BFD whitespace fixes
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 static char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354 else
355 {
356 /* PR 24273: The string section's contents may have already
357 been loaded elsewhere, eg because a corrupt file has the
358 string section index in the ELF header pointing at a group
359 section. So be paranoid, and test that the last byte of
360 the section is zero. */
361 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
362 return NULL;
363 }
364
365 if (strindex >= hdr->sh_size)
366 {
367 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
368 _bfd_error_handler
369 /* xgettext:c-format */
370 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
371 abfd, strindex, (uint64_t) hdr->sh_size,
372 (shindex == shstrndx && strindex == hdr->sh_name
373 ? ".shstrtab"
374 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
375 return NULL;
376 }
377
378 return ((char *) hdr->contents) + strindex;
379 }
380
381 /* Read and convert symbols to internal format.
382 SYMCOUNT specifies the number of symbols to read, starting from
383 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
384 are non-NULL, they are used to store the internal symbols, external
385 symbols, and symbol section index extensions, respectively.
386 Returns a pointer to the internal symbol buffer (malloced if necessary)
387 or NULL if there were no symbols or some kind of problem. */
388
389 Elf_Internal_Sym *
390 bfd_elf_get_elf_syms (bfd *ibfd,
391 Elf_Internal_Shdr *symtab_hdr,
392 size_t symcount,
393 size_t symoffset,
394 Elf_Internal_Sym *intsym_buf,
395 void *extsym_buf,
396 Elf_External_Sym_Shndx *extshndx_buf)
397 {
398 Elf_Internal_Shdr *shndx_hdr;
399 void *alloc_ext;
400 const bfd_byte *esym;
401 Elf_External_Sym_Shndx *alloc_extshndx;
402 Elf_External_Sym_Shndx *shndx;
403 Elf_Internal_Sym *alloc_intsym;
404 Elf_Internal_Sym *isym;
405 Elf_Internal_Sym *isymend;
406 const struct elf_backend_data *bed;
407 size_t extsym_size;
408 bfd_size_type amt;
409 file_ptr pos;
410
411 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
412 abort ();
413
414 if (symcount == 0)
415 return intsym_buf;
416
417 /* Normal syms might have section extension entries. */
418 shndx_hdr = NULL;
419 if (elf_symtab_shndx_list (ibfd) != NULL)
420 {
421 elf_section_list * entry;
422 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
423
424 /* Find an index section that is linked to this symtab section. */
425 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
426 {
427 /* PR 20063. */
428 if (entry->hdr.sh_link >= elf_numsections (ibfd))
429 continue;
430
431 if (sections[entry->hdr.sh_link] == symtab_hdr)
432 {
433 shndx_hdr = & entry->hdr;
434 break;
435 };
436 }
437
438 if (shndx_hdr == NULL)
439 {
440 if (symtab_hdr == & elf_symtab_hdr (ibfd))
441 /* Not really accurate, but this was how the old code used to work. */
442 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
443 /* Otherwise we do nothing. The assumption is that
444 the index table will not be needed. */
445 }
446 }
447
448 /* Read the symbols. */
449 alloc_ext = NULL;
450 alloc_extshndx = NULL;
451 alloc_intsym = NULL;
452 bed = get_elf_backend_data (ibfd);
453 extsym_size = bed->s->sizeof_sym;
454 amt = (bfd_size_type) symcount * extsym_size;
455 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
456 if (extsym_buf == NULL)
457 {
458 alloc_ext = bfd_malloc2 (symcount, extsym_size);
459 extsym_buf = alloc_ext;
460 }
461 if (extsym_buf == NULL
462 || bfd_seek (ibfd, pos, SEEK_SET) != 0
463 || bfd_bread (extsym_buf, amt, ibfd) != amt)
464 {
465 intsym_buf = NULL;
466 goto out;
467 }
468
469 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
470 extshndx_buf = NULL;
471 else
472 {
473 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
474 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
475 if (extshndx_buf == NULL)
476 {
477 alloc_extshndx = (Elf_External_Sym_Shndx *)
478 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 alloc_intsym = (Elf_Internal_Sym *)
493 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
494 intsym_buf = alloc_intsym;
495 if (intsym_buf == NULL)
496 goto out;
497 }
498
499 /* Convert the symbols to internal form. */
500 isymend = intsym_buf + symcount;
501 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
502 shndx = extshndx_buf;
503 isym < isymend;
504 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
505 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
506 {
507 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
508 /* xgettext:c-format */
509 _bfd_error_handler (_("%pB symbol number %lu references"
510 " nonexistent SHT_SYMTAB_SHNDX section"),
511 ibfd, (unsigned long) symoffset);
512 if (alloc_intsym != NULL)
513 free (alloc_intsym);
514 intsym_buf = NULL;
515 goto out;
516 }
517
518 out:
519 if (alloc_ext != NULL)
520 free (alloc_ext);
521 if (alloc_extshndx != NULL)
522 free (alloc_extshndx);
523
524 return intsym_buf;
525 }
526
527 /* Look up a symbol name. */
528 const char *
529 bfd_elf_sym_name (bfd *abfd,
530 Elf_Internal_Shdr *symtab_hdr,
531 Elf_Internal_Sym *isym,
532 asection *sym_sec)
533 {
534 const char *name;
535 unsigned int iname = isym->st_name;
536 unsigned int shindex = symtab_hdr->sh_link;
537
538 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
539 /* Check for a bogus st_shndx to avoid crashing. */
540 && isym->st_shndx < elf_numsections (abfd))
541 {
542 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
543 shindex = elf_elfheader (abfd)->e_shstrndx;
544 }
545
546 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
547 if (name == NULL)
548 name = "(null)";
549 else if (sym_sec && *name == '\0')
550 name = bfd_section_name (abfd, sym_sec);
551
552 return name;
553 }
554
555 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
556 sections. The first element is the flags, the rest are section
557 pointers. */
558
559 typedef union elf_internal_group {
560 Elf_Internal_Shdr *shdr;
561 unsigned int flags;
562 } Elf_Internal_Group;
563
564 /* Return the name of the group signature symbol. Why isn't the
565 signature just a string? */
566
567 static const char *
568 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
569 {
570 Elf_Internal_Shdr *hdr;
571 unsigned char esym[sizeof (Elf64_External_Sym)];
572 Elf_External_Sym_Shndx eshndx;
573 Elf_Internal_Sym isym;
574
575 /* First we need to ensure the symbol table is available. Make sure
576 that it is a symbol table section. */
577 if (ghdr->sh_link >= elf_numsections (abfd))
578 return NULL;
579 hdr = elf_elfsections (abfd) [ghdr->sh_link];
580 if (hdr->sh_type != SHT_SYMTAB
581 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
582 return NULL;
583
584 /* Go read the symbol. */
585 hdr = &elf_tdata (abfd)->symtab_hdr;
586 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
587 &isym, esym, &eshndx) == NULL)
588 return NULL;
589
590 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
591 }
592
593 /* Set next_in_group list pointer, and group name for NEWSECT. */
594
595 static bfd_boolean
596 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
597 {
598 unsigned int num_group = elf_tdata (abfd)->num_group;
599
600 /* If num_group is zero, read in all SHT_GROUP sections. The count
601 is set to -1 if there are no SHT_GROUP sections. */
602 if (num_group == 0)
603 {
604 unsigned int i, shnum;
605
606 /* First count the number of groups. If we have a SHT_GROUP
607 section with just a flag word (ie. sh_size is 4), ignore it. */
608 shnum = elf_numsections (abfd);
609 num_group = 0;
610
611 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
612 ( (shdr)->sh_type == SHT_GROUP \
613 && (shdr)->sh_size >= minsize \
614 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
615 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
616
617 for (i = 0; i < shnum; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
620
621 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
622 num_group += 1;
623 }
624
625 if (num_group == 0)
626 {
627 num_group = (unsigned) -1;
628 elf_tdata (abfd)->num_group = num_group;
629 elf_tdata (abfd)->group_sect_ptr = NULL;
630 }
631 else
632 {
633 /* We keep a list of elf section headers for group sections,
634 so we can find them quickly. */
635 bfd_size_type amt;
636
637 elf_tdata (abfd)->num_group = num_group;
638 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
639 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
640 if (elf_tdata (abfd)->group_sect_ptr == NULL)
641 return FALSE;
642 memset (elf_tdata (abfd)->group_sect_ptr, 0,
643 num_group * sizeof (Elf_Internal_Shdr *));
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4);
666 amt = shdr->sh_size * sizeof (*dest) / 4;
667 shdr->contents = (unsigned char *)
668 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
669 /* PR binutils/4110: Handle corrupt group headers. */
670 if (shdr->contents == NULL)
671 {
672 _bfd_error_handler
673 /* xgettext:c-format */
674 (_("%pB: corrupt size field in group section"
675 " header: %#" PRIx64),
676 abfd, (uint64_t) shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 continue;
680 }
681
682 memset (shdr->contents, 0, amt);
683
684 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
685 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
686 != shdr->sh_size))
687 {
688 _bfd_error_handler
689 /* xgettext:c-format */
690 (_("%pB: invalid size field in group section"
691 " header: %#" PRIx64 ""),
692 abfd, (uint64_t) shdr->sh_size);
693 bfd_set_error (bfd_error_bad_value);
694 -- num_group;
695 /* PR 17510: If the group contents are even
696 partially corrupt, do not allow any of the
697 contents to be used. */
698 memset (shdr->contents, 0, amt);
699 continue;
700 }
701
702 /* Translate raw contents, a flag word followed by an
703 array of elf section indices all in target byte order,
704 to the flag word followed by an array of elf section
705 pointers. */
706 src = shdr->contents + shdr->sh_size;
707 dest = (Elf_Internal_Group *) (shdr->contents + amt);
708
709 while (1)
710 {
711 unsigned int idx;
712
713 src -= 4;
714 --dest;
715 idx = H_GET_32 (abfd, src);
716 if (src == shdr->contents)
717 {
718 dest->flags = idx;
719 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
720 shdr->bfd_section->flags
721 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
722 break;
723 }
724 if (idx < shnum)
725 {
726 dest->shdr = elf_elfsections (abfd)[idx];
727 /* PR binutils/23199: All sections in a
728 section group should be marked with
729 SHF_GROUP. But some tools generate
730 broken objects without SHF_GROUP. Fix
731 them up here. */
732 dest->shdr->sh_flags |= SHF_GROUP;
733 }
734 if (idx >= shnum
735 || dest->shdr->sh_type == SHT_GROUP)
736 {
737 _bfd_error_handler
738 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
739 abfd, i);
740 dest->shdr = NULL;
741 }
742 }
743 }
744 }
745
746 /* PR 17510: Corrupt binaries might contain invalid groups. */
747 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
748 {
749 elf_tdata (abfd)->num_group = num_group;
750
751 /* If all groups are invalid then fail. */
752 if (num_group == 0)
753 {
754 elf_tdata (abfd)->group_sect_ptr = NULL;
755 elf_tdata (abfd)->num_group = num_group = -1;
756 _bfd_error_handler
757 (_("%pB: no valid group sections found"), abfd);
758 bfd_set_error (bfd_error_bad_value);
759 }
760 }
761 }
762 }
763
764 if (num_group != (unsigned) -1)
765 {
766 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
767 unsigned int j;
768
769 for (j = 0; j < num_group; j++)
770 {
771 /* Begin search from previous found group. */
772 unsigned i = (j + search_offset) % num_group;
773
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx;
776 bfd_size_type n_elt;
777
778 if (shdr == NULL)
779 continue;
780
781 idx = (Elf_Internal_Group *) shdr->contents;
782 if (idx == NULL || shdr->sh_size < 4)
783 {
784 /* See PR 21957 for a reproducer. */
785 /* xgettext:c-format */
786 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
787 abfd, shdr->bfd_section);
788 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
789 bfd_set_error (bfd_error_bad_value);
790 return FALSE;
791 }
792 n_elt = shdr->sh_size / 4;
793
794 /* Look through this group's sections to see if current
795 section is a member. */
796 while (--n_elt != 0)
797 if ((++idx)->shdr == hdr)
798 {
799 asection *s = NULL;
800
801 /* We are a member of this group. Go looking through
802 other members to see if any others are linked via
803 next_in_group. */
804 idx = (Elf_Internal_Group *) shdr->contents;
805 n_elt = shdr->sh_size / 4;
806 while (--n_elt != 0)
807 if ((++idx)->shdr != NULL
808 && (s = idx->shdr->bfd_section) != NULL
809 && elf_next_in_group (s) != NULL)
810 break;
811 if (n_elt != 0)
812 {
813 /* Snarf the group name from other member, and
814 insert current section in circular list. */
815 elf_group_name (newsect) = elf_group_name (s);
816 elf_next_in_group (newsect) = elf_next_in_group (s);
817 elf_next_in_group (s) = newsect;
818 }
819 else
820 {
821 const char *gname;
822
823 gname = group_signature (abfd, shdr);
824 if (gname == NULL)
825 return FALSE;
826 elf_group_name (newsect) = gname;
827
828 /* Start a circular list with one element. */
829 elf_next_in_group (newsect) = newsect;
830 }
831
832 /* If the group section has been created, point to the
833 new member. */
834 if (shdr->bfd_section != NULL)
835 elf_next_in_group (shdr->bfd_section) = newsect;
836
837 elf_tdata (abfd)->group_search_offset = i;
838 j = num_group - 1;
839 break;
840 }
841 }
842 }
843
844 if (elf_group_name (newsect) == NULL)
845 {
846 /* xgettext:c-format */
847 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
848 abfd, newsect);
849 return FALSE;
850 }
851 return TRUE;
852 }
853
854 bfd_boolean
855 _bfd_elf_setup_sections (bfd *abfd)
856 {
857 unsigned int i;
858 unsigned int num_group = elf_tdata (abfd)->num_group;
859 bfd_boolean result = TRUE;
860 asection *s;
861
862 /* Process SHF_LINK_ORDER. */
863 for (s = abfd->sections; s != NULL; s = s->next)
864 {
865 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
866 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
867 {
868 unsigned int elfsec = this_hdr->sh_link;
869 /* FIXME: The old Intel compiler and old strip/objcopy may
870 not set the sh_link or sh_info fields. Hence we could
871 get the situation where elfsec is 0. */
872 if (elfsec == 0)
873 {
874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
875 if (bed->link_order_error_handler)
876 bed->link_order_error_handler
877 /* xgettext:c-format */
878 (_("%pB: warning: sh_link not set for section `%pA'"),
879 abfd, s);
880 }
881 else
882 {
883 asection *linksec = NULL;
884
885 if (elfsec < elf_numsections (abfd))
886 {
887 this_hdr = elf_elfsections (abfd)[elfsec];
888 linksec = this_hdr->bfd_section;
889 }
890
891 /* PR 1991, 2008:
892 Some strip/objcopy may leave an incorrect value in
893 sh_link. We don't want to proceed. */
894 if (linksec == NULL)
895 {
896 _bfd_error_handler
897 /* xgettext:c-format */
898 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
899 s->owner, elfsec, s);
900 result = FALSE;
901 }
902
903 elf_linked_to_section (s) = linksec;
904 }
905 }
906 else if (this_hdr->sh_type == SHT_GROUP
907 && elf_next_in_group (s) == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
912 abfd, elf_section_data (s)->this_idx);
913 result = FALSE;
914 }
915 }
916
917 /* Process section groups. */
918 if (num_group == (unsigned) -1)
919 return result;
920
921 for (i = 0; i < num_group; i++)
922 {
923 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
924 Elf_Internal_Group *idx;
925 unsigned int n_elt;
926
927 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
928 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
929 {
930 _bfd_error_handler
931 /* xgettext:c-format */
932 (_("%pB: section group entry number %u is corrupt"),
933 abfd, i);
934 result = FALSE;
935 continue;
936 }
937
938 idx = (Elf_Internal_Group *) shdr->contents;
939 n_elt = shdr->sh_size / 4;
940
941 while (--n_elt != 0)
942 {
943 ++ idx;
944
945 if (idx->shdr == NULL)
946 continue;
947 else if (idx->shdr->bfd_section)
948 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
949 else if (idx->shdr->sh_type != SHT_RELA
950 && idx->shdr->sh_type != SHT_REL)
951 {
952 /* There are some unknown sections in the group. */
953 _bfd_error_handler
954 /* xgettext:c-format */
955 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
956 abfd,
957 idx->shdr->sh_type,
958 bfd_elf_string_from_elf_section (abfd,
959 (elf_elfheader (abfd)
960 ->e_shstrndx),
961 idx->shdr->sh_name),
962 shdr->bfd_section);
963 result = FALSE;
964 }
965 }
966 }
967
968 return result;
969 }
970
971 bfd_boolean
972 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
973 {
974 return elf_next_in_group (sec) != NULL;
975 }
976
977 static char *
978 convert_debug_to_zdebug (bfd *abfd, const char *name)
979 {
980 unsigned int len = strlen (name);
981 char *new_name = bfd_alloc (abfd, len + 2);
982 if (new_name == NULL)
983 return NULL;
984 new_name[0] = '.';
985 new_name[1] = 'z';
986 memcpy (new_name + 2, name + 1, len);
987 return new_name;
988 }
989
990 static char *
991 convert_zdebug_to_debug (bfd *abfd, const char *name)
992 {
993 unsigned int len = strlen (name);
994 char *new_name = bfd_alloc (abfd, len);
995 if (new_name == NULL)
996 return NULL;
997 new_name[0] = '.';
998 memcpy (new_name + 1, name + 2, len - 1);
999 return new_name;
1000 }
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014
1015 if (hdr->bfd_section != NULL)
1016 return TRUE;
1017
1018 newsect = bfd_make_section_anyway (abfd, name);
1019 if (newsect == NULL)
1020 return FALSE;
1021
1022 hdr->bfd_section = newsect;
1023 elf_section_data (newsect)->this_hdr = *hdr;
1024 elf_section_data (newsect)->this_idx = shindex;
1025
1026 /* Always use the real type/flags. */
1027 elf_section_type (newsect) = hdr->sh_type;
1028 elf_section_flags (newsect) = hdr->sh_flags;
1029
1030 newsect->filepos = hdr->sh_offset;
1031
1032 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1033 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1034 || ! bfd_set_section_alignment (abfd, newsect,
1035 bfd_log2 (hdr->sh_addralign)))
1036 return FALSE;
1037
1038 flags = SEC_NO_FLAGS;
1039 if (hdr->sh_type != SHT_NOBITS)
1040 flags |= SEC_HAS_CONTENTS;
1041 if (hdr->sh_type == SHT_GROUP)
1042 flags |= SEC_GROUP;
1043 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1044 {
1045 flags |= SEC_ALLOC;
1046 if (hdr->sh_type != SHT_NOBITS)
1047 flags |= SEC_LOAD;
1048 }
1049 if ((hdr->sh_flags & SHF_WRITE) == 0)
1050 flags |= SEC_READONLY;
1051 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1052 flags |= SEC_CODE;
1053 else if ((flags & SEC_LOAD) != 0)
1054 flags |= SEC_DATA;
1055 if ((hdr->sh_flags & SHF_MERGE) != 0)
1056 {
1057 flags |= SEC_MERGE;
1058 newsect->entsize = hdr->sh_entsize;
1059 }
1060 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1061 flags |= SEC_STRINGS;
1062 if (hdr->sh_flags & SHF_GROUP)
1063 if (!setup_group (abfd, hdr, newsect))
1064 return FALSE;
1065 if ((hdr->sh_flags & SHF_TLS) != 0)
1066 flags |= SEC_THREAD_LOCAL;
1067 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1068 flags |= SEC_EXCLUDE;
1069
1070 if ((flags & SEC_ALLOC) == 0)
1071 {
1072 /* The debugging sections appear to be recognized only by name,
1073 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1074 if (name [0] == '.')
1075 {
1076 const char *p;
1077 int n;
1078 if (name[1] == 'd')
1079 p = ".debug", n = 6;
1080 else if (name[1] == 'g' && name[2] == 'n')
1081 p = ".gnu.linkonce.wi.", n = 17;
1082 else if (name[1] == 'g' && name[2] == 'd')
1083 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1084 else if (name[1] == 'l')
1085 p = ".line", n = 5;
1086 else if (name[1] == 's')
1087 p = ".stab", n = 5;
1088 else if (name[1] == 'z')
1089 p = ".zdebug", n = 7;
1090 else
1091 p = NULL, n = 0;
1092 if (p != NULL && strncmp (name, p, n) == 0)
1093 flags |= SEC_DEBUGGING;
1094 }
1095 }
1096
1097 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1098 only link a single copy of the section. This is used to support
1099 g++. g++ will emit each template expansion in its own section.
1100 The symbols will be defined as weak, so that multiple definitions
1101 are permitted. The GNU linker extension is to actually discard
1102 all but one of the sections. */
1103 if (CONST_STRNEQ (name, ".gnu.linkonce")
1104 && elf_next_in_group (newsect) == NULL)
1105 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1106
1107 bed = get_elf_backend_data (abfd);
1108 if (bed->elf_backend_section_flags)
1109 if (! bed->elf_backend_section_flags (&flags, hdr))
1110 return FALSE;
1111
1112 if (! bfd_set_section_flags (abfd, newsect, flags))
1113 return FALSE;
1114
1115 /* We do not parse the PT_NOTE segments as we are interested even in the
1116 separate debug info files which may have the segments offsets corrupted.
1117 PT_NOTEs from the core files are currently not parsed using BFD. */
1118 if (hdr->sh_type == SHT_NOTE)
1119 {
1120 bfd_byte *contents;
1121
1122 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1123 return FALSE;
1124
1125 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1126 hdr->sh_offset, hdr->sh_addralign);
1127 free (contents);
1128 }
1129
1130 if ((flags & SEC_ALLOC) != 0)
1131 {
1132 Elf_Internal_Phdr *phdr;
1133 unsigned int i, nload;
1134
1135 /* Some ELF linkers produce binaries with all the program header
1136 p_paddr fields zero. If we have such a binary with more than
1137 one PT_LOAD header, then leave the section lma equal to vma
1138 so that we don't create sections with overlapping lma. */
1139 phdr = elf_tdata (abfd)->phdr;
1140 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1141 if (phdr->p_paddr != 0)
1142 break;
1143 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1144 ++nload;
1145 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1146 return TRUE;
1147
1148 phdr = elf_tdata (abfd)->phdr;
1149 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1150 {
1151 if (((phdr->p_type == PT_LOAD
1152 && (hdr->sh_flags & SHF_TLS) == 0)
1153 || phdr->p_type == PT_TLS)
1154 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1155 {
1156 if ((flags & SEC_LOAD) == 0)
1157 newsect->lma = (phdr->p_paddr
1158 + hdr->sh_addr - phdr->p_vaddr);
1159 else
1160 /* We used to use the same adjustment for SEC_LOAD
1161 sections, but that doesn't work if the segment
1162 is packed with code from multiple VMAs.
1163 Instead we calculate the section LMA based on
1164 the segment LMA. It is assumed that the
1165 segment will contain sections with contiguous
1166 LMAs, even if the VMAs are not. */
1167 newsect->lma = (phdr->p_paddr
1168 + hdr->sh_offset - phdr->p_offset);
1169
1170 /* With contiguous segments, we can't tell from file
1171 offsets whether a section with zero size should
1172 be placed at the end of one segment or the
1173 beginning of the next. Decide based on vaddr. */
1174 if (hdr->sh_addr >= phdr->p_vaddr
1175 && (hdr->sh_addr + hdr->sh_size
1176 <= phdr->p_vaddr + phdr->p_memsz))
1177 break;
1178 }
1179 }
1180 }
1181
1182 /* Compress/decompress DWARF debug sections with names: .debug_* and
1183 .zdebug_*, after the section flags is set. */
1184 if ((flags & SEC_DEBUGGING)
1185 && ((name[1] == 'd' && name[6] == '_')
1186 || (name[1] == 'z' && name[7] == '_')))
1187 {
1188 enum { nothing, compress, decompress } action = nothing;
1189 int compression_header_size;
1190 bfd_size_type uncompressed_size;
1191 unsigned int uncompressed_align_power;
1192 bfd_boolean compressed
1193 = bfd_is_section_compressed_with_header (abfd, newsect,
1194 &compression_header_size,
1195 &uncompressed_size,
1196 &uncompressed_align_power);
1197 if (compressed)
1198 {
1199 /* Compressed section. Check if we should decompress. */
1200 if ((abfd->flags & BFD_DECOMPRESS))
1201 action = decompress;
1202 }
1203
1204 /* Compress the uncompressed section or convert from/to .zdebug*
1205 section. Check if we should compress. */
1206 if (action == nothing)
1207 {
1208 if (newsect->size != 0
1209 && (abfd->flags & BFD_COMPRESS)
1210 && compression_header_size >= 0
1211 && uncompressed_size > 0
1212 && (!compressed
1213 || ((compression_header_size > 0)
1214 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1215 action = compress;
1216 else
1217 return TRUE;
1218 }
1219
1220 if (action == compress)
1221 {
1222 if (!bfd_init_section_compress_status (abfd, newsect))
1223 {
1224 _bfd_error_handler
1225 /* xgettext:c-format */
1226 (_("%pB: unable to initialize compress status for section %s"),
1227 abfd, name);
1228 return FALSE;
1229 }
1230 }
1231 else
1232 {
1233 if (!bfd_init_section_decompress_status (abfd, newsect))
1234 {
1235 _bfd_error_handler
1236 /* xgettext:c-format */
1237 (_("%pB: unable to initialize decompress status for section %s"),
1238 abfd, name);
1239 return FALSE;
1240 }
1241 }
1242
1243 if (abfd->is_linker_input)
1244 {
1245 if (name[1] == 'z'
1246 && (action == decompress
1247 || (action == compress
1248 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1249 {
1250 /* Convert section name from .zdebug_* to .debug_* so
1251 that linker will consider this section as a debug
1252 section. */
1253 char *new_name = convert_zdebug_to_debug (abfd, name);
1254 if (new_name == NULL)
1255 return FALSE;
1256 bfd_rename_section (abfd, newsect, new_name);
1257 }
1258 }
1259 else
1260 /* For objdump, don't rename the section. For objcopy, delay
1261 section rename to elf_fake_sections. */
1262 newsect->flags |= SEC_ELF_RENAME;
1263 }
1264
1265 return TRUE;
1266 }
1267
1268 const char *const bfd_elf_section_type_names[] =
1269 {
1270 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1271 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1272 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1273 };
1274
1275 /* ELF relocs are against symbols. If we are producing relocatable
1276 output, and the reloc is against an external symbol, and nothing
1277 has given us any additional addend, the resulting reloc will also
1278 be against the same symbol. In such a case, we don't want to
1279 change anything about the way the reloc is handled, since it will
1280 all be done at final link time. Rather than put special case code
1281 into bfd_perform_relocation, all the reloc types use this howto
1282 function. It just short circuits the reloc if producing
1283 relocatable output against an external symbol. */
1284
1285 bfd_reloc_status_type
1286 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1287 arelent *reloc_entry,
1288 asymbol *symbol,
1289 void *data ATTRIBUTE_UNUSED,
1290 asection *input_section,
1291 bfd *output_bfd,
1292 char **error_message ATTRIBUTE_UNUSED)
1293 {
1294 if (output_bfd != NULL
1295 && (symbol->flags & BSF_SECTION_SYM) == 0
1296 && (! reloc_entry->howto->partial_inplace
1297 || reloc_entry->addend == 0))
1298 {
1299 reloc_entry->address += input_section->output_offset;
1300 return bfd_reloc_ok;
1301 }
1302
1303 return bfd_reloc_continue;
1304 }
1305 \f
1306 /* Returns TRUE if section A matches section B.
1307 Names, addresses and links may be different, but everything else
1308 should be the same. */
1309
1310 static bfd_boolean
1311 section_match (const Elf_Internal_Shdr * a,
1312 const Elf_Internal_Shdr * b)
1313 {
1314 if (a->sh_type != b->sh_type
1315 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1316 || a->sh_addralign != b->sh_addralign
1317 || a->sh_entsize != b->sh_entsize)
1318 return FALSE;
1319 if (a->sh_type == SHT_SYMTAB
1320 || a->sh_type == SHT_STRTAB)
1321 return TRUE;
1322 return a->sh_size == b->sh_size;
1323 }
1324
1325 /* Find a section in OBFD that has the same characteristics
1326 as IHEADER. Return the index of this section or SHN_UNDEF if
1327 none can be found. Check's section HINT first, as this is likely
1328 to be the correct section. */
1329
1330 static unsigned int
1331 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1332 const unsigned int hint)
1333 {
1334 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1335 unsigned int i;
1336
1337 BFD_ASSERT (iheader != NULL);
1338
1339 /* See PR 20922 for a reproducer of the NULL test. */
1340 if (hint < elf_numsections (obfd)
1341 && oheaders[hint] != NULL
1342 && section_match (oheaders[hint], iheader))
1343 return hint;
1344
1345 for (i = 1; i < elf_numsections (obfd); i++)
1346 {
1347 Elf_Internal_Shdr * oheader = oheaders[i];
1348
1349 if (oheader == NULL)
1350 continue;
1351 if (section_match (oheader, iheader))
1352 /* FIXME: Do we care if there is a potential for
1353 multiple matches ? */
1354 return i;
1355 }
1356
1357 return SHN_UNDEF;
1358 }
1359
1360 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1361 Processor specific section, based upon a matching input section.
1362 Returns TRUE upon success, FALSE otherwise. */
1363
1364 static bfd_boolean
1365 copy_special_section_fields (const bfd *ibfd,
1366 bfd *obfd,
1367 const Elf_Internal_Shdr *iheader,
1368 Elf_Internal_Shdr *oheader,
1369 const unsigned int secnum)
1370 {
1371 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1372 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1373 bfd_boolean changed = FALSE;
1374 unsigned int sh_link;
1375
1376 if (oheader->sh_type == SHT_NOBITS)
1377 {
1378 /* This is a feature for objcopy --only-keep-debug:
1379 When a section's type is changed to NOBITS, we preserve
1380 the sh_link and sh_info fields so that they can be
1381 matched up with the original.
1382
1383 Note: Strictly speaking these assignments are wrong.
1384 The sh_link and sh_info fields should point to the
1385 relevent sections in the output BFD, which may not be in
1386 the same location as they were in the input BFD. But
1387 the whole point of this action is to preserve the
1388 original values of the sh_link and sh_info fields, so
1389 that they can be matched up with the section headers in
1390 the original file. So strictly speaking we may be
1391 creating an invalid ELF file, but it is only for a file
1392 that just contains debug info and only for sections
1393 without any contents. */
1394 if (oheader->sh_link == 0)
1395 oheader->sh_link = iheader->sh_link;
1396 if (oheader->sh_info == 0)
1397 oheader->sh_info = iheader->sh_info;
1398 return TRUE;
1399 }
1400
1401 /* Allow the target a chance to decide how these fields should be set. */
1402 if (bed->elf_backend_copy_special_section_fields != NULL
1403 && bed->elf_backend_copy_special_section_fields
1404 (ibfd, obfd, iheader, oheader))
1405 return TRUE;
1406
1407 /* We have an iheader which might match oheader, and which has non-zero
1408 sh_info and/or sh_link fields. Attempt to follow those links and find
1409 the section in the output bfd which corresponds to the linked section
1410 in the input bfd. */
1411 if (iheader->sh_link != SHN_UNDEF)
1412 {
1413 /* See PR 20931 for a reproducer. */
1414 if (iheader->sh_link >= elf_numsections (ibfd))
1415 {
1416 _bfd_error_handler
1417 /* xgettext:c-format */
1418 (_("%pB: invalid sh_link field (%d) in section number %d"),
1419 ibfd, iheader->sh_link, secnum);
1420 return FALSE;
1421 }
1422
1423 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1424 if (sh_link != SHN_UNDEF)
1425 {
1426 oheader->sh_link = sh_link;
1427 changed = TRUE;
1428 }
1429 else
1430 /* FIXME: Should we install iheader->sh_link
1431 if we could not find a match ? */
1432 _bfd_error_handler
1433 /* xgettext:c-format */
1434 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1435 }
1436
1437 if (iheader->sh_info)
1438 {
1439 /* The sh_info field can hold arbitrary information, but if the
1440 SHF_LINK_INFO flag is set then it should be interpreted as a
1441 section index. */
1442 if (iheader->sh_flags & SHF_INFO_LINK)
1443 {
1444 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1445 iheader->sh_info);
1446 if (sh_link != SHN_UNDEF)
1447 oheader->sh_flags |= SHF_INFO_LINK;
1448 }
1449 else
1450 /* No idea what it means - just copy it. */
1451 sh_link = iheader->sh_info;
1452
1453 if (sh_link != SHN_UNDEF)
1454 {
1455 oheader->sh_info = sh_link;
1456 changed = TRUE;
1457 }
1458 else
1459 _bfd_error_handler
1460 /* xgettext:c-format */
1461 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1462 }
1463
1464 return changed;
1465 }
1466
1467 /* Copy the program header and other data from one object module to
1468 another. */
1469
1470 bfd_boolean
1471 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1472 {
1473 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1474 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1475 const struct elf_backend_data *bed;
1476 unsigned int i;
1477
1478 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1479 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1480 return TRUE;
1481
1482 if (!elf_flags_init (obfd))
1483 {
1484 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1485 elf_flags_init (obfd) = TRUE;
1486 }
1487
1488 elf_gp (obfd) = elf_gp (ibfd);
1489
1490 /* Also copy the EI_OSABI field. */
1491 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1492 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1493
1494 /* If set, copy the EI_ABIVERSION field. */
1495 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1496 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1497 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1498
1499 /* Copy object attributes. */
1500 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1501
1502 if (iheaders == NULL || oheaders == NULL)
1503 return TRUE;
1504
1505 bed = get_elf_backend_data (obfd);
1506
1507 /* Possibly copy other fields in the section header. */
1508 for (i = 1; i < elf_numsections (obfd); i++)
1509 {
1510 unsigned int j;
1511 Elf_Internal_Shdr * oheader = oheaders[i];
1512
1513 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1514 because of a special case need for generating separate debug info
1515 files. See below for more details. */
1516 if (oheader == NULL
1517 || (oheader->sh_type != SHT_NOBITS
1518 && oheader->sh_type < SHT_LOOS))
1519 continue;
1520
1521 /* Ignore empty sections, and sections whose
1522 fields have already been initialised. */
1523 if (oheader->sh_size == 0
1524 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1525 continue;
1526
1527 /* Scan for the matching section in the input bfd.
1528 First we try for a direct mapping between the input and output sections. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 if (oheader->bfd_section != NULL
1537 && iheader->bfd_section != NULL
1538 && iheader->bfd_section->output_section != NULL
1539 && iheader->bfd_section->output_section == oheader->bfd_section)
1540 {
1541 /* We have found a connection from the input section to the
1542 output section. Attempt to copy the header fields. If
1543 this fails then do not try any further sections - there
1544 should only be a one-to-one mapping between input and output. */
1545 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1546 j = elf_numsections (ibfd);
1547 break;
1548 }
1549 }
1550
1551 if (j < elf_numsections (ibfd))
1552 continue;
1553
1554 /* That failed. So try to deduce the corresponding input section.
1555 Unfortunately we cannot compare names as the output string table
1556 is empty, so instead we check size, address and type. */
1557 for (j = 1; j < elf_numsections (ibfd); j++)
1558 {
1559 const Elf_Internal_Shdr * iheader = iheaders[j];
1560
1561 if (iheader == NULL)
1562 continue;
1563
1564 /* Try matching fields in the input section's header.
1565 Since --only-keep-debug turns all non-debug sections into
1566 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1567 input type. */
1568 if ((oheader->sh_type == SHT_NOBITS
1569 || iheader->sh_type == oheader->sh_type)
1570 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1571 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1572 && iheader->sh_addralign == oheader->sh_addralign
1573 && iheader->sh_entsize == oheader->sh_entsize
1574 && iheader->sh_size == oheader->sh_size
1575 && iheader->sh_addr == oheader->sh_addr
1576 && (iheader->sh_info != oheader->sh_info
1577 || iheader->sh_link != oheader->sh_link))
1578 {
1579 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1580 break;
1581 }
1582 }
1583
1584 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1585 {
1586 /* Final attempt. Call the backend copy function
1587 with a NULL input section. */
1588 if (bed->elf_backend_copy_special_section_fields != NULL)
1589 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1590 }
1591 }
1592
1593 return TRUE;
1594 }
1595
1596 static const char *
1597 get_segment_type (unsigned int p_type)
1598 {
1599 const char *pt;
1600 switch (p_type)
1601 {
1602 case PT_NULL: pt = "NULL"; break;
1603 case PT_LOAD: pt = "LOAD"; break;
1604 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1605 case PT_INTERP: pt = "INTERP"; break;
1606 case PT_NOTE: pt = "NOTE"; break;
1607 case PT_SHLIB: pt = "SHLIB"; break;
1608 case PT_PHDR: pt = "PHDR"; break;
1609 case PT_TLS: pt = "TLS"; break;
1610 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1611 case PT_GNU_STACK: pt = "STACK"; break;
1612 case PT_GNU_RELRO: pt = "RELRO"; break;
1613 default: pt = NULL; break;
1614 }
1615 return pt;
1616 }
1617
1618 /* Print out the program headers. */
1619
1620 bfd_boolean
1621 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1622 {
1623 FILE *f = (FILE *) farg;
1624 Elf_Internal_Phdr *p;
1625 asection *s;
1626 bfd_byte *dynbuf = NULL;
1627
1628 p = elf_tdata (abfd)->phdr;
1629 if (p != NULL)
1630 {
1631 unsigned int i, c;
1632
1633 fprintf (f, _("\nProgram Header:\n"));
1634 c = elf_elfheader (abfd)->e_phnum;
1635 for (i = 0; i < c; i++, p++)
1636 {
1637 const char *pt = get_segment_type (p->p_type);
1638 char buf[20];
1639
1640 if (pt == NULL)
1641 {
1642 sprintf (buf, "0x%lx", p->p_type);
1643 pt = buf;
1644 }
1645 fprintf (f, "%8s off 0x", pt);
1646 bfd_fprintf_vma (abfd, f, p->p_offset);
1647 fprintf (f, " vaddr 0x");
1648 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1649 fprintf (f, " paddr 0x");
1650 bfd_fprintf_vma (abfd, f, p->p_paddr);
1651 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1652 fprintf (f, " filesz 0x");
1653 bfd_fprintf_vma (abfd, f, p->p_filesz);
1654 fprintf (f, " memsz 0x");
1655 bfd_fprintf_vma (abfd, f, p->p_memsz);
1656 fprintf (f, " flags %c%c%c",
1657 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1658 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1659 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1660 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1661 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1662 fprintf (f, "\n");
1663 }
1664 }
1665
1666 s = bfd_get_section_by_name (abfd, ".dynamic");
1667 if (s != NULL)
1668 {
1669 unsigned int elfsec;
1670 unsigned long shlink;
1671 bfd_byte *extdyn, *extdynend;
1672 size_t extdynsize;
1673 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1674
1675 fprintf (f, _("\nDynamic Section:\n"));
1676
1677 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1678 goto error_return;
1679
1680 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1681 if (elfsec == SHN_BAD)
1682 goto error_return;
1683 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1684
1685 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1686 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1687
1688 extdyn = dynbuf;
1689 /* PR 17512: file: 6f427532. */
1690 if (s->size < extdynsize)
1691 goto error_return;
1692 extdynend = extdyn + s->size;
1693 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1694 Fix range check. */
1695 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1696 {
1697 Elf_Internal_Dyn dyn;
1698 const char *name = "";
1699 char ab[20];
1700 bfd_boolean stringp;
1701 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1702
1703 (*swap_dyn_in) (abfd, extdyn, &dyn);
1704
1705 if (dyn.d_tag == DT_NULL)
1706 break;
1707
1708 stringp = FALSE;
1709 switch (dyn.d_tag)
1710 {
1711 default:
1712 if (bed->elf_backend_get_target_dtag)
1713 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1714
1715 if (!strcmp (name, ""))
1716 {
1717 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1718 name = ab;
1719 }
1720 break;
1721
1722 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1723 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1724 case DT_PLTGOT: name = "PLTGOT"; break;
1725 case DT_HASH: name = "HASH"; break;
1726 case DT_STRTAB: name = "STRTAB"; break;
1727 case DT_SYMTAB: name = "SYMTAB"; break;
1728 case DT_RELA: name = "RELA"; break;
1729 case DT_RELASZ: name = "RELASZ"; break;
1730 case DT_RELAENT: name = "RELAENT"; break;
1731 case DT_STRSZ: name = "STRSZ"; break;
1732 case DT_SYMENT: name = "SYMENT"; break;
1733 case DT_INIT: name = "INIT"; break;
1734 case DT_FINI: name = "FINI"; break;
1735 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1736 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1737 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1738 case DT_REL: name = "REL"; break;
1739 case DT_RELSZ: name = "RELSZ"; break;
1740 case DT_RELENT: name = "RELENT"; break;
1741 case DT_PLTREL: name = "PLTREL"; break;
1742 case DT_DEBUG: name = "DEBUG"; break;
1743 case DT_TEXTREL: name = "TEXTREL"; break;
1744 case DT_JMPREL: name = "JMPREL"; break;
1745 case DT_BIND_NOW: name = "BIND_NOW"; break;
1746 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1747 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1748 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1749 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1750 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1751 case DT_FLAGS: name = "FLAGS"; break;
1752 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1753 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1754 case DT_CHECKSUM: name = "CHECKSUM"; break;
1755 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1756 case DT_MOVEENT: name = "MOVEENT"; break;
1757 case DT_MOVESZ: name = "MOVESZ"; break;
1758 case DT_FEATURE: name = "FEATURE"; break;
1759 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1760 case DT_SYMINSZ: name = "SYMINSZ"; break;
1761 case DT_SYMINENT: name = "SYMINENT"; break;
1762 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1763 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1764 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1765 case DT_PLTPAD: name = "PLTPAD"; break;
1766 case DT_MOVETAB: name = "MOVETAB"; break;
1767 case DT_SYMINFO: name = "SYMINFO"; break;
1768 case DT_RELACOUNT: name = "RELACOUNT"; break;
1769 case DT_RELCOUNT: name = "RELCOUNT"; break;
1770 case DT_FLAGS_1: name = "FLAGS_1"; break;
1771 case DT_VERSYM: name = "VERSYM"; break;
1772 case DT_VERDEF: name = "VERDEF"; break;
1773 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1774 case DT_VERNEED: name = "VERNEED"; break;
1775 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1776 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1777 case DT_USED: name = "USED"; break;
1778 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1779 case DT_GNU_HASH: name = "GNU_HASH"; break;
1780 }
1781
1782 fprintf (f, " %-20s ", name);
1783 if (! stringp)
1784 {
1785 fprintf (f, "0x");
1786 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1787 }
1788 else
1789 {
1790 const char *string;
1791 unsigned int tagv = dyn.d_un.d_val;
1792
1793 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1794 if (string == NULL)
1795 goto error_return;
1796 fprintf (f, "%s", string);
1797 }
1798 fprintf (f, "\n");
1799 }
1800
1801 free (dynbuf);
1802 dynbuf = NULL;
1803 }
1804
1805 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1806 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1807 {
1808 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1809 return FALSE;
1810 }
1811
1812 if (elf_dynverdef (abfd) != 0)
1813 {
1814 Elf_Internal_Verdef *t;
1815
1816 fprintf (f, _("\nVersion definitions:\n"));
1817 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1818 {
1819 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1820 t->vd_flags, t->vd_hash,
1821 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1822 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1823 {
1824 Elf_Internal_Verdaux *a;
1825
1826 fprintf (f, "\t");
1827 for (a = t->vd_auxptr->vda_nextptr;
1828 a != NULL;
1829 a = a->vda_nextptr)
1830 fprintf (f, "%s ",
1831 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1832 fprintf (f, "\n");
1833 }
1834 }
1835 }
1836
1837 if (elf_dynverref (abfd) != 0)
1838 {
1839 Elf_Internal_Verneed *t;
1840
1841 fprintf (f, _("\nVersion References:\n"));
1842 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1843 {
1844 Elf_Internal_Vernaux *a;
1845
1846 fprintf (f, _(" required from %s:\n"),
1847 t->vn_filename ? t->vn_filename : "<corrupt>");
1848 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1849 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1850 a->vna_flags, a->vna_other,
1851 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1852 }
1853 }
1854
1855 return TRUE;
1856
1857 error_return:
1858 if (dynbuf != NULL)
1859 free (dynbuf);
1860 return FALSE;
1861 }
1862
1863 /* Get version string. */
1864
1865 const char *
1866 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1867 bfd_boolean *hidden)
1868 {
1869 const char *version_string = NULL;
1870 if (elf_dynversym (abfd) != 0
1871 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1872 {
1873 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1874
1875 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1876 vernum &= VERSYM_VERSION;
1877
1878 if (vernum == 0)
1879 version_string = "";
1880 else if (vernum == 1
1881 && (vernum > elf_tdata (abfd)->cverdefs
1882 || (elf_tdata (abfd)->verdef[0].vd_flags
1883 == VER_FLG_BASE)))
1884 version_string = "Base";
1885 else if (vernum <= elf_tdata (abfd)->cverdefs)
1886 version_string =
1887 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1888 else
1889 {
1890 Elf_Internal_Verneed *t;
1891
1892 version_string = _("<corrupt>");
1893 for (t = elf_tdata (abfd)->verref;
1894 t != NULL;
1895 t = t->vn_nextref)
1896 {
1897 Elf_Internal_Vernaux *a;
1898
1899 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1900 {
1901 if (a->vna_other == vernum)
1902 {
1903 version_string = a->vna_nodename;
1904 break;
1905 }
1906 }
1907 }
1908 }
1909 }
1910 return version_string;
1911 }
1912
1913 /* Display ELF-specific fields of a symbol. */
1914
1915 void
1916 bfd_elf_print_symbol (bfd *abfd,
1917 void *filep,
1918 asymbol *symbol,
1919 bfd_print_symbol_type how)
1920 {
1921 FILE *file = (FILE *) filep;
1922 switch (how)
1923 {
1924 case bfd_print_symbol_name:
1925 fprintf (file, "%s", symbol->name);
1926 break;
1927 case bfd_print_symbol_more:
1928 fprintf (file, "elf ");
1929 bfd_fprintf_vma (abfd, file, symbol->value);
1930 fprintf (file, " %x", symbol->flags);
1931 break;
1932 case bfd_print_symbol_all:
1933 {
1934 const char *section_name;
1935 const char *name = NULL;
1936 const struct elf_backend_data *bed;
1937 unsigned char st_other;
1938 bfd_vma val;
1939 const char *version_string;
1940 bfd_boolean hidden;
1941
1942 section_name = symbol->section ? symbol->section->name : "(*none*)";
1943
1944 bed = get_elf_backend_data (abfd);
1945 if (bed->elf_backend_print_symbol_all)
1946 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1947
1948 if (name == NULL)
1949 {
1950 name = symbol->name;
1951 bfd_print_symbol_vandf (abfd, file, symbol);
1952 }
1953
1954 fprintf (file, " %s\t", section_name);
1955 /* Print the "other" value for a symbol. For common symbols,
1956 we've already printed the size; now print the alignment.
1957 For other symbols, we have no specified alignment, and
1958 we've printed the address; now print the size. */
1959 if (symbol->section && bfd_is_com_section (symbol->section))
1960 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1961 else
1962 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1963 bfd_fprintf_vma (abfd, file, val);
1964
1965 /* If we have version information, print it. */
1966 version_string = _bfd_elf_get_symbol_version_string (abfd,
1967 symbol,
1968 &hidden);
1969 if (version_string)
1970 {
1971 if (!hidden)
1972 fprintf (file, " %-11s", version_string);
1973 else
1974 {
1975 int i;
1976
1977 fprintf (file, " (%s)", version_string);
1978 for (i = 10 - strlen (version_string); i > 0; --i)
1979 putc (' ', file);
1980 }
1981 }
1982
1983 /* If the st_other field is not zero, print it. */
1984 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1985
1986 switch (st_other)
1987 {
1988 case 0: break;
1989 case STV_INTERNAL: fprintf (file, " .internal"); break;
1990 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1991 case STV_PROTECTED: fprintf (file, " .protected"); break;
1992 default:
1993 /* Some other non-defined flags are also present, so print
1994 everything hex. */
1995 fprintf (file, " 0x%02x", (unsigned int) st_other);
1996 }
1997
1998 fprintf (file, " %s", name);
1999 }
2000 break;
2001 }
2002 }
2003 \f
2004 /* ELF .o/exec file reading */
2005
2006 /* Create a new bfd section from an ELF section header. */
2007
2008 bfd_boolean
2009 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2010 {
2011 Elf_Internal_Shdr *hdr;
2012 Elf_Internal_Ehdr *ehdr;
2013 const struct elf_backend_data *bed;
2014 const char *name;
2015 bfd_boolean ret = TRUE;
2016 static bfd_boolean * sections_being_created = NULL;
2017 static bfd * sections_being_created_abfd = NULL;
2018 static unsigned int nesting = 0;
2019
2020 if (shindex >= elf_numsections (abfd))
2021 return FALSE;
2022
2023 if (++ nesting > 3)
2024 {
2025 /* PR17512: A corrupt ELF binary might contain a recursive group of
2026 sections, with each the string indices pointing to the next in the
2027 loop. Detect this here, by refusing to load a section that we are
2028 already in the process of loading. We only trigger this test if
2029 we have nested at least three sections deep as normal ELF binaries
2030 can expect to recurse at least once.
2031
2032 FIXME: It would be better if this array was attached to the bfd,
2033 rather than being held in a static pointer. */
2034
2035 if (sections_being_created_abfd != abfd)
2036 sections_being_created = NULL;
2037 if (sections_being_created == NULL)
2038 {
2039 sections_being_created = (bfd_boolean *)
2040 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2041 sections_being_created_abfd = abfd;
2042 }
2043 if (sections_being_created [shindex])
2044 {
2045 _bfd_error_handler
2046 (_("%pB: warning: loop in section dependencies detected"), abfd);
2047 return FALSE;
2048 }
2049 sections_being_created [shindex] = TRUE;
2050 }
2051
2052 hdr = elf_elfsections (abfd)[shindex];
2053 ehdr = elf_elfheader (abfd);
2054 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2055 hdr->sh_name);
2056 if (name == NULL)
2057 goto fail;
2058
2059 bed = get_elf_backend_data (abfd);
2060 switch (hdr->sh_type)
2061 {
2062 case SHT_NULL:
2063 /* Inactive section. Throw it away. */
2064 goto success;
2065
2066 case SHT_PROGBITS: /* Normal section with contents. */
2067 case SHT_NOBITS: /* .bss section. */
2068 case SHT_HASH: /* .hash section. */
2069 case SHT_NOTE: /* .note section. */
2070 case SHT_INIT_ARRAY: /* .init_array section. */
2071 case SHT_FINI_ARRAY: /* .fini_array section. */
2072 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2073 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2074 case SHT_GNU_HASH: /* .gnu.hash section. */
2075 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2076 goto success;
2077
2078 case SHT_DYNAMIC: /* Dynamic linking information. */
2079 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2080 goto fail;
2081
2082 if (hdr->sh_link > elf_numsections (abfd))
2083 {
2084 /* PR 10478: Accept Solaris binaries with a sh_link
2085 field set to SHN_BEFORE or SHN_AFTER. */
2086 switch (bfd_get_arch (abfd))
2087 {
2088 case bfd_arch_i386:
2089 case bfd_arch_sparc:
2090 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2091 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2092 break;
2093 /* Otherwise fall through. */
2094 default:
2095 goto fail;
2096 }
2097 }
2098 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2099 goto fail;
2100 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2101 {
2102 Elf_Internal_Shdr *dynsymhdr;
2103
2104 /* The shared libraries distributed with hpux11 have a bogus
2105 sh_link field for the ".dynamic" section. Find the
2106 string table for the ".dynsym" section instead. */
2107 if (elf_dynsymtab (abfd) != 0)
2108 {
2109 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2110 hdr->sh_link = dynsymhdr->sh_link;
2111 }
2112 else
2113 {
2114 unsigned int i, num_sec;
2115
2116 num_sec = elf_numsections (abfd);
2117 for (i = 1; i < num_sec; i++)
2118 {
2119 dynsymhdr = elf_elfsections (abfd)[i];
2120 if (dynsymhdr->sh_type == SHT_DYNSYM)
2121 {
2122 hdr->sh_link = dynsymhdr->sh_link;
2123 break;
2124 }
2125 }
2126 }
2127 }
2128 goto success;
2129
2130 case SHT_SYMTAB: /* A symbol table. */
2131 if (elf_onesymtab (abfd) == shindex)
2132 goto success;
2133
2134 if (hdr->sh_entsize != bed->s->sizeof_sym)
2135 goto fail;
2136
2137 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2138 {
2139 if (hdr->sh_size != 0)
2140 goto fail;
2141 /* Some assemblers erroneously set sh_info to one with a
2142 zero sh_size. ld sees this as a global symbol count
2143 of (unsigned) -1. Fix it here. */
2144 hdr->sh_info = 0;
2145 goto success;
2146 }
2147
2148 /* PR 18854: A binary might contain more than one symbol table.
2149 Unusual, but possible. Warn, but continue. */
2150 if (elf_onesymtab (abfd) != 0)
2151 {
2152 _bfd_error_handler
2153 /* xgettext:c-format */
2154 (_("%pB: warning: multiple symbol tables detected"
2155 " - ignoring the table in section %u"),
2156 abfd, shindex);
2157 goto success;
2158 }
2159 elf_onesymtab (abfd) = shindex;
2160 elf_symtab_hdr (abfd) = *hdr;
2161 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2162 abfd->flags |= HAS_SYMS;
2163
2164 /* Sometimes a shared object will map in the symbol table. If
2165 SHF_ALLOC is set, and this is a shared object, then we also
2166 treat this section as a BFD section. We can not base the
2167 decision purely on SHF_ALLOC, because that flag is sometimes
2168 set in a relocatable object file, which would confuse the
2169 linker. */
2170 if ((hdr->sh_flags & SHF_ALLOC) != 0
2171 && (abfd->flags & DYNAMIC) != 0
2172 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2173 shindex))
2174 goto fail;
2175
2176 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2177 can't read symbols without that section loaded as well. It
2178 is most likely specified by the next section header. */
2179 {
2180 elf_section_list * entry;
2181 unsigned int i, num_sec;
2182
2183 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2184 if (entry->hdr.sh_link == shindex)
2185 goto success;
2186
2187 num_sec = elf_numsections (abfd);
2188 for (i = shindex + 1; i < num_sec; i++)
2189 {
2190 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2191
2192 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2193 && hdr2->sh_link == shindex)
2194 break;
2195 }
2196
2197 if (i == num_sec)
2198 for (i = 1; i < shindex; i++)
2199 {
2200 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2201
2202 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2203 && hdr2->sh_link == shindex)
2204 break;
2205 }
2206
2207 if (i != shindex)
2208 ret = bfd_section_from_shdr (abfd, i);
2209 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2210 goto success;
2211 }
2212
2213 case SHT_DYNSYM: /* A dynamic symbol table. */
2214 if (elf_dynsymtab (abfd) == shindex)
2215 goto success;
2216
2217 if (hdr->sh_entsize != bed->s->sizeof_sym)
2218 goto fail;
2219
2220 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2221 {
2222 if (hdr->sh_size != 0)
2223 goto fail;
2224
2225 /* Some linkers erroneously set sh_info to one with a
2226 zero sh_size. ld sees this as a global symbol count
2227 of (unsigned) -1. Fix it here. */
2228 hdr->sh_info = 0;
2229 goto success;
2230 }
2231
2232 /* PR 18854: A binary might contain more than one dynamic symbol table.
2233 Unusual, but possible. Warn, but continue. */
2234 if (elf_dynsymtab (abfd) != 0)
2235 {
2236 _bfd_error_handler
2237 /* xgettext:c-format */
2238 (_("%pB: warning: multiple dynamic symbol tables detected"
2239 " - ignoring the table in section %u"),
2240 abfd, shindex);
2241 goto success;
2242 }
2243 elf_dynsymtab (abfd) = shindex;
2244 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2245 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2246 abfd->flags |= HAS_SYMS;
2247
2248 /* Besides being a symbol table, we also treat this as a regular
2249 section, so that objcopy can handle it. */
2250 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2251 goto success;
2252
2253 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2254 {
2255 elf_section_list * entry;
2256
2257 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2258 if (entry->ndx == shindex)
2259 goto success;
2260
2261 entry = bfd_alloc (abfd, sizeof (*entry));
2262 if (entry == NULL)
2263 goto fail;
2264 entry->ndx = shindex;
2265 entry->hdr = * hdr;
2266 entry->next = elf_symtab_shndx_list (abfd);
2267 elf_symtab_shndx_list (abfd) = entry;
2268 elf_elfsections (abfd)[shindex] = & entry->hdr;
2269 goto success;
2270 }
2271
2272 case SHT_STRTAB: /* A string table. */
2273 if (hdr->bfd_section != NULL)
2274 goto success;
2275
2276 if (ehdr->e_shstrndx == shindex)
2277 {
2278 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2279 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2280 goto success;
2281 }
2282
2283 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2284 {
2285 symtab_strtab:
2286 elf_tdata (abfd)->strtab_hdr = *hdr;
2287 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2288 goto success;
2289 }
2290
2291 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2292 {
2293 dynsymtab_strtab:
2294 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2295 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2296 elf_elfsections (abfd)[shindex] = hdr;
2297 /* We also treat this as a regular section, so that objcopy
2298 can handle it. */
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2300 shindex);
2301 goto success;
2302 }
2303
2304 /* If the string table isn't one of the above, then treat it as a
2305 regular section. We need to scan all the headers to be sure,
2306 just in case this strtab section appeared before the above. */
2307 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2308 {
2309 unsigned int i, num_sec;
2310
2311 num_sec = elf_numsections (abfd);
2312 for (i = 1; i < num_sec; i++)
2313 {
2314 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2315 if (hdr2->sh_link == shindex)
2316 {
2317 /* Prevent endless recursion on broken objects. */
2318 if (i == shindex)
2319 goto fail;
2320 if (! bfd_section_from_shdr (abfd, i))
2321 goto fail;
2322 if (elf_onesymtab (abfd) == i)
2323 goto symtab_strtab;
2324 if (elf_dynsymtab (abfd) == i)
2325 goto dynsymtab_strtab;
2326 }
2327 }
2328 }
2329 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2330 goto success;
2331
2332 case SHT_REL:
2333 case SHT_RELA:
2334 /* *These* do a lot of work -- but build no sections! */
2335 {
2336 asection *target_sect;
2337 Elf_Internal_Shdr *hdr2, **p_hdr;
2338 unsigned int num_sec = elf_numsections (abfd);
2339 struct bfd_elf_section_data *esdt;
2340
2341 if (hdr->sh_entsize
2342 != (bfd_size_type) (hdr->sh_type == SHT_REL
2343 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2344 goto fail;
2345
2346 /* Check for a bogus link to avoid crashing. */
2347 if (hdr->sh_link >= num_sec)
2348 {
2349 _bfd_error_handler
2350 /* xgettext:c-format */
2351 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2352 abfd, hdr->sh_link, name, shindex);
2353 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2354 shindex);
2355 goto success;
2356 }
2357
2358 /* For some incomprehensible reason Oracle distributes
2359 libraries for Solaris in which some of the objects have
2360 bogus sh_link fields. It would be nice if we could just
2361 reject them, but, unfortunately, some people need to use
2362 them. We scan through the section headers; if we find only
2363 one suitable symbol table, we clobber the sh_link to point
2364 to it. I hope this doesn't break anything.
2365
2366 Don't do it on executable nor shared library. */
2367 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2368 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2369 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2370 {
2371 unsigned int scan;
2372 int found;
2373
2374 found = 0;
2375 for (scan = 1; scan < num_sec; scan++)
2376 {
2377 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2378 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2379 {
2380 if (found != 0)
2381 {
2382 found = 0;
2383 break;
2384 }
2385 found = scan;
2386 }
2387 }
2388 if (found != 0)
2389 hdr->sh_link = found;
2390 }
2391
2392 /* Get the symbol table. */
2393 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2394 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2395 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2396 goto fail;
2397
2398 /* If this is an alloc section in an executable or shared
2399 library, or the reloc section does not use the main symbol
2400 table we don't treat it as a reloc section. BFD can't
2401 adequately represent such a section, so at least for now,
2402 we don't try. We just present it as a normal section. We
2403 also can't use it as a reloc section if it points to the
2404 null section, an invalid section, another reloc section, or
2405 its sh_link points to the null section. */
2406 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2407 && (hdr->sh_flags & SHF_ALLOC) != 0)
2408 || hdr->sh_link == SHN_UNDEF
2409 || hdr->sh_link != elf_onesymtab (abfd)
2410 || hdr->sh_info == SHN_UNDEF
2411 || hdr->sh_info >= num_sec
2412 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2413 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2414 {
2415 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2416 shindex);
2417 goto success;
2418 }
2419
2420 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2421 goto fail;
2422
2423 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2424 if (target_sect == NULL)
2425 goto fail;
2426
2427 esdt = elf_section_data (target_sect);
2428 if (hdr->sh_type == SHT_RELA)
2429 p_hdr = &esdt->rela.hdr;
2430 else
2431 p_hdr = &esdt->rel.hdr;
2432
2433 /* PR 17512: file: 0b4f81b7. */
2434 if (*p_hdr != NULL)
2435 goto fail;
2436 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2437 if (hdr2 == NULL)
2438 goto fail;
2439 *hdr2 = *hdr;
2440 *p_hdr = hdr2;
2441 elf_elfsections (abfd)[shindex] = hdr2;
2442 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2443 * bed->s->int_rels_per_ext_rel);
2444 target_sect->flags |= SEC_RELOC;
2445 target_sect->relocation = NULL;
2446 target_sect->rel_filepos = hdr->sh_offset;
2447 /* In the section to which the relocations apply, mark whether
2448 its relocations are of the REL or RELA variety. */
2449 if (hdr->sh_size != 0)
2450 {
2451 if (hdr->sh_type == SHT_RELA)
2452 target_sect->use_rela_p = 1;
2453 }
2454 abfd->flags |= HAS_RELOC;
2455 goto success;
2456 }
2457
2458 case SHT_GNU_verdef:
2459 elf_dynverdef (abfd) = shindex;
2460 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2461 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2462 goto success;
2463
2464 case SHT_GNU_versym:
2465 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2466 goto fail;
2467
2468 elf_dynversym (abfd) = shindex;
2469 elf_tdata (abfd)->dynversym_hdr = *hdr;
2470 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2471 goto success;
2472
2473 case SHT_GNU_verneed:
2474 elf_dynverref (abfd) = shindex;
2475 elf_tdata (abfd)->dynverref_hdr = *hdr;
2476 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2477 goto success;
2478
2479 case SHT_SHLIB:
2480 goto success;
2481
2482 case SHT_GROUP:
2483 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2484 goto fail;
2485
2486 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2487 goto fail;
2488
2489 goto success;
2490
2491 default:
2492 /* Possibly an attributes section. */
2493 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2494 || hdr->sh_type == bed->obj_attrs_section_type)
2495 {
2496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2497 goto fail;
2498 _bfd_elf_parse_attributes (abfd, hdr);
2499 goto success;
2500 }
2501
2502 /* Check for any processor-specific section types. */
2503 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2504 goto success;
2505
2506 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2507 {
2508 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2509 /* FIXME: How to properly handle allocated section reserved
2510 for applications? */
2511 _bfd_error_handler
2512 /* xgettext:c-format */
2513 (_("%pB: unknown type [%#x] section `%s'"),
2514 abfd, hdr->sh_type, name);
2515 else
2516 {
2517 /* Allow sections reserved for applications. */
2518 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2519 shindex);
2520 goto success;
2521 }
2522 }
2523 else if (hdr->sh_type >= SHT_LOPROC
2524 && hdr->sh_type <= SHT_HIPROC)
2525 /* FIXME: We should handle this section. */
2526 _bfd_error_handler
2527 /* xgettext:c-format */
2528 (_("%pB: unknown type [%#x] section `%s'"),
2529 abfd, hdr->sh_type, name);
2530 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2531 {
2532 /* Unrecognised OS-specific sections. */
2533 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2534 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2535 required to correctly process the section and the file should
2536 be rejected with an error message. */
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: unknown type [%#x] section `%s'"),
2540 abfd, hdr->sh_type, name);
2541 else
2542 {
2543 /* Otherwise it should be processed. */
2544 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2545 goto success;
2546 }
2547 }
2548 else
2549 /* FIXME: We should handle this section. */
2550 _bfd_error_handler
2551 /* xgettext:c-format */
2552 (_("%pB: unknown type [%#x] section `%s'"),
2553 abfd, hdr->sh_type, name);
2554
2555 goto fail;
2556 }
2557
2558 fail:
2559 ret = FALSE;
2560 success:
2561 if (sections_being_created && sections_being_created_abfd == abfd)
2562 sections_being_created [shindex] = FALSE;
2563 if (-- nesting == 0)
2564 {
2565 sections_being_created = NULL;
2566 sections_being_created_abfd = abfd;
2567 }
2568 return ret;
2569 }
2570
2571 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2572
2573 Elf_Internal_Sym *
2574 bfd_sym_from_r_symndx (struct sym_cache *cache,
2575 bfd *abfd,
2576 unsigned long r_symndx)
2577 {
2578 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2579
2580 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2581 {
2582 Elf_Internal_Shdr *symtab_hdr;
2583 unsigned char esym[sizeof (Elf64_External_Sym)];
2584 Elf_External_Sym_Shndx eshndx;
2585
2586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2587 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2588 &cache->sym[ent], esym, &eshndx) == NULL)
2589 return NULL;
2590
2591 if (cache->abfd != abfd)
2592 {
2593 memset (cache->indx, -1, sizeof (cache->indx));
2594 cache->abfd = abfd;
2595 }
2596 cache->indx[ent] = r_symndx;
2597 }
2598
2599 return &cache->sym[ent];
2600 }
2601
2602 /* Given an ELF section number, retrieve the corresponding BFD
2603 section. */
2604
2605 asection *
2606 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2607 {
2608 if (sec_index >= elf_numsections (abfd))
2609 return NULL;
2610 return elf_elfsections (abfd)[sec_index]->bfd_section;
2611 }
2612
2613 static const struct bfd_elf_special_section special_sections_b[] =
2614 {
2615 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2616 { NULL, 0, 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_c[] =
2620 {
2621 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2622 { NULL, 0, 0, 0, 0 }
2623 };
2624
2625 static const struct bfd_elf_special_section special_sections_d[] =
2626 {
2627 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2628 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2629 /* There are more DWARF sections than these, but they needn't be added here
2630 unless you have to cope with broken compilers that don't emit section
2631 attributes or you want to help the user writing assembler. */
2632 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2633 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2634 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2635 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2636 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2637 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2638 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2639 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2640 { NULL, 0, 0, 0, 0 }
2641 };
2642
2643 static const struct bfd_elf_special_section special_sections_f[] =
2644 {
2645 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2646 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2647 { NULL, 0 , 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_g[] =
2651 {
2652 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2653 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2654 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2655 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2656 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2657 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2658 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2659 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2660 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2661 { NULL, 0, 0, 0, 0 }
2662 };
2663
2664 static const struct bfd_elf_special_section special_sections_h[] =
2665 {
2666 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2667 { NULL, 0, 0, 0, 0 }
2668 };
2669
2670 static const struct bfd_elf_special_section special_sections_i[] =
2671 {
2672 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2673 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2674 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2675 { NULL, 0, 0, 0, 0 }
2676 };
2677
2678 static const struct bfd_elf_special_section special_sections_l[] =
2679 {
2680 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2681 { NULL, 0, 0, 0, 0 }
2682 };
2683
2684 static const struct bfd_elf_special_section special_sections_n[] =
2685 {
2686 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2688 { NULL, 0, 0, 0, 0 }
2689 };
2690
2691 static const struct bfd_elf_special_section special_sections_p[] =
2692 {
2693 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2694 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_r[] =
2699 {
2700 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2701 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2702 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2703 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2704 { NULL, 0, 0, 0, 0 }
2705 };
2706
2707 static const struct bfd_elf_special_section special_sections_s[] =
2708 {
2709 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2710 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2711 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2712 /* See struct bfd_elf_special_section declaration for the semantics of
2713 this special case where .prefix_length != strlen (.prefix). */
2714 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2715 { NULL, 0, 0, 0, 0 }
2716 };
2717
2718 static const struct bfd_elf_special_section special_sections_t[] =
2719 {
2720 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2721 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2722 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2723 { NULL, 0, 0, 0, 0 }
2724 };
2725
2726 static const struct bfd_elf_special_section special_sections_z[] =
2727 {
2728 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2729 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2730 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2731 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section * const special_sections[] =
2736 {
2737 special_sections_b, /* 'b' */
2738 special_sections_c, /* 'c' */
2739 special_sections_d, /* 'd' */
2740 NULL, /* 'e' */
2741 special_sections_f, /* 'f' */
2742 special_sections_g, /* 'g' */
2743 special_sections_h, /* 'h' */
2744 special_sections_i, /* 'i' */
2745 NULL, /* 'j' */
2746 NULL, /* 'k' */
2747 special_sections_l, /* 'l' */
2748 NULL, /* 'm' */
2749 special_sections_n, /* 'n' */
2750 NULL, /* 'o' */
2751 special_sections_p, /* 'p' */
2752 NULL, /* 'q' */
2753 special_sections_r, /* 'r' */
2754 special_sections_s, /* 's' */
2755 special_sections_t, /* 't' */
2756 NULL, /* 'u' */
2757 NULL, /* 'v' */
2758 NULL, /* 'w' */
2759 NULL, /* 'x' */
2760 NULL, /* 'y' */
2761 special_sections_z /* 'z' */
2762 };
2763
2764 const struct bfd_elf_special_section *
2765 _bfd_elf_get_special_section (const char *name,
2766 const struct bfd_elf_special_section *spec,
2767 unsigned int rela)
2768 {
2769 int i;
2770 int len;
2771
2772 len = strlen (name);
2773
2774 for (i = 0; spec[i].prefix != NULL; i++)
2775 {
2776 int suffix_len;
2777 int prefix_len = spec[i].prefix_length;
2778
2779 if (len < prefix_len)
2780 continue;
2781 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2782 continue;
2783
2784 suffix_len = spec[i].suffix_length;
2785 if (suffix_len <= 0)
2786 {
2787 if (name[prefix_len] != 0)
2788 {
2789 if (suffix_len == 0)
2790 continue;
2791 if (name[prefix_len] != '.'
2792 && (suffix_len == -2
2793 || (rela && spec[i].type == SHT_REL)))
2794 continue;
2795 }
2796 }
2797 else
2798 {
2799 if (len < prefix_len + suffix_len)
2800 continue;
2801 if (memcmp (name + len - suffix_len,
2802 spec[i].prefix + prefix_len,
2803 suffix_len) != 0)
2804 continue;
2805 }
2806 return &spec[i];
2807 }
2808
2809 return NULL;
2810 }
2811
2812 const struct bfd_elf_special_section *
2813 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2814 {
2815 int i;
2816 const struct bfd_elf_special_section *spec;
2817 const struct elf_backend_data *bed;
2818
2819 /* See if this is one of the special sections. */
2820 if (sec->name == NULL)
2821 return NULL;
2822
2823 bed = get_elf_backend_data (abfd);
2824 spec = bed->special_sections;
2825 if (spec)
2826 {
2827 spec = _bfd_elf_get_special_section (sec->name,
2828 bed->special_sections,
2829 sec->use_rela_p);
2830 if (spec != NULL)
2831 return spec;
2832 }
2833
2834 if (sec->name[0] != '.')
2835 return NULL;
2836
2837 i = sec->name[1] - 'b';
2838 if (i < 0 || i > 'z' - 'b')
2839 return NULL;
2840
2841 spec = special_sections[i];
2842
2843 if (spec == NULL)
2844 return NULL;
2845
2846 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2847 }
2848
2849 bfd_boolean
2850 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2851 {
2852 struct bfd_elf_section_data *sdata;
2853 const struct elf_backend_data *bed;
2854 const struct bfd_elf_special_section *ssect;
2855
2856 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2857 if (sdata == NULL)
2858 {
2859 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2860 sizeof (*sdata));
2861 if (sdata == NULL)
2862 return FALSE;
2863 sec->used_by_bfd = sdata;
2864 }
2865
2866 /* Indicate whether or not this section should use RELA relocations. */
2867 bed = get_elf_backend_data (abfd);
2868 sec->use_rela_p = bed->default_use_rela_p;
2869
2870 /* When we read a file, we don't need to set ELF section type and
2871 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2872 anyway. We will set ELF section type and flags for all linker
2873 created sections. If user specifies BFD section flags, we will
2874 set ELF section type and flags based on BFD section flags in
2875 elf_fake_sections. Special handling for .init_array/.fini_array
2876 output sections since they may contain .ctors/.dtors input
2877 sections. We don't want _bfd_elf_init_private_section_data to
2878 copy ELF section type from .ctors/.dtors input sections. */
2879 if (abfd->direction != read_direction
2880 || (sec->flags & SEC_LINKER_CREATED) != 0)
2881 {
2882 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2883 if (ssect != NULL
2884 && (!sec->flags
2885 || (sec->flags & SEC_LINKER_CREATED) != 0
2886 || ssect->type == SHT_INIT_ARRAY
2887 || ssect->type == SHT_FINI_ARRAY))
2888 {
2889 elf_section_type (sec) = ssect->type;
2890 elf_section_flags (sec) = ssect->attr;
2891 }
2892 }
2893
2894 return _bfd_generic_new_section_hook (abfd, sec);
2895 }
2896
2897 /* Create a new bfd section from an ELF program header.
2898
2899 Since program segments have no names, we generate a synthetic name
2900 of the form segment<NUM>, where NUM is generally the index in the
2901 program header table. For segments that are split (see below) we
2902 generate the names segment<NUM>a and segment<NUM>b.
2903
2904 Note that some program segments may have a file size that is different than
2905 (less than) the memory size. All this means is that at execution the
2906 system must allocate the amount of memory specified by the memory size,
2907 but only initialize it with the first "file size" bytes read from the
2908 file. This would occur for example, with program segments consisting
2909 of combined data+bss.
2910
2911 To handle the above situation, this routine generates TWO bfd sections
2912 for the single program segment. The first has the length specified by
2913 the file size of the segment, and the second has the length specified
2914 by the difference between the two sizes. In effect, the segment is split
2915 into its initialized and uninitialized parts.
2916
2917 */
2918
2919 bfd_boolean
2920 _bfd_elf_make_section_from_phdr (bfd *abfd,
2921 Elf_Internal_Phdr *hdr,
2922 int hdr_index,
2923 const char *type_name)
2924 {
2925 asection *newsect;
2926 char *name;
2927 char namebuf[64];
2928 size_t len;
2929 int split;
2930
2931 split = ((hdr->p_memsz > 0)
2932 && (hdr->p_filesz > 0)
2933 && (hdr->p_memsz > hdr->p_filesz));
2934
2935 if (hdr->p_filesz > 0)
2936 {
2937 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2938 len = strlen (namebuf) + 1;
2939 name = (char *) bfd_alloc (abfd, len);
2940 if (!name)
2941 return FALSE;
2942 memcpy (name, namebuf, len);
2943 newsect = bfd_make_section (abfd, name);
2944 if (newsect == NULL)
2945 return FALSE;
2946 newsect->vma = hdr->p_vaddr;
2947 newsect->lma = hdr->p_paddr;
2948 newsect->size = hdr->p_filesz;
2949 newsect->filepos = hdr->p_offset;
2950 newsect->flags |= SEC_HAS_CONTENTS;
2951 newsect->alignment_power = bfd_log2 (hdr->p_align);
2952 if (hdr->p_type == PT_LOAD)
2953 {
2954 newsect->flags |= SEC_ALLOC;
2955 newsect->flags |= SEC_LOAD;
2956 if (hdr->p_flags & PF_X)
2957 {
2958 /* FIXME: all we known is that it has execute PERMISSION,
2959 may be data. */
2960 newsect->flags |= SEC_CODE;
2961 }
2962 }
2963 if (!(hdr->p_flags & PF_W))
2964 {
2965 newsect->flags |= SEC_READONLY;
2966 }
2967 }
2968
2969 if (hdr->p_memsz > hdr->p_filesz)
2970 {
2971 bfd_vma align;
2972
2973 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2974 len = strlen (namebuf) + 1;
2975 name = (char *) bfd_alloc (abfd, len);
2976 if (!name)
2977 return FALSE;
2978 memcpy (name, namebuf, len);
2979 newsect = bfd_make_section (abfd, name);
2980 if (newsect == NULL)
2981 return FALSE;
2982 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2983 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2984 newsect->size = hdr->p_memsz - hdr->p_filesz;
2985 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2986 align = newsect->vma & -newsect->vma;
2987 if (align == 0 || align > hdr->p_align)
2988 align = hdr->p_align;
2989 newsect->alignment_power = bfd_log2 (align);
2990 if (hdr->p_type == PT_LOAD)
2991 {
2992 /* Hack for gdb. Segments that have not been modified do
2993 not have their contents written to a core file, on the
2994 assumption that a debugger can find the contents in the
2995 executable. We flag this case by setting the fake
2996 section size to zero. Note that "real" bss sections will
2997 always have their contents dumped to the core file. */
2998 if (bfd_get_format (abfd) == bfd_core)
2999 newsect->size = 0;
3000 newsect->flags |= SEC_ALLOC;
3001 if (hdr->p_flags & PF_X)
3002 newsect->flags |= SEC_CODE;
3003 }
3004 if (!(hdr->p_flags & PF_W))
3005 newsect->flags |= SEC_READONLY;
3006 }
3007
3008 return TRUE;
3009 }
3010
3011 bfd_boolean
3012 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3013 {
3014 const struct elf_backend_data *bed;
3015
3016 switch (hdr->p_type)
3017 {
3018 case PT_NULL:
3019 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3020
3021 case PT_LOAD:
3022 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3023
3024 case PT_DYNAMIC:
3025 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3026
3027 case PT_INTERP:
3028 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3029
3030 case PT_NOTE:
3031 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3032 return FALSE;
3033 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3034 hdr->p_align))
3035 return FALSE;
3036 return TRUE;
3037
3038 case PT_SHLIB:
3039 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3040
3041 case PT_PHDR:
3042 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3043
3044 case PT_GNU_EH_FRAME:
3045 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3046 "eh_frame_hdr");
3047
3048 case PT_GNU_STACK:
3049 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3050
3051 case PT_GNU_RELRO:
3052 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3053
3054 default:
3055 /* Check for any processor-specific program segment types. */
3056 bed = get_elf_backend_data (abfd);
3057 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3058 }
3059 }
3060
3061 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3062 REL or RELA. */
3063
3064 Elf_Internal_Shdr *
3065 _bfd_elf_single_rel_hdr (asection *sec)
3066 {
3067 if (elf_section_data (sec)->rel.hdr)
3068 {
3069 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3070 return elf_section_data (sec)->rel.hdr;
3071 }
3072 else
3073 return elf_section_data (sec)->rela.hdr;
3074 }
3075
3076 static bfd_boolean
3077 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3078 Elf_Internal_Shdr *rel_hdr,
3079 const char *sec_name,
3080 bfd_boolean use_rela_p)
3081 {
3082 char *name = (char *) bfd_alloc (abfd,
3083 sizeof ".rela" + strlen (sec_name));
3084 if (name == NULL)
3085 return FALSE;
3086
3087 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3088 rel_hdr->sh_name =
3089 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3090 FALSE);
3091 if (rel_hdr->sh_name == (unsigned int) -1)
3092 return FALSE;
3093
3094 return TRUE;
3095 }
3096
3097 /* Allocate and initialize a section-header for a new reloc section,
3098 containing relocations against ASECT. It is stored in RELDATA. If
3099 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3100 relocations. */
3101
3102 static bfd_boolean
3103 _bfd_elf_init_reloc_shdr (bfd *abfd,
3104 struct bfd_elf_section_reloc_data *reldata,
3105 const char *sec_name,
3106 bfd_boolean use_rela_p,
3107 bfd_boolean delay_st_name_p)
3108 {
3109 Elf_Internal_Shdr *rel_hdr;
3110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3111
3112 BFD_ASSERT (reldata->hdr == NULL);
3113 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3114 reldata->hdr = rel_hdr;
3115
3116 if (delay_st_name_p)
3117 rel_hdr->sh_name = (unsigned int) -1;
3118 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3119 use_rela_p))
3120 return FALSE;
3121 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3122 rel_hdr->sh_entsize = (use_rela_p
3123 ? bed->s->sizeof_rela
3124 : bed->s->sizeof_rel);
3125 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3126 rel_hdr->sh_flags = 0;
3127 rel_hdr->sh_addr = 0;
3128 rel_hdr->sh_size = 0;
3129 rel_hdr->sh_offset = 0;
3130
3131 return TRUE;
3132 }
3133
3134 /* Return the default section type based on the passed in section flags. */
3135
3136 int
3137 bfd_elf_get_default_section_type (flagword flags)
3138 {
3139 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3140 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3141 return SHT_NOBITS;
3142 return SHT_PROGBITS;
3143 }
3144
3145 struct fake_section_arg
3146 {
3147 struct bfd_link_info *link_info;
3148 bfd_boolean failed;
3149 };
3150
3151 /* Set up an ELF internal section header for a section. */
3152
3153 static void
3154 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3155 {
3156 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3158 struct bfd_elf_section_data *esd = elf_section_data (asect);
3159 Elf_Internal_Shdr *this_hdr;
3160 unsigned int sh_type;
3161 const char *name = asect->name;
3162 bfd_boolean delay_st_name_p = FALSE;
3163
3164 if (arg->failed)
3165 {
3166 /* We already failed; just get out of the bfd_map_over_sections
3167 loop. */
3168 return;
3169 }
3170
3171 this_hdr = &esd->this_hdr;
3172
3173 if (arg->link_info)
3174 {
3175 /* ld: compress DWARF debug sections with names: .debug_*. */
3176 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3177 && (asect->flags & SEC_DEBUGGING)
3178 && name[1] == 'd'
3179 && name[6] == '_')
3180 {
3181 /* Set SEC_ELF_COMPRESS to indicate this section should be
3182 compressed. */
3183 asect->flags |= SEC_ELF_COMPRESS;
3184
3185 /* If this section will be compressed, delay adding section
3186 name to section name section after it is compressed in
3187 _bfd_elf_assign_file_positions_for_non_load. */
3188 delay_st_name_p = TRUE;
3189 }
3190 }
3191 else if ((asect->flags & SEC_ELF_RENAME))
3192 {
3193 /* objcopy: rename output DWARF debug section. */
3194 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3195 {
3196 /* When we decompress or compress with SHF_COMPRESSED,
3197 convert section name from .zdebug_* to .debug_* if
3198 needed. */
3199 if (name[1] == 'z')
3200 {
3201 char *new_name = convert_zdebug_to_debug (abfd, name);
3202 if (new_name == NULL)
3203 {
3204 arg->failed = TRUE;
3205 return;
3206 }
3207 name = new_name;
3208 }
3209 }
3210 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3211 {
3212 /* PR binutils/18087: Compression does not always make a
3213 section smaller. So only rename the section when
3214 compression has actually taken place. If input section
3215 name is .zdebug_*, we should never compress it again. */
3216 char *new_name = convert_debug_to_zdebug (abfd, name);
3217 if (new_name == NULL)
3218 {
3219 arg->failed = TRUE;
3220 return;
3221 }
3222 BFD_ASSERT (name[1] != 'z');
3223 name = new_name;
3224 }
3225 }
3226
3227 if (delay_st_name_p)
3228 this_hdr->sh_name = (unsigned int) -1;
3229 else
3230 {
3231 this_hdr->sh_name
3232 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3233 name, FALSE);
3234 if (this_hdr->sh_name == (unsigned int) -1)
3235 {
3236 arg->failed = TRUE;
3237 return;
3238 }
3239 }
3240
3241 /* Don't clear sh_flags. Assembler may set additional bits. */
3242
3243 if ((asect->flags & SEC_ALLOC) != 0
3244 || asect->user_set_vma)
3245 this_hdr->sh_addr = asect->vma;
3246 else
3247 this_hdr->sh_addr = 0;
3248
3249 this_hdr->sh_offset = 0;
3250 this_hdr->sh_size = asect->size;
3251 this_hdr->sh_link = 0;
3252 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3253 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3254 {
3255 _bfd_error_handler
3256 /* xgettext:c-format */
3257 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3258 abfd, asect->alignment_power, asect);
3259 arg->failed = TRUE;
3260 return;
3261 }
3262 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3263 /* The sh_entsize and sh_info fields may have been set already by
3264 copy_private_section_data. */
3265
3266 this_hdr->bfd_section = asect;
3267 this_hdr->contents = NULL;
3268
3269 /* If the section type is unspecified, we set it based on
3270 asect->flags. */
3271 if ((asect->flags & SEC_GROUP) != 0)
3272 sh_type = SHT_GROUP;
3273 else
3274 sh_type = bfd_elf_get_default_section_type (asect->flags);
3275
3276 if (this_hdr->sh_type == SHT_NULL)
3277 this_hdr->sh_type = sh_type;
3278 else if (this_hdr->sh_type == SHT_NOBITS
3279 && sh_type == SHT_PROGBITS
3280 && (asect->flags & SEC_ALLOC) != 0)
3281 {
3282 /* Warn if we are changing a NOBITS section to PROGBITS, but
3283 allow the link to proceed. This can happen when users link
3284 non-bss input sections to bss output sections, or emit data
3285 to a bss output section via a linker script. */
3286 _bfd_error_handler
3287 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3288 this_hdr->sh_type = sh_type;
3289 }
3290
3291 switch (this_hdr->sh_type)
3292 {
3293 default:
3294 break;
3295
3296 case SHT_STRTAB:
3297 case SHT_NOTE:
3298 case SHT_NOBITS:
3299 case SHT_PROGBITS:
3300 break;
3301
3302 case SHT_INIT_ARRAY:
3303 case SHT_FINI_ARRAY:
3304 case SHT_PREINIT_ARRAY:
3305 this_hdr->sh_entsize = bed->s->arch_size / 8;
3306 break;
3307
3308 case SHT_HASH:
3309 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3310 break;
3311
3312 case SHT_DYNSYM:
3313 this_hdr->sh_entsize = bed->s->sizeof_sym;
3314 break;
3315
3316 case SHT_DYNAMIC:
3317 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3318 break;
3319
3320 case SHT_RELA:
3321 if (get_elf_backend_data (abfd)->may_use_rela_p)
3322 this_hdr->sh_entsize = bed->s->sizeof_rela;
3323 break;
3324
3325 case SHT_REL:
3326 if (get_elf_backend_data (abfd)->may_use_rel_p)
3327 this_hdr->sh_entsize = bed->s->sizeof_rel;
3328 break;
3329
3330 case SHT_GNU_versym:
3331 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3332 break;
3333
3334 case SHT_GNU_verdef:
3335 this_hdr->sh_entsize = 0;
3336 /* objcopy or strip will copy over sh_info, but may not set
3337 cverdefs. The linker will set cverdefs, but sh_info will be
3338 zero. */
3339 if (this_hdr->sh_info == 0)
3340 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3341 else
3342 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3343 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3344 break;
3345
3346 case SHT_GNU_verneed:
3347 this_hdr->sh_entsize = 0;
3348 /* objcopy or strip will copy over sh_info, but may not set
3349 cverrefs. The linker will set cverrefs, but sh_info will be
3350 zero. */
3351 if (this_hdr->sh_info == 0)
3352 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3353 else
3354 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3355 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3356 break;
3357
3358 case SHT_GROUP:
3359 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3360 break;
3361
3362 case SHT_GNU_HASH:
3363 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3364 break;
3365 }
3366
3367 if ((asect->flags & SEC_ALLOC) != 0)
3368 this_hdr->sh_flags |= SHF_ALLOC;
3369 if ((asect->flags & SEC_READONLY) == 0)
3370 this_hdr->sh_flags |= SHF_WRITE;
3371 if ((asect->flags & SEC_CODE) != 0)
3372 this_hdr->sh_flags |= SHF_EXECINSTR;
3373 if ((asect->flags & SEC_MERGE) != 0)
3374 {
3375 this_hdr->sh_flags |= SHF_MERGE;
3376 this_hdr->sh_entsize = asect->entsize;
3377 }
3378 if ((asect->flags & SEC_STRINGS) != 0)
3379 this_hdr->sh_flags |= SHF_STRINGS;
3380 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3381 this_hdr->sh_flags |= SHF_GROUP;
3382 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3383 {
3384 this_hdr->sh_flags |= SHF_TLS;
3385 if (asect->size == 0
3386 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3387 {
3388 struct bfd_link_order *o = asect->map_tail.link_order;
3389
3390 this_hdr->sh_size = 0;
3391 if (o != NULL)
3392 {
3393 this_hdr->sh_size = o->offset + o->size;
3394 if (this_hdr->sh_size != 0)
3395 this_hdr->sh_type = SHT_NOBITS;
3396 }
3397 }
3398 }
3399 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3400 this_hdr->sh_flags |= SHF_EXCLUDE;
3401
3402 /* If the section has relocs, set up a section header for the
3403 SHT_REL[A] section. If two relocation sections are required for
3404 this section, it is up to the processor-specific back-end to
3405 create the other. */
3406 if ((asect->flags & SEC_RELOC) != 0)
3407 {
3408 /* When doing a relocatable link, create both REL and RELA sections if
3409 needed. */
3410 if (arg->link_info
3411 /* Do the normal setup if we wouldn't create any sections here. */
3412 && esd->rel.count + esd->rela.count > 0
3413 && (bfd_link_relocatable (arg->link_info)
3414 || arg->link_info->emitrelocations))
3415 {
3416 if (esd->rel.count && esd->rel.hdr == NULL
3417 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3418 FALSE, delay_st_name_p))
3419 {
3420 arg->failed = TRUE;
3421 return;
3422 }
3423 if (esd->rela.count && esd->rela.hdr == NULL
3424 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3425 TRUE, delay_st_name_p))
3426 {
3427 arg->failed = TRUE;
3428 return;
3429 }
3430 }
3431 else if (!_bfd_elf_init_reloc_shdr (abfd,
3432 (asect->use_rela_p
3433 ? &esd->rela : &esd->rel),
3434 name,
3435 asect->use_rela_p,
3436 delay_st_name_p))
3437 {
3438 arg->failed = TRUE;
3439 return;
3440 }
3441 }
3442
3443 /* Check for processor-specific section types. */
3444 sh_type = this_hdr->sh_type;
3445 if (bed->elf_backend_fake_sections
3446 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3447 {
3448 arg->failed = TRUE;
3449 return;
3450 }
3451
3452 if (sh_type == SHT_NOBITS && asect->size != 0)
3453 {
3454 /* Don't change the header type from NOBITS if we are being
3455 called for objcopy --only-keep-debug. */
3456 this_hdr->sh_type = sh_type;
3457 }
3458 }
3459
3460 /* Fill in the contents of a SHT_GROUP section. Called from
3461 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3462 when ELF targets use the generic linker, ld. Called for ld -r
3463 from bfd_elf_final_link. */
3464
3465 void
3466 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3467 {
3468 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3469 asection *elt, *first;
3470 unsigned char *loc;
3471 bfd_boolean gas;
3472
3473 /* Ignore linker created group section. See elfNN_ia64_object_p in
3474 elfxx-ia64.c. */
3475 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3476 || *failedptr)
3477 return;
3478
3479 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3480 {
3481 unsigned long symindx = 0;
3482
3483 /* elf_group_id will have been set up by objcopy and the
3484 generic linker. */
3485 if (elf_group_id (sec) != NULL)
3486 symindx = elf_group_id (sec)->udata.i;
3487
3488 if (symindx == 0)
3489 {
3490 /* If called from the assembler, swap_out_syms will have set up
3491 elf_section_syms. */
3492 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3493 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3494 }
3495 elf_section_data (sec)->this_hdr.sh_info = symindx;
3496 }
3497 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3498 {
3499 /* The ELF backend linker sets sh_info to -2 when the group
3500 signature symbol is global, and thus the index can't be
3501 set until all local symbols are output. */
3502 asection *igroup;
3503 struct bfd_elf_section_data *sec_data;
3504 unsigned long symndx;
3505 unsigned long extsymoff;
3506 struct elf_link_hash_entry *h;
3507
3508 /* The point of this little dance to the first SHF_GROUP section
3509 then back to the SHT_GROUP section is that this gets us to
3510 the SHT_GROUP in the input object. */
3511 igroup = elf_sec_group (elf_next_in_group (sec));
3512 sec_data = elf_section_data (igroup);
3513 symndx = sec_data->this_hdr.sh_info;
3514 extsymoff = 0;
3515 if (!elf_bad_symtab (igroup->owner))
3516 {
3517 Elf_Internal_Shdr *symtab_hdr;
3518
3519 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3520 extsymoff = symtab_hdr->sh_info;
3521 }
3522 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3523 while (h->root.type == bfd_link_hash_indirect
3524 || h->root.type == bfd_link_hash_warning)
3525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3526
3527 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3528 }
3529
3530 /* The contents won't be allocated for "ld -r" or objcopy. */
3531 gas = TRUE;
3532 if (sec->contents == NULL)
3533 {
3534 gas = FALSE;
3535 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3536
3537 /* Arrange for the section to be written out. */
3538 elf_section_data (sec)->this_hdr.contents = sec->contents;
3539 if (sec->contents == NULL)
3540 {
3541 *failedptr = TRUE;
3542 return;
3543 }
3544 }
3545
3546 loc = sec->contents + sec->size;
3547
3548 /* Get the pointer to the first section in the group that gas
3549 squirreled away here. objcopy arranges for this to be set to the
3550 start of the input section group. */
3551 first = elt = elf_next_in_group (sec);
3552
3553 /* First element is a flag word. Rest of section is elf section
3554 indices for all the sections of the group. Write them backwards
3555 just to keep the group in the same order as given in .section
3556 directives, not that it matters. */
3557 while (elt != NULL)
3558 {
3559 asection *s;
3560
3561 s = elt;
3562 if (!gas)
3563 s = s->output_section;
3564 if (s != NULL
3565 && !bfd_is_abs_section (s))
3566 {
3567 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3568 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3569
3570 if (elf_sec->rel.hdr != NULL
3571 && (gas
3572 || (input_elf_sec->rel.hdr != NULL
3573 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3574 {
3575 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3576 loc -= 4;
3577 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3578 }
3579 if (elf_sec->rela.hdr != NULL
3580 && (gas
3581 || (input_elf_sec->rela.hdr != NULL
3582 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3583 {
3584 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3585 loc -= 4;
3586 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3587 }
3588 loc -= 4;
3589 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3590 }
3591 elt = elf_next_in_group (elt);
3592 if (elt == first)
3593 break;
3594 }
3595
3596 loc -= 4;
3597 BFD_ASSERT (loc == sec->contents);
3598
3599 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3600 }
3601
3602 /* Given NAME, the name of a relocation section stripped of its
3603 .rel/.rela prefix, return the section in ABFD to which the
3604 relocations apply. */
3605
3606 asection *
3607 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3608 {
3609 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3610 section likely apply to .got.plt or .got section. */
3611 if (get_elf_backend_data (abfd)->want_got_plt
3612 && strcmp (name, ".plt") == 0)
3613 {
3614 asection *sec;
3615
3616 name = ".got.plt";
3617 sec = bfd_get_section_by_name (abfd, name);
3618 if (sec != NULL)
3619 return sec;
3620 name = ".got";
3621 }
3622
3623 return bfd_get_section_by_name (abfd, name);
3624 }
3625
3626 /* Return the section to which RELOC_SEC applies. */
3627
3628 static asection *
3629 elf_get_reloc_section (asection *reloc_sec)
3630 {
3631 const char *name;
3632 unsigned int type;
3633 bfd *abfd;
3634 const struct elf_backend_data *bed;
3635
3636 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3637 if (type != SHT_REL && type != SHT_RELA)
3638 return NULL;
3639
3640 /* We look up the section the relocs apply to by name. */
3641 name = reloc_sec->name;
3642 if (strncmp (name, ".rel", 4) != 0)
3643 return NULL;
3644 name += 4;
3645 if (type == SHT_RELA && *name++ != 'a')
3646 return NULL;
3647
3648 abfd = reloc_sec->owner;
3649 bed = get_elf_backend_data (abfd);
3650 return bed->get_reloc_section (abfd, name);
3651 }
3652
3653 /* Assign all ELF section numbers. The dummy first section is handled here
3654 too. The link/info pointers for the standard section types are filled
3655 in here too, while we're at it. */
3656
3657 static bfd_boolean
3658 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3659 {
3660 struct elf_obj_tdata *t = elf_tdata (abfd);
3661 asection *sec;
3662 unsigned int section_number;
3663 Elf_Internal_Shdr **i_shdrp;
3664 struct bfd_elf_section_data *d;
3665 bfd_boolean need_symtab;
3666
3667 section_number = 1;
3668
3669 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3670
3671 /* SHT_GROUP sections are in relocatable files only. */
3672 if (link_info == NULL || !link_info->resolve_section_groups)
3673 {
3674 size_t reloc_count = 0;
3675
3676 /* Put SHT_GROUP sections first. */
3677 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3678 {
3679 d = elf_section_data (sec);
3680
3681 if (d->this_hdr.sh_type == SHT_GROUP)
3682 {
3683 if (sec->flags & SEC_LINKER_CREATED)
3684 {
3685 /* Remove the linker created SHT_GROUP sections. */
3686 bfd_section_list_remove (abfd, sec);
3687 abfd->section_count--;
3688 }
3689 else
3690 d->this_idx = section_number++;
3691 }
3692
3693 /* Count relocations. */
3694 reloc_count += sec->reloc_count;
3695 }
3696
3697 /* Clear HAS_RELOC if there are no relocations. */
3698 if (reloc_count == 0)
3699 abfd->flags &= ~HAS_RELOC;
3700 }
3701
3702 for (sec = abfd->sections; sec; sec = sec->next)
3703 {
3704 d = elf_section_data (sec);
3705
3706 if (d->this_hdr.sh_type != SHT_GROUP)
3707 d->this_idx = section_number++;
3708 if (d->this_hdr.sh_name != (unsigned int) -1)
3709 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3710 if (d->rel.hdr)
3711 {
3712 d->rel.idx = section_number++;
3713 if (d->rel.hdr->sh_name != (unsigned int) -1)
3714 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3715 }
3716 else
3717 d->rel.idx = 0;
3718
3719 if (d->rela.hdr)
3720 {
3721 d->rela.idx = section_number++;
3722 if (d->rela.hdr->sh_name != (unsigned int) -1)
3723 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3724 }
3725 else
3726 d->rela.idx = 0;
3727 }
3728
3729 need_symtab = (bfd_get_symcount (abfd) > 0
3730 || (link_info == NULL
3731 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3732 == HAS_RELOC)));
3733 if (need_symtab)
3734 {
3735 elf_onesymtab (abfd) = section_number++;
3736 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3737 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3738 {
3739 elf_section_list *entry;
3740
3741 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3742
3743 entry = bfd_zalloc (abfd, sizeof (*entry));
3744 entry->ndx = section_number++;
3745 elf_symtab_shndx_list (abfd) = entry;
3746 entry->hdr.sh_name
3747 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3748 ".symtab_shndx", FALSE);
3749 if (entry->hdr.sh_name == (unsigned int) -1)
3750 return FALSE;
3751 }
3752 elf_strtab_sec (abfd) = section_number++;
3753 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3754 }
3755
3756 elf_shstrtab_sec (abfd) = section_number++;
3757 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3758 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3759
3760 if (section_number >= SHN_LORESERVE)
3761 {
3762 /* xgettext:c-format */
3763 _bfd_error_handler (_("%pB: too many sections: %u"),
3764 abfd, section_number);
3765 return FALSE;
3766 }
3767
3768 elf_numsections (abfd) = section_number;
3769 elf_elfheader (abfd)->e_shnum = section_number;
3770
3771 /* Set up the list of section header pointers, in agreement with the
3772 indices. */
3773 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3774 sizeof (Elf_Internal_Shdr *));
3775 if (i_shdrp == NULL)
3776 return FALSE;
3777
3778 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3779 sizeof (Elf_Internal_Shdr));
3780 if (i_shdrp[0] == NULL)
3781 {
3782 bfd_release (abfd, i_shdrp);
3783 return FALSE;
3784 }
3785
3786 elf_elfsections (abfd) = i_shdrp;
3787
3788 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3789 if (need_symtab)
3790 {
3791 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3792 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3793 {
3794 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3795 BFD_ASSERT (entry != NULL);
3796 i_shdrp[entry->ndx] = & entry->hdr;
3797 entry->hdr.sh_link = elf_onesymtab (abfd);
3798 }
3799 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3800 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3801 }
3802
3803 for (sec = abfd->sections; sec; sec = sec->next)
3804 {
3805 asection *s;
3806
3807 d = elf_section_data (sec);
3808
3809 i_shdrp[d->this_idx] = &d->this_hdr;
3810 if (d->rel.idx != 0)
3811 i_shdrp[d->rel.idx] = d->rel.hdr;
3812 if (d->rela.idx != 0)
3813 i_shdrp[d->rela.idx] = d->rela.hdr;
3814
3815 /* Fill in the sh_link and sh_info fields while we're at it. */
3816
3817 /* sh_link of a reloc section is the section index of the symbol
3818 table. sh_info is the section index of the section to which
3819 the relocation entries apply. */
3820 if (d->rel.idx != 0)
3821 {
3822 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3823 d->rel.hdr->sh_info = d->this_idx;
3824 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3825 }
3826 if (d->rela.idx != 0)
3827 {
3828 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3829 d->rela.hdr->sh_info = d->this_idx;
3830 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3831 }
3832
3833 /* We need to set up sh_link for SHF_LINK_ORDER. */
3834 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3835 {
3836 s = elf_linked_to_section (sec);
3837 if (s)
3838 {
3839 /* elf_linked_to_section points to the input section. */
3840 if (link_info != NULL)
3841 {
3842 /* Check discarded linkonce section. */
3843 if (discarded_section (s))
3844 {
3845 asection *kept;
3846 _bfd_error_handler
3847 /* xgettext:c-format */
3848 (_("%pB: sh_link of section `%pA' points to"
3849 " discarded section `%pA' of `%pB'"),
3850 abfd, d->this_hdr.bfd_section,
3851 s, s->owner);
3852 /* Point to the kept section if it has the same
3853 size as the discarded one. */
3854 kept = _bfd_elf_check_kept_section (s, link_info);
3855 if (kept == NULL)
3856 {
3857 bfd_set_error (bfd_error_bad_value);
3858 return FALSE;
3859 }
3860 s = kept;
3861 }
3862
3863 s = s->output_section;
3864 BFD_ASSERT (s != NULL);
3865 }
3866 else
3867 {
3868 /* Handle objcopy. */
3869 if (s->output_section == NULL)
3870 {
3871 _bfd_error_handler
3872 /* xgettext:c-format */
3873 (_("%pB: sh_link of section `%pA' points to"
3874 " removed section `%pA' of `%pB'"),
3875 abfd, d->this_hdr.bfd_section, s, s->owner);
3876 bfd_set_error (bfd_error_bad_value);
3877 return FALSE;
3878 }
3879 s = s->output_section;
3880 }
3881 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3882 }
3883 else
3884 {
3885 /* PR 290:
3886 The Intel C compiler generates SHT_IA_64_UNWIND with
3887 SHF_LINK_ORDER. But it doesn't set the sh_link or
3888 sh_info fields. Hence we could get the situation
3889 where s is NULL. */
3890 const struct elf_backend_data *bed
3891 = get_elf_backend_data (abfd);
3892 if (bed->link_order_error_handler)
3893 bed->link_order_error_handler
3894 /* xgettext:c-format */
3895 (_("%pB: warning: sh_link not set for section `%pA'"),
3896 abfd, sec);
3897 }
3898 }
3899
3900 switch (d->this_hdr.sh_type)
3901 {
3902 case SHT_REL:
3903 case SHT_RELA:
3904 /* A reloc section which we are treating as a normal BFD
3905 section. sh_link is the section index of the symbol
3906 table. sh_info is the section index of the section to
3907 which the relocation entries apply. We assume that an
3908 allocated reloc section uses the dynamic symbol table.
3909 FIXME: How can we be sure? */
3910 s = bfd_get_section_by_name (abfd, ".dynsym");
3911 if (s != NULL)
3912 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3913
3914 s = elf_get_reloc_section (sec);
3915 if (s != NULL)
3916 {
3917 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3918 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3919 }
3920 break;
3921
3922 case SHT_STRTAB:
3923 /* We assume that a section named .stab*str is a stabs
3924 string section. We look for a section with the same name
3925 but without the trailing ``str'', and set its sh_link
3926 field to point to this section. */
3927 if (CONST_STRNEQ (sec->name, ".stab")
3928 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3929 {
3930 size_t len;
3931 char *alc;
3932
3933 len = strlen (sec->name);
3934 alc = (char *) bfd_malloc (len - 2);
3935 if (alc == NULL)
3936 return FALSE;
3937 memcpy (alc, sec->name, len - 3);
3938 alc[len - 3] = '\0';
3939 s = bfd_get_section_by_name (abfd, alc);
3940 free (alc);
3941 if (s != NULL)
3942 {
3943 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3944
3945 /* This is a .stab section. */
3946 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3947 elf_section_data (s)->this_hdr.sh_entsize
3948 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3949 }
3950 }
3951 break;
3952
3953 case SHT_DYNAMIC:
3954 case SHT_DYNSYM:
3955 case SHT_GNU_verneed:
3956 case SHT_GNU_verdef:
3957 /* sh_link is the section header index of the string table
3958 used for the dynamic entries, or the symbol table, or the
3959 version strings. */
3960 s = bfd_get_section_by_name (abfd, ".dynstr");
3961 if (s != NULL)
3962 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3963 break;
3964
3965 case SHT_GNU_LIBLIST:
3966 /* sh_link is the section header index of the prelink library
3967 list used for the dynamic entries, or the symbol table, or
3968 the version strings. */
3969 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3970 ? ".dynstr" : ".gnu.libstr");
3971 if (s != NULL)
3972 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3973 break;
3974
3975 case SHT_HASH:
3976 case SHT_GNU_HASH:
3977 case SHT_GNU_versym:
3978 /* sh_link is the section header index of the symbol table
3979 this hash table or version table is for. */
3980 s = bfd_get_section_by_name (abfd, ".dynsym");
3981 if (s != NULL)
3982 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3983 break;
3984
3985 case SHT_GROUP:
3986 d->this_hdr.sh_link = elf_onesymtab (abfd);
3987 }
3988 }
3989
3990 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3991 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3992 debug section name from .debug_* to .zdebug_* if needed. */
3993
3994 return TRUE;
3995 }
3996
3997 static bfd_boolean
3998 sym_is_global (bfd *abfd, asymbol *sym)
3999 {
4000 /* If the backend has a special mapping, use it. */
4001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4002 if (bed->elf_backend_sym_is_global)
4003 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4004
4005 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4006 || bfd_is_und_section (bfd_get_section (sym))
4007 || bfd_is_com_section (bfd_get_section (sym)));
4008 }
4009
4010 /* Filter global symbols of ABFD to include in the import library. All
4011 SYMCOUNT symbols of ABFD can be examined from their pointers in
4012 SYMS. Pointers of symbols to keep should be stored contiguously at
4013 the beginning of that array.
4014
4015 Returns the number of symbols to keep. */
4016
4017 unsigned int
4018 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4019 asymbol **syms, long symcount)
4020 {
4021 long src_count, dst_count = 0;
4022
4023 for (src_count = 0; src_count < symcount; src_count++)
4024 {
4025 asymbol *sym = syms[src_count];
4026 char *name = (char *) bfd_asymbol_name (sym);
4027 struct bfd_link_hash_entry *h;
4028
4029 if (!sym_is_global (abfd, sym))
4030 continue;
4031
4032 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4033 if (h == NULL)
4034 continue;
4035 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4036 continue;
4037 if (h->linker_def || h->ldscript_def)
4038 continue;
4039
4040 syms[dst_count++] = sym;
4041 }
4042
4043 syms[dst_count] = NULL;
4044
4045 return dst_count;
4046 }
4047
4048 /* Don't output section symbols for sections that are not going to be
4049 output, that are duplicates or there is no BFD section. */
4050
4051 static bfd_boolean
4052 ignore_section_sym (bfd *abfd, asymbol *sym)
4053 {
4054 elf_symbol_type *type_ptr;
4055
4056 if (sym == NULL)
4057 return FALSE;
4058
4059 if ((sym->flags & BSF_SECTION_SYM) == 0)
4060 return FALSE;
4061
4062 if (sym->section == NULL)
4063 return TRUE;
4064
4065 type_ptr = elf_symbol_from (abfd, sym);
4066 return ((type_ptr != NULL
4067 && type_ptr->internal_elf_sym.st_shndx != 0
4068 && bfd_is_abs_section (sym->section))
4069 || !(sym->section->owner == abfd
4070 || (sym->section->output_section != NULL
4071 && sym->section->output_section->owner == abfd
4072 && sym->section->output_offset == 0)
4073 || bfd_is_abs_section (sym->section)));
4074 }
4075
4076 /* Map symbol from it's internal number to the external number, moving
4077 all local symbols to be at the head of the list. */
4078
4079 static bfd_boolean
4080 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4081 {
4082 unsigned int symcount = bfd_get_symcount (abfd);
4083 asymbol **syms = bfd_get_outsymbols (abfd);
4084 asymbol **sect_syms;
4085 unsigned int num_locals = 0;
4086 unsigned int num_globals = 0;
4087 unsigned int num_locals2 = 0;
4088 unsigned int num_globals2 = 0;
4089 unsigned int max_index = 0;
4090 unsigned int idx;
4091 asection *asect;
4092 asymbol **new_syms;
4093
4094 #ifdef DEBUG
4095 fprintf (stderr, "elf_map_symbols\n");
4096 fflush (stderr);
4097 #endif
4098
4099 for (asect = abfd->sections; asect; asect = asect->next)
4100 {
4101 if (max_index < asect->index)
4102 max_index = asect->index;
4103 }
4104
4105 max_index++;
4106 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4107 if (sect_syms == NULL)
4108 return FALSE;
4109 elf_section_syms (abfd) = sect_syms;
4110 elf_num_section_syms (abfd) = max_index;
4111
4112 /* Init sect_syms entries for any section symbols we have already
4113 decided to output. */
4114 for (idx = 0; idx < symcount; idx++)
4115 {
4116 asymbol *sym = syms[idx];
4117
4118 if ((sym->flags & BSF_SECTION_SYM) != 0
4119 && sym->value == 0
4120 && !ignore_section_sym (abfd, sym)
4121 && !bfd_is_abs_section (sym->section))
4122 {
4123 asection *sec = sym->section;
4124
4125 if (sec->owner != abfd)
4126 sec = sec->output_section;
4127
4128 sect_syms[sec->index] = syms[idx];
4129 }
4130 }
4131
4132 /* Classify all of the symbols. */
4133 for (idx = 0; idx < symcount; idx++)
4134 {
4135 if (sym_is_global (abfd, syms[idx]))
4136 num_globals++;
4137 else if (!ignore_section_sym (abfd, syms[idx]))
4138 num_locals++;
4139 }
4140
4141 /* We will be adding a section symbol for each normal BFD section. Most
4142 sections will already have a section symbol in outsymbols, but
4143 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4144 at least in that case. */
4145 for (asect = abfd->sections; asect; asect = asect->next)
4146 {
4147 if (sect_syms[asect->index] == NULL)
4148 {
4149 if (!sym_is_global (abfd, asect->symbol))
4150 num_locals++;
4151 else
4152 num_globals++;
4153 }
4154 }
4155
4156 /* Now sort the symbols so the local symbols are first. */
4157 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4158 sizeof (asymbol *));
4159
4160 if (new_syms == NULL)
4161 return FALSE;
4162
4163 for (idx = 0; idx < symcount; idx++)
4164 {
4165 asymbol *sym = syms[idx];
4166 unsigned int i;
4167
4168 if (sym_is_global (abfd, sym))
4169 i = num_locals + num_globals2++;
4170 else if (!ignore_section_sym (abfd, sym))
4171 i = num_locals2++;
4172 else
4173 continue;
4174 new_syms[i] = sym;
4175 sym->udata.i = i + 1;
4176 }
4177 for (asect = abfd->sections; asect; asect = asect->next)
4178 {
4179 if (sect_syms[asect->index] == NULL)
4180 {
4181 asymbol *sym = asect->symbol;
4182 unsigned int i;
4183
4184 sect_syms[asect->index] = sym;
4185 if (!sym_is_global (abfd, sym))
4186 i = num_locals2++;
4187 else
4188 i = num_locals + num_globals2++;
4189 new_syms[i] = sym;
4190 sym->udata.i = i + 1;
4191 }
4192 }
4193
4194 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4195
4196 *pnum_locals = num_locals;
4197 return TRUE;
4198 }
4199
4200 /* Align to the maximum file alignment that could be required for any
4201 ELF data structure. */
4202
4203 static inline file_ptr
4204 align_file_position (file_ptr off, int align)
4205 {
4206 return (off + align - 1) & ~(align - 1);
4207 }
4208
4209 /* Assign a file position to a section, optionally aligning to the
4210 required section alignment. */
4211
4212 file_ptr
4213 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4214 file_ptr offset,
4215 bfd_boolean align)
4216 {
4217 if (align && i_shdrp->sh_addralign > 1)
4218 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4219 i_shdrp->sh_offset = offset;
4220 if (i_shdrp->bfd_section != NULL)
4221 i_shdrp->bfd_section->filepos = offset;
4222 if (i_shdrp->sh_type != SHT_NOBITS)
4223 offset += i_shdrp->sh_size;
4224 return offset;
4225 }
4226
4227 /* Compute the file positions we are going to put the sections at, and
4228 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4229 is not NULL, this is being called by the ELF backend linker. */
4230
4231 bfd_boolean
4232 _bfd_elf_compute_section_file_positions (bfd *abfd,
4233 struct bfd_link_info *link_info)
4234 {
4235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4236 struct fake_section_arg fsargs;
4237 bfd_boolean failed;
4238 struct elf_strtab_hash *strtab = NULL;
4239 Elf_Internal_Shdr *shstrtab_hdr;
4240 bfd_boolean need_symtab;
4241
4242 if (abfd->output_has_begun)
4243 return TRUE;
4244
4245 /* Do any elf backend specific processing first. */
4246 if (bed->elf_backend_begin_write_processing)
4247 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4248
4249 if (! prep_headers (abfd))
4250 return FALSE;
4251
4252 /* Post process the headers if necessary. */
4253 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4254
4255 fsargs.failed = FALSE;
4256 fsargs.link_info = link_info;
4257 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4258 if (fsargs.failed)
4259 return FALSE;
4260
4261 if (!assign_section_numbers (abfd, link_info))
4262 return FALSE;
4263
4264 /* The backend linker builds symbol table information itself. */
4265 need_symtab = (link_info == NULL
4266 && (bfd_get_symcount (abfd) > 0
4267 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4268 == HAS_RELOC)));
4269 if (need_symtab)
4270 {
4271 /* Non-zero if doing a relocatable link. */
4272 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4273
4274 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4275 return FALSE;
4276 }
4277
4278 failed = FALSE;
4279 if (link_info == NULL)
4280 {
4281 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4282 if (failed)
4283 return FALSE;
4284 }
4285
4286 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4287 /* sh_name was set in prep_headers. */
4288 shstrtab_hdr->sh_type = SHT_STRTAB;
4289 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4290 shstrtab_hdr->sh_addr = 0;
4291 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4292 shstrtab_hdr->sh_entsize = 0;
4293 shstrtab_hdr->sh_link = 0;
4294 shstrtab_hdr->sh_info = 0;
4295 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4296 shstrtab_hdr->sh_addralign = 1;
4297
4298 if (!assign_file_positions_except_relocs (abfd, link_info))
4299 return FALSE;
4300
4301 if (need_symtab)
4302 {
4303 file_ptr off;
4304 Elf_Internal_Shdr *hdr;
4305
4306 off = elf_next_file_pos (abfd);
4307
4308 hdr = & elf_symtab_hdr (abfd);
4309 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4310
4311 if (elf_symtab_shndx_list (abfd) != NULL)
4312 {
4313 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4314 if (hdr->sh_size != 0)
4315 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4316 /* FIXME: What about other symtab_shndx sections in the list ? */
4317 }
4318
4319 hdr = &elf_tdata (abfd)->strtab_hdr;
4320 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4321
4322 elf_next_file_pos (abfd) = off;
4323
4324 /* Now that we know where the .strtab section goes, write it
4325 out. */
4326 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4327 || ! _bfd_elf_strtab_emit (abfd, strtab))
4328 return FALSE;
4329 _bfd_elf_strtab_free (strtab);
4330 }
4331
4332 abfd->output_has_begun = TRUE;
4333
4334 return TRUE;
4335 }
4336
4337 /* Make an initial estimate of the size of the program header. If we
4338 get the number wrong here, we'll redo section placement. */
4339
4340 static bfd_size_type
4341 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4342 {
4343 size_t segs;
4344 asection *s;
4345 const struct elf_backend_data *bed;
4346
4347 /* Assume we will need exactly two PT_LOAD segments: one for text
4348 and one for data. */
4349 segs = 2;
4350
4351 s = bfd_get_section_by_name (abfd, ".interp");
4352 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4353 {
4354 /* If we have a loadable interpreter section, we need a
4355 PT_INTERP segment. In this case, assume we also need a
4356 PT_PHDR segment, although that may not be true for all
4357 targets. */
4358 segs += 2;
4359 }
4360
4361 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4362 {
4363 /* We need a PT_DYNAMIC segment. */
4364 ++segs;
4365 }
4366
4367 if (info != NULL && info->relro)
4368 {
4369 /* We need a PT_GNU_RELRO segment. */
4370 ++segs;
4371 }
4372
4373 if (elf_eh_frame_hdr (abfd))
4374 {
4375 /* We need a PT_GNU_EH_FRAME segment. */
4376 ++segs;
4377 }
4378
4379 if (elf_stack_flags (abfd))
4380 {
4381 /* We need a PT_GNU_STACK segment. */
4382 ++segs;
4383 }
4384
4385 s = bfd_get_section_by_name (abfd,
4386 NOTE_GNU_PROPERTY_SECTION_NAME);
4387 if (s != NULL && s->size != 0)
4388 {
4389 /* We need a PT_GNU_PROPERTY segment. */
4390 ++segs;
4391 }
4392
4393 for (s = abfd->sections; s != NULL; s = s->next)
4394 {
4395 if ((s->flags & SEC_LOAD) != 0
4396 && elf_section_type (s) == SHT_NOTE)
4397 {
4398 unsigned int alignment_power;
4399 /* We need a PT_NOTE segment. */
4400 ++segs;
4401 /* Try to create just one PT_NOTE segment for all adjacent
4402 loadable SHT_NOTE sections. gABI requires that within a
4403 PT_NOTE segment (and also inside of each SHT_NOTE section)
4404 each note should have the same alignment. So we check
4405 whether the sections are correctly aligned. */
4406 alignment_power = s->alignment_power;
4407 while (s->next != NULL
4408 && s->next->alignment_power == alignment_power
4409 && (s->next->flags & SEC_LOAD) != 0
4410 && elf_section_type (s->next) == SHT_NOTE)
4411 s = s->next;
4412 }
4413 }
4414
4415 for (s = abfd->sections; s != NULL; s = s->next)
4416 {
4417 if (s->flags & SEC_THREAD_LOCAL)
4418 {
4419 /* We need a PT_TLS segment. */
4420 ++segs;
4421 break;
4422 }
4423 }
4424
4425 bed = get_elf_backend_data (abfd);
4426
4427 if ((abfd->flags & D_PAGED) != 0)
4428 {
4429 /* Add a PT_GNU_MBIND segment for each mbind section. */
4430 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4431 for (s = abfd->sections; s != NULL; s = s->next)
4432 if (elf_section_flags (s) & SHF_GNU_MBIND)
4433 {
4434 if (elf_section_data (s)->this_hdr.sh_info
4435 > PT_GNU_MBIND_NUM)
4436 {
4437 _bfd_error_handler
4438 /* xgettext:c-format */
4439 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4440 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4441 continue;
4442 }
4443 /* Align mbind section to page size. */
4444 if (s->alignment_power < page_align_power)
4445 s->alignment_power = page_align_power;
4446 segs ++;
4447 }
4448 }
4449
4450 /* Let the backend count up any program headers it might need. */
4451 if (bed->elf_backend_additional_program_headers)
4452 {
4453 int a;
4454
4455 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4456 if (a == -1)
4457 abort ();
4458 segs += a;
4459 }
4460
4461 return segs * bed->s->sizeof_phdr;
4462 }
4463
4464 /* Find the segment that contains the output_section of section. */
4465
4466 Elf_Internal_Phdr *
4467 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4468 {
4469 struct elf_segment_map *m;
4470 Elf_Internal_Phdr *p;
4471
4472 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4473 m != NULL;
4474 m = m->next, p++)
4475 {
4476 int i;
4477
4478 for (i = m->count - 1; i >= 0; i--)
4479 if (m->sections[i] == section)
4480 return p;
4481 }
4482
4483 return NULL;
4484 }
4485
4486 /* Create a mapping from a set of sections to a program segment. */
4487
4488 static struct elf_segment_map *
4489 make_mapping (bfd *abfd,
4490 asection **sections,
4491 unsigned int from,
4492 unsigned int to,
4493 bfd_boolean phdr)
4494 {
4495 struct elf_segment_map *m;
4496 unsigned int i;
4497 asection **hdrpp;
4498 bfd_size_type amt;
4499
4500 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4501 amt += (to - from) * sizeof (asection *);
4502 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4503 if (m == NULL)
4504 return NULL;
4505 m->next = NULL;
4506 m->p_type = PT_LOAD;
4507 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4508 m->sections[i - from] = *hdrpp;
4509 m->count = to - from;
4510
4511 if (from == 0 && phdr)
4512 {
4513 /* Include the headers in the first PT_LOAD segment. */
4514 m->includes_filehdr = 1;
4515 m->includes_phdrs = 1;
4516 }
4517
4518 return m;
4519 }
4520
4521 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4522 on failure. */
4523
4524 struct elf_segment_map *
4525 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4526 {
4527 struct elf_segment_map *m;
4528
4529 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4530 sizeof (struct elf_segment_map));
4531 if (m == NULL)
4532 return NULL;
4533 m->next = NULL;
4534 m->p_type = PT_DYNAMIC;
4535 m->count = 1;
4536 m->sections[0] = dynsec;
4537
4538 return m;
4539 }
4540
4541 /* Possibly add or remove segments from the segment map. */
4542
4543 static bfd_boolean
4544 elf_modify_segment_map (bfd *abfd,
4545 struct bfd_link_info *info,
4546 bfd_boolean remove_empty_load)
4547 {
4548 struct elf_segment_map **m;
4549 const struct elf_backend_data *bed;
4550
4551 /* The placement algorithm assumes that non allocated sections are
4552 not in PT_LOAD segments. We ensure this here by removing such
4553 sections from the segment map. We also remove excluded
4554 sections. Finally, any PT_LOAD segment without sections is
4555 removed. */
4556 m = &elf_seg_map (abfd);
4557 while (*m)
4558 {
4559 unsigned int i, new_count;
4560
4561 for (new_count = 0, i = 0; i < (*m)->count; i++)
4562 {
4563 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4564 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4565 || (*m)->p_type != PT_LOAD))
4566 {
4567 (*m)->sections[new_count] = (*m)->sections[i];
4568 new_count++;
4569 }
4570 }
4571 (*m)->count = new_count;
4572
4573 if (remove_empty_load
4574 && (*m)->p_type == PT_LOAD
4575 && (*m)->count == 0
4576 && !(*m)->includes_phdrs)
4577 *m = (*m)->next;
4578 else
4579 m = &(*m)->next;
4580 }
4581
4582 bed = get_elf_backend_data (abfd);
4583 if (bed->elf_backend_modify_segment_map != NULL)
4584 {
4585 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4586 return FALSE;
4587 }
4588
4589 return TRUE;
4590 }
4591
4592 #define IS_TBSS(s) \
4593 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4594
4595 /* Set up a mapping from BFD sections to program segments. */
4596
4597 bfd_boolean
4598 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4599 {
4600 unsigned int count;
4601 struct elf_segment_map *m;
4602 asection **sections = NULL;
4603 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4604 bfd_boolean no_user_phdrs;
4605
4606 no_user_phdrs = elf_seg_map (abfd) == NULL;
4607
4608 if (info != NULL)
4609 info->user_phdrs = !no_user_phdrs;
4610
4611 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4612 {
4613 asection *s;
4614 unsigned int i;
4615 struct elf_segment_map *mfirst;
4616 struct elf_segment_map **pm;
4617 asection *last_hdr;
4618 bfd_vma last_size;
4619 unsigned int hdr_index;
4620 bfd_vma maxpagesize;
4621 asection **hdrpp;
4622 bfd_boolean phdr_in_segment;
4623 bfd_boolean writable;
4624 bfd_boolean executable;
4625 int tls_count = 0;
4626 asection *first_tls = NULL;
4627 asection *first_mbind = NULL;
4628 asection *dynsec, *eh_frame_hdr;
4629 bfd_size_type amt;
4630 bfd_vma addr_mask, wrap_to = 0;
4631 bfd_size_type phdr_size;
4632
4633 /* Select the allocated sections, and sort them. */
4634
4635 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4636 sizeof (asection *));
4637 if (sections == NULL)
4638 goto error_return;
4639
4640 /* Calculate top address, avoiding undefined behaviour of shift
4641 left operator when shift count is equal to size of type
4642 being shifted. */
4643 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4644 addr_mask = (addr_mask << 1) + 1;
4645
4646 i = 0;
4647 for (s = abfd->sections; s != NULL; s = s->next)
4648 {
4649 if ((s->flags & SEC_ALLOC) != 0)
4650 {
4651 sections[i] = s;
4652 ++i;
4653 /* A wrapping section potentially clashes with header. */
4654 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4655 wrap_to = (s->lma + s->size) & addr_mask;
4656 }
4657 }
4658 BFD_ASSERT (i <= bfd_count_sections (abfd));
4659 count = i;
4660
4661 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4662
4663 phdr_size = elf_program_header_size (abfd);
4664 if (phdr_size == (bfd_size_type) -1)
4665 phdr_size = get_program_header_size (abfd, info);
4666 phdr_size += bed->s->sizeof_ehdr;
4667 maxpagesize = bed->maxpagesize;
4668 if (maxpagesize == 0)
4669 maxpagesize = 1;
4670 phdr_in_segment = info != NULL && info->load_phdrs;
4671 if (count != 0
4672 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4673 >= (phdr_size & (maxpagesize - 1))))
4674 /* For compatibility with old scripts that may not be using
4675 SIZEOF_HEADERS, add headers when it looks like space has
4676 been left for them. */
4677 phdr_in_segment = TRUE;
4678
4679 /* Build the mapping. */
4680 mfirst = NULL;
4681 pm = &mfirst;
4682
4683 /* If we have a .interp section, then create a PT_PHDR segment for
4684 the program headers and a PT_INTERP segment for the .interp
4685 section. */
4686 s = bfd_get_section_by_name (abfd, ".interp");
4687 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4688 {
4689 amt = sizeof (struct elf_segment_map);
4690 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4691 if (m == NULL)
4692 goto error_return;
4693 m->next = NULL;
4694 m->p_type = PT_PHDR;
4695 m->p_flags = PF_R;
4696 m->p_flags_valid = 1;
4697 m->includes_phdrs = 1;
4698 phdr_in_segment = TRUE;
4699 *pm = m;
4700 pm = &m->next;
4701
4702 amt = sizeof (struct elf_segment_map);
4703 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4704 if (m == NULL)
4705 goto error_return;
4706 m->next = NULL;
4707 m->p_type = PT_INTERP;
4708 m->count = 1;
4709 m->sections[0] = s;
4710
4711 *pm = m;
4712 pm = &m->next;
4713 }
4714
4715 /* Look through the sections. We put sections in the same program
4716 segment when the start of the second section can be placed within
4717 a few bytes of the end of the first section. */
4718 last_hdr = NULL;
4719 last_size = 0;
4720 hdr_index = 0;
4721 writable = FALSE;
4722 executable = FALSE;
4723 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4724 if (dynsec != NULL
4725 && (dynsec->flags & SEC_LOAD) == 0)
4726 dynsec = NULL;
4727
4728 if ((abfd->flags & D_PAGED) == 0)
4729 phdr_in_segment = FALSE;
4730
4731 /* Deal with -Ttext or something similar such that the first section
4732 is not adjacent to the program headers. This is an
4733 approximation, since at this point we don't know exactly how many
4734 program headers we will need. */
4735 if (phdr_in_segment && count > 0)
4736 {
4737 bfd_vma phdr_lma;
4738 bfd_boolean separate_phdr = FALSE;
4739
4740 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4741 if (info != NULL
4742 && info->separate_code
4743 && (sections[0]->flags & SEC_CODE) != 0)
4744 {
4745 /* If data sections should be separate from code and
4746 thus not executable, and the first section is
4747 executable then put the file and program headers in
4748 their own PT_LOAD. */
4749 separate_phdr = TRUE;
4750 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4751 == (sections[0]->lma & addr_mask & -maxpagesize)))
4752 {
4753 /* The file and program headers are currently on the
4754 same page as the first section. Put them on the
4755 previous page if we can. */
4756 if (phdr_lma >= maxpagesize)
4757 phdr_lma -= maxpagesize;
4758 else
4759 separate_phdr = FALSE;
4760 }
4761 }
4762 if ((sections[0]->lma & addr_mask) < phdr_lma
4763 || (sections[0]->lma & addr_mask) < phdr_size)
4764 /* If file and program headers would be placed at the end
4765 of memory then it's probably better to omit them. */
4766 phdr_in_segment = FALSE;
4767 else if (phdr_lma < wrap_to)
4768 /* If a section wraps around to where we'll be placing
4769 file and program headers, then the headers will be
4770 overwritten. */
4771 phdr_in_segment = FALSE;
4772 else if (separate_phdr)
4773 {
4774 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4775 if (m == NULL)
4776 goto error_return;
4777 m->p_paddr = phdr_lma;
4778 m->p_vaddr_offset
4779 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4780 m->p_paddr_valid = 1;
4781 *pm = m;
4782 pm = &m->next;
4783 phdr_in_segment = FALSE;
4784 }
4785 }
4786
4787 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4788 {
4789 asection *hdr;
4790 bfd_boolean new_segment;
4791
4792 hdr = *hdrpp;
4793
4794 /* See if this section and the last one will fit in the same
4795 segment. */
4796
4797 if (last_hdr == NULL)
4798 {
4799 /* If we don't have a segment yet, then we don't need a new
4800 one (we build the last one after this loop). */
4801 new_segment = FALSE;
4802 }
4803 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4804 {
4805 /* If this section has a different relation between the
4806 virtual address and the load address, then we need a new
4807 segment. */
4808 new_segment = TRUE;
4809 }
4810 else if (hdr->lma < last_hdr->lma + last_size
4811 || last_hdr->lma + last_size < last_hdr->lma)
4812 {
4813 /* If this section has a load address that makes it overlap
4814 the previous section, then we need a new segment. */
4815 new_segment = TRUE;
4816 }
4817 else if ((abfd->flags & D_PAGED) != 0
4818 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4819 == (hdr->lma & -maxpagesize)))
4820 {
4821 /* If we are demand paged then we can't map two disk
4822 pages onto the same memory page. */
4823 new_segment = FALSE;
4824 }
4825 /* In the next test we have to be careful when last_hdr->lma is close
4826 to the end of the address space. If the aligned address wraps
4827 around to the start of the address space, then there are no more
4828 pages left in memory and it is OK to assume that the current
4829 section can be included in the current segment. */
4830 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4831 + maxpagesize > last_hdr->lma)
4832 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4833 + maxpagesize <= hdr->lma))
4834 {
4835 /* If putting this section in this segment would force us to
4836 skip a page in the segment, then we need a new segment. */
4837 new_segment = TRUE;
4838 }
4839 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4840 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4841 {
4842 /* We don't want to put a loaded section after a
4843 nonloaded (ie. bss style) section in the same segment
4844 as that will force the non-loaded section to be loaded.
4845 Consider .tbss sections as loaded for this purpose. */
4846 new_segment = TRUE;
4847 }
4848 else if ((abfd->flags & D_PAGED) == 0)
4849 {
4850 /* If the file is not demand paged, which means that we
4851 don't require the sections to be correctly aligned in the
4852 file, then there is no other reason for a new segment. */
4853 new_segment = FALSE;
4854 }
4855 else if (info != NULL
4856 && info->separate_code
4857 && executable != ((hdr->flags & SEC_CODE) != 0))
4858 {
4859 new_segment = TRUE;
4860 }
4861 else if (! writable
4862 && (hdr->flags & SEC_READONLY) == 0)
4863 {
4864 /* We don't want to put a writable section in a read only
4865 segment. */
4866 new_segment = TRUE;
4867 }
4868 else
4869 {
4870 /* Otherwise, we can use the same segment. */
4871 new_segment = FALSE;
4872 }
4873
4874 /* Allow interested parties a chance to override our decision. */
4875 if (last_hdr != NULL
4876 && info != NULL
4877 && info->callbacks->override_segment_assignment != NULL)
4878 new_segment
4879 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4880 last_hdr,
4881 new_segment);
4882
4883 if (! new_segment)
4884 {
4885 if ((hdr->flags & SEC_READONLY) == 0)
4886 writable = TRUE;
4887 if ((hdr->flags & SEC_CODE) != 0)
4888 executable = TRUE;
4889 last_hdr = hdr;
4890 /* .tbss sections effectively have zero size. */
4891 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4892 continue;
4893 }
4894
4895 /* We need a new program segment. We must create a new program
4896 header holding all the sections from hdr_index until hdr. */
4897
4898 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4899 if (m == NULL)
4900 goto error_return;
4901
4902 *pm = m;
4903 pm = &m->next;
4904
4905 if ((hdr->flags & SEC_READONLY) == 0)
4906 writable = TRUE;
4907 else
4908 writable = FALSE;
4909
4910 if ((hdr->flags & SEC_CODE) == 0)
4911 executable = FALSE;
4912 else
4913 executable = TRUE;
4914
4915 last_hdr = hdr;
4916 /* .tbss sections effectively have zero size. */
4917 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4918 hdr_index = i;
4919 phdr_in_segment = FALSE;
4920 }
4921
4922 /* Create a final PT_LOAD program segment, but not if it's just
4923 for .tbss. */
4924 if (last_hdr != NULL
4925 && (i - hdr_index != 1
4926 || !IS_TBSS (last_hdr)))
4927 {
4928 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4929 if (m == NULL)
4930 goto error_return;
4931
4932 *pm = m;
4933 pm = &m->next;
4934 }
4935
4936 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4937 if (dynsec != NULL)
4938 {
4939 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4940 if (m == NULL)
4941 goto error_return;
4942 *pm = m;
4943 pm = &m->next;
4944 }
4945
4946 /* For each batch of consecutive loadable SHT_NOTE sections,
4947 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4948 because if we link together nonloadable .note sections and
4949 loadable .note sections, we will generate two .note sections
4950 in the output file. */
4951 for (s = abfd->sections; s != NULL; s = s->next)
4952 {
4953 if ((s->flags & SEC_LOAD) != 0
4954 && elf_section_type (s) == SHT_NOTE)
4955 {
4956 asection *s2;
4957 unsigned int alignment_power = s->alignment_power;
4958
4959 count = 1;
4960 for (s2 = s; s2->next != NULL; s2 = s2->next)
4961 {
4962 if (s2->next->alignment_power == alignment_power
4963 && (s2->next->flags & SEC_LOAD) != 0
4964 && elf_section_type (s2->next) == SHT_NOTE
4965 && align_power (s2->lma + s2->size,
4966 alignment_power)
4967 == s2->next->lma)
4968 count++;
4969 else
4970 break;
4971 }
4972 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4973 amt += count * sizeof (asection *);
4974 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4975 if (m == NULL)
4976 goto error_return;
4977 m->next = NULL;
4978 m->p_type = PT_NOTE;
4979 m->count = count;
4980 while (count > 1)
4981 {
4982 m->sections[m->count - count--] = s;
4983 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4984 s = s->next;
4985 }
4986 m->sections[m->count - 1] = s;
4987 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4988 *pm = m;
4989 pm = &m->next;
4990 }
4991 if (s->flags & SEC_THREAD_LOCAL)
4992 {
4993 if (! tls_count)
4994 first_tls = s;
4995 tls_count++;
4996 }
4997 if (first_mbind == NULL
4998 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4999 first_mbind = s;
5000 }
5001
5002 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5003 if (tls_count > 0)
5004 {
5005 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5006 amt += tls_count * sizeof (asection *);
5007 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5008 if (m == NULL)
5009 goto error_return;
5010 m->next = NULL;
5011 m->p_type = PT_TLS;
5012 m->count = tls_count;
5013 /* Mandated PF_R. */
5014 m->p_flags = PF_R;
5015 m->p_flags_valid = 1;
5016 s = first_tls;
5017 for (i = 0; i < (unsigned int) tls_count; ++i)
5018 {
5019 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5020 {
5021 _bfd_error_handler
5022 (_("%pB: TLS sections are not adjacent:"), abfd);
5023 s = first_tls;
5024 i = 0;
5025 while (i < (unsigned int) tls_count)
5026 {
5027 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5028 {
5029 _bfd_error_handler (_(" TLS: %pA"), s);
5030 i++;
5031 }
5032 else
5033 _bfd_error_handler (_(" non-TLS: %pA"), s);
5034 s = s->next;
5035 }
5036 bfd_set_error (bfd_error_bad_value);
5037 goto error_return;
5038 }
5039 m->sections[i] = s;
5040 s = s->next;
5041 }
5042
5043 *pm = m;
5044 pm = &m->next;
5045 }
5046
5047 if (first_mbind && (abfd->flags & D_PAGED) != 0)
5048 for (s = first_mbind; s != NULL; s = s->next)
5049 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5050 && (elf_section_data (s)->this_hdr.sh_info
5051 <= PT_GNU_MBIND_NUM))
5052 {
5053 /* Mandated PF_R. */
5054 unsigned long p_flags = PF_R;
5055 if ((s->flags & SEC_READONLY) == 0)
5056 p_flags |= PF_W;
5057 if ((s->flags & SEC_CODE) != 0)
5058 p_flags |= PF_X;
5059
5060 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5061 m = bfd_zalloc (abfd, amt);
5062 if (m == NULL)
5063 goto error_return;
5064 m->next = NULL;
5065 m->p_type = (PT_GNU_MBIND_LO
5066 + elf_section_data (s)->this_hdr.sh_info);
5067 m->count = 1;
5068 m->p_flags_valid = 1;
5069 m->sections[0] = s;
5070 m->p_flags = p_flags;
5071
5072 *pm = m;
5073 pm = &m->next;
5074 }
5075
5076 s = bfd_get_section_by_name (abfd,
5077 NOTE_GNU_PROPERTY_SECTION_NAME);
5078 if (s != NULL && s->size != 0)
5079 {
5080 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5081 m = bfd_zalloc (abfd, amt);
5082 if (m == NULL)
5083 goto error_return;
5084 m->next = NULL;
5085 m->p_type = PT_GNU_PROPERTY;
5086 m->count = 1;
5087 m->p_flags_valid = 1;
5088 m->sections[0] = s;
5089 m->p_flags = PF_R;
5090 *pm = m;
5091 pm = &m->next;
5092 }
5093
5094 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5095 segment. */
5096 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5097 if (eh_frame_hdr != NULL
5098 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5099 {
5100 amt = sizeof (struct elf_segment_map);
5101 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5102 if (m == NULL)
5103 goto error_return;
5104 m->next = NULL;
5105 m->p_type = PT_GNU_EH_FRAME;
5106 m->count = 1;
5107 m->sections[0] = eh_frame_hdr->output_section;
5108
5109 *pm = m;
5110 pm = &m->next;
5111 }
5112
5113 if (elf_stack_flags (abfd))
5114 {
5115 amt = sizeof (struct elf_segment_map);
5116 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5117 if (m == NULL)
5118 goto error_return;
5119 m->next = NULL;
5120 m->p_type = PT_GNU_STACK;
5121 m->p_flags = elf_stack_flags (abfd);
5122 m->p_align = bed->stack_align;
5123 m->p_flags_valid = 1;
5124 m->p_align_valid = m->p_align != 0;
5125 if (info->stacksize > 0)
5126 {
5127 m->p_size = info->stacksize;
5128 m->p_size_valid = 1;
5129 }
5130
5131 *pm = m;
5132 pm = &m->next;
5133 }
5134
5135 if (info != NULL && info->relro)
5136 {
5137 for (m = mfirst; m != NULL; m = m->next)
5138 {
5139 if (m->p_type == PT_LOAD
5140 && m->count != 0
5141 && m->sections[0]->vma >= info->relro_start
5142 && m->sections[0]->vma < info->relro_end)
5143 {
5144 i = m->count;
5145 while (--i != (unsigned) -1)
5146 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5147 == (SEC_LOAD | SEC_HAS_CONTENTS))
5148 break;
5149
5150 if (i != (unsigned) -1)
5151 break;
5152 }
5153 }
5154
5155 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5156 if (m != NULL)
5157 {
5158 amt = sizeof (struct elf_segment_map);
5159 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5160 if (m == NULL)
5161 goto error_return;
5162 m->next = NULL;
5163 m->p_type = PT_GNU_RELRO;
5164 *pm = m;
5165 pm = &m->next;
5166 }
5167 }
5168
5169 free (sections);
5170 elf_seg_map (abfd) = mfirst;
5171 }
5172
5173 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5174 return FALSE;
5175
5176 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5177 ++count;
5178 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5179
5180 return TRUE;
5181
5182 error_return:
5183 if (sections != NULL)
5184 free (sections);
5185 return FALSE;
5186 }
5187
5188 /* Sort sections by address. */
5189
5190 static int
5191 elf_sort_sections (const void *arg1, const void *arg2)
5192 {
5193 const asection *sec1 = *(const asection **) arg1;
5194 const asection *sec2 = *(const asection **) arg2;
5195 bfd_size_type size1, size2;
5196
5197 /* Sort by LMA first, since this is the address used to
5198 place the section into a segment. */
5199 if (sec1->lma < sec2->lma)
5200 return -1;
5201 else if (sec1->lma > sec2->lma)
5202 return 1;
5203
5204 /* Then sort by VMA. Normally the LMA and the VMA will be
5205 the same, and this will do nothing. */
5206 if (sec1->vma < sec2->vma)
5207 return -1;
5208 else if (sec1->vma > sec2->vma)
5209 return 1;
5210
5211 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5212
5213 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5214
5215 if (TOEND (sec1))
5216 {
5217 if (TOEND (sec2))
5218 {
5219 /* If the indices are the same, do not return 0
5220 here, but continue to try the next comparison. */
5221 if (sec1->target_index - sec2->target_index != 0)
5222 return sec1->target_index - sec2->target_index;
5223 }
5224 else
5225 return 1;
5226 }
5227 else if (TOEND (sec2))
5228 return -1;
5229
5230 #undef TOEND
5231
5232 /* Sort by size, to put zero sized sections
5233 before others at the same address. */
5234
5235 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5236 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5237
5238 if (size1 < size2)
5239 return -1;
5240 if (size1 > size2)
5241 return 1;
5242
5243 return sec1->target_index - sec2->target_index;
5244 }
5245
5246 /* Ian Lance Taylor writes:
5247
5248 We shouldn't be using % with a negative signed number. That's just
5249 not good. We have to make sure either that the number is not
5250 negative, or that the number has an unsigned type. When the types
5251 are all the same size they wind up as unsigned. When file_ptr is a
5252 larger signed type, the arithmetic winds up as signed long long,
5253 which is wrong.
5254
5255 What we're trying to say here is something like ``increase OFF by
5256 the least amount that will cause it to be equal to the VMA modulo
5257 the page size.'' */
5258 /* In other words, something like:
5259
5260 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5261 off_offset = off % bed->maxpagesize;
5262 if (vma_offset < off_offset)
5263 adjustment = vma_offset + bed->maxpagesize - off_offset;
5264 else
5265 adjustment = vma_offset - off_offset;
5266
5267 which can be collapsed into the expression below. */
5268
5269 static file_ptr
5270 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5271 {
5272 /* PR binutils/16199: Handle an alignment of zero. */
5273 if (maxpagesize == 0)
5274 maxpagesize = 1;
5275 return ((vma - off) % maxpagesize);
5276 }
5277
5278 static void
5279 print_segment_map (const struct elf_segment_map *m)
5280 {
5281 unsigned int j;
5282 const char *pt = get_segment_type (m->p_type);
5283 char buf[32];
5284
5285 if (pt == NULL)
5286 {
5287 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5288 sprintf (buf, "LOPROC+%7.7x",
5289 (unsigned int) (m->p_type - PT_LOPROC));
5290 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5291 sprintf (buf, "LOOS+%7.7x",
5292 (unsigned int) (m->p_type - PT_LOOS));
5293 else
5294 snprintf (buf, sizeof (buf), "%8.8x",
5295 (unsigned int) m->p_type);
5296 pt = buf;
5297 }
5298 fflush (stdout);
5299 fprintf (stderr, "%s:", pt);
5300 for (j = 0; j < m->count; j++)
5301 fprintf (stderr, " %s", m->sections [j]->name);
5302 putc ('\n',stderr);
5303 fflush (stderr);
5304 }
5305
5306 static bfd_boolean
5307 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5308 {
5309 void *buf;
5310 bfd_boolean ret;
5311
5312 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5313 return FALSE;
5314 buf = bfd_zmalloc (len);
5315 if (buf == NULL)
5316 return FALSE;
5317 ret = bfd_bwrite (buf, len, abfd) == len;
5318 free (buf);
5319 return ret;
5320 }
5321
5322 /* Assign file positions to the sections based on the mapping from
5323 sections to segments. This function also sets up some fields in
5324 the file header. */
5325
5326 static bfd_boolean
5327 assign_file_positions_for_load_sections (bfd *abfd,
5328 struct bfd_link_info *link_info)
5329 {
5330 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5331 struct elf_segment_map *m;
5332 Elf_Internal_Phdr *phdrs;
5333 Elf_Internal_Phdr *p;
5334 file_ptr off;
5335 bfd_size_type maxpagesize;
5336 unsigned int pt_load_count = 0;
5337 unsigned int alloc;
5338 unsigned int i, j;
5339 bfd_vma header_pad = 0;
5340
5341 if (link_info == NULL
5342 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5343 return FALSE;
5344
5345 alloc = 0;
5346 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5347 {
5348 ++alloc;
5349 if (m->header_size)
5350 header_pad = m->header_size;
5351 }
5352
5353 if (alloc)
5354 {
5355 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5356 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5357 }
5358 else
5359 {
5360 /* PR binutils/12467. */
5361 elf_elfheader (abfd)->e_phoff = 0;
5362 elf_elfheader (abfd)->e_phentsize = 0;
5363 }
5364
5365 elf_elfheader (abfd)->e_phnum = alloc;
5366
5367 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5368 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5369 else
5370 BFD_ASSERT (elf_program_header_size (abfd)
5371 >= alloc * bed->s->sizeof_phdr);
5372
5373 if (alloc == 0)
5374 {
5375 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5376 return TRUE;
5377 }
5378
5379 /* We're writing the size in elf_program_header_size (abfd),
5380 see assign_file_positions_except_relocs, so make sure we have
5381 that amount allocated, with trailing space cleared.
5382 The variable alloc contains the computed need, while
5383 elf_program_header_size (abfd) contains the size used for the
5384 layout.
5385 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5386 where the layout is forced to according to a larger size in the
5387 last iterations for the testcase ld-elf/header. */
5388 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5389 == 0);
5390 phdrs = (Elf_Internal_Phdr *)
5391 bfd_zalloc2 (abfd,
5392 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5393 sizeof (Elf_Internal_Phdr));
5394 elf_tdata (abfd)->phdr = phdrs;
5395 if (phdrs == NULL)
5396 return FALSE;
5397
5398 maxpagesize = 1;
5399 if ((abfd->flags & D_PAGED) != 0)
5400 maxpagesize = bed->maxpagesize;
5401
5402 off = bed->s->sizeof_ehdr;
5403 off += alloc * bed->s->sizeof_phdr;
5404 if (header_pad < (bfd_vma) off)
5405 header_pad = 0;
5406 else
5407 header_pad -= off;
5408 off += header_pad;
5409
5410 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5411 m != NULL;
5412 m = m->next, p++, j++)
5413 {
5414 asection **secpp;
5415 bfd_vma off_adjust;
5416 bfd_boolean no_contents;
5417
5418 /* If elf_segment_map is not from map_sections_to_segments, the
5419 sections may not be correctly ordered. NOTE: sorting should
5420 not be done to the PT_NOTE section of a corefile, which may
5421 contain several pseudo-sections artificially created by bfd.
5422 Sorting these pseudo-sections breaks things badly. */
5423 if (m->count > 1
5424 && !(elf_elfheader (abfd)->e_type == ET_CORE
5425 && m->p_type == PT_NOTE))
5426 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5427 elf_sort_sections);
5428
5429 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5430 number of sections with contents contributing to both p_filesz
5431 and p_memsz, followed by a number of sections with no contents
5432 that just contribute to p_memsz. In this loop, OFF tracks next
5433 available file offset for PT_LOAD and PT_NOTE segments. */
5434 p->p_type = m->p_type;
5435 p->p_flags = m->p_flags;
5436
5437 if (m->count == 0)
5438 p->p_vaddr = m->p_vaddr_offset;
5439 else
5440 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5441
5442 if (m->p_paddr_valid)
5443 p->p_paddr = m->p_paddr;
5444 else if (m->count == 0)
5445 p->p_paddr = 0;
5446 else
5447 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5448
5449 if (p->p_type == PT_LOAD
5450 && (abfd->flags & D_PAGED) != 0)
5451 {
5452 /* p_align in demand paged PT_LOAD segments effectively stores
5453 the maximum page size. When copying an executable with
5454 objcopy, we set m->p_align from the input file. Use this
5455 value for maxpagesize rather than bed->maxpagesize, which
5456 may be different. Note that we use maxpagesize for PT_TLS
5457 segment alignment later in this function, so we are relying
5458 on at least one PT_LOAD segment appearing before a PT_TLS
5459 segment. */
5460 if (m->p_align_valid)
5461 maxpagesize = m->p_align;
5462
5463 p->p_align = maxpagesize;
5464 pt_load_count += 1;
5465 }
5466 else if (m->p_align_valid)
5467 p->p_align = m->p_align;
5468 else if (m->count == 0)
5469 p->p_align = 1 << bed->s->log_file_align;
5470 else
5471 p->p_align = 0;
5472
5473 no_contents = FALSE;
5474 off_adjust = 0;
5475 if (p->p_type == PT_LOAD
5476 && m->count > 0)
5477 {
5478 bfd_size_type align;
5479 unsigned int align_power = 0;
5480
5481 if (m->p_align_valid)
5482 align = p->p_align;
5483 else
5484 {
5485 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5486 {
5487 unsigned int secalign;
5488
5489 secalign = bfd_get_section_alignment (abfd, *secpp);
5490 if (secalign > align_power)
5491 align_power = secalign;
5492 }
5493 align = (bfd_size_type) 1 << align_power;
5494 if (align < maxpagesize)
5495 align = maxpagesize;
5496 }
5497
5498 for (i = 0; i < m->count; i++)
5499 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5500 /* If we aren't making room for this section, then
5501 it must be SHT_NOBITS regardless of what we've
5502 set via struct bfd_elf_special_section. */
5503 elf_section_type (m->sections[i]) = SHT_NOBITS;
5504
5505 /* Find out whether this segment contains any loadable
5506 sections. */
5507 no_contents = TRUE;
5508 for (i = 0; i < m->count; i++)
5509 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5510 {
5511 no_contents = FALSE;
5512 break;
5513 }
5514
5515 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5516
5517 /* Broken hardware and/or kernel require that files do not
5518 map the same page with different permissions on some hppa
5519 processors. */
5520 if (pt_load_count > 1
5521 && bed->no_page_alias
5522 && (off & (maxpagesize - 1)) != 0
5523 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5524 off_adjust += maxpagesize;
5525 off += off_adjust;
5526 if (no_contents)
5527 {
5528 /* We shouldn't need to align the segment on disk since
5529 the segment doesn't need file space, but the gABI
5530 arguably requires the alignment and glibc ld.so
5531 checks it. So to comply with the alignment
5532 requirement but not waste file space, we adjust
5533 p_offset for just this segment. (OFF_ADJUST is
5534 subtracted from OFF later.) This may put p_offset
5535 past the end of file, but that shouldn't matter. */
5536 }
5537 else
5538 off_adjust = 0;
5539 }
5540 /* Make sure the .dynamic section is the first section in the
5541 PT_DYNAMIC segment. */
5542 else if (p->p_type == PT_DYNAMIC
5543 && m->count > 1
5544 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5545 {
5546 _bfd_error_handler
5547 (_("%pB: The first section in the PT_DYNAMIC segment"
5548 " is not the .dynamic section"),
5549 abfd);
5550 bfd_set_error (bfd_error_bad_value);
5551 return FALSE;
5552 }
5553 /* Set the note section type to SHT_NOTE. */
5554 else if (p->p_type == PT_NOTE)
5555 for (i = 0; i < m->count; i++)
5556 elf_section_type (m->sections[i]) = SHT_NOTE;
5557
5558 p->p_offset = 0;
5559 p->p_filesz = 0;
5560 p->p_memsz = 0;
5561
5562 if (m->includes_filehdr)
5563 {
5564 if (!m->p_flags_valid)
5565 p->p_flags |= PF_R;
5566 p->p_filesz = bed->s->sizeof_ehdr;
5567 p->p_memsz = bed->s->sizeof_ehdr;
5568 if (m->count > 0)
5569 {
5570 if (p->p_vaddr < (bfd_vma) off
5571 || (!m->p_paddr_valid
5572 && p->p_paddr < (bfd_vma) off))
5573 {
5574 _bfd_error_handler
5575 (_("%pB: not enough room for program headers,"
5576 " try linking with -N"),
5577 abfd);
5578 bfd_set_error (bfd_error_bad_value);
5579 return FALSE;
5580 }
5581
5582 p->p_vaddr -= off;
5583 if (!m->p_paddr_valid)
5584 p->p_paddr -= off;
5585 }
5586 }
5587
5588 if (m->includes_phdrs)
5589 {
5590 if (!m->p_flags_valid)
5591 p->p_flags |= PF_R;
5592
5593 if (!m->includes_filehdr)
5594 {
5595 p->p_offset = bed->s->sizeof_ehdr;
5596
5597 if (m->count > 0)
5598 {
5599 p->p_vaddr -= off - p->p_offset;
5600 if (!m->p_paddr_valid)
5601 p->p_paddr -= off - p->p_offset;
5602 }
5603 }
5604
5605 p->p_filesz += alloc * bed->s->sizeof_phdr;
5606 p->p_memsz += alloc * bed->s->sizeof_phdr;
5607 if (m->count)
5608 {
5609 p->p_filesz += header_pad;
5610 p->p_memsz += header_pad;
5611 }
5612 }
5613
5614 if (p->p_type == PT_LOAD
5615 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5616 {
5617 if (!m->includes_filehdr && !m->includes_phdrs)
5618 p->p_offset = off;
5619 else
5620 {
5621 file_ptr adjust;
5622
5623 adjust = off - (p->p_offset + p->p_filesz);
5624 if (!no_contents)
5625 p->p_filesz += adjust;
5626 p->p_memsz += adjust;
5627 }
5628 }
5629
5630 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5631 maps. Set filepos for sections in PT_LOAD segments, and in
5632 core files, for sections in PT_NOTE segments.
5633 assign_file_positions_for_non_load_sections will set filepos
5634 for other sections and update p_filesz for other segments. */
5635 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5636 {
5637 asection *sec;
5638 bfd_size_type align;
5639 Elf_Internal_Shdr *this_hdr;
5640
5641 sec = *secpp;
5642 this_hdr = &elf_section_data (sec)->this_hdr;
5643 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5644
5645 if ((p->p_type == PT_LOAD
5646 || p->p_type == PT_TLS)
5647 && (this_hdr->sh_type != SHT_NOBITS
5648 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5649 && ((this_hdr->sh_flags & SHF_TLS) == 0
5650 || p->p_type == PT_TLS))))
5651 {
5652 bfd_vma p_start = p->p_paddr;
5653 bfd_vma p_end = p_start + p->p_memsz;
5654 bfd_vma s_start = sec->lma;
5655 bfd_vma adjust = s_start - p_end;
5656
5657 if (adjust != 0
5658 && (s_start < p_end
5659 || p_end < p_start))
5660 {
5661 _bfd_error_handler
5662 /* xgettext:c-format */
5663 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5664 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5665 adjust = 0;
5666 sec->lma = p_end;
5667 }
5668 p->p_memsz += adjust;
5669
5670 if (this_hdr->sh_type != SHT_NOBITS)
5671 {
5672 if (p->p_filesz + adjust < p->p_memsz)
5673 {
5674 /* We have a PROGBITS section following NOBITS ones.
5675 Allocate file space for the NOBITS section(s) and
5676 zero it. */
5677 adjust = p->p_memsz - p->p_filesz;
5678 if (!write_zeros (abfd, off, adjust))
5679 return FALSE;
5680 }
5681 off += adjust;
5682 p->p_filesz += adjust;
5683 }
5684 }
5685
5686 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5687 {
5688 /* The section at i == 0 is the one that actually contains
5689 everything. */
5690 if (i == 0)
5691 {
5692 this_hdr->sh_offset = sec->filepos = off;
5693 off += this_hdr->sh_size;
5694 p->p_filesz = this_hdr->sh_size;
5695 p->p_memsz = 0;
5696 p->p_align = 1;
5697 }
5698 else
5699 {
5700 /* The rest are fake sections that shouldn't be written. */
5701 sec->filepos = 0;
5702 sec->size = 0;
5703 sec->flags = 0;
5704 continue;
5705 }
5706 }
5707 else
5708 {
5709 if (p->p_type == PT_LOAD)
5710 {
5711 this_hdr->sh_offset = sec->filepos = off;
5712 if (this_hdr->sh_type != SHT_NOBITS)
5713 off += this_hdr->sh_size;
5714 }
5715 else if (this_hdr->sh_type == SHT_NOBITS
5716 && (this_hdr->sh_flags & SHF_TLS) != 0
5717 && this_hdr->sh_offset == 0)
5718 {
5719 /* This is a .tbss section that didn't get a PT_LOAD.
5720 (See _bfd_elf_map_sections_to_segments "Create a
5721 final PT_LOAD".) Set sh_offset to the value it
5722 would have if we had created a zero p_filesz and
5723 p_memsz PT_LOAD header for the section. This
5724 also makes the PT_TLS header have the same
5725 p_offset value. */
5726 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5727 off, align);
5728 this_hdr->sh_offset = sec->filepos = off + adjust;
5729 }
5730
5731 if (this_hdr->sh_type != SHT_NOBITS)
5732 {
5733 p->p_filesz += this_hdr->sh_size;
5734 /* A load section without SHF_ALLOC is something like
5735 a note section in a PT_NOTE segment. These take
5736 file space but are not loaded into memory. */
5737 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5738 p->p_memsz += this_hdr->sh_size;
5739 }
5740 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5741 {
5742 if (p->p_type == PT_TLS)
5743 p->p_memsz += this_hdr->sh_size;
5744
5745 /* .tbss is special. It doesn't contribute to p_memsz of
5746 normal segments. */
5747 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5748 p->p_memsz += this_hdr->sh_size;
5749 }
5750
5751 if (align > p->p_align
5752 && !m->p_align_valid
5753 && (p->p_type != PT_LOAD
5754 || (abfd->flags & D_PAGED) == 0))
5755 p->p_align = align;
5756 }
5757
5758 if (!m->p_flags_valid)
5759 {
5760 p->p_flags |= PF_R;
5761 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5762 p->p_flags |= PF_X;
5763 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5764 p->p_flags |= PF_W;
5765 }
5766 }
5767
5768 off -= off_adjust;
5769
5770 /* Check that all sections are in a PT_LOAD segment.
5771 Don't check funky gdb generated core files. */
5772 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5773 {
5774 bfd_boolean check_vma = TRUE;
5775
5776 for (i = 1; i < m->count; i++)
5777 if (m->sections[i]->vma == m->sections[i - 1]->vma
5778 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5779 ->this_hdr), p) != 0
5780 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5781 ->this_hdr), p) != 0)
5782 {
5783 /* Looks like we have overlays packed into the segment. */
5784 check_vma = FALSE;
5785 break;
5786 }
5787
5788 for (i = 0; i < m->count; i++)
5789 {
5790 Elf_Internal_Shdr *this_hdr;
5791 asection *sec;
5792
5793 sec = m->sections[i];
5794 this_hdr = &(elf_section_data(sec)->this_hdr);
5795 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5796 && !ELF_TBSS_SPECIAL (this_hdr, p))
5797 {
5798 _bfd_error_handler
5799 /* xgettext:c-format */
5800 (_("%pB: section `%pA' can't be allocated in segment %d"),
5801 abfd, sec, j);
5802 print_segment_map (m);
5803 }
5804 }
5805 }
5806 }
5807
5808 elf_next_file_pos (abfd) = off;
5809 return TRUE;
5810 }
5811
5812 /* Assign file positions for the other sections. */
5813
5814 static bfd_boolean
5815 assign_file_positions_for_non_load_sections (bfd *abfd,
5816 struct bfd_link_info *link_info)
5817 {
5818 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5819 Elf_Internal_Shdr **i_shdrpp;
5820 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5821 Elf_Internal_Phdr *phdrs;
5822 Elf_Internal_Phdr *p;
5823 struct elf_segment_map *m;
5824 struct elf_segment_map *hdrs_segment;
5825 bfd_vma filehdr_vaddr, filehdr_paddr;
5826 bfd_vma phdrs_vaddr, phdrs_paddr;
5827 file_ptr off;
5828 unsigned int count;
5829
5830 i_shdrpp = elf_elfsections (abfd);
5831 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5832 off = elf_next_file_pos (abfd);
5833 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5834 {
5835 Elf_Internal_Shdr *hdr;
5836
5837 hdr = *hdrpp;
5838 if (hdr->bfd_section != NULL
5839 && (hdr->bfd_section->filepos != 0
5840 || (hdr->sh_type == SHT_NOBITS
5841 && hdr->contents == NULL)))
5842 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5843 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5844 {
5845 if (hdr->sh_size != 0)
5846 _bfd_error_handler
5847 /* xgettext:c-format */
5848 (_("%pB: warning: allocated section `%s' not in segment"),
5849 abfd,
5850 (hdr->bfd_section == NULL
5851 ? "*unknown*"
5852 : hdr->bfd_section->name));
5853 /* We don't need to page align empty sections. */
5854 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5855 off += vma_page_aligned_bias (hdr->sh_addr, off,
5856 bed->maxpagesize);
5857 else
5858 off += vma_page_aligned_bias (hdr->sh_addr, off,
5859 hdr->sh_addralign);
5860 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5861 FALSE);
5862 }
5863 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5864 && hdr->bfd_section == NULL)
5865 || (hdr->bfd_section != NULL
5866 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5867 /* Compress DWARF debug sections. */
5868 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5869 || (elf_symtab_shndx_list (abfd) != NULL
5870 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5871 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5872 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5873 hdr->sh_offset = -1;
5874 else
5875 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5876 }
5877
5878 /* Now that we have set the section file positions, we can set up
5879 the file positions for the non PT_LOAD segments. */
5880 count = 0;
5881 filehdr_vaddr = 0;
5882 filehdr_paddr = 0;
5883 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5884 phdrs_paddr = 0;
5885 hdrs_segment = NULL;
5886 phdrs = elf_tdata (abfd)->phdr;
5887 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5888 {
5889 ++count;
5890 if (p->p_type != PT_LOAD)
5891 continue;
5892
5893 if (m->includes_filehdr)
5894 {
5895 filehdr_vaddr = p->p_vaddr;
5896 filehdr_paddr = p->p_paddr;
5897 }
5898 if (m->includes_phdrs)
5899 {
5900 phdrs_vaddr = p->p_vaddr;
5901 phdrs_paddr = p->p_paddr;
5902 if (m->includes_filehdr)
5903 {
5904 hdrs_segment = m;
5905 phdrs_vaddr += bed->s->sizeof_ehdr;
5906 phdrs_paddr += bed->s->sizeof_ehdr;
5907 }
5908 }
5909 }
5910
5911 if (hdrs_segment != NULL && link_info != NULL)
5912 {
5913 /* There is a segment that contains both the file headers and the
5914 program headers, so provide a symbol __ehdr_start pointing there.
5915 A program can use this to examine itself robustly. */
5916
5917 struct elf_link_hash_entry *hash
5918 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5919 FALSE, FALSE, TRUE);
5920 /* If the symbol was referenced and not defined, define it. */
5921 if (hash != NULL
5922 && (hash->root.type == bfd_link_hash_new
5923 || hash->root.type == bfd_link_hash_undefined
5924 || hash->root.type == bfd_link_hash_undefweak
5925 || hash->root.type == bfd_link_hash_common))
5926 {
5927 asection *s = NULL;
5928 if (hdrs_segment->count != 0)
5929 /* The segment contains sections, so use the first one. */
5930 s = hdrs_segment->sections[0];
5931 else
5932 /* Use the first (i.e. lowest-addressed) section in any segment. */
5933 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5934 if (m->count != 0)
5935 {
5936 s = m->sections[0];
5937 break;
5938 }
5939
5940 if (s != NULL)
5941 {
5942 hash->root.u.def.value = filehdr_vaddr - s->vma;
5943 hash->root.u.def.section = s;
5944 }
5945 else
5946 {
5947 hash->root.u.def.value = filehdr_vaddr;
5948 hash->root.u.def.section = bfd_abs_section_ptr;
5949 }
5950
5951 hash->root.type = bfd_link_hash_defined;
5952 hash->def_regular = 1;
5953 hash->non_elf = 0;
5954 }
5955 }
5956
5957 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5958 {
5959 if (p->p_type == PT_GNU_RELRO)
5960 {
5961 bfd_vma start, end;
5962 bfd_boolean ok;
5963
5964 if (link_info != NULL)
5965 {
5966 /* During linking the range of the RELRO segment is passed
5967 in link_info. Note that there may be padding between
5968 relro_start and the first RELRO section. */
5969 start = link_info->relro_start;
5970 end = link_info->relro_end;
5971 }
5972 else if (m->count != 0)
5973 {
5974 if (!m->p_size_valid)
5975 abort ();
5976 start = m->sections[0]->vma;
5977 end = start + m->p_size;
5978 }
5979 else
5980 {
5981 start = 0;
5982 end = 0;
5983 }
5984
5985 ok = FALSE;
5986 if (start < end)
5987 {
5988 struct elf_segment_map *lm;
5989 const Elf_Internal_Phdr *lp;
5990 unsigned int i;
5991
5992 /* Find a LOAD segment containing a section in the RELRO
5993 segment. */
5994 for (lm = elf_seg_map (abfd), lp = phdrs;
5995 lm != NULL;
5996 lm = lm->next, lp++)
5997 {
5998 if (lp->p_type == PT_LOAD
5999 && lm->count != 0
6000 && (lm->sections[lm->count - 1]->vma
6001 + (!IS_TBSS (lm->sections[lm->count - 1])
6002 ? lm->sections[lm->count - 1]->size
6003 : 0)) > start
6004 && lm->sections[0]->vma < end)
6005 break;
6006 }
6007
6008 if (lm != NULL)
6009 {
6010 /* Find the section starting the RELRO segment. */
6011 for (i = 0; i < lm->count; i++)
6012 {
6013 asection *s = lm->sections[i];
6014 if (s->vma >= start
6015 && s->vma < end
6016 && s->size != 0)
6017 break;
6018 }
6019
6020 if (i < lm->count)
6021 {
6022 p->p_vaddr = lm->sections[i]->vma;
6023 p->p_paddr = lm->sections[i]->lma;
6024 p->p_offset = lm->sections[i]->filepos;
6025 p->p_memsz = end - p->p_vaddr;
6026 p->p_filesz = p->p_memsz;
6027
6028 /* The RELRO segment typically ends a few bytes
6029 into .got.plt but other layouts are possible.
6030 In cases where the end does not match any
6031 loaded section (for instance is in file
6032 padding), trim p_filesz back to correspond to
6033 the end of loaded section contents. */
6034 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6035 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6036
6037 /* Preserve the alignment and flags if they are
6038 valid. The gold linker generates RW/4 for
6039 the PT_GNU_RELRO section. It is better for
6040 objcopy/strip to honor these attributes
6041 otherwise gdb will choke when using separate
6042 debug files. */
6043 if (!m->p_align_valid)
6044 p->p_align = 1;
6045 if (!m->p_flags_valid)
6046 p->p_flags = PF_R;
6047 ok = TRUE;
6048 }
6049 }
6050 }
6051 if (link_info != NULL)
6052 BFD_ASSERT (ok);
6053 if (!ok)
6054 memset (p, 0, sizeof *p);
6055 }
6056 else if (p->p_type == PT_GNU_STACK)
6057 {
6058 if (m->p_size_valid)
6059 p->p_memsz = m->p_size;
6060 }
6061 else if (m->count != 0)
6062 {
6063 unsigned int i;
6064
6065 if (p->p_type != PT_LOAD
6066 && (p->p_type != PT_NOTE
6067 || bfd_get_format (abfd) != bfd_core))
6068 {
6069 /* A user specified segment layout may include a PHDR
6070 segment that overlaps with a LOAD segment... */
6071 if (p->p_type == PT_PHDR)
6072 {
6073 m->count = 0;
6074 continue;
6075 }
6076
6077 if (m->includes_filehdr || m->includes_phdrs)
6078 {
6079 /* PR 17512: file: 2195325e. */
6080 _bfd_error_handler
6081 (_("%pB: error: non-load segment %d includes file header "
6082 "and/or program header"),
6083 abfd, (int) (p - phdrs));
6084 return FALSE;
6085 }
6086
6087 p->p_filesz = 0;
6088 p->p_offset = m->sections[0]->filepos;
6089 for (i = m->count; i-- != 0;)
6090 {
6091 asection *sect = m->sections[i];
6092 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6093 if (hdr->sh_type != SHT_NOBITS)
6094 {
6095 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6096 + hdr->sh_size);
6097 break;
6098 }
6099 }
6100 }
6101 }
6102 else if (m->includes_filehdr)
6103 {
6104 p->p_vaddr = filehdr_vaddr;
6105 if (! m->p_paddr_valid)
6106 p->p_paddr = filehdr_paddr;
6107 }
6108 else if (m->includes_phdrs)
6109 {
6110 p->p_vaddr = phdrs_vaddr;
6111 if (! m->p_paddr_valid)
6112 p->p_paddr = phdrs_paddr;
6113 }
6114 }
6115
6116 elf_next_file_pos (abfd) = off;
6117
6118 return TRUE;
6119 }
6120
6121 static elf_section_list *
6122 find_section_in_list (unsigned int i, elf_section_list * list)
6123 {
6124 for (;list != NULL; list = list->next)
6125 if (list->ndx == i)
6126 break;
6127 return list;
6128 }
6129
6130 /* Work out the file positions of all the sections. This is called by
6131 _bfd_elf_compute_section_file_positions. All the section sizes and
6132 VMAs must be known before this is called.
6133
6134 Reloc sections come in two flavours: Those processed specially as
6135 "side-channel" data attached to a section to which they apply, and
6136 those that bfd doesn't process as relocations. The latter sort are
6137 stored in a normal bfd section by bfd_section_from_shdr. We don't
6138 consider the former sort here, unless they form part of the loadable
6139 image. Reloc sections not assigned here will be handled later by
6140 assign_file_positions_for_relocs.
6141
6142 We also don't set the positions of the .symtab and .strtab here. */
6143
6144 static bfd_boolean
6145 assign_file_positions_except_relocs (bfd *abfd,
6146 struct bfd_link_info *link_info)
6147 {
6148 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6149 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6151
6152 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6153 && bfd_get_format (abfd) != bfd_core)
6154 {
6155 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6156 unsigned int num_sec = elf_numsections (abfd);
6157 Elf_Internal_Shdr **hdrpp;
6158 unsigned int i;
6159 file_ptr off;
6160
6161 /* Start after the ELF header. */
6162 off = i_ehdrp->e_ehsize;
6163
6164 /* We are not creating an executable, which means that we are
6165 not creating a program header, and that the actual order of
6166 the sections in the file is unimportant. */
6167 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6168 {
6169 Elf_Internal_Shdr *hdr;
6170
6171 hdr = *hdrpp;
6172 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6173 && hdr->bfd_section == NULL)
6174 || (hdr->bfd_section != NULL
6175 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6176 /* Compress DWARF debug sections. */
6177 || i == elf_onesymtab (abfd)
6178 || (elf_symtab_shndx_list (abfd) != NULL
6179 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6180 || i == elf_strtab_sec (abfd)
6181 || i == elf_shstrtab_sec (abfd))
6182 {
6183 hdr->sh_offset = -1;
6184 }
6185 else
6186 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6187 }
6188
6189 elf_next_file_pos (abfd) = off;
6190 }
6191 else
6192 {
6193 unsigned int alloc;
6194
6195 /* Assign file positions for the loaded sections based on the
6196 assignment of sections to segments. */
6197 if (!assign_file_positions_for_load_sections (abfd, link_info))
6198 return FALSE;
6199
6200 /* And for non-load sections. */
6201 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6202 return FALSE;
6203
6204 if (bed->elf_backend_modify_program_headers != NULL)
6205 {
6206 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6207 return FALSE;
6208 }
6209
6210 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6211 if (link_info != NULL && bfd_link_pie (link_info))
6212 {
6213 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6214 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6215 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6216
6217 /* Find the lowest p_vaddr in PT_LOAD segments. */
6218 bfd_vma p_vaddr = (bfd_vma) -1;
6219 for (; segment < end_segment; segment++)
6220 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6221 p_vaddr = segment->p_vaddr;
6222
6223 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6224 segments is non-zero. */
6225 if (p_vaddr)
6226 i_ehdrp->e_type = ET_EXEC;
6227 }
6228
6229 /* Write out the program headers. */
6230 alloc = elf_elfheader (abfd)->e_phnum;
6231 if (alloc == 0)
6232 return TRUE;
6233
6234 /* PR ld/20815 - Check that the program header segment, if present, will
6235 be loaded into memory. FIXME: The check below is not sufficient as
6236 really all PT_LOAD segments should be checked before issuing an error
6237 message. Plus the PHDR segment does not have to be the first segment
6238 in the program header table. But this version of the check should
6239 catch all real world use cases.
6240
6241 FIXME: We used to have code here to sort the PT_LOAD segments into
6242 ascending order, as per the ELF spec. But this breaks some programs,
6243 including the Linux kernel. But really either the spec should be
6244 changed or the programs updated. */
6245 if (alloc > 1
6246 && tdata->phdr[0].p_type == PT_PHDR
6247 && (bed->elf_backend_allow_non_load_phdr == NULL
6248 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6249 alloc))
6250 && tdata->phdr[1].p_type == PT_LOAD
6251 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6252 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6253 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6254 {
6255 /* The fix for this error is usually to edit the linker script being
6256 used and set up the program headers manually. Either that or
6257 leave room for the headers at the start of the SECTIONS. */
6258 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6259 " by LOAD segment"),
6260 abfd);
6261 return FALSE;
6262 }
6263
6264 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6265 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6266 return FALSE;
6267 }
6268
6269 return TRUE;
6270 }
6271
6272 static bfd_boolean
6273 prep_headers (bfd *abfd)
6274 {
6275 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6276 struct elf_strtab_hash *shstrtab;
6277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6278
6279 i_ehdrp = elf_elfheader (abfd);
6280
6281 shstrtab = _bfd_elf_strtab_init ();
6282 if (shstrtab == NULL)
6283 return FALSE;
6284
6285 elf_shstrtab (abfd) = shstrtab;
6286
6287 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6288 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6289 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6290 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6291
6292 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6293 i_ehdrp->e_ident[EI_DATA] =
6294 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6295 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6296
6297 if ((abfd->flags & DYNAMIC) != 0)
6298 i_ehdrp->e_type = ET_DYN;
6299 else if ((abfd->flags & EXEC_P) != 0)
6300 i_ehdrp->e_type = ET_EXEC;
6301 else if (bfd_get_format (abfd) == bfd_core)
6302 i_ehdrp->e_type = ET_CORE;
6303 else
6304 i_ehdrp->e_type = ET_REL;
6305
6306 switch (bfd_get_arch (abfd))
6307 {
6308 case bfd_arch_unknown:
6309 i_ehdrp->e_machine = EM_NONE;
6310 break;
6311
6312 /* There used to be a long list of cases here, each one setting
6313 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6314 in the corresponding bfd definition. To avoid duplication,
6315 the switch was removed. Machines that need special handling
6316 can generally do it in elf_backend_final_write_processing(),
6317 unless they need the information earlier than the final write.
6318 Such need can generally be supplied by replacing the tests for
6319 e_machine with the conditions used to determine it. */
6320 default:
6321 i_ehdrp->e_machine = bed->elf_machine_code;
6322 }
6323
6324 i_ehdrp->e_version = bed->s->ev_current;
6325 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6326
6327 /* No program header, for now. */
6328 i_ehdrp->e_phoff = 0;
6329 i_ehdrp->e_phentsize = 0;
6330 i_ehdrp->e_phnum = 0;
6331
6332 /* Each bfd section is section header entry. */
6333 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6334 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6335
6336 /* If we're building an executable, we'll need a program header table. */
6337 if (abfd->flags & EXEC_P)
6338 /* It all happens later. */
6339 ;
6340 else
6341 {
6342 i_ehdrp->e_phentsize = 0;
6343 i_ehdrp->e_phoff = 0;
6344 }
6345
6346 elf_tdata (abfd)->symtab_hdr.sh_name =
6347 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6348 elf_tdata (abfd)->strtab_hdr.sh_name =
6349 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6350 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6351 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6352 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6353 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6354 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6355 return FALSE;
6356
6357 return TRUE;
6358 }
6359
6360 /* Assign file positions for all the reloc sections which are not part
6361 of the loadable file image, and the file position of section headers. */
6362
6363 static bfd_boolean
6364 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6365 {
6366 file_ptr off;
6367 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6368 Elf_Internal_Shdr *shdrp;
6369 Elf_Internal_Ehdr *i_ehdrp;
6370 const struct elf_backend_data *bed;
6371
6372 off = elf_next_file_pos (abfd);
6373
6374 shdrpp = elf_elfsections (abfd);
6375 end_shdrpp = shdrpp + elf_numsections (abfd);
6376 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6377 {
6378 shdrp = *shdrpp;
6379 if (shdrp->sh_offset == -1)
6380 {
6381 asection *sec = shdrp->bfd_section;
6382 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6383 || shdrp->sh_type == SHT_RELA);
6384 if (is_rel
6385 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6386 {
6387 if (!is_rel)
6388 {
6389 const char *name = sec->name;
6390 struct bfd_elf_section_data *d;
6391
6392 /* Compress DWARF debug sections. */
6393 if (!bfd_compress_section (abfd, sec,
6394 shdrp->contents))
6395 return FALSE;
6396
6397 if (sec->compress_status == COMPRESS_SECTION_DONE
6398 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6399 {
6400 /* If section is compressed with zlib-gnu, convert
6401 section name from .debug_* to .zdebug_*. */
6402 char *new_name
6403 = convert_debug_to_zdebug (abfd, name);
6404 if (new_name == NULL)
6405 return FALSE;
6406 name = new_name;
6407 }
6408 /* Add section name to section name section. */
6409 if (shdrp->sh_name != (unsigned int) -1)
6410 abort ();
6411 shdrp->sh_name
6412 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6413 name, FALSE);
6414 d = elf_section_data (sec);
6415
6416 /* Add reloc section name to section name section. */
6417 if (d->rel.hdr
6418 && !_bfd_elf_set_reloc_sh_name (abfd,
6419 d->rel.hdr,
6420 name, FALSE))
6421 return FALSE;
6422 if (d->rela.hdr
6423 && !_bfd_elf_set_reloc_sh_name (abfd,
6424 d->rela.hdr,
6425 name, TRUE))
6426 return FALSE;
6427
6428 /* Update section size and contents. */
6429 shdrp->sh_size = sec->size;
6430 shdrp->contents = sec->contents;
6431 shdrp->bfd_section->contents = NULL;
6432 }
6433 off = _bfd_elf_assign_file_position_for_section (shdrp,
6434 off,
6435 TRUE);
6436 }
6437 }
6438 }
6439
6440 /* Place section name section after DWARF debug sections have been
6441 compressed. */
6442 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6443 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6444 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6445 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6446
6447 /* Place the section headers. */
6448 i_ehdrp = elf_elfheader (abfd);
6449 bed = get_elf_backend_data (abfd);
6450 off = align_file_position (off, 1 << bed->s->log_file_align);
6451 i_ehdrp->e_shoff = off;
6452 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6453 elf_next_file_pos (abfd) = off;
6454
6455 return TRUE;
6456 }
6457
6458 bfd_boolean
6459 _bfd_elf_write_object_contents (bfd *abfd)
6460 {
6461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6462 Elf_Internal_Shdr **i_shdrp;
6463 bfd_boolean failed;
6464 unsigned int count, num_sec;
6465 struct elf_obj_tdata *t;
6466
6467 if (! abfd->output_has_begun
6468 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6469 return FALSE;
6470 /* Do not rewrite ELF data when the BFD has been opened for update.
6471 abfd->output_has_begun was set to TRUE on opening, so creation of new
6472 sections, and modification of existing section sizes was restricted.
6473 This means the ELF header, program headers and section headers can't have
6474 changed.
6475 If the contents of any sections has been modified, then those changes have
6476 already been written to the BFD. */
6477 else if (abfd->direction == both_direction)
6478 {
6479 BFD_ASSERT (abfd->output_has_begun);
6480 return TRUE;
6481 }
6482
6483 i_shdrp = elf_elfsections (abfd);
6484
6485 failed = FALSE;
6486 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6487 if (failed)
6488 return FALSE;
6489
6490 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6491 return FALSE;
6492
6493 /* After writing the headers, we need to write the sections too... */
6494 num_sec = elf_numsections (abfd);
6495 for (count = 1; count < num_sec; count++)
6496 {
6497 i_shdrp[count]->sh_name
6498 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6499 i_shdrp[count]->sh_name);
6500 if (bed->elf_backend_section_processing)
6501 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6502 return FALSE;
6503 if (i_shdrp[count]->contents)
6504 {
6505 bfd_size_type amt = i_shdrp[count]->sh_size;
6506
6507 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6508 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6509 return FALSE;
6510 }
6511 }
6512
6513 /* Write out the section header names. */
6514 t = elf_tdata (abfd);
6515 if (elf_shstrtab (abfd) != NULL
6516 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6517 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6518 return FALSE;
6519
6520 if (bed->elf_backend_final_write_processing)
6521 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6522
6523 if (!bed->s->write_shdrs_and_ehdr (abfd))
6524 return FALSE;
6525
6526 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6527 if (t->o->build_id.after_write_object_contents != NULL)
6528 return (*t->o->build_id.after_write_object_contents) (abfd);
6529
6530 return TRUE;
6531 }
6532
6533 bfd_boolean
6534 _bfd_elf_write_corefile_contents (bfd *abfd)
6535 {
6536 /* Hopefully this can be done just like an object file. */
6537 return _bfd_elf_write_object_contents (abfd);
6538 }
6539
6540 /* Given a section, search the header to find them. */
6541
6542 unsigned int
6543 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6544 {
6545 const struct elf_backend_data *bed;
6546 unsigned int sec_index;
6547
6548 if (elf_section_data (asect) != NULL
6549 && elf_section_data (asect)->this_idx != 0)
6550 return elf_section_data (asect)->this_idx;
6551
6552 if (bfd_is_abs_section (asect))
6553 sec_index = SHN_ABS;
6554 else if (bfd_is_com_section (asect))
6555 sec_index = SHN_COMMON;
6556 else if (bfd_is_und_section (asect))
6557 sec_index = SHN_UNDEF;
6558 else
6559 sec_index = SHN_BAD;
6560
6561 bed = get_elf_backend_data (abfd);
6562 if (bed->elf_backend_section_from_bfd_section)
6563 {
6564 int retval = sec_index;
6565
6566 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6567 return retval;
6568 }
6569
6570 if (sec_index == SHN_BAD)
6571 bfd_set_error (bfd_error_nonrepresentable_section);
6572
6573 return sec_index;
6574 }
6575
6576 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6577 on error. */
6578
6579 int
6580 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6581 {
6582 asymbol *asym_ptr = *asym_ptr_ptr;
6583 int idx;
6584 flagword flags = asym_ptr->flags;
6585
6586 /* When gas creates relocations against local labels, it creates its
6587 own symbol for the section, but does put the symbol into the
6588 symbol chain, so udata is 0. When the linker is generating
6589 relocatable output, this section symbol may be for one of the
6590 input sections rather than the output section. */
6591 if (asym_ptr->udata.i == 0
6592 && (flags & BSF_SECTION_SYM)
6593 && asym_ptr->section)
6594 {
6595 asection *sec;
6596 int indx;
6597
6598 sec = asym_ptr->section;
6599 if (sec->owner != abfd && sec->output_section != NULL)
6600 sec = sec->output_section;
6601 if (sec->owner == abfd
6602 && (indx = sec->index) < elf_num_section_syms (abfd)
6603 && elf_section_syms (abfd)[indx] != NULL)
6604 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6605 }
6606
6607 idx = asym_ptr->udata.i;
6608
6609 if (idx == 0)
6610 {
6611 /* This case can occur when using --strip-symbol on a symbol
6612 which is used in a relocation entry. */
6613 _bfd_error_handler
6614 /* xgettext:c-format */
6615 (_("%pB: symbol `%s' required but not present"),
6616 abfd, bfd_asymbol_name (asym_ptr));
6617 bfd_set_error (bfd_error_no_symbols);
6618 return -1;
6619 }
6620
6621 #if DEBUG & 4
6622 {
6623 fprintf (stderr,
6624 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6625 (long) asym_ptr, asym_ptr->name, idx, flags);
6626 fflush (stderr);
6627 }
6628 #endif
6629
6630 return idx;
6631 }
6632
6633 /* Rewrite program header information. */
6634
6635 static bfd_boolean
6636 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6637 {
6638 Elf_Internal_Ehdr *iehdr;
6639 struct elf_segment_map *map;
6640 struct elf_segment_map *map_first;
6641 struct elf_segment_map **pointer_to_map;
6642 Elf_Internal_Phdr *segment;
6643 asection *section;
6644 unsigned int i;
6645 unsigned int num_segments;
6646 bfd_boolean phdr_included = FALSE;
6647 bfd_boolean p_paddr_valid;
6648 bfd_vma maxpagesize;
6649 struct elf_segment_map *phdr_adjust_seg = NULL;
6650 unsigned int phdr_adjust_num = 0;
6651 const struct elf_backend_data *bed;
6652
6653 bed = get_elf_backend_data (ibfd);
6654 iehdr = elf_elfheader (ibfd);
6655
6656 map_first = NULL;
6657 pointer_to_map = &map_first;
6658
6659 num_segments = elf_elfheader (ibfd)->e_phnum;
6660 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6661
6662 /* Returns the end address of the segment + 1. */
6663 #define SEGMENT_END(segment, start) \
6664 (start + (segment->p_memsz > segment->p_filesz \
6665 ? segment->p_memsz : segment->p_filesz))
6666
6667 #define SECTION_SIZE(section, segment) \
6668 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6669 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6670 ? section->size : 0)
6671
6672 /* Returns TRUE if the given section is contained within
6673 the given segment. VMA addresses are compared. */
6674 #define IS_CONTAINED_BY_VMA(section, segment) \
6675 (section->vma >= segment->p_vaddr \
6676 && (section->vma + SECTION_SIZE (section, segment) \
6677 <= (SEGMENT_END (segment, segment->p_vaddr))))
6678
6679 /* Returns TRUE if the given section is contained within
6680 the given segment. LMA addresses are compared. */
6681 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6682 (section->lma >= base \
6683 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6684 && (section->lma + SECTION_SIZE (section, segment) \
6685 <= SEGMENT_END (segment, base)))
6686
6687 /* Handle PT_NOTE segment. */
6688 #define IS_NOTE(p, s) \
6689 (p->p_type == PT_NOTE \
6690 && elf_section_type (s) == SHT_NOTE \
6691 && (bfd_vma) s->filepos >= p->p_offset \
6692 && ((bfd_vma) s->filepos + s->size \
6693 <= p->p_offset + p->p_filesz))
6694
6695 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6696 etc. */
6697 #define IS_COREFILE_NOTE(p, s) \
6698 (IS_NOTE (p, s) \
6699 && bfd_get_format (ibfd) == bfd_core \
6700 && s->vma == 0 \
6701 && s->lma == 0)
6702
6703 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6704 linker, which generates a PT_INTERP section with p_vaddr and
6705 p_memsz set to 0. */
6706 #define IS_SOLARIS_PT_INTERP(p, s) \
6707 (p->p_vaddr == 0 \
6708 && p->p_paddr == 0 \
6709 && p->p_memsz == 0 \
6710 && p->p_filesz > 0 \
6711 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6712 && s->size > 0 \
6713 && (bfd_vma) s->filepos >= p->p_offset \
6714 && ((bfd_vma) s->filepos + s->size \
6715 <= p->p_offset + p->p_filesz))
6716
6717 /* Decide if the given section should be included in the given segment.
6718 A section will be included if:
6719 1. It is within the address space of the segment -- we use the LMA
6720 if that is set for the segment and the VMA otherwise,
6721 2. It is an allocated section or a NOTE section in a PT_NOTE
6722 segment.
6723 3. There is an output section associated with it,
6724 4. The section has not already been allocated to a previous segment.
6725 5. PT_GNU_STACK segments do not include any sections.
6726 6. PT_TLS segment includes only SHF_TLS sections.
6727 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6728 8. PT_DYNAMIC should not contain empty sections at the beginning
6729 (with the possible exception of .dynamic). */
6730 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6731 ((((segment->p_paddr \
6732 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6733 : IS_CONTAINED_BY_VMA (section, segment)) \
6734 && (section->flags & SEC_ALLOC) != 0) \
6735 || IS_NOTE (segment, section)) \
6736 && segment->p_type != PT_GNU_STACK \
6737 && (segment->p_type != PT_TLS \
6738 || (section->flags & SEC_THREAD_LOCAL)) \
6739 && (segment->p_type == PT_LOAD \
6740 || segment->p_type == PT_TLS \
6741 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6742 && (segment->p_type != PT_DYNAMIC \
6743 || SECTION_SIZE (section, segment) > 0 \
6744 || (segment->p_paddr \
6745 ? segment->p_paddr != section->lma \
6746 : segment->p_vaddr != section->vma) \
6747 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6748 == 0)) \
6749 && (segment->p_type != PT_LOAD || !section->segment_mark))
6750
6751 /* If the output section of a section in the input segment is NULL,
6752 it is removed from the corresponding output segment. */
6753 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6754 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6755 && section->output_section != NULL)
6756
6757 /* Returns TRUE iff seg1 starts after the end of seg2. */
6758 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6759 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6760
6761 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6762 their VMA address ranges and their LMA address ranges overlap.
6763 It is possible to have overlapping VMA ranges without overlapping LMA
6764 ranges. RedBoot images for example can have both .data and .bss mapped
6765 to the same VMA range, but with the .data section mapped to a different
6766 LMA. */
6767 #define SEGMENT_OVERLAPS(seg1, seg2) \
6768 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6769 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6770 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6771 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6772
6773 /* Initialise the segment mark field. */
6774 for (section = ibfd->sections; section != NULL; section = section->next)
6775 section->segment_mark = FALSE;
6776
6777 /* The Solaris linker creates program headers in which all the
6778 p_paddr fields are zero. When we try to objcopy or strip such a
6779 file, we get confused. Check for this case, and if we find it
6780 don't set the p_paddr_valid fields. */
6781 p_paddr_valid = FALSE;
6782 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6783 i < num_segments;
6784 i++, segment++)
6785 if (segment->p_paddr != 0)
6786 {
6787 p_paddr_valid = TRUE;
6788 break;
6789 }
6790
6791 /* Scan through the segments specified in the program header
6792 of the input BFD. For this first scan we look for overlaps
6793 in the loadable segments. These can be created by weird
6794 parameters to objcopy. Also, fix some solaris weirdness. */
6795 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6796 i < num_segments;
6797 i++, segment++)
6798 {
6799 unsigned int j;
6800 Elf_Internal_Phdr *segment2;
6801
6802 if (segment->p_type == PT_INTERP)
6803 for (section = ibfd->sections; section; section = section->next)
6804 if (IS_SOLARIS_PT_INTERP (segment, section))
6805 {
6806 /* Mininal change so that the normal section to segment
6807 assignment code will work. */
6808 segment->p_vaddr = section->vma;
6809 break;
6810 }
6811
6812 if (segment->p_type != PT_LOAD)
6813 {
6814 /* Remove PT_GNU_RELRO segment. */
6815 if (segment->p_type == PT_GNU_RELRO)
6816 segment->p_type = PT_NULL;
6817 continue;
6818 }
6819
6820 /* Determine if this segment overlaps any previous segments. */
6821 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6822 {
6823 bfd_signed_vma extra_length;
6824
6825 if (segment2->p_type != PT_LOAD
6826 || !SEGMENT_OVERLAPS (segment, segment2))
6827 continue;
6828
6829 /* Merge the two segments together. */
6830 if (segment2->p_vaddr < segment->p_vaddr)
6831 {
6832 /* Extend SEGMENT2 to include SEGMENT and then delete
6833 SEGMENT. */
6834 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6835 - SEGMENT_END (segment2, segment2->p_vaddr));
6836
6837 if (extra_length > 0)
6838 {
6839 segment2->p_memsz += extra_length;
6840 segment2->p_filesz += extra_length;
6841 }
6842
6843 segment->p_type = PT_NULL;
6844
6845 /* Since we have deleted P we must restart the outer loop. */
6846 i = 0;
6847 segment = elf_tdata (ibfd)->phdr;
6848 break;
6849 }
6850 else
6851 {
6852 /* Extend SEGMENT to include SEGMENT2 and then delete
6853 SEGMENT2. */
6854 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6855 - SEGMENT_END (segment, segment->p_vaddr));
6856
6857 if (extra_length > 0)
6858 {
6859 segment->p_memsz += extra_length;
6860 segment->p_filesz += extra_length;
6861 }
6862
6863 segment2->p_type = PT_NULL;
6864 }
6865 }
6866 }
6867
6868 /* The second scan attempts to assign sections to segments. */
6869 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6870 i < num_segments;
6871 i++, segment++)
6872 {
6873 unsigned int section_count;
6874 asection **sections;
6875 asection *output_section;
6876 unsigned int isec;
6877 asection *matching_lma;
6878 asection *suggested_lma;
6879 unsigned int j;
6880 bfd_size_type amt;
6881 asection *first_section;
6882
6883 if (segment->p_type == PT_NULL)
6884 continue;
6885
6886 first_section = NULL;
6887 /* Compute how many sections might be placed into this segment. */
6888 for (section = ibfd->sections, section_count = 0;
6889 section != NULL;
6890 section = section->next)
6891 {
6892 /* Find the first section in the input segment, which may be
6893 removed from the corresponding output segment. */
6894 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6895 {
6896 if (first_section == NULL)
6897 first_section = section;
6898 if (section->output_section != NULL)
6899 ++section_count;
6900 }
6901 }
6902
6903 /* Allocate a segment map big enough to contain
6904 all of the sections we have selected. */
6905 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6906 amt += (bfd_size_type) section_count * sizeof (asection *);
6907 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6908 if (map == NULL)
6909 return FALSE;
6910
6911 /* Initialise the fields of the segment map. Default to
6912 using the physical address of the segment in the input BFD. */
6913 map->next = NULL;
6914 map->p_type = segment->p_type;
6915 map->p_flags = segment->p_flags;
6916 map->p_flags_valid = 1;
6917
6918 /* If the first section in the input segment is removed, there is
6919 no need to preserve segment physical address in the corresponding
6920 output segment. */
6921 if (!first_section || first_section->output_section != NULL)
6922 {
6923 map->p_paddr = segment->p_paddr;
6924 map->p_paddr_valid = p_paddr_valid;
6925 }
6926
6927 /* Determine if this segment contains the ELF file header
6928 and if it contains the program headers themselves. */
6929 map->includes_filehdr = (segment->p_offset == 0
6930 && segment->p_filesz >= iehdr->e_ehsize);
6931 map->includes_phdrs = 0;
6932
6933 if (!phdr_included || segment->p_type != PT_LOAD)
6934 {
6935 map->includes_phdrs =
6936 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6937 && (segment->p_offset + segment->p_filesz
6938 >= ((bfd_vma) iehdr->e_phoff
6939 + iehdr->e_phnum * iehdr->e_phentsize)));
6940
6941 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6942 phdr_included = TRUE;
6943 }
6944
6945 if (section_count == 0)
6946 {
6947 /* Special segments, such as the PT_PHDR segment, may contain
6948 no sections, but ordinary, loadable segments should contain
6949 something. They are allowed by the ELF spec however, so only
6950 a warning is produced.
6951 There is however the valid use case of embedded systems which
6952 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6953 flash memory with zeros. No warning is shown for that case. */
6954 if (segment->p_type == PT_LOAD
6955 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6956 /* xgettext:c-format */
6957 _bfd_error_handler
6958 (_("%pB: warning: empty loadable segment detected"
6959 " at vaddr=%#" PRIx64 ", is this intentional?"),
6960 ibfd, (uint64_t) segment->p_vaddr);
6961
6962 map->p_vaddr_offset = segment->p_vaddr;
6963 map->count = 0;
6964 *pointer_to_map = map;
6965 pointer_to_map = &map->next;
6966
6967 continue;
6968 }
6969
6970 /* Now scan the sections in the input BFD again and attempt
6971 to add their corresponding output sections to the segment map.
6972 The problem here is how to handle an output section which has
6973 been moved (ie had its LMA changed). There are four possibilities:
6974
6975 1. None of the sections have been moved.
6976 In this case we can continue to use the segment LMA from the
6977 input BFD.
6978
6979 2. All of the sections have been moved by the same amount.
6980 In this case we can change the segment's LMA to match the LMA
6981 of the first section.
6982
6983 3. Some of the sections have been moved, others have not.
6984 In this case those sections which have not been moved can be
6985 placed in the current segment which will have to have its size,
6986 and possibly its LMA changed, and a new segment or segments will
6987 have to be created to contain the other sections.
6988
6989 4. The sections have been moved, but not by the same amount.
6990 In this case we can change the segment's LMA to match the LMA
6991 of the first section and we will have to create a new segment
6992 or segments to contain the other sections.
6993
6994 In order to save time, we allocate an array to hold the section
6995 pointers that we are interested in. As these sections get assigned
6996 to a segment, they are removed from this array. */
6997
6998 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6999 if (sections == NULL)
7000 return FALSE;
7001
7002 /* Step One: Scan for segment vs section LMA conflicts.
7003 Also add the sections to the section array allocated above.
7004 Also add the sections to the current segment. In the common
7005 case, where the sections have not been moved, this means that
7006 we have completely filled the segment, and there is nothing
7007 more to do. */
7008 isec = 0;
7009 matching_lma = NULL;
7010 suggested_lma = NULL;
7011
7012 for (section = first_section, j = 0;
7013 section != NULL;
7014 section = section->next)
7015 {
7016 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7017 {
7018 output_section = section->output_section;
7019
7020 sections[j++] = section;
7021
7022 /* The Solaris native linker always sets p_paddr to 0.
7023 We try to catch that case here, and set it to the
7024 correct value. Note - some backends require that
7025 p_paddr be left as zero. */
7026 if (!p_paddr_valid
7027 && segment->p_vaddr != 0
7028 && !bed->want_p_paddr_set_to_zero
7029 && isec == 0
7030 && output_section->lma != 0
7031 && (align_power (segment->p_vaddr
7032 + (map->includes_filehdr
7033 ? iehdr->e_ehsize : 0)
7034 + (map->includes_phdrs
7035 ? iehdr->e_phnum * iehdr->e_phentsize
7036 : 0),
7037 output_section->alignment_power)
7038 == output_section->vma))
7039 map->p_paddr = segment->p_vaddr;
7040
7041 /* Match up the physical address of the segment with the
7042 LMA address of the output section. */
7043 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7044 || IS_COREFILE_NOTE (segment, section)
7045 || (bed->want_p_paddr_set_to_zero
7046 && IS_CONTAINED_BY_VMA (output_section, segment)))
7047 {
7048 if (matching_lma == NULL
7049 || output_section->lma < matching_lma->lma)
7050 matching_lma = output_section;
7051
7052 /* We assume that if the section fits within the segment
7053 then it does not overlap any other section within that
7054 segment. */
7055 map->sections[isec++] = output_section;
7056 }
7057 else if (suggested_lma == NULL)
7058 suggested_lma = output_section;
7059
7060 if (j == section_count)
7061 break;
7062 }
7063 }
7064
7065 BFD_ASSERT (j == section_count);
7066
7067 /* Step Two: Adjust the physical address of the current segment,
7068 if necessary. */
7069 if (isec == section_count)
7070 {
7071 /* All of the sections fitted within the segment as currently
7072 specified. This is the default case. Add the segment to
7073 the list of built segments and carry on to process the next
7074 program header in the input BFD. */
7075 map->count = section_count;
7076 *pointer_to_map = map;
7077 pointer_to_map = &map->next;
7078
7079 if (p_paddr_valid
7080 && !bed->want_p_paddr_set_to_zero
7081 && matching_lma->lma != map->p_paddr
7082 && !map->includes_filehdr
7083 && !map->includes_phdrs)
7084 /* There is some padding before the first section in the
7085 segment. So, we must account for that in the output
7086 segment's vma. */
7087 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7088
7089 free (sections);
7090 continue;
7091 }
7092 else
7093 {
7094 /* Change the current segment's physical address to match
7095 the LMA of the first section that fitted, or if no
7096 section fitted, the first section. */
7097 if (matching_lma == NULL)
7098 matching_lma = suggested_lma;
7099
7100 map->p_paddr = matching_lma->lma;
7101
7102 /* Offset the segment physical address from the lma
7103 to allow for space taken up by elf headers. */
7104 if (map->includes_phdrs)
7105 {
7106 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7107
7108 /* iehdr->e_phnum is just an estimate of the number
7109 of program headers that we will need. Make a note
7110 here of the number we used and the segment we chose
7111 to hold these headers, so that we can adjust the
7112 offset when we know the correct value. */
7113 phdr_adjust_num = iehdr->e_phnum;
7114 phdr_adjust_seg = map;
7115 }
7116
7117 if (map->includes_filehdr)
7118 {
7119 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7120 map->p_paddr -= iehdr->e_ehsize;
7121 /* We've subtracted off the size of headers from the
7122 first section lma, but there may have been some
7123 alignment padding before that section too. Try to
7124 account for that by adjusting the segment lma down to
7125 the same alignment. */
7126 if (segment->p_align != 0 && segment->p_align < align)
7127 align = segment->p_align;
7128 map->p_paddr &= -align;
7129 }
7130 }
7131
7132 /* Step Three: Loop over the sections again, this time assigning
7133 those that fit to the current segment and removing them from the
7134 sections array; but making sure not to leave large gaps. Once all
7135 possible sections have been assigned to the current segment it is
7136 added to the list of built segments and if sections still remain
7137 to be assigned, a new segment is constructed before repeating
7138 the loop. */
7139 isec = 0;
7140 do
7141 {
7142 map->count = 0;
7143 suggested_lma = NULL;
7144
7145 /* Fill the current segment with sections that fit. */
7146 for (j = 0; j < section_count; j++)
7147 {
7148 section = sections[j];
7149
7150 if (section == NULL)
7151 continue;
7152
7153 output_section = section->output_section;
7154
7155 BFD_ASSERT (output_section != NULL);
7156
7157 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7158 || IS_COREFILE_NOTE (segment, section))
7159 {
7160 if (map->count == 0)
7161 {
7162 /* If the first section in a segment does not start at
7163 the beginning of the segment, then something is
7164 wrong. */
7165 if (align_power (map->p_paddr
7166 + (map->includes_filehdr
7167 ? iehdr->e_ehsize : 0)
7168 + (map->includes_phdrs
7169 ? iehdr->e_phnum * iehdr->e_phentsize
7170 : 0),
7171 output_section->alignment_power)
7172 != output_section->lma)
7173 abort ();
7174 }
7175 else
7176 {
7177 asection *prev_sec;
7178
7179 prev_sec = map->sections[map->count - 1];
7180
7181 /* If the gap between the end of the previous section
7182 and the start of this section is more than
7183 maxpagesize then we need to start a new segment. */
7184 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7185 maxpagesize)
7186 < BFD_ALIGN (output_section->lma, maxpagesize))
7187 || (prev_sec->lma + prev_sec->size
7188 > output_section->lma))
7189 {
7190 if (suggested_lma == NULL)
7191 suggested_lma = output_section;
7192
7193 continue;
7194 }
7195 }
7196
7197 map->sections[map->count++] = output_section;
7198 ++isec;
7199 sections[j] = NULL;
7200 if (segment->p_type == PT_LOAD)
7201 section->segment_mark = TRUE;
7202 }
7203 else if (suggested_lma == NULL)
7204 suggested_lma = output_section;
7205 }
7206
7207 /* PR 23932. A corrupt input file may contain sections that cannot
7208 be assigned to any segment - because for example they have a
7209 negative size - or segments that do not contain any sections. */
7210 if (map->count == 0)
7211 {
7212 bfd_set_error (bfd_error_bad_value);
7213 free (sections);
7214 return FALSE;
7215 }
7216
7217 /* Add the current segment to the list of built segments. */
7218 *pointer_to_map = map;
7219 pointer_to_map = &map->next;
7220
7221 if (isec < section_count)
7222 {
7223 /* We still have not allocated all of the sections to
7224 segments. Create a new segment here, initialise it
7225 and carry on looping. */
7226 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7227 amt += (bfd_size_type) section_count * sizeof (asection *);
7228 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7229 if (map == NULL)
7230 {
7231 free (sections);
7232 return FALSE;
7233 }
7234
7235 /* Initialise the fields of the segment map. Set the physical
7236 physical address to the LMA of the first section that has
7237 not yet been assigned. */
7238 map->next = NULL;
7239 map->p_type = segment->p_type;
7240 map->p_flags = segment->p_flags;
7241 map->p_flags_valid = 1;
7242 map->p_paddr = suggested_lma->lma;
7243 map->p_paddr_valid = p_paddr_valid;
7244 map->includes_filehdr = 0;
7245 map->includes_phdrs = 0;
7246 }
7247 }
7248 while (isec < section_count);
7249
7250 free (sections);
7251 }
7252
7253 elf_seg_map (obfd) = map_first;
7254
7255 /* If we had to estimate the number of program headers that were
7256 going to be needed, then check our estimate now and adjust
7257 the offset if necessary. */
7258 if (phdr_adjust_seg != NULL)
7259 {
7260 unsigned int count;
7261
7262 for (count = 0, map = map_first; map != NULL; map = map->next)
7263 count++;
7264
7265 if (count > phdr_adjust_num)
7266 phdr_adjust_seg->p_paddr
7267 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7268
7269 for (map = map_first; map != NULL; map = map->next)
7270 if (map->p_type == PT_PHDR)
7271 {
7272 bfd_vma adjust
7273 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7274 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7275 break;
7276 }
7277 }
7278
7279 #undef SEGMENT_END
7280 #undef SECTION_SIZE
7281 #undef IS_CONTAINED_BY_VMA
7282 #undef IS_CONTAINED_BY_LMA
7283 #undef IS_NOTE
7284 #undef IS_COREFILE_NOTE
7285 #undef IS_SOLARIS_PT_INTERP
7286 #undef IS_SECTION_IN_INPUT_SEGMENT
7287 #undef INCLUDE_SECTION_IN_SEGMENT
7288 #undef SEGMENT_AFTER_SEGMENT
7289 #undef SEGMENT_OVERLAPS
7290 return TRUE;
7291 }
7292
7293 /* Copy ELF program header information. */
7294
7295 static bfd_boolean
7296 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7297 {
7298 Elf_Internal_Ehdr *iehdr;
7299 struct elf_segment_map *map;
7300 struct elf_segment_map *map_first;
7301 struct elf_segment_map **pointer_to_map;
7302 Elf_Internal_Phdr *segment;
7303 unsigned int i;
7304 unsigned int num_segments;
7305 bfd_boolean phdr_included = FALSE;
7306 bfd_boolean p_paddr_valid;
7307
7308 iehdr = elf_elfheader (ibfd);
7309
7310 map_first = NULL;
7311 pointer_to_map = &map_first;
7312
7313 /* If all the segment p_paddr fields are zero, don't set
7314 map->p_paddr_valid. */
7315 p_paddr_valid = FALSE;
7316 num_segments = elf_elfheader (ibfd)->e_phnum;
7317 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7318 i < num_segments;
7319 i++, segment++)
7320 if (segment->p_paddr != 0)
7321 {
7322 p_paddr_valid = TRUE;
7323 break;
7324 }
7325
7326 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7327 i < num_segments;
7328 i++, segment++)
7329 {
7330 asection *section;
7331 unsigned int section_count;
7332 bfd_size_type amt;
7333 Elf_Internal_Shdr *this_hdr;
7334 asection *first_section = NULL;
7335 asection *lowest_section;
7336 bfd_boolean no_contents = TRUE;
7337
7338 /* Compute how many sections are in this segment. */
7339 for (section = ibfd->sections, section_count = 0;
7340 section != NULL;
7341 section = section->next)
7342 {
7343 this_hdr = &(elf_section_data(section)->this_hdr);
7344 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7345 {
7346 if (first_section == NULL)
7347 first_section = section;
7348 if (elf_section_type (section) != SHT_NOBITS)
7349 no_contents = FALSE;
7350 section_count++;
7351 }
7352 }
7353
7354 /* Allocate a segment map big enough to contain
7355 all of the sections we have selected. */
7356 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7357 amt += (bfd_size_type) section_count * sizeof (asection *);
7358 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7359 if (map == NULL)
7360 return FALSE;
7361
7362 /* Initialize the fields of the output segment map with the
7363 input segment. */
7364 map->next = NULL;
7365 map->p_type = segment->p_type;
7366 map->p_flags = segment->p_flags;
7367 map->p_flags_valid = 1;
7368 map->p_paddr = segment->p_paddr;
7369 map->p_paddr_valid = p_paddr_valid;
7370 map->p_align = segment->p_align;
7371 map->p_align_valid = 1;
7372 map->p_vaddr_offset = 0;
7373
7374 if (map->p_type == PT_GNU_RELRO
7375 || map->p_type == PT_GNU_STACK)
7376 {
7377 /* The PT_GNU_RELRO segment may contain the first a few
7378 bytes in the .got.plt section even if the whole .got.plt
7379 section isn't in the PT_GNU_RELRO segment. We won't
7380 change the size of the PT_GNU_RELRO segment.
7381 Similarly, PT_GNU_STACK size is significant on uclinux
7382 systems. */
7383 map->p_size = segment->p_memsz;
7384 map->p_size_valid = 1;
7385 }
7386
7387 /* Determine if this segment contains the ELF file header
7388 and if it contains the program headers themselves. */
7389 map->includes_filehdr = (segment->p_offset == 0
7390 && segment->p_filesz >= iehdr->e_ehsize);
7391
7392 map->includes_phdrs = 0;
7393 if (! phdr_included || segment->p_type != PT_LOAD)
7394 {
7395 map->includes_phdrs =
7396 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7397 && (segment->p_offset + segment->p_filesz
7398 >= ((bfd_vma) iehdr->e_phoff
7399 + iehdr->e_phnum * iehdr->e_phentsize)));
7400
7401 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7402 phdr_included = TRUE;
7403 }
7404
7405 lowest_section = NULL;
7406 if (section_count != 0)
7407 {
7408 unsigned int isec = 0;
7409
7410 for (section = first_section;
7411 section != NULL;
7412 section = section->next)
7413 {
7414 this_hdr = &(elf_section_data(section)->this_hdr);
7415 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7416 {
7417 map->sections[isec++] = section->output_section;
7418 if ((section->flags & SEC_ALLOC) != 0)
7419 {
7420 bfd_vma seg_off;
7421
7422 if (lowest_section == NULL
7423 || section->lma < lowest_section->lma)
7424 lowest_section = section;
7425
7426 /* Section lmas are set up from PT_LOAD header
7427 p_paddr in _bfd_elf_make_section_from_shdr.
7428 If this header has a p_paddr that disagrees
7429 with the section lma, flag the p_paddr as
7430 invalid. */
7431 if ((section->flags & SEC_LOAD) != 0)
7432 seg_off = this_hdr->sh_offset - segment->p_offset;
7433 else
7434 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7435 if (section->lma - segment->p_paddr != seg_off)
7436 map->p_paddr_valid = FALSE;
7437 }
7438 if (isec == section_count)
7439 break;
7440 }
7441 }
7442 }
7443
7444 if (map->includes_filehdr && lowest_section != NULL)
7445 {
7446 /* Try to keep the space used by the headers plus any
7447 padding fixed. If there are sections with file contents
7448 in this segment then the lowest sh_offset is the best
7449 guess. Otherwise the segment only has file contents for
7450 the headers, and p_filesz is the best guess. */
7451 if (no_contents)
7452 map->header_size = segment->p_filesz;
7453 else
7454 map->header_size = lowest_section->filepos;
7455 }
7456
7457 if (section_count == 0)
7458 map->p_vaddr_offset = segment->p_vaddr;
7459 else if (!map->includes_phdrs
7460 && !map->includes_filehdr
7461 && map->p_paddr_valid)
7462 /* Account for padding before the first section. */
7463 map->p_vaddr_offset = (segment->p_paddr
7464 - (lowest_section ? lowest_section->lma : 0));
7465
7466 map->count = section_count;
7467 *pointer_to_map = map;
7468 pointer_to_map = &map->next;
7469 }
7470
7471 elf_seg_map (obfd) = map_first;
7472 return TRUE;
7473 }
7474
7475 /* Copy private BFD data. This copies or rewrites ELF program header
7476 information. */
7477
7478 static bfd_boolean
7479 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7480 {
7481 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7482 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7483 return TRUE;
7484
7485 if (elf_tdata (ibfd)->phdr == NULL)
7486 return TRUE;
7487
7488 if (ibfd->xvec == obfd->xvec)
7489 {
7490 /* Check to see if any sections in the input BFD
7491 covered by ELF program header have changed. */
7492 Elf_Internal_Phdr *segment;
7493 asection *section, *osec;
7494 unsigned int i, num_segments;
7495 Elf_Internal_Shdr *this_hdr;
7496 const struct elf_backend_data *bed;
7497
7498 bed = get_elf_backend_data (ibfd);
7499
7500 /* Regenerate the segment map if p_paddr is set to 0. */
7501 if (bed->want_p_paddr_set_to_zero)
7502 goto rewrite;
7503
7504 /* Initialize the segment mark field. */
7505 for (section = obfd->sections; section != NULL;
7506 section = section->next)
7507 section->segment_mark = FALSE;
7508
7509 num_segments = elf_elfheader (ibfd)->e_phnum;
7510 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7511 i < num_segments;
7512 i++, segment++)
7513 {
7514 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7515 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7516 which severly confuses things, so always regenerate the segment
7517 map in this case. */
7518 if (segment->p_paddr == 0
7519 && segment->p_memsz == 0
7520 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7521 goto rewrite;
7522
7523 for (section = ibfd->sections;
7524 section != NULL; section = section->next)
7525 {
7526 /* We mark the output section so that we know it comes
7527 from the input BFD. */
7528 osec = section->output_section;
7529 if (osec)
7530 osec->segment_mark = TRUE;
7531
7532 /* Check if this section is covered by the segment. */
7533 this_hdr = &(elf_section_data(section)->this_hdr);
7534 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7535 {
7536 /* FIXME: Check if its output section is changed or
7537 removed. What else do we need to check? */
7538 if (osec == NULL
7539 || section->flags != osec->flags
7540 || section->lma != osec->lma
7541 || section->vma != osec->vma
7542 || section->size != osec->size
7543 || section->rawsize != osec->rawsize
7544 || section->alignment_power != osec->alignment_power)
7545 goto rewrite;
7546 }
7547 }
7548 }
7549
7550 /* Check to see if any output section do not come from the
7551 input BFD. */
7552 for (section = obfd->sections; section != NULL;
7553 section = section->next)
7554 {
7555 if (!section->segment_mark)
7556 goto rewrite;
7557 else
7558 section->segment_mark = FALSE;
7559 }
7560
7561 return copy_elf_program_header (ibfd, obfd);
7562 }
7563
7564 rewrite:
7565 if (ibfd->xvec == obfd->xvec)
7566 {
7567 /* When rewriting program header, set the output maxpagesize to
7568 the maximum alignment of input PT_LOAD segments. */
7569 Elf_Internal_Phdr *segment;
7570 unsigned int i;
7571 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7572 bfd_vma maxpagesize = 0;
7573
7574 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7575 i < num_segments;
7576 i++, segment++)
7577 if (segment->p_type == PT_LOAD
7578 && maxpagesize < segment->p_align)
7579 {
7580 /* PR 17512: file: f17299af. */
7581 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7582 /* xgettext:c-format */
7583 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7584 PRIx64 " is too large"),
7585 ibfd, (uint64_t) segment->p_align);
7586 else
7587 maxpagesize = segment->p_align;
7588 }
7589
7590 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7591 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7592 }
7593
7594 return rewrite_elf_program_header (ibfd, obfd);
7595 }
7596
7597 /* Initialize private output section information from input section. */
7598
7599 bfd_boolean
7600 _bfd_elf_init_private_section_data (bfd *ibfd,
7601 asection *isec,
7602 bfd *obfd,
7603 asection *osec,
7604 struct bfd_link_info *link_info)
7605
7606 {
7607 Elf_Internal_Shdr *ihdr, *ohdr;
7608 bfd_boolean final_link = (link_info != NULL
7609 && !bfd_link_relocatable (link_info));
7610
7611 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7612 || obfd->xvec->flavour != bfd_target_elf_flavour)
7613 return TRUE;
7614
7615 BFD_ASSERT (elf_section_data (osec) != NULL);
7616
7617 /* For objcopy and relocatable link, don't copy the output ELF
7618 section type from input if the output BFD section flags have been
7619 set to something different. For a final link allow some flags
7620 that the linker clears to differ. */
7621 if (elf_section_type (osec) == SHT_NULL
7622 && (osec->flags == isec->flags
7623 || (final_link
7624 && ((osec->flags ^ isec->flags)
7625 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7626 elf_section_type (osec) = elf_section_type (isec);
7627
7628 /* FIXME: Is this correct for all OS/PROC specific flags? */
7629 elf_section_flags (osec) |= (elf_section_flags (isec)
7630 & (SHF_MASKOS | SHF_MASKPROC));
7631
7632 /* Copy sh_info from input for mbind section. */
7633 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7634 elf_section_data (osec)->this_hdr.sh_info
7635 = elf_section_data (isec)->this_hdr.sh_info;
7636
7637 /* Set things up for objcopy and relocatable link. The output
7638 SHT_GROUP section will have its elf_next_in_group pointing back
7639 to the input group members. Ignore linker created group section.
7640 See elfNN_ia64_object_p in elfxx-ia64.c. */
7641 if ((link_info == NULL
7642 || !link_info->resolve_section_groups)
7643 && (elf_sec_group (isec) == NULL
7644 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7645 {
7646 if (elf_section_flags (isec) & SHF_GROUP)
7647 elf_section_flags (osec) |= SHF_GROUP;
7648 elf_next_in_group (osec) = elf_next_in_group (isec);
7649 elf_section_data (osec)->group = elf_section_data (isec)->group;
7650 }
7651
7652 /* If not decompress, preserve SHF_COMPRESSED. */
7653 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7654 elf_section_flags (osec) |= (elf_section_flags (isec)
7655 & SHF_COMPRESSED);
7656
7657 ihdr = &elf_section_data (isec)->this_hdr;
7658
7659 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7660 don't use the output section of the linked-to section since it
7661 may be NULL at this point. */
7662 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7663 {
7664 ohdr = &elf_section_data (osec)->this_hdr;
7665 ohdr->sh_flags |= SHF_LINK_ORDER;
7666 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7667 }
7668
7669 osec->use_rela_p = isec->use_rela_p;
7670
7671 return TRUE;
7672 }
7673
7674 /* Copy private section information. This copies over the entsize
7675 field, and sometimes the info field. */
7676
7677 bfd_boolean
7678 _bfd_elf_copy_private_section_data (bfd *ibfd,
7679 asection *isec,
7680 bfd *obfd,
7681 asection *osec)
7682 {
7683 Elf_Internal_Shdr *ihdr, *ohdr;
7684
7685 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7686 || obfd->xvec->flavour != bfd_target_elf_flavour)
7687 return TRUE;
7688
7689 ihdr = &elf_section_data (isec)->this_hdr;
7690 ohdr = &elf_section_data (osec)->this_hdr;
7691
7692 ohdr->sh_entsize = ihdr->sh_entsize;
7693
7694 if (ihdr->sh_type == SHT_SYMTAB
7695 || ihdr->sh_type == SHT_DYNSYM
7696 || ihdr->sh_type == SHT_GNU_verneed
7697 || ihdr->sh_type == SHT_GNU_verdef)
7698 ohdr->sh_info = ihdr->sh_info;
7699
7700 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7701 NULL);
7702 }
7703
7704 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7705 necessary if we are removing either the SHT_GROUP section or any of
7706 the group member sections. DISCARDED is the value that a section's
7707 output_section has if the section will be discarded, NULL when this
7708 function is called from objcopy, bfd_abs_section_ptr when called
7709 from the linker. */
7710
7711 bfd_boolean
7712 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7713 {
7714 asection *isec;
7715
7716 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7717 if (elf_section_type (isec) == SHT_GROUP)
7718 {
7719 asection *first = elf_next_in_group (isec);
7720 asection *s = first;
7721 bfd_size_type removed = 0;
7722
7723 while (s != NULL)
7724 {
7725 /* If this member section is being output but the
7726 SHT_GROUP section is not, then clear the group info
7727 set up by _bfd_elf_copy_private_section_data. */
7728 if (s->output_section != discarded
7729 && isec->output_section == discarded)
7730 {
7731 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7732 elf_group_name (s->output_section) = NULL;
7733 }
7734 /* Conversely, if the member section is not being output
7735 but the SHT_GROUP section is, then adjust its size. */
7736 else if (s->output_section == discarded
7737 && isec->output_section != discarded)
7738 {
7739 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7740 removed += 4;
7741 if (elf_sec->rel.hdr != NULL
7742 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7743 removed += 4;
7744 if (elf_sec->rela.hdr != NULL
7745 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7746 removed += 4;
7747 }
7748 s = elf_next_in_group (s);
7749 if (s == first)
7750 break;
7751 }
7752 if (removed != 0)
7753 {
7754 if (discarded != NULL)
7755 {
7756 /* If we've been called for ld -r, then we need to
7757 adjust the input section size. */
7758 if (isec->rawsize == 0)
7759 isec->rawsize = isec->size;
7760 isec->size = isec->rawsize - removed;
7761 if (isec->size <= 4)
7762 {
7763 isec->size = 0;
7764 isec->flags |= SEC_EXCLUDE;
7765 }
7766 }
7767 else
7768 {
7769 /* Adjust the output section size when called from
7770 objcopy. */
7771 isec->output_section->size -= removed;
7772 if (isec->output_section->size <= 4)
7773 {
7774 isec->output_section->size = 0;
7775 isec->output_section->flags |= SEC_EXCLUDE;
7776 }
7777 }
7778 }
7779 }
7780
7781 return TRUE;
7782 }
7783
7784 /* Copy private header information. */
7785
7786 bfd_boolean
7787 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7788 {
7789 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7790 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7791 return TRUE;
7792
7793 /* Copy over private BFD data if it has not already been copied.
7794 This must be done here, rather than in the copy_private_bfd_data
7795 entry point, because the latter is called after the section
7796 contents have been set, which means that the program headers have
7797 already been worked out. */
7798 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7799 {
7800 if (! copy_private_bfd_data (ibfd, obfd))
7801 return FALSE;
7802 }
7803
7804 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7805 }
7806
7807 /* Copy private symbol information. If this symbol is in a section
7808 which we did not map into a BFD section, try to map the section
7809 index correctly. We use special macro definitions for the mapped
7810 section indices; these definitions are interpreted by the
7811 swap_out_syms function. */
7812
7813 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7814 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7815 #define MAP_STRTAB (SHN_HIOS + 3)
7816 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7817 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7818
7819 bfd_boolean
7820 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7821 asymbol *isymarg,
7822 bfd *obfd,
7823 asymbol *osymarg)
7824 {
7825 elf_symbol_type *isym, *osym;
7826
7827 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7828 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7829 return TRUE;
7830
7831 isym = elf_symbol_from (ibfd, isymarg);
7832 osym = elf_symbol_from (obfd, osymarg);
7833
7834 if (isym != NULL
7835 && isym->internal_elf_sym.st_shndx != 0
7836 && osym != NULL
7837 && bfd_is_abs_section (isym->symbol.section))
7838 {
7839 unsigned int shndx;
7840
7841 shndx = isym->internal_elf_sym.st_shndx;
7842 if (shndx == elf_onesymtab (ibfd))
7843 shndx = MAP_ONESYMTAB;
7844 else if (shndx == elf_dynsymtab (ibfd))
7845 shndx = MAP_DYNSYMTAB;
7846 else if (shndx == elf_strtab_sec (ibfd))
7847 shndx = MAP_STRTAB;
7848 else if (shndx == elf_shstrtab_sec (ibfd))
7849 shndx = MAP_SHSTRTAB;
7850 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7851 shndx = MAP_SYM_SHNDX;
7852 osym->internal_elf_sym.st_shndx = shndx;
7853 }
7854
7855 return TRUE;
7856 }
7857
7858 /* Swap out the symbols. */
7859
7860 static bfd_boolean
7861 swap_out_syms (bfd *abfd,
7862 struct elf_strtab_hash **sttp,
7863 int relocatable_p)
7864 {
7865 const struct elf_backend_data *bed;
7866 int symcount;
7867 asymbol **syms;
7868 struct elf_strtab_hash *stt;
7869 Elf_Internal_Shdr *symtab_hdr;
7870 Elf_Internal_Shdr *symtab_shndx_hdr;
7871 Elf_Internal_Shdr *symstrtab_hdr;
7872 struct elf_sym_strtab *symstrtab;
7873 bfd_byte *outbound_syms;
7874 bfd_byte *outbound_shndx;
7875 unsigned long outbound_syms_index;
7876 unsigned long outbound_shndx_index;
7877 int idx;
7878 unsigned int num_locals;
7879 bfd_size_type amt;
7880 bfd_boolean name_local_sections;
7881
7882 if (!elf_map_symbols (abfd, &num_locals))
7883 return FALSE;
7884
7885 /* Dump out the symtabs. */
7886 stt = _bfd_elf_strtab_init ();
7887 if (stt == NULL)
7888 return FALSE;
7889
7890 bed = get_elf_backend_data (abfd);
7891 symcount = bfd_get_symcount (abfd);
7892 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7893 symtab_hdr->sh_type = SHT_SYMTAB;
7894 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7895 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7896 symtab_hdr->sh_info = num_locals + 1;
7897 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7898
7899 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7900 symstrtab_hdr->sh_type = SHT_STRTAB;
7901
7902 /* Allocate buffer to swap out the .strtab section. */
7903 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
7904 sizeof (*symstrtab));
7905 if (symstrtab == NULL)
7906 {
7907 _bfd_elf_strtab_free (stt);
7908 return FALSE;
7909 }
7910
7911 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7912 bed->s->sizeof_sym);
7913 if (outbound_syms == NULL)
7914 {
7915 error_return:
7916 _bfd_elf_strtab_free (stt);
7917 free (symstrtab);
7918 return FALSE;
7919 }
7920 symtab_hdr->contents = outbound_syms;
7921 outbound_syms_index = 0;
7922
7923 outbound_shndx = NULL;
7924 outbound_shndx_index = 0;
7925
7926 if (elf_symtab_shndx_list (abfd))
7927 {
7928 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7929 if (symtab_shndx_hdr->sh_name != 0)
7930 {
7931 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7932 outbound_shndx = (bfd_byte *)
7933 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7934 if (outbound_shndx == NULL)
7935 goto error_return;
7936
7937 symtab_shndx_hdr->contents = outbound_shndx;
7938 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7939 symtab_shndx_hdr->sh_size = amt;
7940 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7941 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7942 }
7943 /* FIXME: What about any other headers in the list ? */
7944 }
7945
7946 /* Now generate the data (for "contents"). */
7947 {
7948 /* Fill in zeroth symbol and swap it out. */
7949 Elf_Internal_Sym sym;
7950 sym.st_name = 0;
7951 sym.st_value = 0;
7952 sym.st_size = 0;
7953 sym.st_info = 0;
7954 sym.st_other = 0;
7955 sym.st_shndx = SHN_UNDEF;
7956 sym.st_target_internal = 0;
7957 symstrtab[0].sym = sym;
7958 symstrtab[0].dest_index = outbound_syms_index;
7959 symstrtab[0].destshndx_index = outbound_shndx_index;
7960 outbound_syms_index++;
7961 if (outbound_shndx != NULL)
7962 outbound_shndx_index++;
7963 }
7964
7965 name_local_sections
7966 = (bed->elf_backend_name_local_section_symbols
7967 && bed->elf_backend_name_local_section_symbols (abfd));
7968
7969 syms = bfd_get_outsymbols (abfd);
7970 for (idx = 0; idx < symcount;)
7971 {
7972 Elf_Internal_Sym sym;
7973 bfd_vma value = syms[idx]->value;
7974 elf_symbol_type *type_ptr;
7975 flagword flags = syms[idx]->flags;
7976 int type;
7977
7978 if (!name_local_sections
7979 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7980 {
7981 /* Local section symbols have no name. */
7982 sym.st_name = (unsigned long) -1;
7983 }
7984 else
7985 {
7986 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7987 to get the final offset for st_name. */
7988 sym.st_name
7989 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7990 FALSE);
7991 if (sym.st_name == (unsigned long) -1)
7992 goto error_return;
7993 }
7994
7995 type_ptr = elf_symbol_from (abfd, syms[idx]);
7996
7997 if ((flags & BSF_SECTION_SYM) == 0
7998 && bfd_is_com_section (syms[idx]->section))
7999 {
8000 /* ELF common symbols put the alignment into the `value' field,
8001 and the size into the `size' field. This is backwards from
8002 how BFD handles it, so reverse it here. */
8003 sym.st_size = value;
8004 if (type_ptr == NULL
8005 || type_ptr->internal_elf_sym.st_value == 0)
8006 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8007 else
8008 sym.st_value = type_ptr->internal_elf_sym.st_value;
8009 sym.st_shndx = _bfd_elf_section_from_bfd_section
8010 (abfd, syms[idx]->section);
8011 }
8012 else
8013 {
8014 asection *sec = syms[idx]->section;
8015 unsigned int shndx;
8016
8017 if (sec->output_section)
8018 {
8019 value += sec->output_offset;
8020 sec = sec->output_section;
8021 }
8022
8023 /* Don't add in the section vma for relocatable output. */
8024 if (! relocatable_p)
8025 value += sec->vma;
8026 sym.st_value = value;
8027 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8028
8029 if (bfd_is_abs_section (sec)
8030 && type_ptr != NULL
8031 && type_ptr->internal_elf_sym.st_shndx != 0)
8032 {
8033 /* This symbol is in a real ELF section which we did
8034 not create as a BFD section. Undo the mapping done
8035 by copy_private_symbol_data. */
8036 shndx = type_ptr->internal_elf_sym.st_shndx;
8037 switch (shndx)
8038 {
8039 case MAP_ONESYMTAB:
8040 shndx = elf_onesymtab (abfd);
8041 break;
8042 case MAP_DYNSYMTAB:
8043 shndx = elf_dynsymtab (abfd);
8044 break;
8045 case MAP_STRTAB:
8046 shndx = elf_strtab_sec (abfd);
8047 break;
8048 case MAP_SHSTRTAB:
8049 shndx = elf_shstrtab_sec (abfd);
8050 break;
8051 case MAP_SYM_SHNDX:
8052 if (elf_symtab_shndx_list (abfd))
8053 shndx = elf_symtab_shndx_list (abfd)->ndx;
8054 break;
8055 default:
8056 shndx = SHN_ABS;
8057 break;
8058 }
8059 }
8060 else
8061 {
8062 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8063
8064 if (shndx == SHN_BAD)
8065 {
8066 asection *sec2;
8067
8068 /* Writing this would be a hell of a lot easier if
8069 we had some decent documentation on bfd, and
8070 knew what to expect of the library, and what to
8071 demand of applications. For example, it
8072 appears that `objcopy' might not set the
8073 section of a symbol to be a section that is
8074 actually in the output file. */
8075 sec2 = bfd_get_section_by_name (abfd, sec->name);
8076 if (sec2 != NULL)
8077 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8078 if (shndx == SHN_BAD)
8079 {
8080 /* xgettext:c-format */
8081 _bfd_error_handler
8082 (_("unable to find equivalent output section"
8083 " for symbol '%s' from section '%s'"),
8084 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8085 sec->name);
8086 bfd_set_error (bfd_error_invalid_operation);
8087 goto error_return;
8088 }
8089 }
8090 }
8091
8092 sym.st_shndx = shndx;
8093 }
8094
8095 if ((flags & BSF_THREAD_LOCAL) != 0)
8096 type = STT_TLS;
8097 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8098 type = STT_GNU_IFUNC;
8099 else if ((flags & BSF_FUNCTION) != 0)
8100 type = STT_FUNC;
8101 else if ((flags & BSF_OBJECT) != 0)
8102 type = STT_OBJECT;
8103 else if ((flags & BSF_RELC) != 0)
8104 type = STT_RELC;
8105 else if ((flags & BSF_SRELC) != 0)
8106 type = STT_SRELC;
8107 else
8108 type = STT_NOTYPE;
8109
8110 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8111 type = STT_TLS;
8112
8113 /* Processor-specific types. */
8114 if (type_ptr != NULL
8115 && bed->elf_backend_get_symbol_type)
8116 type = ((*bed->elf_backend_get_symbol_type)
8117 (&type_ptr->internal_elf_sym, type));
8118
8119 if (flags & BSF_SECTION_SYM)
8120 {
8121 if (flags & BSF_GLOBAL)
8122 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8123 else
8124 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8125 }
8126 else if (bfd_is_com_section (syms[idx]->section))
8127 {
8128 if (type != STT_TLS)
8129 {
8130 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8131 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8132 ? STT_COMMON : STT_OBJECT);
8133 else
8134 type = ((flags & BSF_ELF_COMMON) != 0
8135 ? STT_COMMON : STT_OBJECT);
8136 }
8137 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8138 }
8139 else if (bfd_is_und_section (syms[idx]->section))
8140 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8141 ? STB_WEAK
8142 : STB_GLOBAL),
8143 type);
8144 else if (flags & BSF_FILE)
8145 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8146 else
8147 {
8148 int bind = STB_LOCAL;
8149
8150 if (flags & BSF_LOCAL)
8151 bind = STB_LOCAL;
8152 else if (flags & BSF_GNU_UNIQUE)
8153 bind = STB_GNU_UNIQUE;
8154 else if (flags & BSF_WEAK)
8155 bind = STB_WEAK;
8156 else if (flags & BSF_GLOBAL)
8157 bind = STB_GLOBAL;
8158
8159 sym.st_info = ELF_ST_INFO (bind, type);
8160 }
8161
8162 if (type_ptr != NULL)
8163 {
8164 sym.st_other = type_ptr->internal_elf_sym.st_other;
8165 sym.st_target_internal
8166 = type_ptr->internal_elf_sym.st_target_internal;
8167 }
8168 else
8169 {
8170 sym.st_other = 0;
8171 sym.st_target_internal = 0;
8172 }
8173
8174 idx++;
8175 symstrtab[idx].sym = sym;
8176 symstrtab[idx].dest_index = outbound_syms_index;
8177 symstrtab[idx].destshndx_index = outbound_shndx_index;
8178
8179 outbound_syms_index++;
8180 if (outbound_shndx != NULL)
8181 outbound_shndx_index++;
8182 }
8183
8184 /* Finalize the .strtab section. */
8185 _bfd_elf_strtab_finalize (stt);
8186
8187 /* Swap out the .strtab section. */
8188 for (idx = 0; idx <= symcount; idx++)
8189 {
8190 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8191 if (elfsym->sym.st_name == (unsigned long) -1)
8192 elfsym->sym.st_name = 0;
8193 else
8194 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8195 elfsym->sym.st_name);
8196 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8197 (outbound_syms
8198 + (elfsym->dest_index
8199 * bed->s->sizeof_sym)),
8200 (outbound_shndx
8201 + (elfsym->destshndx_index
8202 * sizeof (Elf_External_Sym_Shndx))));
8203 }
8204 free (symstrtab);
8205
8206 *sttp = stt;
8207 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8208 symstrtab_hdr->sh_type = SHT_STRTAB;
8209 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8210 symstrtab_hdr->sh_addr = 0;
8211 symstrtab_hdr->sh_entsize = 0;
8212 symstrtab_hdr->sh_link = 0;
8213 symstrtab_hdr->sh_info = 0;
8214 symstrtab_hdr->sh_addralign = 1;
8215
8216 return TRUE;
8217 }
8218
8219 /* Return the number of bytes required to hold the symtab vector.
8220
8221 Note that we base it on the count plus 1, since we will null terminate
8222 the vector allocated based on this size. However, the ELF symbol table
8223 always has a dummy entry as symbol #0, so it ends up even. */
8224
8225 long
8226 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8227 {
8228 bfd_size_type symcount;
8229 long symtab_size;
8230 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8231
8232 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8233 if (symcount >= LONG_MAX / sizeof (asymbol *))
8234 {
8235 bfd_set_error (bfd_error_file_too_big);
8236 return -1;
8237 }
8238 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8239 if (symcount > 0)
8240 symtab_size -= sizeof (asymbol *);
8241
8242 return symtab_size;
8243 }
8244
8245 long
8246 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8247 {
8248 bfd_size_type symcount;
8249 long symtab_size;
8250 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8251
8252 if (elf_dynsymtab (abfd) == 0)
8253 {
8254 bfd_set_error (bfd_error_invalid_operation);
8255 return -1;
8256 }
8257
8258 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8259 if (symcount >= LONG_MAX / sizeof (asymbol *))
8260 {
8261 bfd_set_error (bfd_error_file_too_big);
8262 return -1;
8263 }
8264 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8265 if (symcount > 0)
8266 symtab_size -= sizeof (asymbol *);
8267
8268 return symtab_size;
8269 }
8270
8271 long
8272 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8273 sec_ptr asect)
8274 {
8275 #if SIZEOF_LONG == SIZEOF_INT
8276 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8277 {
8278 bfd_set_error (bfd_error_file_too_big);
8279 return -1;
8280 }
8281 #endif
8282 return (asect->reloc_count + 1) * sizeof (arelent *);
8283 }
8284
8285 /* Canonicalize the relocs. */
8286
8287 long
8288 _bfd_elf_canonicalize_reloc (bfd *abfd,
8289 sec_ptr section,
8290 arelent **relptr,
8291 asymbol **symbols)
8292 {
8293 arelent *tblptr;
8294 unsigned int i;
8295 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8296
8297 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8298 return -1;
8299
8300 tblptr = section->relocation;
8301 for (i = 0; i < section->reloc_count; i++)
8302 *relptr++ = tblptr++;
8303
8304 *relptr = NULL;
8305
8306 return section->reloc_count;
8307 }
8308
8309 long
8310 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8311 {
8312 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8313 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8314
8315 if (symcount >= 0)
8316 bfd_get_symcount (abfd) = symcount;
8317 return symcount;
8318 }
8319
8320 long
8321 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8322 asymbol **allocation)
8323 {
8324 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8325 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8326
8327 if (symcount >= 0)
8328 bfd_get_dynamic_symcount (abfd) = symcount;
8329 return symcount;
8330 }
8331
8332 /* Return the size required for the dynamic reloc entries. Any loadable
8333 section that was actually installed in the BFD, and has type SHT_REL
8334 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8335 dynamic reloc section. */
8336
8337 long
8338 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8339 {
8340 bfd_size_type count;
8341 asection *s;
8342
8343 if (elf_dynsymtab (abfd) == 0)
8344 {
8345 bfd_set_error (bfd_error_invalid_operation);
8346 return -1;
8347 }
8348
8349 count = 1;
8350 for (s = abfd->sections; s != NULL; s = s->next)
8351 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8352 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8353 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8354 {
8355 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8356 if (count > LONG_MAX / sizeof (arelent *))
8357 {
8358 bfd_set_error (bfd_error_file_too_big);
8359 return -1;
8360 }
8361 }
8362 return count * sizeof (arelent *);
8363 }
8364
8365 /* Canonicalize the dynamic relocation entries. Note that we return the
8366 dynamic relocations as a single block, although they are actually
8367 associated with particular sections; the interface, which was
8368 designed for SunOS style shared libraries, expects that there is only
8369 one set of dynamic relocs. Any loadable section that was actually
8370 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8371 dynamic symbol table, is considered to be a dynamic reloc section. */
8372
8373 long
8374 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8375 arelent **storage,
8376 asymbol **syms)
8377 {
8378 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8379 asection *s;
8380 long ret;
8381
8382 if (elf_dynsymtab (abfd) == 0)
8383 {
8384 bfd_set_error (bfd_error_invalid_operation);
8385 return -1;
8386 }
8387
8388 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8389 ret = 0;
8390 for (s = abfd->sections; s != NULL; s = s->next)
8391 {
8392 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8393 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8394 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8395 {
8396 arelent *p;
8397 long count, i;
8398
8399 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8400 return -1;
8401 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8402 p = s->relocation;
8403 for (i = 0; i < count; i++)
8404 *storage++ = p++;
8405 ret += count;
8406 }
8407 }
8408
8409 *storage = NULL;
8410
8411 return ret;
8412 }
8413 \f
8414 /* Read in the version information. */
8415
8416 bfd_boolean
8417 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8418 {
8419 bfd_byte *contents = NULL;
8420 unsigned int freeidx = 0;
8421
8422 if (elf_dynverref (abfd) != 0)
8423 {
8424 Elf_Internal_Shdr *hdr;
8425 Elf_External_Verneed *everneed;
8426 Elf_Internal_Verneed *iverneed;
8427 unsigned int i;
8428 bfd_byte *contents_end;
8429
8430 hdr = &elf_tdata (abfd)->dynverref_hdr;
8431
8432 if (hdr->sh_info == 0
8433 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8434 {
8435 error_return_bad_verref:
8436 _bfd_error_handler
8437 (_("%pB: .gnu.version_r invalid entry"), abfd);
8438 bfd_set_error (bfd_error_bad_value);
8439 error_return_verref:
8440 elf_tdata (abfd)->verref = NULL;
8441 elf_tdata (abfd)->cverrefs = 0;
8442 goto error_return;
8443 }
8444
8445 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8446 if (contents == NULL)
8447 goto error_return_verref;
8448
8449 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8450 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8451 goto error_return_verref;
8452
8453 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8454 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8455
8456 if (elf_tdata (abfd)->verref == NULL)
8457 goto error_return_verref;
8458
8459 BFD_ASSERT (sizeof (Elf_External_Verneed)
8460 == sizeof (Elf_External_Vernaux));
8461 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8462 everneed = (Elf_External_Verneed *) contents;
8463 iverneed = elf_tdata (abfd)->verref;
8464 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8465 {
8466 Elf_External_Vernaux *evernaux;
8467 Elf_Internal_Vernaux *ivernaux;
8468 unsigned int j;
8469
8470 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8471
8472 iverneed->vn_bfd = abfd;
8473
8474 iverneed->vn_filename =
8475 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8476 iverneed->vn_file);
8477 if (iverneed->vn_filename == NULL)
8478 goto error_return_bad_verref;
8479
8480 if (iverneed->vn_cnt == 0)
8481 iverneed->vn_auxptr = NULL;
8482 else
8483 {
8484 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8485 bfd_alloc2 (abfd, iverneed->vn_cnt,
8486 sizeof (Elf_Internal_Vernaux));
8487 if (iverneed->vn_auxptr == NULL)
8488 goto error_return_verref;
8489 }
8490
8491 if (iverneed->vn_aux
8492 > (size_t) (contents_end - (bfd_byte *) everneed))
8493 goto error_return_bad_verref;
8494
8495 evernaux = ((Elf_External_Vernaux *)
8496 ((bfd_byte *) everneed + iverneed->vn_aux));
8497 ivernaux = iverneed->vn_auxptr;
8498 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8499 {
8500 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8501
8502 ivernaux->vna_nodename =
8503 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8504 ivernaux->vna_name);
8505 if (ivernaux->vna_nodename == NULL)
8506 goto error_return_bad_verref;
8507
8508 if (ivernaux->vna_other > freeidx)
8509 freeidx = ivernaux->vna_other;
8510
8511 ivernaux->vna_nextptr = NULL;
8512 if (ivernaux->vna_next == 0)
8513 {
8514 iverneed->vn_cnt = j + 1;
8515 break;
8516 }
8517 if (j + 1 < iverneed->vn_cnt)
8518 ivernaux->vna_nextptr = ivernaux + 1;
8519
8520 if (ivernaux->vna_next
8521 > (size_t) (contents_end - (bfd_byte *) evernaux))
8522 goto error_return_bad_verref;
8523
8524 evernaux = ((Elf_External_Vernaux *)
8525 ((bfd_byte *) evernaux + ivernaux->vna_next));
8526 }
8527
8528 iverneed->vn_nextref = NULL;
8529 if (iverneed->vn_next == 0)
8530 break;
8531 if (i + 1 < hdr->sh_info)
8532 iverneed->vn_nextref = iverneed + 1;
8533
8534 if (iverneed->vn_next
8535 > (size_t) (contents_end - (bfd_byte *) everneed))
8536 goto error_return_bad_verref;
8537
8538 everneed = ((Elf_External_Verneed *)
8539 ((bfd_byte *) everneed + iverneed->vn_next));
8540 }
8541 elf_tdata (abfd)->cverrefs = i;
8542
8543 free (contents);
8544 contents = NULL;
8545 }
8546
8547 if (elf_dynverdef (abfd) != 0)
8548 {
8549 Elf_Internal_Shdr *hdr;
8550 Elf_External_Verdef *everdef;
8551 Elf_Internal_Verdef *iverdef;
8552 Elf_Internal_Verdef *iverdefarr;
8553 Elf_Internal_Verdef iverdefmem;
8554 unsigned int i;
8555 unsigned int maxidx;
8556 bfd_byte *contents_end_def, *contents_end_aux;
8557
8558 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8559
8560 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8561 {
8562 error_return_bad_verdef:
8563 _bfd_error_handler
8564 (_("%pB: .gnu.version_d invalid entry"), abfd);
8565 bfd_set_error (bfd_error_bad_value);
8566 error_return_verdef:
8567 elf_tdata (abfd)->verdef = NULL;
8568 elf_tdata (abfd)->cverdefs = 0;
8569 goto error_return;
8570 }
8571
8572 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8573 if (contents == NULL)
8574 goto error_return_verdef;
8575 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8576 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8577 goto error_return_verdef;
8578
8579 BFD_ASSERT (sizeof (Elf_External_Verdef)
8580 >= sizeof (Elf_External_Verdaux));
8581 contents_end_def = contents + hdr->sh_size
8582 - sizeof (Elf_External_Verdef);
8583 contents_end_aux = contents + hdr->sh_size
8584 - sizeof (Elf_External_Verdaux);
8585
8586 /* We know the number of entries in the section but not the maximum
8587 index. Therefore we have to run through all entries and find
8588 the maximum. */
8589 everdef = (Elf_External_Verdef *) contents;
8590 maxidx = 0;
8591 for (i = 0; i < hdr->sh_info; ++i)
8592 {
8593 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8594
8595 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8596 goto error_return_bad_verdef;
8597 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8598 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8599
8600 if (iverdefmem.vd_next == 0)
8601 break;
8602
8603 if (iverdefmem.vd_next
8604 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8605 goto error_return_bad_verdef;
8606
8607 everdef = ((Elf_External_Verdef *)
8608 ((bfd_byte *) everdef + iverdefmem.vd_next));
8609 }
8610
8611 if (default_imported_symver)
8612 {
8613 if (freeidx > maxidx)
8614 maxidx = ++freeidx;
8615 else
8616 freeidx = ++maxidx;
8617 }
8618
8619 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8620 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8621 if (elf_tdata (abfd)->verdef == NULL)
8622 goto error_return_verdef;
8623
8624 elf_tdata (abfd)->cverdefs = maxidx;
8625
8626 everdef = (Elf_External_Verdef *) contents;
8627 iverdefarr = elf_tdata (abfd)->verdef;
8628 for (i = 0; i < hdr->sh_info; i++)
8629 {
8630 Elf_External_Verdaux *everdaux;
8631 Elf_Internal_Verdaux *iverdaux;
8632 unsigned int j;
8633
8634 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8635
8636 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8637 goto error_return_bad_verdef;
8638
8639 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8640 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8641
8642 iverdef->vd_bfd = abfd;
8643
8644 if (iverdef->vd_cnt == 0)
8645 iverdef->vd_auxptr = NULL;
8646 else
8647 {
8648 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8649 bfd_alloc2 (abfd, iverdef->vd_cnt,
8650 sizeof (Elf_Internal_Verdaux));
8651 if (iverdef->vd_auxptr == NULL)
8652 goto error_return_verdef;
8653 }
8654
8655 if (iverdef->vd_aux
8656 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8657 goto error_return_bad_verdef;
8658
8659 everdaux = ((Elf_External_Verdaux *)
8660 ((bfd_byte *) everdef + iverdef->vd_aux));
8661 iverdaux = iverdef->vd_auxptr;
8662 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8663 {
8664 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8665
8666 iverdaux->vda_nodename =
8667 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8668 iverdaux->vda_name);
8669 if (iverdaux->vda_nodename == NULL)
8670 goto error_return_bad_verdef;
8671
8672 iverdaux->vda_nextptr = NULL;
8673 if (iverdaux->vda_next == 0)
8674 {
8675 iverdef->vd_cnt = j + 1;
8676 break;
8677 }
8678 if (j + 1 < iverdef->vd_cnt)
8679 iverdaux->vda_nextptr = iverdaux + 1;
8680
8681 if (iverdaux->vda_next
8682 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8683 goto error_return_bad_verdef;
8684
8685 everdaux = ((Elf_External_Verdaux *)
8686 ((bfd_byte *) everdaux + iverdaux->vda_next));
8687 }
8688
8689 iverdef->vd_nodename = NULL;
8690 if (iverdef->vd_cnt)
8691 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8692
8693 iverdef->vd_nextdef = NULL;
8694 if (iverdef->vd_next == 0)
8695 break;
8696 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8697 iverdef->vd_nextdef = iverdef + 1;
8698
8699 everdef = ((Elf_External_Verdef *)
8700 ((bfd_byte *) everdef + iverdef->vd_next));
8701 }
8702
8703 free (contents);
8704 contents = NULL;
8705 }
8706 else if (default_imported_symver)
8707 {
8708 if (freeidx < 3)
8709 freeidx = 3;
8710 else
8711 freeidx++;
8712
8713 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8714 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8715 if (elf_tdata (abfd)->verdef == NULL)
8716 goto error_return;
8717
8718 elf_tdata (abfd)->cverdefs = freeidx;
8719 }
8720
8721 /* Create a default version based on the soname. */
8722 if (default_imported_symver)
8723 {
8724 Elf_Internal_Verdef *iverdef;
8725 Elf_Internal_Verdaux *iverdaux;
8726
8727 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8728
8729 iverdef->vd_version = VER_DEF_CURRENT;
8730 iverdef->vd_flags = 0;
8731 iverdef->vd_ndx = freeidx;
8732 iverdef->vd_cnt = 1;
8733
8734 iverdef->vd_bfd = abfd;
8735
8736 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8737 if (iverdef->vd_nodename == NULL)
8738 goto error_return_verdef;
8739 iverdef->vd_nextdef = NULL;
8740 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8741 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8742 if (iverdef->vd_auxptr == NULL)
8743 goto error_return_verdef;
8744
8745 iverdaux = iverdef->vd_auxptr;
8746 iverdaux->vda_nodename = iverdef->vd_nodename;
8747 }
8748
8749 return TRUE;
8750
8751 error_return:
8752 if (contents != NULL)
8753 free (contents);
8754 return FALSE;
8755 }
8756 \f
8757 asymbol *
8758 _bfd_elf_make_empty_symbol (bfd *abfd)
8759 {
8760 elf_symbol_type *newsym;
8761
8762 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8763 if (!newsym)
8764 return NULL;
8765 newsym->symbol.the_bfd = abfd;
8766 return &newsym->symbol;
8767 }
8768
8769 void
8770 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8771 asymbol *symbol,
8772 symbol_info *ret)
8773 {
8774 bfd_symbol_info (symbol, ret);
8775 }
8776
8777 /* Return whether a symbol name implies a local symbol. Most targets
8778 use this function for the is_local_label_name entry point, but some
8779 override it. */
8780
8781 bfd_boolean
8782 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8783 const char *name)
8784 {
8785 /* Normal local symbols start with ``.L''. */
8786 if (name[0] == '.' && name[1] == 'L')
8787 return TRUE;
8788
8789 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8790 DWARF debugging symbols starting with ``..''. */
8791 if (name[0] == '.' && name[1] == '.')
8792 return TRUE;
8793
8794 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8795 emitting DWARF debugging output. I suspect this is actually a
8796 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8797 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8798 underscore to be emitted on some ELF targets). For ease of use,
8799 we treat such symbols as local. */
8800 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8801 return TRUE;
8802
8803 /* Treat assembler generated fake symbols, dollar local labels and
8804 forward-backward labels (aka local labels) as locals.
8805 These labels have the form:
8806
8807 L0^A.* (fake symbols)
8808
8809 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8810
8811 Versions which start with .L will have already been matched above,
8812 so we only need to match the rest. */
8813 if (name[0] == 'L' && ISDIGIT (name[1]))
8814 {
8815 bfd_boolean ret = FALSE;
8816 const char * p;
8817 char c;
8818
8819 for (p = name + 2; (c = *p); p++)
8820 {
8821 if (c == 1 || c == 2)
8822 {
8823 if (c == 1 && p == name + 2)
8824 /* A fake symbol. */
8825 return TRUE;
8826
8827 /* FIXME: We are being paranoid here and treating symbols like
8828 L0^Bfoo as if there were non-local, on the grounds that the
8829 assembler will never generate them. But can any symbol
8830 containing an ASCII value in the range 1-31 ever be anything
8831 other than some kind of local ? */
8832 ret = TRUE;
8833 }
8834
8835 if (! ISDIGIT (c))
8836 {
8837 ret = FALSE;
8838 break;
8839 }
8840 }
8841 return ret;
8842 }
8843
8844 return FALSE;
8845 }
8846
8847 alent *
8848 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8849 asymbol *symbol ATTRIBUTE_UNUSED)
8850 {
8851 abort ();
8852 return NULL;
8853 }
8854
8855 bfd_boolean
8856 _bfd_elf_set_arch_mach (bfd *abfd,
8857 enum bfd_architecture arch,
8858 unsigned long machine)
8859 {
8860 /* If this isn't the right architecture for this backend, and this
8861 isn't the generic backend, fail. */
8862 if (arch != get_elf_backend_data (abfd)->arch
8863 && arch != bfd_arch_unknown
8864 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8865 return FALSE;
8866
8867 return bfd_default_set_arch_mach (abfd, arch, machine);
8868 }
8869
8870 /* Find the nearest line to a particular section and offset,
8871 for error reporting. */
8872
8873 bfd_boolean
8874 _bfd_elf_find_nearest_line (bfd *abfd,
8875 asymbol **symbols,
8876 asection *section,
8877 bfd_vma offset,
8878 const char **filename_ptr,
8879 const char **functionname_ptr,
8880 unsigned int *line_ptr,
8881 unsigned int *discriminator_ptr)
8882 {
8883 bfd_boolean found;
8884
8885 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8886 filename_ptr, functionname_ptr,
8887 line_ptr, discriminator_ptr,
8888 dwarf_debug_sections, 0,
8889 &elf_tdata (abfd)->dwarf2_find_line_info)
8890 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8891 filename_ptr, functionname_ptr,
8892 line_ptr))
8893 {
8894 if (!*functionname_ptr)
8895 _bfd_elf_find_function (abfd, symbols, section, offset,
8896 *filename_ptr ? NULL : filename_ptr,
8897 functionname_ptr);
8898 return TRUE;
8899 }
8900
8901 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8902 &found, filename_ptr,
8903 functionname_ptr, line_ptr,
8904 &elf_tdata (abfd)->line_info))
8905 return FALSE;
8906 if (found && (*functionname_ptr || *line_ptr))
8907 return TRUE;
8908
8909 if (symbols == NULL)
8910 return FALSE;
8911
8912 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8913 filename_ptr, functionname_ptr))
8914 return FALSE;
8915
8916 *line_ptr = 0;
8917 return TRUE;
8918 }
8919
8920 /* Find the line for a symbol. */
8921
8922 bfd_boolean
8923 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8924 const char **filename_ptr, unsigned int *line_ptr)
8925 {
8926 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8927 filename_ptr, NULL, line_ptr, NULL,
8928 dwarf_debug_sections, 0,
8929 &elf_tdata (abfd)->dwarf2_find_line_info);
8930 }
8931
8932 /* After a call to bfd_find_nearest_line, successive calls to
8933 bfd_find_inliner_info can be used to get source information about
8934 each level of function inlining that terminated at the address
8935 passed to bfd_find_nearest_line. Currently this is only supported
8936 for DWARF2 with appropriate DWARF3 extensions. */
8937
8938 bfd_boolean
8939 _bfd_elf_find_inliner_info (bfd *abfd,
8940 const char **filename_ptr,
8941 const char **functionname_ptr,
8942 unsigned int *line_ptr)
8943 {
8944 bfd_boolean found;
8945 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8946 functionname_ptr, line_ptr,
8947 & elf_tdata (abfd)->dwarf2_find_line_info);
8948 return found;
8949 }
8950
8951 int
8952 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8953 {
8954 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8955 int ret = bed->s->sizeof_ehdr;
8956
8957 if (!bfd_link_relocatable (info))
8958 {
8959 bfd_size_type phdr_size = elf_program_header_size (abfd);
8960
8961 if (phdr_size == (bfd_size_type) -1)
8962 {
8963 struct elf_segment_map *m;
8964
8965 phdr_size = 0;
8966 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8967 phdr_size += bed->s->sizeof_phdr;
8968
8969 if (phdr_size == 0)
8970 phdr_size = get_program_header_size (abfd, info);
8971 }
8972
8973 elf_program_header_size (abfd) = phdr_size;
8974 ret += phdr_size;
8975 }
8976
8977 return ret;
8978 }
8979
8980 bfd_boolean
8981 _bfd_elf_set_section_contents (bfd *abfd,
8982 sec_ptr section,
8983 const void *location,
8984 file_ptr offset,
8985 bfd_size_type count)
8986 {
8987 Elf_Internal_Shdr *hdr;
8988 file_ptr pos;
8989
8990 if (! abfd->output_has_begun
8991 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8992 return FALSE;
8993
8994 if (!count)
8995 return TRUE;
8996
8997 hdr = &elf_section_data (section)->this_hdr;
8998 if (hdr->sh_offset == (file_ptr) -1)
8999 {
9000 /* We must compress this section. Write output to the buffer. */
9001 unsigned char *contents = hdr->contents;
9002 if ((offset + count) > hdr->sh_size
9003 || (section->flags & SEC_ELF_COMPRESS) == 0
9004 || contents == NULL)
9005 abort ();
9006 memcpy (contents + offset, location, count);
9007 return TRUE;
9008 }
9009 pos = hdr->sh_offset + offset;
9010 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9011 || bfd_bwrite (location, count, abfd) != count)
9012 return FALSE;
9013
9014 return TRUE;
9015 }
9016
9017 bfd_boolean
9018 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9019 arelent *cache_ptr ATTRIBUTE_UNUSED,
9020 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9021 {
9022 abort ();
9023 return FALSE;
9024 }
9025
9026 /* Try to convert a non-ELF reloc into an ELF one. */
9027
9028 bfd_boolean
9029 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9030 {
9031 /* Check whether we really have an ELF howto. */
9032
9033 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9034 {
9035 bfd_reloc_code_real_type code;
9036 reloc_howto_type *howto;
9037
9038 /* Alien reloc: Try to determine its type to replace it with an
9039 equivalent ELF reloc. */
9040
9041 if (areloc->howto->pc_relative)
9042 {
9043 switch (areloc->howto->bitsize)
9044 {
9045 case 8:
9046 code = BFD_RELOC_8_PCREL;
9047 break;
9048 case 12:
9049 code = BFD_RELOC_12_PCREL;
9050 break;
9051 case 16:
9052 code = BFD_RELOC_16_PCREL;
9053 break;
9054 case 24:
9055 code = BFD_RELOC_24_PCREL;
9056 break;
9057 case 32:
9058 code = BFD_RELOC_32_PCREL;
9059 break;
9060 case 64:
9061 code = BFD_RELOC_64_PCREL;
9062 break;
9063 default:
9064 goto fail;
9065 }
9066
9067 howto = bfd_reloc_type_lookup (abfd, code);
9068
9069 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9070 {
9071 if (howto->pcrel_offset)
9072 areloc->addend += areloc->address;
9073 else
9074 areloc->addend -= areloc->address; /* addend is unsigned!! */
9075 }
9076 }
9077 else
9078 {
9079 switch (areloc->howto->bitsize)
9080 {
9081 case 8:
9082 code = BFD_RELOC_8;
9083 break;
9084 case 14:
9085 code = BFD_RELOC_14;
9086 break;
9087 case 16:
9088 code = BFD_RELOC_16;
9089 break;
9090 case 26:
9091 code = BFD_RELOC_26;
9092 break;
9093 case 32:
9094 code = BFD_RELOC_32;
9095 break;
9096 case 64:
9097 code = BFD_RELOC_64;
9098 break;
9099 default:
9100 goto fail;
9101 }
9102
9103 howto = bfd_reloc_type_lookup (abfd, code);
9104 }
9105
9106 if (howto)
9107 areloc->howto = howto;
9108 else
9109 goto fail;
9110 }
9111
9112 return TRUE;
9113
9114 fail:
9115 /* xgettext:c-format */
9116 _bfd_error_handler (_("%pB: %s unsupported"),
9117 abfd, areloc->howto->name);
9118 bfd_set_error (bfd_error_bad_value);
9119 return FALSE;
9120 }
9121
9122 bfd_boolean
9123 _bfd_elf_close_and_cleanup (bfd *abfd)
9124 {
9125 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9126 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9127 {
9128 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9129 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9130 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9131 }
9132
9133 return _bfd_generic_close_and_cleanup (abfd);
9134 }
9135
9136 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9137 in the relocation's offset. Thus we cannot allow any sort of sanity
9138 range-checking to interfere. There is nothing else to do in processing
9139 this reloc. */
9140
9141 bfd_reloc_status_type
9142 _bfd_elf_rel_vtable_reloc_fn
9143 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9144 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9145 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9146 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9147 {
9148 return bfd_reloc_ok;
9149 }
9150 \f
9151 /* Elf core file support. Much of this only works on native
9152 toolchains, since we rely on knowing the
9153 machine-dependent procfs structure in order to pick
9154 out details about the corefile. */
9155
9156 #ifdef HAVE_SYS_PROCFS_H
9157 /* Needed for new procfs interface on sparc-solaris. */
9158 # define _STRUCTURED_PROC 1
9159 # include <sys/procfs.h>
9160 #endif
9161
9162 /* Return a PID that identifies a "thread" for threaded cores, or the
9163 PID of the main process for non-threaded cores. */
9164
9165 static int
9166 elfcore_make_pid (bfd *abfd)
9167 {
9168 int pid;
9169
9170 pid = elf_tdata (abfd)->core->lwpid;
9171 if (pid == 0)
9172 pid = elf_tdata (abfd)->core->pid;
9173
9174 return pid;
9175 }
9176
9177 /* If there isn't a section called NAME, make one, using
9178 data from SECT. Note, this function will generate a
9179 reference to NAME, so you shouldn't deallocate or
9180 overwrite it. */
9181
9182 static bfd_boolean
9183 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9184 {
9185 asection *sect2;
9186
9187 if (bfd_get_section_by_name (abfd, name) != NULL)
9188 return TRUE;
9189
9190 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9191 if (sect2 == NULL)
9192 return FALSE;
9193
9194 sect2->size = sect->size;
9195 sect2->filepos = sect->filepos;
9196 sect2->alignment_power = sect->alignment_power;
9197 return TRUE;
9198 }
9199
9200 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9201 actually creates up to two pseudosections:
9202 - For the single-threaded case, a section named NAME, unless
9203 such a section already exists.
9204 - For the multi-threaded case, a section named "NAME/PID", where
9205 PID is elfcore_make_pid (abfd).
9206 Both pseudosections have identical contents. */
9207 bfd_boolean
9208 _bfd_elfcore_make_pseudosection (bfd *abfd,
9209 char *name,
9210 size_t size,
9211 ufile_ptr filepos)
9212 {
9213 char buf[100];
9214 char *threaded_name;
9215 size_t len;
9216 asection *sect;
9217
9218 /* Build the section name. */
9219
9220 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9221 len = strlen (buf) + 1;
9222 threaded_name = (char *) bfd_alloc (abfd, len);
9223 if (threaded_name == NULL)
9224 return FALSE;
9225 memcpy (threaded_name, buf, len);
9226
9227 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9228 SEC_HAS_CONTENTS);
9229 if (sect == NULL)
9230 return FALSE;
9231 sect->size = size;
9232 sect->filepos = filepos;
9233 sect->alignment_power = 2;
9234
9235 return elfcore_maybe_make_sect (abfd, name, sect);
9236 }
9237
9238 /* prstatus_t exists on:
9239 solaris 2.5+
9240 linux 2.[01] + glibc
9241 unixware 4.2
9242 */
9243
9244 #if defined (HAVE_PRSTATUS_T)
9245
9246 static bfd_boolean
9247 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9248 {
9249 size_t size;
9250 int offset;
9251
9252 if (note->descsz == sizeof (prstatus_t))
9253 {
9254 prstatus_t prstat;
9255
9256 size = sizeof (prstat.pr_reg);
9257 offset = offsetof (prstatus_t, pr_reg);
9258 memcpy (&prstat, note->descdata, sizeof (prstat));
9259
9260 /* Do not overwrite the core signal if it
9261 has already been set by another thread. */
9262 if (elf_tdata (abfd)->core->signal == 0)
9263 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9264 if (elf_tdata (abfd)->core->pid == 0)
9265 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9266
9267 /* pr_who exists on:
9268 solaris 2.5+
9269 unixware 4.2
9270 pr_who doesn't exist on:
9271 linux 2.[01]
9272 */
9273 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9274 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9275 #else
9276 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9277 #endif
9278 }
9279 #if defined (HAVE_PRSTATUS32_T)
9280 else if (note->descsz == sizeof (prstatus32_t))
9281 {
9282 /* 64-bit host, 32-bit corefile */
9283 prstatus32_t prstat;
9284
9285 size = sizeof (prstat.pr_reg);
9286 offset = offsetof (prstatus32_t, pr_reg);
9287 memcpy (&prstat, note->descdata, sizeof (prstat));
9288
9289 /* Do not overwrite the core signal if it
9290 has already been set by another thread. */
9291 if (elf_tdata (abfd)->core->signal == 0)
9292 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9293 if (elf_tdata (abfd)->core->pid == 0)
9294 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9295
9296 /* pr_who exists on:
9297 solaris 2.5+
9298 unixware 4.2
9299 pr_who doesn't exist on:
9300 linux 2.[01]
9301 */
9302 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9303 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9304 #else
9305 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9306 #endif
9307 }
9308 #endif /* HAVE_PRSTATUS32_T */
9309 else
9310 {
9311 /* Fail - we don't know how to handle any other
9312 note size (ie. data object type). */
9313 return TRUE;
9314 }
9315
9316 /* Make a ".reg/999" section and a ".reg" section. */
9317 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9318 size, note->descpos + offset);
9319 }
9320 #endif /* defined (HAVE_PRSTATUS_T) */
9321
9322 /* Create a pseudosection containing the exact contents of NOTE. */
9323 static bfd_boolean
9324 elfcore_make_note_pseudosection (bfd *abfd,
9325 char *name,
9326 Elf_Internal_Note *note)
9327 {
9328 return _bfd_elfcore_make_pseudosection (abfd, name,
9329 note->descsz, note->descpos);
9330 }
9331
9332 /* There isn't a consistent prfpregset_t across platforms,
9333 but it doesn't matter, because we don't have to pick this
9334 data structure apart. */
9335
9336 static bfd_boolean
9337 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9338 {
9339 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9340 }
9341
9342 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9343 type of NT_PRXFPREG. Just include the whole note's contents
9344 literally. */
9345
9346 static bfd_boolean
9347 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9348 {
9349 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9350 }
9351
9352 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9353 with a note type of NT_X86_XSTATE. Just include the whole note's
9354 contents literally. */
9355
9356 static bfd_boolean
9357 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9358 {
9359 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9360 }
9361
9362 static bfd_boolean
9363 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9364 {
9365 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9366 }
9367
9368 static bfd_boolean
9369 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9370 {
9371 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9372 }
9373
9374 static bfd_boolean
9375 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9376 {
9377 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9378 }
9379
9380 static bfd_boolean
9381 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9382 {
9383 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9384 }
9385
9386 static bfd_boolean
9387 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9388 {
9389 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9390 }
9391
9392 static bfd_boolean
9393 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9394 {
9395 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9396 }
9397
9398 static bfd_boolean
9399 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9400 {
9401 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9402 }
9403
9404 static bfd_boolean
9405 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9406 {
9407 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9408 }
9409
9410 static bfd_boolean
9411 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9412 {
9413 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9414 }
9415
9416 static bfd_boolean
9417 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9418 {
9419 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9420 }
9421
9422 static bfd_boolean
9423 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9424 {
9425 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9426 }
9427
9428 static bfd_boolean
9429 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9430 {
9431 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9432 }
9433
9434 static bfd_boolean
9435 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9436 {
9437 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9438 }
9439
9440 static bfd_boolean
9441 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9442 {
9443 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9444 }
9445
9446 static bfd_boolean
9447 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9448 {
9449 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9450 }
9451
9452 static bfd_boolean
9453 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9454 {
9455 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9456 }
9457
9458 static bfd_boolean
9459 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9460 {
9461 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9462 }
9463
9464 static bfd_boolean
9465 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9466 {
9467 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9468 }
9469
9470 static bfd_boolean
9471 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9472 {
9473 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9474 }
9475
9476 static bfd_boolean
9477 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9478 {
9479 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9480 }
9481
9482 static bfd_boolean
9483 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9484 {
9485 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9486 }
9487
9488 static bfd_boolean
9489 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9490 {
9491 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9492 }
9493
9494 static bfd_boolean
9495 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9496 {
9497 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9498 }
9499
9500 static bfd_boolean
9501 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9502 {
9503 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9504 }
9505
9506 static bfd_boolean
9507 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9508 {
9509 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9510 }
9511
9512 static bfd_boolean
9513 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9514 {
9515 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9516 }
9517
9518 static bfd_boolean
9519 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9520 {
9521 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9522 }
9523
9524 static bfd_boolean
9525 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9526 {
9527 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9528 }
9529
9530 static bfd_boolean
9531 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9532 {
9533 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9534 }
9535
9536 static bfd_boolean
9537 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9538 {
9539 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9540 }
9541
9542 static bfd_boolean
9543 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9544 {
9545 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9546 }
9547
9548 static bfd_boolean
9549 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9550 {
9551 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9552 }
9553
9554 static bfd_boolean
9555 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9556 {
9557 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9558 }
9559
9560 static bfd_boolean
9561 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9562 {
9563 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9564 }
9565
9566 #if defined (HAVE_PRPSINFO_T)
9567 typedef prpsinfo_t elfcore_psinfo_t;
9568 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9569 typedef prpsinfo32_t elfcore_psinfo32_t;
9570 #endif
9571 #endif
9572
9573 #if defined (HAVE_PSINFO_T)
9574 typedef psinfo_t elfcore_psinfo_t;
9575 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9576 typedef psinfo32_t elfcore_psinfo32_t;
9577 #endif
9578 #endif
9579
9580 /* return a malloc'ed copy of a string at START which is at
9581 most MAX bytes long, possibly without a terminating '\0'.
9582 the copy will always have a terminating '\0'. */
9583
9584 char *
9585 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9586 {
9587 char *dups;
9588 char *end = (char *) memchr (start, '\0', max);
9589 size_t len;
9590
9591 if (end == NULL)
9592 len = max;
9593 else
9594 len = end - start;
9595
9596 dups = (char *) bfd_alloc (abfd, len + 1);
9597 if (dups == NULL)
9598 return NULL;
9599
9600 memcpy (dups, start, len);
9601 dups[len] = '\0';
9602
9603 return dups;
9604 }
9605
9606 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9607 static bfd_boolean
9608 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9609 {
9610 if (note->descsz == sizeof (elfcore_psinfo_t))
9611 {
9612 elfcore_psinfo_t psinfo;
9613
9614 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9615
9616 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9617 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9618 #endif
9619 elf_tdata (abfd)->core->program
9620 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9621 sizeof (psinfo.pr_fname));
9622
9623 elf_tdata (abfd)->core->command
9624 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9625 sizeof (psinfo.pr_psargs));
9626 }
9627 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9628 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9629 {
9630 /* 64-bit host, 32-bit corefile */
9631 elfcore_psinfo32_t psinfo;
9632
9633 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9634
9635 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9636 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9637 #endif
9638 elf_tdata (abfd)->core->program
9639 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9640 sizeof (psinfo.pr_fname));
9641
9642 elf_tdata (abfd)->core->command
9643 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9644 sizeof (psinfo.pr_psargs));
9645 }
9646 #endif
9647
9648 else
9649 {
9650 /* Fail - we don't know how to handle any other
9651 note size (ie. data object type). */
9652 return TRUE;
9653 }
9654
9655 /* Note that for some reason, a spurious space is tacked
9656 onto the end of the args in some (at least one anyway)
9657 implementations, so strip it off if it exists. */
9658
9659 {
9660 char *command = elf_tdata (abfd)->core->command;
9661 int n = strlen (command);
9662
9663 if (0 < n && command[n - 1] == ' ')
9664 command[n - 1] = '\0';
9665 }
9666
9667 return TRUE;
9668 }
9669 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9670
9671 #if defined (HAVE_PSTATUS_T)
9672 static bfd_boolean
9673 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9674 {
9675 if (note->descsz == sizeof (pstatus_t)
9676 #if defined (HAVE_PXSTATUS_T)
9677 || note->descsz == sizeof (pxstatus_t)
9678 #endif
9679 )
9680 {
9681 pstatus_t pstat;
9682
9683 memcpy (&pstat, note->descdata, sizeof (pstat));
9684
9685 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9686 }
9687 #if defined (HAVE_PSTATUS32_T)
9688 else if (note->descsz == sizeof (pstatus32_t))
9689 {
9690 /* 64-bit host, 32-bit corefile */
9691 pstatus32_t pstat;
9692
9693 memcpy (&pstat, note->descdata, sizeof (pstat));
9694
9695 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9696 }
9697 #endif
9698 /* Could grab some more details from the "representative"
9699 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9700 NT_LWPSTATUS note, presumably. */
9701
9702 return TRUE;
9703 }
9704 #endif /* defined (HAVE_PSTATUS_T) */
9705
9706 #if defined (HAVE_LWPSTATUS_T)
9707 static bfd_boolean
9708 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9709 {
9710 lwpstatus_t lwpstat;
9711 char buf[100];
9712 char *name;
9713 size_t len;
9714 asection *sect;
9715
9716 if (note->descsz != sizeof (lwpstat)
9717 #if defined (HAVE_LWPXSTATUS_T)
9718 && note->descsz != sizeof (lwpxstatus_t)
9719 #endif
9720 )
9721 return TRUE;
9722
9723 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9724
9725 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9726 /* Do not overwrite the core signal if it has already been set by
9727 another thread. */
9728 if (elf_tdata (abfd)->core->signal == 0)
9729 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9730
9731 /* Make a ".reg/999" section. */
9732
9733 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9734 len = strlen (buf) + 1;
9735 name = bfd_alloc (abfd, len);
9736 if (name == NULL)
9737 return FALSE;
9738 memcpy (name, buf, len);
9739
9740 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9741 if (sect == NULL)
9742 return FALSE;
9743
9744 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9745 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9746 sect->filepos = note->descpos
9747 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9748 #endif
9749
9750 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9751 sect->size = sizeof (lwpstat.pr_reg);
9752 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9753 #endif
9754
9755 sect->alignment_power = 2;
9756
9757 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9758 return FALSE;
9759
9760 /* Make a ".reg2/999" section */
9761
9762 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9763 len = strlen (buf) + 1;
9764 name = bfd_alloc (abfd, len);
9765 if (name == NULL)
9766 return FALSE;
9767 memcpy (name, buf, len);
9768
9769 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9770 if (sect == NULL)
9771 return FALSE;
9772
9773 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9774 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9775 sect->filepos = note->descpos
9776 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9777 #endif
9778
9779 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9780 sect->size = sizeof (lwpstat.pr_fpreg);
9781 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9782 #endif
9783
9784 sect->alignment_power = 2;
9785
9786 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9787 }
9788 #endif /* defined (HAVE_LWPSTATUS_T) */
9789
9790 static bfd_boolean
9791 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9792 {
9793 char buf[30];
9794 char *name;
9795 size_t len;
9796 asection *sect;
9797 int type;
9798 int is_active_thread;
9799 bfd_vma base_addr;
9800
9801 if (note->descsz < 728)
9802 return TRUE;
9803
9804 if (! CONST_STRNEQ (note->namedata, "win32"))
9805 return TRUE;
9806
9807 type = bfd_get_32 (abfd, note->descdata);
9808
9809 switch (type)
9810 {
9811 case 1 /* NOTE_INFO_PROCESS */:
9812 /* FIXME: need to add ->core->command. */
9813 /* process_info.pid */
9814 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9815 /* process_info.signal */
9816 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9817 break;
9818
9819 case 2 /* NOTE_INFO_THREAD */:
9820 /* Make a ".reg/999" section. */
9821 /* thread_info.tid */
9822 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9823
9824 len = strlen (buf) + 1;
9825 name = (char *) bfd_alloc (abfd, len);
9826 if (name == NULL)
9827 return FALSE;
9828
9829 memcpy (name, buf, len);
9830
9831 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9832 if (sect == NULL)
9833 return FALSE;
9834
9835 /* sizeof (thread_info.thread_context) */
9836 sect->size = 716;
9837 /* offsetof (thread_info.thread_context) */
9838 sect->filepos = note->descpos + 12;
9839 sect->alignment_power = 2;
9840
9841 /* thread_info.is_active_thread */
9842 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9843
9844 if (is_active_thread)
9845 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9846 return FALSE;
9847 break;
9848
9849 case 3 /* NOTE_INFO_MODULE */:
9850 /* Make a ".module/xxxxxxxx" section. */
9851 /* module_info.base_address */
9852 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9853 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9854
9855 len = strlen (buf) + 1;
9856 name = (char *) bfd_alloc (abfd, len);
9857 if (name == NULL)
9858 return FALSE;
9859
9860 memcpy (name, buf, len);
9861
9862 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9863
9864 if (sect == NULL)
9865 return FALSE;
9866
9867 sect->size = note->descsz;
9868 sect->filepos = note->descpos;
9869 sect->alignment_power = 2;
9870 break;
9871
9872 default:
9873 return TRUE;
9874 }
9875
9876 return TRUE;
9877 }
9878
9879 static bfd_boolean
9880 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9881 {
9882 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9883
9884 switch (note->type)
9885 {
9886 default:
9887 return TRUE;
9888
9889 case NT_PRSTATUS:
9890 if (bed->elf_backend_grok_prstatus)
9891 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9892 return TRUE;
9893 #if defined (HAVE_PRSTATUS_T)
9894 return elfcore_grok_prstatus (abfd, note);
9895 #else
9896 return TRUE;
9897 #endif
9898
9899 #if defined (HAVE_PSTATUS_T)
9900 case NT_PSTATUS:
9901 return elfcore_grok_pstatus (abfd, note);
9902 #endif
9903
9904 #if defined (HAVE_LWPSTATUS_T)
9905 case NT_LWPSTATUS:
9906 return elfcore_grok_lwpstatus (abfd, note);
9907 #endif
9908
9909 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9910 return elfcore_grok_prfpreg (abfd, note);
9911
9912 case NT_WIN32PSTATUS:
9913 return elfcore_grok_win32pstatus (abfd, note);
9914
9915 case NT_PRXFPREG: /* Linux SSE extension */
9916 if (note->namesz == 6
9917 && strcmp (note->namedata, "LINUX") == 0)
9918 return elfcore_grok_prxfpreg (abfd, note);
9919 else
9920 return TRUE;
9921
9922 case NT_X86_XSTATE: /* Linux XSAVE extension */
9923 if (note->namesz == 6
9924 && strcmp (note->namedata, "LINUX") == 0)
9925 return elfcore_grok_xstatereg (abfd, note);
9926 else
9927 return TRUE;
9928
9929 case NT_PPC_VMX:
9930 if (note->namesz == 6
9931 && strcmp (note->namedata, "LINUX") == 0)
9932 return elfcore_grok_ppc_vmx (abfd, note);
9933 else
9934 return TRUE;
9935
9936 case NT_PPC_VSX:
9937 if (note->namesz == 6
9938 && strcmp (note->namedata, "LINUX") == 0)
9939 return elfcore_grok_ppc_vsx (abfd, note);
9940 else
9941 return TRUE;
9942
9943 case NT_PPC_TAR:
9944 if (note->namesz == 6
9945 && strcmp (note->namedata, "LINUX") == 0)
9946 return elfcore_grok_ppc_tar (abfd, note);
9947 else
9948 return TRUE;
9949
9950 case NT_PPC_PPR:
9951 if (note->namesz == 6
9952 && strcmp (note->namedata, "LINUX") == 0)
9953 return elfcore_grok_ppc_ppr (abfd, note);
9954 else
9955 return TRUE;
9956
9957 case NT_PPC_DSCR:
9958 if (note->namesz == 6
9959 && strcmp (note->namedata, "LINUX") == 0)
9960 return elfcore_grok_ppc_dscr (abfd, note);
9961 else
9962 return TRUE;
9963
9964 case NT_PPC_EBB:
9965 if (note->namesz == 6
9966 && strcmp (note->namedata, "LINUX") == 0)
9967 return elfcore_grok_ppc_ebb (abfd, note);
9968 else
9969 return TRUE;
9970
9971 case NT_PPC_PMU:
9972 if (note->namesz == 6
9973 && strcmp (note->namedata, "LINUX") == 0)
9974 return elfcore_grok_ppc_pmu (abfd, note);
9975 else
9976 return TRUE;
9977
9978 case NT_PPC_TM_CGPR:
9979 if (note->namesz == 6
9980 && strcmp (note->namedata, "LINUX") == 0)
9981 return elfcore_grok_ppc_tm_cgpr (abfd, note);
9982 else
9983 return TRUE;
9984
9985 case NT_PPC_TM_CFPR:
9986 if (note->namesz == 6
9987 && strcmp (note->namedata, "LINUX") == 0)
9988 return elfcore_grok_ppc_tm_cfpr (abfd, note);
9989 else
9990 return TRUE;
9991
9992 case NT_PPC_TM_CVMX:
9993 if (note->namesz == 6
9994 && strcmp (note->namedata, "LINUX") == 0)
9995 return elfcore_grok_ppc_tm_cvmx (abfd, note);
9996 else
9997 return TRUE;
9998
9999 case NT_PPC_TM_CVSX:
10000 if (note->namesz == 6
10001 && strcmp (note->namedata, "LINUX") == 0)
10002 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10003 else
10004 return TRUE;
10005
10006 case NT_PPC_TM_SPR:
10007 if (note->namesz == 6
10008 && strcmp (note->namedata, "LINUX") == 0)
10009 return elfcore_grok_ppc_tm_spr (abfd, note);
10010 else
10011 return TRUE;
10012
10013 case NT_PPC_TM_CTAR:
10014 if (note->namesz == 6
10015 && strcmp (note->namedata, "LINUX") == 0)
10016 return elfcore_grok_ppc_tm_ctar (abfd, note);
10017 else
10018 return TRUE;
10019
10020 case NT_PPC_TM_CPPR:
10021 if (note->namesz == 6
10022 && strcmp (note->namedata, "LINUX") == 0)
10023 return elfcore_grok_ppc_tm_cppr (abfd, note);
10024 else
10025 return TRUE;
10026
10027 case NT_PPC_TM_CDSCR:
10028 if (note->namesz == 6
10029 && strcmp (note->namedata, "LINUX") == 0)
10030 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10031 else
10032 return TRUE;
10033
10034 case NT_S390_HIGH_GPRS:
10035 if (note->namesz == 6
10036 && strcmp (note->namedata, "LINUX") == 0)
10037 return elfcore_grok_s390_high_gprs (abfd, note);
10038 else
10039 return TRUE;
10040
10041 case NT_S390_TIMER:
10042 if (note->namesz == 6
10043 && strcmp (note->namedata, "LINUX") == 0)
10044 return elfcore_grok_s390_timer (abfd, note);
10045 else
10046 return TRUE;
10047
10048 case NT_S390_TODCMP:
10049 if (note->namesz == 6
10050 && strcmp (note->namedata, "LINUX") == 0)
10051 return elfcore_grok_s390_todcmp (abfd, note);
10052 else
10053 return TRUE;
10054
10055 case NT_S390_TODPREG:
10056 if (note->namesz == 6
10057 && strcmp (note->namedata, "LINUX") == 0)
10058 return elfcore_grok_s390_todpreg (abfd, note);
10059 else
10060 return TRUE;
10061
10062 case NT_S390_CTRS:
10063 if (note->namesz == 6
10064 && strcmp (note->namedata, "LINUX") == 0)
10065 return elfcore_grok_s390_ctrs (abfd, note);
10066 else
10067 return TRUE;
10068
10069 case NT_S390_PREFIX:
10070 if (note->namesz == 6
10071 && strcmp (note->namedata, "LINUX") == 0)
10072 return elfcore_grok_s390_prefix (abfd, note);
10073 else
10074 return TRUE;
10075
10076 case NT_S390_LAST_BREAK:
10077 if (note->namesz == 6
10078 && strcmp (note->namedata, "LINUX") == 0)
10079 return elfcore_grok_s390_last_break (abfd, note);
10080 else
10081 return TRUE;
10082
10083 case NT_S390_SYSTEM_CALL:
10084 if (note->namesz == 6
10085 && strcmp (note->namedata, "LINUX") == 0)
10086 return elfcore_grok_s390_system_call (abfd, note);
10087 else
10088 return TRUE;
10089
10090 case NT_S390_TDB:
10091 if (note->namesz == 6
10092 && strcmp (note->namedata, "LINUX") == 0)
10093 return elfcore_grok_s390_tdb (abfd, note);
10094 else
10095 return TRUE;
10096
10097 case NT_S390_VXRS_LOW:
10098 if (note->namesz == 6
10099 && strcmp (note->namedata, "LINUX") == 0)
10100 return elfcore_grok_s390_vxrs_low (abfd, note);
10101 else
10102 return TRUE;
10103
10104 case NT_S390_VXRS_HIGH:
10105 if (note->namesz == 6
10106 && strcmp (note->namedata, "LINUX") == 0)
10107 return elfcore_grok_s390_vxrs_high (abfd, note);
10108 else
10109 return TRUE;
10110
10111 case NT_S390_GS_CB:
10112 if (note->namesz == 6
10113 && strcmp (note->namedata, "LINUX") == 0)
10114 return elfcore_grok_s390_gs_cb (abfd, note);
10115 else
10116 return TRUE;
10117
10118 case NT_S390_GS_BC:
10119 if (note->namesz == 6
10120 && strcmp (note->namedata, "LINUX") == 0)
10121 return elfcore_grok_s390_gs_bc (abfd, note);
10122 else
10123 return TRUE;
10124
10125 case NT_ARM_VFP:
10126 if (note->namesz == 6
10127 && strcmp (note->namedata, "LINUX") == 0)
10128 return elfcore_grok_arm_vfp (abfd, note);
10129 else
10130 return TRUE;
10131
10132 case NT_ARM_TLS:
10133 if (note->namesz == 6
10134 && strcmp (note->namedata, "LINUX") == 0)
10135 return elfcore_grok_aarch_tls (abfd, note);
10136 else
10137 return TRUE;
10138
10139 case NT_ARM_HW_BREAK:
10140 if (note->namesz == 6
10141 && strcmp (note->namedata, "LINUX") == 0)
10142 return elfcore_grok_aarch_hw_break (abfd, note);
10143 else
10144 return TRUE;
10145
10146 case NT_ARM_HW_WATCH:
10147 if (note->namesz == 6
10148 && strcmp (note->namedata, "LINUX") == 0)
10149 return elfcore_grok_aarch_hw_watch (abfd, note);
10150 else
10151 return TRUE;
10152
10153 case NT_ARM_SVE:
10154 if (note->namesz == 6
10155 && strcmp (note->namedata, "LINUX") == 0)
10156 return elfcore_grok_aarch_sve (abfd, note);
10157 else
10158 return TRUE;
10159
10160 case NT_ARM_PAC_MASK:
10161 if (note->namesz == 6
10162 && strcmp (note->namedata, "LINUX") == 0)
10163 return elfcore_grok_aarch_pauth (abfd, note);
10164 else
10165 return TRUE;
10166
10167 case NT_PRPSINFO:
10168 case NT_PSINFO:
10169 if (bed->elf_backend_grok_psinfo)
10170 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10171 return TRUE;
10172 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10173 return elfcore_grok_psinfo (abfd, note);
10174 #else
10175 return TRUE;
10176 #endif
10177
10178 case NT_AUXV:
10179 {
10180 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10181 SEC_HAS_CONTENTS);
10182
10183 if (sect == NULL)
10184 return FALSE;
10185 sect->size = note->descsz;
10186 sect->filepos = note->descpos;
10187 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10188
10189 return TRUE;
10190 }
10191
10192 case NT_FILE:
10193 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10194 note);
10195
10196 case NT_SIGINFO:
10197 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10198 note);
10199
10200 }
10201 }
10202
10203 static bfd_boolean
10204 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10205 {
10206 struct bfd_build_id* build_id;
10207
10208 if (note->descsz == 0)
10209 return FALSE;
10210
10211 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10212 if (build_id == NULL)
10213 return FALSE;
10214
10215 build_id->size = note->descsz;
10216 memcpy (build_id->data, note->descdata, note->descsz);
10217 abfd->build_id = build_id;
10218
10219 return TRUE;
10220 }
10221
10222 static bfd_boolean
10223 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10224 {
10225 switch (note->type)
10226 {
10227 default:
10228 return TRUE;
10229
10230 case NT_GNU_PROPERTY_TYPE_0:
10231 return _bfd_elf_parse_gnu_properties (abfd, note);
10232
10233 case NT_GNU_BUILD_ID:
10234 return elfobj_grok_gnu_build_id (abfd, note);
10235 }
10236 }
10237
10238 static bfd_boolean
10239 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10240 {
10241 struct sdt_note *cur =
10242 (struct sdt_note *) bfd_alloc (abfd,
10243 sizeof (struct sdt_note) + note->descsz);
10244
10245 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10246 cur->size = (bfd_size_type) note->descsz;
10247 memcpy (cur->data, note->descdata, note->descsz);
10248
10249 elf_tdata (abfd)->sdt_note_head = cur;
10250
10251 return TRUE;
10252 }
10253
10254 static bfd_boolean
10255 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10256 {
10257 switch (note->type)
10258 {
10259 case NT_STAPSDT:
10260 return elfobj_grok_stapsdt_note_1 (abfd, note);
10261
10262 default:
10263 return TRUE;
10264 }
10265 }
10266
10267 static bfd_boolean
10268 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10269 {
10270 size_t offset;
10271
10272 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10273 {
10274 case ELFCLASS32:
10275 if (note->descsz < 108)
10276 return FALSE;
10277 break;
10278
10279 case ELFCLASS64:
10280 if (note->descsz < 120)
10281 return FALSE;
10282 break;
10283
10284 default:
10285 return FALSE;
10286 }
10287
10288 /* Check for version 1 in pr_version. */
10289 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10290 return FALSE;
10291
10292 offset = 4;
10293
10294 /* Skip over pr_psinfosz. */
10295 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10296 offset += 4;
10297 else
10298 {
10299 offset += 4; /* Padding before pr_psinfosz. */
10300 offset += 8;
10301 }
10302
10303 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10304 elf_tdata (abfd)->core->program
10305 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10306 offset += 17;
10307
10308 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10309 elf_tdata (abfd)->core->command
10310 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10311 offset += 81;
10312
10313 /* Padding before pr_pid. */
10314 offset += 2;
10315
10316 /* The pr_pid field was added in version "1a". */
10317 if (note->descsz < offset + 4)
10318 return TRUE;
10319
10320 elf_tdata (abfd)->core->pid
10321 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10322
10323 return TRUE;
10324 }
10325
10326 static bfd_boolean
10327 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10328 {
10329 size_t offset;
10330 size_t size;
10331 size_t min_size;
10332
10333 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10334 Also compute minimum size of this note. */
10335 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10336 {
10337 case ELFCLASS32:
10338 offset = 4 + 4;
10339 min_size = offset + (4 * 2) + 4 + 4 + 4;
10340 break;
10341
10342 case ELFCLASS64:
10343 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10344 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10345 break;
10346
10347 default:
10348 return FALSE;
10349 }
10350
10351 if (note->descsz < min_size)
10352 return FALSE;
10353
10354 /* Check for version 1 in pr_version. */
10355 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10356 return FALSE;
10357
10358 /* Extract size of pr_reg from pr_gregsetsz. */
10359 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10360 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10361 {
10362 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10363 offset += 4 * 2;
10364 }
10365 else
10366 {
10367 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10368 offset += 8 * 2;
10369 }
10370
10371 /* Skip over pr_osreldate. */
10372 offset += 4;
10373
10374 /* Read signal from pr_cursig. */
10375 if (elf_tdata (abfd)->core->signal == 0)
10376 elf_tdata (abfd)->core->signal
10377 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10378 offset += 4;
10379
10380 /* Read TID from pr_pid. */
10381 elf_tdata (abfd)->core->lwpid
10382 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10383 offset += 4;
10384
10385 /* Padding before pr_reg. */
10386 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10387 offset += 4;
10388
10389 /* Make sure that there is enough data remaining in the note. */
10390 if ((note->descsz - offset) < size)
10391 return FALSE;
10392
10393 /* Make a ".reg/999" section and a ".reg" section. */
10394 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10395 size, note->descpos + offset);
10396 }
10397
10398 static bfd_boolean
10399 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10400 {
10401 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10402
10403 switch (note->type)
10404 {
10405 case NT_PRSTATUS:
10406 if (bed->elf_backend_grok_freebsd_prstatus)
10407 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10408 return TRUE;
10409 return elfcore_grok_freebsd_prstatus (abfd, note);
10410
10411 case NT_FPREGSET:
10412 return elfcore_grok_prfpreg (abfd, note);
10413
10414 case NT_PRPSINFO:
10415 return elfcore_grok_freebsd_psinfo (abfd, note);
10416
10417 case NT_FREEBSD_THRMISC:
10418 if (note->namesz == 8)
10419 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10420 else
10421 return TRUE;
10422
10423 case NT_FREEBSD_PROCSTAT_PROC:
10424 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10425 note);
10426
10427 case NT_FREEBSD_PROCSTAT_FILES:
10428 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10429 note);
10430
10431 case NT_FREEBSD_PROCSTAT_VMMAP:
10432 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10433 note);
10434
10435 case NT_FREEBSD_PROCSTAT_AUXV:
10436 {
10437 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10438 SEC_HAS_CONTENTS);
10439
10440 if (sect == NULL)
10441 return FALSE;
10442 sect->size = note->descsz - 4;
10443 sect->filepos = note->descpos + 4;
10444 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10445
10446 return TRUE;
10447 }
10448
10449 case NT_X86_XSTATE:
10450 if (note->namesz == 8)
10451 return elfcore_grok_xstatereg (abfd, note);
10452 else
10453 return TRUE;
10454
10455 case NT_FREEBSD_PTLWPINFO:
10456 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10457 note);
10458
10459 case NT_ARM_VFP:
10460 return elfcore_grok_arm_vfp (abfd, note);
10461
10462 default:
10463 return TRUE;
10464 }
10465 }
10466
10467 static bfd_boolean
10468 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10469 {
10470 char *cp;
10471
10472 cp = strchr (note->namedata, '@');
10473 if (cp != NULL)
10474 {
10475 *lwpidp = atoi(cp + 1);
10476 return TRUE;
10477 }
10478 return FALSE;
10479 }
10480
10481 static bfd_boolean
10482 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10483 {
10484 if (note->descsz <= 0x7c + 31)
10485 return FALSE;
10486
10487 /* Signal number at offset 0x08. */
10488 elf_tdata (abfd)->core->signal
10489 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10490
10491 /* Process ID at offset 0x50. */
10492 elf_tdata (abfd)->core->pid
10493 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10494
10495 /* Command name at 0x7c (max 32 bytes, including nul). */
10496 elf_tdata (abfd)->core->command
10497 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10498
10499 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10500 note);
10501 }
10502
10503 static bfd_boolean
10504 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10505 {
10506 int lwp;
10507
10508 if (elfcore_netbsd_get_lwpid (note, &lwp))
10509 elf_tdata (abfd)->core->lwpid = lwp;
10510
10511 if (note->type == NT_NETBSDCORE_PROCINFO)
10512 {
10513 /* NetBSD-specific core "procinfo". Note that we expect to
10514 find this note before any of the others, which is fine,
10515 since the kernel writes this note out first when it
10516 creates a core file. */
10517
10518 return elfcore_grok_netbsd_procinfo (abfd, note);
10519 }
10520
10521 /* As of Jan 2002 there are no other machine-independent notes
10522 defined for NetBSD core files. If the note type is less
10523 than the start of the machine-dependent note types, we don't
10524 understand it. */
10525
10526 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10527 return TRUE;
10528
10529
10530 switch (bfd_get_arch (abfd))
10531 {
10532 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10533 PT_GETFPREGS == mach+2. */
10534
10535 case bfd_arch_alpha:
10536 case bfd_arch_sparc:
10537 switch (note->type)
10538 {
10539 case NT_NETBSDCORE_FIRSTMACH+0:
10540 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10541
10542 case NT_NETBSDCORE_FIRSTMACH+2:
10543 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10544
10545 default:
10546 return TRUE;
10547 }
10548
10549 /* On all other arch's, PT_GETREGS == mach+1 and
10550 PT_GETFPREGS == mach+3. */
10551
10552 default:
10553 switch (note->type)
10554 {
10555 case NT_NETBSDCORE_FIRSTMACH+1:
10556 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10557
10558 case NT_NETBSDCORE_FIRSTMACH+3:
10559 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10560
10561 default:
10562 return TRUE;
10563 }
10564 }
10565 /* NOTREACHED */
10566 }
10567
10568 static bfd_boolean
10569 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10570 {
10571 if (note->descsz <= 0x48 + 31)
10572 return FALSE;
10573
10574 /* Signal number at offset 0x08. */
10575 elf_tdata (abfd)->core->signal
10576 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10577
10578 /* Process ID at offset 0x20. */
10579 elf_tdata (abfd)->core->pid
10580 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10581
10582 /* Command name at 0x48 (max 32 bytes, including nul). */
10583 elf_tdata (abfd)->core->command
10584 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10585
10586 return TRUE;
10587 }
10588
10589 static bfd_boolean
10590 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10591 {
10592 if (note->type == NT_OPENBSD_PROCINFO)
10593 return elfcore_grok_openbsd_procinfo (abfd, note);
10594
10595 if (note->type == NT_OPENBSD_REGS)
10596 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10597
10598 if (note->type == NT_OPENBSD_FPREGS)
10599 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10600
10601 if (note->type == NT_OPENBSD_XFPREGS)
10602 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10603
10604 if (note->type == NT_OPENBSD_AUXV)
10605 {
10606 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10607 SEC_HAS_CONTENTS);
10608
10609 if (sect == NULL)
10610 return FALSE;
10611 sect->size = note->descsz;
10612 sect->filepos = note->descpos;
10613 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10614
10615 return TRUE;
10616 }
10617
10618 if (note->type == NT_OPENBSD_WCOOKIE)
10619 {
10620 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10621 SEC_HAS_CONTENTS);
10622
10623 if (sect == NULL)
10624 return FALSE;
10625 sect->size = note->descsz;
10626 sect->filepos = note->descpos;
10627 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10628
10629 return TRUE;
10630 }
10631
10632 return TRUE;
10633 }
10634
10635 static bfd_boolean
10636 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10637 {
10638 void *ddata = note->descdata;
10639 char buf[100];
10640 char *name;
10641 asection *sect;
10642 short sig;
10643 unsigned flags;
10644
10645 if (note->descsz < 16)
10646 return FALSE;
10647
10648 /* nto_procfs_status 'pid' field is at offset 0. */
10649 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10650
10651 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10652 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10653
10654 /* nto_procfs_status 'flags' field is at offset 8. */
10655 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10656
10657 /* nto_procfs_status 'what' field is at offset 14. */
10658 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10659 {
10660 elf_tdata (abfd)->core->signal = sig;
10661 elf_tdata (abfd)->core->lwpid = *tid;
10662 }
10663
10664 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10665 do not come from signals so we make sure we set the current
10666 thread just in case. */
10667 if (flags & 0x00000080)
10668 elf_tdata (abfd)->core->lwpid = *tid;
10669
10670 /* Make a ".qnx_core_status/%d" section. */
10671 sprintf (buf, ".qnx_core_status/%ld", *tid);
10672
10673 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10674 if (name == NULL)
10675 return FALSE;
10676 strcpy (name, buf);
10677
10678 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10679 if (sect == NULL)
10680 return FALSE;
10681
10682 sect->size = note->descsz;
10683 sect->filepos = note->descpos;
10684 sect->alignment_power = 2;
10685
10686 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10687 }
10688
10689 static bfd_boolean
10690 elfcore_grok_nto_regs (bfd *abfd,
10691 Elf_Internal_Note *note,
10692 long tid,
10693 char *base)
10694 {
10695 char buf[100];
10696 char *name;
10697 asection *sect;
10698
10699 /* Make a "(base)/%d" section. */
10700 sprintf (buf, "%s/%ld", base, tid);
10701
10702 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10703 if (name == NULL)
10704 return FALSE;
10705 strcpy (name, buf);
10706
10707 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10708 if (sect == NULL)
10709 return FALSE;
10710
10711 sect->size = note->descsz;
10712 sect->filepos = note->descpos;
10713 sect->alignment_power = 2;
10714
10715 /* This is the current thread. */
10716 if (elf_tdata (abfd)->core->lwpid == tid)
10717 return elfcore_maybe_make_sect (abfd, base, sect);
10718
10719 return TRUE;
10720 }
10721
10722 #define BFD_QNT_CORE_INFO 7
10723 #define BFD_QNT_CORE_STATUS 8
10724 #define BFD_QNT_CORE_GREG 9
10725 #define BFD_QNT_CORE_FPREG 10
10726
10727 static bfd_boolean
10728 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10729 {
10730 /* Every GREG section has a STATUS section before it. Store the
10731 tid from the previous call to pass down to the next gregs
10732 function. */
10733 static long tid = 1;
10734
10735 switch (note->type)
10736 {
10737 case BFD_QNT_CORE_INFO:
10738 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10739 case BFD_QNT_CORE_STATUS:
10740 return elfcore_grok_nto_status (abfd, note, &tid);
10741 case BFD_QNT_CORE_GREG:
10742 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10743 case BFD_QNT_CORE_FPREG:
10744 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10745 default:
10746 return TRUE;
10747 }
10748 }
10749
10750 static bfd_boolean
10751 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10752 {
10753 char *name;
10754 asection *sect;
10755 size_t len;
10756
10757 /* Use note name as section name. */
10758 len = note->namesz;
10759 name = (char *) bfd_alloc (abfd, len);
10760 if (name == NULL)
10761 return FALSE;
10762 memcpy (name, note->namedata, len);
10763 name[len - 1] = '\0';
10764
10765 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10766 if (sect == NULL)
10767 return FALSE;
10768
10769 sect->size = note->descsz;
10770 sect->filepos = note->descpos;
10771 sect->alignment_power = 1;
10772
10773 return TRUE;
10774 }
10775
10776 /* Function: elfcore_write_note
10777
10778 Inputs:
10779 buffer to hold note, and current size of buffer
10780 name of note
10781 type of note
10782 data for note
10783 size of data for note
10784
10785 Writes note to end of buffer. ELF64 notes are written exactly as
10786 for ELF32, despite the current (as of 2006) ELF gabi specifying
10787 that they ought to have 8-byte namesz and descsz field, and have
10788 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10789
10790 Return:
10791 Pointer to realloc'd buffer, *BUFSIZ updated. */
10792
10793 char *
10794 elfcore_write_note (bfd *abfd,
10795 char *buf,
10796 int *bufsiz,
10797 const char *name,
10798 int type,
10799 const void *input,
10800 int size)
10801 {
10802 Elf_External_Note *xnp;
10803 size_t namesz;
10804 size_t newspace;
10805 char *dest;
10806
10807 namesz = 0;
10808 if (name != NULL)
10809 namesz = strlen (name) + 1;
10810
10811 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10812
10813 buf = (char *) realloc (buf, *bufsiz + newspace);
10814 if (buf == NULL)
10815 return buf;
10816 dest = buf + *bufsiz;
10817 *bufsiz += newspace;
10818 xnp = (Elf_External_Note *) dest;
10819 H_PUT_32 (abfd, namesz, xnp->namesz);
10820 H_PUT_32 (abfd, size, xnp->descsz);
10821 H_PUT_32 (abfd, type, xnp->type);
10822 dest = xnp->name;
10823 if (name != NULL)
10824 {
10825 memcpy (dest, name, namesz);
10826 dest += namesz;
10827 while (namesz & 3)
10828 {
10829 *dest++ = '\0';
10830 ++namesz;
10831 }
10832 }
10833 memcpy (dest, input, size);
10834 dest += size;
10835 while (size & 3)
10836 {
10837 *dest++ = '\0';
10838 ++size;
10839 }
10840 return buf;
10841 }
10842
10843 /* gcc-8 warns (*) on all the strncpy calls in this function about
10844 possible string truncation. The "truncation" is not a bug. We
10845 have an external representation of structs with fields that are not
10846 necessarily NULL terminated and corresponding internal
10847 representation fields that are one larger so that they can always
10848 be NULL terminated.
10849 gcc versions between 4.2 and 4.6 do not allow pragma control of
10850 diagnostics inside functions, giving a hard error if you try to use
10851 the finer control available with later versions.
10852 gcc prior to 4.2 warns about diagnostic push and pop.
10853 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10854 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10855 (*) Depending on your system header files! */
10856 #if GCC_VERSION >= 8000
10857 # pragma GCC diagnostic push
10858 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10859 #endif
10860 char *
10861 elfcore_write_prpsinfo (bfd *abfd,
10862 char *buf,
10863 int *bufsiz,
10864 const char *fname,
10865 const char *psargs)
10866 {
10867 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10868
10869 if (bed->elf_backend_write_core_note != NULL)
10870 {
10871 char *ret;
10872 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10873 NT_PRPSINFO, fname, psargs);
10874 if (ret != NULL)
10875 return ret;
10876 }
10877
10878 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10879 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10880 if (bed->s->elfclass == ELFCLASS32)
10881 {
10882 # if defined (HAVE_PSINFO32_T)
10883 psinfo32_t data;
10884 int note_type = NT_PSINFO;
10885 # else
10886 prpsinfo32_t data;
10887 int note_type = NT_PRPSINFO;
10888 # endif
10889
10890 memset (&data, 0, sizeof (data));
10891 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10892 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10893 return elfcore_write_note (abfd, buf, bufsiz,
10894 "CORE", note_type, &data, sizeof (data));
10895 }
10896 else
10897 # endif
10898 {
10899 # if defined (HAVE_PSINFO_T)
10900 psinfo_t data;
10901 int note_type = NT_PSINFO;
10902 # else
10903 prpsinfo_t data;
10904 int note_type = NT_PRPSINFO;
10905 # endif
10906
10907 memset (&data, 0, sizeof (data));
10908 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10909 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10910 return elfcore_write_note (abfd, buf, bufsiz,
10911 "CORE", note_type, &data, sizeof (data));
10912 }
10913 #endif /* PSINFO_T or PRPSINFO_T */
10914
10915 free (buf);
10916 return NULL;
10917 }
10918 #if GCC_VERSION >= 8000
10919 # pragma GCC diagnostic pop
10920 #endif
10921
10922 char *
10923 elfcore_write_linux_prpsinfo32
10924 (bfd *abfd, char *buf, int *bufsiz,
10925 const struct elf_internal_linux_prpsinfo *prpsinfo)
10926 {
10927 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10928 {
10929 struct elf_external_linux_prpsinfo32_ugid16 data;
10930
10931 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10932 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10933 &data, sizeof (data));
10934 }
10935 else
10936 {
10937 struct elf_external_linux_prpsinfo32_ugid32 data;
10938
10939 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10940 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10941 &data, sizeof (data));
10942 }
10943 }
10944
10945 char *
10946 elfcore_write_linux_prpsinfo64
10947 (bfd *abfd, char *buf, int *bufsiz,
10948 const struct elf_internal_linux_prpsinfo *prpsinfo)
10949 {
10950 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10951 {
10952 struct elf_external_linux_prpsinfo64_ugid16 data;
10953
10954 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10955 return elfcore_write_note (abfd, buf, bufsiz,
10956 "CORE", NT_PRPSINFO, &data, sizeof (data));
10957 }
10958 else
10959 {
10960 struct elf_external_linux_prpsinfo64_ugid32 data;
10961
10962 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10963 return elfcore_write_note (abfd, buf, bufsiz,
10964 "CORE", NT_PRPSINFO, &data, sizeof (data));
10965 }
10966 }
10967
10968 char *
10969 elfcore_write_prstatus (bfd *abfd,
10970 char *buf,
10971 int *bufsiz,
10972 long pid,
10973 int cursig,
10974 const void *gregs)
10975 {
10976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10977
10978 if (bed->elf_backend_write_core_note != NULL)
10979 {
10980 char *ret;
10981 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10982 NT_PRSTATUS,
10983 pid, cursig, gregs);
10984 if (ret != NULL)
10985 return ret;
10986 }
10987
10988 #if defined (HAVE_PRSTATUS_T)
10989 #if defined (HAVE_PRSTATUS32_T)
10990 if (bed->s->elfclass == ELFCLASS32)
10991 {
10992 prstatus32_t prstat;
10993
10994 memset (&prstat, 0, sizeof (prstat));
10995 prstat.pr_pid = pid;
10996 prstat.pr_cursig = cursig;
10997 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10998 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10999 NT_PRSTATUS, &prstat, sizeof (prstat));
11000 }
11001 else
11002 #endif
11003 {
11004 prstatus_t prstat;
11005
11006 memset (&prstat, 0, sizeof (prstat));
11007 prstat.pr_pid = pid;
11008 prstat.pr_cursig = cursig;
11009 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11010 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11011 NT_PRSTATUS, &prstat, sizeof (prstat));
11012 }
11013 #endif /* HAVE_PRSTATUS_T */
11014
11015 free (buf);
11016 return NULL;
11017 }
11018
11019 #if defined (HAVE_LWPSTATUS_T)
11020 char *
11021 elfcore_write_lwpstatus (bfd *abfd,
11022 char *buf,
11023 int *bufsiz,
11024 long pid,
11025 int cursig,
11026 const void *gregs)
11027 {
11028 lwpstatus_t lwpstat;
11029 const char *note_name = "CORE";
11030
11031 memset (&lwpstat, 0, sizeof (lwpstat));
11032 lwpstat.pr_lwpid = pid >> 16;
11033 lwpstat.pr_cursig = cursig;
11034 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11035 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11036 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11037 #if !defined(gregs)
11038 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11039 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11040 #else
11041 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11042 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11043 #endif
11044 #endif
11045 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11046 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11047 }
11048 #endif /* HAVE_LWPSTATUS_T */
11049
11050 #if defined (HAVE_PSTATUS_T)
11051 char *
11052 elfcore_write_pstatus (bfd *abfd,
11053 char *buf,
11054 int *bufsiz,
11055 long pid,
11056 int cursig ATTRIBUTE_UNUSED,
11057 const void *gregs ATTRIBUTE_UNUSED)
11058 {
11059 const char *note_name = "CORE";
11060 #if defined (HAVE_PSTATUS32_T)
11061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11062
11063 if (bed->s->elfclass == ELFCLASS32)
11064 {
11065 pstatus32_t pstat;
11066
11067 memset (&pstat, 0, sizeof (pstat));
11068 pstat.pr_pid = pid & 0xffff;
11069 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11070 NT_PSTATUS, &pstat, sizeof (pstat));
11071 return buf;
11072 }
11073 else
11074 #endif
11075 {
11076 pstatus_t pstat;
11077
11078 memset (&pstat, 0, sizeof (pstat));
11079 pstat.pr_pid = pid & 0xffff;
11080 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11081 NT_PSTATUS, &pstat, sizeof (pstat));
11082 return buf;
11083 }
11084 }
11085 #endif /* HAVE_PSTATUS_T */
11086
11087 char *
11088 elfcore_write_prfpreg (bfd *abfd,
11089 char *buf,
11090 int *bufsiz,
11091 const void *fpregs,
11092 int size)
11093 {
11094 const char *note_name = "CORE";
11095 return elfcore_write_note (abfd, buf, bufsiz,
11096 note_name, NT_FPREGSET, fpregs, size);
11097 }
11098
11099 char *
11100 elfcore_write_prxfpreg (bfd *abfd,
11101 char *buf,
11102 int *bufsiz,
11103 const void *xfpregs,
11104 int size)
11105 {
11106 char *note_name = "LINUX";
11107 return elfcore_write_note (abfd, buf, bufsiz,
11108 note_name, NT_PRXFPREG, xfpregs, size);
11109 }
11110
11111 char *
11112 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11113 const void *xfpregs, int size)
11114 {
11115 char *note_name;
11116 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11117 note_name = "FreeBSD";
11118 else
11119 note_name = "LINUX";
11120 return elfcore_write_note (abfd, buf, bufsiz,
11121 note_name, NT_X86_XSTATE, xfpregs, size);
11122 }
11123
11124 char *
11125 elfcore_write_ppc_vmx (bfd *abfd,
11126 char *buf,
11127 int *bufsiz,
11128 const void *ppc_vmx,
11129 int size)
11130 {
11131 char *note_name = "LINUX";
11132 return elfcore_write_note (abfd, buf, bufsiz,
11133 note_name, NT_PPC_VMX, ppc_vmx, size);
11134 }
11135
11136 char *
11137 elfcore_write_ppc_vsx (bfd *abfd,
11138 char *buf,
11139 int *bufsiz,
11140 const void *ppc_vsx,
11141 int size)
11142 {
11143 char *note_name = "LINUX";
11144 return elfcore_write_note (abfd, buf, bufsiz,
11145 note_name, NT_PPC_VSX, ppc_vsx, size);
11146 }
11147
11148 char *
11149 elfcore_write_ppc_tar (bfd *abfd,
11150 char *buf,
11151 int *bufsiz,
11152 const void *ppc_tar,
11153 int size)
11154 {
11155 char *note_name = "LINUX";
11156 return elfcore_write_note (abfd, buf, bufsiz,
11157 note_name, NT_PPC_TAR, ppc_tar, size);
11158 }
11159
11160 char *
11161 elfcore_write_ppc_ppr (bfd *abfd,
11162 char *buf,
11163 int *bufsiz,
11164 const void *ppc_ppr,
11165 int size)
11166 {
11167 char *note_name = "LINUX";
11168 return elfcore_write_note (abfd, buf, bufsiz,
11169 note_name, NT_PPC_PPR, ppc_ppr, size);
11170 }
11171
11172 char *
11173 elfcore_write_ppc_dscr (bfd *abfd,
11174 char *buf,
11175 int *bufsiz,
11176 const void *ppc_dscr,
11177 int size)
11178 {
11179 char *note_name = "LINUX";
11180 return elfcore_write_note (abfd, buf, bufsiz,
11181 note_name, NT_PPC_DSCR, ppc_dscr, size);
11182 }
11183
11184 char *
11185 elfcore_write_ppc_ebb (bfd *abfd,
11186 char *buf,
11187 int *bufsiz,
11188 const void *ppc_ebb,
11189 int size)
11190 {
11191 char *note_name = "LINUX";
11192 return elfcore_write_note (abfd, buf, bufsiz,
11193 note_name, NT_PPC_EBB, ppc_ebb, size);
11194 }
11195
11196 char *
11197 elfcore_write_ppc_pmu (bfd *abfd,
11198 char *buf,
11199 int *bufsiz,
11200 const void *ppc_pmu,
11201 int size)
11202 {
11203 char *note_name = "LINUX";
11204 return elfcore_write_note (abfd, buf, bufsiz,
11205 note_name, NT_PPC_PMU, ppc_pmu, size);
11206 }
11207
11208 char *
11209 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11210 char *buf,
11211 int *bufsiz,
11212 const void *ppc_tm_cgpr,
11213 int size)
11214 {
11215 char *note_name = "LINUX";
11216 return elfcore_write_note (abfd, buf, bufsiz,
11217 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11218 }
11219
11220 char *
11221 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11222 char *buf,
11223 int *bufsiz,
11224 const void *ppc_tm_cfpr,
11225 int size)
11226 {
11227 char *note_name = "LINUX";
11228 return elfcore_write_note (abfd, buf, bufsiz,
11229 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11230 }
11231
11232 char *
11233 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11234 char *buf,
11235 int *bufsiz,
11236 const void *ppc_tm_cvmx,
11237 int size)
11238 {
11239 char *note_name = "LINUX";
11240 return elfcore_write_note (abfd, buf, bufsiz,
11241 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11242 }
11243
11244 char *
11245 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11246 char *buf,
11247 int *bufsiz,
11248 const void *ppc_tm_cvsx,
11249 int size)
11250 {
11251 char *note_name = "LINUX";
11252 return elfcore_write_note (abfd, buf, bufsiz,
11253 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11254 }
11255
11256 char *
11257 elfcore_write_ppc_tm_spr (bfd *abfd,
11258 char *buf,
11259 int *bufsiz,
11260 const void *ppc_tm_spr,
11261 int size)
11262 {
11263 char *note_name = "LINUX";
11264 return elfcore_write_note (abfd, buf, bufsiz,
11265 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11266 }
11267
11268 char *
11269 elfcore_write_ppc_tm_ctar (bfd *abfd,
11270 char *buf,
11271 int *bufsiz,
11272 const void *ppc_tm_ctar,
11273 int size)
11274 {
11275 char *note_name = "LINUX";
11276 return elfcore_write_note (abfd, buf, bufsiz,
11277 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11278 }
11279
11280 char *
11281 elfcore_write_ppc_tm_cppr (bfd *abfd,
11282 char *buf,
11283 int *bufsiz,
11284 const void *ppc_tm_cppr,
11285 int size)
11286 {
11287 char *note_name = "LINUX";
11288 return elfcore_write_note (abfd, buf, bufsiz,
11289 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11290 }
11291
11292 char *
11293 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11294 char *buf,
11295 int *bufsiz,
11296 const void *ppc_tm_cdscr,
11297 int size)
11298 {
11299 char *note_name = "LINUX";
11300 return elfcore_write_note (abfd, buf, bufsiz,
11301 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11302 }
11303
11304 static char *
11305 elfcore_write_s390_high_gprs (bfd *abfd,
11306 char *buf,
11307 int *bufsiz,
11308 const void *s390_high_gprs,
11309 int size)
11310 {
11311 char *note_name = "LINUX";
11312 return elfcore_write_note (abfd, buf, bufsiz,
11313 note_name, NT_S390_HIGH_GPRS,
11314 s390_high_gprs, size);
11315 }
11316
11317 char *
11318 elfcore_write_s390_timer (bfd *abfd,
11319 char *buf,
11320 int *bufsiz,
11321 const void *s390_timer,
11322 int size)
11323 {
11324 char *note_name = "LINUX";
11325 return elfcore_write_note (abfd, buf, bufsiz,
11326 note_name, NT_S390_TIMER, s390_timer, size);
11327 }
11328
11329 char *
11330 elfcore_write_s390_todcmp (bfd *abfd,
11331 char *buf,
11332 int *bufsiz,
11333 const void *s390_todcmp,
11334 int size)
11335 {
11336 char *note_name = "LINUX";
11337 return elfcore_write_note (abfd, buf, bufsiz,
11338 note_name, NT_S390_TODCMP, s390_todcmp, size);
11339 }
11340
11341 char *
11342 elfcore_write_s390_todpreg (bfd *abfd,
11343 char *buf,
11344 int *bufsiz,
11345 const void *s390_todpreg,
11346 int size)
11347 {
11348 char *note_name = "LINUX";
11349 return elfcore_write_note (abfd, buf, bufsiz,
11350 note_name, NT_S390_TODPREG, s390_todpreg, size);
11351 }
11352
11353 char *
11354 elfcore_write_s390_ctrs (bfd *abfd,
11355 char *buf,
11356 int *bufsiz,
11357 const void *s390_ctrs,
11358 int size)
11359 {
11360 char *note_name = "LINUX";
11361 return elfcore_write_note (abfd, buf, bufsiz,
11362 note_name, NT_S390_CTRS, s390_ctrs, size);
11363 }
11364
11365 char *
11366 elfcore_write_s390_prefix (bfd *abfd,
11367 char *buf,
11368 int *bufsiz,
11369 const void *s390_prefix,
11370 int size)
11371 {
11372 char *note_name = "LINUX";
11373 return elfcore_write_note (abfd, buf, bufsiz,
11374 note_name, NT_S390_PREFIX, s390_prefix, size);
11375 }
11376
11377 char *
11378 elfcore_write_s390_last_break (bfd *abfd,
11379 char *buf,
11380 int *bufsiz,
11381 const void *s390_last_break,
11382 int size)
11383 {
11384 char *note_name = "LINUX";
11385 return elfcore_write_note (abfd, buf, bufsiz,
11386 note_name, NT_S390_LAST_BREAK,
11387 s390_last_break, size);
11388 }
11389
11390 char *
11391 elfcore_write_s390_system_call (bfd *abfd,
11392 char *buf,
11393 int *bufsiz,
11394 const void *s390_system_call,
11395 int size)
11396 {
11397 char *note_name = "LINUX";
11398 return elfcore_write_note (abfd, buf, bufsiz,
11399 note_name, NT_S390_SYSTEM_CALL,
11400 s390_system_call, size);
11401 }
11402
11403 char *
11404 elfcore_write_s390_tdb (bfd *abfd,
11405 char *buf,
11406 int *bufsiz,
11407 const void *s390_tdb,
11408 int size)
11409 {
11410 char *note_name = "LINUX";
11411 return elfcore_write_note (abfd, buf, bufsiz,
11412 note_name, NT_S390_TDB, s390_tdb, size);
11413 }
11414
11415 char *
11416 elfcore_write_s390_vxrs_low (bfd *abfd,
11417 char *buf,
11418 int *bufsiz,
11419 const void *s390_vxrs_low,
11420 int size)
11421 {
11422 char *note_name = "LINUX";
11423 return elfcore_write_note (abfd, buf, bufsiz,
11424 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11425 }
11426
11427 char *
11428 elfcore_write_s390_vxrs_high (bfd *abfd,
11429 char *buf,
11430 int *bufsiz,
11431 const void *s390_vxrs_high,
11432 int size)
11433 {
11434 char *note_name = "LINUX";
11435 return elfcore_write_note (abfd, buf, bufsiz,
11436 note_name, NT_S390_VXRS_HIGH,
11437 s390_vxrs_high, size);
11438 }
11439
11440 char *
11441 elfcore_write_s390_gs_cb (bfd *abfd,
11442 char *buf,
11443 int *bufsiz,
11444 const void *s390_gs_cb,
11445 int size)
11446 {
11447 char *note_name = "LINUX";
11448 return elfcore_write_note (abfd, buf, bufsiz,
11449 note_name, NT_S390_GS_CB,
11450 s390_gs_cb, size);
11451 }
11452
11453 char *
11454 elfcore_write_s390_gs_bc (bfd *abfd,
11455 char *buf,
11456 int *bufsiz,
11457 const void *s390_gs_bc,
11458 int size)
11459 {
11460 char *note_name = "LINUX";
11461 return elfcore_write_note (abfd, buf, bufsiz,
11462 note_name, NT_S390_GS_BC,
11463 s390_gs_bc, size);
11464 }
11465
11466 char *
11467 elfcore_write_arm_vfp (bfd *abfd,
11468 char *buf,
11469 int *bufsiz,
11470 const void *arm_vfp,
11471 int size)
11472 {
11473 char *note_name = "LINUX";
11474 return elfcore_write_note (abfd, buf, bufsiz,
11475 note_name, NT_ARM_VFP, arm_vfp, size);
11476 }
11477
11478 char *
11479 elfcore_write_aarch_tls (bfd *abfd,
11480 char *buf,
11481 int *bufsiz,
11482 const void *aarch_tls,
11483 int size)
11484 {
11485 char *note_name = "LINUX";
11486 return elfcore_write_note (abfd, buf, bufsiz,
11487 note_name, NT_ARM_TLS, aarch_tls, size);
11488 }
11489
11490 char *
11491 elfcore_write_aarch_hw_break (bfd *abfd,
11492 char *buf,
11493 int *bufsiz,
11494 const void *aarch_hw_break,
11495 int size)
11496 {
11497 char *note_name = "LINUX";
11498 return elfcore_write_note (abfd, buf, bufsiz,
11499 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11500 }
11501
11502 char *
11503 elfcore_write_aarch_hw_watch (bfd *abfd,
11504 char *buf,
11505 int *bufsiz,
11506 const void *aarch_hw_watch,
11507 int size)
11508 {
11509 char *note_name = "LINUX";
11510 return elfcore_write_note (abfd, buf, bufsiz,
11511 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11512 }
11513
11514 char *
11515 elfcore_write_aarch_sve (bfd *abfd,
11516 char *buf,
11517 int *bufsiz,
11518 const void *aarch_sve,
11519 int size)
11520 {
11521 char *note_name = "LINUX";
11522 return elfcore_write_note (abfd, buf, bufsiz,
11523 note_name, NT_ARM_SVE, aarch_sve, size);
11524 }
11525
11526 char *
11527 elfcore_write_aarch_pauth (bfd *abfd,
11528 char *buf,
11529 int *bufsiz,
11530 const void *aarch_pauth,
11531 int size)
11532 {
11533 char *note_name = "LINUX";
11534 return elfcore_write_note (abfd, buf, bufsiz,
11535 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11536 }
11537
11538 char *
11539 elfcore_write_register_note (bfd *abfd,
11540 char *buf,
11541 int *bufsiz,
11542 const char *section,
11543 const void *data,
11544 int size)
11545 {
11546 if (strcmp (section, ".reg2") == 0)
11547 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11548 if (strcmp (section, ".reg-xfp") == 0)
11549 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11550 if (strcmp (section, ".reg-xstate") == 0)
11551 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11552 if (strcmp (section, ".reg-ppc-vmx") == 0)
11553 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11554 if (strcmp (section, ".reg-ppc-vsx") == 0)
11555 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11556 if (strcmp (section, ".reg-ppc-tar") == 0)
11557 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11558 if (strcmp (section, ".reg-ppc-ppr") == 0)
11559 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11560 if (strcmp (section, ".reg-ppc-dscr") == 0)
11561 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11562 if (strcmp (section, ".reg-ppc-ebb") == 0)
11563 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11564 if (strcmp (section, ".reg-ppc-pmu") == 0)
11565 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11566 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11567 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11568 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11569 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11570 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11571 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11572 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11573 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11574 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11575 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11576 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11577 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11578 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11579 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11580 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11581 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11582 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11583 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11584 if (strcmp (section, ".reg-s390-timer") == 0)
11585 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11586 if (strcmp (section, ".reg-s390-todcmp") == 0)
11587 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11588 if (strcmp (section, ".reg-s390-todpreg") == 0)
11589 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11590 if (strcmp (section, ".reg-s390-ctrs") == 0)
11591 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11592 if (strcmp (section, ".reg-s390-prefix") == 0)
11593 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11594 if (strcmp (section, ".reg-s390-last-break") == 0)
11595 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11596 if (strcmp (section, ".reg-s390-system-call") == 0)
11597 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11598 if (strcmp (section, ".reg-s390-tdb") == 0)
11599 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11600 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11601 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11602 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11603 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11604 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11605 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11606 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11607 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11608 if (strcmp (section, ".reg-arm-vfp") == 0)
11609 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11610 if (strcmp (section, ".reg-aarch-tls") == 0)
11611 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11612 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11613 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11614 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11615 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11616 if (strcmp (section, ".reg-aarch-sve") == 0)
11617 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11618 if (strcmp (section, ".reg-aarch-pauth") == 0)
11619 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11620 return NULL;
11621 }
11622
11623 static bfd_boolean
11624 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11625 size_t align)
11626 {
11627 char *p;
11628
11629 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11630 gABI specifies that PT_NOTE alignment should be aligned to 4
11631 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11632 align is less than 4, we use 4 byte alignment. */
11633 if (align < 4)
11634 align = 4;
11635 if (align != 4 && align != 8)
11636 return FALSE;
11637
11638 p = buf;
11639 while (p < buf + size)
11640 {
11641 Elf_External_Note *xnp = (Elf_External_Note *) p;
11642 Elf_Internal_Note in;
11643
11644 if (offsetof (Elf_External_Note, name) > buf - p + size)
11645 return FALSE;
11646
11647 in.type = H_GET_32 (abfd, xnp->type);
11648
11649 in.namesz = H_GET_32 (abfd, xnp->namesz);
11650 in.namedata = xnp->name;
11651 if (in.namesz > buf - in.namedata + size)
11652 return FALSE;
11653
11654 in.descsz = H_GET_32 (abfd, xnp->descsz);
11655 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11656 in.descpos = offset + (in.descdata - buf);
11657 if (in.descsz != 0
11658 && (in.descdata >= buf + size
11659 || in.descsz > buf - in.descdata + size))
11660 return FALSE;
11661
11662 switch (bfd_get_format (abfd))
11663 {
11664 default:
11665 return TRUE;
11666
11667 case bfd_core:
11668 {
11669 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11670 struct
11671 {
11672 const char * string;
11673 size_t len;
11674 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11675 }
11676 grokers[] =
11677 {
11678 GROKER_ELEMENT ("", elfcore_grok_note),
11679 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11680 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11681 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11682 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11683 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11684 };
11685 #undef GROKER_ELEMENT
11686 int i;
11687
11688 for (i = ARRAY_SIZE (grokers); i--;)
11689 {
11690 if (in.namesz >= grokers[i].len
11691 && strncmp (in.namedata, grokers[i].string,
11692 grokers[i].len) == 0)
11693 {
11694 if (! grokers[i].func (abfd, & in))
11695 return FALSE;
11696 break;
11697 }
11698 }
11699 break;
11700 }
11701
11702 case bfd_object:
11703 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11704 {
11705 if (! elfobj_grok_gnu_note (abfd, &in))
11706 return FALSE;
11707 }
11708 else if (in.namesz == sizeof "stapsdt"
11709 && strcmp (in.namedata, "stapsdt") == 0)
11710 {
11711 if (! elfobj_grok_stapsdt_note (abfd, &in))
11712 return FALSE;
11713 }
11714 break;
11715 }
11716
11717 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11718 }
11719
11720 return TRUE;
11721 }
11722
11723 static bfd_boolean
11724 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11725 size_t align)
11726 {
11727 char *buf;
11728
11729 if (size == 0 || (size + 1) == 0)
11730 return TRUE;
11731
11732 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11733 return FALSE;
11734
11735 buf = (char *) bfd_malloc (size + 1);
11736 if (buf == NULL)
11737 return FALSE;
11738
11739 /* PR 17512: file: ec08f814
11740 0-termintate the buffer so that string searches will not overflow. */
11741 buf[size] = 0;
11742
11743 if (bfd_bread (buf, size, abfd) != size
11744 || !elf_parse_notes (abfd, buf, size, offset, align))
11745 {
11746 free (buf);
11747 return FALSE;
11748 }
11749
11750 free (buf);
11751 return TRUE;
11752 }
11753 \f
11754 /* Providing external access to the ELF program header table. */
11755
11756 /* Return an upper bound on the number of bytes required to store a
11757 copy of ABFD's program header table entries. Return -1 if an error
11758 occurs; bfd_get_error will return an appropriate code. */
11759
11760 long
11761 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11762 {
11763 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11764 {
11765 bfd_set_error (bfd_error_wrong_format);
11766 return -1;
11767 }
11768
11769 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11770 }
11771
11772 /* Copy ABFD's program header table entries to *PHDRS. The entries
11773 will be stored as an array of Elf_Internal_Phdr structures, as
11774 defined in include/elf/internal.h. To find out how large the
11775 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11776
11777 Return the number of program header table entries read, or -1 if an
11778 error occurs; bfd_get_error will return an appropriate code. */
11779
11780 int
11781 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11782 {
11783 int num_phdrs;
11784
11785 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11786 {
11787 bfd_set_error (bfd_error_wrong_format);
11788 return -1;
11789 }
11790
11791 num_phdrs = elf_elfheader (abfd)->e_phnum;
11792 if (num_phdrs != 0)
11793 memcpy (phdrs, elf_tdata (abfd)->phdr,
11794 num_phdrs * sizeof (Elf_Internal_Phdr));
11795
11796 return num_phdrs;
11797 }
11798
11799 enum elf_reloc_type_class
11800 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11801 const asection *rel_sec ATTRIBUTE_UNUSED,
11802 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11803 {
11804 return reloc_class_normal;
11805 }
11806
11807 /* For RELA architectures, return the relocation value for a
11808 relocation against a local symbol. */
11809
11810 bfd_vma
11811 _bfd_elf_rela_local_sym (bfd *abfd,
11812 Elf_Internal_Sym *sym,
11813 asection **psec,
11814 Elf_Internal_Rela *rel)
11815 {
11816 asection *sec = *psec;
11817 bfd_vma relocation;
11818
11819 relocation = (sec->output_section->vma
11820 + sec->output_offset
11821 + sym->st_value);
11822 if ((sec->flags & SEC_MERGE)
11823 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11824 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11825 {
11826 rel->r_addend =
11827 _bfd_merged_section_offset (abfd, psec,
11828 elf_section_data (sec)->sec_info,
11829 sym->st_value + rel->r_addend);
11830 if (sec != *psec)
11831 {
11832 /* If we have changed the section, and our original section is
11833 marked with SEC_EXCLUDE, it means that the original
11834 SEC_MERGE section has been completely subsumed in some
11835 other SEC_MERGE section. In this case, we need to leave
11836 some info around for --emit-relocs. */
11837 if ((sec->flags & SEC_EXCLUDE) != 0)
11838 sec->kept_section = *psec;
11839 sec = *psec;
11840 }
11841 rel->r_addend -= relocation;
11842 rel->r_addend += sec->output_section->vma + sec->output_offset;
11843 }
11844 return relocation;
11845 }
11846
11847 bfd_vma
11848 _bfd_elf_rel_local_sym (bfd *abfd,
11849 Elf_Internal_Sym *sym,
11850 asection **psec,
11851 bfd_vma addend)
11852 {
11853 asection *sec = *psec;
11854
11855 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11856 return sym->st_value + addend;
11857
11858 return _bfd_merged_section_offset (abfd, psec,
11859 elf_section_data (sec)->sec_info,
11860 sym->st_value + addend);
11861 }
11862
11863 /* Adjust an address within a section. Given OFFSET within SEC, return
11864 the new offset within the section, based upon changes made to the
11865 section. Returns -1 if the offset is now invalid.
11866 The offset (in abnd out) is in target sized bytes, however big a
11867 byte may be. */
11868
11869 bfd_vma
11870 _bfd_elf_section_offset (bfd *abfd,
11871 struct bfd_link_info *info,
11872 asection *sec,
11873 bfd_vma offset)
11874 {
11875 switch (sec->sec_info_type)
11876 {
11877 case SEC_INFO_TYPE_STABS:
11878 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11879 offset);
11880 case SEC_INFO_TYPE_EH_FRAME:
11881 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11882
11883 default:
11884 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11885 {
11886 /* Reverse the offset. */
11887 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11888 bfd_size_type address_size = bed->s->arch_size / 8;
11889
11890 /* address_size and sec->size are in octets. Convert
11891 to bytes before subtracting the original offset. */
11892 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11893 }
11894 return offset;
11895 }
11896 }
11897 \f
11898 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11899 reconstruct an ELF file by reading the segments out of remote memory
11900 based on the ELF file header at EHDR_VMA and the ELF program headers it
11901 points to. If not null, *LOADBASEP is filled in with the difference
11902 between the VMAs from which the segments were read, and the VMAs the
11903 file headers (and hence BFD's idea of each section's VMA) put them at.
11904
11905 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11906 remote memory at target address VMA into the local buffer at MYADDR; it
11907 should return zero on success or an `errno' code on failure. TEMPL must
11908 be a BFD for an ELF target with the word size and byte order found in
11909 the remote memory. */
11910
11911 bfd *
11912 bfd_elf_bfd_from_remote_memory
11913 (bfd *templ,
11914 bfd_vma ehdr_vma,
11915 bfd_size_type size,
11916 bfd_vma *loadbasep,
11917 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11918 {
11919 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11920 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11921 }
11922 \f
11923 long
11924 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11925 long symcount ATTRIBUTE_UNUSED,
11926 asymbol **syms ATTRIBUTE_UNUSED,
11927 long dynsymcount,
11928 asymbol **dynsyms,
11929 asymbol **ret)
11930 {
11931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11932 asection *relplt;
11933 asymbol *s;
11934 const char *relplt_name;
11935 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11936 arelent *p;
11937 long count, i, n;
11938 size_t size;
11939 Elf_Internal_Shdr *hdr;
11940 char *names;
11941 asection *plt;
11942
11943 *ret = NULL;
11944
11945 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11946 return 0;
11947
11948 if (dynsymcount <= 0)
11949 return 0;
11950
11951 if (!bed->plt_sym_val)
11952 return 0;
11953
11954 relplt_name = bed->relplt_name;
11955 if (relplt_name == NULL)
11956 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11957 relplt = bfd_get_section_by_name (abfd, relplt_name);
11958 if (relplt == NULL)
11959 return 0;
11960
11961 hdr = &elf_section_data (relplt)->this_hdr;
11962 if (hdr->sh_link != elf_dynsymtab (abfd)
11963 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11964 return 0;
11965
11966 plt = bfd_get_section_by_name (abfd, ".plt");
11967 if (plt == NULL)
11968 return 0;
11969
11970 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11971 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11972 return -1;
11973
11974 count = relplt->size / hdr->sh_entsize;
11975 size = count * sizeof (asymbol);
11976 p = relplt->relocation;
11977 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11978 {
11979 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11980 if (p->addend != 0)
11981 {
11982 #ifdef BFD64
11983 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11984 #else
11985 size += sizeof ("+0x") - 1 + 8;
11986 #endif
11987 }
11988 }
11989
11990 s = *ret = (asymbol *) bfd_malloc (size);
11991 if (s == NULL)
11992 return -1;
11993
11994 names = (char *) (s + count);
11995 p = relplt->relocation;
11996 n = 0;
11997 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11998 {
11999 size_t len;
12000 bfd_vma addr;
12001
12002 addr = bed->plt_sym_val (i, plt, p);
12003 if (addr == (bfd_vma) -1)
12004 continue;
12005
12006 *s = **p->sym_ptr_ptr;
12007 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12008 we are defining a symbol, ensure one of them is set. */
12009 if ((s->flags & BSF_LOCAL) == 0)
12010 s->flags |= BSF_GLOBAL;
12011 s->flags |= BSF_SYNTHETIC;
12012 s->section = plt;
12013 s->value = addr - plt->vma;
12014 s->name = names;
12015 s->udata.p = NULL;
12016 len = strlen ((*p->sym_ptr_ptr)->name);
12017 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12018 names += len;
12019 if (p->addend != 0)
12020 {
12021 char buf[30], *a;
12022
12023 memcpy (names, "+0x", sizeof ("+0x") - 1);
12024 names += sizeof ("+0x") - 1;
12025 bfd_sprintf_vma (abfd, buf, p->addend);
12026 for (a = buf; *a == '0'; ++a)
12027 ;
12028 len = strlen (a);
12029 memcpy (names, a, len);
12030 names += len;
12031 }
12032 memcpy (names, "@plt", sizeof ("@plt"));
12033 names += sizeof ("@plt");
12034 ++s, ++n;
12035 }
12036
12037 return n;
12038 }
12039
12040 /* It is only used by x86-64 so far.
12041 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12042 but current usage would allow all of _bfd_std_section to be zero. */
12043 static const asymbol lcomm_sym
12044 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12045 asection _bfd_elf_large_com_section
12046 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12047 "LARGE_COMMON", 0, SEC_IS_COMMON);
12048
12049 void
12050 _bfd_elf_post_process_headers (bfd * abfd,
12051 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12052 {
12053 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12054
12055 i_ehdrp = elf_elfheader (abfd);
12056
12057 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12058
12059 /* To make things simpler for the loader on Linux systems we set the
12060 osabi field to ELFOSABI_GNU if the binary contains symbols of
12061 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
12062 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
12063 && elf_tdata (abfd)->has_gnu_symbols)
12064 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12065 }
12066
12067
12068 /* Return TRUE for ELF symbol types that represent functions.
12069 This is the default version of this function, which is sufficient for
12070 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12071
12072 bfd_boolean
12073 _bfd_elf_is_function_type (unsigned int type)
12074 {
12075 return (type == STT_FUNC
12076 || type == STT_GNU_IFUNC);
12077 }
12078
12079 /* If the ELF symbol SYM might be a function in SEC, return the
12080 function size and set *CODE_OFF to the function's entry point,
12081 otherwise return zero. */
12082
12083 bfd_size_type
12084 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12085 bfd_vma *code_off)
12086 {
12087 bfd_size_type size;
12088
12089 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12090 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12091 || sym->section != sec)
12092 return 0;
12093
12094 *code_off = sym->value;
12095 size = 0;
12096 if (!(sym->flags & BSF_SYNTHETIC))
12097 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12098 if (size == 0)
12099 size = 1;
12100 return size;
12101 }
This page took 0.777681 seconds and 5 git commands to generate.