 }
7016
7017 segment2->p_type = PT_NULL;
7018 }
7019 }
7020 }
7021
7022 /* The second scan attempts to assign sections to segments. */
7023 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7024 i < num_segments;
7025 i++, segment++)
7026 {
7027 unsigned int section_count;
7028 asection **sections;
7029 asection *output_section;
7030 unsigned int isec;
7031 asection *matching_lma;
7032 asection *suggested_lma;
7033 unsigned int j;
7034 size_t amt;
7035 asection *first_section;
7036
7037 if (segment->p_type == PT_NULL)
7038 continue;
7039
7040 first_section = NULL;
7041 /* Compute how many sections might be placed into this segment. */
7042 for (section = ibfd->sections, section_count = 0;
7043 section != NULL;
7044 section = section->next)
7045 {
7046 /* Find the first section in the input segment, which may be
7047 removed from the corresponding output segment. */
7048 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7049 {
7050 if (first_section == NULL)
7051 first_section = section;
7052 if (section->output_section != NULL)
7053 ++section_count;
7054 }
7055 }
7056
7057 /* Allocate a segment map big enough to contain
7058 all of the sections we have selected. */
7059 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7060 amt += section_count * sizeof (asection *);
7061 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7062 if (map == NULL)
7063 return FALSE;
7064
7065 /* Initialise the fields of the segment map. Default to
7066 using the physical address of the segment in the input BFD. */
7067 map->next = NULL;
7068 map->p_type = segment->p_type;
7069 map->p_flags = segment->p_flags;
7070 map->p_flags_valid = 1;
7071
7072 /* If the first section in the input segment is removed, there is
7073 no need to preserve segment physical address in the corresponding
7074 output segment. */
7075 if (!first_section || first_section->output_section != NULL)
7076 {
7077 map->p_paddr = segment->p_paddr;
7078 map->p_paddr_valid = p_paddr_valid;
7079 }
7080
7081 /* Determine if this segment contains the ELF file header
7082 and if it contains the program headers themselves. */
7083 map->includes_filehdr = (segment->p_offset == 0
7084 && segment->p_filesz >= iehdr->e_ehsize);
7085 map->includes_phdrs = 0;
7086
7087 if (!phdr_included || segment->p_type != PT_LOAD)
7088 {
7089 map->includes_phdrs =
7090 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7091 && (segment->p_offset + segment->p_filesz
7092 >= ((bfd_vma) iehdr->e_phoff
7093 + iehdr->e_phnum * iehdr->e_phentsize)));
7094
7095 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7096 phdr_included = TRUE;
7097 }
7098
7099 if (section_count == 0)
7100 {
7101 /* Special segments, such as the PT_PHDR segment, may contain
7102 no sections, but ordinary, loadable segments should contain
7103 something. They are allowed by the ELF spec however, so only
7104 a warning is produced.
7105 There is however the valid use case of embedded systems which
7106 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7107 flash memory with zeros. No warning is shown for that case. */
7108 if (segment->p_type == PT_LOAD
7109 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7110 /* xgettext:c-format */
7111 _bfd_error_handler
7112 (_("%pB: warning: empty loadable segment detected"
7113 " at vaddr=%#" PRIx64 ", is this intentional?"),
7114 ibfd, (uint64_t) segment->p_vaddr);
7115
7116 map->p_vaddr_offset = segment->p_vaddr;
7117 map->count = 0;
7118 *pointer_to_map = map;
7119 pointer_to_map = &map->next;
7120
7121 continue;
7122 }
7123
7124 /* Now scan the sections in the input BFD again and attempt
7125 to add their corresponding output sections to the segment map.
7126 The problem here is how to handle an output section which has
7127 been moved (ie had its LMA changed). There are four possibilities:
7128
7129 1. None of the sections have been moved.
7130 In this case we can continue to use the segment LMA from the
7131 input BFD.
7132
7133 2. All of the sections have been moved by the same amount.
7134 In this case we can change the segment's LMA to match the LMA
7135 of the first section.
7136
7137 3. Some of the sections have been moved, others have not.
7138 In this case those sections which have not been moved can be
7139 placed in the current segment which will have to have its size,
7140 and possibly its LMA changed, and a new segment or segments will
7141 have to be created to contain the other sections.
7142
7143 4. The sections have been moved, but not by the same amount.
7144 In this case we can change the segment's LMA to match the LMA
7145 of the first section and we will have to create a new segment
7146 or segments to contain the other sections.
7147
7148 In order to save time, we allocate an array to hold the section
7149 pointers that we are interested in. As these sections get assigned
7150 to a segment, they are removed from this array. */
7151
7152 amt = section_count * sizeof (asection *);
7153 sections = (asection **) bfd_malloc (amt);
7154 if (sections == NULL)
7155 return FALSE;
7156
7157 /* Step One: Scan for segment vs section LMA conflicts.
7158 Also add the sections to the section array allocated above.
7159 Also add the sections to the current segment. In the common
7160 case, where the sections have not been moved, this means that
7161 we have completely filled the segment, and there is nothing
7162 more to do. */
7163 isec = 0;
7164 matching_lma = NULL;
7165 suggested_lma = NULL;
7166
7167 for (section = first_section, j = 0;
7168 section != NULL;
7169 section = section->next)
7170 {
7171 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7172 {
7173 output_section = section->output_section;
7174
7175 sections[j++] = section;
7176
7177 /* The Solaris native linker always sets p_paddr to 0.
7178 We try to catch that case here, and set it to the
7179 correct value. Note - some backends require that
7180 p_paddr be left as zero. */
7181 if (!p_paddr_valid
7182 && segment->p_vaddr != 0
7183 && !bed->want_p_paddr_set_to_zero
7184 && isec == 0
7185 && output_section->lma != 0
7186 && (align_power (segment->p_vaddr
7187 + (map->includes_filehdr
7188 ? iehdr->e_ehsize : 0)
7189 + (map->includes_phdrs
7190 ? iehdr->e_phnum * iehdr->e_phentsize
7191 : 0),
7192 output_section->alignment_power)
7193 == output_section->vma))
7194 map->p_paddr = segment->p_vaddr;
7195
7196 /* Match up the physical address of the segment with the
7197 LMA address of the output section. */
7198 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7199 || IS_COREFILE_NOTE (segment, section)
7200 || (bed->want_p_paddr_set_to_zero
7201 && IS_CONTAINED_BY_VMA (output_section, segment)))
7202 {
7203 if (matching_lma == NULL
7204 || output_section->lma < matching_lma->lma)
7205 matching_lma = output_section;
7206
7207 /* We assume that if the section fits within the segment
7208 then it does not overlap any other section within that
7209 segment. */
7210 map->sections[isec++] = output_section;
7211 }
7212 else if (suggested_lma == NULL)
7213 suggested_lma = output_section;
7214
7215 if (j == section_count)
7216 break;
7217 }
7218 }
7219
7220 BFD_ASSERT (j == section_count);
7221
7222 /* Step Two: Adjust the physical address of the current segment,
7223 if necessary. */
7224 if (isec == section_count)
7225 {
7226 /* All of the sections fitted within the segment as currently
7227 specified. This is the default case. Add the segment to
7228 the list of built segments and carry on to process the next
7229 program header in the input BFD. */
7230 map->count = section_count;
7231 *pointer_to_map = map;
7232 pointer_to_map = &map->next;
7233
7234 if (p_paddr_valid
7235 && !bed->want_p_paddr_set_to_zero)
7236 {
7237 bfd_vma hdr_size = 0;
7238 if (map->includes_filehdr)
7239 hdr_size = iehdr->e_ehsize;
7240 if (map->includes_phdrs)
7241 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7242
7243 /* Account for padding before the first section in the
7244 segment. */
7245 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7246 }
7247
7248 free (sections);
7249 continue;
7250 }
7251 else
7252 {
7253 /* Change the current segment's physical address to match
7254 the LMA of the first section that fitted, or if no
7255 section fitted, the first section. */
7256 if (matching_lma == NULL)
7257 matching_lma = suggested_lma;
7258
7259 map->p_paddr = matching_lma->lma;
7260
7261 /* Offset the segment physical address from the lma
7262 to allow for space taken up by elf headers. */
7263 if (map->includes_phdrs)
7264 {
7265 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7266
7267 /* iehdr->e_phnum is just an estimate of the number
7268 of program headers that we will need. Make a note
7269 here of the number we used and the segment we chose
7270 to hold these headers, so that we can adjust the
7271 offset when we know the correct value. */
7272 phdr_adjust_num = iehdr->e_phnum;
7273 phdr_adjust_seg = map;
7274 }
7275
7276 if (map->includes_filehdr)
7277 {
7278 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7279 map->p_paddr -= iehdr->e_ehsize;
7280 /* We've subtracted off the size of headers from the
7281 first section lma, but there may have been some
7282 alignment padding before that section too. Try to
7283 account for that by adjusting the segment lma down to
7284 the same alignment. */
7285 if (segment->p_align != 0 && segment->p_align < align)
7286 align = segment->p_align;
7287 map->p_paddr &= -align;
7288 }
7289 }
7290
7291 /* Step Three: Loop over the sections again, this time assigning
7292 those that fit to the current segment and removing them from the
7293 sections array; but making sure not to leave large gaps. Once all
7294 possible sections have been assigned to the current segment it is
7295 added to the list of built segments and if sections still remain
7296 to be assigned, a new segment is constructed before repeating
7297 the loop. */
7298 isec = 0;
7299 do
7300 {
7301 map->count = 0;
7302 suggested_lma = NULL;
7303
7304 /* Fill the current segment with sections that fit. */
7305 for (j = 0; j < section_count; j++)
7306 {
7307 section = sections[j];
7308
7309 if (section == NULL)
7310 continue;
7311
7312 output_section = section->output_section;
7313
7314 BFD_ASSERT (output_section != NULL);
7315
7316 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7317 || IS_COREFILE_NOTE (segment, section))
7318 {
7319 if (map->count == 0)
7320 {
7321 /* If the first section in a segment does not start at
7322 the beginning of the segment, then something is
7323 wrong. */
7324 if (align_power (map->p_paddr
7325 + (map->includes_filehdr
7326 ? iehdr->e_ehsize : 0)
7327 + (map->includes_phdrs
7328 ? iehdr->e_phnum * iehdr->e_phentsize
7329 : 0),
7330 output_section->alignment_power)
7331 != output_section->lma)
7332 goto sorry;
7333 }
7334 else
7335 {
7336 asection *prev_sec;
7337
7338 prev_sec = map->sections[map->count - 1];
7339
7340 /* If the gap between the end of the previous section
7341 and the start of this section is more than
7342 maxpagesize then we need to start a new segment. */
7343 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7344 maxpagesize)
7345 < BFD_ALIGN (output_section->lma, maxpagesize))
7346 || (prev_sec->lma + prev_sec->size
7347 > output_section->lma))
7348 {
7349 if (suggested_lma == NULL)
7350 suggested_lma = output_section;
7351
7352 continue;
7353 }
7354 }
7355
7356 map->sections[map->count++] = output_section;
7357 ++isec;
7358 sections[j] = NULL;
7359 if (segment->p_type == PT_LOAD)
7360 section->segment_mark = TRUE;
7361 }
7362 else if (suggested_lma == NULL)
7363 suggested_lma = output_section;
7364 }
7365
7366 /* PR 23932. A corrupt input file may contain sections that cannot
7367 be assigned to any segment - because for example they have a
7368 negative size - or segments that do not contain any sections.
7369 But there are also valid reasons why a segment can be empty.
7370 So allow a count of zero. */
7371
7372 /* Add the current segment to the list of built segments. */
7373 *pointer_to_map = map;
7374 pointer_to_map = &map->next;
7375
7376 if (isec < section_count)
7377 {
7378 /* We still have not allocated all of the sections to
7379 segments. Create a new segment here, initialise it
7380 and carry on looping. */
7381 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7382 amt += section_count * sizeof (asection *);
7383 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7384 if (map == NULL)
7385 {
7386 free (sections);
7387 return FALSE;
7388 }
7389
7390 /* Initialise the fields of the segment map. Set the physical
7391 physical address to the LMA of the first section that has
7392 not yet been assigned. */
7393 map->next = NULL;
7394 map->p_type = segment->p_type;
7395 map->p_flags = segment->p_flags;
7396 map->p_flags_valid = 1;
7397 map->p_paddr = suggested_lma->lma;
7398 map->p_paddr_valid = p_paddr_valid;
7399 map->includes_filehdr = 0;
7400 map->includes_phdrs = 0;
7401 }
7402
7403 continue;
7404 sorry:
7405 bfd_set_error (bfd_error_sorry);
7406 free (sections);
7407 return FALSE;
7408 }
7409 while (isec < section_count);
7410
7411 free (sections);
7412 }
7413
7414 elf_seg_map (obfd) = map_first;
7415
7416 /* If we had to estimate the number of program headers that were
7417 going to be needed, then check our estimate now and adjust
7418 the offset if necessary. */
7419 if (phdr_adjust_seg != NULL)
7420 {
7421 unsigned int count;
7422
7423 for (count = 0, map = map_first; map != NULL; map = map->next)
7424 count++;
7425
7426 if (count > phdr_adjust_num)
7427 phdr_adjust_seg->p_paddr
7428 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7429
7430 for (map = map_first; map != NULL; map = map->next)
7431 if (map->p_type == PT_PHDR)
7432 {
7433 bfd_vma adjust
7434 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7435 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7436 break;
7437 }
7438 }
7439
7440 #undef SEGMENT_END
7441 #undef SECTION_SIZE
7442 #undef IS_CONTAINED_BY_VMA
7443 #undef IS_CONTAINED_BY_LMA
7444 #undef IS_NOTE
7445 #undef IS_COREFILE_NOTE
7446 #undef IS_SOLARIS_PT_INTERP
7447 #undef IS_SECTION_IN_INPUT_SEGMENT
7448 #undef INCLUDE_SECTION_IN_SEGMENT
7449 #undef SEGMENT_AFTER_SEGMENT
7450 #undef SEGMENT_OVERLAPS
7451 return TRUE;
7452 }
7453
7454 /* Copy ELF program header information. */
7455
7456 static bfd_boolean
7457 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7458 {
7459 Elf_Internal_Ehdr *iehdr;
7460 struct elf_segment_map *map;
7461 struct elf_segment_map *map_first;
7462 struct elf_segment_map **pointer_to_map;
7463 Elf_Internal_Phdr *segment;
7464 unsigned int i;
7465 unsigned int num_segments;
7466 bfd_boolean phdr_included = FALSE;
7467 bfd_boolean p_paddr_valid;
7468
7469 iehdr = elf_elfheader (ibfd);
7470
7471 map_first = NULL;
7472 pointer_to_map = &map_first;
7473
7474 /* If all the segment p_paddr fields are zero, don't set
7475 map->p_paddr_valid. */
7476 p_paddr_valid = FALSE;
7477 num_segments = elf_elfheader (ibfd)->e_phnum;
7478 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7479 i < num_segments;
7480 i++, segment++)
7481 if (segment->p_paddr != 0)
7482 {
7483 p_paddr_valid = TRUE;
7484 break;
7485 }
7486
7487 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7488 i < num_segments;
7489 i++, segment++)
7490 {
7491 asection *section;
7492 unsigned int section_count;
7493 size_t amt;
7494 Elf_Internal_Shdr *this_hdr;
7495 asection *first_section = NULL;
7496 asection *lowest_section;
7497
7498 /* Compute how many sections are in this segment. */
7499 for (section = ibfd->sections, section_count = 0;
7500 section != NULL;
7501 section = section->next)
7502 {
7503 this_hdr = &(elf_section_data(section)->this_hdr);
7504 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7505 {
7506 if (first_section == NULL)
7507 first_section = section;
7508 section_count++;
7509 }
7510 }
7511
7512 /* Allocate a segment map big enough to contain
7513 all of the sections we have selected. */
7514 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7515 amt += section_count * sizeof (asection *);
7516 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7517 if (map == NULL)
7518 return FALSE;
7519
7520 /* Initialize the fields of the output segment map with the
7521 input segment. */
7522 map->next = NULL;
7523 map->p_type = segment->p_type;
7524 map->p_flags = segment->p_flags;
7525 map->p_flags_valid = 1;
7526 map->p_paddr = segment->p_paddr;
7527 map->p_paddr_valid = p_paddr_valid;
7528 map->p_align = segment->p_align;
7529 map->p_align_valid = 1;
7530 map->p_vaddr_offset = 0;
7531
7532 if (map->p_type == PT_GNU_RELRO
7533 || map->p_type == PT_GNU_STACK)
7534 {
7535 /* The PT_GNU_RELRO segment may contain the first a few
7536 bytes in the .got.plt section even if the whole .got.plt
7537 section isn't in the PT_GNU_RELRO segment. We won't
7538 change the size of the PT_GNU_RELRO segment.
7539 Similarly, PT_GNU_STACK size is significant on uclinux
7540 systems. */
7541 map->p_size = segment->p_memsz;
7542 map->p_size_valid = 1;
7543 }
7544
7545 /* Determine if this segment contains the ELF file header
7546 and if it contains the program headers themselves. */
7547 map->includes_filehdr = (segment->p_offset == 0
7548 && segment->p_filesz >= iehdr->e_ehsize);
7549
7550 map->includes_phdrs = 0;
7551 if (! phdr_included || segment->p_type != PT_LOAD)
7552 {
7553 map->includes_phdrs =
7554 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7555 && (segment->p_offset + segment->p_filesz
7556 >= ((bfd_vma) iehdr->e_phoff
7557 + iehdr->e_phnum * iehdr->e_phentsize)));
7558
7559 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7560 phdr_included = TRUE;
7561 }
7562
7563 lowest_section = NULL;
7564 if (section_count != 0)
7565 {
7566 unsigned int isec = 0;
7567
7568 for (section = first_section;
7569 section != NULL;
7570 section = section->next)
7571 {
7572 this_hdr = &(elf_section_data(section)->this_hdr);
7573 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7574 {
7575 map->sections[isec++] = section->output_section;
7576 if ((section->flags & SEC_ALLOC) != 0)
7577 {
7578 bfd_vma seg_off;
7579
7580 if (lowest_section == NULL
7581 || section->lma < lowest_section->lma)
7582 lowest_section = section;
7583
7584 /* Section lmas are set up from PT_LOAD header
7585 p_paddr in _bfd_elf_make_section_from_shdr.
7586 If this header has a p_paddr that disagrees
7587 with the section lma, flag the p_paddr as
7588 invalid. */
7589 if ((section->flags & SEC_LOAD) != 0)
7590 seg_off = this_hdr->sh_offset - segment->p_offset;
7591 else
7592 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7593 if (section->lma - segment->p_paddr != seg_off)
7594 map->p_paddr_valid = FALSE;
7595 }
7596 if (isec == section_count)
7597 break;
7598 }
7599 }
7600 }
7601
7602 if (section_count == 0)
7603 map->p_vaddr_offset = segment->p_vaddr;
7604 else if (map->p_paddr_valid)
7605 {
7606 /* Account for padding before the first section in the segment. */
7607 bfd_vma hdr_size = 0;
7608 if (map->includes_filehdr)
7609 hdr_size = iehdr->e_ehsize;
7610 if (map->includes_phdrs)
7611 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7612
7613 map->p_vaddr_offset = (map->p_paddr + hdr_size
7614 - (lowest_section ? lowest_section->lma : 0));
7615 }
7616
7617 map->count = section_count;
7618 *pointer_to_map = map;
7619 pointer_to_map = &map->next;
7620 }
7621
7622 elf_seg_map (obfd) = map_first;
7623 return TRUE;
7624 }
7625
7626 /* Copy private BFD data. This copies or rewrites ELF program header
7627 information. */
7628
7629 static bfd_boolean
7630 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7631 {
7632 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7633 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7634 return TRUE;
7635
7636 if (elf_tdata (ibfd)->phdr == NULL)
7637 return TRUE;
7638
7639 if (ibfd->xvec == obfd->xvec)
7640 {
7641 /* Check to see if any sections in the input BFD
7642 covered by ELF program header have changed. */
7643 Elf_Internal_Phdr *segment;
7644 asection *section, *osec;
7645 unsigned int i, num_segments;
7646 Elf_Internal_Shdr *this_hdr;
7647 const struct elf_backend_data *bed;
7648
7649 bed = get_elf_backend_data (ibfd);
7650
7651 /* Regenerate the segment map if p_paddr is set to 0. */
7652 if (bed->want_p_paddr_set_to_zero)
7653 goto rewrite;
7654
7655 /* Initialize the segment mark field. */
7656 for (section = obfd->sections; section != NULL;
7657 section = section->next)
7658 section->segment_mark = FALSE;
7659
7660 num_segments = elf_elfheader (ibfd)->e_phnum;
7661 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7662 i < num_segments;
7663 i++, segment++)
7664 {
7665 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7666 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7667 which severly confuses things, so always regenerate the segment
7668 map in this case. */
7669 if (segment->p_paddr == 0
7670 && segment->p_memsz == 0
7671 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7672 goto rewrite;
7673
7674 for (section = ibfd->sections;
7675 section != NULL; section = section->next)
7676 {
7677 /* We mark the output section so that we know it comes
7678 from the input BFD. */
7679 osec = section->output_section;
7680 if (osec)
7681 osec->segment_mark = TRUE;
7682
7683 /* Check if this section is covered by the segment. */
7684 this_hdr = &(elf_section_data(section)->this_hdr);
7685 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7686 {
7687 /* FIXME: Check if its output section is changed or
7688 removed. What else do we need to check? */
7689 if (osec == NULL
7690 || section->flags != osec->flags
7691 || section->lma != osec->lma
7692 || section->vma != osec->vma
7693 || section->size != osec->size
7694 || section->rawsize != osec->rawsize
7695 || section->alignment_power != osec->alignment_power)
7696 goto rewrite;
7697 }
7698 }
7699 }
7700
7701 /* Check to see if any output section do not come from the
7702 input BFD. */
7703 for (section = obfd->sections; section != NULL;
7704 section = section->next)
7705 {
7706 if (!section->segment_mark)
7707 goto rewrite;
7708 else
7709 section->segment_mark = FALSE;
7710 }
7711
7712 return copy_elf_program_header (ibfd, obfd);
7713 }
7714
7715 rewrite:
7716 if (ibfd->xvec == obfd->xvec)
7717 {
7718 /* When rewriting program header, set the output maxpagesize to
7719 the maximum alignment of input PT_LOAD segments. */
7720 Elf_Internal_Phdr *segment;
7721 unsigned int i;
7722 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7723 bfd_vma maxpagesize = 0;
7724
7725 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7726 i < num_segments;
7727 i++, segment++)
7728 if (segment->p_type == PT_LOAD
7729 && maxpagesize < segment->p_align)
7730 {
7731 /* PR 17512: file: f17299af. */
7732 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7733 /* xgettext:c-format */
7734 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7735 PRIx64 " is too large"),
7736 ibfd, (uint64_t) segment->p_align);
7737 else
7738 maxpagesize = segment->p_align;
7739 }
7740
7741 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7742 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7743 }
7744
7745 return rewrite_elf_program_header (ibfd, obfd);
7746 }
7747
7748 /* Initialize private output section information from input section. */
7749
7750 bfd_boolean
7751 _bfd_elf_init_private_section_data (bfd *ibfd,
7752 asection *isec,
7753 bfd *obfd,
7754 asection *osec,
7755 struct bfd_link_info *link_info)
7756
7757 {
7758 Elf_Internal_Shdr *ihdr, *ohdr;
7759 bfd_boolean final_link = (link_info != NULL
7760 && !bfd_link_relocatable (link_info));
7761
7762 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7763 || obfd->xvec->flavour != bfd_target_elf_flavour)
7764 return TRUE;
7765
7766 BFD_ASSERT (elf_section_data (osec) != NULL);
7767
7768 /* For objcopy and relocatable link, don't copy the output ELF
7769 section type from input if the output BFD section flags have been
7770 set to something different. For a final link allow some flags
7771 that the linker clears to differ. */
7772 if (elf_section_type (osec) == SHT_NULL
7773 && (osec->flags == isec->flags
7774 || (final_link
7775 && ((osec->flags ^ isec->flags)
7776 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7777 elf_section_type (osec) = elf_section_type (isec);
7778
7779 /* FIXME: Is this correct for all OS/PROC specific flags? */
7780 elf_section_flags (osec) |= (elf_section_flags (isec)
7781 & (SHF_MASKOS | SHF_MASKPROC));
7782
7783 /* Copy sh_info from input for mbind section. */
7784 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7785 && elf_section_flags (isec) & SHF_GNU_MBIND)
7786 elf_section_data (osec)->this_hdr.sh_info
7787 = elf_section_data (isec)->this_hdr.sh_info;
7788
7789 /* Set things up for objcopy and relocatable link. The output
7790 SHT_GROUP section will have its elf_next_in_group pointing back
7791 to the input group members. Ignore linker created group section.
7792 See elfNN_ia64_object_p in elfxx-ia64.c. */
7793 if ((link_info == NULL
7794 || !link_info->resolve_section_groups)
7795 && (elf_sec_group (isec) == NULL
7796 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7797 {
7798 if (elf_section_flags (isec) & SHF_GROUP)
7799 elf_section_flags (osec) |= SHF_GROUP;
7800 elf_next_in_group (osec) = elf_next_in_group (isec);
7801 elf_section_data (osec)->group = elf_section_data (isec)->group;
7802 }
7803
7804 /* If not decompress, preserve SHF_COMPRESSED. */
7805 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7806 elf_section_flags (osec) |= (elf_section_flags (isec)
7807 & SHF_COMPRESSED);
7808
7809 ihdr = &elf_section_data (isec)->this_hdr;
7810
7811 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7812 don't use the output section of the linked-to section since it
7813 may be NULL at this point. */
7814 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7815 {
7816 ohdr = &elf_section_data (osec)->this_hdr;
7817 ohdr->sh_flags |= SHF_LINK_ORDER;
7818 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7819 }
7820
7821 osec->use_rela_p = isec->use_rela_p;
7822
7823 return TRUE;
7824 }
7825
7826 /* Copy private section information. This copies over the entsize
7827 field, and sometimes the info field. */
7828
7829 bfd_boolean
7830 _bfd_elf_copy_private_section_data (bfd *ibfd,
7831 asection *isec,
7832 bfd *obfd,
7833 asection *osec)
7834 {
7835 Elf_Internal_Shdr *ihdr, *ohdr;
7836
7837 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7838 || obfd->xvec->flavour != bfd_target_elf_flavour)
7839 return TRUE;
7840
7841 ihdr = &elf_section_data (isec)->this_hdr;
7842 ohdr = &elf_section_data (osec)->this_hdr;
7843
7844 ohdr->sh_entsize = ihdr->sh_entsize;
7845
7846 if (ihdr->sh_type == SHT_SYMTAB
7847 || ihdr->sh_type == SHT_DYNSYM
7848 || ihdr->sh_type == SHT_GNU_verneed
7849 || ihdr->sh_type == SHT_GNU_verdef)
7850 ohdr->sh_info = ihdr->sh_info;
7851
7852 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7853 NULL);
7854 }
7855
7856 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7857 necessary if we are removing either the SHT_GROUP section or any of
7858 the group member sections. DISCARDED is the value that a section's
7859 output_section has if the section will be discarded, NULL when this
7860 function is called from objcopy, bfd_abs_section_ptr when called
7861 from the linker. */
7862
7863 bfd_boolean
7864 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7865 {
7866 asection *isec;
7867
7868 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7869 if (elf_section_type (isec) == SHT_GROUP)
7870 {
7871 asection *first = elf_next_in_group (isec);
7872 asection *s = first;
7873 bfd_size_type removed = 0;
7874
7875 while (s != NULL)
7876 {
7877 /* If this member section is being output but the
7878 SHT_GROUP section is not, then clear the group info
7879 set up by _bfd_elf_copy_private_section_data. */
7880 if (s->output_section != discarded
7881 && isec->output_section == discarded)
7882 {
7883 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7884 elf_group_name (s->output_section) = NULL;
7885 }
7886 /* Conversely, if the member section is not being output
7887 but the SHT_GROUP section is, then adjust its size. */
7888 else if (s->output_section == discarded
7889 && isec->output_section != discarded)
7890 {
7891 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7892 removed += 4;
7893 if (elf_sec->rel.hdr != NULL
7894 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7895 removed += 4;
7896 if (elf_sec->rela.hdr != NULL
7897 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7898 removed += 4;
7899 }
7900 s = elf_next_in_group (s);
7901 if (s == first)
7902 break;
7903 }
7904 if (removed != 0)
7905 {
7906 if (discarded != NULL)
7907 {
7908 /* If we've been called for ld -r, then we need to
7909 adjust the input section size. */
7910 if (isec->rawsize == 0)
7911 isec->rawsize = isec->size;
7912 isec->size = isec->rawsize - removed;
7913 if (isec->size <= 4)
7914 {
7915 isec->size = 0;
7916 isec->flags |= SEC_EXCLUDE;
7917 }
7918 }
7919 else
7920 {
7921 /* Adjust the output section size when called from
7922 objcopy. */
7923 isec->output_section->size -= removed;
7924 if (isec->output_section->size <= 4)
7925 {
7926 isec->output_section->size = 0;
7927 isec->output_section->flags |= SEC_EXCLUDE;
7928 }
7929 }
7930 }
7931 }
7932
7933 return TRUE;
7934 }
7935
7936 /* Copy private header information. */
7937
7938 bfd_boolean
7939 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7940 {
7941 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7942 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7943 return TRUE;
7944
7945 /* Copy over private BFD data if it has not already been copied.
7946 This must be done here, rather than in the copy_private_bfd_data
7947 entry point, because the latter is called after the section
7948 contents have been set, which means that the program headers have
7949 already been worked out. */
7950 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7951 {
7952 if (! copy_private_bfd_data (ibfd, obfd))
7953 return FALSE;
7954 }
7955
7956 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7957 }
7958
7959 /* Copy private symbol information. If this symbol is in a section
7960 which we did not map into a BFD section, try to map the section
7961 index correctly. We use special macro definitions for the mapped
7962 section indices; these definitions are interpreted by the
7963 swap_out_syms function. */
7964
7965 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7966 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7967 #define MAP_STRTAB (SHN_HIOS + 3)
7968 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7969 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7970
7971 bfd_boolean
7972 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7973 asymbol *isymarg,
7974 bfd *obfd,
7975 asymbol *osymarg)
7976 {
7977 elf_symbol_type *isym, *osym;
7978
7979 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7980 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7981 return TRUE;
7982
7983 isym = elf_symbol_from (ibfd, isymarg);
7984 osym = elf_symbol_from (obfd, osymarg);
7985
7986 if (isym != NULL
7987 && isym->internal_elf_sym.st_shndx != 0
7988 && osym != NULL
7989 && bfd_is_abs_section (isym->symbol.section))
7990 {
7991 unsigned int shndx;
7992
7993 shndx = isym->internal_elf_sym.st_shndx;
7994 if (shndx == elf_onesymtab (ibfd))
7995 shndx = MAP_ONESYMTAB;
7996 else if (shndx == elf_dynsymtab (ibfd))
7997 shndx = MAP_DYNSYMTAB;
7998 else if (shndx == elf_strtab_sec (ibfd))
7999 shndx = MAP_STRTAB;
8000 else if (shndx == elf_shstrtab_sec (ibfd))
8001 shndx = MAP_SHSTRTAB;
8002 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8003 shndx = MAP_SYM_SHNDX;
8004 osym->internal_elf_sym.st_shndx = shndx;
8005 }
8006
8007 return TRUE;
8008 }
8009
8010 /* Swap out the symbols. */
8011
8012 static bfd_boolean
8013 swap_out_syms (bfd *abfd,
8014 struct elf_strtab_hash **sttp,
8015 int relocatable_p)
8016 {
8017 const struct elf_backend_data *bed;
8018 int symcount;
8019 asymbol **syms;
8020 struct elf_strtab_hash *stt;
8021 Elf_Internal_Shdr *symtab_hdr;
8022 Elf_Internal_Shdr *symtab_shndx_hdr;
8023 Elf_Internal_Shdr *symstrtab_hdr;
8024 struct elf_sym_strtab *symstrtab;
8025 bfd_byte *outbound_syms;
8026 bfd_byte *outbound_shndx;
8027 unsigned long outbound_syms_index;
8028 unsigned long outbound_shndx_index;
8029 int idx;
8030 unsigned int num_locals;
8031 bfd_size_type amt;
8032 bfd_boolean name_local_sections;
8033
8034 if (!elf_map_symbols (abfd, &num_locals))
8035 return FALSE;
8036
8037 /* Dump out the symtabs. */
8038 stt = _bfd_elf_strtab_init ();
8039 if (stt == NULL)
8040 return FALSE;
8041
8042 bed = get_elf_backend_data (abfd);
8043 symcount = bfd_get_symcount (abfd);
8044 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8045 symtab_hdr->sh_type = SHT_SYMTAB;
8046 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8047 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8048 symtab_hdr->sh_info = num_locals + 1;
8049 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8050
8051 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8052 symstrtab_hdr->sh_type = SHT_STRTAB;
8053
8054 /* Allocate buffer to swap out the .strtab section. */
8055 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8056 sizeof (*symstrtab));
8057 if (symstrtab == NULL)
8058 {
8059 _bfd_elf_strtab_free (stt);
8060 return FALSE;
8061 }
8062
8063 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8064 bed->s->sizeof_sym);
8065 if (outbound_syms == NULL)
8066 {
8067 error_return:
8068 _bfd_elf_strtab_free (stt);
8069 free (symstrtab);
8070 return FALSE;
8071 }
8072 symtab_hdr->contents = outbound_syms;
8073 outbound_syms_index = 0;
8074
8075 outbound_shndx = NULL;
8076 outbound_shndx_index = 0;
8077
8078 if (elf_symtab_shndx_list (abfd))
8079 {
8080 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8081 if (symtab_shndx_hdr->sh_name != 0)
8082 {
8083 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8084 outbound_shndx = (bfd_byte *)
8085 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8086 if (outbound_shndx == NULL)
8087 goto error_return;
8088
8089 symtab_shndx_hdr->contents = outbound_shndx;
8090 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8091 symtab_shndx_hdr->sh_size = amt;
8092 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8093 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8094 }
8095 /* FIXME: What about any other headers in the list ? */
8096 }
8097
8098 /* Now generate the data (for "contents"). */
8099 {
8100 /* Fill in zeroth symbol and swap it out. */
8101 Elf_Internal_Sym sym;
8102 sym.st_name = 0;
8103 sym.st_value = 0;
8104 sym.st_size = 0;
8105 sym.st_info = 0;
8106 sym.st_other = 0;
8107 sym.st_shndx = SHN_UNDEF;
8108 sym.st_target_internal = 0;
8109 symstrtab[0].sym = sym;
8110 symstrtab[0].dest_index = outbound_syms_index;
8111 symstrtab[0].destshndx_index = outbound_shndx_index;
8112 outbound_syms_index++;
8113 if (outbound_shndx != NULL)
8114 outbound_shndx_index++;
8115 }
8116
8117 name_local_sections
8118 = (bed->elf_backend_name_local_section_symbols
8119 && bed->elf_backend_name_local_section_symbols (abfd));
8120
8121 syms = bfd_get_outsymbols (abfd);
8122 for (idx = 0; idx < symcount;)
8123 {
8124 Elf_Internal_Sym sym;
8125 bfd_vma value = syms[idx]->value;
8126 elf_symbol_type *type_ptr;
8127 flagword flags = syms[idx]->flags;
8128 int type;
8129
8130 if (!name_local_sections
8131 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8132 {
8133 /* Local section symbols have no name. */
8134 sym.st_name = (unsigned long) -1;
8135 }
8136 else
8137 {
8138 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8139 to get the final offset for st_name. */
8140 sym.st_name
8141 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8142 FALSE);
8143 if (sym.st_name == (unsigned long) -1)
8144 goto error_return;
8145 }
8146
8147 type_ptr = elf_symbol_from (abfd, syms[idx]);
8148
8149 if ((flags & BSF_SECTION_SYM) == 0
8150 && bfd_is_com_section (syms[idx]->section))
8151 {
8152 /* ELF common symbols put the alignment into the `value' field,
8153 and the size into the `size' field. This is backwards from
8154 how BFD handles it, so reverse it here. */
8155 sym.st_size = value;
8156 if (type_ptr == NULL
8157 || type_ptr->internal_elf_sym.st_value == 0)
8158 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8159 else
8160 sym.st_value = type_ptr->internal_elf_sym.st_value;
8161 sym.st_shndx = _bfd_elf_section_from_bfd_section
8162 (abfd, syms[idx]->section);
8163 }
8164 else
8165 {
8166 asection *sec = syms[idx]->section;
8167 unsigned int shndx;
8168
8169 if (sec->output_section)
8170 {
8171 value += sec->output_offset;
8172 sec = sec->output_section;
8173 }
8174
8175 /* Don't add in the section vma for relocatable output. */
8176 if (! relocatable_p)
8177 value += sec->vma;
8178 sym.st_value = value;
8179 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8180
8181 if (bfd_is_abs_section (sec)
8182 && type_ptr != NULL
8183 && type_ptr->internal_elf_sym.st_shndx != 0)
8184 {
8185 /* This symbol is in a real ELF section which we did
8186 not create as a BFD section. Undo the mapping done
8187 by copy_private_symbol_data. */
8188 shndx = type_ptr->internal_elf_sym.st_shndx;
8189 switch (shndx)
8190 {
8191 case MAP_ONESYMTAB:
8192 shndx = elf_onesymtab (abfd);
8193 break;
8194 case MAP_DYNSYMTAB:
8195 shndx = elf_dynsymtab (abfd);
8196 break;
8197 case MAP_STRTAB:
8198 shndx = elf_strtab_sec (abfd);
8199 break;
8200 case MAP_SHSTRTAB:
8201 shndx = elf_shstrtab_sec (abfd);
8202 break;
8203 case MAP_SYM_SHNDX:
8204 if (elf_symtab_shndx_list (abfd))
8205 shndx = elf_symtab_shndx_list (abfd)->ndx;
8206 break;
8207 default:
8208 shndx = SHN_ABS;
8209 break;
8210 }
8211 }
8212 else
8213 {
8214 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8215
8216 if (shndx == SHN_BAD)
8217 {
8218 asection *sec2;
8219
8220 /* Writing this would be a hell of a lot easier if
8221 we had some decent documentation on bfd, and
8222 knew what to expect of the library, and what to
8223 demand of applications. For example, it
8224 appears that `objcopy' might not set the
8225 section of a symbol to be a section that is
8226 actually in the output file. */
8227 sec2 = bfd_get_section_by_name (abfd, sec->name);
8228 if (sec2 != NULL)
8229 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8230 if (shndx == SHN_BAD)
8231 {
8232 /* xgettext:c-format */
8233 _bfd_error_handler
8234 (_("unable to find equivalent output section"
8235 " for symbol '%s' from section '%s'"),
8236 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8237 sec->name);
8238 bfd_set_error (bfd_error_invalid_operation);
8239 goto error_return;
8240 }
8241 }
8242 }
8243
8244 sym.st_shndx = shndx;
8245 }
8246
8247 if ((flags & BSF_THREAD_LOCAL) != 0)
8248 type = STT_TLS;
8249 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8250 type = STT_GNU_IFUNC;
8251 else if ((flags & BSF_FUNCTION) != 0)
8252 type = STT_FUNC;
8253 else if ((flags & BSF_OBJECT) != 0)
8254 type = STT_OBJECT;
8255 else if ((flags & BSF_RELC) != 0)
8256 type = STT_RELC;
8257 else if ((flags & BSF_SRELC) != 0)
8258 type = STT_SRELC;
8259 else
8260 type = STT_NOTYPE;
8261
8262 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8263 type = STT_TLS;
8264
8265 /* Processor-specific types. */
8266 if (type_ptr != NULL
8267 && bed->elf_backend_get_symbol_type)
8268 type = ((*bed->elf_backend_get_symbol_type)
8269 (&type_ptr->internal_elf_sym, type));
8270
8271 if (flags & BSF_SECTION_SYM)
8272 {
8273 if (flags & BSF_GLOBAL)
8274 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8275 else
8276 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8277 }
8278 else if (bfd_is_com_section (syms[idx]->section))
8279 {
8280 if (type != STT_TLS)
8281 {
8282 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8283 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8284 ? STT_COMMON : STT_OBJECT);
8285 else
8286 type = ((flags & BSF_ELF_COMMON) != 0
8287 ? STT_COMMON : STT_OBJECT);
8288 }
8289 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8290 }
8291 else if (bfd_is_und_section (syms[idx]->section))
8292 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8293 ? STB_WEAK
8294 : STB_GLOBAL),
8295 type);
8296 else if (flags & BSF_FILE)
8297 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8298 else
8299 {
8300 int bind = STB_LOCAL;
8301
8302 if (flags & BSF_LOCAL)
8303 bind = STB_LOCAL;
8304 else if (flags & BSF_GNU_UNIQUE)
8305 bind = STB_GNU_UNIQUE;
8306 else if (flags & BSF_WEAK)
8307 bind = STB_WEAK;
8308 else if (flags & BSF_GLOBAL)
8309 bind = STB_GLOBAL;
8310
8311 sym.st_info = ELF_ST_INFO (bind, type);
8312 }
8313
8314 if (type_ptr != NULL)
8315 {
8316 sym.st_other = type_ptr->internal_elf_sym.st_other;
8317 sym.st_target_internal
8318 = type_ptr->internal_elf_sym.st_target_internal;
8319 }
8320 else
8321 {
8322 sym.st_other = 0;
8323 sym.st_target_internal = 0;
8324 }
8325
8326 idx++;
8327 symstrtab[idx].sym = sym;
8328 symstrtab[idx].dest_index = outbound_syms_index;
8329 symstrtab[idx].destshndx_index = outbound_shndx_index;
8330
8331 outbound_syms_index++;
8332 if (outbound_shndx != NULL)
8333 outbound_shndx_index++;
8334 }
8335
8336 /* Finalize the .strtab section. */
8337 _bfd_elf_strtab_finalize (stt);
8338
8339 /* Swap out the .strtab section. */
8340 for (idx = 0; idx <= symcount; idx++)
8341 {
8342 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8343 if (elfsym->sym.st_name == (unsigned long) -1)
8344 elfsym->sym.st_name = 0;
8345 else
8346 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8347 elfsym->sym.st_name);
8348 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8349 (outbound_syms
8350 + (elfsym->dest_index
8351 * bed->s->sizeof_sym)),
8352 (outbound_shndx
8353 + (elfsym->destshndx_index
8354 * sizeof (Elf_External_Sym_Shndx))));
8355 }
8356 free (symstrtab);
8357
8358 *sttp = stt;
8359 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8360 symstrtab_hdr->sh_type = SHT_STRTAB;
8361 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8362 symstrtab_hdr->sh_addr = 0;
8363 symstrtab_hdr->sh_entsize = 0;
8364 symstrtab_hdr->sh_link = 0;
8365 symstrtab_hdr->sh_info = 0;
8366 symstrtab_hdr->sh_addralign = 1;
8367
8368 return TRUE;
8369 }
8370
8371 /* Return the number of bytes required to hold the symtab vector.
8372
8373 Note that we base it on the count plus 1, since we will null terminate
8374 the vector allocated based on this size. However, the ELF symbol table
8375 always has a dummy entry as symbol #0, so it ends up even. */
8376
8377 long
8378 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8379 {
8380 bfd_size_type symcount;
8381 long symtab_size;
8382 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8383
8384 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8385 if (symcount >= LONG_MAX / sizeof (asymbol *))
8386 {
8387 bfd_set_error (bfd_error_file_too_big);
8388 return -1;
8389 }
8390 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8391 if (symcount > 0)
8392 symtab_size -= sizeof (asymbol *);
8393
8394 return symtab_size;
8395 }
8396
8397 long
8398 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8399 {
8400 bfd_size_type symcount;
8401 long symtab_size;
8402 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8403
8404 if (elf_dynsymtab (abfd) == 0)
8405 {
8406 bfd_set_error (bfd_error_invalid_operation);
8407 return -1;
8408 }
8409
8410 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8411 if (symcount >= LONG_MAX / sizeof (asymbol *))
8412 {
8413 bfd_set_error (bfd_error_file_too_big);
8414 return -1;
8415 }
8416 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8417 if (symcount > 0)
8418 symtab_size -= sizeof (asymbol *);
8419
8420 return symtab_size;
8421 }
8422
8423 long
8424 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8425 sec_ptr asect)
8426 {
8427 #if SIZEOF_LONG == SIZEOF_INT
8428 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8429 {
8430 bfd_set_error (bfd_error_file_too_big);
8431 return -1;
8432 }
8433 #endif
8434 return (asect->reloc_count + 1) * sizeof (arelent *);
8435 }
8436
8437 /* Canonicalize the relocs. */
8438
8439 long
8440 _bfd_elf_canonicalize_reloc (bfd *abfd,
8441 sec_ptr section,
8442 arelent **relptr,
8443 asymbol **symbols)
8444 {
8445 arelent *tblptr;
8446 unsigned int i;
8447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8448
8449 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8450 return -1;
8451
8452 tblptr = section->relocation;
8453 for (i = 0; i < section->reloc_count; i++)
8454 *relptr++ = tblptr++;
8455
8456 *relptr = NULL;
8457
8458 return section->reloc_count;
8459 }
8460
8461 long
8462 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8463 {
8464 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8465 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8466
8467 if (symcount >= 0)
8468 abfd->symcount = symcount;
8469 return symcount;
8470 }
8471
8472 long
8473 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8474 asymbol **allocation)
8475 {
8476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8477 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8478
8479 if (symcount >= 0)
8480 abfd->dynsymcount = symcount;
8481 return symcount;
8482 }
8483
8484 /* Return the size required for the dynamic reloc entries. Any loadable
8485 section that was actually installed in the BFD, and has type SHT_REL
8486 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8487 dynamic reloc section. */
8488
8489 long
8490 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8491 {
8492 bfd_size_type count;
8493 asection *s;
8494
8495 if (elf_dynsymtab (abfd) == 0)
8496 {
8497 bfd_set_error (bfd_error_invalid_operation);
8498 return -1;
8499 }
8500
8501 count = 1;
8502 for (s = abfd->sections; s != NULL; s = s->next)
8503 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8504 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8505 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8506 {
8507 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8508 if (count > LONG_MAX / sizeof (arelent *))
8509 {
8510 bfd_set_error (bfd_error_file_too_big);
8511 return -1;
8512 }
8513 }
8514 return count * sizeof (arelent *);
8515 }
8516
8517 /* Canonicalize the dynamic relocation entries. Note that we return the
8518 dynamic relocations as a single block, although they are actually
8519 associated with particular sections; the interface, which was
8520 designed for SunOS style shared libraries, expects that there is only
8521 one set of dynamic relocs. Any loadable section that was actually
8522 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8523 dynamic symbol table, is considered to be a dynamic reloc section. */
8524
8525 long
8526 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8527 arelent **storage,
8528 asymbol **syms)
8529 {
8530 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8531 asection *s;
8532 long ret;
8533
8534 if (elf_dynsymtab (abfd) == 0)
8535 {
8536 bfd_set_error (bfd_error_invalid_operation);
8537 return -1;
8538 }
8539
8540 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8541 ret = 0;
8542 for (s = abfd->sections; s != NULL; s = s->next)
8543 {
8544 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8545 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8546 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8547 {
8548 arelent *p;
8549 long count, i;
8550
8551 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8552 return -1;
8553 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8554 p = s->relocation;
8555 for (i = 0; i < count; i++)
8556 *storage++ = p++;
8557 ret += count;
8558 }
8559 }
8560
8561 *storage = NULL;
8562
8563 return ret;
8564 }
8565 \f
8566 /* Read in the version information. */
8567
8568 bfd_boolean
8569 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8570 {
8571 bfd_byte *contents = NULL;
8572 unsigned int freeidx = 0;
8573
8574 if (elf_dynverref (abfd) != 0)
8575 {
8576 Elf_Internal_Shdr *hdr;
8577 Elf_External_Verneed *everneed;
8578 Elf_Internal_Verneed *iverneed;
8579 unsigned int i;
8580 bfd_byte *contents_end;
8581
8582 hdr = &elf_tdata (abfd)->dynverref_hdr;
8583
8584 if (hdr->sh_info == 0
8585 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8586 {
8587 error_return_bad_verref:
8588 _bfd_error_handler
8589 (_("%pB: .gnu.version_r invalid entry"), abfd);
8590 bfd_set_error (bfd_error_bad_value);
8591 error_return_verref:
8592 elf_tdata (abfd)->verref = NULL;
8593 elf_tdata (abfd)->cverrefs = 0;
8594 goto error_return;
8595 }
8596
8597 ufile_ptr filesize = bfd_get_file_size (abfd);
8598 if (filesize > 0 && filesize < hdr->sh_size)
8599 {
8600 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8601 of memory. */
8602 bfd_set_error (bfd_error_no_memory);
8603 _bfd_error_handler
8604 /* xgettext:c-format */
8605 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8606 abfd, (uint64_t) hdr->sh_size);
8607 goto error_return_verref;
8608 }
8609 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8610 if (contents == NULL)
8611 goto error_return_verref;
8612
8613 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8614 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8615 goto error_return_verref;
8616
8617 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8618 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8619
8620 if (elf_tdata (abfd)->verref == NULL)
8621 goto error_return_verref;
8622
8623 BFD_ASSERT (sizeof (Elf_External_Verneed)
8624 == sizeof (Elf_External_Vernaux));
8625 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8626 everneed = (Elf_External_Verneed *) contents;
8627 iverneed = elf_tdata (abfd)->verref;
8628 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8629 {
8630 Elf_External_Vernaux *evernaux;
8631 Elf_Internal_Vernaux *ivernaux;
8632 unsigned int j;
8633
8634 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8635
8636 iverneed->vn_bfd = abfd;
8637
8638 iverneed->vn_filename =
8639 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8640 iverneed->vn_file);
8641 if (iverneed->vn_filename == NULL)
8642 goto error_return_bad_verref;
8643
8644 if (iverneed->vn_cnt == 0)
8645 iverneed->vn_auxptr = NULL;
8646 else
8647 {
8648 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8649 bfd_alloc2 (abfd, iverneed->vn_cnt,
8650 sizeof (Elf_Internal_Vernaux));
8651 if (iverneed->vn_auxptr == NULL)
8652 goto error_return_verref;
8653 }
8654
8655 if (iverneed->vn_aux
8656 > (size_t) (contents_end - (bfd_byte *) everneed))
8657 goto error_return_bad_verref;
8658
8659 evernaux = ((Elf_External_Vernaux *)
8660 ((bfd_byte *) everneed + iverneed->vn_aux));
8661 ivernaux = iverneed->vn_auxptr;
8662 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8663 {
8664 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8665
8666 ivernaux->vna_nodename =
8667 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8668 ivernaux->vna_name);
8669 if (ivernaux->vna_nodename == NULL)
8670 goto error_return_bad_verref;
8671
8672 if (ivernaux->vna_other > freeidx)
8673 freeidx = ivernaux->vna_other;
8674
8675 ivernaux->vna_nextptr = NULL;
8676 if (ivernaux->vna_next == 0)
8677 {
8678 iverneed->vn_cnt = j + 1;
8679 break;
8680 }
8681 if (j + 1 < iverneed->vn_cnt)
8682 ivernaux->vna_nextptr = ivernaux + 1;
8683
8684 if (ivernaux->vna_next
8685 > (size_t) (contents_end - (bfd_byte *) evernaux))
8686 goto error_return_bad_verref;
8687
8688 evernaux = ((Elf_External_Vernaux *)
8689 ((bfd_byte *) evernaux + ivernaux->vna_next));
8690 }
8691
8692 iverneed->vn_nextref = NULL;
8693 if (iverneed->vn_next == 0)
8694 break;
8695 if (i + 1 < hdr->sh_info)
8696 iverneed->vn_nextref = iverneed + 1;
8697
8698 if (iverneed->vn_next
8699 > (size_t) (contents_end - (bfd_byte *) everneed))
8700 goto error_return_bad_verref;
8701
8702 everneed = ((Elf_External_Verneed *)
8703 ((bfd_byte *) everneed + iverneed->vn_next));
8704 }
8705 elf_tdata (abfd)->cverrefs = i;
8706
8707 free (contents);
8708 contents = NULL;
8709 }
8710
8711 if (elf_dynverdef (abfd) != 0)
8712 {
8713 Elf_Internal_Shdr *hdr;
8714 Elf_External_Verdef *everdef;
8715 Elf_Internal_Verdef *iverdef;
8716 Elf_Internal_Verdef *iverdefarr;
8717 Elf_Internal_Verdef iverdefmem;
8718 unsigned int i;
8719 unsigned int maxidx;
8720 bfd_byte *contents_end_def, *contents_end_aux;
8721
8722 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8723
8724 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8725 {
8726 error_return_bad_verdef:
8727 _bfd_error_handler
8728 (_("%pB: .gnu.version_d invalid entry"), abfd);
8729 bfd_set_error (bfd_error_bad_value);
8730 error_return_verdef:
8731 elf_tdata (abfd)->verdef = NULL;
8732 elf_tdata (abfd)->cverdefs = 0;
8733 goto error_return;
8734 }
8735
8736 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8737 if (contents == NULL)
8738 goto error_return_verdef;
8739 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8740 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8741 goto error_return_verdef;
8742
8743 BFD_ASSERT (sizeof (Elf_External_Verdef)
8744 >= sizeof (Elf_External_Verdaux));
8745 contents_end_def = contents + hdr->sh_size
8746 - sizeof (Elf_External_Verdef);
8747 contents_end_aux = contents + hdr->sh_size
8748 - sizeof (Elf_External_Verdaux);
8749
8750 /* We know the number of entries in the section but not the maximum
8751 index. Therefore we have to run through all entries and find
8752 the maximum. */
8753 everdef = (Elf_External_Verdef *) contents;
8754 maxidx = 0;
8755 for (i = 0; i < hdr->sh_info; ++i)
8756 {
8757 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8758
8759 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8760 goto error_return_bad_verdef;
8761 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8762 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8763
8764 if (iverdefmem.vd_next == 0)
8765 break;
8766
8767 if (iverdefmem.vd_next
8768 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8769 goto error_return_bad_verdef;
8770
8771 everdef = ((Elf_External_Verdef *)
8772 ((bfd_byte *) everdef + iverdefmem.vd_next));
8773 }
8774
8775 if (default_imported_symver)
8776 {
8777 if (freeidx > maxidx)
8778 maxidx = ++freeidx;
8779 else
8780 freeidx = ++maxidx;
8781 }
8782
8783 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8784 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8785 if (elf_tdata (abfd)->verdef == NULL)
8786 goto error_return_verdef;
8787
8788 elf_tdata (abfd)->cverdefs = maxidx;
8789
8790 everdef = (Elf_External_Verdef *) contents;
8791 iverdefarr = elf_tdata (abfd)->verdef;
8792 for (i = 0; i < hdr->sh_info; i++)
8793 {
8794 Elf_External_Verdaux *everdaux;
8795 Elf_Internal_Verdaux *iverdaux;
8796 unsigned int j;
8797
8798 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8799
8800 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8801 goto error_return_bad_verdef;
8802
8803 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8804 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8805
8806 iverdef->vd_bfd = abfd;
8807
8808 if (iverdef->vd_cnt == 0)
8809 iverdef->vd_auxptr = NULL;
8810 else
8811 {
8812 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8813 bfd_alloc2 (abfd, iverdef->vd_cnt,
8814 sizeof (Elf_Internal_Verdaux));
8815 if (iverdef->vd_auxptr == NULL)
8816 goto error_return_verdef;
8817 }
8818
8819 if (iverdef->vd_aux
8820 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8821 goto error_return_bad_verdef;
8822
8823 everdaux = ((Elf_External_Verdaux *)
8824 ((bfd_byte *) everdef + iverdef->vd_aux));
8825 iverdaux = iverdef->vd_auxptr;
8826 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8827 {
8828 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8829
8830 iverdaux->vda_nodename =
8831 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8832 iverdaux->vda_name);
8833 if (iverdaux->vda_nodename == NULL)
8834 goto error_return_bad_verdef;
8835
8836 iverdaux->vda_nextptr = NULL;
8837 if (iverdaux->vda_next == 0)
8838 {
8839 iverdef->vd_cnt = j + 1;
8840 break;
8841 }
8842 if (j + 1 < iverdef->vd_cnt)
8843 iverdaux->vda_nextptr = iverdaux + 1;
8844
8845 if (iverdaux->vda_next
8846 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8847 goto error_return_bad_verdef;
8848
8849 everdaux = ((Elf_External_Verdaux *)
8850 ((bfd_byte *) everdaux + iverdaux->vda_next));
8851 }
8852
8853 iverdef->vd_nodename = NULL;
8854 if (iverdef->vd_cnt)
8855 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8856
8857 iverdef->vd_nextdef = NULL;
8858 if (iverdef->vd_next == 0)
8859 break;
8860 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8861 iverdef->vd_nextdef = iverdef + 1;
8862
8863 everdef = ((Elf_External_Verdef *)
8864 ((bfd_byte *) everdef + iverdef->vd_next));
8865 }
8866
8867 free (contents);
8868 contents = NULL;
8869 }
8870 else if (default_imported_symver)
8871 {
8872 if (freeidx < 3)
8873 freeidx = 3;
8874 else
8875 freeidx++;
8876
8877 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8878 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8879 if (elf_tdata (abfd)->verdef == NULL)
8880 goto error_return;
8881
8882 elf_tdata (abfd)->cverdefs = freeidx;
8883 }
8884
8885 /* Create a default version based on the soname. */
8886 if (default_imported_symver)
8887 {
8888 Elf_Internal_Verdef *iverdef;
8889 Elf_Internal_Verdaux *iverdaux;
8890
8891 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8892
8893 iverdef->vd_version = VER_DEF_CURRENT;
8894 iverdef->vd_flags = 0;
8895 iverdef->vd_ndx = freeidx;
8896 iverdef->vd_cnt = 1;
8897
8898 iverdef->vd_bfd = abfd;
8899
8900 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8901 if (iverdef->vd_nodename == NULL)
8902 goto error_return_verdef;
8903 iverdef->vd_nextdef = NULL;
8904 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8905 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8906 if (iverdef->vd_auxptr == NULL)
8907 goto error_return_verdef;
8908
8909 iverdaux = iverdef->vd_auxptr;
8910 iverdaux->vda_nodename = iverdef->vd_nodename;
8911 }
8912
8913 return TRUE;
8914
8915 error_return:
8916 if (contents != NULL)
8917 free (contents);
8918 return FALSE;
8919 }
8920 \f
8921 asymbol *
8922 _bfd_elf_make_empty_symbol (bfd *abfd)
8923 {
8924 elf_symbol_type *newsym;
8925
8926 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8927 if (!newsym)
8928 return NULL;
8929 newsym->symbol.the_bfd = abfd;
8930 return &newsym->symbol;
8931 }
8932
8933 void
8934 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8935 asymbol *symbol,
8936 symbol_info *ret)
8937 {
8938 bfd_symbol_info (symbol, ret);
8939 }
8940
8941 /* Return whether a symbol name implies a local symbol. Most targets
8942 use this function for the is_local_label_name entry point, but some
8943 override it. */
8944
8945 bfd_boolean
8946 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8947 const char *name)
8948 {
8949 /* Normal local symbols start with ``.L''. */
8950 if (name[0] == '.' && name[1] == 'L')
8951 return TRUE;
8952
8953 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8954 DWARF debugging symbols starting with ``..''. */
8955 if (name[0] == '.' && name[1] == '.')
8956 return TRUE;
8957
8958 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8959 emitting DWARF debugging output. I suspect this is actually a
8960 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8961 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8962 underscore to be emitted on some ELF targets). For ease of use,
8963 we treat such symbols as local. */
8964 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8965 return TRUE;
8966
8967 /* Treat assembler generated fake symbols, dollar local labels and
8968 forward-backward labels (aka local labels) as locals.
8969 These labels have the form:
8970
8971 L0^A.* (fake symbols)
8972
8973 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8974
8975 Versions which start with .L will have already been matched above,
8976 so we only need to match the rest. */
8977 if (name[0] == 'L' && ISDIGIT (name[1]))
8978 {
8979 bfd_boolean ret = FALSE;
8980 const char * p;
8981 char c;
8982
8983 for (p = name + 2; (c = *p); p++)
8984 {
8985 if (c == 1 || c == 2)
8986 {
8987 if (c == 1 && p == name + 2)
8988 /* A fake symbol. */
8989 return TRUE;
8990
8991 /* FIXME: We are being paranoid here and treating symbols like
8992 L0^Bfoo as if there were non-local, on the grounds that the
8993 assembler will never generate them. But can any symbol
8994 containing an ASCII value in the range 1-31 ever be anything
8995 other than some kind of local ? */
8996 ret = TRUE;
8997 }
8998
8999 if (! ISDIGIT (c))
9000 {
9001 ret = FALSE;
9002 break;
9003 }
9004 }
9005 return ret;
9006 }
9007
9008 return FALSE;
9009 }
9010
9011 alent *
9012 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9013 asymbol *symbol ATTRIBUTE_UNUSED)
9014 {
9015 abort ();
9016 return NULL;
9017 }
9018
9019 bfd_boolean
9020 _bfd_elf_set_arch_mach (bfd *abfd,
9021 enum bfd_architecture arch,
9022 unsigned long machine)
9023 {
9024 /* If this isn't the right architecture for this backend, and this
9025 isn't the generic backend, fail. */
9026 if (arch != get_elf_backend_data (abfd)->arch
9027 && arch != bfd_arch_unknown
9028 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9029 return FALSE;
9030
9031 return bfd_default_set_arch_mach (abfd, arch, machine);
9032 }
9033
9034 /* Find the nearest line to a particular section and offset,
9035 for error reporting. */
9036
9037 bfd_boolean
9038 _bfd_elf_find_nearest_line (bfd *abfd,
9039 asymbol **symbols,
9040 asection *section,
9041 bfd_vma offset,
9042 const char **filename_ptr,
9043 const char **functionname_ptr,
9044 unsigned int *line_ptr,
9045 unsigned int *discriminator_ptr)
9046 {
9047 bfd_boolean found;
9048
9049 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9050 filename_ptr, functionname_ptr,
9051 line_ptr, discriminator_ptr,
9052 dwarf_debug_sections,
9053 &elf_tdata (abfd)->dwarf2_find_line_info))
9054 return TRUE;
9055
9056 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9057 filename_ptr, functionname_ptr, line_ptr))
9058 {
9059 if (!*functionname_ptr)
9060 _bfd_elf_find_function (abfd, symbols, section, offset,
9061 *filename_ptr ? NULL : filename_ptr,
9062 functionname_ptr);
9063 return TRUE;
9064 }
9065
9066 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9067 &found, filename_ptr,
9068 functionname_ptr, line_ptr,
9069 &elf_tdata (abfd)->line_info))
9070 return FALSE;
9071 if (found && (*functionname_ptr || *line_ptr))
9072 return TRUE;
9073
9074 if (symbols == NULL)
9075 return FALSE;
9076
9077 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9078 filename_ptr, functionname_ptr))
9079 return FALSE;
9080
9081 *line_ptr = 0;
9082 return TRUE;
9083 }
9084
9085 /* Find the line for a symbol. */
9086
9087 bfd_boolean
9088 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9089 const char **filename_ptr, unsigned int *line_ptr)
9090 {
9091 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9092 filename_ptr, NULL, line_ptr, NULL,
9093 dwarf_debug_sections,
9094 &elf_tdata (abfd)->dwarf2_find_line_info);
9095 }
9096
9097 /* After a call to bfd_find_nearest_line, successive calls to
9098 bfd_find_inliner_info can be used to get source information about
9099 each level of function inlining that terminated at the address
9100 passed to bfd_find_nearest_line. Currently this is only supported
9101 for DWARF2 with appropriate DWARF3 extensions. */
9102
9103 bfd_boolean
9104 _bfd_elf_find_inliner_info (bfd *abfd,
9105 const char **filename_ptr,
9106 const char **functionname_ptr,
9107 unsigned int *line_ptr)
9108 {
9109 bfd_boolean found;
9110 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9111 functionname_ptr, line_ptr,
9112 & elf_tdata (abfd)->dwarf2_find_line_info);
9113 return found;
9114 }
9115
9116 int
9117 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9118 {
9119 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9120 int ret = bed->s->sizeof_ehdr;
9121
9122 if (!bfd_link_relocatable (info))
9123 {
9124 bfd_size_type phdr_size = elf_program_header_size (abfd);
9125
9126 if (phdr_size == (bfd_size_type) -1)
9127 {
9128 struct elf_segment_map *m;
9129
9130 phdr_size = 0;
9131 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9132 phdr_size += bed->s->sizeof_phdr;
9133
9134 if (phdr_size == 0)
9135 phdr_size = get_program_header_size (abfd, info);
9136 }
9137
9138 elf_program_header_size (abfd) = phdr_size;
9139 ret += phdr_size;
9140 }
9141
9142 return ret;
9143 }
9144
9145 bfd_boolean
9146 _bfd_elf_set_section_contents (bfd *abfd,
9147 sec_ptr section,
9148 const void *location,
9149 file_ptr offset,
9150 bfd_size_type count)
9151 {
9152 Elf_Internal_Shdr *hdr;
9153 file_ptr pos;
9154
9155 if (! abfd->output_has_begun
9156 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9157 return FALSE;
9158
9159 if (!count)
9160 return TRUE;
9161
9162 hdr = &elf_section_data (section)->this_hdr;
9163 if (hdr->sh_offset == (file_ptr) -1)
9164 {
9165 if (bfd_section_is_ctf (section))
9166 /* Nothing to do with this section: the contents are generated
9167 later. */
9168 return TRUE;
9169
9170 /* We must compress this section. Write output to the buffer. */
9171 unsigned char *contents = hdr->contents;
9172 if ((offset + count) > hdr->sh_size
9173 || (section->flags & SEC_ELF_COMPRESS) == 0
9174 || contents == NULL)
9175 abort ();
9176 memcpy (contents + offset, location, count);
9177 return TRUE;
9178 }
9179 pos = hdr->sh_offset + offset;
9180 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9181 || bfd_bwrite (location, count, abfd) != count)
9182 return FALSE;
9183
9184 return TRUE;
9185 }
9186
9187 bfd_boolean
9188 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9189 arelent *cache_ptr ATTRIBUTE_UNUSED,
9190 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9191 {
9192 abort ();
9193 return FALSE;
9194 }
9195
9196 /* Try to convert a non-ELF reloc into an ELF one. */
9197
9198 bfd_boolean
9199 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9200 {
9201 /* Check whether we really have an ELF howto. */
9202
9203 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9204 {
9205 bfd_reloc_code_real_type code;
9206 reloc_howto_type *howto;
9207
9208 /* Alien reloc: Try to determine its type to replace it with an
9209 equivalent ELF reloc. */
9210
9211 if (areloc->howto->pc_relative)
9212 {
9213 switch (areloc->howto->bitsize)
9214 {
9215 case 8:
9216 code = BFD_RELOC_8_PCREL;
9217 break;
9218 case 12:
9219 code = BFD_RELOC_12_PCREL;
9220 break;
9221 case 16:
9222 code = BFD_RELOC_16_PCREL;
9223 break;
9224 case 24:
9225 code = BFD_RELOC_24_PCREL;
9226 break;
9227 case 32:
9228 code = BFD_RELOC_32_PCREL;
9229 break;
9230 case 64:
9231 code = BFD_RELOC_64_PCREL;
9232 break;
9233 default:
9234 goto fail;
9235 }
9236
9237 howto = bfd_reloc_type_lookup (abfd, code);
9238
9239 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9240 {
9241 if (howto->pcrel_offset)
9242 areloc->addend += areloc->address;
9243 else
9244 areloc->addend -= areloc->address; /* addend is unsigned!! */
9245 }
9246 }
9247 else
9248 {
9249 switch (areloc->howto->bitsize)
9250 {
9251 case 8:
9252 code = BFD_RELOC_8;
9253 break;
9254 case 14:
9255 code = BFD_RELOC_14;
9256 break;
9257 case 16:
9258 code = BFD_RELOC_16;
9259 break;
9260 case 26:
9261 code = BFD_RELOC_26;
9262 break;
9263 case 32:
9264 code = BFD_RELOC_32;
9265 break;
9266 case 64:
9267 code = BFD_RELOC_64;
9268 break;
9269 default:
9270 goto fail;
9271 }
9272
9273 howto = bfd_reloc_type_lookup (abfd, code);
9274 }
9275
9276 if (howto)
9277 areloc->howto = howto;
9278 else
9279 goto fail;
9280 }
9281
9282 return TRUE;
9283
9284 fail:
9285 /* xgettext:c-format */
9286 _bfd_error_handler (_("%pB: %s unsupported"),
9287 abfd, areloc->howto->name);
9288 bfd_set_error (bfd_error_sorry);
9289 return FALSE;
9290 }
9291
9292 bfd_boolean
9293 _bfd_elf_close_and_cleanup (bfd *abfd)
9294 {
9295 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9296 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9297 {
9298 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9299 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9300 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9301 }
9302
9303 return _bfd_generic_close_and_cleanup (abfd);
9304 }
9305
9306 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9307 in the relocation's offset. Thus we cannot allow any sort of sanity
9308 range-checking to interfere. There is nothing else to do in processing
9309 this reloc. */
9310
9311 bfd_reloc_status_type
9312 _bfd_elf_rel_vtable_reloc_fn
9313 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9314 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9315 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9316 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9317 {
9318 return bfd_reloc_ok;
9319 }
9320 \f
9321 /* Elf core file support. Much of this only works on native
9322 toolchains, since we rely on knowing the
9323 machine-dependent procfs structure in order to pick
9324 out details about the corefile. */
9325
9326 #ifdef HAVE_SYS_PROCFS_H
9327 /* Needed for new procfs interface on sparc-solaris. */
9328 # define _STRUCTURED_PROC 1
9329 # include <sys/procfs.h>
9330 #endif
9331
9332 /* Return a PID that identifies a "thread" for threaded cores, or the
9333 PID of the main process for non-threaded cores. */
9334
9335 static int
9336 elfcore_make_pid (bfd *abfd)
9337 {
9338 int pid;
9339
9340 pid = elf_tdata (abfd)->core->lwpid;
9341 if (pid == 0)
9342 pid = elf_tdata (abfd)->core->pid;
9343
9344 return pid;
9345 }
9346
9347 /* If there isn't a section called NAME, make one, using
9348 data from SECT. Note, this function will generate a
9349 reference to NAME, so you shouldn't deallocate or
9350 overwrite it. */
9351
9352 static bfd_boolean
9353 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9354 {
9355 asection *sect2;
9356
9357 if (bfd_get_section_by_name (abfd, name) != NULL)
9358 return TRUE;
9359
9360 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9361 if (sect2 == NULL)
9362 return FALSE;
9363
9364 sect2->size = sect->size;
9365 sect2->filepos = sect->filepos;
9366 sect2->alignment_power = sect->alignment_power;
9367 return TRUE;
9368 }
9369
9370 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9371 actually creates up to two pseudosections:
9372 - For the single-threaded case, a section named NAME, unless
9373 such a section already exists.
9374 - For the multi-threaded case, a section named "NAME/PID", where
9375 PID is elfcore_make_pid (abfd).
9376 Both pseudosections have identical contents. */
9377 bfd_boolean
9378 _bfd_elfcore_make_pseudosection (bfd *abfd,
9379 char *name,
9380 size_t size,
9381 ufile_ptr filepos)
9382 {
9383 char buf[100];
9384 char *threaded_name;
9385 size_t len;
9386 asection *sect;
9387
9388 /* Build the section name. */
9389
9390 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9391 len = strlen (buf) + 1;
9392 threaded_name = (char *) bfd_alloc (abfd, len);
9393 if (threaded_name == NULL)
9394 return FALSE;
9395 memcpy (threaded_name, buf, len);
9396
9397 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9398 SEC_HAS_CONTENTS);
9399 if (sect == NULL)
9400 return FALSE;
9401 sect->size = size;
9402 sect->filepos = filepos;
9403 sect->alignment_power = 2;
9404
9405 return elfcore_maybe_make_sect (abfd, name, sect);
9406 }
9407
9408 static bfd_boolean
9409 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9410 size_t offs)
9411 {
9412 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9413 SEC_HAS_CONTENTS);
9414
9415 if (sect == NULL)
9416 return FALSE;
9417
9418 sect->size = note->descsz - offs;
9419 sect->filepos = note->descpos + offs;
9420 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9421
9422 return TRUE;
9423 }
9424
9425 /* prstatus_t exists on:
9426 solaris 2.5+
9427 linux 2.[01] + glibc
9428 unixware 4.2
9429 */
9430
9431 #if defined (HAVE_PRSTATUS_T)
9432
9433 static bfd_boolean
9434 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9435 {
9436 size_t size;
9437 int offset;
9438
9439 if (note->descsz == sizeof (prstatus_t))
9440 {
9441 prstatus_t prstat;
9442
9443 size = sizeof (prstat.pr_reg);
9444 offset = offsetof (prstatus_t, pr_reg);
9445 memcpy (&prstat, note->descdata, sizeof (prstat));
9446
9447 /* Do not overwrite the core signal if it
9448 has already been set by another thread. */
9449 if (elf_tdata (abfd)->core->signal == 0)
9450 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9451 if (elf_tdata (abfd)->core->pid == 0)
9452 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9453
9454 /* pr_who exists on:
9455 solaris 2.5+
9456 unixware 4.2
9457 pr_who doesn't exist on:
9458 linux 2.[01]
9459 */
9460 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9461 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9462 #else
9463 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9464 #endif
9465 }
9466 #if defined (HAVE_PRSTATUS32_T)
9467 else if (note->descsz == sizeof (prstatus32_t))
9468 {
9469 /* 64-bit host, 32-bit corefile */
9470 prstatus32_t prstat;
9471
9472 size = sizeof (prstat.pr_reg);
9473 offset = offsetof (prstatus32_t, pr_reg);
9474 memcpy (&prstat, note->descdata, sizeof (prstat));
9475
9476 /* Do not overwrite the core signal if it
9477 has already been set by another thread. */
9478 if (elf_tdata (abfd)->core->signal == 0)
9479 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9480 if (elf_tdata (abfd)->core->pid == 0)
9481 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9482
9483 /* pr_who exists on:
9484 solaris 2.5+
9485 unixware 4.2
9486 pr_who doesn't exist on:
9487 linux 2.[01]
9488 */
9489 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9490 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9491 #else
9492 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9493 #endif
9494 }
9495 #endif /* HAVE_PRSTATUS32_T */
9496 else
9497 {
9498 /* Fail - we don't know how to handle any other
9499 note size (ie. data object type). */
9500 return TRUE;
9501 }
9502
9503 /* Make a ".reg/999" section and a ".reg" section. */
9504 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9505 size, note->descpos + offset);
9506 }
9507 #endif /* defined (HAVE_PRSTATUS_T) */
9508
9509 /* Create a pseudosection containing the exact contents of NOTE. */
9510 static bfd_boolean
9511 elfcore_make_note_pseudosection (bfd *abfd,
9512 char *name,
9513 Elf_Internal_Note *note)
9514 {
9515 return _bfd_elfcore_make_pseudosection (abfd, name,
9516 note->descsz, note->descpos);
9517 }
9518
9519 /* There isn't a consistent prfpregset_t across platforms,
9520 but it doesn't matter, because we don't have to pick this
9521 data structure apart. */
9522
9523 static bfd_boolean
9524 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9525 {
9526 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9527 }
9528
9529 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9530 type of NT_PRXFPREG. Just include the whole note's contents
9531 literally. */
9532
9533 static bfd_boolean
9534 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9535 {
9536 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9537 }
9538
9539 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9540 with a note type of NT_X86_XSTATE. Just include the whole note's
9541 contents literally. */
9542
9543 static bfd_boolean
9544 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9545 {
9546 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9547 }
9548
9549 static bfd_boolean
9550 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9551 {
9552 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9553 }
9554
9555 static bfd_boolean
9556 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9557 {
9558 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9559 }
9560
9561 static bfd_boolean
9562 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9563 {
9564 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9565 }
9566
9567 static bfd_boolean
9568 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9569 {
9570 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9571 }
9572
9573 static bfd_boolean
9574 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9575 {
9576 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9577 }
9578
9579 static bfd_boolean
9580 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9581 {
9582 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9583 }
9584
9585 static bfd_boolean
9586 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9587 {
9588 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9589 }
9590
9591 static bfd_boolean
9592 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9593 {
9594 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9595 }
9596
9597 static bfd_boolean
9598 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9599 {
9600 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9601 }
9602
9603 static bfd_boolean
9604 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9605 {
9606 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9607 }
9608
9609 static bfd_boolean
9610 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9611 {
9612 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9613 }
9614
9615 static bfd_boolean
9616 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9617 {
9618 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9619 }
9620
9621 static bfd_boolean
9622 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9623 {
9624 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9625 }
9626
9627 static bfd_boolean
9628 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9629 {
9630 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9631 }
9632
9633 static bfd_boolean
9634 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9635 {
9636 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9637 }
9638
9639 static bfd_boolean
9640 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9641 {
9642 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9643 }
9644
9645 static bfd_boolean
9646 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9647 {
9648 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9649 }
9650
9651 static bfd_boolean
9652 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9653 {
9654 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9655 }
9656
9657 static bfd_boolean
9658 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9659 {
9660 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9661 }
9662
9663 static bfd_boolean
9664 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9665 {
9666 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9667 }
9668
9669 static bfd_boolean
9670 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9671 {
9672 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9673 }
9674
9675 static bfd_boolean
9676 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9677 {
9678 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9679 }
9680
9681 static bfd_boolean
9682 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9683 {
9684 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9685 }
9686
9687 static bfd_boolean
9688 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9689 {
9690 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9691 }
9692
9693 static bfd_boolean
9694 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9695 {
9696 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9697 }
9698
9699 static bfd_boolean
9700 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9701 {
9702 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9703 }
9704
9705 static bfd_boolean
9706 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9707 {
9708 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9709 }
9710
9711 static bfd_boolean
9712 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9713 {
9714 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9715 }
9716
9717 static bfd_boolean
9718 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9719 {
9720 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9721 }
9722
9723 static bfd_boolean
9724 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9725 {
9726 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9727 }
9728
9729 static bfd_boolean
9730 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9731 {
9732 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9733 }
9734
9735 static bfd_boolean
9736 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9737 {
9738 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9739 }
9740
9741 static bfd_boolean
9742 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9743 {
9744 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9745 }
9746
9747 static bfd_boolean
9748 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9749 {
9750 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9751 }
9752
9753 #if defined (HAVE_PRPSINFO_T)
9754 typedef prpsinfo_t elfcore_psinfo_t;
9755 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9756 typedef prpsinfo32_t elfcore_psinfo32_t;
9757 #endif
9758 #endif
9759
9760 #if defined (HAVE_PSINFO_T)
9761 typedef psinfo_t elfcore_psinfo_t;
9762 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9763 typedef psinfo32_t elfcore_psinfo32_t;
9764 #endif
9765 #endif
9766
9767 /* return a malloc'ed copy of a string at START which is at
9768 most MAX bytes long, possibly without a terminating '\0'.
9769 the copy will always have a terminating '\0'. */
9770
9771 char *
9772 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9773 {
9774 char *dups;
9775 char *end = (char *) memchr (start, '\0', max);
9776 size_t len;
9777
9778 if (end == NULL)
9779 len = max;
9780 else
9781 len = end - start;
9782
9783 dups = (char *) bfd_alloc (abfd, len + 1);
9784 if (dups == NULL)
9785 return NULL;
9786
9787 memcpy (dups, start, len);
9788 dups[len] = '\0';
9789
9790 return dups;
9791 }
9792
9793 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9794 static bfd_boolean
9795 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9796 {
9797 if (note->descsz == sizeof (elfcore_psinfo_t))
9798 {
9799 elfcore_psinfo_t psinfo;
9800
9801 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9802
9803 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9804 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9805 #endif
9806 elf_tdata (abfd)->core->program
9807 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9808 sizeof (psinfo.pr_fname));
9809
9810 elf_tdata (abfd)->core->command
9811 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9812 sizeof (psinfo.pr_psargs));
9813 }
9814 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9815 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9816 {
9817 /* 64-bit host, 32-bit corefile */
9818 elfcore_psinfo32_t psinfo;
9819
9820 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9821
9822 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9823 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9824 #endif
9825 elf_tdata (abfd)->core->program
9826 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9827 sizeof (psinfo.pr_fname));
9828
9829 elf_tdata (abfd)->core->command
9830 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9831 sizeof (psinfo.pr_psargs));
9832 }
9833 #endif
9834
9835 else
9836 {
9837 /* Fail - we don't know how to handle any other
9838 note size (ie. data object type). */
9839 return TRUE;
9840 }
9841
9842 /* Note that for some reason, a spurious space is tacked
9843 onto the end of the args in some (at least one anyway)
9844 implementations, so strip it off if it exists. */
9845
9846 {
9847 char *command = elf_tdata (abfd)->core->command;
9848 int n = strlen (command);
9849
9850 if (0 < n && command[n - 1] == ' ')
9851 command[n - 1] = '\0';
9852 }
9853
9854 return TRUE;
9855 }
9856 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9857
9858 #if defined (HAVE_PSTATUS_T)
9859 static bfd_boolean
9860 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9861 {
9862 if (note->descsz == sizeof (pstatus_t)
9863 #if defined (HAVE_PXSTATUS_T)
9864 || note->descsz == sizeof (pxstatus_t)
9865 #endif
9866 )
9867 {
9868 pstatus_t pstat;
9869
9870 memcpy (&pstat, note->descdata, sizeof (pstat));
9871
9872 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9873 }
9874 #if defined (HAVE_PSTATUS32_T)
9875 else if (note->descsz == sizeof (pstatus32_t))
9876 {
9877 /* 64-bit host, 32-bit corefile */
9878 pstatus32_t pstat;
9879
9880 memcpy (&pstat, note->descdata, sizeof (pstat));
9881
9882 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9883 }
9884 #endif
9885 /* Could grab some more details from the "representative"
9886 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9887 NT_LWPSTATUS note, presumably. */
9888
9889 return TRUE;
9890 }
9891 #endif /* defined (HAVE_PSTATUS_T) */
9892
9893 #if defined (HAVE_LWPSTATUS_T)
9894 static bfd_boolean
9895 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9896 {
9897 lwpstatus_t lwpstat;
9898 char buf[100];
9899 char *name;
9900 size_t len;
9901 asection *sect;
9902
9903 if (note->descsz != sizeof (lwpstat)
9904 #if defined (HAVE_LWPXSTATUS_T)
9905 && note->descsz != sizeof (lwpxstatus_t)
9906 #endif
9907 )
9908 return TRUE;
9909
9910 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9911
9912 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9913 /* Do not overwrite the core signal if it has already been set by
9914 another thread. */
9915 if (elf_tdata (abfd)->core->signal == 0)
9916 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9917
9918 /* Make a ".reg/999" section. */
9919
9920 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9921 len = strlen (buf) + 1;
9922 name = bfd_alloc (abfd, len);
9923 if (name == NULL)
9924 return FALSE;
9925 memcpy (name, buf, len);
9926
9927 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9928 if (sect == NULL)
9929 return FALSE;
9930
9931 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9932 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9933 sect->filepos = note->descpos
9934 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9935 #endif
9936
9937 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9938 sect->size = sizeof (lwpstat.pr_reg);
9939 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9940 #endif
9941
9942 sect->alignment_power = 2;
9943
9944 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9945 return FALSE;
9946
9947 /* Make a ".reg2/999" section */
9948
9949 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9950 len = strlen (buf) + 1;
9951 name = bfd_alloc (abfd, len);
9952 if (name == NULL)
9953 return FALSE;
9954 memcpy (name, buf, len);
9955
9956 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9957 if (sect == NULL)
9958 return FALSE;
9959
9960 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9961 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9962 sect->filepos = note->descpos
9963 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9964 #endif
9965
9966 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9967 sect->size = sizeof (lwpstat.pr_fpreg);
9968 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9969 #endif
9970
9971 sect->alignment_power = 2;
9972
9973 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9974 }
9975 #endif /* defined (HAVE_LWPSTATUS_T) */
9976
9977 static bfd_boolean
9978 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9979 {
9980 char buf[30];
9981 char *name;
9982 size_t len;
9983 asection *sect;
9984 int type;
9985 int is_active_thread;
9986 bfd_vma base_addr;
9987
9988 if (note->descsz < 728)
9989 return TRUE;
9990
9991 if (! CONST_STRNEQ (note->namedata, "win32"))
9992 return TRUE;
9993
9994 type = bfd_get_32 (abfd, note->descdata);
9995
9996 switch (type)
9997 {
9998 case 1 /* NOTE_INFO_PROCESS */:
9999 /* FIXME: need to add ->core->command. */
10000 /* process_info.pid */
10001 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
10002 /* process_info.signal */
10003 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
10004 break;
10005
10006 case 2 /* NOTE_INFO_THREAD */:
10007 /* Make a ".reg/999" section. */
10008 /* thread_info.tid */
10009 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10010
10011 len = strlen (buf) + 1;
10012 name = (char *) bfd_alloc (abfd, len);
10013 if (name == NULL)
10014 return FALSE;
10015
10016 memcpy (name, buf, len);
10017
10018 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10019 if (sect == NULL)
10020 return FALSE;
10021
10022 /* sizeof (thread_info.thread_context) */
10023 sect->size = 716;
10024 /* offsetof (thread_info.thread_context) */
10025 sect->filepos = note->descpos + 12;
10026 sect->alignment_power = 2;
10027
10028 /* thread_info.is_active_thread */
10029 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10030
10031 if (is_active_thread)
10032 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10033 return FALSE;
10034 break;
10035
10036 case 3 /* NOTE_INFO_MODULE */:
10037 /* Make a ".module/xxxxxxxx" section. */
10038 /* module_info.base_address */
10039 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10040 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10041
10042 len = strlen (buf) + 1;
10043 name = (char *) bfd_alloc (abfd, len);
10044 if (name == NULL)
10045 return FALSE;
10046
10047 memcpy (name, buf, len);
10048
10049 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10050
10051 if (sect == NULL)
10052 return FALSE;
10053
10054 sect->size = note->descsz;
10055 sect->filepos = note->descpos;
10056 sect->alignment_power = 2;
10057 break;
10058
10059 default:
10060 return TRUE;
10061 }
10062
10063 return TRUE;
10064 }
10065
10066 static bfd_boolean
10067 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10068 {
10069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10070
10071 switch (note->type)
10072 {
10073 default:
10074 return TRUE;
10075
10076 case NT_PRSTATUS:
10077 if (bed->elf_backend_grok_prstatus)
10078 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10079 return TRUE;
10080 #if defined (HAVE_PRSTATUS_T)
10081 return elfcore_grok_prstatus (abfd, note);
10082 #else
10083 return TRUE;
10084 #endif
10085
10086 #if defined (HAVE_PSTATUS_T)
10087 case NT_PSTATUS:
10088 return elfcore_grok_pstatus (abfd, note);
10089 #endif
10090
10091 #if defined (HAVE_LWPSTATUS_T)
10092 case NT_LWPSTATUS:
10093 return elfcore_grok_lwpstatus (abfd, note);
10094 #endif
10095
10096 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10097 return elfcore_grok_prfpreg (abfd, note);
10098
10099 case NT_WIN32PSTATUS:
10100 return elfcore_grok_win32pstatus (abfd, note);
10101
10102 case NT_PRXFPREG: /* Linux SSE extension */
10103 if (note->namesz == 6
10104 && strcmp (note->namedata, "LINUX") == 0)
10105 return elfcore_grok_prxfpreg (abfd, note);
10106 else
10107 return TRUE;
10108
10109 case NT_X86_XSTATE: /* Linux XSAVE extension */
10110 if (note->namesz == 6
10111 && strcmp (note->namedata, "LINUX") == 0)
10112 return elfcore_grok_xstatereg (abfd, note);
10113 else
10114 return TRUE;
10115
10116 case NT_PPC_VMX:
10117 if (note->namesz == 6
10118 && strcmp (note->namedata, "LINUX") == 0)
10119 return elfcore_grok_ppc_vmx (abfd, note);
10120 else
10121 return TRUE;
10122
10123 case NT_PPC_VSX:
10124 if (note->namesz == 6
10125 && strcmp (note->namedata, "LINUX") == 0)
10126 return elfcore_grok_ppc_vsx (abfd, note);
10127 else
10128 return TRUE;
10129
10130 case NT_PPC_TAR:
10131 if (note->namesz == 6
10132 && strcmp (note->namedata, "LINUX") == 0)
10133 return elfcore_grok_ppc_tar (abfd, note);
10134 else
10135 return TRUE;
10136
10137 case NT_PPC_PPR:
10138 if (note->namesz == 6
10139 && strcmp (note->namedata, "LINUX") == 0)
10140 return elfcore_grok_ppc_ppr (abfd, note);
10141 else
10142 return TRUE;
10143
10144 case NT_PPC_DSCR:
10145 if (note->namesz == 6
10146 && strcmp (note->namedata, "LINUX") == 0)
10147 return elfcore_grok_ppc_dscr (abfd, note);
10148 else
10149 return TRUE;
10150
10151 case NT_PPC_EBB:
10152 if (note->namesz == 6
10153 && strcmp (note->namedata, "LINUX") == 0)
10154 return elfcore_grok_ppc_ebb (abfd, note);
10155 else
10156 return TRUE;
10157
10158 case NT_PPC_PMU:
10159 if (note->namesz == 6
10160 && strcmp (note->namedata, "LINUX") == 0)
10161 return elfcore_grok_ppc_pmu (abfd, note);
10162 else
10163 return TRUE;
10164
10165 case NT_PPC_TM_CGPR:
10166 if (note->namesz == 6
10167 && strcmp (note->namedata, "LINUX") == 0)
10168 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10169 else
10170 return TRUE;
10171
10172 case NT_PPC_TM_CFPR:
10173 if (note->namesz == 6
10174 && strcmp (note->namedata, "LINUX") == 0)
10175 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10176 else
10177 return TRUE;
10178
10179 case NT_PPC_TM_CVMX:
10180 if (note->namesz == 6
10181 && strcmp (note->namedata, "LINUX") == 0)
10182 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10183 else
10184 return TRUE;
10185
10186 case NT_PPC_TM_CVSX:
10187 if (note->namesz == 6
10188 && strcmp (note->namedata, "LINUX") == 0)
10189 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10190 else
10191 return TRUE;
10192
10193 case NT_PPC_TM_SPR:
10194 if (note->namesz == 6
10195 && strcmp (note->namedata, "LINUX") == 0)
10196 return elfcore_grok_ppc_tm_spr (abfd, note);
10197 else
10198 return TRUE;
10199
10200 case NT_PPC_TM_CTAR:
10201 if (note->namesz == 6
10202 && strcmp (note->namedata, "LINUX") == 0)
10203 return elfcore_grok_ppc_tm_ctar (abfd, note);
10204 else
10205 return TRUE;
10206
10207 case NT_PPC_TM_CPPR:
10208 if (note->namesz == 6
10209 && strcmp (note->namedata, "LINUX") == 0)
10210 return elfcore_grok_ppc_tm_cppr (abfd, note);
10211 else
10212 return TRUE;
10213
10214 case NT_PPC_TM_CDSCR:
10215 if (note->namesz == 6
10216 && strcmp (note->namedata, "LINUX") == 0)
10217 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10218 else
10219 return TRUE;
10220
10221 case NT_S390_HIGH_GPRS:
10222 if (note->namesz == 6
10223 && strcmp (note->namedata, "LINUX") == 0)
10224 return elfcore_grok_s390_high_gprs (abfd, note);
10225 else
10226 return TRUE;
10227
10228 case NT_S390_TIMER:
10229 if (note->namesz == 6
10230 && strcmp (note->namedata, "LINUX") == 0)
10231 return elfcore_grok_s390_timer (abfd, note);
10232 else
10233 return TRUE;
10234
10235 case NT_S390_TODCMP:
10236 if (note->namesz == 6
10237 && strcmp (note->namedata, "LINUX") == 0)
10238 return elfcore_grok_s390_todcmp (abfd, note);
10239 else
10240 return TRUE;
10241
10242 case NT_S390_TODPREG:
10243 if (note->namesz == 6
10244 && strcmp (note->namedata, "LINUX") == 0)
10245 return elfcore_grok_s390_todpreg (abfd, note);
10246 else
10247 return TRUE;
10248
10249 case NT_S390_CTRS:
10250 if (note->namesz == 6
10251 && strcmp (note->namedata, "LINUX") == 0)
10252 return elfcore_grok_s390_ctrs (abfd, note);
10253 else
10254 return TRUE;
10255
10256 case NT_S390_PREFIX:
10257 if (note->namesz == 6
10258 && strcmp (note->namedata, "LINUX") == 0)
10259 return elfcore_grok_s390_prefix (abfd, note);
10260 else
10261 return TRUE;
10262
10263 case NT_S390_LAST_BREAK:
10264 if (note->namesz == 6
10265 && strcmp (note->namedata, "LINUX") == 0)
10266 return elfcore_grok_s390_last_break (abfd, note);
10267 else
10268 return TRUE;
10269
10270 case NT_S390_SYSTEM_CALL:
10271 if (note->namesz == 6
10272 && strcmp (note->namedata, "LINUX") == 0)
10273 return elfcore_grok_s390_system_call (abfd, note);
10274 else
10275 return TRUE;
10276
10277 case NT_S390_TDB:
10278 if (note->namesz == 6
10279 && strcmp (note->namedata, "LINUX") == 0)
10280 return elfcore_grok_s390_tdb (abfd, note);
10281 else
10282 return TRUE;
10283
10284 case NT_S390_VXRS_LOW:
10285 if (note->namesz == 6
10286 && strcmp (note->namedata, "LINUX") == 0)
10287 return elfcore_grok_s390_vxrs_low (abfd, note);
10288 else
10289 return TRUE;
10290
10291 case NT_S390_VXRS_HIGH:
10292 if (note->namesz == 6
10293 && strcmp (note->namedata, "LINUX") == 0)
10294 return elfcore_grok_s390_vxrs_high (abfd, note);
10295 else
10296 return TRUE;
10297
10298 case NT_S390_GS_CB:
10299 if (note->namesz == 6
10300 && strcmp (note->namedata, "LINUX") == 0)
10301 return elfcore_grok_s390_gs_cb (abfd, note);
10302 else
10303 return TRUE;
10304
10305 case NT_S390_GS_BC:
10306 if (note->namesz == 6
10307 && strcmp (note->namedata, "LINUX") == 0)
10308 return elfcore_grok_s390_gs_bc (abfd, note);
10309 else
10310 return TRUE;
10311
10312 case NT_ARM_VFP:
10313 if (note->namesz == 6
10314 && strcmp (note->namedata, "LINUX") == 0)
10315 return elfcore_grok_arm_vfp (abfd, note);
10316 else
10317 return TRUE;
10318
10319 case NT_ARM_TLS:
10320 if (note->namesz == 6
10321 && strcmp (note->namedata, "LINUX") == 0)
10322 return elfcore_grok_aarch_tls (abfd, note);
10323 else
10324 return TRUE;
10325
10326 case NT_ARM_HW_BREAK:
10327 if (note->namesz == 6
10328 && strcmp (note->namedata, "LINUX") == 0)
10329 return elfcore_grok_aarch_hw_break (abfd, note);
10330 else
10331 return TRUE;
10332
10333 case NT_ARM_HW_WATCH:
10334 if (note->namesz == 6
10335 && strcmp (note->namedata, "LINUX") == 0)
10336 return elfcore_grok_aarch_hw_watch (abfd, note);
10337 else
10338 return TRUE;
10339
10340 case NT_ARM_SVE:
10341 if (note->namesz == 6
10342 && strcmp (note->namedata, "LINUX") == 0)
10343 return elfcore_grok_aarch_sve (abfd, note);
10344 else
10345 return TRUE;
10346
10347 case NT_ARM_PAC_MASK:
10348 if (note->namesz == 6
10349 && strcmp (note->namedata, "LINUX") == 0)
10350 return elfcore_grok_aarch_pauth (abfd, note);
10351 else
10352 return TRUE;
10353
10354 case NT_PRPSINFO:
10355 case NT_PSINFO:
10356 if (bed->elf_backend_grok_psinfo)
10357 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10358 return TRUE;
10359 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10360 return elfcore_grok_psinfo (abfd, note);
10361 #else
10362 return TRUE;
10363 #endif
10364
10365 case NT_AUXV:
10366 return elfcore_make_auxv_note_section (abfd, note, 0);
10367
10368 case NT_FILE:
10369 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10370 note);
10371
10372 case NT_SIGINFO:
10373 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10374 note);
10375
10376 }
10377 }
10378
10379 static bfd_boolean
10380 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10381 {
10382 struct bfd_build_id* build_id;
10383
10384 if (note->descsz == 0)
10385 return FALSE;
10386
10387 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10388 if (build_id == NULL)
10389 return FALSE;
10390
10391 build_id->size = note->descsz;
10392 memcpy (build_id->data, note->descdata, note->descsz);
10393 abfd->build_id = build_id;
10394
10395 return TRUE;
10396 }
10397
10398 static bfd_boolean
10399 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10400 {
10401 switch (note->type)
10402 {
10403 default:
10404 return TRUE;
10405
10406 case NT_GNU_PROPERTY_TYPE_0:
10407 return _bfd_elf_parse_gnu_properties (abfd, note);
10408
10409 case NT_GNU_BUILD_ID:
10410 return elfobj_grok_gnu_build_id (abfd, note);
10411 }
10412 }
10413
10414 static bfd_boolean
10415 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10416 {
10417 struct sdt_note *cur =
10418 (struct sdt_note *) bfd_alloc (abfd,
10419 sizeof (struct sdt_note) + note->descsz);
10420
10421 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10422 cur->size = (bfd_size_type) note->descsz;
10423 memcpy (cur->data, note->descdata, note->descsz);
10424
10425 elf_tdata (abfd)->sdt_note_head = cur;
10426
10427 return TRUE;
10428 }
10429
10430 static bfd_boolean
10431 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10432 {
10433 switch (note->type)
10434 {
10435 case NT_STAPSDT:
10436 return elfobj_grok_stapsdt_note_1 (abfd, note);
10437
10438 default:
10439 return TRUE;
10440 }
10441 }
10442
10443 static bfd_boolean
10444 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10445 {
10446 size_t offset;
10447
10448 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10449 {
10450 case ELFCLASS32:
10451 if (note->descsz < 108)
10452 return FALSE;
10453 break;
10454
10455 case ELFCLASS64:
10456 if (note->descsz < 120)
10457 return FALSE;
10458 break;
10459
10460 default:
10461 return FALSE;
10462 }
10463
10464 /* Check for version 1 in pr_version. */
10465 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10466 return FALSE;
10467
10468 offset = 4;
10469
10470 /* Skip over pr_psinfosz. */
10471 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10472 offset += 4;
10473 else
10474 {
10475 offset += 4; /* Padding before pr_psinfosz. */
10476 offset += 8;
10477 }
10478
10479 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10480 elf_tdata (abfd)->core->program
10481 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10482 offset += 17;
10483
10484 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10485 elf_tdata (abfd)->core->command
10486 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10487 offset += 81;
10488
10489 /* Padding before pr_pid. */
10490 offset += 2;
10491
10492 /* The pr_pid field was added in version "1a". */
10493 if (note->descsz < offset + 4)
10494 return TRUE;
10495
10496 elf_tdata (abfd)->core->pid
10497 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10498
10499 return TRUE;
10500 }
10501
10502 static bfd_boolean
10503 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10504 {
10505 size_t offset;
10506 size_t size;
10507 size_t min_size;
10508
10509 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10510 Also compute minimum size of this note. */
10511 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10512 {
10513 case ELFCLASS32:
10514 offset = 4 + 4;
10515 min_size = offset + (4 * 2) + 4 + 4 + 4;
10516 break;
10517
10518 case ELFCLASS64:
10519 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10520 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10521 break;
10522
10523 default:
10524 return FALSE;
10525 }
10526
10527 if (note->descsz < min_size)
10528 return FALSE;
10529
10530 /* Check for version 1 in pr_version. */
10531 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10532 return FALSE;
10533
10534 /* Extract size of pr_reg from pr_gregsetsz. */
10535 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10536 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10537 {
10538 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10539 offset += 4 * 2;
10540 }
10541 else
10542 {
10543 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10544 offset += 8 * 2;
10545 }
10546
10547 /* Skip over pr_osreldate. */
10548 offset += 4;
10549
10550 /* Read signal from pr_cursig. */
10551 if (elf_tdata (abfd)->core->signal == 0)
10552 elf_tdata (abfd)->core->signal
10553 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10554 offset += 4;
10555
10556 /* Read TID from pr_pid. */
10557 elf_tdata (abfd)->core->lwpid
10558 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10559 offset += 4;
10560
10561 /* Padding before pr_reg. */
10562 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10563 offset += 4;
10564
10565 /* Make sure that there is enough data remaining in the note. */
10566 if ((note->descsz - offset) < size)
10567 return FALSE;
10568
10569 /* Make a ".reg/999" section and a ".reg" section. */
10570 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10571 size, note->descpos + offset);
10572 }
10573
10574 static bfd_boolean
10575 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10576 {
10577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10578
10579 switch (note->type)
10580 {
10581 case NT_PRSTATUS:
10582 if (bed->elf_backend_grok_freebsd_prstatus)
10583 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10584 return TRUE;
10585 return elfcore_grok_freebsd_prstatus (abfd, note);
10586
10587 case NT_FPREGSET:
10588 return elfcore_grok_prfpreg (abfd, note);
10589
10590 case NT_PRPSINFO:
10591 return elfcore_grok_freebsd_psinfo (abfd, note);
10592
10593 case NT_FREEBSD_THRMISC:
10594 if (note->namesz == 8)
10595 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10596 else
10597 return TRUE;
10598
10599 case NT_FREEBSD_PROCSTAT_PROC:
10600 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10601 note);
10602
10603 case NT_FREEBSD_PROCSTAT_FILES:
10604 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10605 note);
10606
10607 case NT_FREEBSD_PROCSTAT_VMMAP:
10608 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10609 note);
10610
10611 case NT_FREEBSD_PROCSTAT_AUXV:
10612 return elfcore_make_auxv_note_section (abfd, note, 4);
10613
10614 case NT_X86_XSTATE:
10615 if (note->namesz == 8)
10616 return elfcore_grok_xstatereg (abfd, note);
10617 else
10618 return TRUE;
10619
10620 case NT_FREEBSD_PTLWPINFO:
10621 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10622 note);
10623
10624 case NT_ARM_VFP:
10625 return elfcore_grok_arm_vfp (abfd, note);
10626
10627 default:
10628 return TRUE;
10629 }
10630 }
10631
10632 static bfd_boolean
10633 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10634 {
10635 char *cp;
10636
10637 cp = strchr (note->namedata, '@');
10638 if (cp != NULL)
10639 {
10640 *lwpidp = atoi(cp + 1);
10641 return TRUE;
10642 }
10643 return FALSE;
10644 }
10645
10646 static bfd_boolean
10647 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10648 {
10649 if (note->descsz <= 0x7c + 31)
10650 return FALSE;
10651
10652 /* Signal number at offset 0x08. */
10653 elf_tdata (abfd)->core->signal
10654 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10655
10656 /* Process ID at offset 0x50. */
10657 elf_tdata (abfd)->core->pid
10658 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10659
10660 /* Command name at 0x7c (max 32 bytes, including nul). */
10661 elf_tdata (abfd)->core->command
10662 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10663
10664 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10665 note);
10666 }
10667
10668 static bfd_boolean
10669 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10670 {
10671 int lwp;
10672
10673 if (elfcore_netbsd_get_lwpid (note, &lwp))
10674 elf_tdata (abfd)->core->lwpid = lwp;
10675
10676 switch (note->type)
10677 {
10678 case NT_NETBSDCORE_PROCINFO:
10679 /* NetBSD-specific core "procinfo". Note that we expect to
10680 find this note before any of the others, which is fine,
10681 since the kernel writes this note out first when it
10682 creates a core file. */
10683 return elfcore_grok_netbsd_procinfo (abfd, note);
10684 #ifdef NT_NETBSDCORE_AUXV
10685 case NT_NETBSDCORE_AUXV:
10686 /* NetBSD-specific Elf Auxiliary Vector data. */
10687 return elfcore_make_auxv_note_section (abfd, note, 4);
10688 #endif
10689 default:
10690 break;
10691 }
10692
10693 /* As of March 2017 there are no other machine-independent notes
10694 defined for NetBSD core files. If the note type is less
10695 than the start of the machine-dependent note types, we don't
10696 understand it. */
10697
10698 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10699 return TRUE;
10700
10701
10702 switch (bfd_get_arch (abfd))
10703 {
10704 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10705 PT_GETFPREGS == mach+2. */
10706
10707 case bfd_arch_alpha:
10708 case bfd_arch_sparc:
10709 switch (note->type)
10710 {
10711 case NT_NETBSDCORE_FIRSTMACH+0:
10712 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10713
10714 case NT_NETBSDCORE_FIRSTMACH+2:
10715 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10716
10717 default:
10718 return TRUE;
10719 }
10720
10721 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10722 There's also old PT___GETREGS40 == mach + 1 for old reg
10723 structure which lacks GBR. */
10724
10725 case bfd_arch_sh:
10726 switch (note->type)
10727 {
10728 case NT_NETBSDCORE_FIRSTMACH+3:
10729 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10730
10731 case NT_NETBSDCORE_FIRSTMACH+5:
10732 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10733
10734 default:
10735 return TRUE;
10736 }
10737
10738 /* On all other arch's, PT_GETREGS == mach+1 and
10739 PT_GETFPREGS == mach+3. */
10740
10741 default:
10742 switch (note->type)
10743 {
10744 case NT_NETBSDCORE_FIRSTMACH+1:
10745 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10746
10747 case NT_NETBSDCORE_FIRSTMACH+3:
10748 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10749
10750 default:
10751 return TRUE;
10752 }
10753 }
10754 /* NOTREACHED */
10755 }
10756
10757 static bfd_boolean
10758 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10759 {
10760 if (note->descsz <= 0x48 + 31)
10761 return FALSE;
10762
10763 /* Signal number at offset 0x08. */
10764 elf_tdata (abfd)->core->signal
10765 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10766
10767 /* Process ID at offset 0x20. */
10768 elf_tdata (abfd)->core->pid
10769 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10770
10771 /* Command name at 0x48 (max 32 bytes, including nul). */
10772 elf_tdata (abfd)->core->command
10773 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10774
10775 return TRUE;
10776 }
10777
10778 static bfd_boolean
10779 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10780 {
10781 if (note->type == NT_OPENBSD_PROCINFO)
10782 return elfcore_grok_openbsd_procinfo (abfd, note);
10783
10784 if (note->type == NT_OPENBSD_REGS)
10785 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10786
10787 if (note->type == NT_OPENBSD_FPREGS)
10788 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10789
10790 if (note->type == NT_OPENBSD_XFPREGS)
10791 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10792
10793 if (note->type == NT_OPENBSD_AUXV)
10794 return elfcore_make_auxv_note_section (abfd, note, 0);
10795
10796 if (note->type == NT_OPENBSD_WCOOKIE)
10797 {
10798 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10799 SEC_HAS_CONTENTS);
10800
10801 if (sect == NULL)
10802 return FALSE;
10803 sect->size = note->descsz;
10804 sect->filepos = note->descpos;
10805 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10806
10807 return TRUE;
10808 }
10809
10810 return TRUE;
10811 }
10812
10813 static bfd_boolean
10814 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10815 {
10816 void *ddata = note->descdata;
10817 char buf[100];
10818 char *name;
10819 asection *sect;
10820 short sig;
10821 unsigned flags;
10822
10823 if (note->descsz < 16)
10824 return FALSE;
10825
10826 /* nto_procfs_status 'pid' field is at offset 0. */
10827 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10828
10829 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10830 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10831
10832 /* nto_procfs_status 'flags' field is at offset 8. */
10833 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10834
10835 /* nto_procfs_status 'what' field is at offset 14. */
10836 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10837 {
10838 elf_tdata (abfd)->core->signal = sig;
10839 elf_tdata (abfd)->core->lwpid = *tid;
10840 }
10841
10842 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10843 do not come from signals so we make sure we set the current
10844 thread just in case. */
10845 if (flags & 0x00000080)
10846 elf_tdata (abfd)->core->lwpid = *tid;
10847
10848 /* Make a ".qnx_core_status/%d" section. */
10849 sprintf (buf, ".qnx_core_status/%ld", *tid);
10850
10851 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10852 if (name == NULL)
10853 return FALSE;
10854 strcpy (name, buf);
10855
10856 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10857 if (sect == NULL)
10858 return FALSE;
10859
10860 sect->size = note->descsz;
10861 sect->filepos = note->descpos;
10862 sect->alignment_power = 2;
10863
10864 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10865 }
10866
10867 static bfd_boolean
10868 elfcore_grok_nto_regs (bfd *abfd,
10869 Elf_Internal_Note *note,
10870 long tid,
10871 char *base)
10872 {
10873 char buf[100];
10874 char *name;
10875 asection *sect;
10876
10877 /* Make a "(base)/%d" section. */
10878 sprintf (buf, "%s/%ld", base, tid);
10879
10880 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10881 if (name == NULL)
10882 return FALSE;
10883 strcpy (name, buf);
10884
10885 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10886 if (sect == NULL)
10887 return FALSE;
10888
10889 sect->size = note->descsz;
10890 sect->filepos = note->descpos;
10891 sect->alignment_power = 2;
10892
10893 /* This is the current thread. */
10894 if (elf_tdata (abfd)->core->lwpid == tid)
10895 return elfcore_maybe_make_sect (abfd, base, sect);
10896
10897 return TRUE;
10898 }
10899
10900 #define BFD_QNT_CORE_INFO 7
10901 #define BFD_QNT_CORE_STATUS 8
10902 #define BFD_QNT_CORE_GREG 9
10903 #define BFD_QNT_CORE_FPREG 10
10904
10905 static bfd_boolean
10906 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10907 {
10908 /* Every GREG section has a STATUS section before it. Store the
10909 tid from the previous call to pass down to the next gregs
10910 function. */
10911 static long tid = 1;
10912
10913 switch (note->type)
10914 {
10915 case BFD_QNT_CORE_INFO:
10916 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10917 case BFD_QNT_CORE_STATUS:
10918 return elfcore_grok_nto_status (abfd, note, &tid);
10919 case BFD_QNT_CORE_GREG:
10920 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10921 case BFD_QNT_CORE_FPREG:
10922 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10923 default:
10924 return TRUE;
10925 }
10926 }
10927
10928 static bfd_boolean
10929 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10930 {
10931 char *name;
10932 asection *sect;
10933 size_t len;
10934
10935 /* Use note name as section name. */
10936 len = note->namesz;
10937 name = (char *) bfd_alloc (abfd, len);
10938 if (name == NULL)
10939 return FALSE;
10940 memcpy (name, note->namedata, len);
10941 name[len - 1] = '\0';
10942
10943 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10944 if (sect == NULL)
10945 return FALSE;
10946
10947 sect->size = note->descsz;
10948 sect->filepos = note->descpos;
10949 sect->alignment_power = 1;
10950
10951 return TRUE;
10952 }
10953
10954 /* Function: elfcore_write_note
10955
10956 Inputs:
10957 buffer to hold note, and current size of buffer
10958 name of note
10959 type of note
10960 data for note
10961 size of data for note
10962
10963 Writes note to end of buffer. ELF64 notes are written exactly as
10964 for ELF32, despite the current (as of 2006) ELF gabi specifying
10965 that they ought to have 8-byte namesz and descsz field, and have
10966 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10967
10968 Return:
10969 Pointer to realloc'd buffer, *BUFSIZ updated. */
10970
10971 char *
10972 elfcore_write_note (bfd *abfd,
10973 char *buf,
10974 int *bufsiz,
10975 const char *name,
10976 int type,
10977 const void *input,
10978 int size)
10979 {
10980 Elf_External_Note *xnp;
10981 size_t namesz;
10982 size_t newspace;
10983 char *dest;
10984
10985 namesz = 0;
10986 if (name != NULL)
10987 namesz = strlen (name) + 1;
10988
10989 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10990
10991 buf = (char *) realloc (buf, *bufsiz + newspace);
10992 if (buf == NULL)
10993 return buf;
10994 dest = buf + *bufsiz;
10995 *bufsiz += newspace;
10996 xnp = (Elf_External_Note *) dest;
10997 H_PUT_32 (abfd, namesz, xnp->namesz);
10998 H_PUT_32 (abfd, size, xnp->descsz);
10999 H_PUT_32 (abfd, type, xnp->type);
11000 dest = xnp->name;
11001 if (name != NULL)
11002 {
11003 memcpy (dest, name, namesz);
11004 dest += namesz;
11005 while (namesz & 3)
11006 {
11007 *dest++ = '\0';
11008 ++namesz;
11009 }
11010 }
11011 memcpy (dest, input, size);
11012 dest += size;
11013 while (size & 3)
11014 {
11015 *dest++ = '\0';
11016 ++size;
11017 }
11018 return buf;
11019 }
11020
11021 /* gcc-8 warns (*) on all the strncpy calls in this function about
11022 possible string truncation. The "truncation" is not a bug. We
11023 have an external representation of structs with fields that are not
11024 necessarily NULL terminated and corresponding internal
11025 representation fields that are one larger so that they can always
11026 be NULL terminated.
11027 gcc versions between 4.2 and 4.6 do not allow pragma control of
11028 diagnostics inside functions, giving a hard error if you try to use
11029 the finer control available with later versions.
11030 gcc prior to 4.2 warns about diagnostic push and pop.
11031 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11032 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11033 (*) Depending on your system header files! */
11034 #if GCC_VERSION >= 8000
11035 # pragma GCC diagnostic push
11036 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11037 #endif
11038 char *
11039 elfcore_write_prpsinfo (bfd *abfd,
11040 char *buf,
11041 int *bufsiz,
11042 const char *fname,
11043 const char *psargs)
11044 {
11045 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11046
11047 if (bed->elf_backend_write_core_note != NULL)
11048 {
11049 char *ret;
11050 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11051 NT_PRPSINFO, fname, psargs);
11052 if (ret != NULL)
11053 return ret;
11054 }
11055
11056 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11057 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11058 if (bed->s->elfclass == ELFCLASS32)
11059 {
11060 # if defined (HAVE_PSINFO32_T)
11061 psinfo32_t data;
11062 int note_type = NT_PSINFO;
11063 # else
11064 prpsinfo32_t data;
11065 int note_type = NT_PRPSINFO;
11066 # endif
11067
11068 memset (&data, 0, sizeof (data));
11069 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11070 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11071 return elfcore_write_note (abfd, buf, bufsiz,
11072 "CORE", note_type, &data, sizeof (data));
11073 }
11074 else
11075 # endif
11076 {
11077 # if defined (HAVE_PSINFO_T)
11078 psinfo_t data;
11079 int note_type = NT_PSINFO;
11080 # else
11081 prpsinfo_t data;
11082 int note_type = NT_PRPSINFO;
11083 # endif
11084
11085 memset (&data, 0, sizeof (data));
11086 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11087 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11088 return elfcore_write_note (abfd, buf, bufsiz,
11089 "CORE", note_type, &data, sizeof (data));
11090 }
11091 #endif /* PSINFO_T or PRPSINFO_T */
11092
11093 free (buf);
11094 return NULL;
11095 }
11096 #if GCC_VERSION >= 8000
11097 # pragma GCC diagnostic pop
11098 #endif
11099
11100 char *
11101 elfcore_write_linux_prpsinfo32
11102 (bfd *abfd, char *buf, int *bufsiz,
11103 const struct elf_internal_linux_prpsinfo *prpsinfo)
11104 {
11105 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11106 {
11107 struct elf_external_linux_prpsinfo32_ugid16 data;
11108
11109 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11110 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11111 &data, sizeof (data));
11112 }
11113 else
11114 {
11115 struct elf_external_linux_prpsinfo32_ugid32 data;
11116
11117 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11118 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11119 &data, sizeof (data));
11120 }
11121 }
11122
11123 char *
11124 elfcore_write_linux_prpsinfo64
11125 (bfd *abfd, char *buf, int *bufsiz,
11126 const struct elf_internal_linux_prpsinfo *prpsinfo)
11127 {
11128 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11129 {
11130 struct elf_external_linux_prpsinfo64_ugid16 data;
11131
11132 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11133 return elfcore_write_note (abfd, buf, bufsiz,
11134 "CORE", NT_PRPSINFO, &data, sizeof (data));
11135 }
11136 else
11137 {
11138 struct elf_external_linux_prpsinfo64_ugid32 data;
11139
11140 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11141 return elfcore_write_note (abfd, buf, bufsiz,
11142 "CORE", NT_PRPSINFO, &data, sizeof (data));
11143 }
11144 }
11145
11146 char *
11147 elfcore_write_prstatus (bfd *abfd,
11148 char *buf,
11149 int *bufsiz,
11150 long pid,
11151 int cursig,
11152 const void *gregs)
11153 {
11154 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11155
11156 if (bed->elf_backend_write_core_note != NULL)
11157 {
11158 char *ret;
11159 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11160 NT_PRSTATUS,
11161 pid, cursig, gregs);
11162 if (ret != NULL)
11163 return ret;
11164 }
11165
11166 #if defined (HAVE_PRSTATUS_T)
11167 #if defined (HAVE_PRSTATUS32_T)
11168 if (bed->s->elfclass == ELFCLASS32)
11169 {
11170 prstatus32_t prstat;
11171
11172 memset (&prstat, 0, sizeof (prstat));
11173 prstat.pr_pid = pid;
11174 prstat.pr_cursig = cursig;
11175 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11176 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11177 NT_PRSTATUS, &prstat, sizeof (prstat));
11178 }
11179 else
11180 #endif
11181 {
11182 prstatus_t prstat;
11183
11184 memset (&prstat, 0, sizeof (prstat));
11185 prstat.pr_pid = pid;
11186 prstat.pr_cursig = cursig;
11187 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11188 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11189 NT_PRSTATUS, &prstat, sizeof (prstat));
11190 }
11191 #endif /* HAVE_PRSTATUS_T */
11192
11193 free (buf);
11194 return NULL;
11195 }
11196
11197 #if defined (HAVE_LWPSTATUS_T)
11198 char *
11199 elfcore_write_lwpstatus (bfd *abfd,
11200 char *buf,
11201 int *bufsiz,
11202 long pid,
11203 int cursig,
11204 const void *gregs)
11205 {
11206 lwpstatus_t lwpstat;
11207 const char *note_name = "CORE";
11208
11209 memset (&lwpstat, 0, sizeof (lwpstat));
11210 lwpstat.pr_lwpid = pid >> 16;
11211 lwpstat.pr_cursig = cursig;
11212 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11213 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11214 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11215 #if !defined(gregs)
11216 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11217 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11218 #else
11219 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11220 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11221 #endif
11222 #endif
11223 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11224 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11225 }
11226 #endif /* HAVE_LWPSTATUS_T */
11227
11228 #if defined (HAVE_PSTATUS_T)
11229 char *
11230 elfcore_write_pstatus (bfd *abfd,
11231 char *buf,
11232 int *bufsiz,
11233 long pid,
11234 int cursig ATTRIBUTE_UNUSED,
11235 const void *gregs ATTRIBUTE_UNUSED)
11236 {
11237 const char *note_name = "CORE";
11238 #if defined (HAVE_PSTATUS32_T)
11239 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11240
11241 if (bed->s->elfclass == ELFCLASS32)
11242 {
11243 pstatus32_t pstat;
11244
11245 memset (&pstat, 0, sizeof (pstat));
11246 pstat.pr_pid = pid & 0xffff;
11247 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11248 NT_PSTATUS, &pstat, sizeof (pstat));
11249 return buf;
11250 }
11251 else
11252 #endif
11253 {
11254 pstatus_t pstat;
11255
11256 memset (&pstat, 0, sizeof (pstat));
11257 pstat.pr_pid = pid & 0xffff;
11258 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11259 NT_PSTATUS, &pstat, sizeof (pstat));
11260 return buf;
11261 }
11262 }
11263 #endif /* HAVE_PSTATUS_T */
11264
11265 char *
11266 elfcore_write_prfpreg (bfd *abfd,
11267 char *buf,
11268 int *bufsiz,
11269 const void *fpregs,
11270 int size)
11271 {
11272 const char *note_name = "CORE";
11273 return elfcore_write_note (abfd, buf, bufsiz,
11274 note_name, NT_FPREGSET, fpregs, size);
11275 }
11276
11277 char *
11278 elfcore_write_prxfpreg (bfd *abfd,
11279 char *buf,
11280 int *bufsiz,
11281 const void *xfpregs,
11282 int size)
11283 {
11284 char *note_name = "LINUX";
11285 return elfcore_write_note (abfd, buf, bufsiz,
11286 note_name, NT_PRXFPREG, xfpregs, size);
11287 }
11288
11289 char *
11290 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11291 const void *xfpregs, int size)
11292 {
11293 char *note_name;
11294 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11295 note_name = "FreeBSD";
11296 else
11297 note_name = "LINUX";
11298 return elfcore_write_note (abfd, buf, bufsiz,
11299 note_name, NT_X86_XSTATE, xfpregs, size);
11300 }
11301
11302 char *
11303 elfcore_write_ppc_vmx (bfd *abfd,
11304 char *buf,
11305 int *bufsiz,
11306 const void *ppc_vmx,
11307 int size)
11308 {
11309 char *note_name = "LINUX";
11310 return elfcore_write_note (abfd, buf, bufsiz,
11311 note_name, NT_PPC_VMX, ppc_vmx, size);
11312 }
11313
11314 char *
11315 elfcore_write_ppc_vsx (bfd *abfd,
11316 char *buf,
11317 int *bufsiz,
11318 const void *ppc_vsx,
11319 int size)
11320 {
11321 char *note_name = "LINUX";
11322 return elfcore_write_note (abfd, buf, bufsiz,
11323 note_name, NT_PPC_VSX, ppc_vsx, size);
11324 }
11325
11326 char *
11327 elfcore_write_ppc_tar (bfd *abfd,
11328 char *buf,
11329 int *bufsiz,
11330 const void *ppc_tar,
11331 int size)
11332 {
11333 char *note_name = "LINUX";
11334 return elfcore_write_note (abfd, buf, bufsiz,
11335 note_name, NT_PPC_TAR, ppc_tar, size);
11336 }
11337
11338 char *
11339 elfcore_write_ppc_ppr (bfd *abfd,
11340 char *buf,
11341 int *bufsiz,
11342 const void *ppc_ppr,
11343 int size)
11344 {
11345 char *note_name = "LINUX";
11346 return elfcore_write_note (abfd, buf, bufsiz,
11347 note_name, NT_PPC_PPR, ppc_ppr, size);
11348 }
11349
11350 char *
11351 elfcore_write_ppc_dscr (bfd *abfd,
11352 char *buf,
11353 int *bufsiz,
11354 const void *ppc_dscr,
11355 int size)
11356 {
11357 char *note_name = "LINUX";
11358 return elfcore_write_note (abfd, buf, bufsiz,
11359 note_name, NT_PPC_DSCR, ppc_dscr, size);
11360 }
11361
11362 char *
11363 elfcore_write_ppc_ebb (bfd *abfd,
11364 char *buf,
11365 int *bufsiz,
11366 const void *ppc_ebb,
11367 int size)
11368 {
11369 char *note_name = "LINUX";
11370 return elfcore_write_note (abfd, buf, bufsiz,
11371 note_name, NT_PPC_EBB, ppc_ebb, size);
11372 }
11373
11374 char *
11375 elfcore_write_ppc_pmu (bfd *abfd,
11376 char *buf,
11377 int *bufsiz,
11378 const void *ppc_pmu,
11379 int size)
11380 {
11381 char *note_name = "LINUX";
11382 return elfcore_write_note (abfd, buf, bufsiz,
11383 note_name, NT_PPC_PMU, ppc_pmu, size);
11384 }
11385
11386 char *
11387 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11388 char *buf,
11389 int *bufsiz,
11390 const void *ppc_tm_cgpr,
11391 int size)
11392 {
11393 char *note_name = "LINUX";
11394 return elfcore_write_note (abfd, buf, bufsiz,
11395 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11396 }
11397
11398 char *
11399 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11400 char *buf,
11401 int *bufsiz,
11402 const void *ppc_tm_cfpr,
11403 int size)
11404 {
11405 char *note_name = "LINUX";
11406 return elfcore_write_note (abfd, buf, bufsiz,
11407 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11408 }
11409
11410 char *
11411 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11412 char *buf,
11413 int *bufsiz,
11414 const void *ppc_tm_cvmx,
11415 int size)
11416 {
11417 char *note_name = "LINUX";
11418 return elfcore_write_note (abfd, buf, bufsiz,
11419 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11420 }
11421
11422 char *
11423 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11424 char *buf,
11425 int *bufsiz,
11426 const void *ppc_tm_cvsx,
11427 int size)
11428 {
11429 char *note_name = "LINUX";
11430 return elfcore_write_note (abfd, buf, bufsiz,
11431 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11432 }
11433
11434 char *
11435 elfcore_write_ppc_tm_spr (bfd *abfd,
11436 char *buf,
11437 int *bufsiz,
11438 const void *ppc_tm_spr,
11439 int size)
11440 {
11441 char *note_name = "LINUX";
11442 return elfcore_write_note (abfd, buf, bufsiz,
11443 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11444 }
11445
11446 char *
11447 elfcore_write_ppc_tm_ctar (bfd *abfd,
11448 char *buf,
11449 int *bufsiz,
11450 const void *ppc_tm_ctar,
11451 int size)
11452 {
11453 char *note_name = "LINUX";
11454 return elfcore_write_note (abfd, buf, bufsiz,
11455 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11456 }
11457
11458 char *
11459 elfcore_write_ppc_tm_cppr (bfd *abfd,
11460 char *buf,
11461 int *bufsiz,
11462 const void *ppc_tm_cppr,
11463 int size)
11464 {
11465 char *note_name = "LINUX";
11466 return elfcore_write_note (abfd, buf, bufsiz,
11467 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11468 }
11469
11470 char *
11471 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11472 char *buf,
11473 int *bufsiz,
11474 const void *ppc_tm_cdscr,
11475 int size)
11476 {
11477 char *note_name = "LINUX";
11478 return elfcore_write_note (abfd, buf, bufsiz,
11479 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11480 }
11481
11482 static char *
11483 elfcore_write_s390_high_gprs (bfd *abfd,
11484 char *buf,
11485 int *bufsiz,
11486 const void *s390_high_gprs,
11487 int size)
11488 {
11489 char *note_name = "LINUX";
11490 return elfcore_write_note (abfd, buf, bufsiz,
11491 note_name, NT_S390_HIGH_GPRS,
11492 s390_high_gprs, size);
11493 }
11494
11495 char *
11496 elfcore_write_s390_timer (bfd *abfd,
11497 char *buf,
11498 int *bufsiz,
11499 const void *s390_timer,
11500 int size)
11501 {
11502 char *note_name = "LINUX";
11503 return elfcore_write_note (abfd, buf, bufsiz,
11504 note_name, NT_S390_TIMER, s390_timer, size);
11505 }
11506
11507 char *
11508 elfcore_write_s390_todcmp (bfd *abfd,
11509 char *buf,
11510 int *bufsiz,
11511 const void *s390_todcmp,
11512 int size)
11513 {
11514 char *note_name = "LINUX";
11515 return elfcore_write_note (abfd, buf, bufsiz,
11516 note_name, NT_S390_TODCMP, s390_todcmp, size);
11517 }
11518
11519 char *
11520 elfcore_write_s390_todpreg (bfd *abfd,
11521 char *buf,
11522 int *bufsiz,
11523 const void *s390_todpreg,
11524 int size)
11525 {
11526 char *note_name = "LINUX";
11527 return elfcore_write_note (abfd, buf, bufsiz,
11528 note_name, NT_S390_TODPREG, s390_todpreg, size);
11529 }
11530
11531 char *
11532 elfcore_write_s390_ctrs (bfd *abfd,
11533 char *buf,
11534 int *bufsiz,
11535 const void *s390_ctrs,
11536 int size)
11537 {
11538 char *note_name = "LINUX";
11539 return elfcore_write_note (abfd, buf, bufsiz,
11540 note_name, NT_S390_CTRS, s390_ctrs, size);
11541 }
11542
11543 char *
11544 elfcore_write_s390_prefix (bfd *abfd,
11545 char *buf,
11546 int *bufsiz,
11547 const void *s390_prefix,
11548 int size)
11549 {
11550 char *note_name = "LINUX";
11551 return elfcore_write_note (abfd, buf, bufsiz,
11552 note_name, NT_S390_PREFIX, s390_prefix, size);
11553 }
11554
11555 char *
11556 elfcore_write_s390_last_break (bfd *abfd,
11557 char *buf,
11558 int *bufsiz,
11559 const void *s390_last_break,
11560 int size)
11561 {
11562 char *note_name = "LINUX";
11563 return elfcore_write_note (abfd, buf, bufsiz,
11564 note_name, NT_S390_LAST_BREAK,
11565 s390_last_break, size);
11566 }
11567
11568 char *
11569 elfcore_write_s390_system_call (bfd *abfd,
11570 char *buf,
11571 int *bufsiz,
11572 const void *s390_system_call,
11573 int size)
11574 {
11575 char *note_name = "LINUX";
11576 return elfcore_write_note (abfd, buf, bufsiz,
11577 note_name, NT_S390_SYSTEM_CALL,
11578 s390_system_call, size);
11579 }
11580
11581 char *
11582 elfcore_write_s390_tdb (bfd *abfd,
11583 char *buf,
11584 int *bufsiz,
11585 const void *s390_tdb,
11586 int size)
11587 {
11588 char *note_name = "LINUX";
11589 return elfcore_write_note (abfd, buf, bufsiz,
11590 note_name, NT_S390_TDB, s390_tdb, size);
11591 }
11592
11593 char *
11594 elfcore_write_s390_vxrs_low (bfd *abfd,
11595 char *buf,
11596 int *bufsiz,
11597 const void *s390_vxrs_low,
11598 int size)
11599 {
11600 char *note_name = "LINUX";
11601 return elfcore_write_note (abfd, buf, bufsiz,
11602 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11603 }
11604
11605 char *
11606 elfcore_write_s390_vxrs_high (bfd *abfd,
11607 char *buf,
11608 int *bufsiz,
11609 const void *s390_vxrs_high,
11610 int size)
11611 {
11612 char *note_name = "LINUX";
11613 return elfcore_write_note (abfd, buf, bufsiz,
11614 note_name, NT_S390_VXRS_HIGH,
11615 s390_vxrs_high, size);
11616 }
11617
11618 char *
11619 elfcore_write_s390_gs_cb (bfd *abfd,
11620 char *buf,
11621 int *bufsiz,
11622 const void *s390_gs_cb,
11623 int size)
11624 {
11625 char *note_name = "LINUX";
11626 return elfcore_write_note (abfd, buf, bufsiz,
11627 note_name, NT_S390_GS_CB,
11628 s390_gs_cb, size);
11629 }
11630
11631 char *
11632 elfcore_write_s390_gs_bc (bfd *abfd,
11633 char *buf,
11634 int *bufsiz,
11635 const void *s390_gs_bc,
11636 int size)
11637 {
11638 char *note_name = "LINUX";
11639 return elfcore_write_note (abfd, buf, bufsiz,
11640 note_name, NT_S390_GS_BC,
11641 s390_gs_bc, size);
11642 }
11643
11644 char *
11645 elfcore_write_arm_vfp (bfd *abfd,
11646 char *buf,
11647 int *bufsiz,
11648 const void *arm_vfp,
11649 int size)
11650 {
11651 char *note_name = "LINUX";
11652 return elfcore_write_note (abfd, buf, bufsiz,
11653 note_name, NT_ARM_VFP, arm_vfp, size);
11654 }
11655
11656 char *
11657 elfcore_write_aarch_tls (bfd *abfd,
11658 char *buf,
11659 int *bufsiz,
11660 const void *aarch_tls,
11661 int size)
11662 {
11663 char *note_name = "LINUX";
11664 return elfcore_write_note (abfd, buf, bufsiz,
11665 note_name, NT_ARM_TLS, aarch_tls, size);
11666 }
11667
11668 char *
11669 elfcore_write_aarch_hw_break (bfd *abfd,
11670 char *buf,
11671 int *bufsiz,
11672 const void *aarch_hw_break,
11673 int size)
11674 {
11675 char *note_name = "LINUX";
11676 return elfcore_write_note (abfd, buf, bufsiz,
11677 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11678 }
11679
11680 char *
11681 elfcore_write_aarch_hw_watch (bfd *abfd,
11682 char *buf,
11683 int *bufsiz,
11684 const void *aarch_hw_watch,
11685 int size)
11686 {
11687 char *note_name = "LINUX";
11688 return elfcore_write_note (abfd, buf, bufsiz,
11689 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11690 }
11691
11692 char *
11693 elfcore_write_aarch_sve (bfd *abfd,
11694 char *buf,
11695 int *bufsiz,
11696 const void *aarch_sve,
11697 int size)
11698 {
11699 char *note_name = "LINUX";
11700 return elfcore_write_note (abfd, buf, bufsiz,
11701 note_name, NT_ARM_SVE, aarch_sve, size);
11702 }
11703
11704 char *
11705 elfcore_write_aarch_pauth (bfd *abfd,
11706 char *buf,
11707 int *bufsiz,
11708 const void *aarch_pauth,
11709 int size)
11710 {
11711 char *note_name = "LINUX";
11712 return elfcore_write_note (abfd, buf, bufsiz,
11713 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11714 }
11715
11716 char *
11717 elfcore_write_register_note (bfd *abfd,
11718 char *buf,
11719 int *bufsiz,
11720 const char *section,
11721 const void *data,
11722 int size)
11723 {
11724 if (strcmp (section, ".reg2") == 0)
11725 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11726 if (strcmp (section, ".reg-xfp") == 0)
11727 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11728 if (strcmp (section, ".reg-xstate") == 0)
11729 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11730 if (strcmp (section, ".reg-ppc-vmx") == 0)
11731 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11732 if (strcmp (section, ".reg-ppc-vsx") == 0)
11733 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11734 if (strcmp (section, ".reg-ppc-tar") == 0)
11735 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11736 if (strcmp (section, ".reg-ppc-ppr") == 0)
11737 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11738 if (strcmp (section, ".reg-ppc-dscr") == 0)
11739 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11740 if (strcmp (section, ".reg-ppc-ebb") == 0)
11741 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11742 if (strcmp (section, ".reg-ppc-pmu") == 0)
11743 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11744 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11745 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11746 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11747 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11748 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11749 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11750 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11751 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11752 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11753 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11754 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11755 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11756 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11757 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11758 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11759 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11760 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11761 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11762 if (strcmp (section, ".reg-s390-timer") == 0)
11763 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11764 if (strcmp (section, ".reg-s390-todcmp") == 0)
11765 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11766 if (strcmp (section, ".reg-s390-todpreg") == 0)
11767 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11768 if (strcmp (section, ".reg-s390-ctrs") == 0)
11769 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11770 if (strcmp (section, ".reg-s390-prefix") == 0)
11771 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11772 if (strcmp (section, ".reg-s390-last-break") == 0)
11773 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11774 if (strcmp (section, ".reg-s390-system-call") == 0)
11775 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11776 if (strcmp (section, ".reg-s390-tdb") == 0)
11777 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11778 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11779 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11780 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11781 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11782 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11783 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11784 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11785 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11786 if (strcmp (section, ".reg-arm-vfp") == 0)
11787 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11788 if (strcmp (section, ".reg-aarch-tls") == 0)
11789 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11790 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11791 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11792 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11793 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11794 if (strcmp (section, ".reg-aarch-sve") == 0)
11795 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11796 if (strcmp (section, ".reg-aarch-pauth") == 0)
11797 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11798 return NULL;
11799 }
11800
11801 static bfd_boolean
11802 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11803 size_t align)
11804 {
11805 char *p;
11806
11807 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11808 gABI specifies that PT_NOTE alignment should be aligned to 4
11809 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11810 align is less than 4, we use 4 byte alignment. */
11811 if (align < 4)
11812 align = 4;
11813 if (align != 4 && align != 8)
11814 return FALSE;
11815
11816 p = buf;
11817 while (p < buf + size)
11818 {
11819 Elf_External_Note *xnp = (Elf_External_Note *) p;
11820 Elf_Internal_Note in;
11821
11822 if (offsetof (Elf_External_Note, name) > buf - p + size)
11823 return FALSE;
11824
11825 in.type = H_GET_32 (abfd, xnp->type);
11826
11827 in.namesz = H_GET_32 (abfd, xnp->namesz);
11828 in.namedata = xnp->name;
11829 if (in.namesz > buf - in.namedata + size)
11830 return FALSE;
11831
11832 in.descsz = H_GET_32 (abfd, xnp->descsz);
11833 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11834 in.descpos = offset + (in.descdata - buf);
11835 if (in.descsz != 0
11836 && (in.descdata >= buf + size
11837 || in.descsz > buf - in.descdata + size))
11838 return FALSE;
11839
11840 switch (bfd_get_format (abfd))
11841 {
11842 default:
11843 return TRUE;
11844
11845 case bfd_core:
11846 {
11847 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11848 struct
11849 {
11850 const char * string;
11851 size_t len;
11852 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11853 }
11854 grokers[] =
11855 {
11856 GROKER_ELEMENT ("", elfcore_grok_note),
11857 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11858 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11859 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11860 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11861 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11862 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11863 };
11864 #undef GROKER_ELEMENT
11865 int i;
11866
11867 for (i = ARRAY_SIZE (grokers); i--;)
11868 {
11869 if (in.namesz >= grokers[i].len
11870 && strncmp (in.namedata, grokers[i].string,
11871 grokers[i].len) == 0)
11872 {
11873 if (! grokers[i].func (abfd, & in))
11874 return FALSE;
11875 break;
11876 }
11877 }
11878 break;
11879 }
11880
11881 case bfd_object:
11882 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11883 {
11884 if (! elfobj_grok_gnu_note (abfd, &in))
11885 return FALSE;
11886 }
11887 else if (in.namesz == sizeof "stapsdt"
11888 && strcmp (in.namedata, "stapsdt") == 0)
11889 {
11890 if (! elfobj_grok_stapsdt_note (abfd, &in))
11891 return FALSE;
11892 }
11893 break;
11894 }
11895
11896 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11897 }
11898
11899 return TRUE;
11900 }
11901
11902 bfd_boolean
11903 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11904 size_t align)
11905 {
11906 char *buf;
11907
11908 if (size == 0 || (size + 1) == 0)
11909 return TRUE;
11910
11911 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11912 return FALSE;
11913
11914 buf = (char *) bfd_malloc (size + 1);
11915 if (buf == NULL)
11916 return FALSE;
11917
11918 /* PR 17512: file: ec08f814
11919 0-termintate the buffer so that string searches will not overflow. */
11920 buf[size] = 0;
11921
11922 if (bfd_bread (buf, size, abfd) != size
11923 || !elf_parse_notes (abfd, buf, size, offset, align))
11924 {
11925 free (buf);
11926 return FALSE;
11927 }
11928
11929 free (buf);
11930 return TRUE;
11931 }
11932 \f
11933 /* Providing external access to the ELF program header table. */
11934
11935 /* Return an upper bound on the number of bytes required to store a
11936 copy of ABFD's program header table entries. Return -1 if an error
11937 occurs; bfd_get_error will return an appropriate code. */
11938
11939 long
11940 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11941 {
11942 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11943 {
11944 bfd_set_error (bfd_error_wrong_format);
11945 return -1;
11946 }
11947
11948 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11949 }
11950
11951 /* Copy ABFD's program header table entries to *PHDRS. The entries
11952 will be stored as an array of Elf_Internal_Phdr structures, as
11953 defined in include/elf/internal.h. To find out how large the
11954 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11955
11956 Return the number of program header table entries read, or -1 if an
11957 error occurs; bfd_get_error will return an appropriate code. */
11958
11959 int
11960 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11961 {
11962 int num_phdrs;
11963
11964 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11965 {
11966 bfd_set_error (bfd_error_wrong_format);
11967 return -1;
11968 }
11969
11970 num_phdrs = elf_elfheader (abfd)->e_phnum;
11971 if (num_phdrs != 0)
11972 memcpy (phdrs, elf_tdata (abfd)->phdr,
11973 num_phdrs * sizeof (Elf_Internal_Phdr));
11974
11975 return num_phdrs;
11976 }
11977
11978 enum elf_reloc_type_class
11979 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11980 const asection *rel_sec ATTRIBUTE_UNUSED,
11981 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11982 {
11983 return reloc_class_normal;
11984 }
11985
11986 /* For RELA architectures, return the relocation value for a
11987 relocation against a local symbol. */
11988
11989 bfd_vma
11990 _bfd_elf_rela_local_sym (bfd *abfd,
11991 Elf_Internal_Sym *sym,
11992 asection **psec,
11993 Elf_Internal_Rela *rel)
11994 {
11995 asection *sec = *psec;
11996 bfd_vma relocation;
11997
11998 relocation = (sec->output_section->vma
11999 + sec->output_offset
12000 + sym->st_value);
12001 if ((sec->flags & SEC_MERGE)
12002 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12003 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12004 {
12005 rel->r_addend =
12006 _bfd_merged_section_offset (abfd, psec,
12007 elf_section_data (sec)->sec_info,
12008 sym->st_value + rel->r_addend);
12009 if (sec != *psec)
12010 {
12011 /* If we have changed the section, and our original section is
12012 marked with SEC_EXCLUDE, it means that the original
12013 SEC_MERGE section has been completely subsumed in some
12014 other SEC_MERGE section. In this case, we need to leave
12015 some info around for --emit-relocs. */
12016 if ((sec->flags & SEC_EXCLUDE) != 0)
12017 sec->kept_section = *psec;
12018 sec = *psec;
12019 }
12020 rel->r_addend -= relocation;
12021 rel->r_addend += sec->output_section->vma + sec->output_offset;
12022 }
12023 return relocation;
12024 }
12025
12026 bfd_vma
12027 _bfd_elf_rel_local_sym (bfd *abfd,
12028 Elf_Internal_Sym *sym,
12029 asection **psec,
12030 bfd_vma addend)
12031 {
12032 asection *sec = *psec;
12033
12034 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12035 return sym->st_value + addend;
12036
12037 return _bfd_merged_section_offset (abfd, psec,
12038 elf_section_data (sec)->sec_info,
12039 sym->st_value + addend);
12040 }
12041
12042 /* Adjust an address within a section. Given OFFSET within SEC, return
12043 the new offset within the section, based upon changes made to the
12044 section. Returns -1 if the offset is now invalid.
12045 The offset (in abnd out) is in target sized bytes, however big a
12046 byte may be. */
12047
12048 bfd_vma
12049 _bfd_elf_section_offset (bfd *abfd,
12050 struct bfd_link_info *info,
12051 asection *sec,
12052 bfd_vma offset)
12053 {
12054 switch (sec->sec_info_type)
12055 {
12056 case SEC_INFO_TYPE_STABS:
12057 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12058 offset);
12059 case SEC_INFO_TYPE_EH_FRAME:
12060 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12061
12062 default:
12063 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12064 {
12065 /* Reverse the offset. */
12066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12067 bfd_size_type address_size = bed->s->arch_size / 8;
12068
12069 /* address_size and sec->size are in octets. Convert
12070 to bytes before subtracting the original offset. */
12071 offset = ((sec->size - address_size)
12072 / bfd_octets_per_byte (abfd, sec) - offset);
12073 }
12074 return offset;
12075 }
12076 }
12077 \f
12078 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12079 reconstruct an ELF file by reading the segments out of remote memory
12080 based on the ELF file header at EHDR_VMA and the ELF program headers it
12081 points to. If not null, *LOADBASEP is filled in with the difference
12082 between the VMAs from which the segments were read, and the VMAs the
12083 file headers (and hence BFD's idea of each section's VMA) put them at.
12084
12085 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12086 remote memory at target address VMA into the local buffer at MYADDR; it
12087 should return zero on success or an `errno' code on failure. TEMPL must
12088 be a BFD for an ELF target with the word size and byte order found in
12089 the remote memory. */
12090
12091 bfd *
12092 bfd_elf_bfd_from_remote_memory
12093 (bfd *templ,
12094 bfd_vma ehdr_vma,
12095 bfd_size_type size,
12096 bfd_vma *loadbasep,
12097 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12098 {
12099 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12100 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12101 }
12102 \f
12103 long
12104 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12105 long symcount ATTRIBUTE_UNUSED,
12106 asymbol **syms ATTRIBUTE_UNUSED,
12107 long dynsymcount,
12108 asymbol **dynsyms,
12109 asymbol **ret)
12110 {
12111 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12112 asection *relplt;
12113 asymbol *s;
12114 const char *relplt_name;
12115 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12116 arelent *p;
12117 long count, i, n;
12118 size_t size;
12119 Elf_Internal_Shdr *hdr;
12120 char *names;
12121 asection *plt;
12122
12123 *ret = NULL;
12124
12125 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12126 return 0;
12127
12128 if (dynsymcount <= 0)
12129 return 0;
12130
12131 if (!bed->plt_sym_val)
12132 return 0;
12133
12134 relplt_name = bed->relplt_name;
12135 if (relplt_name == NULL)
12136 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12137 relplt = bfd_get_section_by_name (abfd, relplt_name);
12138 if (relplt == NULL)
12139 return 0;
12140
12141 hdr = &elf_section_data (relplt)->this_hdr;
12142 if (hdr->sh_link != elf_dynsymtab (abfd)
12143 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12144 return 0;
12145
12146 plt = bfd_get_section_by_name (abfd, ".plt");
12147 if (plt == NULL)
12148 return 0;
12149
12150 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12151 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12152 return -1;
12153
12154 count = relplt->size / hdr->sh_entsize;
12155 size = count * sizeof (asymbol);
12156 p = relplt->relocation;
12157 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12158 {
12159 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12160 if (p->addend != 0)
12161 {
12162 #ifdef BFD64
12163 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12164 #else
12165 size += sizeof ("+0x") - 1 + 8;
12166 #endif
12167 }
12168 }
12169
12170 s = *ret = (asymbol *) bfd_malloc (size);
12171 if (s == NULL)
12172 return -1;
12173
12174 names = (char *) (s + count);
12175 p = relplt->relocation;
12176 n = 0;
12177 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12178 {
12179 size_t len;
12180 bfd_vma addr;
12181
12182 addr = bed->plt_sym_val (i, plt, p);
12183 if (addr == (bfd_vma) -1)
12184 continue;
12185
12186 *s = **p->sym_ptr_ptr;
12187 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12188 we are defining a symbol, ensure one of them is set. */
12189 if ((s->flags & BSF_LOCAL) == 0)
12190 s->flags |= BSF_GLOBAL;
12191 s->flags |= BSF_SYNTHETIC;
12192 s->section = plt;
12193 s->value = addr - plt->vma;
12194 s->name = names;
12195 s->udata.p = NULL;
12196 len = strlen ((*p->sym_ptr_ptr)->name);
12197 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12198 names += len;
12199 if (p->addend != 0)
12200 {
12201 char buf[30], *a;
12202
12203 memcpy (names, "+0x", sizeof ("+0x") - 1);
12204 names += sizeof ("+0x") - 1;
12205 bfd_sprintf_vma (abfd, buf, p->addend);
12206 for (a = buf; *a == '0'; ++a)
12207 ;
12208 len = strlen (a);
12209 memcpy (names, a, len);
12210 names += len;
12211 }
12212 memcpy (names, "@plt", sizeof ("@plt"));
12213 names += sizeof ("@plt");
12214 ++s, ++n;
12215 }
12216
12217 return n;
12218 }
12219
12220 /* It is only used by x86-64 so far.
12221 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12222 but current usage would allow all of _bfd_std_section to be zero. */
12223 static const asymbol lcomm_sym
12224 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12225 asection _bfd_elf_large_com_section
12226 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12227 "LARGE_COMMON", 0, SEC_IS_COMMON);
12228
12229 bfd_boolean
12230 _bfd_elf_final_write_processing (bfd *abfd)
12231 {
12232 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12233
12234 i_ehdrp = elf_elfheader (abfd);
12235
12236 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12237 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12238
12239 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12240 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12241 STB_GNU_UNIQUE binding. */
12242 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12243 {
12244 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12245 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12246 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12247 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12248 {
12249 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12250 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12251 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12252 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12253 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12254 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12255 bfd_set_error (bfd_error_sorry);
12256 return FALSE;
12257 }
12258 }
12259 return TRUE;
12260 }
12261
12262
12263 /* Return TRUE for ELF symbol types that represent functions.
12264 This is the default version of this function, which is sufficient for
12265 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12266
12267 bfd_boolean
12268 _bfd_elf_is_function_type (unsigned int type)
12269 {
12270 return (type == STT_FUNC
12271 || type == STT_GNU_IFUNC);
12272 }
12273
12274 /* If the ELF symbol SYM might be a function in SEC, return the
12275 function size and set *CODE_OFF to the function's entry point,
12276 otherwise return zero. */
12277
12278 bfd_size_type
12279 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12280 bfd_vma *code_off)
12281 {
12282 bfd_size_type size;
12283
12284 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12285 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12286 || sym->section != sec)
12287 return 0;
12288
12289 *code_off = sym->value;
12290 size = 0;
12291 if (!(sym->flags & BSF_SYNTHETIC))
12292 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12293 if (size == 0)
12294 size = 1;
12295 return size;
12296 }
This page took 0.434343 seconds and 5 git commands to generate.