PR22836, "-r -s" doesn't work with -g3 using GCC 7
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || bfd_seek (abfd, offset, SEEK_SET) != 0
302 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
303 shstrtab = NULL;
304 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
305 {
306 if (bfd_get_error () != bfd_error_system_call)
307 bfd_set_error (bfd_error_file_truncated);
308 bfd_release (abfd, shstrtab);
309 shstrtab = NULL;
310 /* Once we've failed to read it, make sure we don't keep
311 trying. Otherwise, we'll keep allocating space for
312 the string table over and over. */
313 i_shdrp[shindex]->sh_size = 0;
314 }
315 else
316 shstrtab[shstrtabsize] = '\0';
317 i_shdrp[shindex]->contents = shstrtab;
318 }
319 return (char *) shstrtab;
320 }
321
322 char *
323 bfd_elf_string_from_elf_section (bfd *abfd,
324 unsigned int shindex,
325 unsigned int strindex)
326 {
327 Elf_Internal_Shdr *hdr;
328
329 if (strindex == 0)
330 return "";
331
332 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
333 return NULL;
334
335 hdr = elf_elfsections (abfd)[shindex];
336
337 if (hdr->contents == NULL)
338 {
339 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
340 {
341 /* PR 17512: file: f057ec89. */
342 /* xgettext:c-format */
343 _bfd_error_handler (_("%B: attempt to load strings from"
344 " a non-string section (number %d)"),
345 abfd, shindex);
346 return NULL;
347 }
348
349 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
350 return NULL;
351 }
352
353 if (strindex >= hdr->sh_size)
354 {
355 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
356 _bfd_error_handler
357 /* xgettext:c-format */
358 (_("%B: invalid string offset %u >= %Lu for section `%s'"),
359 abfd, strindex, hdr->sh_size,
360 (shindex == shstrndx && strindex == hdr->sh_name
361 ? ".shstrtab"
362 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
363 return NULL;
364 }
365
366 return ((char *) hdr->contents) + strindex;
367 }
368
369 /* Read and convert symbols to internal format.
370 SYMCOUNT specifies the number of symbols to read, starting from
371 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
372 are non-NULL, they are used to store the internal symbols, external
373 symbols, and symbol section index extensions, respectively.
374 Returns a pointer to the internal symbol buffer (malloced if necessary)
375 or NULL if there were no symbols or some kind of problem. */
376
377 Elf_Internal_Sym *
378 bfd_elf_get_elf_syms (bfd *ibfd,
379 Elf_Internal_Shdr *symtab_hdr,
380 size_t symcount,
381 size_t symoffset,
382 Elf_Internal_Sym *intsym_buf,
383 void *extsym_buf,
384 Elf_External_Sym_Shndx *extshndx_buf)
385 {
386 Elf_Internal_Shdr *shndx_hdr;
387 void *alloc_ext;
388 const bfd_byte *esym;
389 Elf_External_Sym_Shndx *alloc_extshndx;
390 Elf_External_Sym_Shndx *shndx;
391 Elf_Internal_Sym *alloc_intsym;
392 Elf_Internal_Sym *isym;
393 Elf_Internal_Sym *isymend;
394 const struct elf_backend_data *bed;
395 size_t extsym_size;
396 bfd_size_type amt;
397 file_ptr pos;
398
399 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
400 abort ();
401
402 if (symcount == 0)
403 return intsym_buf;
404
405 /* Normal syms might have section extension entries. */
406 shndx_hdr = NULL;
407 if (elf_symtab_shndx_list (ibfd) != NULL)
408 {
409 elf_section_list * entry;
410 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
411
412 /* Find an index section that is linked to this symtab section. */
413 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
414 {
415 /* PR 20063. */
416 if (entry->hdr.sh_link >= elf_numsections (ibfd))
417 continue;
418
419 if (sections[entry->hdr.sh_link] == symtab_hdr)
420 {
421 shndx_hdr = & entry->hdr;
422 break;
423 };
424 }
425
426 if (shndx_hdr == NULL)
427 {
428 if (symtab_hdr == & elf_symtab_hdr (ibfd))
429 /* Not really accurate, but this was how the old code used to work. */
430 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
431 /* Otherwise we do nothing. The assumption is that
432 the index table will not be needed. */
433 }
434 }
435
436 /* Read the symbols. */
437 alloc_ext = NULL;
438 alloc_extshndx = NULL;
439 alloc_intsym = NULL;
440 bed = get_elf_backend_data (ibfd);
441 extsym_size = bed->s->sizeof_sym;
442 amt = (bfd_size_type) symcount * extsym_size;
443 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
444 if (extsym_buf == NULL)
445 {
446 alloc_ext = bfd_malloc2 (symcount, extsym_size);
447 extsym_buf = alloc_ext;
448 }
449 if (extsym_buf == NULL
450 || bfd_seek (ibfd, pos, SEEK_SET) != 0
451 || bfd_bread (extsym_buf, amt, ibfd) != amt)
452 {
453 intsym_buf = NULL;
454 goto out;
455 }
456
457 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
458 extshndx_buf = NULL;
459 else
460 {
461 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
462 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
463 if (extshndx_buf == NULL)
464 {
465 alloc_extshndx = (Elf_External_Sym_Shndx *)
466 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
467 extshndx_buf = alloc_extshndx;
468 }
469 if (extshndx_buf == NULL
470 || bfd_seek (ibfd, pos, SEEK_SET) != 0
471 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
472 {
473 intsym_buf = NULL;
474 goto out;
475 }
476 }
477
478 if (intsym_buf == NULL)
479 {
480 alloc_intsym = (Elf_Internal_Sym *)
481 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
482 intsym_buf = alloc_intsym;
483 if (intsym_buf == NULL)
484 goto out;
485 }
486
487 /* Convert the symbols to internal form. */
488 isymend = intsym_buf + symcount;
489 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
490 shndx = extshndx_buf;
491 isym < isymend;
492 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
493 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
494 {
495 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
496 /* xgettext:c-format */
497 _bfd_error_handler (_("%B symbol number %lu references"
498 " nonexistent SHT_SYMTAB_SHNDX section"),
499 ibfd, (unsigned long) symoffset);
500 if (alloc_intsym != NULL)
501 free (alloc_intsym);
502 intsym_buf = NULL;
503 goto out;
504 }
505
506 out:
507 if (alloc_ext != NULL)
508 free (alloc_ext);
509 if (alloc_extshndx != NULL)
510 free (alloc_extshndx);
511
512 return intsym_buf;
513 }
514
515 /* Look up a symbol name. */
516 const char *
517 bfd_elf_sym_name (bfd *abfd,
518 Elf_Internal_Shdr *symtab_hdr,
519 Elf_Internal_Sym *isym,
520 asection *sym_sec)
521 {
522 const char *name;
523 unsigned int iname = isym->st_name;
524 unsigned int shindex = symtab_hdr->sh_link;
525
526 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
527 /* Check for a bogus st_shndx to avoid crashing. */
528 && isym->st_shndx < elf_numsections (abfd))
529 {
530 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
531 shindex = elf_elfheader (abfd)->e_shstrndx;
532 }
533
534 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
535 if (name == NULL)
536 name = "(null)";
537 else if (sym_sec && *name == '\0')
538 name = bfd_section_name (abfd, sym_sec);
539
540 return name;
541 }
542
543 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
544 sections. The first element is the flags, the rest are section
545 pointers. */
546
547 typedef union elf_internal_group {
548 Elf_Internal_Shdr *shdr;
549 unsigned int flags;
550 } Elf_Internal_Group;
551
552 /* Return the name of the group signature symbol. Why isn't the
553 signature just a string? */
554
555 static const char *
556 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
557 {
558 Elf_Internal_Shdr *hdr;
559 unsigned char esym[sizeof (Elf64_External_Sym)];
560 Elf_External_Sym_Shndx eshndx;
561 Elf_Internal_Sym isym;
562
563 /* First we need to ensure the symbol table is available. Make sure
564 that it is a symbol table section. */
565 if (ghdr->sh_link >= elf_numsections (abfd))
566 return NULL;
567 hdr = elf_elfsections (abfd) [ghdr->sh_link];
568 if (hdr->sh_type != SHT_SYMTAB
569 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
570 return NULL;
571
572 /* Go read the symbol. */
573 hdr = &elf_tdata (abfd)->symtab_hdr;
574 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
575 &isym, esym, &eshndx) == NULL)
576 return NULL;
577
578 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
579 }
580
581 /* Set next_in_group list pointer, and group name for NEWSECT. */
582
583 static bfd_boolean
584 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
585 {
586 unsigned int num_group = elf_tdata (abfd)->num_group;
587
588 /* If num_group is zero, read in all SHT_GROUP sections. The count
589 is set to -1 if there are no SHT_GROUP sections. */
590 if (num_group == 0)
591 {
592 unsigned int i, shnum;
593
594 /* First count the number of groups. If we have a SHT_GROUP
595 section with just a flag word (ie. sh_size is 4), ignore it. */
596 shnum = elf_numsections (abfd);
597 num_group = 0;
598
599 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
600 ( (shdr)->sh_type == SHT_GROUP \
601 && (shdr)->sh_size >= minsize \
602 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
603 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
604
605 for (i = 0; i < shnum; i++)
606 {
607 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
608
609 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
610 num_group += 1;
611 }
612
613 if (num_group == 0)
614 {
615 num_group = (unsigned) -1;
616 elf_tdata (abfd)->num_group = num_group;
617 elf_tdata (abfd)->group_sect_ptr = NULL;
618 }
619 else
620 {
621 /* We keep a list of elf section headers for group sections,
622 so we can find them quickly. */
623 bfd_size_type amt;
624
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
627 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
628 if (elf_tdata (abfd)->group_sect_ptr == NULL)
629 return FALSE;
630 memset (elf_tdata (abfd)->group_sect_ptr, 0, num_group * sizeof (Elf_Internal_Shdr *));
631 num_group = 0;
632
633 for (i = 0; i < shnum; i++)
634 {
635 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
636
637 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
638 {
639 unsigned char *src;
640 Elf_Internal_Group *dest;
641
642 /* Make sure the group section has a BFD section
643 attached to it. */
644 if (!bfd_section_from_shdr (abfd, i))
645 return FALSE;
646
647 /* Add to list of sections. */
648 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
649 num_group += 1;
650
651 /* Read the raw contents. */
652 BFD_ASSERT (sizeof (*dest) >= 4);
653 amt = shdr->sh_size * sizeof (*dest) / 4;
654 shdr->contents = (unsigned char *)
655 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
656 /* PR binutils/4110: Handle corrupt group headers. */
657 if (shdr->contents == NULL)
658 {
659 _bfd_error_handler
660 /* xgettext:c-format */
661 (_("%B: corrupt size field in group section"
662 " header: %#Lx"), abfd, shdr->sh_size);
663 bfd_set_error (bfd_error_bad_value);
664 -- num_group;
665 continue;
666 }
667
668 memset (shdr->contents, 0, amt);
669
670 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
672 != shdr->sh_size))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%B: invalid size field in group section"
677 " header: %#Lx"), abfd, shdr->sh_size);
678 bfd_set_error (bfd_error_bad_value);
679 -- num_group;
680 /* PR 17510: If the group contents are even
681 partially corrupt, do not allow any of the
682 contents to be used. */
683 memset (shdr->contents, 0, amt);
684 continue;
685 }
686
687 /* Translate raw contents, a flag word followed by an
688 array of elf section indices all in target byte order,
689 to the flag word followed by an array of elf section
690 pointers. */
691 src = shdr->contents + shdr->sh_size;
692 dest = (Elf_Internal_Group *) (shdr->contents + amt);
693
694 while (1)
695 {
696 unsigned int idx;
697
698 src -= 4;
699 --dest;
700 idx = H_GET_32 (abfd, src);
701 if (src == shdr->contents)
702 {
703 dest->flags = idx;
704 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
705 shdr->bfd_section->flags
706 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
707 break;
708 }
709 if (idx >= shnum)
710 {
711 _bfd_error_handler
712 (_("%B: invalid SHT_GROUP entry"), abfd);
713 idx = 0;
714 }
715 dest->shdr = elf_elfsections (abfd)[idx];
716 }
717 }
718 }
719
720 /* PR 17510: Corrupt binaries might contain invalid groups. */
721 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
722 {
723 elf_tdata (abfd)->num_group = num_group;
724
725 /* If all groups are invalid then fail. */
726 if (num_group == 0)
727 {
728 elf_tdata (abfd)->group_sect_ptr = NULL;
729 elf_tdata (abfd)->num_group = num_group = -1;
730 _bfd_error_handler
731 (_("%B: no valid group sections found"), abfd);
732 bfd_set_error (bfd_error_bad_value);
733 }
734 }
735 }
736 }
737
738 if (num_group != (unsigned) -1)
739 {
740 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
741 unsigned int j;
742
743 for (j = 0; j < num_group; j++)
744 {
745 /* Begin search from previous found group. */
746 unsigned i = (j + search_offset) % num_group;
747
748 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
749 Elf_Internal_Group *idx;
750 bfd_size_type n_elt;
751
752 if (shdr == NULL)
753 continue;
754
755 idx = (Elf_Internal_Group *) shdr->contents;
756 if (idx == NULL || shdr->sh_size < 4)
757 {
758 /* See PR 21957 for a reproducer. */
759 /* xgettext:c-format */
760 _bfd_error_handler (_("%B: group section '%A' has no contents"),
761 abfd, shdr->bfd_section);
762 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
763 bfd_set_error (bfd_error_bad_value);
764 return FALSE;
765 }
766 n_elt = shdr->sh_size / 4;
767
768 /* Look through this group's sections to see if current
769 section is a member. */
770 while (--n_elt != 0)
771 if ((++idx)->shdr == hdr)
772 {
773 asection *s = NULL;
774
775 /* We are a member of this group. Go looking through
776 other members to see if any others are linked via
777 next_in_group. */
778 idx = (Elf_Internal_Group *) shdr->contents;
779 n_elt = shdr->sh_size / 4;
780 while (--n_elt != 0)
781 if ((s = (++idx)->shdr->bfd_section) != NULL
782 && elf_next_in_group (s) != NULL)
783 break;
784 if (n_elt != 0)
785 {
786 /* Snarf the group name from other member, and
787 insert current section in circular list. */
788 elf_group_name (newsect) = elf_group_name (s);
789 elf_next_in_group (newsect) = elf_next_in_group (s);
790 elf_next_in_group (s) = newsect;
791 }
792 else
793 {
794 const char *gname;
795
796 gname = group_signature (abfd, shdr);
797 if (gname == NULL)
798 return FALSE;
799 elf_group_name (newsect) = gname;
800
801 /* Start a circular list with one element. */
802 elf_next_in_group (newsect) = newsect;
803 }
804
805 /* If the group section has been created, point to the
806 new member. */
807 if (shdr->bfd_section != NULL)
808 elf_next_in_group (shdr->bfd_section) = newsect;
809
810 elf_tdata (abfd)->group_search_offset = i;
811 j = num_group - 1;
812 break;
813 }
814 }
815 }
816
817 if (elf_group_name (newsect) == NULL)
818 {
819 /* xgettext:c-format */
820 _bfd_error_handler (_("%B: no group info for section '%A'"),
821 abfd, newsect);
822 return FALSE;
823 }
824 return TRUE;
825 }
826
827 bfd_boolean
828 _bfd_elf_setup_sections (bfd *abfd)
829 {
830 unsigned int i;
831 unsigned int num_group = elf_tdata (abfd)->num_group;
832 bfd_boolean result = TRUE;
833 asection *s;
834
835 /* Process SHF_LINK_ORDER. */
836 for (s = abfd->sections; s != NULL; s = s->next)
837 {
838 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
839 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
840 {
841 unsigned int elfsec = this_hdr->sh_link;
842 /* FIXME: The old Intel compiler and old strip/objcopy may
843 not set the sh_link or sh_info fields. Hence we could
844 get the situation where elfsec is 0. */
845 if (elfsec == 0)
846 {
847 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
848 if (bed->link_order_error_handler)
849 bed->link_order_error_handler
850 /* xgettext:c-format */
851 (_("%B: warning: sh_link not set for section `%A'"),
852 abfd, s);
853 }
854 else
855 {
856 asection *linksec = NULL;
857
858 if (elfsec < elf_numsections (abfd))
859 {
860 this_hdr = elf_elfsections (abfd)[elfsec];
861 linksec = this_hdr->bfd_section;
862 }
863
864 /* PR 1991, 2008:
865 Some strip/objcopy may leave an incorrect value in
866 sh_link. We don't want to proceed. */
867 if (linksec == NULL)
868 {
869 _bfd_error_handler
870 /* xgettext:c-format */
871 (_("%B: sh_link [%d] in section `%A' is incorrect"),
872 s->owner, elfsec, s);
873 result = FALSE;
874 }
875
876 elf_linked_to_section (s) = linksec;
877 }
878 }
879 else if (this_hdr->sh_type == SHT_GROUP
880 && elf_next_in_group (s) == NULL)
881 {
882 _bfd_error_handler
883 /* xgettext:c-format */
884 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
885 abfd, elf_section_data (s)->this_idx);
886 result = FALSE;
887 }
888 }
889
890 /* Process section groups. */
891 if (num_group == (unsigned) -1)
892 return result;
893
894 for (i = 0; i < num_group; i++)
895 {
896 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
897 Elf_Internal_Group *idx;
898 unsigned int n_elt;
899
900 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
901 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
902 {
903 _bfd_error_handler
904 /* xgettext:c-format */
905 (_("%B: section group entry number %u is corrupt"),
906 abfd, i);
907 result = FALSE;
908 continue;
909 }
910
911 idx = (Elf_Internal_Group *) shdr->contents;
912 n_elt = shdr->sh_size / 4;
913
914 while (--n_elt != 0)
915 {
916 ++ idx;
917
918 if (idx->shdr == NULL)
919 continue;
920 else if (idx->shdr->bfd_section)
921 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
922 else if (idx->shdr->sh_type != SHT_RELA
923 && idx->shdr->sh_type != SHT_REL)
924 {
925 /* There are some unknown sections in the group. */
926 _bfd_error_handler
927 /* xgettext:c-format */
928 (_("%B: unknown type [%#x] section `%s' in group [%A]"),
929 abfd,
930 idx->shdr->sh_type,
931 bfd_elf_string_from_elf_section (abfd,
932 (elf_elfheader (abfd)
933 ->e_shstrndx),
934 idx->shdr->sh_name),
935 shdr->bfd_section);
936 result = FALSE;
937 }
938 }
939 }
940
941 return result;
942 }
943
944 bfd_boolean
945 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
946 {
947 return elf_next_in_group (sec) != NULL;
948 }
949
950 static char *
951 convert_debug_to_zdebug (bfd *abfd, const char *name)
952 {
953 unsigned int len = strlen (name);
954 char *new_name = bfd_alloc (abfd, len + 2);
955 if (new_name == NULL)
956 return NULL;
957 new_name[0] = '.';
958 new_name[1] = 'z';
959 memcpy (new_name + 2, name + 1, len);
960 return new_name;
961 }
962
963 static char *
964 convert_zdebug_to_debug (bfd *abfd, const char *name)
965 {
966 unsigned int len = strlen (name);
967 char *new_name = bfd_alloc (abfd, len);
968 if (new_name == NULL)
969 return NULL;
970 new_name[0] = '.';
971 memcpy (new_name + 1, name + 2, len - 1);
972 return new_name;
973 }
974
975 /* Make a BFD section from an ELF section. We store a pointer to the
976 BFD section in the bfd_section field of the header. */
977
978 bfd_boolean
979 _bfd_elf_make_section_from_shdr (bfd *abfd,
980 Elf_Internal_Shdr *hdr,
981 const char *name,
982 int shindex)
983 {
984 asection *newsect;
985 flagword flags;
986 const struct elf_backend_data *bed;
987
988 if (hdr->bfd_section != NULL)
989 return TRUE;
990
991 newsect = bfd_make_section_anyway (abfd, name);
992 if (newsect == NULL)
993 return FALSE;
994
995 hdr->bfd_section = newsect;
996 elf_section_data (newsect)->this_hdr = *hdr;
997 elf_section_data (newsect)->this_idx = shindex;
998
999 /* Always use the real type/flags. */
1000 elf_section_type (newsect) = hdr->sh_type;
1001 elf_section_flags (newsect) = hdr->sh_flags;
1002
1003 newsect->filepos = hdr->sh_offset;
1004
1005 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1006 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1007 || ! bfd_set_section_alignment (abfd, newsect,
1008 bfd_log2 (hdr->sh_addralign)))
1009 return FALSE;
1010
1011 flags = SEC_NO_FLAGS;
1012 if (hdr->sh_type != SHT_NOBITS)
1013 flags |= SEC_HAS_CONTENTS;
1014 if (hdr->sh_type == SHT_GROUP)
1015 flags |= SEC_GROUP;
1016 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1017 {
1018 flags |= SEC_ALLOC;
1019 if (hdr->sh_type != SHT_NOBITS)
1020 flags |= SEC_LOAD;
1021 }
1022 if ((hdr->sh_flags & SHF_WRITE) == 0)
1023 flags |= SEC_READONLY;
1024 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1025 flags |= SEC_CODE;
1026 else if ((flags & SEC_LOAD) != 0)
1027 flags |= SEC_DATA;
1028 if ((hdr->sh_flags & SHF_MERGE) != 0)
1029 {
1030 flags |= SEC_MERGE;
1031 newsect->entsize = hdr->sh_entsize;
1032 }
1033 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1034 flags |= SEC_STRINGS;
1035 if (hdr->sh_flags & SHF_GROUP)
1036 if (!setup_group (abfd, hdr, newsect))
1037 return FALSE;
1038 if ((hdr->sh_flags & SHF_TLS) != 0)
1039 flags |= SEC_THREAD_LOCAL;
1040 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1041 flags |= SEC_EXCLUDE;
1042
1043 if ((flags & SEC_ALLOC) == 0)
1044 {
1045 /* The debugging sections appear to be recognized only by name,
1046 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1047 if (name [0] == '.')
1048 {
1049 const char *p;
1050 int n;
1051 if (name[1] == 'd')
1052 p = ".debug", n = 6;
1053 else if (name[1] == 'g' && name[2] == 'n')
1054 p = ".gnu.linkonce.wi.", n = 17;
1055 else if (name[1] == 'g' && name[2] == 'd')
1056 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1057 else if (name[1] == 'l')
1058 p = ".line", n = 5;
1059 else if (name[1] == 's')
1060 p = ".stab", n = 5;
1061 else if (name[1] == 'z')
1062 p = ".zdebug", n = 7;
1063 else
1064 p = NULL, n = 0;
1065 if (p != NULL && strncmp (name, p, n) == 0)
1066 flags |= SEC_DEBUGGING;
1067 }
1068 }
1069
1070 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1071 only link a single copy of the section. This is used to support
1072 g++. g++ will emit each template expansion in its own section.
1073 The symbols will be defined as weak, so that multiple definitions
1074 are permitted. The GNU linker extension is to actually discard
1075 all but one of the sections. */
1076 if (CONST_STRNEQ (name, ".gnu.linkonce")
1077 && elf_next_in_group (newsect) == NULL)
1078 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1079
1080 bed = get_elf_backend_data (abfd);
1081 if (bed->elf_backend_section_flags)
1082 if (! bed->elf_backend_section_flags (&flags, hdr))
1083 return FALSE;
1084
1085 if (! bfd_set_section_flags (abfd, newsect, flags))
1086 return FALSE;
1087
1088 /* We do not parse the PT_NOTE segments as we are interested even in the
1089 separate debug info files which may have the segments offsets corrupted.
1090 PT_NOTEs from the core files are currently not parsed using BFD. */
1091 if (hdr->sh_type == SHT_NOTE)
1092 {
1093 bfd_byte *contents;
1094
1095 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1096 return FALSE;
1097
1098 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1099 hdr->sh_offset, hdr->sh_addralign);
1100 free (contents);
1101 }
1102
1103 if ((flags & SEC_ALLOC) != 0)
1104 {
1105 Elf_Internal_Phdr *phdr;
1106 unsigned int i, nload;
1107
1108 /* Some ELF linkers produce binaries with all the program header
1109 p_paddr fields zero. If we have such a binary with more than
1110 one PT_LOAD header, then leave the section lma equal to vma
1111 so that we don't create sections with overlapping lma. */
1112 phdr = elf_tdata (abfd)->phdr;
1113 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1114 if (phdr->p_paddr != 0)
1115 break;
1116 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1117 ++nload;
1118 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1119 return TRUE;
1120
1121 phdr = elf_tdata (abfd)->phdr;
1122 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1123 {
1124 if (((phdr->p_type == PT_LOAD
1125 && (hdr->sh_flags & SHF_TLS) == 0)
1126 || phdr->p_type == PT_TLS)
1127 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1128 {
1129 if ((flags & SEC_LOAD) == 0)
1130 newsect->lma = (phdr->p_paddr
1131 + hdr->sh_addr - phdr->p_vaddr);
1132 else
1133 /* We used to use the same adjustment for SEC_LOAD
1134 sections, but that doesn't work if the segment
1135 is packed with code from multiple VMAs.
1136 Instead we calculate the section LMA based on
1137 the segment LMA. It is assumed that the
1138 segment will contain sections with contiguous
1139 LMAs, even if the VMAs are not. */
1140 newsect->lma = (phdr->p_paddr
1141 + hdr->sh_offset - phdr->p_offset);
1142
1143 /* With contiguous segments, we can't tell from file
1144 offsets whether a section with zero size should
1145 be placed at the end of one segment or the
1146 beginning of the next. Decide based on vaddr. */
1147 if (hdr->sh_addr >= phdr->p_vaddr
1148 && (hdr->sh_addr + hdr->sh_size
1149 <= phdr->p_vaddr + phdr->p_memsz))
1150 break;
1151 }
1152 }
1153 }
1154
1155 /* Compress/decompress DWARF debug sections with names: .debug_* and
1156 .zdebug_*, after the section flags is set. */
1157 if ((flags & SEC_DEBUGGING)
1158 && ((name[1] == 'd' && name[6] == '_')
1159 || (name[1] == 'z' && name[7] == '_')))
1160 {
1161 enum { nothing, compress, decompress } action = nothing;
1162 int compression_header_size;
1163 bfd_size_type uncompressed_size;
1164 bfd_boolean compressed
1165 = bfd_is_section_compressed_with_header (abfd, newsect,
1166 &compression_header_size,
1167 &uncompressed_size);
1168
1169 if (compressed)
1170 {
1171 /* Compressed section. Check if we should decompress. */
1172 if ((abfd->flags & BFD_DECOMPRESS))
1173 action = decompress;
1174 }
1175
1176 /* Compress the uncompressed section or convert from/to .zdebug*
1177 section. Check if we should compress. */
1178 if (action == nothing)
1179 {
1180 if (newsect->size != 0
1181 && (abfd->flags & BFD_COMPRESS)
1182 && compression_header_size >= 0
1183 && uncompressed_size > 0
1184 && (!compressed
1185 || ((compression_header_size > 0)
1186 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1187 action = compress;
1188 else
1189 return TRUE;
1190 }
1191
1192 if (action == compress)
1193 {
1194 if (!bfd_init_section_compress_status (abfd, newsect))
1195 {
1196 _bfd_error_handler
1197 /* xgettext:c-format */
1198 (_("%B: unable to initialize compress status for section %s"),
1199 abfd, name);
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 if (!bfd_init_section_decompress_status (abfd, newsect))
1206 {
1207 _bfd_error_handler
1208 /* xgettext:c-format */
1209 (_("%B: unable to initialize decompress status for section %s"),
1210 abfd, name);
1211 return FALSE;
1212 }
1213 }
1214
1215 if (abfd->is_linker_input)
1216 {
1217 if (name[1] == 'z'
1218 && (action == decompress
1219 || (action == compress
1220 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1221 {
1222 /* Convert section name from .zdebug_* to .debug_* so
1223 that linker will consider this section as a debug
1224 section. */
1225 char *new_name = convert_zdebug_to_debug (abfd, name);
1226 if (new_name == NULL)
1227 return FALSE;
1228 bfd_rename_section (abfd, newsect, new_name);
1229 }
1230 }
1231 else
1232 /* For objdump, don't rename the section. For objcopy, delay
1233 section rename to elf_fake_sections. */
1234 newsect->flags |= SEC_ELF_RENAME;
1235 }
1236
1237 return TRUE;
1238 }
1239
1240 const char *const bfd_elf_section_type_names[] =
1241 {
1242 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1243 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1244 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1245 };
1246
1247 /* ELF relocs are against symbols. If we are producing relocatable
1248 output, and the reloc is against an external symbol, and nothing
1249 has given us any additional addend, the resulting reloc will also
1250 be against the same symbol. In such a case, we don't want to
1251 change anything about the way the reloc is handled, since it will
1252 all be done at final link time. Rather than put special case code
1253 into bfd_perform_relocation, all the reloc types use this howto
1254 function. It just short circuits the reloc if producing
1255 relocatable output against an external symbol. */
1256
1257 bfd_reloc_status_type
1258 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1259 arelent *reloc_entry,
1260 asymbol *symbol,
1261 void *data ATTRIBUTE_UNUSED,
1262 asection *input_section,
1263 bfd *output_bfd,
1264 char **error_message ATTRIBUTE_UNUSED)
1265 {
1266 if (output_bfd != NULL
1267 && (symbol->flags & BSF_SECTION_SYM) == 0
1268 && (! reloc_entry->howto->partial_inplace
1269 || reloc_entry->addend == 0))
1270 {
1271 reloc_entry->address += input_section->output_offset;
1272 return bfd_reloc_ok;
1273 }
1274
1275 return bfd_reloc_continue;
1276 }
1277 \f
1278 /* Returns TRUE if section A matches section B.
1279 Names, addresses and links may be different, but everything else
1280 should be the same. */
1281
1282 static bfd_boolean
1283 section_match (const Elf_Internal_Shdr * a,
1284 const Elf_Internal_Shdr * b)
1285 {
1286 return
1287 a->sh_type == b->sh_type
1288 && (a->sh_flags & ~ SHF_INFO_LINK)
1289 == (b->sh_flags & ~ SHF_INFO_LINK)
1290 && a->sh_addralign == b->sh_addralign
1291 && a->sh_size == b->sh_size
1292 && a->sh_entsize == b->sh_entsize
1293 /* FIXME: Check sh_addr ? */
1294 ;
1295 }
1296
1297 /* Find a section in OBFD that has the same characteristics
1298 as IHEADER. Return the index of this section or SHN_UNDEF if
1299 none can be found. Check's section HINT first, as this is likely
1300 to be the correct section. */
1301
1302 static unsigned int
1303 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1304 const unsigned int hint)
1305 {
1306 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1307 unsigned int i;
1308
1309 BFD_ASSERT (iheader != NULL);
1310
1311 /* See PR 20922 for a reproducer of the NULL test. */
1312 if (hint < elf_numsections (obfd)
1313 && oheaders[hint] != NULL
1314 && section_match (oheaders[hint], iheader))
1315 return hint;
1316
1317 for (i = 1; i < elf_numsections (obfd); i++)
1318 {
1319 Elf_Internal_Shdr * oheader = oheaders[i];
1320
1321 if (oheader == NULL)
1322 continue;
1323 if (section_match (oheader, iheader))
1324 /* FIXME: Do we care if there is a potential for
1325 multiple matches ? */
1326 return i;
1327 }
1328
1329 return SHN_UNDEF;
1330 }
1331
1332 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1333 Processor specific section, based upon a matching input section.
1334 Returns TRUE upon success, FALSE otherwise. */
1335
1336 static bfd_boolean
1337 copy_special_section_fields (const bfd *ibfd,
1338 bfd *obfd,
1339 const Elf_Internal_Shdr *iheader,
1340 Elf_Internal_Shdr *oheader,
1341 const unsigned int secnum)
1342 {
1343 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1344 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1345 bfd_boolean changed = FALSE;
1346 unsigned int sh_link;
1347
1348 if (oheader->sh_type == SHT_NOBITS)
1349 {
1350 /* This is a feature for objcopy --only-keep-debug:
1351 When a section's type is changed to NOBITS, we preserve
1352 the sh_link and sh_info fields so that they can be
1353 matched up with the original.
1354
1355 Note: Strictly speaking these assignments are wrong.
1356 The sh_link and sh_info fields should point to the
1357 relevent sections in the output BFD, which may not be in
1358 the same location as they were in the input BFD. But
1359 the whole point of this action is to preserve the
1360 original values of the sh_link and sh_info fields, so
1361 that they can be matched up with the section headers in
1362 the original file. So strictly speaking we may be
1363 creating an invalid ELF file, but it is only for a file
1364 that just contains debug info and only for sections
1365 without any contents. */
1366 if (oheader->sh_link == 0)
1367 oheader->sh_link = iheader->sh_link;
1368 if (oheader->sh_info == 0)
1369 oheader->sh_info = iheader->sh_info;
1370 return TRUE;
1371 }
1372
1373 /* Allow the target a chance to decide how these fields should be set. */
1374 if (bed->elf_backend_copy_special_section_fields != NULL
1375 && bed->elf_backend_copy_special_section_fields
1376 (ibfd, obfd, iheader, oheader))
1377 return TRUE;
1378
1379 /* We have an iheader which might match oheader, and which has non-zero
1380 sh_info and/or sh_link fields. Attempt to follow those links and find
1381 the section in the output bfd which corresponds to the linked section
1382 in the input bfd. */
1383 if (iheader->sh_link != SHN_UNDEF)
1384 {
1385 /* See PR 20931 for a reproducer. */
1386 if (iheader->sh_link >= elf_numsections (ibfd))
1387 {
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%B: Invalid sh_link field (%d) in section number %d"),
1391 ibfd, iheader->sh_link, secnum);
1392 return FALSE;
1393 }
1394
1395 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1396 if (sh_link != SHN_UNDEF)
1397 {
1398 oheader->sh_link = sh_link;
1399 changed = TRUE;
1400 }
1401 else
1402 /* FIXME: Should we install iheader->sh_link
1403 if we could not find a match ? */
1404 _bfd_error_handler
1405 /* xgettext:c-format */
1406 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1407 }
1408
1409 if (iheader->sh_info)
1410 {
1411 /* The sh_info field can hold arbitrary information, but if the
1412 SHF_LINK_INFO flag is set then it should be interpreted as a
1413 section index. */
1414 if (iheader->sh_flags & SHF_INFO_LINK)
1415 {
1416 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1417 iheader->sh_info);
1418 if (sh_link != SHN_UNDEF)
1419 oheader->sh_flags |= SHF_INFO_LINK;
1420 }
1421 else
1422 /* No idea what it means - just copy it. */
1423 sh_link = iheader->sh_info;
1424
1425 if (sh_link != SHN_UNDEF)
1426 {
1427 oheader->sh_info = sh_link;
1428 changed = TRUE;
1429 }
1430 else
1431 _bfd_error_handler
1432 /* xgettext:c-format */
1433 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1434 }
1435
1436 return changed;
1437 }
1438
1439 /* Copy the program header and other data from one object module to
1440 another. */
1441
1442 bfd_boolean
1443 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1444 {
1445 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1446 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1447 const struct elf_backend_data *bed;
1448 unsigned int i;
1449
1450 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1451 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1452 return TRUE;
1453
1454 if (!elf_flags_init (obfd))
1455 {
1456 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1457 elf_flags_init (obfd) = TRUE;
1458 }
1459
1460 elf_gp (obfd) = elf_gp (ibfd);
1461
1462 /* Also copy the EI_OSABI field. */
1463 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1464 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1465
1466 /* If set, copy the EI_ABIVERSION field. */
1467 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1468 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1469 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1470
1471 /* Copy object attributes. */
1472 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1473
1474 if (iheaders == NULL || oheaders == NULL)
1475 return TRUE;
1476
1477 bed = get_elf_backend_data (obfd);
1478
1479 /* Possibly copy other fields in the section header. */
1480 for (i = 1; i < elf_numsections (obfd); i++)
1481 {
1482 unsigned int j;
1483 Elf_Internal_Shdr * oheader = oheaders[i];
1484
1485 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1486 because of a special case need for generating separate debug info
1487 files. See below for more details. */
1488 if (oheader == NULL
1489 || (oheader->sh_type != SHT_NOBITS
1490 && oheader->sh_type < SHT_LOOS))
1491 continue;
1492
1493 /* Ignore empty sections, and sections whose
1494 fields have already been initialised. */
1495 if (oheader->sh_size == 0
1496 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1497 continue;
1498
1499 /* Scan for the matching section in the input bfd.
1500 First we try for a direct mapping between the input and output sections. */
1501 for (j = 1; j < elf_numsections (ibfd); j++)
1502 {
1503 const Elf_Internal_Shdr * iheader = iheaders[j];
1504
1505 if (iheader == NULL)
1506 continue;
1507
1508 if (oheader->bfd_section != NULL
1509 && iheader->bfd_section != NULL
1510 && iheader->bfd_section->output_section != NULL
1511 && iheader->bfd_section->output_section == oheader->bfd_section)
1512 {
1513 /* We have found a connection from the input section to the
1514 output section. Attempt to copy the header fields. If
1515 this fails then do not try any further sections - there
1516 should only be a one-to-one mapping between input and output. */
1517 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1518 j = elf_numsections (ibfd);
1519 break;
1520 }
1521 }
1522
1523 if (j < elf_numsections (ibfd))
1524 continue;
1525
1526 /* That failed. So try to deduce the corresponding input section.
1527 Unfortunately we cannot compare names as the output string table
1528 is empty, so instead we check size, address and type. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 /* Try matching fields in the input section's header.
1537 Since --only-keep-debug turns all non-debug sections into
1538 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1539 input type. */
1540 if ((oheader->sh_type == SHT_NOBITS
1541 || iheader->sh_type == oheader->sh_type)
1542 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1543 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1544 && iheader->sh_addralign == oheader->sh_addralign
1545 && iheader->sh_entsize == oheader->sh_entsize
1546 && iheader->sh_size == oheader->sh_size
1547 && iheader->sh_addr == oheader->sh_addr
1548 && (iheader->sh_info != oheader->sh_info
1549 || iheader->sh_link != oheader->sh_link))
1550 {
1551 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1552 break;
1553 }
1554 }
1555
1556 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1557 {
1558 /* Final attempt. Call the backend copy function
1559 with a NULL input section. */
1560 if (bed->elf_backend_copy_special_section_fields != NULL)
1561 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1562 }
1563 }
1564
1565 return TRUE;
1566 }
1567
1568 static const char *
1569 get_segment_type (unsigned int p_type)
1570 {
1571 const char *pt;
1572 switch (p_type)
1573 {
1574 case PT_NULL: pt = "NULL"; break;
1575 case PT_LOAD: pt = "LOAD"; break;
1576 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1577 case PT_INTERP: pt = "INTERP"; break;
1578 case PT_NOTE: pt = "NOTE"; break;
1579 case PT_SHLIB: pt = "SHLIB"; break;
1580 case PT_PHDR: pt = "PHDR"; break;
1581 case PT_TLS: pt = "TLS"; break;
1582 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1583 case PT_GNU_STACK: pt = "STACK"; break;
1584 case PT_GNU_RELRO: pt = "RELRO"; break;
1585 default: pt = NULL; break;
1586 }
1587 return pt;
1588 }
1589
1590 /* Print out the program headers. */
1591
1592 bfd_boolean
1593 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1594 {
1595 FILE *f = (FILE *) farg;
1596 Elf_Internal_Phdr *p;
1597 asection *s;
1598 bfd_byte *dynbuf = NULL;
1599
1600 p = elf_tdata (abfd)->phdr;
1601 if (p != NULL)
1602 {
1603 unsigned int i, c;
1604
1605 fprintf (f, _("\nProgram Header:\n"));
1606 c = elf_elfheader (abfd)->e_phnum;
1607 for (i = 0; i < c; i++, p++)
1608 {
1609 const char *pt = get_segment_type (p->p_type);
1610 char buf[20];
1611
1612 if (pt == NULL)
1613 {
1614 sprintf (buf, "0x%lx", p->p_type);
1615 pt = buf;
1616 }
1617 fprintf (f, "%8s off 0x", pt);
1618 bfd_fprintf_vma (abfd, f, p->p_offset);
1619 fprintf (f, " vaddr 0x");
1620 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1621 fprintf (f, " paddr 0x");
1622 bfd_fprintf_vma (abfd, f, p->p_paddr);
1623 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1624 fprintf (f, " filesz 0x");
1625 bfd_fprintf_vma (abfd, f, p->p_filesz);
1626 fprintf (f, " memsz 0x");
1627 bfd_fprintf_vma (abfd, f, p->p_memsz);
1628 fprintf (f, " flags %c%c%c",
1629 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1630 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1631 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1632 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1633 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1634 fprintf (f, "\n");
1635 }
1636 }
1637
1638 s = bfd_get_section_by_name (abfd, ".dynamic");
1639 if (s != NULL)
1640 {
1641 unsigned int elfsec;
1642 unsigned long shlink;
1643 bfd_byte *extdyn, *extdynend;
1644 size_t extdynsize;
1645 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1646
1647 fprintf (f, _("\nDynamic Section:\n"));
1648
1649 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1650 goto error_return;
1651
1652 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1653 if (elfsec == SHN_BAD)
1654 goto error_return;
1655 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1656
1657 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1658 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1659
1660 extdyn = dynbuf;
1661 /* PR 17512: file: 6f427532. */
1662 if (s->size < extdynsize)
1663 goto error_return;
1664 extdynend = extdyn + s->size;
1665 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1666 Fix range check. */
1667 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1668 {
1669 Elf_Internal_Dyn dyn;
1670 const char *name = "";
1671 char ab[20];
1672 bfd_boolean stringp;
1673 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1674
1675 (*swap_dyn_in) (abfd, extdyn, &dyn);
1676
1677 if (dyn.d_tag == DT_NULL)
1678 break;
1679
1680 stringp = FALSE;
1681 switch (dyn.d_tag)
1682 {
1683 default:
1684 if (bed->elf_backend_get_target_dtag)
1685 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1686
1687 if (!strcmp (name, ""))
1688 {
1689 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1690 name = ab;
1691 }
1692 break;
1693
1694 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1695 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1696 case DT_PLTGOT: name = "PLTGOT"; break;
1697 case DT_HASH: name = "HASH"; break;
1698 case DT_STRTAB: name = "STRTAB"; break;
1699 case DT_SYMTAB: name = "SYMTAB"; break;
1700 case DT_RELA: name = "RELA"; break;
1701 case DT_RELASZ: name = "RELASZ"; break;
1702 case DT_RELAENT: name = "RELAENT"; break;
1703 case DT_STRSZ: name = "STRSZ"; break;
1704 case DT_SYMENT: name = "SYMENT"; break;
1705 case DT_INIT: name = "INIT"; break;
1706 case DT_FINI: name = "FINI"; break;
1707 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1708 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1709 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1710 case DT_REL: name = "REL"; break;
1711 case DT_RELSZ: name = "RELSZ"; break;
1712 case DT_RELENT: name = "RELENT"; break;
1713 case DT_PLTREL: name = "PLTREL"; break;
1714 case DT_DEBUG: name = "DEBUG"; break;
1715 case DT_TEXTREL: name = "TEXTREL"; break;
1716 case DT_JMPREL: name = "JMPREL"; break;
1717 case DT_BIND_NOW: name = "BIND_NOW"; break;
1718 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1719 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1720 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1721 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1722 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1723 case DT_FLAGS: name = "FLAGS"; break;
1724 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1725 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1726 case DT_CHECKSUM: name = "CHECKSUM"; break;
1727 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1728 case DT_MOVEENT: name = "MOVEENT"; break;
1729 case DT_MOVESZ: name = "MOVESZ"; break;
1730 case DT_FEATURE: name = "FEATURE"; break;
1731 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1732 case DT_SYMINSZ: name = "SYMINSZ"; break;
1733 case DT_SYMINENT: name = "SYMINENT"; break;
1734 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1735 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1736 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1737 case DT_PLTPAD: name = "PLTPAD"; break;
1738 case DT_MOVETAB: name = "MOVETAB"; break;
1739 case DT_SYMINFO: name = "SYMINFO"; break;
1740 case DT_RELACOUNT: name = "RELACOUNT"; break;
1741 case DT_RELCOUNT: name = "RELCOUNT"; break;
1742 case DT_FLAGS_1: name = "FLAGS_1"; break;
1743 case DT_VERSYM: name = "VERSYM"; break;
1744 case DT_VERDEF: name = "VERDEF"; break;
1745 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1746 case DT_VERNEED: name = "VERNEED"; break;
1747 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1748 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1749 case DT_USED: name = "USED"; break;
1750 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1751 case DT_GNU_HASH: name = "GNU_HASH"; break;
1752 }
1753
1754 fprintf (f, " %-20s ", name);
1755 if (! stringp)
1756 {
1757 fprintf (f, "0x");
1758 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1759 }
1760 else
1761 {
1762 const char *string;
1763 unsigned int tagv = dyn.d_un.d_val;
1764
1765 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1766 if (string == NULL)
1767 goto error_return;
1768 fprintf (f, "%s", string);
1769 }
1770 fprintf (f, "\n");
1771 }
1772
1773 free (dynbuf);
1774 dynbuf = NULL;
1775 }
1776
1777 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1778 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1779 {
1780 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1781 return FALSE;
1782 }
1783
1784 if (elf_dynverdef (abfd) != 0)
1785 {
1786 Elf_Internal_Verdef *t;
1787
1788 fprintf (f, _("\nVersion definitions:\n"));
1789 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1790 {
1791 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1792 t->vd_flags, t->vd_hash,
1793 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1794 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1795 {
1796 Elf_Internal_Verdaux *a;
1797
1798 fprintf (f, "\t");
1799 for (a = t->vd_auxptr->vda_nextptr;
1800 a != NULL;
1801 a = a->vda_nextptr)
1802 fprintf (f, "%s ",
1803 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1804 fprintf (f, "\n");
1805 }
1806 }
1807 }
1808
1809 if (elf_dynverref (abfd) != 0)
1810 {
1811 Elf_Internal_Verneed *t;
1812
1813 fprintf (f, _("\nVersion References:\n"));
1814 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1815 {
1816 Elf_Internal_Vernaux *a;
1817
1818 fprintf (f, _(" required from %s:\n"),
1819 t->vn_filename ? t->vn_filename : "<corrupt>");
1820 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1821 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1822 a->vna_flags, a->vna_other,
1823 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1824 }
1825 }
1826
1827 return TRUE;
1828
1829 error_return:
1830 if (dynbuf != NULL)
1831 free (dynbuf);
1832 return FALSE;
1833 }
1834
1835 /* Get version string. */
1836
1837 const char *
1838 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1839 bfd_boolean *hidden)
1840 {
1841 const char *version_string = NULL;
1842 if (elf_dynversym (abfd) != 0
1843 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1844 {
1845 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1846
1847 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1848 vernum &= VERSYM_VERSION;
1849
1850 if (vernum == 0)
1851 version_string = "";
1852 else if (vernum == 1)
1853 version_string = "Base";
1854 else if (vernum <= elf_tdata (abfd)->cverdefs)
1855 version_string =
1856 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1857 else
1858 {
1859 Elf_Internal_Verneed *t;
1860
1861 version_string = "";
1862 for (t = elf_tdata (abfd)->verref;
1863 t != NULL;
1864 t = t->vn_nextref)
1865 {
1866 Elf_Internal_Vernaux *a;
1867
1868 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1869 {
1870 if (a->vna_other == vernum)
1871 {
1872 version_string = a->vna_nodename;
1873 break;
1874 }
1875 }
1876 }
1877 }
1878 }
1879 return version_string;
1880 }
1881
1882 /* Display ELF-specific fields of a symbol. */
1883
1884 void
1885 bfd_elf_print_symbol (bfd *abfd,
1886 void *filep,
1887 asymbol *symbol,
1888 bfd_print_symbol_type how)
1889 {
1890 FILE *file = (FILE *) filep;
1891 switch (how)
1892 {
1893 case bfd_print_symbol_name:
1894 fprintf (file, "%s", symbol->name);
1895 break;
1896 case bfd_print_symbol_more:
1897 fprintf (file, "elf ");
1898 bfd_fprintf_vma (abfd, file, symbol->value);
1899 fprintf (file, " %x", symbol->flags);
1900 break;
1901 case bfd_print_symbol_all:
1902 {
1903 const char *section_name;
1904 const char *name = NULL;
1905 const struct elf_backend_data *bed;
1906 unsigned char st_other;
1907 bfd_vma val;
1908 const char *version_string;
1909 bfd_boolean hidden;
1910
1911 section_name = symbol->section ? symbol->section->name : "(*none*)";
1912
1913 bed = get_elf_backend_data (abfd);
1914 if (bed->elf_backend_print_symbol_all)
1915 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1916
1917 if (name == NULL)
1918 {
1919 name = symbol->name;
1920 bfd_print_symbol_vandf (abfd, file, symbol);
1921 }
1922
1923 fprintf (file, " %s\t", section_name);
1924 /* Print the "other" value for a symbol. For common symbols,
1925 we've already printed the size; now print the alignment.
1926 For other symbols, we have no specified alignment, and
1927 we've printed the address; now print the size. */
1928 if (symbol->section && bfd_is_com_section (symbol->section))
1929 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1930 else
1931 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1932 bfd_fprintf_vma (abfd, file, val);
1933
1934 /* If we have version information, print it. */
1935 version_string = _bfd_elf_get_symbol_version_string (abfd,
1936 symbol,
1937 &hidden);
1938 if (version_string)
1939 {
1940 if (!hidden)
1941 fprintf (file, " %-11s", version_string);
1942 else
1943 {
1944 int i;
1945
1946 fprintf (file, " (%s)", version_string);
1947 for (i = 10 - strlen (version_string); i > 0; --i)
1948 putc (' ', file);
1949 }
1950 }
1951
1952 /* If the st_other field is not zero, print it. */
1953 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1954
1955 switch (st_other)
1956 {
1957 case 0: break;
1958 case STV_INTERNAL: fprintf (file, " .internal"); break;
1959 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1960 case STV_PROTECTED: fprintf (file, " .protected"); break;
1961 default:
1962 /* Some other non-defined flags are also present, so print
1963 everything hex. */
1964 fprintf (file, " 0x%02x", (unsigned int) st_other);
1965 }
1966
1967 fprintf (file, " %s", name);
1968 }
1969 break;
1970 }
1971 }
1972 \f
1973 /* ELF .o/exec file reading */
1974
1975 /* Create a new bfd section from an ELF section header. */
1976
1977 bfd_boolean
1978 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1979 {
1980 Elf_Internal_Shdr *hdr;
1981 Elf_Internal_Ehdr *ehdr;
1982 const struct elf_backend_data *bed;
1983 const char *name;
1984 bfd_boolean ret = TRUE;
1985 static bfd_boolean * sections_being_created = NULL;
1986 static bfd * sections_being_created_abfd = NULL;
1987 static unsigned int nesting = 0;
1988
1989 if (shindex >= elf_numsections (abfd))
1990 return FALSE;
1991
1992 if (++ nesting > 3)
1993 {
1994 /* PR17512: A corrupt ELF binary might contain a recursive group of
1995 sections, with each the string indicies pointing to the next in the
1996 loop. Detect this here, by refusing to load a section that we are
1997 already in the process of loading. We only trigger this test if
1998 we have nested at least three sections deep as normal ELF binaries
1999 can expect to recurse at least once.
2000
2001 FIXME: It would be better if this array was attached to the bfd,
2002 rather than being held in a static pointer. */
2003
2004 if (sections_being_created_abfd != abfd)
2005 sections_being_created = NULL;
2006 if (sections_being_created == NULL)
2007 {
2008 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2009 sections_being_created = (bfd_boolean *)
2010 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2011 sections_being_created_abfd = abfd;
2012 }
2013 if (sections_being_created [shindex])
2014 {
2015 _bfd_error_handler
2016 (_("%B: warning: loop in section dependencies detected"), abfd);
2017 return FALSE;
2018 }
2019 sections_being_created [shindex] = TRUE;
2020 }
2021
2022 hdr = elf_elfsections (abfd)[shindex];
2023 ehdr = elf_elfheader (abfd);
2024 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2025 hdr->sh_name);
2026 if (name == NULL)
2027 goto fail;
2028
2029 bed = get_elf_backend_data (abfd);
2030 switch (hdr->sh_type)
2031 {
2032 case SHT_NULL:
2033 /* Inactive section. Throw it away. */
2034 goto success;
2035
2036 case SHT_PROGBITS: /* Normal section with contents. */
2037 case SHT_NOBITS: /* .bss section. */
2038 case SHT_HASH: /* .hash section. */
2039 case SHT_NOTE: /* .note section. */
2040 case SHT_INIT_ARRAY: /* .init_array section. */
2041 case SHT_FINI_ARRAY: /* .fini_array section. */
2042 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2043 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2044 case SHT_GNU_HASH: /* .gnu.hash section. */
2045 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2046 goto success;
2047
2048 case SHT_DYNAMIC: /* Dynamic linking information. */
2049 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2050 goto fail;
2051
2052 if (hdr->sh_link > elf_numsections (abfd))
2053 {
2054 /* PR 10478: Accept Solaris binaries with a sh_link
2055 field set to SHN_BEFORE or SHN_AFTER. */
2056 switch (bfd_get_arch (abfd))
2057 {
2058 case bfd_arch_i386:
2059 case bfd_arch_sparc:
2060 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2061 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2062 break;
2063 /* Otherwise fall through. */
2064 default:
2065 goto fail;
2066 }
2067 }
2068 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2069 goto fail;
2070 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2071 {
2072 Elf_Internal_Shdr *dynsymhdr;
2073
2074 /* The shared libraries distributed with hpux11 have a bogus
2075 sh_link field for the ".dynamic" section. Find the
2076 string table for the ".dynsym" section instead. */
2077 if (elf_dynsymtab (abfd) != 0)
2078 {
2079 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2080 hdr->sh_link = dynsymhdr->sh_link;
2081 }
2082 else
2083 {
2084 unsigned int i, num_sec;
2085
2086 num_sec = elf_numsections (abfd);
2087 for (i = 1; i < num_sec; i++)
2088 {
2089 dynsymhdr = elf_elfsections (abfd)[i];
2090 if (dynsymhdr->sh_type == SHT_DYNSYM)
2091 {
2092 hdr->sh_link = dynsymhdr->sh_link;
2093 break;
2094 }
2095 }
2096 }
2097 }
2098 goto success;
2099
2100 case SHT_SYMTAB: /* A symbol table. */
2101 if (elf_onesymtab (abfd) == shindex)
2102 goto success;
2103
2104 if (hdr->sh_entsize != bed->s->sizeof_sym)
2105 goto fail;
2106
2107 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2108 {
2109 if (hdr->sh_size != 0)
2110 goto fail;
2111 /* Some assemblers erroneously set sh_info to one with a
2112 zero sh_size. ld sees this as a global symbol count
2113 of (unsigned) -1. Fix it here. */
2114 hdr->sh_info = 0;
2115 goto success;
2116 }
2117
2118 /* PR 18854: A binary might contain more than one symbol table.
2119 Unusual, but possible. Warn, but continue. */
2120 if (elf_onesymtab (abfd) != 0)
2121 {
2122 _bfd_error_handler
2123 /* xgettext:c-format */
2124 (_("%B: warning: multiple symbol tables detected"
2125 " - ignoring the table in section %u"),
2126 abfd, shindex);
2127 goto success;
2128 }
2129 elf_onesymtab (abfd) = shindex;
2130 elf_symtab_hdr (abfd) = *hdr;
2131 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2132 abfd->flags |= HAS_SYMS;
2133
2134 /* Sometimes a shared object will map in the symbol table. If
2135 SHF_ALLOC is set, and this is a shared object, then we also
2136 treat this section as a BFD section. We can not base the
2137 decision purely on SHF_ALLOC, because that flag is sometimes
2138 set in a relocatable object file, which would confuse the
2139 linker. */
2140 if ((hdr->sh_flags & SHF_ALLOC) != 0
2141 && (abfd->flags & DYNAMIC) != 0
2142 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2143 shindex))
2144 goto fail;
2145
2146 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2147 can't read symbols without that section loaded as well. It
2148 is most likely specified by the next section header. */
2149 {
2150 elf_section_list * entry;
2151 unsigned int i, num_sec;
2152
2153 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2154 if (entry->hdr.sh_link == shindex)
2155 goto success;
2156
2157 num_sec = elf_numsections (abfd);
2158 for (i = shindex + 1; i < num_sec; i++)
2159 {
2160 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2161
2162 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2163 && hdr2->sh_link == shindex)
2164 break;
2165 }
2166
2167 if (i == num_sec)
2168 for (i = 1; i < shindex; i++)
2169 {
2170 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2171
2172 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2173 && hdr2->sh_link == shindex)
2174 break;
2175 }
2176
2177 if (i != shindex)
2178 ret = bfd_section_from_shdr (abfd, i);
2179 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2180 goto success;
2181 }
2182
2183 case SHT_DYNSYM: /* A dynamic symbol table. */
2184 if (elf_dynsymtab (abfd) == shindex)
2185 goto success;
2186
2187 if (hdr->sh_entsize != bed->s->sizeof_sym)
2188 goto fail;
2189
2190 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2191 {
2192 if (hdr->sh_size != 0)
2193 goto fail;
2194
2195 /* Some linkers erroneously set sh_info to one with a
2196 zero sh_size. ld sees this as a global symbol count
2197 of (unsigned) -1. Fix it here. */
2198 hdr->sh_info = 0;
2199 goto success;
2200 }
2201
2202 /* PR 18854: A binary might contain more than one dynamic symbol table.
2203 Unusual, but possible. Warn, but continue. */
2204 if (elf_dynsymtab (abfd) != 0)
2205 {
2206 _bfd_error_handler
2207 /* xgettext:c-format */
2208 (_("%B: warning: multiple dynamic symbol tables detected"
2209 " - ignoring the table in section %u"),
2210 abfd, shindex);
2211 goto success;
2212 }
2213 elf_dynsymtab (abfd) = shindex;
2214 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2215 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2216 abfd->flags |= HAS_SYMS;
2217
2218 /* Besides being a symbol table, we also treat this as a regular
2219 section, so that objcopy can handle it. */
2220 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2221 goto success;
2222
2223 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2224 {
2225 elf_section_list * entry;
2226
2227 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2228 if (entry->ndx == shindex)
2229 goto success;
2230
2231 entry = bfd_alloc (abfd, sizeof * entry);
2232 if (entry == NULL)
2233 goto fail;
2234 entry->ndx = shindex;
2235 entry->hdr = * hdr;
2236 entry->next = elf_symtab_shndx_list (abfd);
2237 elf_symtab_shndx_list (abfd) = entry;
2238 elf_elfsections (abfd)[shindex] = & entry->hdr;
2239 goto success;
2240 }
2241
2242 case SHT_STRTAB: /* A string table. */
2243 if (hdr->bfd_section != NULL)
2244 goto success;
2245
2246 if (ehdr->e_shstrndx == shindex)
2247 {
2248 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2249 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2250 goto success;
2251 }
2252
2253 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2254 {
2255 symtab_strtab:
2256 elf_tdata (abfd)->strtab_hdr = *hdr;
2257 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2258 goto success;
2259 }
2260
2261 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2262 {
2263 dynsymtab_strtab:
2264 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2265 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2266 elf_elfsections (abfd)[shindex] = hdr;
2267 /* We also treat this as a regular section, so that objcopy
2268 can handle it. */
2269 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2270 shindex);
2271 goto success;
2272 }
2273
2274 /* If the string table isn't one of the above, then treat it as a
2275 regular section. We need to scan all the headers to be sure,
2276 just in case this strtab section appeared before the above. */
2277 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2278 {
2279 unsigned int i, num_sec;
2280
2281 num_sec = elf_numsections (abfd);
2282 for (i = 1; i < num_sec; i++)
2283 {
2284 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2285 if (hdr2->sh_link == shindex)
2286 {
2287 /* Prevent endless recursion on broken objects. */
2288 if (i == shindex)
2289 goto fail;
2290 if (! bfd_section_from_shdr (abfd, i))
2291 goto fail;
2292 if (elf_onesymtab (abfd) == i)
2293 goto symtab_strtab;
2294 if (elf_dynsymtab (abfd) == i)
2295 goto dynsymtab_strtab;
2296 }
2297 }
2298 }
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2300 goto success;
2301
2302 case SHT_REL:
2303 case SHT_RELA:
2304 /* *These* do a lot of work -- but build no sections! */
2305 {
2306 asection *target_sect;
2307 Elf_Internal_Shdr *hdr2, **p_hdr;
2308 unsigned int num_sec = elf_numsections (abfd);
2309 struct bfd_elf_section_data *esdt;
2310
2311 if (hdr->sh_entsize
2312 != (bfd_size_type) (hdr->sh_type == SHT_REL
2313 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2314 goto fail;
2315
2316 /* Check for a bogus link to avoid crashing. */
2317 if (hdr->sh_link >= num_sec)
2318 {
2319 _bfd_error_handler
2320 /* xgettext:c-format */
2321 (_("%B: invalid link %u for reloc section %s (index %u)"),
2322 abfd, hdr->sh_link, name, shindex);
2323 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2324 shindex);
2325 goto success;
2326 }
2327
2328 /* For some incomprehensible reason Oracle distributes
2329 libraries for Solaris in which some of the objects have
2330 bogus sh_link fields. It would be nice if we could just
2331 reject them, but, unfortunately, some people need to use
2332 them. We scan through the section headers; if we find only
2333 one suitable symbol table, we clobber the sh_link to point
2334 to it. I hope this doesn't break anything.
2335
2336 Don't do it on executable nor shared library. */
2337 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2338 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2339 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2340 {
2341 unsigned int scan;
2342 int found;
2343
2344 found = 0;
2345 for (scan = 1; scan < num_sec; scan++)
2346 {
2347 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2348 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2349 {
2350 if (found != 0)
2351 {
2352 found = 0;
2353 break;
2354 }
2355 found = scan;
2356 }
2357 }
2358 if (found != 0)
2359 hdr->sh_link = found;
2360 }
2361
2362 /* Get the symbol table. */
2363 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2364 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2365 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2366 goto fail;
2367
2368 /* If this reloc section does not use the main symbol table we
2369 don't treat it as a reloc section. BFD can't adequately
2370 represent such a section, so at least for now, we don't
2371 try. We just present it as a normal section. We also
2372 can't use it as a reloc section if it points to the null
2373 section, an invalid section, another reloc section, or its
2374 sh_link points to the null section. */
2375 if (hdr->sh_link != elf_onesymtab (abfd)
2376 || hdr->sh_link == SHN_UNDEF
2377 || hdr->sh_info == SHN_UNDEF
2378 || hdr->sh_info >= num_sec
2379 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2380 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2381 {
2382 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2383 shindex);
2384 goto success;
2385 }
2386
2387 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2388 goto fail;
2389
2390 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2391 if (target_sect == NULL)
2392 goto fail;
2393
2394 esdt = elf_section_data (target_sect);
2395 if (hdr->sh_type == SHT_RELA)
2396 p_hdr = &esdt->rela.hdr;
2397 else
2398 p_hdr = &esdt->rel.hdr;
2399
2400 /* PR 17512: file: 0b4f81b7. */
2401 if (*p_hdr != NULL)
2402 goto fail;
2403 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2404 if (hdr2 == NULL)
2405 goto fail;
2406 *hdr2 = *hdr;
2407 *p_hdr = hdr2;
2408 elf_elfsections (abfd)[shindex] = hdr2;
2409 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2410 * bed->s->int_rels_per_ext_rel);
2411 target_sect->flags |= SEC_RELOC;
2412 target_sect->relocation = NULL;
2413 target_sect->rel_filepos = hdr->sh_offset;
2414 /* In the section to which the relocations apply, mark whether
2415 its relocations are of the REL or RELA variety. */
2416 if (hdr->sh_size != 0)
2417 {
2418 if (hdr->sh_type == SHT_RELA)
2419 target_sect->use_rela_p = 1;
2420 }
2421 abfd->flags |= HAS_RELOC;
2422 goto success;
2423 }
2424
2425 case SHT_GNU_verdef:
2426 elf_dynverdef (abfd) = shindex;
2427 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2428 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2429 goto success;
2430
2431 case SHT_GNU_versym:
2432 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2433 goto fail;
2434
2435 elf_dynversym (abfd) = shindex;
2436 elf_tdata (abfd)->dynversym_hdr = *hdr;
2437 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2438 goto success;
2439
2440 case SHT_GNU_verneed:
2441 elf_dynverref (abfd) = shindex;
2442 elf_tdata (abfd)->dynverref_hdr = *hdr;
2443 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2444 goto success;
2445
2446 case SHT_SHLIB:
2447 goto success;
2448
2449 case SHT_GROUP:
2450 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2451 goto fail;
2452
2453 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2454 goto fail;
2455
2456 goto success;
2457
2458 default:
2459 /* Possibly an attributes section. */
2460 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2461 || hdr->sh_type == bed->obj_attrs_section_type)
2462 {
2463 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2464 goto fail;
2465 _bfd_elf_parse_attributes (abfd, hdr);
2466 goto success;
2467 }
2468
2469 /* Check for any processor-specific section types. */
2470 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2471 goto success;
2472
2473 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2474 {
2475 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2476 /* FIXME: How to properly handle allocated section reserved
2477 for applications? */
2478 _bfd_error_handler
2479 /* xgettext:c-format */
2480 (_("%B: unknown type [%#x] section `%s'"),
2481 abfd, hdr->sh_type, name);
2482 else
2483 {
2484 /* Allow sections reserved for applications. */
2485 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2486 shindex);
2487 goto success;
2488 }
2489 }
2490 else if (hdr->sh_type >= SHT_LOPROC
2491 && hdr->sh_type <= SHT_HIPROC)
2492 /* FIXME: We should handle this section. */
2493 _bfd_error_handler
2494 /* xgettext:c-format */
2495 (_("%B: unknown type [%#x] section `%s'"),
2496 abfd, hdr->sh_type, name);
2497 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2498 {
2499 /* Unrecognised OS-specific sections. */
2500 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2501 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2502 required to correctly process the section and the file should
2503 be rejected with an error message. */
2504 _bfd_error_handler
2505 /* xgettext:c-format */
2506 (_("%B: unknown type [%#x] section `%s'"),
2507 abfd, hdr->sh_type, name);
2508 else
2509 {
2510 /* Otherwise it should be processed. */
2511 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2512 goto success;
2513 }
2514 }
2515 else
2516 /* FIXME: We should handle this section. */
2517 _bfd_error_handler
2518 /* xgettext:c-format */
2519 (_("%B: unknown type [%#x] section `%s'"),
2520 abfd, hdr->sh_type, name);
2521
2522 goto fail;
2523 }
2524
2525 fail:
2526 ret = FALSE;
2527 success:
2528 if (sections_being_created && sections_being_created_abfd == abfd)
2529 sections_being_created [shindex] = FALSE;
2530 if (-- nesting == 0)
2531 {
2532 sections_being_created = NULL;
2533 sections_being_created_abfd = abfd;
2534 }
2535 return ret;
2536 }
2537
2538 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2539
2540 Elf_Internal_Sym *
2541 bfd_sym_from_r_symndx (struct sym_cache *cache,
2542 bfd *abfd,
2543 unsigned long r_symndx)
2544 {
2545 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2546
2547 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2548 {
2549 Elf_Internal_Shdr *symtab_hdr;
2550 unsigned char esym[sizeof (Elf64_External_Sym)];
2551 Elf_External_Sym_Shndx eshndx;
2552
2553 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2554 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2555 &cache->sym[ent], esym, &eshndx) == NULL)
2556 return NULL;
2557
2558 if (cache->abfd != abfd)
2559 {
2560 memset (cache->indx, -1, sizeof (cache->indx));
2561 cache->abfd = abfd;
2562 }
2563 cache->indx[ent] = r_symndx;
2564 }
2565
2566 return &cache->sym[ent];
2567 }
2568
2569 /* Given an ELF section number, retrieve the corresponding BFD
2570 section. */
2571
2572 asection *
2573 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2574 {
2575 if (sec_index >= elf_numsections (abfd))
2576 return NULL;
2577 return elf_elfsections (abfd)[sec_index]->bfd_section;
2578 }
2579
2580 static const struct bfd_elf_special_section special_sections_b[] =
2581 {
2582 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2583 { NULL, 0, 0, 0, 0 }
2584 };
2585
2586 static const struct bfd_elf_special_section special_sections_c[] =
2587 {
2588 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2589 { NULL, 0, 0, 0, 0 }
2590 };
2591
2592 static const struct bfd_elf_special_section special_sections_d[] =
2593 {
2594 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2595 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2596 /* There are more DWARF sections than these, but they needn't be added here
2597 unless you have to cope with broken compilers that don't emit section
2598 attributes or you want to help the user writing assembler. */
2599 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2600 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2601 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2602 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2603 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2604 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2605 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2606 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2607 { NULL, 0, 0, 0, 0 }
2608 };
2609
2610 static const struct bfd_elf_special_section special_sections_f[] =
2611 {
2612 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2613 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2614 { NULL, 0 , 0, 0, 0 }
2615 };
2616
2617 static const struct bfd_elf_special_section special_sections_g[] =
2618 {
2619 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2620 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2621 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2622 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2623 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2624 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2625 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2626 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2627 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2628 { NULL, 0, 0, 0, 0 }
2629 };
2630
2631 static const struct bfd_elf_special_section special_sections_h[] =
2632 {
2633 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2634 { NULL, 0, 0, 0, 0 }
2635 };
2636
2637 static const struct bfd_elf_special_section special_sections_i[] =
2638 {
2639 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2640 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2641 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2642 { NULL, 0, 0, 0, 0 }
2643 };
2644
2645 static const struct bfd_elf_special_section special_sections_l[] =
2646 {
2647 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2648 { NULL, 0, 0, 0, 0 }
2649 };
2650
2651 static const struct bfd_elf_special_section special_sections_n[] =
2652 {
2653 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2654 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2655 { NULL, 0, 0, 0, 0 }
2656 };
2657
2658 static const struct bfd_elf_special_section special_sections_p[] =
2659 {
2660 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2661 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2662 { NULL, 0, 0, 0, 0 }
2663 };
2664
2665 static const struct bfd_elf_special_section special_sections_r[] =
2666 {
2667 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2668 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2669 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2670 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2671 { NULL, 0, 0, 0, 0 }
2672 };
2673
2674 static const struct bfd_elf_special_section special_sections_s[] =
2675 {
2676 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2677 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2678 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2679 /* See struct bfd_elf_special_section declaration for the semantics of
2680 this special case where .prefix_length != strlen (.prefix). */
2681 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section special_sections_t[] =
2686 {
2687 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2688 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2689 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2690 { NULL, 0, 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_z[] =
2694 {
2695 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2696 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2697 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2698 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2699 { NULL, 0, 0, 0, 0 }
2700 };
2701
2702 static const struct bfd_elf_special_section * const special_sections[] =
2703 {
2704 special_sections_b, /* 'b' */
2705 special_sections_c, /* 'c' */
2706 special_sections_d, /* 'd' */
2707 NULL, /* 'e' */
2708 special_sections_f, /* 'f' */
2709 special_sections_g, /* 'g' */
2710 special_sections_h, /* 'h' */
2711 special_sections_i, /* 'i' */
2712 NULL, /* 'j' */
2713 NULL, /* 'k' */
2714 special_sections_l, /* 'l' */
2715 NULL, /* 'm' */
2716 special_sections_n, /* 'n' */
2717 NULL, /* 'o' */
2718 special_sections_p, /* 'p' */
2719 NULL, /* 'q' */
2720 special_sections_r, /* 'r' */
2721 special_sections_s, /* 's' */
2722 special_sections_t, /* 't' */
2723 NULL, /* 'u' */
2724 NULL, /* 'v' */
2725 NULL, /* 'w' */
2726 NULL, /* 'x' */
2727 NULL, /* 'y' */
2728 special_sections_z /* 'z' */
2729 };
2730
2731 const struct bfd_elf_special_section *
2732 _bfd_elf_get_special_section (const char *name,
2733 const struct bfd_elf_special_section *spec,
2734 unsigned int rela)
2735 {
2736 int i;
2737 int len;
2738
2739 len = strlen (name);
2740
2741 for (i = 0; spec[i].prefix != NULL; i++)
2742 {
2743 int suffix_len;
2744 int prefix_len = spec[i].prefix_length;
2745
2746 if (len < prefix_len)
2747 continue;
2748 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2749 continue;
2750
2751 suffix_len = spec[i].suffix_length;
2752 if (suffix_len <= 0)
2753 {
2754 if (name[prefix_len] != 0)
2755 {
2756 if (suffix_len == 0)
2757 continue;
2758 if (name[prefix_len] != '.'
2759 && (suffix_len == -2
2760 || (rela && spec[i].type == SHT_REL)))
2761 continue;
2762 }
2763 }
2764 else
2765 {
2766 if (len < prefix_len + suffix_len)
2767 continue;
2768 if (memcmp (name + len - suffix_len,
2769 spec[i].prefix + prefix_len,
2770 suffix_len) != 0)
2771 continue;
2772 }
2773 return &spec[i];
2774 }
2775
2776 return NULL;
2777 }
2778
2779 const struct bfd_elf_special_section *
2780 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2781 {
2782 int i;
2783 const struct bfd_elf_special_section *spec;
2784 const struct elf_backend_data *bed;
2785
2786 /* See if this is one of the special sections. */
2787 if (sec->name == NULL)
2788 return NULL;
2789
2790 bed = get_elf_backend_data (abfd);
2791 spec = bed->special_sections;
2792 if (spec)
2793 {
2794 spec = _bfd_elf_get_special_section (sec->name,
2795 bed->special_sections,
2796 sec->use_rela_p);
2797 if (spec != NULL)
2798 return spec;
2799 }
2800
2801 if (sec->name[0] != '.')
2802 return NULL;
2803
2804 i = sec->name[1] - 'b';
2805 if (i < 0 || i > 'z' - 'b')
2806 return NULL;
2807
2808 spec = special_sections[i];
2809
2810 if (spec == NULL)
2811 return NULL;
2812
2813 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2814 }
2815
2816 bfd_boolean
2817 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2818 {
2819 struct bfd_elf_section_data *sdata;
2820 const struct elf_backend_data *bed;
2821 const struct bfd_elf_special_section *ssect;
2822
2823 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2824 if (sdata == NULL)
2825 {
2826 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2827 sizeof (*sdata));
2828 if (sdata == NULL)
2829 return FALSE;
2830 sec->used_by_bfd = sdata;
2831 }
2832
2833 /* Indicate whether or not this section should use RELA relocations. */
2834 bed = get_elf_backend_data (abfd);
2835 sec->use_rela_p = bed->default_use_rela_p;
2836
2837 /* When we read a file, we don't need to set ELF section type and
2838 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2839 anyway. We will set ELF section type and flags for all linker
2840 created sections. If user specifies BFD section flags, we will
2841 set ELF section type and flags based on BFD section flags in
2842 elf_fake_sections. Special handling for .init_array/.fini_array
2843 output sections since they may contain .ctors/.dtors input
2844 sections. We don't want _bfd_elf_init_private_section_data to
2845 copy ELF section type from .ctors/.dtors input sections. */
2846 if (abfd->direction != read_direction
2847 || (sec->flags & SEC_LINKER_CREATED) != 0)
2848 {
2849 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2850 if (ssect != NULL
2851 && (!sec->flags
2852 || (sec->flags & SEC_LINKER_CREATED) != 0
2853 || ssect->type == SHT_INIT_ARRAY
2854 || ssect->type == SHT_FINI_ARRAY))
2855 {
2856 elf_section_type (sec) = ssect->type;
2857 elf_section_flags (sec) = ssect->attr;
2858 }
2859 }
2860
2861 return _bfd_generic_new_section_hook (abfd, sec);
2862 }
2863
2864 /* Create a new bfd section from an ELF program header.
2865
2866 Since program segments have no names, we generate a synthetic name
2867 of the form segment<NUM>, where NUM is generally the index in the
2868 program header table. For segments that are split (see below) we
2869 generate the names segment<NUM>a and segment<NUM>b.
2870
2871 Note that some program segments may have a file size that is different than
2872 (less than) the memory size. All this means is that at execution the
2873 system must allocate the amount of memory specified by the memory size,
2874 but only initialize it with the first "file size" bytes read from the
2875 file. This would occur for example, with program segments consisting
2876 of combined data+bss.
2877
2878 To handle the above situation, this routine generates TWO bfd sections
2879 for the single program segment. The first has the length specified by
2880 the file size of the segment, and the second has the length specified
2881 by the difference between the two sizes. In effect, the segment is split
2882 into its initialized and uninitialized parts.
2883
2884 */
2885
2886 bfd_boolean
2887 _bfd_elf_make_section_from_phdr (bfd *abfd,
2888 Elf_Internal_Phdr *hdr,
2889 int hdr_index,
2890 const char *type_name)
2891 {
2892 asection *newsect;
2893 char *name;
2894 char namebuf[64];
2895 size_t len;
2896 int split;
2897
2898 split = ((hdr->p_memsz > 0)
2899 && (hdr->p_filesz > 0)
2900 && (hdr->p_memsz > hdr->p_filesz));
2901
2902 if (hdr->p_filesz > 0)
2903 {
2904 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2905 len = strlen (namebuf) + 1;
2906 name = (char *) bfd_alloc (abfd, len);
2907 if (!name)
2908 return FALSE;
2909 memcpy (name, namebuf, len);
2910 newsect = bfd_make_section (abfd, name);
2911 if (newsect == NULL)
2912 return FALSE;
2913 newsect->vma = hdr->p_vaddr;
2914 newsect->lma = hdr->p_paddr;
2915 newsect->size = hdr->p_filesz;
2916 newsect->filepos = hdr->p_offset;
2917 newsect->flags |= SEC_HAS_CONTENTS;
2918 newsect->alignment_power = bfd_log2 (hdr->p_align);
2919 if (hdr->p_type == PT_LOAD)
2920 {
2921 newsect->flags |= SEC_ALLOC;
2922 newsect->flags |= SEC_LOAD;
2923 if (hdr->p_flags & PF_X)
2924 {
2925 /* FIXME: all we known is that it has execute PERMISSION,
2926 may be data. */
2927 newsect->flags |= SEC_CODE;
2928 }
2929 }
2930 if (!(hdr->p_flags & PF_W))
2931 {
2932 newsect->flags |= SEC_READONLY;
2933 }
2934 }
2935
2936 if (hdr->p_memsz > hdr->p_filesz)
2937 {
2938 bfd_vma align;
2939
2940 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2941 len = strlen (namebuf) + 1;
2942 name = (char *) bfd_alloc (abfd, len);
2943 if (!name)
2944 return FALSE;
2945 memcpy (name, namebuf, len);
2946 newsect = bfd_make_section (abfd, name);
2947 if (newsect == NULL)
2948 return FALSE;
2949 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2950 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2951 newsect->size = hdr->p_memsz - hdr->p_filesz;
2952 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2953 align = newsect->vma & -newsect->vma;
2954 if (align == 0 || align > hdr->p_align)
2955 align = hdr->p_align;
2956 newsect->alignment_power = bfd_log2 (align);
2957 if (hdr->p_type == PT_LOAD)
2958 {
2959 /* Hack for gdb. Segments that have not been modified do
2960 not have their contents written to a core file, on the
2961 assumption that a debugger can find the contents in the
2962 executable. We flag this case by setting the fake
2963 section size to zero. Note that "real" bss sections will
2964 always have their contents dumped to the core file. */
2965 if (bfd_get_format (abfd) == bfd_core)
2966 newsect->size = 0;
2967 newsect->flags |= SEC_ALLOC;
2968 if (hdr->p_flags & PF_X)
2969 newsect->flags |= SEC_CODE;
2970 }
2971 if (!(hdr->p_flags & PF_W))
2972 newsect->flags |= SEC_READONLY;
2973 }
2974
2975 return TRUE;
2976 }
2977
2978 bfd_boolean
2979 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2980 {
2981 const struct elf_backend_data *bed;
2982
2983 switch (hdr->p_type)
2984 {
2985 case PT_NULL:
2986 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2987
2988 case PT_LOAD:
2989 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2990
2991 case PT_DYNAMIC:
2992 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2993
2994 case PT_INTERP:
2995 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2996
2997 case PT_NOTE:
2998 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2999 return FALSE;
3000 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3001 hdr->p_align))
3002 return FALSE;
3003 return TRUE;
3004
3005 case PT_SHLIB:
3006 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3007
3008 case PT_PHDR:
3009 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3010
3011 case PT_GNU_EH_FRAME:
3012 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3013 "eh_frame_hdr");
3014
3015 case PT_GNU_STACK:
3016 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3017
3018 case PT_GNU_RELRO:
3019 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3020
3021 default:
3022 /* Check for any processor-specific program segment types. */
3023 bed = get_elf_backend_data (abfd);
3024 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3025 }
3026 }
3027
3028 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3029 REL or RELA. */
3030
3031 Elf_Internal_Shdr *
3032 _bfd_elf_single_rel_hdr (asection *sec)
3033 {
3034 if (elf_section_data (sec)->rel.hdr)
3035 {
3036 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3037 return elf_section_data (sec)->rel.hdr;
3038 }
3039 else
3040 return elf_section_data (sec)->rela.hdr;
3041 }
3042
3043 static bfd_boolean
3044 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3045 Elf_Internal_Shdr *rel_hdr,
3046 const char *sec_name,
3047 bfd_boolean use_rela_p)
3048 {
3049 char *name = (char *) bfd_alloc (abfd,
3050 sizeof ".rela" + strlen (sec_name));
3051 if (name == NULL)
3052 return FALSE;
3053
3054 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3055 rel_hdr->sh_name =
3056 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3057 FALSE);
3058 if (rel_hdr->sh_name == (unsigned int) -1)
3059 return FALSE;
3060
3061 return TRUE;
3062 }
3063
3064 /* Allocate and initialize a section-header for a new reloc section,
3065 containing relocations against ASECT. It is stored in RELDATA. If
3066 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3067 relocations. */
3068
3069 static bfd_boolean
3070 _bfd_elf_init_reloc_shdr (bfd *abfd,
3071 struct bfd_elf_section_reloc_data *reldata,
3072 const char *sec_name,
3073 bfd_boolean use_rela_p,
3074 bfd_boolean delay_st_name_p)
3075 {
3076 Elf_Internal_Shdr *rel_hdr;
3077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3078
3079 BFD_ASSERT (reldata->hdr == NULL);
3080 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3081 reldata->hdr = rel_hdr;
3082
3083 if (delay_st_name_p)
3084 rel_hdr->sh_name = (unsigned int) -1;
3085 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3086 use_rela_p))
3087 return FALSE;
3088 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3089 rel_hdr->sh_entsize = (use_rela_p
3090 ? bed->s->sizeof_rela
3091 : bed->s->sizeof_rel);
3092 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3093 rel_hdr->sh_flags = 0;
3094 rel_hdr->sh_addr = 0;
3095 rel_hdr->sh_size = 0;
3096 rel_hdr->sh_offset = 0;
3097
3098 return TRUE;
3099 }
3100
3101 /* Return the default section type based on the passed in section flags. */
3102
3103 int
3104 bfd_elf_get_default_section_type (flagword flags)
3105 {
3106 if ((flags & SEC_ALLOC) != 0
3107 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3108 return SHT_NOBITS;
3109 return SHT_PROGBITS;
3110 }
3111
3112 struct fake_section_arg
3113 {
3114 struct bfd_link_info *link_info;
3115 bfd_boolean failed;
3116 };
3117
3118 /* Set up an ELF internal section header for a section. */
3119
3120 static void
3121 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3122 {
3123 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3124 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3125 struct bfd_elf_section_data *esd = elf_section_data (asect);
3126 Elf_Internal_Shdr *this_hdr;
3127 unsigned int sh_type;
3128 const char *name = asect->name;
3129 bfd_boolean delay_st_name_p = FALSE;
3130
3131 if (arg->failed)
3132 {
3133 /* We already failed; just get out of the bfd_map_over_sections
3134 loop. */
3135 return;
3136 }
3137
3138 this_hdr = &esd->this_hdr;
3139
3140 if (arg->link_info)
3141 {
3142 /* ld: compress DWARF debug sections with names: .debug_*. */
3143 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3144 && (asect->flags & SEC_DEBUGGING)
3145 && name[1] == 'd'
3146 && name[6] == '_')
3147 {
3148 /* Set SEC_ELF_COMPRESS to indicate this section should be
3149 compressed. */
3150 asect->flags |= SEC_ELF_COMPRESS;
3151
3152 /* If this section will be compressed, delay adding section
3153 name to section name section after it is compressed in
3154 _bfd_elf_assign_file_positions_for_non_load. */
3155 delay_st_name_p = TRUE;
3156 }
3157 }
3158 else if ((asect->flags & SEC_ELF_RENAME))
3159 {
3160 /* objcopy: rename output DWARF debug section. */
3161 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3162 {
3163 /* When we decompress or compress with SHF_COMPRESSED,
3164 convert section name from .zdebug_* to .debug_* if
3165 needed. */
3166 if (name[1] == 'z')
3167 {
3168 char *new_name = convert_zdebug_to_debug (abfd, name);
3169 if (new_name == NULL)
3170 {
3171 arg->failed = TRUE;
3172 return;
3173 }
3174 name = new_name;
3175 }
3176 }
3177 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3178 {
3179 /* PR binutils/18087: Compression does not always make a
3180 section smaller. So only rename the section when
3181 compression has actually taken place. If input section
3182 name is .zdebug_*, we should never compress it again. */
3183 char *new_name = convert_debug_to_zdebug (abfd, name);
3184 if (new_name == NULL)
3185 {
3186 arg->failed = TRUE;
3187 return;
3188 }
3189 BFD_ASSERT (name[1] != 'z');
3190 name = new_name;
3191 }
3192 }
3193
3194 if (delay_st_name_p)
3195 this_hdr->sh_name = (unsigned int) -1;
3196 else
3197 {
3198 this_hdr->sh_name
3199 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3200 name, FALSE);
3201 if (this_hdr->sh_name == (unsigned int) -1)
3202 {
3203 arg->failed = TRUE;
3204 return;
3205 }
3206 }
3207
3208 /* Don't clear sh_flags. Assembler may set additional bits. */
3209
3210 if ((asect->flags & SEC_ALLOC) != 0
3211 || asect->user_set_vma)
3212 this_hdr->sh_addr = asect->vma;
3213 else
3214 this_hdr->sh_addr = 0;
3215
3216 this_hdr->sh_offset = 0;
3217 this_hdr->sh_size = asect->size;
3218 this_hdr->sh_link = 0;
3219 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3220 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3221 {
3222 _bfd_error_handler
3223 /* xgettext:c-format */
3224 (_("%B: error: Alignment power %d of section `%A' is too big"),
3225 abfd, asect->alignment_power, asect);
3226 arg->failed = TRUE;
3227 return;
3228 }
3229 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3230 /* The sh_entsize and sh_info fields may have been set already by
3231 copy_private_section_data. */
3232
3233 this_hdr->bfd_section = asect;
3234 this_hdr->contents = NULL;
3235
3236 /* If the section type is unspecified, we set it based on
3237 asect->flags. */
3238 if ((asect->flags & SEC_GROUP) != 0)
3239 sh_type = SHT_GROUP;
3240 else
3241 sh_type = bfd_elf_get_default_section_type (asect->flags);
3242
3243 if (this_hdr->sh_type == SHT_NULL)
3244 this_hdr->sh_type = sh_type;
3245 else if (this_hdr->sh_type == SHT_NOBITS
3246 && sh_type == SHT_PROGBITS
3247 && (asect->flags & SEC_ALLOC) != 0)
3248 {
3249 /* Warn if we are changing a NOBITS section to PROGBITS, but
3250 allow the link to proceed. This can happen when users link
3251 non-bss input sections to bss output sections, or emit data
3252 to a bss output section via a linker script. */
3253 _bfd_error_handler
3254 (_("warning: section `%A' type changed to PROGBITS"), asect);
3255 this_hdr->sh_type = sh_type;
3256 }
3257
3258 switch (this_hdr->sh_type)
3259 {
3260 default:
3261 break;
3262
3263 case SHT_STRTAB:
3264 case SHT_NOTE:
3265 case SHT_NOBITS:
3266 case SHT_PROGBITS:
3267 break;
3268
3269 case SHT_INIT_ARRAY:
3270 case SHT_FINI_ARRAY:
3271 case SHT_PREINIT_ARRAY:
3272 this_hdr->sh_entsize = bed->s->arch_size / 8;
3273 break;
3274
3275 case SHT_HASH:
3276 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3277 break;
3278
3279 case SHT_DYNSYM:
3280 this_hdr->sh_entsize = bed->s->sizeof_sym;
3281 break;
3282
3283 case SHT_DYNAMIC:
3284 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3285 break;
3286
3287 case SHT_RELA:
3288 if (get_elf_backend_data (abfd)->may_use_rela_p)
3289 this_hdr->sh_entsize = bed->s->sizeof_rela;
3290 break;
3291
3292 case SHT_REL:
3293 if (get_elf_backend_data (abfd)->may_use_rel_p)
3294 this_hdr->sh_entsize = bed->s->sizeof_rel;
3295 break;
3296
3297 case SHT_GNU_versym:
3298 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3299 break;
3300
3301 case SHT_GNU_verdef:
3302 this_hdr->sh_entsize = 0;
3303 /* objcopy or strip will copy over sh_info, but may not set
3304 cverdefs. The linker will set cverdefs, but sh_info will be
3305 zero. */
3306 if (this_hdr->sh_info == 0)
3307 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3308 else
3309 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3310 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3311 break;
3312
3313 case SHT_GNU_verneed:
3314 this_hdr->sh_entsize = 0;
3315 /* objcopy or strip will copy over sh_info, but may not set
3316 cverrefs. The linker will set cverrefs, but sh_info will be
3317 zero. */
3318 if (this_hdr->sh_info == 0)
3319 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3320 else
3321 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3322 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3323 break;
3324
3325 case SHT_GROUP:
3326 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3327 break;
3328
3329 case SHT_GNU_HASH:
3330 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3331 break;
3332 }
3333
3334 if ((asect->flags & SEC_ALLOC) != 0)
3335 this_hdr->sh_flags |= SHF_ALLOC;
3336 if ((asect->flags & SEC_READONLY) == 0)
3337 this_hdr->sh_flags |= SHF_WRITE;
3338 if ((asect->flags & SEC_CODE) != 0)
3339 this_hdr->sh_flags |= SHF_EXECINSTR;
3340 if ((asect->flags & SEC_MERGE) != 0)
3341 {
3342 this_hdr->sh_flags |= SHF_MERGE;
3343 this_hdr->sh_entsize = asect->entsize;
3344 }
3345 if ((asect->flags & SEC_STRINGS) != 0)
3346 this_hdr->sh_flags |= SHF_STRINGS;
3347 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3348 this_hdr->sh_flags |= SHF_GROUP;
3349 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3350 {
3351 this_hdr->sh_flags |= SHF_TLS;
3352 if (asect->size == 0
3353 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3354 {
3355 struct bfd_link_order *o = asect->map_tail.link_order;
3356
3357 this_hdr->sh_size = 0;
3358 if (o != NULL)
3359 {
3360 this_hdr->sh_size = o->offset + o->size;
3361 if (this_hdr->sh_size != 0)
3362 this_hdr->sh_type = SHT_NOBITS;
3363 }
3364 }
3365 }
3366 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3367 this_hdr->sh_flags |= SHF_EXCLUDE;
3368
3369 /* If the section has relocs, set up a section header for the
3370 SHT_REL[A] section. If two relocation sections are required for
3371 this section, it is up to the processor-specific back-end to
3372 create the other. */
3373 if ((asect->flags & SEC_RELOC) != 0)
3374 {
3375 /* When doing a relocatable link, create both REL and RELA sections if
3376 needed. */
3377 if (arg->link_info
3378 /* Do the normal setup if we wouldn't create any sections here. */
3379 && esd->rel.count + esd->rela.count > 0
3380 && (bfd_link_relocatable (arg->link_info)
3381 || arg->link_info->emitrelocations))
3382 {
3383 if (esd->rel.count && esd->rel.hdr == NULL
3384 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3385 FALSE, delay_st_name_p))
3386 {
3387 arg->failed = TRUE;
3388 return;
3389 }
3390 if (esd->rela.count && esd->rela.hdr == NULL
3391 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3392 TRUE, delay_st_name_p))
3393 {
3394 arg->failed = TRUE;
3395 return;
3396 }
3397 }
3398 else if (!_bfd_elf_init_reloc_shdr (abfd,
3399 (asect->use_rela_p
3400 ? &esd->rela : &esd->rel),
3401 name,
3402 asect->use_rela_p,
3403 delay_st_name_p))
3404 {
3405 arg->failed = TRUE;
3406 return;
3407 }
3408 }
3409
3410 /* Check for processor-specific section types. */
3411 sh_type = this_hdr->sh_type;
3412 if (bed->elf_backend_fake_sections
3413 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3414 {
3415 arg->failed = TRUE;
3416 return;
3417 }
3418
3419 if (sh_type == SHT_NOBITS && asect->size != 0)
3420 {
3421 /* Don't change the header type from NOBITS if we are being
3422 called for objcopy --only-keep-debug. */
3423 this_hdr->sh_type = sh_type;
3424 }
3425 }
3426
3427 /* Fill in the contents of a SHT_GROUP section. Called from
3428 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3429 when ELF targets use the generic linker, ld. Called for ld -r
3430 from bfd_elf_final_link. */
3431
3432 void
3433 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3434 {
3435 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3436 asection *elt, *first;
3437 unsigned char *loc;
3438 bfd_boolean gas;
3439
3440 /* Ignore linker created group section. See elfNN_ia64_object_p in
3441 elfxx-ia64.c. */
3442 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3443 || *failedptr)
3444 return;
3445
3446 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3447 {
3448 unsigned long symindx = 0;
3449
3450 /* elf_group_id will have been set up by objcopy and the
3451 generic linker. */
3452 if (elf_group_id (sec) != NULL)
3453 symindx = elf_group_id (sec)->udata.i;
3454
3455 if (symindx == 0)
3456 {
3457 /* If called from the assembler, swap_out_syms will have set up
3458 elf_section_syms. */
3459 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3460 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3461 }
3462 elf_section_data (sec)->this_hdr.sh_info = symindx;
3463 }
3464 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3465 {
3466 /* The ELF backend linker sets sh_info to -2 when the group
3467 signature symbol is global, and thus the index can't be
3468 set until all local symbols are output. */
3469 asection *igroup;
3470 struct bfd_elf_section_data *sec_data;
3471 unsigned long symndx;
3472 unsigned long extsymoff;
3473 struct elf_link_hash_entry *h;
3474
3475 /* The point of this little dance to the first SHF_GROUP section
3476 then back to the SHT_GROUP section is that this gets us to
3477 the SHT_GROUP in the input object. */
3478 igroup = elf_sec_group (elf_next_in_group (sec));
3479 sec_data = elf_section_data (igroup);
3480 symndx = sec_data->this_hdr.sh_info;
3481 extsymoff = 0;
3482 if (!elf_bad_symtab (igroup->owner))
3483 {
3484 Elf_Internal_Shdr *symtab_hdr;
3485
3486 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3487 extsymoff = symtab_hdr->sh_info;
3488 }
3489 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3490 while (h->root.type == bfd_link_hash_indirect
3491 || h->root.type == bfd_link_hash_warning)
3492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3493
3494 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3495 }
3496
3497 /* The contents won't be allocated for "ld -r" or objcopy. */
3498 gas = TRUE;
3499 if (sec->contents == NULL)
3500 {
3501 gas = FALSE;
3502 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3503
3504 /* Arrange for the section to be written out. */
3505 elf_section_data (sec)->this_hdr.contents = sec->contents;
3506 if (sec->contents == NULL)
3507 {
3508 *failedptr = TRUE;
3509 return;
3510 }
3511 }
3512
3513 loc = sec->contents + sec->size;
3514
3515 /* Get the pointer to the first section in the group that gas
3516 squirreled away here. objcopy arranges for this to be set to the
3517 start of the input section group. */
3518 first = elt = elf_next_in_group (sec);
3519
3520 /* First element is a flag word. Rest of section is elf section
3521 indices for all the sections of the group. Write them backwards
3522 just to keep the group in the same order as given in .section
3523 directives, not that it matters. */
3524 while (elt != NULL)
3525 {
3526 asection *s;
3527
3528 s = elt;
3529 if (!gas)
3530 s = s->output_section;
3531 if (s != NULL
3532 && !bfd_is_abs_section (s))
3533 {
3534 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3535 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3536
3537 if (elf_sec->rel.hdr != NULL
3538 && (gas
3539 || (input_elf_sec->rel.hdr != NULL
3540 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3541 {
3542 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3543 loc -= 4;
3544 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3545 }
3546 if (elf_sec->rela.hdr != NULL
3547 && (gas
3548 || (input_elf_sec->rela.hdr != NULL
3549 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3550 {
3551 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3552 loc -= 4;
3553 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3554 }
3555 loc -= 4;
3556 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3557 }
3558 elt = elf_next_in_group (elt);
3559 if (elt == first)
3560 break;
3561 }
3562
3563 loc -= 4;
3564 BFD_ASSERT (loc == sec->contents);
3565
3566 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3567 }
3568
3569 /* Given NAME, the name of a relocation section stripped of its
3570 .rel/.rela prefix, return the section in ABFD to which the
3571 relocations apply. */
3572
3573 asection *
3574 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3575 {
3576 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3577 section likely apply to .got.plt or .got section. */
3578 if (get_elf_backend_data (abfd)->want_got_plt
3579 && strcmp (name, ".plt") == 0)
3580 {
3581 asection *sec;
3582
3583 name = ".got.plt";
3584 sec = bfd_get_section_by_name (abfd, name);
3585 if (sec != NULL)
3586 return sec;
3587 name = ".got";
3588 }
3589
3590 return bfd_get_section_by_name (abfd, name);
3591 }
3592
3593 /* Return the section to which RELOC_SEC applies. */
3594
3595 static asection *
3596 elf_get_reloc_section (asection *reloc_sec)
3597 {
3598 const char *name;
3599 unsigned int type;
3600 bfd *abfd;
3601 const struct elf_backend_data *bed;
3602
3603 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3604 if (type != SHT_REL && type != SHT_RELA)
3605 return NULL;
3606
3607 /* We look up the section the relocs apply to by name. */
3608 name = reloc_sec->name;
3609 if (strncmp (name, ".rel", 4) != 0)
3610 return NULL;
3611 name += 4;
3612 if (type == SHT_RELA && *name++ != 'a')
3613 return NULL;
3614
3615 abfd = reloc_sec->owner;
3616 bed = get_elf_backend_data (abfd);
3617 return bed->get_reloc_section (abfd, name);
3618 }
3619
3620 /* Assign all ELF section numbers. The dummy first section is handled here
3621 too. The link/info pointers for the standard section types are filled
3622 in here too, while we're at it. */
3623
3624 static bfd_boolean
3625 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3626 {
3627 struct elf_obj_tdata *t = elf_tdata (abfd);
3628 asection *sec;
3629 unsigned int section_number;
3630 Elf_Internal_Shdr **i_shdrp;
3631 struct bfd_elf_section_data *d;
3632 bfd_boolean need_symtab;
3633
3634 section_number = 1;
3635
3636 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3637
3638 /* SHT_GROUP sections are in relocatable files only. */
3639 if (link_info == NULL || !link_info->resolve_section_groups)
3640 {
3641 size_t reloc_count = 0;
3642
3643 /* Put SHT_GROUP sections first. */
3644 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3645 {
3646 d = elf_section_data (sec);
3647
3648 if (d->this_hdr.sh_type == SHT_GROUP)
3649 {
3650 if (sec->flags & SEC_LINKER_CREATED)
3651 {
3652 /* Remove the linker created SHT_GROUP sections. */
3653 bfd_section_list_remove (abfd, sec);
3654 abfd->section_count--;
3655 }
3656 else
3657 d->this_idx = section_number++;
3658 }
3659
3660 /* Count relocations. */
3661 reloc_count += sec->reloc_count;
3662 }
3663
3664 /* Clear HAS_RELOC if there are no relocations. */
3665 if (reloc_count == 0)
3666 abfd->flags &= ~HAS_RELOC;
3667 }
3668
3669 for (sec = abfd->sections; sec; sec = sec->next)
3670 {
3671 d = elf_section_data (sec);
3672
3673 if (d->this_hdr.sh_type != SHT_GROUP)
3674 d->this_idx = section_number++;
3675 if (d->this_hdr.sh_name != (unsigned int) -1)
3676 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3677 if (d->rel.hdr)
3678 {
3679 d->rel.idx = section_number++;
3680 if (d->rel.hdr->sh_name != (unsigned int) -1)
3681 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3682 }
3683 else
3684 d->rel.idx = 0;
3685
3686 if (d->rela.hdr)
3687 {
3688 d->rela.idx = section_number++;
3689 if (d->rela.hdr->sh_name != (unsigned int) -1)
3690 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3691 }
3692 else
3693 d->rela.idx = 0;
3694 }
3695
3696 need_symtab = (bfd_get_symcount (abfd) > 0
3697 || (link_info == NULL
3698 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3699 == HAS_RELOC)));
3700 if (need_symtab)
3701 {
3702 elf_onesymtab (abfd) = section_number++;
3703 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3704 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3705 {
3706 elf_section_list * entry;
3707
3708 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3709
3710 entry = bfd_zalloc (abfd, sizeof * entry);
3711 entry->ndx = section_number++;
3712 elf_symtab_shndx_list (abfd) = entry;
3713 entry->hdr.sh_name
3714 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3715 ".symtab_shndx", FALSE);
3716 if (entry->hdr.sh_name == (unsigned int) -1)
3717 return FALSE;
3718 }
3719 elf_strtab_sec (abfd) = section_number++;
3720 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3721 }
3722
3723 elf_shstrtab_sec (abfd) = section_number++;
3724 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3725 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3726
3727 if (section_number >= SHN_LORESERVE)
3728 {
3729 /* xgettext:c-format */
3730 _bfd_error_handler (_("%B: too many sections: %u"),
3731 abfd, section_number);
3732 return FALSE;
3733 }
3734
3735 elf_numsections (abfd) = section_number;
3736 elf_elfheader (abfd)->e_shnum = section_number;
3737
3738 /* Set up the list of section header pointers, in agreement with the
3739 indices. */
3740 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3741 sizeof (Elf_Internal_Shdr *));
3742 if (i_shdrp == NULL)
3743 return FALSE;
3744
3745 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3746 sizeof (Elf_Internal_Shdr));
3747 if (i_shdrp[0] == NULL)
3748 {
3749 bfd_release (abfd, i_shdrp);
3750 return FALSE;
3751 }
3752
3753 elf_elfsections (abfd) = i_shdrp;
3754
3755 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3756 if (need_symtab)
3757 {
3758 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3759 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3760 {
3761 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3762 BFD_ASSERT (entry != NULL);
3763 i_shdrp[entry->ndx] = & entry->hdr;
3764 entry->hdr.sh_link = elf_onesymtab (abfd);
3765 }
3766 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3767 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3768 }
3769
3770 for (sec = abfd->sections; sec; sec = sec->next)
3771 {
3772 asection *s;
3773
3774 d = elf_section_data (sec);
3775
3776 i_shdrp[d->this_idx] = &d->this_hdr;
3777 if (d->rel.idx != 0)
3778 i_shdrp[d->rel.idx] = d->rel.hdr;
3779 if (d->rela.idx != 0)
3780 i_shdrp[d->rela.idx] = d->rela.hdr;
3781
3782 /* Fill in the sh_link and sh_info fields while we're at it. */
3783
3784 /* sh_link of a reloc section is the section index of the symbol
3785 table. sh_info is the section index of the section to which
3786 the relocation entries apply. */
3787 if (d->rel.idx != 0)
3788 {
3789 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3790 d->rel.hdr->sh_info = d->this_idx;
3791 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3792 }
3793 if (d->rela.idx != 0)
3794 {
3795 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3796 d->rela.hdr->sh_info = d->this_idx;
3797 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3798 }
3799
3800 /* We need to set up sh_link for SHF_LINK_ORDER. */
3801 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3802 {
3803 s = elf_linked_to_section (sec);
3804 if (s)
3805 {
3806 /* elf_linked_to_section points to the input section. */
3807 if (link_info != NULL)
3808 {
3809 /* Check discarded linkonce section. */
3810 if (discarded_section (s))
3811 {
3812 asection *kept;
3813 _bfd_error_handler
3814 /* xgettext:c-format */
3815 (_("%B: sh_link of section `%A' points to"
3816 " discarded section `%A' of `%B'"),
3817 abfd, d->this_hdr.bfd_section,
3818 s, s->owner);
3819 /* Point to the kept section if it has the same
3820 size as the discarded one. */
3821 kept = _bfd_elf_check_kept_section (s, link_info);
3822 if (kept == NULL)
3823 {
3824 bfd_set_error (bfd_error_bad_value);
3825 return FALSE;
3826 }
3827 s = kept;
3828 }
3829
3830 s = s->output_section;
3831 BFD_ASSERT (s != NULL);
3832 }
3833 else
3834 {
3835 /* Handle objcopy. */
3836 if (s->output_section == NULL)
3837 {
3838 _bfd_error_handler
3839 /* xgettext:c-format */
3840 (_("%B: sh_link of section `%A' points to"
3841 " removed section `%A' of `%B'"),
3842 abfd, d->this_hdr.bfd_section, s, s->owner);
3843 bfd_set_error (bfd_error_bad_value);
3844 return FALSE;
3845 }
3846 s = s->output_section;
3847 }
3848 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3849 }
3850 else
3851 {
3852 /* PR 290:
3853 The Intel C compiler generates SHT_IA_64_UNWIND with
3854 SHF_LINK_ORDER. But it doesn't set the sh_link or
3855 sh_info fields. Hence we could get the situation
3856 where s is NULL. */
3857 const struct elf_backend_data *bed
3858 = get_elf_backend_data (abfd);
3859 if (bed->link_order_error_handler)
3860 bed->link_order_error_handler
3861 /* xgettext:c-format */
3862 (_("%B: warning: sh_link not set for section `%A'"),
3863 abfd, sec);
3864 }
3865 }
3866
3867 switch (d->this_hdr.sh_type)
3868 {
3869 case SHT_REL:
3870 case SHT_RELA:
3871 /* A reloc section which we are treating as a normal BFD
3872 section. sh_link is the section index of the symbol
3873 table. sh_info is the section index of the section to
3874 which the relocation entries apply. We assume that an
3875 allocated reloc section uses the dynamic symbol table.
3876 FIXME: How can we be sure? */
3877 s = bfd_get_section_by_name (abfd, ".dynsym");
3878 if (s != NULL)
3879 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3880
3881 s = elf_get_reloc_section (sec);
3882 if (s != NULL)
3883 {
3884 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3885 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3886 }
3887 break;
3888
3889 case SHT_STRTAB:
3890 /* We assume that a section named .stab*str is a stabs
3891 string section. We look for a section with the same name
3892 but without the trailing ``str'', and set its sh_link
3893 field to point to this section. */
3894 if (CONST_STRNEQ (sec->name, ".stab")
3895 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3896 {
3897 size_t len;
3898 char *alc;
3899
3900 len = strlen (sec->name);
3901 alc = (char *) bfd_malloc (len - 2);
3902 if (alc == NULL)
3903 return FALSE;
3904 memcpy (alc, sec->name, len - 3);
3905 alc[len - 3] = '\0';
3906 s = bfd_get_section_by_name (abfd, alc);
3907 free (alc);
3908 if (s != NULL)
3909 {
3910 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3911
3912 /* This is a .stab section. */
3913 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3914 elf_section_data (s)->this_hdr.sh_entsize
3915 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3916 }
3917 }
3918 break;
3919
3920 case SHT_DYNAMIC:
3921 case SHT_DYNSYM:
3922 case SHT_GNU_verneed:
3923 case SHT_GNU_verdef:
3924 /* sh_link is the section header index of the string table
3925 used for the dynamic entries, or the symbol table, or the
3926 version strings. */
3927 s = bfd_get_section_by_name (abfd, ".dynstr");
3928 if (s != NULL)
3929 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3930 break;
3931
3932 case SHT_GNU_LIBLIST:
3933 /* sh_link is the section header index of the prelink library
3934 list used for the dynamic entries, or the symbol table, or
3935 the version strings. */
3936 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3937 ? ".dynstr" : ".gnu.libstr");
3938 if (s != NULL)
3939 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3940 break;
3941
3942 case SHT_HASH:
3943 case SHT_GNU_HASH:
3944 case SHT_GNU_versym:
3945 /* sh_link is the section header index of the symbol table
3946 this hash table or version table is for. */
3947 s = bfd_get_section_by_name (abfd, ".dynsym");
3948 if (s != NULL)
3949 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3950 break;
3951
3952 case SHT_GROUP:
3953 d->this_hdr.sh_link = elf_onesymtab (abfd);
3954 }
3955 }
3956
3957 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3958 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3959 debug section name from .debug_* to .zdebug_* if needed. */
3960
3961 return TRUE;
3962 }
3963
3964 static bfd_boolean
3965 sym_is_global (bfd *abfd, asymbol *sym)
3966 {
3967 /* If the backend has a special mapping, use it. */
3968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3969 if (bed->elf_backend_sym_is_global)
3970 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3971
3972 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3973 || bfd_is_und_section (bfd_get_section (sym))
3974 || bfd_is_com_section (bfd_get_section (sym)));
3975 }
3976
3977 /* Filter global symbols of ABFD to include in the import library. All
3978 SYMCOUNT symbols of ABFD can be examined from their pointers in
3979 SYMS. Pointers of symbols to keep should be stored contiguously at
3980 the beginning of that array.
3981
3982 Returns the number of symbols to keep. */
3983
3984 unsigned int
3985 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3986 asymbol **syms, long symcount)
3987 {
3988 long src_count, dst_count = 0;
3989
3990 for (src_count = 0; src_count < symcount; src_count++)
3991 {
3992 asymbol *sym = syms[src_count];
3993 char *name = (char *) bfd_asymbol_name (sym);
3994 struct bfd_link_hash_entry *h;
3995
3996 if (!sym_is_global (abfd, sym))
3997 continue;
3998
3999 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4000 if (h == NULL)
4001 continue;
4002 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4003 continue;
4004 if (h->linker_def || h->ldscript_def)
4005 continue;
4006
4007 syms[dst_count++] = sym;
4008 }
4009
4010 syms[dst_count] = NULL;
4011
4012 return dst_count;
4013 }
4014
4015 /* Don't output section symbols for sections that are not going to be
4016 output, that are duplicates or there is no BFD section. */
4017
4018 static bfd_boolean
4019 ignore_section_sym (bfd *abfd, asymbol *sym)
4020 {
4021 elf_symbol_type *type_ptr;
4022
4023 if ((sym->flags & BSF_SECTION_SYM) == 0)
4024 return FALSE;
4025
4026 type_ptr = elf_symbol_from (abfd, sym);
4027 return ((type_ptr != NULL
4028 && type_ptr->internal_elf_sym.st_shndx != 0
4029 && bfd_is_abs_section (sym->section))
4030 || !(sym->section->owner == abfd
4031 || (sym->section->output_section->owner == abfd
4032 && sym->section->output_offset == 0)
4033 || bfd_is_abs_section (sym->section)));
4034 }
4035
4036 /* Map symbol from it's internal number to the external number, moving
4037 all local symbols to be at the head of the list. */
4038
4039 static bfd_boolean
4040 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4041 {
4042 unsigned int symcount = bfd_get_symcount (abfd);
4043 asymbol **syms = bfd_get_outsymbols (abfd);
4044 asymbol **sect_syms;
4045 unsigned int num_locals = 0;
4046 unsigned int num_globals = 0;
4047 unsigned int num_locals2 = 0;
4048 unsigned int num_globals2 = 0;
4049 unsigned int max_index = 0;
4050 unsigned int idx;
4051 asection *asect;
4052 asymbol **new_syms;
4053
4054 #ifdef DEBUG
4055 fprintf (stderr, "elf_map_symbols\n");
4056 fflush (stderr);
4057 #endif
4058
4059 for (asect = abfd->sections; asect; asect = asect->next)
4060 {
4061 if (max_index < asect->index)
4062 max_index = asect->index;
4063 }
4064
4065 max_index++;
4066 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4067 if (sect_syms == NULL)
4068 return FALSE;
4069 elf_section_syms (abfd) = sect_syms;
4070 elf_num_section_syms (abfd) = max_index;
4071
4072 /* Init sect_syms entries for any section symbols we have already
4073 decided to output. */
4074 for (idx = 0; idx < symcount; idx++)
4075 {
4076 asymbol *sym = syms[idx];
4077
4078 if ((sym->flags & BSF_SECTION_SYM) != 0
4079 && sym->value == 0
4080 && !ignore_section_sym (abfd, sym)
4081 && !bfd_is_abs_section (sym->section))
4082 {
4083 asection *sec = sym->section;
4084
4085 if (sec->owner != abfd)
4086 sec = sec->output_section;
4087
4088 sect_syms[sec->index] = syms[idx];
4089 }
4090 }
4091
4092 /* Classify all of the symbols. */
4093 for (idx = 0; idx < symcount; idx++)
4094 {
4095 if (sym_is_global (abfd, syms[idx]))
4096 num_globals++;
4097 else if (!ignore_section_sym (abfd, syms[idx]))
4098 num_locals++;
4099 }
4100
4101 /* We will be adding a section symbol for each normal BFD section. Most
4102 sections will already have a section symbol in outsymbols, but
4103 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4104 at least in that case. */
4105 for (asect = abfd->sections; asect; asect = asect->next)
4106 {
4107 if (sect_syms[asect->index] == NULL)
4108 {
4109 if (!sym_is_global (abfd, asect->symbol))
4110 num_locals++;
4111 else
4112 num_globals++;
4113 }
4114 }
4115
4116 /* Now sort the symbols so the local symbols are first. */
4117 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4118 sizeof (asymbol *));
4119
4120 if (new_syms == NULL)
4121 return FALSE;
4122
4123 for (idx = 0; idx < symcount; idx++)
4124 {
4125 asymbol *sym = syms[idx];
4126 unsigned int i;
4127
4128 if (sym_is_global (abfd, sym))
4129 i = num_locals + num_globals2++;
4130 else if (!ignore_section_sym (abfd, sym))
4131 i = num_locals2++;
4132 else
4133 continue;
4134 new_syms[i] = sym;
4135 sym->udata.i = i + 1;
4136 }
4137 for (asect = abfd->sections; asect; asect = asect->next)
4138 {
4139 if (sect_syms[asect->index] == NULL)
4140 {
4141 asymbol *sym = asect->symbol;
4142 unsigned int i;
4143
4144 sect_syms[asect->index] = sym;
4145 if (!sym_is_global (abfd, sym))
4146 i = num_locals2++;
4147 else
4148 i = num_locals + num_globals2++;
4149 new_syms[i] = sym;
4150 sym->udata.i = i + 1;
4151 }
4152 }
4153
4154 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4155
4156 *pnum_locals = num_locals;
4157 return TRUE;
4158 }
4159
4160 /* Align to the maximum file alignment that could be required for any
4161 ELF data structure. */
4162
4163 static inline file_ptr
4164 align_file_position (file_ptr off, int align)
4165 {
4166 return (off + align - 1) & ~(align - 1);
4167 }
4168
4169 /* Assign a file position to a section, optionally aligning to the
4170 required section alignment. */
4171
4172 file_ptr
4173 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4174 file_ptr offset,
4175 bfd_boolean align)
4176 {
4177 if (align && i_shdrp->sh_addralign > 1)
4178 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4179 i_shdrp->sh_offset = offset;
4180 if (i_shdrp->bfd_section != NULL)
4181 i_shdrp->bfd_section->filepos = offset;
4182 if (i_shdrp->sh_type != SHT_NOBITS)
4183 offset += i_shdrp->sh_size;
4184 return offset;
4185 }
4186
4187 /* Compute the file positions we are going to put the sections at, and
4188 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4189 is not NULL, this is being called by the ELF backend linker. */
4190
4191 bfd_boolean
4192 _bfd_elf_compute_section_file_positions (bfd *abfd,
4193 struct bfd_link_info *link_info)
4194 {
4195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4196 struct fake_section_arg fsargs;
4197 bfd_boolean failed;
4198 struct elf_strtab_hash *strtab = NULL;
4199 Elf_Internal_Shdr *shstrtab_hdr;
4200 bfd_boolean need_symtab;
4201
4202 if (abfd->output_has_begun)
4203 return TRUE;
4204
4205 /* Do any elf backend specific processing first. */
4206 if (bed->elf_backend_begin_write_processing)
4207 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4208
4209 if (! prep_headers (abfd))
4210 return FALSE;
4211
4212 /* Post process the headers if necessary. */
4213 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4214
4215 fsargs.failed = FALSE;
4216 fsargs.link_info = link_info;
4217 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4218 if (fsargs.failed)
4219 return FALSE;
4220
4221 if (!assign_section_numbers (abfd, link_info))
4222 return FALSE;
4223
4224 /* The backend linker builds symbol table information itself. */
4225 need_symtab = (link_info == NULL
4226 && (bfd_get_symcount (abfd) > 0
4227 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4228 == HAS_RELOC)));
4229 if (need_symtab)
4230 {
4231 /* Non-zero if doing a relocatable link. */
4232 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4233
4234 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4235 return FALSE;
4236 }
4237
4238 failed = FALSE;
4239 if (link_info == NULL)
4240 {
4241 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4242 if (failed)
4243 return FALSE;
4244 }
4245
4246 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4247 /* sh_name was set in prep_headers. */
4248 shstrtab_hdr->sh_type = SHT_STRTAB;
4249 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4250 shstrtab_hdr->sh_addr = 0;
4251 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4252 shstrtab_hdr->sh_entsize = 0;
4253 shstrtab_hdr->sh_link = 0;
4254 shstrtab_hdr->sh_info = 0;
4255 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4256 shstrtab_hdr->sh_addralign = 1;
4257
4258 if (!assign_file_positions_except_relocs (abfd, link_info))
4259 return FALSE;
4260
4261 if (need_symtab)
4262 {
4263 file_ptr off;
4264 Elf_Internal_Shdr *hdr;
4265
4266 off = elf_next_file_pos (abfd);
4267
4268 hdr = & elf_symtab_hdr (abfd);
4269 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4270
4271 if (elf_symtab_shndx_list (abfd) != NULL)
4272 {
4273 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4274 if (hdr->sh_size != 0)
4275 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4276 /* FIXME: What about other symtab_shndx sections in the list ? */
4277 }
4278
4279 hdr = &elf_tdata (abfd)->strtab_hdr;
4280 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4281
4282 elf_next_file_pos (abfd) = off;
4283
4284 /* Now that we know where the .strtab section goes, write it
4285 out. */
4286 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4287 || ! _bfd_elf_strtab_emit (abfd, strtab))
4288 return FALSE;
4289 _bfd_elf_strtab_free (strtab);
4290 }
4291
4292 abfd->output_has_begun = TRUE;
4293
4294 return TRUE;
4295 }
4296
4297 /* Make an initial estimate of the size of the program header. If we
4298 get the number wrong here, we'll redo section placement. */
4299
4300 static bfd_size_type
4301 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4302 {
4303 size_t segs;
4304 asection *s;
4305 const struct elf_backend_data *bed;
4306
4307 /* Assume we will need exactly two PT_LOAD segments: one for text
4308 and one for data. */
4309 segs = 2;
4310
4311 s = bfd_get_section_by_name (abfd, ".interp");
4312 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4313 {
4314 /* If we have a loadable interpreter section, we need a
4315 PT_INTERP segment. In this case, assume we also need a
4316 PT_PHDR segment, although that may not be true for all
4317 targets. */
4318 segs += 2;
4319 }
4320
4321 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4322 {
4323 /* We need a PT_DYNAMIC segment. */
4324 ++segs;
4325 }
4326
4327 if (info != NULL && info->relro)
4328 {
4329 /* We need a PT_GNU_RELRO segment. */
4330 ++segs;
4331 }
4332
4333 if (elf_eh_frame_hdr (abfd))
4334 {
4335 /* We need a PT_GNU_EH_FRAME segment. */
4336 ++segs;
4337 }
4338
4339 if (elf_stack_flags (abfd))
4340 {
4341 /* We need a PT_GNU_STACK segment. */
4342 ++segs;
4343 }
4344
4345 for (s = abfd->sections; s != NULL; s = s->next)
4346 {
4347 if ((s->flags & SEC_LOAD) != 0
4348 && CONST_STRNEQ (s->name, ".note"))
4349 {
4350 /* We need a PT_NOTE segment. */
4351 ++segs;
4352 /* Try to create just one PT_NOTE segment
4353 for all adjacent loadable .note* sections.
4354 gABI requires that within a PT_NOTE segment
4355 (and also inside of each SHT_NOTE section)
4356 each note is padded to a multiple of 4 size,
4357 so we check whether the sections are correctly
4358 aligned. */
4359 if (s->alignment_power == 2)
4360 while (s->next != NULL
4361 && s->next->alignment_power == 2
4362 && (s->next->flags & SEC_LOAD) != 0
4363 && CONST_STRNEQ (s->next->name, ".note"))
4364 s = s->next;
4365 }
4366 }
4367
4368 for (s = abfd->sections; s != NULL; s = s->next)
4369 {
4370 if (s->flags & SEC_THREAD_LOCAL)
4371 {
4372 /* We need a PT_TLS segment. */
4373 ++segs;
4374 break;
4375 }
4376 }
4377
4378 bed = get_elf_backend_data (abfd);
4379
4380 if ((abfd->flags & D_PAGED) != 0)
4381 {
4382 /* Add a PT_GNU_MBIND segment for each mbind section. */
4383 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4384 for (s = abfd->sections; s != NULL; s = s->next)
4385 if (elf_section_flags (s) & SHF_GNU_MBIND)
4386 {
4387 if (elf_section_data (s)->this_hdr.sh_info
4388 > PT_GNU_MBIND_NUM)
4389 {
4390 _bfd_error_handler
4391 /* xgettext:c-format */
4392 (_("%B: GNU_MBIN section `%A' has invalid sh_info field: %d"),
4393 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4394 continue;
4395 }
4396 /* Align mbind section to page size. */
4397 if (s->alignment_power < page_align_power)
4398 s->alignment_power = page_align_power;
4399 segs ++;
4400 }
4401 }
4402
4403 /* Let the backend count up any program headers it might need. */
4404 if (bed->elf_backend_additional_program_headers)
4405 {
4406 int a;
4407
4408 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4409 if (a == -1)
4410 abort ();
4411 segs += a;
4412 }
4413
4414 return segs * bed->s->sizeof_phdr;
4415 }
4416
4417 /* Find the segment that contains the output_section of section. */
4418
4419 Elf_Internal_Phdr *
4420 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4421 {
4422 struct elf_segment_map *m;
4423 Elf_Internal_Phdr *p;
4424
4425 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4426 m != NULL;
4427 m = m->next, p++)
4428 {
4429 int i;
4430
4431 for (i = m->count - 1; i >= 0; i--)
4432 if (m->sections[i] == section)
4433 return p;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* Create a mapping from a set of sections to a program segment. */
4440
4441 static struct elf_segment_map *
4442 make_mapping (bfd *abfd,
4443 asection **sections,
4444 unsigned int from,
4445 unsigned int to,
4446 bfd_boolean phdr)
4447 {
4448 struct elf_segment_map *m;
4449 unsigned int i;
4450 asection **hdrpp;
4451 bfd_size_type amt;
4452
4453 amt = sizeof (struct elf_segment_map);
4454 amt += (to - from - 1) * sizeof (asection *);
4455 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4456 if (m == NULL)
4457 return NULL;
4458 m->next = NULL;
4459 m->p_type = PT_LOAD;
4460 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4461 m->sections[i - from] = *hdrpp;
4462 m->count = to - from;
4463
4464 if (from == 0 && phdr)
4465 {
4466 /* Include the headers in the first PT_LOAD segment. */
4467 m->includes_filehdr = 1;
4468 m->includes_phdrs = 1;
4469 }
4470
4471 return m;
4472 }
4473
4474 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4475 on failure. */
4476
4477 struct elf_segment_map *
4478 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4479 {
4480 struct elf_segment_map *m;
4481
4482 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4483 sizeof (struct elf_segment_map));
4484 if (m == NULL)
4485 return NULL;
4486 m->next = NULL;
4487 m->p_type = PT_DYNAMIC;
4488 m->count = 1;
4489 m->sections[0] = dynsec;
4490
4491 return m;
4492 }
4493
4494 /* Possibly add or remove segments from the segment map. */
4495
4496 static bfd_boolean
4497 elf_modify_segment_map (bfd *abfd,
4498 struct bfd_link_info *info,
4499 bfd_boolean remove_empty_load)
4500 {
4501 struct elf_segment_map **m;
4502 const struct elf_backend_data *bed;
4503
4504 /* The placement algorithm assumes that non allocated sections are
4505 not in PT_LOAD segments. We ensure this here by removing such
4506 sections from the segment map. We also remove excluded
4507 sections. Finally, any PT_LOAD segment without sections is
4508 removed. */
4509 m = &elf_seg_map (abfd);
4510 while (*m)
4511 {
4512 unsigned int i, new_count;
4513
4514 for (new_count = 0, i = 0; i < (*m)->count; i++)
4515 {
4516 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4517 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4518 || (*m)->p_type != PT_LOAD))
4519 {
4520 (*m)->sections[new_count] = (*m)->sections[i];
4521 new_count++;
4522 }
4523 }
4524 (*m)->count = new_count;
4525
4526 if (remove_empty_load
4527 && (*m)->p_type == PT_LOAD
4528 && (*m)->count == 0
4529 && !(*m)->includes_phdrs)
4530 *m = (*m)->next;
4531 else
4532 m = &(*m)->next;
4533 }
4534
4535 bed = get_elf_backend_data (abfd);
4536 if (bed->elf_backend_modify_segment_map != NULL)
4537 {
4538 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4539 return FALSE;
4540 }
4541
4542 return TRUE;
4543 }
4544
4545 /* Set up a mapping from BFD sections to program segments. */
4546
4547 bfd_boolean
4548 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4549 {
4550 unsigned int count;
4551 struct elf_segment_map *m;
4552 asection **sections = NULL;
4553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4554 bfd_boolean no_user_phdrs;
4555
4556 no_user_phdrs = elf_seg_map (abfd) == NULL;
4557
4558 if (info != NULL)
4559 info->user_phdrs = !no_user_phdrs;
4560
4561 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4562 {
4563 asection *s;
4564 unsigned int i;
4565 struct elf_segment_map *mfirst;
4566 struct elf_segment_map **pm;
4567 asection *last_hdr;
4568 bfd_vma last_size;
4569 unsigned int phdr_index;
4570 bfd_vma maxpagesize;
4571 asection **hdrpp;
4572 bfd_boolean phdr_in_segment = TRUE;
4573 bfd_boolean writable;
4574 bfd_boolean executable;
4575 int tls_count = 0;
4576 asection *first_tls = NULL;
4577 asection *first_mbind = NULL;
4578 asection *dynsec, *eh_frame_hdr;
4579 bfd_size_type amt;
4580 bfd_vma addr_mask, wrap_to = 0;
4581 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4582
4583 /* Select the allocated sections, and sort them. */
4584
4585 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4586 sizeof (asection *));
4587 if (sections == NULL)
4588 goto error_return;
4589
4590 /* Calculate top address, avoiding undefined behaviour of shift
4591 left operator when shift count is equal to size of type
4592 being shifted. */
4593 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4594 addr_mask = (addr_mask << 1) + 1;
4595
4596 i = 0;
4597 for (s = abfd->sections; s != NULL; s = s->next)
4598 {
4599 if ((s->flags & SEC_ALLOC) != 0)
4600 {
4601 sections[i] = s;
4602 ++i;
4603 /* A wrapping section potentially clashes with header. */
4604 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4605 wrap_to = (s->lma + s->size) & addr_mask;
4606 }
4607 }
4608 BFD_ASSERT (i <= bfd_count_sections (abfd));
4609 count = i;
4610
4611 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4612
4613 /* Build the mapping. */
4614
4615 mfirst = NULL;
4616 pm = &mfirst;
4617
4618 /* If we have a .interp section, then create a PT_PHDR segment for
4619 the program headers and a PT_INTERP segment for the .interp
4620 section. */
4621 s = bfd_get_section_by_name (abfd, ".interp");
4622 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4623 {
4624 amt = sizeof (struct elf_segment_map);
4625 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4626 if (m == NULL)
4627 goto error_return;
4628 m->next = NULL;
4629 m->p_type = PT_PHDR;
4630 m->p_flags = PF_R;
4631 m->p_flags_valid = 1;
4632 m->includes_phdrs = 1;
4633 linker_created_pt_phdr_segment = TRUE;
4634 *pm = m;
4635 pm = &m->next;
4636
4637 amt = sizeof (struct elf_segment_map);
4638 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4639 if (m == NULL)
4640 goto error_return;
4641 m->next = NULL;
4642 m->p_type = PT_INTERP;
4643 m->count = 1;
4644 m->sections[0] = s;
4645
4646 *pm = m;
4647 pm = &m->next;
4648 }
4649
4650 /* Look through the sections. We put sections in the same program
4651 segment when the start of the second section can be placed within
4652 a few bytes of the end of the first section. */
4653 last_hdr = NULL;
4654 last_size = 0;
4655 phdr_index = 0;
4656 maxpagesize = bed->maxpagesize;
4657 /* PR 17512: file: c8455299.
4658 Avoid divide-by-zero errors later on.
4659 FIXME: Should we abort if the maxpagesize is zero ? */
4660 if (maxpagesize == 0)
4661 maxpagesize = 1;
4662 writable = FALSE;
4663 executable = FALSE;
4664 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4665 if (dynsec != NULL
4666 && (dynsec->flags & SEC_LOAD) == 0)
4667 dynsec = NULL;
4668
4669 /* Deal with -Ttext or something similar such that the first section
4670 is not adjacent to the program headers. This is an
4671 approximation, since at this point we don't know exactly how many
4672 program headers we will need. */
4673 if (count > 0)
4674 {
4675 bfd_size_type phdr_size = elf_program_header_size (abfd);
4676
4677 if (phdr_size == (bfd_size_type) -1)
4678 phdr_size = get_program_header_size (abfd, info);
4679 phdr_size += bed->s->sizeof_ehdr;
4680 if ((abfd->flags & D_PAGED) == 0
4681 || (sections[0]->lma & addr_mask) < phdr_size
4682 || ((sections[0]->lma & addr_mask) % maxpagesize
4683 < phdr_size % maxpagesize)
4684 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4685 {
4686 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4687 present, must be included as part of the memory image of the
4688 program. Ie it must be part of a PT_LOAD segment as well.
4689 If we have had to create our own PT_PHDR segment, but it is
4690 not going to be covered by the first PT_LOAD segment, then
4691 force the inclusion if we can... */
4692 if ((abfd->flags & D_PAGED) != 0
4693 && linker_created_pt_phdr_segment)
4694 phdr_in_segment = TRUE;
4695 else
4696 phdr_in_segment = FALSE;
4697 }
4698 }
4699
4700 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4701 {
4702 asection *hdr;
4703 bfd_boolean new_segment;
4704
4705 hdr = *hdrpp;
4706
4707 /* See if this section and the last one will fit in the same
4708 segment. */
4709
4710 if (last_hdr == NULL)
4711 {
4712 /* If we don't have a segment yet, then we don't need a new
4713 one (we build the last one after this loop). */
4714 new_segment = FALSE;
4715 }
4716 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4717 {
4718 /* If this section has a different relation between the
4719 virtual address and the load address, then we need a new
4720 segment. */
4721 new_segment = TRUE;
4722 }
4723 else if (hdr->lma < last_hdr->lma + last_size
4724 || last_hdr->lma + last_size < last_hdr->lma)
4725 {
4726 /* If this section has a load address that makes it overlap
4727 the previous section, then we need a new segment. */
4728 new_segment = TRUE;
4729 }
4730 else if ((abfd->flags & D_PAGED) != 0
4731 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4732 == (hdr->lma & -maxpagesize)))
4733 {
4734 /* If we are demand paged then we can't map two disk
4735 pages onto the same memory page. */
4736 new_segment = FALSE;
4737 }
4738 /* In the next test we have to be careful when last_hdr->lma is close
4739 to the end of the address space. If the aligned address wraps
4740 around to the start of the address space, then there are no more
4741 pages left in memory and it is OK to assume that the current
4742 section can be included in the current segment. */
4743 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4744 + maxpagesize > last_hdr->lma)
4745 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4746 + maxpagesize <= hdr->lma))
4747 {
4748 /* If putting this section in this segment would force us to
4749 skip a page in the segment, then we need a new segment. */
4750 new_segment = TRUE;
4751 }
4752 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4753 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4754 {
4755 /* We don't want to put a loaded section after a
4756 nonloaded (ie. bss style) section in the same segment
4757 as that will force the non-loaded section to be loaded.
4758 Consider .tbss sections as loaded for this purpose. */
4759 new_segment = TRUE;
4760 }
4761 else if ((abfd->flags & D_PAGED) == 0)
4762 {
4763 /* If the file is not demand paged, which means that we
4764 don't require the sections to be correctly aligned in the
4765 file, then there is no other reason for a new segment. */
4766 new_segment = FALSE;
4767 }
4768 else if (info != NULL
4769 && info->separate_code
4770 && executable != ((hdr->flags & SEC_CODE) != 0))
4771 {
4772 new_segment = TRUE;
4773 }
4774 else if (! writable
4775 && (hdr->flags & SEC_READONLY) == 0)
4776 {
4777 /* We don't want to put a writable section in a read only
4778 segment. */
4779 new_segment = TRUE;
4780 }
4781 else
4782 {
4783 /* Otherwise, we can use the same segment. */
4784 new_segment = FALSE;
4785 }
4786
4787 /* Allow interested parties a chance to override our decision. */
4788 if (last_hdr != NULL
4789 && info != NULL
4790 && info->callbacks->override_segment_assignment != NULL)
4791 new_segment
4792 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4793 last_hdr,
4794 new_segment);
4795
4796 if (! new_segment)
4797 {
4798 if ((hdr->flags & SEC_READONLY) == 0)
4799 writable = TRUE;
4800 if ((hdr->flags & SEC_CODE) != 0)
4801 executable = TRUE;
4802 last_hdr = hdr;
4803 /* .tbss sections effectively have zero size. */
4804 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4805 != SEC_THREAD_LOCAL)
4806 last_size = hdr->size;
4807 else
4808 last_size = 0;
4809 continue;
4810 }
4811
4812 /* We need a new program segment. We must create a new program
4813 header holding all the sections from phdr_index until hdr. */
4814
4815 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4816 if (m == NULL)
4817 goto error_return;
4818
4819 *pm = m;
4820 pm = &m->next;
4821
4822 if ((hdr->flags & SEC_READONLY) == 0)
4823 writable = TRUE;
4824 else
4825 writable = FALSE;
4826
4827 if ((hdr->flags & SEC_CODE) == 0)
4828 executable = FALSE;
4829 else
4830 executable = TRUE;
4831
4832 last_hdr = hdr;
4833 /* .tbss sections effectively have zero size. */
4834 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4835 last_size = hdr->size;
4836 else
4837 last_size = 0;
4838 phdr_index = i;
4839 phdr_in_segment = FALSE;
4840 }
4841
4842 /* Create a final PT_LOAD program segment, but not if it's just
4843 for .tbss. */
4844 if (last_hdr != NULL
4845 && (i - phdr_index != 1
4846 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4847 != SEC_THREAD_LOCAL)))
4848 {
4849 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4850 if (m == NULL)
4851 goto error_return;
4852
4853 *pm = m;
4854 pm = &m->next;
4855 }
4856
4857 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4858 if (dynsec != NULL)
4859 {
4860 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4861 if (m == NULL)
4862 goto error_return;
4863 *pm = m;
4864 pm = &m->next;
4865 }
4866
4867 /* For each batch of consecutive loadable .note sections,
4868 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4869 because if we link together nonloadable .note sections and
4870 loadable .note sections, we will generate two .note sections
4871 in the output file. FIXME: Using names for section types is
4872 bogus anyhow. */
4873 for (s = abfd->sections; s != NULL; s = s->next)
4874 {
4875 if ((s->flags & SEC_LOAD) != 0
4876 && CONST_STRNEQ (s->name, ".note"))
4877 {
4878 asection *s2;
4879
4880 count = 1;
4881 amt = sizeof (struct elf_segment_map);
4882 if (s->alignment_power == 2)
4883 for (s2 = s; s2->next != NULL; s2 = s2->next)
4884 {
4885 if (s2->next->alignment_power == 2
4886 && (s2->next->flags & SEC_LOAD) != 0
4887 && CONST_STRNEQ (s2->next->name, ".note")
4888 && align_power (s2->lma + s2->size, 2)
4889 == s2->next->lma)
4890 count++;
4891 else
4892 break;
4893 }
4894 amt += (count - 1) * sizeof (asection *);
4895 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4896 if (m == NULL)
4897 goto error_return;
4898 m->next = NULL;
4899 m->p_type = PT_NOTE;
4900 m->count = count;
4901 while (count > 1)
4902 {
4903 m->sections[m->count - count--] = s;
4904 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4905 s = s->next;
4906 }
4907 m->sections[m->count - 1] = s;
4908 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4909 *pm = m;
4910 pm = &m->next;
4911 }
4912 if (s->flags & SEC_THREAD_LOCAL)
4913 {
4914 if (! tls_count)
4915 first_tls = s;
4916 tls_count++;
4917 }
4918 if (first_mbind == NULL
4919 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4920 first_mbind = s;
4921 }
4922
4923 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4924 if (tls_count > 0)
4925 {
4926 amt = sizeof (struct elf_segment_map);
4927 amt += (tls_count - 1) * sizeof (asection *);
4928 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4929 if (m == NULL)
4930 goto error_return;
4931 m->next = NULL;
4932 m->p_type = PT_TLS;
4933 m->count = tls_count;
4934 /* Mandated PF_R. */
4935 m->p_flags = PF_R;
4936 m->p_flags_valid = 1;
4937 s = first_tls;
4938 for (i = 0; i < (unsigned int) tls_count; ++i)
4939 {
4940 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4941 {
4942 _bfd_error_handler
4943 (_("%B: TLS sections are not adjacent:"), abfd);
4944 s = first_tls;
4945 i = 0;
4946 while (i < (unsigned int) tls_count)
4947 {
4948 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4949 {
4950 _bfd_error_handler (_(" TLS: %A"), s);
4951 i++;
4952 }
4953 else
4954 _bfd_error_handler (_(" non-TLS: %A"), s);
4955 s = s->next;
4956 }
4957 bfd_set_error (bfd_error_bad_value);
4958 goto error_return;
4959 }
4960 m->sections[i] = s;
4961 s = s->next;
4962 }
4963
4964 *pm = m;
4965 pm = &m->next;
4966 }
4967
4968 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4969 for (s = first_mbind; s != NULL; s = s->next)
4970 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4971 && (elf_section_data (s)->this_hdr.sh_info
4972 <= PT_GNU_MBIND_NUM))
4973 {
4974 /* Mandated PF_R. */
4975 unsigned long p_flags = PF_R;
4976 if ((s->flags & SEC_READONLY) == 0)
4977 p_flags |= PF_W;
4978 if ((s->flags & SEC_CODE) != 0)
4979 p_flags |= PF_X;
4980
4981 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4982 m = bfd_zalloc (abfd, amt);
4983 if (m == NULL)
4984 goto error_return;
4985 m->next = NULL;
4986 m->p_type = (PT_GNU_MBIND_LO
4987 + elf_section_data (s)->this_hdr.sh_info);
4988 m->count = 1;
4989 m->p_flags_valid = 1;
4990 m->sections[0] = s;
4991 m->p_flags = p_flags;
4992
4993 *pm = m;
4994 pm = &m->next;
4995 }
4996
4997 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4998 segment. */
4999 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5000 if (eh_frame_hdr != NULL
5001 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5002 {
5003 amt = sizeof (struct elf_segment_map);
5004 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5005 if (m == NULL)
5006 goto error_return;
5007 m->next = NULL;
5008 m->p_type = PT_GNU_EH_FRAME;
5009 m->count = 1;
5010 m->sections[0] = eh_frame_hdr->output_section;
5011
5012 *pm = m;
5013 pm = &m->next;
5014 }
5015
5016 if (elf_stack_flags (abfd))
5017 {
5018 amt = sizeof (struct elf_segment_map);
5019 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5020 if (m == NULL)
5021 goto error_return;
5022 m->next = NULL;
5023 m->p_type = PT_GNU_STACK;
5024 m->p_flags = elf_stack_flags (abfd);
5025 m->p_align = bed->stack_align;
5026 m->p_flags_valid = 1;
5027 m->p_align_valid = m->p_align != 0;
5028 if (info->stacksize > 0)
5029 {
5030 m->p_size = info->stacksize;
5031 m->p_size_valid = 1;
5032 }
5033
5034 *pm = m;
5035 pm = &m->next;
5036 }
5037
5038 if (info != NULL && info->relro)
5039 {
5040 for (m = mfirst; m != NULL; m = m->next)
5041 {
5042 if (m->p_type == PT_LOAD
5043 && m->count != 0
5044 && m->sections[0]->vma >= info->relro_start
5045 && m->sections[0]->vma < info->relro_end)
5046 {
5047 i = m->count;
5048 while (--i != (unsigned) -1)
5049 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5050 == (SEC_LOAD | SEC_HAS_CONTENTS))
5051 break;
5052
5053 if (i != (unsigned) -1)
5054 break;
5055 }
5056 }
5057
5058 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5059 if (m != NULL)
5060 {
5061 amt = sizeof (struct elf_segment_map);
5062 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5063 if (m == NULL)
5064 goto error_return;
5065 m->next = NULL;
5066 m->p_type = PT_GNU_RELRO;
5067 *pm = m;
5068 pm = &m->next;
5069 }
5070 }
5071
5072 free (sections);
5073 elf_seg_map (abfd) = mfirst;
5074 }
5075
5076 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5077 return FALSE;
5078
5079 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5080 ++count;
5081 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5082
5083 return TRUE;
5084
5085 error_return:
5086 if (sections != NULL)
5087 free (sections);
5088 return FALSE;
5089 }
5090
5091 /* Sort sections by address. */
5092
5093 static int
5094 elf_sort_sections (const void *arg1, const void *arg2)
5095 {
5096 const asection *sec1 = *(const asection **) arg1;
5097 const asection *sec2 = *(const asection **) arg2;
5098 bfd_size_type size1, size2;
5099
5100 /* Sort by LMA first, since this is the address used to
5101 place the section into a segment. */
5102 if (sec1->lma < sec2->lma)
5103 return -1;
5104 else if (sec1->lma > sec2->lma)
5105 return 1;
5106
5107 /* Then sort by VMA. Normally the LMA and the VMA will be
5108 the same, and this will do nothing. */
5109 if (sec1->vma < sec2->vma)
5110 return -1;
5111 else if (sec1->vma > sec2->vma)
5112 return 1;
5113
5114 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5115
5116 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5117
5118 if (TOEND (sec1))
5119 {
5120 if (TOEND (sec2))
5121 {
5122 /* If the indicies are the same, do not return 0
5123 here, but continue to try the next comparison. */
5124 if (sec1->target_index - sec2->target_index != 0)
5125 return sec1->target_index - sec2->target_index;
5126 }
5127 else
5128 return 1;
5129 }
5130 else if (TOEND (sec2))
5131 return -1;
5132
5133 #undef TOEND
5134
5135 /* Sort by size, to put zero sized sections
5136 before others at the same address. */
5137
5138 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5139 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5140
5141 if (size1 < size2)
5142 return -1;
5143 if (size1 > size2)
5144 return 1;
5145
5146 return sec1->target_index - sec2->target_index;
5147 }
5148
5149 /* Ian Lance Taylor writes:
5150
5151 We shouldn't be using % with a negative signed number. That's just
5152 not good. We have to make sure either that the number is not
5153 negative, or that the number has an unsigned type. When the types
5154 are all the same size they wind up as unsigned. When file_ptr is a
5155 larger signed type, the arithmetic winds up as signed long long,
5156 which is wrong.
5157
5158 What we're trying to say here is something like ``increase OFF by
5159 the least amount that will cause it to be equal to the VMA modulo
5160 the page size.'' */
5161 /* In other words, something like:
5162
5163 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5164 off_offset = off % bed->maxpagesize;
5165 if (vma_offset < off_offset)
5166 adjustment = vma_offset + bed->maxpagesize - off_offset;
5167 else
5168 adjustment = vma_offset - off_offset;
5169
5170 which can be collapsed into the expression below. */
5171
5172 static file_ptr
5173 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5174 {
5175 /* PR binutils/16199: Handle an alignment of zero. */
5176 if (maxpagesize == 0)
5177 maxpagesize = 1;
5178 return ((vma - off) % maxpagesize);
5179 }
5180
5181 static void
5182 print_segment_map (const struct elf_segment_map *m)
5183 {
5184 unsigned int j;
5185 const char *pt = get_segment_type (m->p_type);
5186 char buf[32];
5187
5188 if (pt == NULL)
5189 {
5190 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5191 sprintf (buf, "LOPROC+%7.7x",
5192 (unsigned int) (m->p_type - PT_LOPROC));
5193 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5194 sprintf (buf, "LOOS+%7.7x",
5195 (unsigned int) (m->p_type - PT_LOOS));
5196 else
5197 snprintf (buf, sizeof (buf), "%8.8x",
5198 (unsigned int) m->p_type);
5199 pt = buf;
5200 }
5201 fflush (stdout);
5202 fprintf (stderr, "%s:", pt);
5203 for (j = 0; j < m->count; j++)
5204 fprintf (stderr, " %s", m->sections [j]->name);
5205 putc ('\n',stderr);
5206 fflush (stderr);
5207 }
5208
5209 static bfd_boolean
5210 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5211 {
5212 void *buf;
5213 bfd_boolean ret;
5214
5215 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5216 return FALSE;
5217 buf = bfd_zmalloc (len);
5218 if (buf == NULL)
5219 return FALSE;
5220 ret = bfd_bwrite (buf, len, abfd) == len;
5221 free (buf);
5222 return ret;
5223 }
5224
5225 /* Assign file positions to the sections based on the mapping from
5226 sections to segments. This function also sets up some fields in
5227 the file header. */
5228
5229 static bfd_boolean
5230 assign_file_positions_for_load_sections (bfd *abfd,
5231 struct bfd_link_info *link_info)
5232 {
5233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5234 struct elf_segment_map *m;
5235 Elf_Internal_Phdr *phdrs;
5236 Elf_Internal_Phdr *p;
5237 file_ptr off;
5238 bfd_size_type maxpagesize;
5239 unsigned int pt_load_count = 0;
5240 unsigned int alloc;
5241 unsigned int i, j;
5242 bfd_vma header_pad = 0;
5243
5244 if (link_info == NULL
5245 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5246 return FALSE;
5247
5248 alloc = 0;
5249 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5250 {
5251 ++alloc;
5252 if (m->header_size)
5253 header_pad = m->header_size;
5254 }
5255
5256 if (alloc)
5257 {
5258 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5259 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5260 }
5261 else
5262 {
5263 /* PR binutils/12467. */
5264 elf_elfheader (abfd)->e_phoff = 0;
5265 elf_elfheader (abfd)->e_phentsize = 0;
5266 }
5267
5268 elf_elfheader (abfd)->e_phnum = alloc;
5269
5270 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5271 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5272 else
5273 BFD_ASSERT (elf_program_header_size (abfd)
5274 >= alloc * bed->s->sizeof_phdr);
5275
5276 if (alloc == 0)
5277 {
5278 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5279 return TRUE;
5280 }
5281
5282 /* We're writing the size in elf_program_header_size (abfd),
5283 see assign_file_positions_except_relocs, so make sure we have
5284 that amount allocated, with trailing space cleared.
5285 The variable alloc contains the computed need, while
5286 elf_program_header_size (abfd) contains the size used for the
5287 layout.
5288 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5289 where the layout is forced to according to a larger size in the
5290 last iterations for the testcase ld-elf/header. */
5291 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5292 == 0);
5293 phdrs = (Elf_Internal_Phdr *)
5294 bfd_zalloc2 (abfd,
5295 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5296 sizeof (Elf_Internal_Phdr));
5297 elf_tdata (abfd)->phdr = phdrs;
5298 if (phdrs == NULL)
5299 return FALSE;
5300
5301 maxpagesize = 1;
5302 if ((abfd->flags & D_PAGED) != 0)
5303 maxpagesize = bed->maxpagesize;
5304
5305 off = bed->s->sizeof_ehdr;
5306 off += alloc * bed->s->sizeof_phdr;
5307 if (header_pad < (bfd_vma) off)
5308 header_pad = 0;
5309 else
5310 header_pad -= off;
5311 off += header_pad;
5312
5313 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5314 m != NULL;
5315 m = m->next, p++, j++)
5316 {
5317 asection **secpp;
5318 bfd_vma off_adjust;
5319 bfd_boolean no_contents;
5320
5321 /* If elf_segment_map is not from map_sections_to_segments, the
5322 sections may not be correctly ordered. NOTE: sorting should
5323 not be done to the PT_NOTE section of a corefile, which may
5324 contain several pseudo-sections artificially created by bfd.
5325 Sorting these pseudo-sections breaks things badly. */
5326 if (m->count > 1
5327 && !(elf_elfheader (abfd)->e_type == ET_CORE
5328 && m->p_type == PT_NOTE))
5329 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5330 elf_sort_sections);
5331
5332 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5333 number of sections with contents contributing to both p_filesz
5334 and p_memsz, followed by a number of sections with no contents
5335 that just contribute to p_memsz. In this loop, OFF tracks next
5336 available file offset for PT_LOAD and PT_NOTE segments. */
5337 p->p_type = m->p_type;
5338 p->p_flags = m->p_flags;
5339
5340 if (m->count == 0)
5341 p->p_vaddr = 0;
5342 else
5343 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5344
5345 if (m->p_paddr_valid)
5346 p->p_paddr = m->p_paddr;
5347 else if (m->count == 0)
5348 p->p_paddr = 0;
5349 else
5350 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5351
5352 if (p->p_type == PT_LOAD
5353 && (abfd->flags & D_PAGED) != 0)
5354 {
5355 /* p_align in demand paged PT_LOAD segments effectively stores
5356 the maximum page size. When copying an executable with
5357 objcopy, we set m->p_align from the input file. Use this
5358 value for maxpagesize rather than bed->maxpagesize, which
5359 may be different. Note that we use maxpagesize for PT_TLS
5360 segment alignment later in this function, so we are relying
5361 on at least one PT_LOAD segment appearing before a PT_TLS
5362 segment. */
5363 if (m->p_align_valid)
5364 maxpagesize = m->p_align;
5365
5366 p->p_align = maxpagesize;
5367 pt_load_count += 1;
5368 }
5369 else if (m->p_align_valid)
5370 p->p_align = m->p_align;
5371 else if (m->count == 0)
5372 p->p_align = 1 << bed->s->log_file_align;
5373 else
5374 p->p_align = 0;
5375
5376 no_contents = FALSE;
5377 off_adjust = 0;
5378 if (p->p_type == PT_LOAD
5379 && m->count > 0)
5380 {
5381 bfd_size_type align;
5382 unsigned int align_power = 0;
5383
5384 if (m->p_align_valid)
5385 align = p->p_align;
5386 else
5387 {
5388 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5389 {
5390 unsigned int secalign;
5391
5392 secalign = bfd_get_section_alignment (abfd, *secpp);
5393 if (secalign > align_power)
5394 align_power = secalign;
5395 }
5396 align = (bfd_size_type) 1 << align_power;
5397 if (align < maxpagesize)
5398 align = maxpagesize;
5399 }
5400
5401 for (i = 0; i < m->count; i++)
5402 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5403 /* If we aren't making room for this section, then
5404 it must be SHT_NOBITS regardless of what we've
5405 set via struct bfd_elf_special_section. */
5406 elf_section_type (m->sections[i]) = SHT_NOBITS;
5407
5408 /* Find out whether this segment contains any loadable
5409 sections. */
5410 no_contents = TRUE;
5411 for (i = 0; i < m->count; i++)
5412 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5413 {
5414 no_contents = FALSE;
5415 break;
5416 }
5417
5418 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5419
5420 /* Broken hardware and/or kernel require that files do not
5421 map the same page with different permissions on some hppa
5422 processors. */
5423 if (pt_load_count > 1
5424 && bed->no_page_alias
5425 && (off & (maxpagesize - 1)) != 0
5426 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5427 off_adjust += maxpagesize;
5428 off += off_adjust;
5429 if (no_contents)
5430 {
5431 /* We shouldn't need to align the segment on disk since
5432 the segment doesn't need file space, but the gABI
5433 arguably requires the alignment and glibc ld.so
5434 checks it. So to comply with the alignment
5435 requirement but not waste file space, we adjust
5436 p_offset for just this segment. (OFF_ADJUST is
5437 subtracted from OFF later.) This may put p_offset
5438 past the end of file, but that shouldn't matter. */
5439 }
5440 else
5441 off_adjust = 0;
5442 }
5443 /* Make sure the .dynamic section is the first section in the
5444 PT_DYNAMIC segment. */
5445 else if (p->p_type == PT_DYNAMIC
5446 && m->count > 1
5447 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5448 {
5449 _bfd_error_handler
5450 (_("%B: The first section in the PT_DYNAMIC segment"
5451 " is not the .dynamic section"),
5452 abfd);
5453 bfd_set_error (bfd_error_bad_value);
5454 return FALSE;
5455 }
5456 /* Set the note section type to SHT_NOTE. */
5457 else if (p->p_type == PT_NOTE)
5458 for (i = 0; i < m->count; i++)
5459 elf_section_type (m->sections[i]) = SHT_NOTE;
5460
5461 p->p_offset = 0;
5462 p->p_filesz = 0;
5463 p->p_memsz = 0;
5464
5465 if (m->includes_filehdr)
5466 {
5467 if (!m->p_flags_valid)
5468 p->p_flags |= PF_R;
5469 p->p_filesz = bed->s->sizeof_ehdr;
5470 p->p_memsz = bed->s->sizeof_ehdr;
5471 if (m->count > 0)
5472 {
5473 if (p->p_vaddr < (bfd_vma) off
5474 || (!m->p_paddr_valid
5475 && p->p_paddr < (bfd_vma) off))
5476 {
5477 _bfd_error_handler
5478 (_("%B: Not enough room for program headers,"
5479 " try linking with -N"),
5480 abfd);
5481 bfd_set_error (bfd_error_bad_value);
5482 return FALSE;
5483 }
5484
5485 p->p_vaddr -= off;
5486 if (!m->p_paddr_valid)
5487 p->p_paddr -= off;
5488 }
5489 }
5490
5491 if (m->includes_phdrs)
5492 {
5493 if (!m->p_flags_valid)
5494 p->p_flags |= PF_R;
5495
5496 if (!m->includes_filehdr)
5497 {
5498 p->p_offset = bed->s->sizeof_ehdr;
5499
5500 if (m->count > 0)
5501 {
5502 p->p_vaddr -= off - p->p_offset;
5503 if (!m->p_paddr_valid)
5504 p->p_paddr -= off - p->p_offset;
5505 }
5506 }
5507
5508 p->p_filesz += alloc * bed->s->sizeof_phdr;
5509 p->p_memsz += alloc * bed->s->sizeof_phdr;
5510 if (m->count)
5511 {
5512 p->p_filesz += header_pad;
5513 p->p_memsz += header_pad;
5514 }
5515 }
5516
5517 if (p->p_type == PT_LOAD
5518 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5519 {
5520 if (!m->includes_filehdr && !m->includes_phdrs)
5521 p->p_offset = off;
5522 else
5523 {
5524 file_ptr adjust;
5525
5526 adjust = off - (p->p_offset + p->p_filesz);
5527 if (!no_contents)
5528 p->p_filesz += adjust;
5529 p->p_memsz += adjust;
5530 }
5531 }
5532
5533 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5534 maps. Set filepos for sections in PT_LOAD segments, and in
5535 core files, for sections in PT_NOTE segments.
5536 assign_file_positions_for_non_load_sections will set filepos
5537 for other sections and update p_filesz for other segments. */
5538 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5539 {
5540 asection *sec;
5541 bfd_size_type align;
5542 Elf_Internal_Shdr *this_hdr;
5543
5544 sec = *secpp;
5545 this_hdr = &elf_section_data (sec)->this_hdr;
5546 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5547
5548 if ((p->p_type == PT_LOAD
5549 || p->p_type == PT_TLS)
5550 && (this_hdr->sh_type != SHT_NOBITS
5551 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5552 && ((this_hdr->sh_flags & SHF_TLS) == 0
5553 || p->p_type == PT_TLS))))
5554 {
5555 bfd_vma p_start = p->p_paddr;
5556 bfd_vma p_end = p_start + p->p_memsz;
5557 bfd_vma s_start = sec->lma;
5558 bfd_vma adjust = s_start - p_end;
5559
5560 if (adjust != 0
5561 && (s_start < p_end
5562 || p_end < p_start))
5563 {
5564 _bfd_error_handler
5565 /* xgettext:c-format */
5566 (_("%B: section %A lma %#Lx adjusted to %#Lx"),
5567 abfd, sec, s_start, p_end);
5568 adjust = 0;
5569 sec->lma = p_end;
5570 }
5571 p->p_memsz += adjust;
5572
5573 if (this_hdr->sh_type != SHT_NOBITS)
5574 {
5575 if (p->p_filesz + adjust < p->p_memsz)
5576 {
5577 /* We have a PROGBITS section following NOBITS ones.
5578 Allocate file space for the NOBITS section(s) and
5579 zero it. */
5580 adjust = p->p_memsz - p->p_filesz;
5581 if (!write_zeros (abfd, off, adjust))
5582 return FALSE;
5583 }
5584 off += adjust;
5585 p->p_filesz += adjust;
5586 }
5587 }
5588
5589 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5590 {
5591 /* The section at i == 0 is the one that actually contains
5592 everything. */
5593 if (i == 0)
5594 {
5595 this_hdr->sh_offset = sec->filepos = off;
5596 off += this_hdr->sh_size;
5597 p->p_filesz = this_hdr->sh_size;
5598 p->p_memsz = 0;
5599 p->p_align = 1;
5600 }
5601 else
5602 {
5603 /* The rest are fake sections that shouldn't be written. */
5604 sec->filepos = 0;
5605 sec->size = 0;
5606 sec->flags = 0;
5607 continue;
5608 }
5609 }
5610 else
5611 {
5612 if (p->p_type == PT_LOAD)
5613 {
5614 this_hdr->sh_offset = sec->filepos = off;
5615 if (this_hdr->sh_type != SHT_NOBITS)
5616 off += this_hdr->sh_size;
5617 }
5618 else if (this_hdr->sh_type == SHT_NOBITS
5619 && (this_hdr->sh_flags & SHF_TLS) != 0
5620 && this_hdr->sh_offset == 0)
5621 {
5622 /* This is a .tbss section that didn't get a PT_LOAD.
5623 (See _bfd_elf_map_sections_to_segments "Create a
5624 final PT_LOAD".) Set sh_offset to the value it
5625 would have if we had created a zero p_filesz and
5626 p_memsz PT_LOAD header for the section. This
5627 also makes the PT_TLS header have the same
5628 p_offset value. */
5629 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5630 off, align);
5631 this_hdr->sh_offset = sec->filepos = off + adjust;
5632 }
5633
5634 if (this_hdr->sh_type != SHT_NOBITS)
5635 {
5636 p->p_filesz += this_hdr->sh_size;
5637 /* A load section without SHF_ALLOC is something like
5638 a note section in a PT_NOTE segment. These take
5639 file space but are not loaded into memory. */
5640 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5641 p->p_memsz += this_hdr->sh_size;
5642 }
5643 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5644 {
5645 if (p->p_type == PT_TLS)
5646 p->p_memsz += this_hdr->sh_size;
5647
5648 /* .tbss is special. It doesn't contribute to p_memsz of
5649 normal segments. */
5650 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5651 p->p_memsz += this_hdr->sh_size;
5652 }
5653
5654 if (align > p->p_align
5655 && !m->p_align_valid
5656 && (p->p_type != PT_LOAD
5657 || (abfd->flags & D_PAGED) == 0))
5658 p->p_align = align;
5659 }
5660
5661 if (!m->p_flags_valid)
5662 {
5663 p->p_flags |= PF_R;
5664 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5665 p->p_flags |= PF_X;
5666 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5667 p->p_flags |= PF_W;
5668 }
5669 }
5670
5671 off -= off_adjust;
5672
5673 /* Check that all sections are in a PT_LOAD segment.
5674 Don't check funky gdb generated core files. */
5675 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5676 {
5677 bfd_boolean check_vma = TRUE;
5678
5679 for (i = 1; i < m->count; i++)
5680 if (m->sections[i]->vma == m->sections[i - 1]->vma
5681 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5682 ->this_hdr), p) != 0
5683 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5684 ->this_hdr), p) != 0)
5685 {
5686 /* Looks like we have overlays packed into the segment. */
5687 check_vma = FALSE;
5688 break;
5689 }
5690
5691 for (i = 0; i < m->count; i++)
5692 {
5693 Elf_Internal_Shdr *this_hdr;
5694 asection *sec;
5695
5696 sec = m->sections[i];
5697 this_hdr = &(elf_section_data(sec)->this_hdr);
5698 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5699 && !ELF_TBSS_SPECIAL (this_hdr, p))
5700 {
5701 _bfd_error_handler
5702 /* xgettext:c-format */
5703 (_("%B: section `%A' can't be allocated in segment %d"),
5704 abfd, sec, j);
5705 print_segment_map (m);
5706 }
5707 }
5708 }
5709 }
5710
5711 elf_next_file_pos (abfd) = off;
5712 return TRUE;
5713 }
5714
5715 /* Assign file positions for the other sections. */
5716
5717 static bfd_boolean
5718 assign_file_positions_for_non_load_sections (bfd *abfd,
5719 struct bfd_link_info *link_info)
5720 {
5721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5722 Elf_Internal_Shdr **i_shdrpp;
5723 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5724 Elf_Internal_Phdr *phdrs;
5725 Elf_Internal_Phdr *p;
5726 struct elf_segment_map *m;
5727 struct elf_segment_map *hdrs_segment;
5728 bfd_vma filehdr_vaddr, filehdr_paddr;
5729 bfd_vma phdrs_vaddr, phdrs_paddr;
5730 file_ptr off;
5731 unsigned int count;
5732
5733 i_shdrpp = elf_elfsections (abfd);
5734 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5735 off = elf_next_file_pos (abfd);
5736 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5737 {
5738 Elf_Internal_Shdr *hdr;
5739
5740 hdr = *hdrpp;
5741 if (hdr->bfd_section != NULL
5742 && (hdr->bfd_section->filepos != 0
5743 || (hdr->sh_type == SHT_NOBITS
5744 && hdr->contents == NULL)))
5745 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5746 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5747 {
5748 if (hdr->sh_size != 0)
5749 _bfd_error_handler
5750 /* xgettext:c-format */
5751 (_("%B: warning: allocated section `%s' not in segment"),
5752 abfd,
5753 (hdr->bfd_section == NULL
5754 ? "*unknown*"
5755 : hdr->bfd_section->name));
5756 /* We don't need to page align empty sections. */
5757 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5758 off += vma_page_aligned_bias (hdr->sh_addr, off,
5759 bed->maxpagesize);
5760 else
5761 off += vma_page_aligned_bias (hdr->sh_addr, off,
5762 hdr->sh_addralign);
5763 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5764 FALSE);
5765 }
5766 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5767 && hdr->bfd_section == NULL)
5768 || (hdr->bfd_section != NULL
5769 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5770 /* Compress DWARF debug sections. */
5771 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5772 || (elf_symtab_shndx_list (abfd) != NULL
5773 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5774 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5775 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5776 hdr->sh_offset = -1;
5777 else
5778 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5779 }
5780
5781 /* Now that we have set the section file positions, we can set up
5782 the file positions for the non PT_LOAD segments. */
5783 count = 0;
5784 filehdr_vaddr = 0;
5785 filehdr_paddr = 0;
5786 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5787 phdrs_paddr = 0;
5788 hdrs_segment = NULL;
5789 phdrs = elf_tdata (abfd)->phdr;
5790 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5791 {
5792 ++count;
5793 if (p->p_type != PT_LOAD)
5794 continue;
5795
5796 if (m->includes_filehdr)
5797 {
5798 filehdr_vaddr = p->p_vaddr;
5799 filehdr_paddr = p->p_paddr;
5800 }
5801 if (m->includes_phdrs)
5802 {
5803 phdrs_vaddr = p->p_vaddr;
5804 phdrs_paddr = p->p_paddr;
5805 if (m->includes_filehdr)
5806 {
5807 hdrs_segment = m;
5808 phdrs_vaddr += bed->s->sizeof_ehdr;
5809 phdrs_paddr += bed->s->sizeof_ehdr;
5810 }
5811 }
5812 }
5813
5814 if (hdrs_segment != NULL && link_info != NULL)
5815 {
5816 /* There is a segment that contains both the file headers and the
5817 program headers, so provide a symbol __ehdr_start pointing there.
5818 A program can use this to examine itself robustly. */
5819
5820 struct elf_link_hash_entry *hash
5821 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5822 FALSE, FALSE, TRUE);
5823 /* If the symbol was referenced and not defined, define it. */
5824 if (hash != NULL
5825 && (hash->root.type == bfd_link_hash_new
5826 || hash->root.type == bfd_link_hash_undefined
5827 || hash->root.type == bfd_link_hash_undefweak
5828 || hash->root.type == bfd_link_hash_common))
5829 {
5830 asection *s = NULL;
5831 if (hdrs_segment->count != 0)
5832 /* The segment contains sections, so use the first one. */
5833 s = hdrs_segment->sections[0];
5834 else
5835 /* Use the first (i.e. lowest-addressed) section in any segment. */
5836 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5837 if (m->count != 0)
5838 {
5839 s = m->sections[0];
5840 break;
5841 }
5842
5843 if (s != NULL)
5844 {
5845 hash->root.u.def.value = filehdr_vaddr - s->vma;
5846 hash->root.u.def.section = s;
5847 }
5848 else
5849 {
5850 hash->root.u.def.value = filehdr_vaddr;
5851 hash->root.u.def.section = bfd_abs_section_ptr;
5852 }
5853
5854 hash->root.type = bfd_link_hash_defined;
5855 hash->def_regular = 1;
5856 hash->non_elf = 0;
5857 }
5858 }
5859
5860 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5861 {
5862 if (p->p_type == PT_GNU_RELRO)
5863 {
5864 bfd_vma start, end;
5865
5866 if (link_info != NULL)
5867 {
5868 /* During linking the range of the RELRO segment is passed
5869 in link_info. Note that there may be padding between
5870 relro_start and the first RELRO section. */
5871 start = link_info->relro_start;
5872 end = link_info->relro_end;
5873 }
5874 else if (m->count != 0)
5875 {
5876 if (!m->p_size_valid)
5877 abort ();
5878 start = m->sections[0]->vma;
5879 end = start + m->p_size;
5880 }
5881 else
5882 {
5883 start = 0;
5884 end = 0;
5885 }
5886
5887 if (start < end)
5888 {
5889 struct elf_segment_map *lm;
5890 const Elf_Internal_Phdr *lp;
5891 unsigned int i;
5892
5893 /* Find a LOAD segment containing a section in the RELRO
5894 segment. */
5895 for (lm = elf_seg_map (abfd), lp = phdrs;
5896 lm != NULL;
5897 lm = lm->next, lp++)
5898 {
5899 if (lp->p_type == PT_LOAD
5900 && lm->count != 0
5901 && lm->sections[lm->count - 1]->vma >= start
5902 && lm->sections[0]->vma < end)
5903 break;
5904 }
5905 BFD_ASSERT (lm != NULL);
5906
5907 /* Find the section starting the RELRO segment. */
5908 for (i = 0; i < lm->count; i++)
5909 {
5910 asection *s = lm->sections[i];
5911 if (s->vma >= start
5912 && s->vma < end
5913 && s->size != 0)
5914 break;
5915 }
5916 BFD_ASSERT (i < lm->count);
5917
5918 p->p_vaddr = lm->sections[i]->vma;
5919 p->p_paddr = lm->sections[i]->lma;
5920 p->p_offset = lm->sections[i]->filepos;
5921 p->p_memsz = end - p->p_vaddr;
5922 p->p_filesz = p->p_memsz;
5923
5924 /* The RELRO segment typically ends a few bytes into
5925 .got.plt but other layouts are possible. In cases
5926 where the end does not match any loaded section (for
5927 instance is in file padding), trim p_filesz back to
5928 correspond to the end of loaded section contents. */
5929 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
5930 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
5931
5932 /* Preserve the alignment and flags if they are valid. The
5933 gold linker generates RW/4 for the PT_GNU_RELRO section.
5934 It is better for objcopy/strip to honor these attributes
5935 otherwise gdb will choke when using separate debug files.
5936 */
5937 if (!m->p_align_valid)
5938 p->p_align = 1;
5939 if (!m->p_flags_valid)
5940 p->p_flags = PF_R;
5941 }
5942 else
5943 {
5944 memset (p, 0, sizeof *p);
5945 p->p_type = PT_NULL;
5946 }
5947 }
5948 else if (p->p_type == PT_GNU_STACK)
5949 {
5950 if (m->p_size_valid)
5951 p->p_memsz = m->p_size;
5952 }
5953 else if (m->count != 0)
5954 {
5955 unsigned int i;
5956
5957 if (p->p_type != PT_LOAD
5958 && (p->p_type != PT_NOTE
5959 || bfd_get_format (abfd) != bfd_core))
5960 {
5961 /* A user specified segment layout may include a PHDR
5962 segment that overlaps with a LOAD segment... */
5963 if (p->p_type == PT_PHDR)
5964 {
5965 m->count = 0;
5966 continue;
5967 }
5968
5969 if (m->includes_filehdr || m->includes_phdrs)
5970 {
5971 /* PR 17512: file: 2195325e. */
5972 _bfd_error_handler
5973 (_("%B: error: non-load segment %d includes file header "
5974 "and/or program header"),
5975 abfd, (int) (p - phdrs));
5976 return FALSE;
5977 }
5978
5979 p->p_filesz = 0;
5980 p->p_offset = m->sections[0]->filepos;
5981 for (i = m->count; i-- != 0;)
5982 {
5983 asection *sect = m->sections[i];
5984 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5985 if (hdr->sh_type != SHT_NOBITS)
5986 {
5987 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5988 + hdr->sh_size);
5989 break;
5990 }
5991 }
5992 }
5993 }
5994 else if (m->includes_filehdr)
5995 {
5996 p->p_vaddr = filehdr_vaddr;
5997 if (! m->p_paddr_valid)
5998 p->p_paddr = filehdr_paddr;
5999 }
6000 else if (m->includes_phdrs)
6001 {
6002 p->p_vaddr = phdrs_vaddr;
6003 if (! m->p_paddr_valid)
6004 p->p_paddr = phdrs_paddr;
6005 }
6006 }
6007
6008 elf_next_file_pos (abfd) = off;
6009
6010 return TRUE;
6011 }
6012
6013 static elf_section_list *
6014 find_section_in_list (unsigned int i, elf_section_list * list)
6015 {
6016 for (;list != NULL; list = list->next)
6017 if (list->ndx == i)
6018 break;
6019 return list;
6020 }
6021
6022 /* Work out the file positions of all the sections. This is called by
6023 _bfd_elf_compute_section_file_positions. All the section sizes and
6024 VMAs must be known before this is called.
6025
6026 Reloc sections come in two flavours: Those processed specially as
6027 "side-channel" data attached to a section to which they apply, and
6028 those that bfd doesn't process as relocations. The latter sort are
6029 stored in a normal bfd section by bfd_section_from_shdr. We don't
6030 consider the former sort here, unless they form part of the loadable
6031 image. Reloc sections not assigned here will be handled later by
6032 assign_file_positions_for_relocs.
6033
6034 We also don't set the positions of the .symtab and .strtab here. */
6035
6036 static bfd_boolean
6037 assign_file_positions_except_relocs (bfd *abfd,
6038 struct bfd_link_info *link_info)
6039 {
6040 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6041 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6042 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6043
6044 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6045 && bfd_get_format (abfd) != bfd_core)
6046 {
6047 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6048 unsigned int num_sec = elf_numsections (abfd);
6049 Elf_Internal_Shdr **hdrpp;
6050 unsigned int i;
6051 file_ptr off;
6052
6053 /* Start after the ELF header. */
6054 off = i_ehdrp->e_ehsize;
6055
6056 /* We are not creating an executable, which means that we are
6057 not creating a program header, and that the actual order of
6058 the sections in the file is unimportant. */
6059 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6060 {
6061 Elf_Internal_Shdr *hdr;
6062
6063 hdr = *hdrpp;
6064 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6065 && hdr->bfd_section == NULL)
6066 || (hdr->bfd_section != NULL
6067 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6068 /* Compress DWARF debug sections. */
6069 || i == elf_onesymtab (abfd)
6070 || (elf_symtab_shndx_list (abfd) != NULL
6071 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6072 || i == elf_strtab_sec (abfd)
6073 || i == elf_shstrtab_sec (abfd))
6074 {
6075 hdr->sh_offset = -1;
6076 }
6077 else
6078 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6079 }
6080
6081 elf_next_file_pos (abfd) = off;
6082 }
6083 else
6084 {
6085 unsigned int alloc;
6086
6087 /* Assign file positions for the loaded sections based on the
6088 assignment of sections to segments. */
6089 if (!assign_file_positions_for_load_sections (abfd, link_info))
6090 return FALSE;
6091
6092 /* And for non-load sections. */
6093 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6094 return FALSE;
6095
6096 if (bed->elf_backend_modify_program_headers != NULL)
6097 {
6098 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6099 return FALSE;
6100 }
6101
6102 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6103 if (link_info != NULL && bfd_link_pie (link_info))
6104 {
6105 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6106 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6107 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6108
6109 /* Find the lowest p_vaddr in PT_LOAD segments. */
6110 bfd_vma p_vaddr = (bfd_vma) -1;
6111 for (; segment < end_segment; segment++)
6112 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6113 p_vaddr = segment->p_vaddr;
6114
6115 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6116 segments is non-zero. */
6117 if (p_vaddr)
6118 i_ehdrp->e_type = ET_EXEC;
6119 }
6120
6121 /* Write out the program headers. */
6122 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6123
6124 /* Sort the program headers into the ordering required by the ELF standard. */
6125 if (alloc == 0)
6126 return TRUE;
6127
6128 /* PR ld/20815 - Check that the program header segment, if present, will
6129 be loaded into memory. FIXME: The check below is not sufficient as
6130 really all PT_LOAD segments should be checked before issuing an error
6131 message. Plus the PHDR segment does not have to be the first segment
6132 in the program header table. But this version of the check should
6133 catch all real world use cases.
6134
6135 FIXME: We used to have code here to sort the PT_LOAD segments into
6136 ascending order, as per the ELF spec. But this breaks some programs,
6137 including the Linux kernel. But really either the spec should be
6138 changed or the programs updated. */
6139 if (alloc > 1
6140 && tdata->phdr[0].p_type == PT_PHDR
6141 && ! bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr, alloc)
6142 && tdata->phdr[1].p_type == PT_LOAD
6143 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6144 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6145 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6146 {
6147 /* The fix for this error is usually to edit the linker script being
6148 used and set up the program headers manually. Either that or
6149 leave room for the headers at the start of the SECTIONS. */
6150 _bfd_error_handler (_("\
6151 %B: error: PHDR segment not covered by LOAD segment"),
6152 abfd);
6153 return FALSE;
6154 }
6155
6156 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6157 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6158 return FALSE;
6159 }
6160
6161 return TRUE;
6162 }
6163
6164 static bfd_boolean
6165 prep_headers (bfd *abfd)
6166 {
6167 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6168 struct elf_strtab_hash *shstrtab;
6169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6170
6171 i_ehdrp = elf_elfheader (abfd);
6172
6173 shstrtab = _bfd_elf_strtab_init ();
6174 if (shstrtab == NULL)
6175 return FALSE;
6176
6177 elf_shstrtab (abfd) = shstrtab;
6178
6179 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6180 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6181 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6182 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6183
6184 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6185 i_ehdrp->e_ident[EI_DATA] =
6186 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6187 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6188
6189 if ((abfd->flags & DYNAMIC) != 0)
6190 i_ehdrp->e_type = ET_DYN;
6191 else if ((abfd->flags & EXEC_P) != 0)
6192 i_ehdrp->e_type = ET_EXEC;
6193 else if (bfd_get_format (abfd) == bfd_core)
6194 i_ehdrp->e_type = ET_CORE;
6195 else
6196 i_ehdrp->e_type = ET_REL;
6197
6198 switch (bfd_get_arch (abfd))
6199 {
6200 case bfd_arch_unknown:
6201 i_ehdrp->e_machine = EM_NONE;
6202 break;
6203
6204 /* There used to be a long list of cases here, each one setting
6205 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6206 in the corresponding bfd definition. To avoid duplication,
6207 the switch was removed. Machines that need special handling
6208 can generally do it in elf_backend_final_write_processing(),
6209 unless they need the information earlier than the final write.
6210 Such need can generally be supplied by replacing the tests for
6211 e_machine with the conditions used to determine it. */
6212 default:
6213 i_ehdrp->e_machine = bed->elf_machine_code;
6214 }
6215
6216 i_ehdrp->e_version = bed->s->ev_current;
6217 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6218
6219 /* No program header, for now. */
6220 i_ehdrp->e_phoff = 0;
6221 i_ehdrp->e_phentsize = 0;
6222 i_ehdrp->e_phnum = 0;
6223
6224 /* Each bfd section is section header entry. */
6225 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6226 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6227
6228 /* If we're building an executable, we'll need a program header table. */
6229 if (abfd->flags & EXEC_P)
6230 /* It all happens later. */
6231 ;
6232 else
6233 {
6234 i_ehdrp->e_phentsize = 0;
6235 i_ehdrp->e_phoff = 0;
6236 }
6237
6238 elf_tdata (abfd)->symtab_hdr.sh_name =
6239 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6240 elf_tdata (abfd)->strtab_hdr.sh_name =
6241 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6242 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6243 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6244 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6245 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6246 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6247 return FALSE;
6248
6249 return TRUE;
6250 }
6251
6252 /* Assign file positions for all the reloc sections which are not part
6253 of the loadable file image, and the file position of section headers. */
6254
6255 static bfd_boolean
6256 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6257 {
6258 file_ptr off;
6259 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6260 Elf_Internal_Shdr *shdrp;
6261 Elf_Internal_Ehdr *i_ehdrp;
6262 const struct elf_backend_data *bed;
6263
6264 off = elf_next_file_pos (abfd);
6265
6266 shdrpp = elf_elfsections (abfd);
6267 end_shdrpp = shdrpp + elf_numsections (abfd);
6268 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6269 {
6270 shdrp = *shdrpp;
6271 if (shdrp->sh_offset == -1)
6272 {
6273 asection *sec = shdrp->bfd_section;
6274 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6275 || shdrp->sh_type == SHT_RELA);
6276 if (is_rel
6277 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6278 {
6279 if (!is_rel)
6280 {
6281 const char *name = sec->name;
6282 struct bfd_elf_section_data *d;
6283
6284 /* Compress DWARF debug sections. */
6285 if (!bfd_compress_section (abfd, sec,
6286 shdrp->contents))
6287 return FALSE;
6288
6289 if (sec->compress_status == COMPRESS_SECTION_DONE
6290 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6291 {
6292 /* If section is compressed with zlib-gnu, convert
6293 section name from .debug_* to .zdebug_*. */
6294 char *new_name
6295 = convert_debug_to_zdebug (abfd, name);
6296 if (new_name == NULL)
6297 return FALSE;
6298 name = new_name;
6299 }
6300 /* Add section name to section name section. */
6301 if (shdrp->sh_name != (unsigned int) -1)
6302 abort ();
6303 shdrp->sh_name
6304 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6305 name, FALSE);
6306 d = elf_section_data (sec);
6307
6308 /* Add reloc section name to section name section. */
6309 if (d->rel.hdr
6310 && !_bfd_elf_set_reloc_sh_name (abfd,
6311 d->rel.hdr,
6312 name, FALSE))
6313 return FALSE;
6314 if (d->rela.hdr
6315 && !_bfd_elf_set_reloc_sh_name (abfd,
6316 d->rela.hdr,
6317 name, TRUE))
6318 return FALSE;
6319
6320 /* Update section size and contents. */
6321 shdrp->sh_size = sec->size;
6322 shdrp->contents = sec->contents;
6323 shdrp->bfd_section->contents = NULL;
6324 }
6325 off = _bfd_elf_assign_file_position_for_section (shdrp,
6326 off,
6327 TRUE);
6328 }
6329 }
6330 }
6331
6332 /* Place section name section after DWARF debug sections have been
6333 compressed. */
6334 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6335 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6336 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6337 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6338
6339 /* Place the section headers. */
6340 i_ehdrp = elf_elfheader (abfd);
6341 bed = get_elf_backend_data (abfd);
6342 off = align_file_position (off, 1 << bed->s->log_file_align);
6343 i_ehdrp->e_shoff = off;
6344 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6345 elf_next_file_pos (abfd) = off;
6346
6347 return TRUE;
6348 }
6349
6350 bfd_boolean
6351 _bfd_elf_write_object_contents (bfd *abfd)
6352 {
6353 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6354 Elf_Internal_Shdr **i_shdrp;
6355 bfd_boolean failed;
6356 unsigned int count, num_sec;
6357 struct elf_obj_tdata *t;
6358
6359 if (! abfd->output_has_begun
6360 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6361 return FALSE;
6362
6363 i_shdrp = elf_elfsections (abfd);
6364
6365 failed = FALSE;
6366 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6367 if (failed)
6368 return FALSE;
6369
6370 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6371 return FALSE;
6372
6373 /* After writing the headers, we need to write the sections too... */
6374 num_sec = elf_numsections (abfd);
6375 for (count = 1; count < num_sec; count++)
6376 {
6377 i_shdrp[count]->sh_name
6378 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6379 i_shdrp[count]->sh_name);
6380 if (bed->elf_backend_section_processing)
6381 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6382 return FALSE;
6383 if (i_shdrp[count]->contents)
6384 {
6385 bfd_size_type amt = i_shdrp[count]->sh_size;
6386
6387 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6388 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6389 return FALSE;
6390 }
6391 }
6392
6393 /* Write out the section header names. */
6394 t = elf_tdata (abfd);
6395 if (elf_shstrtab (abfd) != NULL
6396 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6397 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6398 return FALSE;
6399
6400 if (bed->elf_backend_final_write_processing)
6401 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6402
6403 if (!bed->s->write_shdrs_and_ehdr (abfd))
6404 return FALSE;
6405
6406 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6407 if (t->o->build_id.after_write_object_contents != NULL)
6408 return (*t->o->build_id.after_write_object_contents) (abfd);
6409
6410 return TRUE;
6411 }
6412
6413 bfd_boolean
6414 _bfd_elf_write_corefile_contents (bfd *abfd)
6415 {
6416 /* Hopefully this can be done just like an object file. */
6417 return _bfd_elf_write_object_contents (abfd);
6418 }
6419
6420 /* Given a section, search the header to find them. */
6421
6422 unsigned int
6423 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6424 {
6425 const struct elf_backend_data *bed;
6426 unsigned int sec_index;
6427
6428 if (elf_section_data (asect) != NULL
6429 && elf_section_data (asect)->this_idx != 0)
6430 return elf_section_data (asect)->this_idx;
6431
6432 if (bfd_is_abs_section (asect))
6433 sec_index = SHN_ABS;
6434 else if (bfd_is_com_section (asect))
6435 sec_index = SHN_COMMON;
6436 else if (bfd_is_und_section (asect))
6437 sec_index = SHN_UNDEF;
6438 else
6439 sec_index = SHN_BAD;
6440
6441 bed = get_elf_backend_data (abfd);
6442 if (bed->elf_backend_section_from_bfd_section)
6443 {
6444 int retval = sec_index;
6445
6446 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6447 return retval;
6448 }
6449
6450 if (sec_index == SHN_BAD)
6451 bfd_set_error (bfd_error_nonrepresentable_section);
6452
6453 return sec_index;
6454 }
6455
6456 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6457 on error. */
6458
6459 int
6460 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6461 {
6462 asymbol *asym_ptr = *asym_ptr_ptr;
6463 int idx;
6464 flagword flags = asym_ptr->flags;
6465
6466 /* When gas creates relocations against local labels, it creates its
6467 own symbol for the section, but does put the symbol into the
6468 symbol chain, so udata is 0. When the linker is generating
6469 relocatable output, this section symbol may be for one of the
6470 input sections rather than the output section. */
6471 if (asym_ptr->udata.i == 0
6472 && (flags & BSF_SECTION_SYM)
6473 && asym_ptr->section)
6474 {
6475 asection *sec;
6476 int indx;
6477
6478 sec = asym_ptr->section;
6479 if (sec->owner != abfd && sec->output_section != NULL)
6480 sec = sec->output_section;
6481 if (sec->owner == abfd
6482 && (indx = sec->index) < elf_num_section_syms (abfd)
6483 && elf_section_syms (abfd)[indx] != NULL)
6484 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6485 }
6486
6487 idx = asym_ptr->udata.i;
6488
6489 if (idx == 0)
6490 {
6491 /* This case can occur when using --strip-symbol on a symbol
6492 which is used in a relocation entry. */
6493 _bfd_error_handler
6494 /* xgettext:c-format */
6495 (_("%B: symbol `%s' required but not present"),
6496 abfd, bfd_asymbol_name (asym_ptr));
6497 bfd_set_error (bfd_error_no_symbols);
6498 return -1;
6499 }
6500
6501 #if DEBUG & 4
6502 {
6503 fprintf (stderr,
6504 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6505 (long) asym_ptr, asym_ptr->name, idx, flags);
6506 fflush (stderr);
6507 }
6508 #endif
6509
6510 return idx;
6511 }
6512
6513 /* Rewrite program header information. */
6514
6515 static bfd_boolean
6516 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6517 {
6518 Elf_Internal_Ehdr *iehdr;
6519 struct elf_segment_map *map;
6520 struct elf_segment_map *map_first;
6521 struct elf_segment_map **pointer_to_map;
6522 Elf_Internal_Phdr *segment;
6523 asection *section;
6524 unsigned int i;
6525 unsigned int num_segments;
6526 bfd_boolean phdr_included = FALSE;
6527 bfd_boolean p_paddr_valid;
6528 bfd_vma maxpagesize;
6529 struct elf_segment_map *phdr_adjust_seg = NULL;
6530 unsigned int phdr_adjust_num = 0;
6531 const struct elf_backend_data *bed;
6532
6533 bed = get_elf_backend_data (ibfd);
6534 iehdr = elf_elfheader (ibfd);
6535
6536 map_first = NULL;
6537 pointer_to_map = &map_first;
6538
6539 num_segments = elf_elfheader (ibfd)->e_phnum;
6540 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6541
6542 /* Returns the end address of the segment + 1. */
6543 #define SEGMENT_END(segment, start) \
6544 (start + (segment->p_memsz > segment->p_filesz \
6545 ? segment->p_memsz : segment->p_filesz))
6546
6547 #define SECTION_SIZE(section, segment) \
6548 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6549 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6550 ? section->size : 0)
6551
6552 /* Returns TRUE if the given section is contained within
6553 the given segment. VMA addresses are compared. */
6554 #define IS_CONTAINED_BY_VMA(section, segment) \
6555 (section->vma >= segment->p_vaddr \
6556 && (section->vma + SECTION_SIZE (section, segment) \
6557 <= (SEGMENT_END (segment, segment->p_vaddr))))
6558
6559 /* Returns TRUE if the given section is contained within
6560 the given segment. LMA addresses are compared. */
6561 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6562 (section->lma >= base \
6563 && (section->lma + SECTION_SIZE (section, segment) \
6564 <= SEGMENT_END (segment, base)))
6565
6566 /* Handle PT_NOTE segment. */
6567 #define IS_NOTE(p, s) \
6568 (p->p_type == PT_NOTE \
6569 && elf_section_type (s) == SHT_NOTE \
6570 && (bfd_vma) s->filepos >= p->p_offset \
6571 && ((bfd_vma) s->filepos + s->size \
6572 <= p->p_offset + p->p_filesz))
6573
6574 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6575 etc. */
6576 #define IS_COREFILE_NOTE(p, s) \
6577 (IS_NOTE (p, s) \
6578 && bfd_get_format (ibfd) == bfd_core \
6579 && s->vma == 0 \
6580 && s->lma == 0)
6581
6582 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6583 linker, which generates a PT_INTERP section with p_vaddr and
6584 p_memsz set to 0. */
6585 #define IS_SOLARIS_PT_INTERP(p, s) \
6586 (p->p_vaddr == 0 \
6587 && p->p_paddr == 0 \
6588 && p->p_memsz == 0 \
6589 && p->p_filesz > 0 \
6590 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6591 && s->size > 0 \
6592 && (bfd_vma) s->filepos >= p->p_offset \
6593 && ((bfd_vma) s->filepos + s->size \
6594 <= p->p_offset + p->p_filesz))
6595
6596 /* Decide if the given section should be included in the given segment.
6597 A section will be included if:
6598 1. It is within the address space of the segment -- we use the LMA
6599 if that is set for the segment and the VMA otherwise,
6600 2. It is an allocated section or a NOTE section in a PT_NOTE
6601 segment.
6602 3. There is an output section associated with it,
6603 4. The section has not already been allocated to a previous segment.
6604 5. PT_GNU_STACK segments do not include any sections.
6605 6. PT_TLS segment includes only SHF_TLS sections.
6606 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6607 8. PT_DYNAMIC should not contain empty sections at the beginning
6608 (with the possible exception of .dynamic). */
6609 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6610 ((((segment->p_paddr \
6611 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6612 : IS_CONTAINED_BY_VMA (section, segment)) \
6613 && (section->flags & SEC_ALLOC) != 0) \
6614 || IS_NOTE (segment, section)) \
6615 && segment->p_type != PT_GNU_STACK \
6616 && (segment->p_type != PT_TLS \
6617 || (section->flags & SEC_THREAD_LOCAL)) \
6618 && (segment->p_type == PT_LOAD \
6619 || segment->p_type == PT_TLS \
6620 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6621 && (segment->p_type != PT_DYNAMIC \
6622 || SECTION_SIZE (section, segment) > 0 \
6623 || (segment->p_paddr \
6624 ? segment->p_paddr != section->lma \
6625 : segment->p_vaddr != section->vma) \
6626 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6627 == 0)) \
6628 && !section->segment_mark)
6629
6630 /* If the output section of a section in the input segment is NULL,
6631 it is removed from the corresponding output segment. */
6632 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6633 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6634 && section->output_section != NULL)
6635
6636 /* Returns TRUE iff seg1 starts after the end of seg2. */
6637 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6638 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6639
6640 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6641 their VMA address ranges and their LMA address ranges overlap.
6642 It is possible to have overlapping VMA ranges without overlapping LMA
6643 ranges. RedBoot images for example can have both .data and .bss mapped
6644 to the same VMA range, but with the .data section mapped to a different
6645 LMA. */
6646 #define SEGMENT_OVERLAPS(seg1, seg2) \
6647 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6648 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6649 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6650 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6651
6652 /* Initialise the segment mark field. */
6653 for (section = ibfd->sections; section != NULL; section = section->next)
6654 section->segment_mark = FALSE;
6655
6656 /* The Solaris linker creates program headers in which all the
6657 p_paddr fields are zero. When we try to objcopy or strip such a
6658 file, we get confused. Check for this case, and if we find it
6659 don't set the p_paddr_valid fields. */
6660 p_paddr_valid = FALSE;
6661 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6662 i < num_segments;
6663 i++, segment++)
6664 if (segment->p_paddr != 0)
6665 {
6666 p_paddr_valid = TRUE;
6667 break;
6668 }
6669
6670 /* Scan through the segments specified in the program header
6671 of the input BFD. For this first scan we look for overlaps
6672 in the loadable segments. These can be created by weird
6673 parameters to objcopy. Also, fix some solaris weirdness. */
6674 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6675 i < num_segments;
6676 i++, segment++)
6677 {
6678 unsigned int j;
6679 Elf_Internal_Phdr *segment2;
6680
6681 if (segment->p_type == PT_INTERP)
6682 for (section = ibfd->sections; section; section = section->next)
6683 if (IS_SOLARIS_PT_INTERP (segment, section))
6684 {
6685 /* Mininal change so that the normal section to segment
6686 assignment code will work. */
6687 segment->p_vaddr = section->vma;
6688 break;
6689 }
6690
6691 if (segment->p_type != PT_LOAD)
6692 {
6693 /* Remove PT_GNU_RELRO segment. */
6694 if (segment->p_type == PT_GNU_RELRO)
6695 segment->p_type = PT_NULL;
6696 continue;
6697 }
6698
6699 /* Determine if this segment overlaps any previous segments. */
6700 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6701 {
6702 bfd_signed_vma extra_length;
6703
6704 if (segment2->p_type != PT_LOAD
6705 || !SEGMENT_OVERLAPS (segment, segment2))
6706 continue;
6707
6708 /* Merge the two segments together. */
6709 if (segment2->p_vaddr < segment->p_vaddr)
6710 {
6711 /* Extend SEGMENT2 to include SEGMENT and then delete
6712 SEGMENT. */
6713 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6714 - SEGMENT_END (segment2, segment2->p_vaddr));
6715
6716 if (extra_length > 0)
6717 {
6718 segment2->p_memsz += extra_length;
6719 segment2->p_filesz += extra_length;
6720 }
6721
6722 segment->p_type = PT_NULL;
6723
6724 /* Since we have deleted P we must restart the outer loop. */
6725 i = 0;
6726 segment = elf_tdata (ibfd)->phdr;
6727 break;
6728 }
6729 else
6730 {
6731 /* Extend SEGMENT to include SEGMENT2 and then delete
6732 SEGMENT2. */
6733 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6734 - SEGMENT_END (segment, segment->p_vaddr));
6735
6736 if (extra_length > 0)
6737 {
6738 segment->p_memsz += extra_length;
6739 segment->p_filesz += extra_length;
6740 }
6741
6742 segment2->p_type = PT_NULL;
6743 }
6744 }
6745 }
6746
6747 /* The second scan attempts to assign sections to segments. */
6748 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6749 i < num_segments;
6750 i++, segment++)
6751 {
6752 unsigned int section_count;
6753 asection **sections;
6754 asection *output_section;
6755 unsigned int isec;
6756 bfd_vma matching_lma;
6757 bfd_vma suggested_lma;
6758 unsigned int j;
6759 bfd_size_type amt;
6760 asection *first_section;
6761 bfd_boolean first_matching_lma;
6762 bfd_boolean first_suggested_lma;
6763
6764 if (segment->p_type == PT_NULL)
6765 continue;
6766
6767 first_section = NULL;
6768 /* Compute how many sections might be placed into this segment. */
6769 for (section = ibfd->sections, section_count = 0;
6770 section != NULL;
6771 section = section->next)
6772 {
6773 /* Find the first section in the input segment, which may be
6774 removed from the corresponding output segment. */
6775 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6776 {
6777 if (first_section == NULL)
6778 first_section = section;
6779 if (section->output_section != NULL)
6780 ++section_count;
6781 }
6782 }
6783
6784 /* Allocate a segment map big enough to contain
6785 all of the sections we have selected. */
6786 amt = sizeof (struct elf_segment_map);
6787 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6788 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6789 if (map == NULL)
6790 return FALSE;
6791
6792 /* Initialise the fields of the segment map. Default to
6793 using the physical address of the segment in the input BFD. */
6794 map->next = NULL;
6795 map->p_type = segment->p_type;
6796 map->p_flags = segment->p_flags;
6797 map->p_flags_valid = 1;
6798
6799 /* If the first section in the input segment is removed, there is
6800 no need to preserve segment physical address in the corresponding
6801 output segment. */
6802 if (!first_section || first_section->output_section != NULL)
6803 {
6804 map->p_paddr = segment->p_paddr;
6805 map->p_paddr_valid = p_paddr_valid;
6806 }
6807
6808 /* Determine if this segment contains the ELF file header
6809 and if it contains the program headers themselves. */
6810 map->includes_filehdr = (segment->p_offset == 0
6811 && segment->p_filesz >= iehdr->e_ehsize);
6812 map->includes_phdrs = 0;
6813
6814 if (!phdr_included || segment->p_type != PT_LOAD)
6815 {
6816 map->includes_phdrs =
6817 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6818 && (segment->p_offset + segment->p_filesz
6819 >= ((bfd_vma) iehdr->e_phoff
6820 + iehdr->e_phnum * iehdr->e_phentsize)));
6821
6822 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6823 phdr_included = TRUE;
6824 }
6825
6826 if (section_count == 0)
6827 {
6828 /* Special segments, such as the PT_PHDR segment, may contain
6829 no sections, but ordinary, loadable segments should contain
6830 something. They are allowed by the ELF spec however, so only
6831 a warning is produced.
6832 There is however the valid use case of embedded systems which
6833 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6834 flash memory with zeros. No warning is shown for that case. */
6835 if (segment->p_type == PT_LOAD
6836 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6837 /* xgettext:c-format */
6838 _bfd_error_handler (_("%B: warning: Empty loadable segment detected"
6839 " at vaddr=%#Lx, is this intentional?"),
6840 ibfd, segment->p_vaddr);
6841
6842 map->count = 0;
6843 *pointer_to_map = map;
6844 pointer_to_map = &map->next;
6845
6846 continue;
6847 }
6848
6849 /* Now scan the sections in the input BFD again and attempt
6850 to add their corresponding output sections to the segment map.
6851 The problem here is how to handle an output section which has
6852 been moved (ie had its LMA changed). There are four possibilities:
6853
6854 1. None of the sections have been moved.
6855 In this case we can continue to use the segment LMA from the
6856 input BFD.
6857
6858 2. All of the sections have been moved by the same amount.
6859 In this case we can change the segment's LMA to match the LMA
6860 of the first section.
6861
6862 3. Some of the sections have been moved, others have not.
6863 In this case those sections which have not been moved can be
6864 placed in the current segment which will have to have its size,
6865 and possibly its LMA changed, and a new segment or segments will
6866 have to be created to contain the other sections.
6867
6868 4. The sections have been moved, but not by the same amount.
6869 In this case we can change the segment's LMA to match the LMA
6870 of the first section and we will have to create a new segment
6871 or segments to contain the other sections.
6872
6873 In order to save time, we allocate an array to hold the section
6874 pointers that we are interested in. As these sections get assigned
6875 to a segment, they are removed from this array. */
6876
6877 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6878 if (sections == NULL)
6879 return FALSE;
6880
6881 /* Step One: Scan for segment vs section LMA conflicts.
6882 Also add the sections to the section array allocated above.
6883 Also add the sections to the current segment. In the common
6884 case, where the sections have not been moved, this means that
6885 we have completely filled the segment, and there is nothing
6886 more to do. */
6887 isec = 0;
6888 matching_lma = 0;
6889 suggested_lma = 0;
6890 first_matching_lma = TRUE;
6891 first_suggested_lma = TRUE;
6892
6893 for (section = first_section, j = 0;
6894 section != NULL;
6895 section = section->next)
6896 {
6897 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6898 {
6899 output_section = section->output_section;
6900
6901 sections[j++] = section;
6902
6903 /* The Solaris native linker always sets p_paddr to 0.
6904 We try to catch that case here, and set it to the
6905 correct value. Note - some backends require that
6906 p_paddr be left as zero. */
6907 if (!p_paddr_valid
6908 && segment->p_vaddr != 0
6909 && !bed->want_p_paddr_set_to_zero
6910 && isec == 0
6911 && output_section->lma != 0
6912 && output_section->vma == (segment->p_vaddr
6913 + (map->includes_filehdr
6914 ? iehdr->e_ehsize
6915 : 0)
6916 + (map->includes_phdrs
6917 ? (iehdr->e_phnum
6918 * iehdr->e_phentsize)
6919 : 0)))
6920 map->p_paddr = segment->p_vaddr;
6921
6922 /* Match up the physical address of the segment with the
6923 LMA address of the output section. */
6924 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6925 || IS_COREFILE_NOTE (segment, section)
6926 || (bed->want_p_paddr_set_to_zero
6927 && IS_CONTAINED_BY_VMA (output_section, segment)))
6928 {
6929 if (first_matching_lma || output_section->lma < matching_lma)
6930 {
6931 matching_lma = output_section->lma;
6932 first_matching_lma = FALSE;
6933 }
6934
6935 /* We assume that if the section fits within the segment
6936 then it does not overlap any other section within that
6937 segment. */
6938 map->sections[isec++] = output_section;
6939 }
6940 else if (first_suggested_lma)
6941 {
6942 suggested_lma = output_section->lma;
6943 first_suggested_lma = FALSE;
6944 }
6945
6946 if (j == section_count)
6947 break;
6948 }
6949 }
6950
6951 BFD_ASSERT (j == section_count);
6952
6953 /* Step Two: Adjust the physical address of the current segment,
6954 if necessary. */
6955 if (isec == section_count)
6956 {
6957 /* All of the sections fitted within the segment as currently
6958 specified. This is the default case. Add the segment to
6959 the list of built segments and carry on to process the next
6960 program header in the input BFD. */
6961 map->count = section_count;
6962 *pointer_to_map = map;
6963 pointer_to_map = &map->next;
6964
6965 if (p_paddr_valid
6966 && !bed->want_p_paddr_set_to_zero
6967 && matching_lma != map->p_paddr
6968 && !map->includes_filehdr
6969 && !map->includes_phdrs)
6970 /* There is some padding before the first section in the
6971 segment. So, we must account for that in the output
6972 segment's vma. */
6973 map->p_vaddr_offset = matching_lma - map->p_paddr;
6974
6975 free (sections);
6976 continue;
6977 }
6978 else
6979 {
6980 if (!first_matching_lma)
6981 {
6982 /* At least one section fits inside the current segment.
6983 Keep it, but modify its physical address to match the
6984 LMA of the first section that fitted. */
6985 map->p_paddr = matching_lma;
6986 }
6987 else
6988 {
6989 /* None of the sections fitted inside the current segment.
6990 Change the current segment's physical address to match
6991 the LMA of the first section. */
6992 map->p_paddr = suggested_lma;
6993 }
6994
6995 /* Offset the segment physical address from the lma
6996 to allow for space taken up by elf headers. */
6997 if (map->includes_filehdr)
6998 {
6999 if (map->p_paddr >= iehdr->e_ehsize)
7000 map->p_paddr -= iehdr->e_ehsize;
7001 else
7002 {
7003 map->includes_filehdr = FALSE;
7004 map->includes_phdrs = FALSE;
7005 }
7006 }
7007
7008 if (map->includes_phdrs)
7009 {
7010 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
7011 {
7012 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7013
7014 /* iehdr->e_phnum is just an estimate of the number
7015 of program headers that we will need. Make a note
7016 here of the number we used and the segment we chose
7017 to hold these headers, so that we can adjust the
7018 offset when we know the correct value. */
7019 phdr_adjust_num = iehdr->e_phnum;
7020 phdr_adjust_seg = map;
7021 }
7022 else
7023 map->includes_phdrs = FALSE;
7024 }
7025 }
7026
7027 /* Step Three: Loop over the sections again, this time assigning
7028 those that fit to the current segment and removing them from the
7029 sections array; but making sure not to leave large gaps. Once all
7030 possible sections have been assigned to the current segment it is
7031 added to the list of built segments and if sections still remain
7032 to be assigned, a new segment is constructed before repeating
7033 the loop. */
7034 isec = 0;
7035 do
7036 {
7037 map->count = 0;
7038 suggested_lma = 0;
7039 first_suggested_lma = TRUE;
7040
7041 /* Fill the current segment with sections that fit. */
7042 for (j = 0; j < section_count; j++)
7043 {
7044 section = sections[j];
7045
7046 if (section == NULL)
7047 continue;
7048
7049 output_section = section->output_section;
7050
7051 BFD_ASSERT (output_section != NULL);
7052
7053 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7054 || IS_COREFILE_NOTE (segment, section))
7055 {
7056 if (map->count == 0)
7057 {
7058 /* If the first section in a segment does not start at
7059 the beginning of the segment, then something is
7060 wrong. */
7061 if (output_section->lma
7062 != (map->p_paddr
7063 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
7064 + (map->includes_phdrs
7065 ? iehdr->e_phnum * iehdr->e_phentsize
7066 : 0)))
7067 abort ();
7068 }
7069 else
7070 {
7071 asection *prev_sec;
7072
7073 prev_sec = map->sections[map->count - 1];
7074
7075 /* If the gap between the end of the previous section
7076 and the start of this section is more than
7077 maxpagesize then we need to start a new segment. */
7078 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7079 maxpagesize)
7080 < BFD_ALIGN (output_section->lma, maxpagesize))
7081 || (prev_sec->lma + prev_sec->size
7082 > output_section->lma))
7083 {
7084 if (first_suggested_lma)
7085 {
7086 suggested_lma = output_section->lma;
7087 first_suggested_lma = FALSE;
7088 }
7089
7090 continue;
7091 }
7092 }
7093
7094 map->sections[map->count++] = output_section;
7095 ++isec;
7096 sections[j] = NULL;
7097 section->segment_mark = TRUE;
7098 }
7099 else if (first_suggested_lma)
7100 {
7101 suggested_lma = output_section->lma;
7102 first_suggested_lma = FALSE;
7103 }
7104 }
7105
7106 BFD_ASSERT (map->count > 0);
7107
7108 /* Add the current segment to the list of built segments. */
7109 *pointer_to_map = map;
7110 pointer_to_map = &map->next;
7111
7112 if (isec < section_count)
7113 {
7114 /* We still have not allocated all of the sections to
7115 segments. Create a new segment here, initialise it
7116 and carry on looping. */
7117 amt = sizeof (struct elf_segment_map);
7118 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7119 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7120 if (map == NULL)
7121 {
7122 free (sections);
7123 return FALSE;
7124 }
7125
7126 /* Initialise the fields of the segment map. Set the physical
7127 physical address to the LMA of the first section that has
7128 not yet been assigned. */
7129 map->next = NULL;
7130 map->p_type = segment->p_type;
7131 map->p_flags = segment->p_flags;
7132 map->p_flags_valid = 1;
7133 map->p_paddr = suggested_lma;
7134 map->p_paddr_valid = p_paddr_valid;
7135 map->includes_filehdr = 0;
7136 map->includes_phdrs = 0;
7137 }
7138 }
7139 while (isec < section_count);
7140
7141 free (sections);
7142 }
7143
7144 elf_seg_map (obfd) = map_first;
7145
7146 /* If we had to estimate the number of program headers that were
7147 going to be needed, then check our estimate now and adjust
7148 the offset if necessary. */
7149 if (phdr_adjust_seg != NULL)
7150 {
7151 unsigned int count;
7152
7153 for (count = 0, map = map_first; map != NULL; map = map->next)
7154 count++;
7155
7156 if (count > phdr_adjust_num)
7157 phdr_adjust_seg->p_paddr
7158 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7159 }
7160
7161 #undef SEGMENT_END
7162 #undef SECTION_SIZE
7163 #undef IS_CONTAINED_BY_VMA
7164 #undef IS_CONTAINED_BY_LMA
7165 #undef IS_NOTE
7166 #undef IS_COREFILE_NOTE
7167 #undef IS_SOLARIS_PT_INTERP
7168 #undef IS_SECTION_IN_INPUT_SEGMENT
7169 #undef INCLUDE_SECTION_IN_SEGMENT
7170 #undef SEGMENT_AFTER_SEGMENT
7171 #undef SEGMENT_OVERLAPS
7172 return TRUE;
7173 }
7174
7175 /* Copy ELF program header information. */
7176
7177 static bfd_boolean
7178 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7179 {
7180 Elf_Internal_Ehdr *iehdr;
7181 struct elf_segment_map *map;
7182 struct elf_segment_map *map_first;
7183 struct elf_segment_map **pointer_to_map;
7184 Elf_Internal_Phdr *segment;
7185 unsigned int i;
7186 unsigned int num_segments;
7187 bfd_boolean phdr_included = FALSE;
7188 bfd_boolean p_paddr_valid;
7189
7190 iehdr = elf_elfheader (ibfd);
7191
7192 map_first = NULL;
7193 pointer_to_map = &map_first;
7194
7195 /* If all the segment p_paddr fields are zero, don't set
7196 map->p_paddr_valid. */
7197 p_paddr_valid = FALSE;
7198 num_segments = elf_elfheader (ibfd)->e_phnum;
7199 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7200 i < num_segments;
7201 i++, segment++)
7202 if (segment->p_paddr != 0)
7203 {
7204 p_paddr_valid = TRUE;
7205 break;
7206 }
7207
7208 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7209 i < num_segments;
7210 i++, segment++)
7211 {
7212 asection *section;
7213 unsigned int section_count;
7214 bfd_size_type amt;
7215 Elf_Internal_Shdr *this_hdr;
7216 asection *first_section = NULL;
7217 asection *lowest_section;
7218
7219 /* Compute how many sections are in this segment. */
7220 for (section = ibfd->sections, section_count = 0;
7221 section != NULL;
7222 section = section->next)
7223 {
7224 this_hdr = &(elf_section_data(section)->this_hdr);
7225 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7226 {
7227 if (first_section == NULL)
7228 first_section = section;
7229 section_count++;
7230 }
7231 }
7232
7233 /* Allocate a segment map big enough to contain
7234 all of the sections we have selected. */
7235 amt = sizeof (struct elf_segment_map);
7236 if (section_count != 0)
7237 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7238 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7239 if (map == NULL)
7240 return FALSE;
7241
7242 /* Initialize the fields of the output segment map with the
7243 input segment. */
7244 map->next = NULL;
7245 map->p_type = segment->p_type;
7246 map->p_flags = segment->p_flags;
7247 map->p_flags_valid = 1;
7248 map->p_paddr = segment->p_paddr;
7249 map->p_paddr_valid = p_paddr_valid;
7250 map->p_align = segment->p_align;
7251 map->p_align_valid = 1;
7252 map->p_vaddr_offset = 0;
7253
7254 if (map->p_type == PT_GNU_RELRO
7255 || map->p_type == PT_GNU_STACK)
7256 {
7257 /* The PT_GNU_RELRO segment may contain the first a few
7258 bytes in the .got.plt section even if the whole .got.plt
7259 section isn't in the PT_GNU_RELRO segment. We won't
7260 change the size of the PT_GNU_RELRO segment.
7261 Similarly, PT_GNU_STACK size is significant on uclinux
7262 systems. */
7263 map->p_size = segment->p_memsz;
7264 map->p_size_valid = 1;
7265 }
7266
7267 /* Determine if this segment contains the ELF file header
7268 and if it contains the program headers themselves. */
7269 map->includes_filehdr = (segment->p_offset == 0
7270 && segment->p_filesz >= iehdr->e_ehsize);
7271
7272 map->includes_phdrs = 0;
7273 if (! phdr_included || segment->p_type != PT_LOAD)
7274 {
7275 map->includes_phdrs =
7276 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7277 && (segment->p_offset + segment->p_filesz
7278 >= ((bfd_vma) iehdr->e_phoff
7279 + iehdr->e_phnum * iehdr->e_phentsize)));
7280
7281 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7282 phdr_included = TRUE;
7283 }
7284
7285 lowest_section = NULL;
7286 if (section_count != 0)
7287 {
7288 unsigned int isec = 0;
7289
7290 for (section = first_section;
7291 section != NULL;
7292 section = section->next)
7293 {
7294 this_hdr = &(elf_section_data(section)->this_hdr);
7295 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7296 {
7297 map->sections[isec++] = section->output_section;
7298 if ((section->flags & SEC_ALLOC) != 0)
7299 {
7300 bfd_vma seg_off;
7301
7302 if (lowest_section == NULL
7303 || section->lma < lowest_section->lma)
7304 lowest_section = section;
7305
7306 /* Section lmas are set up from PT_LOAD header
7307 p_paddr in _bfd_elf_make_section_from_shdr.
7308 If this header has a p_paddr that disagrees
7309 with the section lma, flag the p_paddr as
7310 invalid. */
7311 if ((section->flags & SEC_LOAD) != 0)
7312 seg_off = this_hdr->sh_offset - segment->p_offset;
7313 else
7314 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7315 if (section->lma - segment->p_paddr != seg_off)
7316 map->p_paddr_valid = FALSE;
7317 }
7318 if (isec == section_count)
7319 break;
7320 }
7321 }
7322 }
7323
7324 if (map->includes_filehdr && lowest_section != NULL)
7325 /* We need to keep the space used by the headers fixed. */
7326 map->header_size = lowest_section->vma - segment->p_vaddr;
7327
7328 if (!map->includes_phdrs
7329 && !map->includes_filehdr
7330 && map->p_paddr_valid)
7331 /* There is some other padding before the first section. */
7332 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7333 - segment->p_paddr);
7334
7335 map->count = section_count;
7336 *pointer_to_map = map;
7337 pointer_to_map = &map->next;
7338 }
7339
7340 elf_seg_map (obfd) = map_first;
7341 return TRUE;
7342 }
7343
7344 /* Copy private BFD data. This copies or rewrites ELF program header
7345 information. */
7346
7347 static bfd_boolean
7348 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7349 {
7350 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7351 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7352 return TRUE;
7353
7354 if (elf_tdata (ibfd)->phdr == NULL)
7355 return TRUE;
7356
7357 if (ibfd->xvec == obfd->xvec)
7358 {
7359 /* Check to see if any sections in the input BFD
7360 covered by ELF program header have changed. */
7361 Elf_Internal_Phdr *segment;
7362 asection *section, *osec;
7363 unsigned int i, num_segments;
7364 Elf_Internal_Shdr *this_hdr;
7365 const struct elf_backend_data *bed;
7366
7367 bed = get_elf_backend_data (ibfd);
7368
7369 /* Regenerate the segment map if p_paddr is set to 0. */
7370 if (bed->want_p_paddr_set_to_zero)
7371 goto rewrite;
7372
7373 /* Initialize the segment mark field. */
7374 for (section = obfd->sections; section != NULL;
7375 section = section->next)
7376 section->segment_mark = FALSE;
7377
7378 num_segments = elf_elfheader (ibfd)->e_phnum;
7379 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7380 i < num_segments;
7381 i++, segment++)
7382 {
7383 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7384 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7385 which severly confuses things, so always regenerate the segment
7386 map in this case. */
7387 if (segment->p_paddr == 0
7388 && segment->p_memsz == 0
7389 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7390 goto rewrite;
7391
7392 for (section = ibfd->sections;
7393 section != NULL; section = section->next)
7394 {
7395 /* We mark the output section so that we know it comes
7396 from the input BFD. */
7397 osec = section->output_section;
7398 if (osec)
7399 osec->segment_mark = TRUE;
7400
7401 /* Check if this section is covered by the segment. */
7402 this_hdr = &(elf_section_data(section)->this_hdr);
7403 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7404 {
7405 /* FIXME: Check if its output section is changed or
7406 removed. What else do we need to check? */
7407 if (osec == NULL
7408 || section->flags != osec->flags
7409 || section->lma != osec->lma
7410 || section->vma != osec->vma
7411 || section->size != osec->size
7412 || section->rawsize != osec->rawsize
7413 || section->alignment_power != osec->alignment_power)
7414 goto rewrite;
7415 }
7416 }
7417 }
7418
7419 /* Check to see if any output section do not come from the
7420 input BFD. */
7421 for (section = obfd->sections; section != NULL;
7422 section = section->next)
7423 {
7424 if (!section->segment_mark)
7425 goto rewrite;
7426 else
7427 section->segment_mark = FALSE;
7428 }
7429
7430 return copy_elf_program_header (ibfd, obfd);
7431 }
7432
7433 rewrite:
7434 if (ibfd->xvec == obfd->xvec)
7435 {
7436 /* When rewriting program header, set the output maxpagesize to
7437 the maximum alignment of input PT_LOAD segments. */
7438 Elf_Internal_Phdr *segment;
7439 unsigned int i;
7440 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7441 bfd_vma maxpagesize = 0;
7442
7443 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7444 i < num_segments;
7445 i++, segment++)
7446 if (segment->p_type == PT_LOAD
7447 && maxpagesize < segment->p_align)
7448 {
7449 /* PR 17512: file: f17299af. */
7450 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7451 /* xgettext:c-format */
7452 _bfd_error_handler (_("%B: warning: segment alignment of %#Lx"
7453 " is too large"),
7454 ibfd, segment->p_align);
7455 else
7456 maxpagesize = segment->p_align;
7457 }
7458
7459 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7460 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7461 }
7462
7463 return rewrite_elf_program_header (ibfd, obfd);
7464 }
7465
7466 /* Initialize private output section information from input section. */
7467
7468 bfd_boolean
7469 _bfd_elf_init_private_section_data (bfd *ibfd,
7470 asection *isec,
7471 bfd *obfd,
7472 asection *osec,
7473 struct bfd_link_info *link_info)
7474
7475 {
7476 Elf_Internal_Shdr *ihdr, *ohdr;
7477 bfd_boolean final_link = (link_info != NULL
7478 && !bfd_link_relocatable (link_info));
7479
7480 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7481 || obfd->xvec->flavour != bfd_target_elf_flavour)
7482 return TRUE;
7483
7484 BFD_ASSERT (elf_section_data (osec) != NULL);
7485
7486 /* For objcopy and relocatable link, don't copy the output ELF
7487 section type from input if the output BFD section flags have been
7488 set to something different. For a final link allow some flags
7489 that the linker clears to differ. */
7490 if (elf_section_type (osec) == SHT_NULL
7491 && (osec->flags == isec->flags
7492 || (final_link
7493 && ((osec->flags ^ isec->flags)
7494 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7495 elf_section_type (osec) = elf_section_type (isec);
7496
7497 /* FIXME: Is this correct for all OS/PROC specific flags? */
7498 elf_section_flags (osec) |= (elf_section_flags (isec)
7499 & (SHF_MASKOS | SHF_MASKPROC));
7500
7501 /* Copy sh_info from input for mbind section. */
7502 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7503 elf_section_data (osec)->this_hdr.sh_info
7504 = elf_section_data (isec)->this_hdr.sh_info;
7505
7506 /* Set things up for objcopy and relocatable link. The output
7507 SHT_GROUP section will have its elf_next_in_group pointing back
7508 to the input group members. Ignore linker created group section.
7509 See elfNN_ia64_object_p in elfxx-ia64.c. */
7510 if ((link_info == NULL
7511 || !link_info->resolve_section_groups)
7512 && (elf_sec_group (isec) == NULL
7513 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7514 {
7515 if (elf_section_flags (isec) & SHF_GROUP)
7516 elf_section_flags (osec) |= SHF_GROUP;
7517 elf_next_in_group (osec) = elf_next_in_group (isec);
7518 elf_section_data (osec)->group = elf_section_data (isec)->group;
7519 }
7520
7521 /* If not decompress, preserve SHF_COMPRESSED. */
7522 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7523 elf_section_flags (osec) |= (elf_section_flags (isec)
7524 & SHF_COMPRESSED);
7525
7526 ihdr = &elf_section_data (isec)->this_hdr;
7527
7528 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7529 don't use the output section of the linked-to section since it
7530 may be NULL at this point. */
7531 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7532 {
7533 ohdr = &elf_section_data (osec)->this_hdr;
7534 ohdr->sh_flags |= SHF_LINK_ORDER;
7535 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7536 }
7537
7538 osec->use_rela_p = isec->use_rela_p;
7539
7540 return TRUE;
7541 }
7542
7543 /* Copy private section information. This copies over the entsize
7544 field, and sometimes the info field. */
7545
7546 bfd_boolean
7547 _bfd_elf_copy_private_section_data (bfd *ibfd,
7548 asection *isec,
7549 bfd *obfd,
7550 asection *osec)
7551 {
7552 Elf_Internal_Shdr *ihdr, *ohdr;
7553
7554 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7555 || obfd->xvec->flavour != bfd_target_elf_flavour)
7556 return TRUE;
7557
7558 ihdr = &elf_section_data (isec)->this_hdr;
7559 ohdr = &elf_section_data (osec)->this_hdr;
7560
7561 ohdr->sh_entsize = ihdr->sh_entsize;
7562
7563 if (ihdr->sh_type == SHT_SYMTAB
7564 || ihdr->sh_type == SHT_DYNSYM
7565 || ihdr->sh_type == SHT_GNU_verneed
7566 || ihdr->sh_type == SHT_GNU_verdef)
7567 ohdr->sh_info = ihdr->sh_info;
7568
7569 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7570 NULL);
7571 }
7572
7573 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7574 necessary if we are removing either the SHT_GROUP section or any of
7575 the group member sections. DISCARDED is the value that a section's
7576 output_section has if the section will be discarded, NULL when this
7577 function is called from objcopy, bfd_abs_section_ptr when called
7578 from the linker. */
7579
7580 bfd_boolean
7581 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7582 {
7583 asection *isec;
7584
7585 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7586 if (elf_section_type (isec) == SHT_GROUP)
7587 {
7588 asection *first = elf_next_in_group (isec);
7589 asection *s = first;
7590 bfd_size_type removed = 0;
7591
7592 while (s != NULL)
7593 {
7594 /* If this member section is being output but the
7595 SHT_GROUP section is not, then clear the group info
7596 set up by _bfd_elf_copy_private_section_data. */
7597 if (s->output_section != discarded
7598 && isec->output_section == discarded)
7599 {
7600 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7601 elf_group_name (s->output_section) = NULL;
7602 }
7603 /* Conversely, if the member section is not being output
7604 but the SHT_GROUP section is, then adjust its size. */
7605 else if (s->output_section == discarded
7606 && isec->output_section != discarded)
7607 {
7608 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7609 removed += 4;
7610 if (elf_sec->rel.hdr != NULL
7611 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7612 removed += 4;
7613 if (elf_sec->rela.hdr != NULL
7614 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7615 removed += 4;
7616 }
7617 s = elf_next_in_group (s);
7618 if (s == first)
7619 break;
7620 }
7621 if (removed != 0)
7622 {
7623 if (discarded != NULL)
7624 {
7625 /* If we've been called for ld -r, then we need to
7626 adjust the input section size. */
7627 if (isec->rawsize == 0)
7628 isec->rawsize = isec->size;
7629 isec->size = isec->rawsize - removed;
7630 if (isec->size <= 4)
7631 {
7632 isec->size = 0;
7633 isec->flags |= SEC_EXCLUDE;
7634 }
7635 }
7636 else
7637 {
7638 /* Adjust the output section size when called from
7639 objcopy. */
7640 isec->output_section->size -= removed;
7641 if (isec->output_section->size <= 4)
7642 {
7643 isec->output_section->size = 0;
7644 isec->output_section->flags |= SEC_EXCLUDE;
7645 }
7646 }
7647 }
7648 }
7649
7650 return TRUE;
7651 }
7652
7653 /* Copy private header information. */
7654
7655 bfd_boolean
7656 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7657 {
7658 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7659 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7660 return TRUE;
7661
7662 /* Copy over private BFD data if it has not already been copied.
7663 This must be done here, rather than in the copy_private_bfd_data
7664 entry point, because the latter is called after the section
7665 contents have been set, which means that the program headers have
7666 already been worked out. */
7667 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7668 {
7669 if (! copy_private_bfd_data (ibfd, obfd))
7670 return FALSE;
7671 }
7672
7673 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7674 }
7675
7676 /* Copy private symbol information. If this symbol is in a section
7677 which we did not map into a BFD section, try to map the section
7678 index correctly. We use special macro definitions for the mapped
7679 section indices; these definitions are interpreted by the
7680 swap_out_syms function. */
7681
7682 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7683 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7684 #define MAP_STRTAB (SHN_HIOS + 3)
7685 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7686 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7687
7688 bfd_boolean
7689 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7690 asymbol *isymarg,
7691 bfd *obfd,
7692 asymbol *osymarg)
7693 {
7694 elf_symbol_type *isym, *osym;
7695
7696 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7697 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7698 return TRUE;
7699
7700 isym = elf_symbol_from (ibfd, isymarg);
7701 osym = elf_symbol_from (obfd, osymarg);
7702
7703 if (isym != NULL
7704 && isym->internal_elf_sym.st_shndx != 0
7705 && osym != NULL
7706 && bfd_is_abs_section (isym->symbol.section))
7707 {
7708 unsigned int shndx;
7709
7710 shndx = isym->internal_elf_sym.st_shndx;
7711 if (shndx == elf_onesymtab (ibfd))
7712 shndx = MAP_ONESYMTAB;
7713 else if (shndx == elf_dynsymtab (ibfd))
7714 shndx = MAP_DYNSYMTAB;
7715 else if (shndx == elf_strtab_sec (ibfd))
7716 shndx = MAP_STRTAB;
7717 else if (shndx == elf_shstrtab_sec (ibfd))
7718 shndx = MAP_SHSTRTAB;
7719 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7720 shndx = MAP_SYM_SHNDX;
7721 osym->internal_elf_sym.st_shndx = shndx;
7722 }
7723
7724 return TRUE;
7725 }
7726
7727 /* Swap out the symbols. */
7728
7729 static bfd_boolean
7730 swap_out_syms (bfd *abfd,
7731 struct elf_strtab_hash **sttp,
7732 int relocatable_p)
7733 {
7734 const struct elf_backend_data *bed;
7735 int symcount;
7736 asymbol **syms;
7737 struct elf_strtab_hash *stt;
7738 Elf_Internal_Shdr *symtab_hdr;
7739 Elf_Internal_Shdr *symtab_shndx_hdr;
7740 Elf_Internal_Shdr *symstrtab_hdr;
7741 struct elf_sym_strtab *symstrtab;
7742 bfd_byte *outbound_syms;
7743 bfd_byte *outbound_shndx;
7744 unsigned long outbound_syms_index;
7745 unsigned long outbound_shndx_index;
7746 int idx;
7747 unsigned int num_locals;
7748 bfd_size_type amt;
7749 bfd_boolean name_local_sections;
7750
7751 if (!elf_map_symbols (abfd, &num_locals))
7752 return FALSE;
7753
7754 /* Dump out the symtabs. */
7755 stt = _bfd_elf_strtab_init ();
7756 if (stt == NULL)
7757 return FALSE;
7758
7759 bed = get_elf_backend_data (abfd);
7760 symcount = bfd_get_symcount (abfd);
7761 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7762 symtab_hdr->sh_type = SHT_SYMTAB;
7763 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7764 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7765 symtab_hdr->sh_info = num_locals + 1;
7766 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7767
7768 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7769 symstrtab_hdr->sh_type = SHT_STRTAB;
7770
7771 /* Allocate buffer to swap out the .strtab section. */
7772 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7773 * sizeof (*symstrtab));
7774 if (symstrtab == NULL)
7775 {
7776 _bfd_elf_strtab_free (stt);
7777 return FALSE;
7778 }
7779
7780 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7781 bed->s->sizeof_sym);
7782 if (outbound_syms == NULL)
7783 {
7784 error_return:
7785 _bfd_elf_strtab_free (stt);
7786 free (symstrtab);
7787 return FALSE;
7788 }
7789 symtab_hdr->contents = outbound_syms;
7790 outbound_syms_index = 0;
7791
7792 outbound_shndx = NULL;
7793 outbound_shndx_index = 0;
7794
7795 if (elf_symtab_shndx_list (abfd))
7796 {
7797 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7798 if (symtab_shndx_hdr->sh_name != 0)
7799 {
7800 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7801 outbound_shndx = (bfd_byte *)
7802 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7803 if (outbound_shndx == NULL)
7804 goto error_return;
7805
7806 symtab_shndx_hdr->contents = outbound_shndx;
7807 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7808 symtab_shndx_hdr->sh_size = amt;
7809 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7810 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7811 }
7812 /* FIXME: What about any other headers in the list ? */
7813 }
7814
7815 /* Now generate the data (for "contents"). */
7816 {
7817 /* Fill in zeroth symbol and swap it out. */
7818 Elf_Internal_Sym sym;
7819 sym.st_name = 0;
7820 sym.st_value = 0;
7821 sym.st_size = 0;
7822 sym.st_info = 0;
7823 sym.st_other = 0;
7824 sym.st_shndx = SHN_UNDEF;
7825 sym.st_target_internal = 0;
7826 symstrtab[0].sym = sym;
7827 symstrtab[0].dest_index = outbound_syms_index;
7828 symstrtab[0].destshndx_index = outbound_shndx_index;
7829 outbound_syms_index++;
7830 if (outbound_shndx != NULL)
7831 outbound_shndx_index++;
7832 }
7833
7834 name_local_sections
7835 = (bed->elf_backend_name_local_section_symbols
7836 && bed->elf_backend_name_local_section_symbols (abfd));
7837
7838 syms = bfd_get_outsymbols (abfd);
7839 for (idx = 0; idx < symcount;)
7840 {
7841 Elf_Internal_Sym sym;
7842 bfd_vma value = syms[idx]->value;
7843 elf_symbol_type *type_ptr;
7844 flagword flags = syms[idx]->flags;
7845 int type;
7846
7847 if (!name_local_sections
7848 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7849 {
7850 /* Local section symbols have no name. */
7851 sym.st_name = (unsigned long) -1;
7852 }
7853 else
7854 {
7855 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7856 to get the final offset for st_name. */
7857 sym.st_name
7858 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7859 FALSE);
7860 if (sym.st_name == (unsigned long) -1)
7861 goto error_return;
7862 }
7863
7864 type_ptr = elf_symbol_from (abfd, syms[idx]);
7865
7866 if ((flags & BSF_SECTION_SYM) == 0
7867 && bfd_is_com_section (syms[idx]->section))
7868 {
7869 /* ELF common symbols put the alignment into the `value' field,
7870 and the size into the `size' field. This is backwards from
7871 how BFD handles it, so reverse it here. */
7872 sym.st_size = value;
7873 if (type_ptr == NULL
7874 || type_ptr->internal_elf_sym.st_value == 0)
7875 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7876 else
7877 sym.st_value = type_ptr->internal_elf_sym.st_value;
7878 sym.st_shndx = _bfd_elf_section_from_bfd_section
7879 (abfd, syms[idx]->section);
7880 }
7881 else
7882 {
7883 asection *sec = syms[idx]->section;
7884 unsigned int shndx;
7885
7886 if (sec->output_section)
7887 {
7888 value += sec->output_offset;
7889 sec = sec->output_section;
7890 }
7891
7892 /* Don't add in the section vma for relocatable output. */
7893 if (! relocatable_p)
7894 value += sec->vma;
7895 sym.st_value = value;
7896 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7897
7898 if (bfd_is_abs_section (sec)
7899 && type_ptr != NULL
7900 && type_ptr->internal_elf_sym.st_shndx != 0)
7901 {
7902 /* This symbol is in a real ELF section which we did
7903 not create as a BFD section. Undo the mapping done
7904 by copy_private_symbol_data. */
7905 shndx = type_ptr->internal_elf_sym.st_shndx;
7906 switch (shndx)
7907 {
7908 case MAP_ONESYMTAB:
7909 shndx = elf_onesymtab (abfd);
7910 break;
7911 case MAP_DYNSYMTAB:
7912 shndx = elf_dynsymtab (abfd);
7913 break;
7914 case MAP_STRTAB:
7915 shndx = elf_strtab_sec (abfd);
7916 break;
7917 case MAP_SHSTRTAB:
7918 shndx = elf_shstrtab_sec (abfd);
7919 break;
7920 case MAP_SYM_SHNDX:
7921 if (elf_symtab_shndx_list (abfd))
7922 shndx = elf_symtab_shndx_list (abfd)->ndx;
7923 break;
7924 default:
7925 shndx = SHN_ABS;
7926 break;
7927 }
7928 }
7929 else
7930 {
7931 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7932
7933 if (shndx == SHN_BAD)
7934 {
7935 asection *sec2;
7936
7937 /* Writing this would be a hell of a lot easier if
7938 we had some decent documentation on bfd, and
7939 knew what to expect of the library, and what to
7940 demand of applications. For example, it
7941 appears that `objcopy' might not set the
7942 section of a symbol to be a section that is
7943 actually in the output file. */
7944 sec2 = bfd_get_section_by_name (abfd, sec->name);
7945 if (sec2 != NULL)
7946 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7947 if (shndx == SHN_BAD)
7948 {
7949 /* xgettext:c-format */
7950 _bfd_error_handler (_("\
7951 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7952 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7953 sec->name);
7954 bfd_set_error (bfd_error_invalid_operation);
7955 goto error_return;
7956 }
7957 }
7958 }
7959
7960 sym.st_shndx = shndx;
7961 }
7962
7963 if ((flags & BSF_THREAD_LOCAL) != 0)
7964 type = STT_TLS;
7965 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7966 type = STT_GNU_IFUNC;
7967 else if ((flags & BSF_FUNCTION) != 0)
7968 type = STT_FUNC;
7969 else if ((flags & BSF_OBJECT) != 0)
7970 type = STT_OBJECT;
7971 else if ((flags & BSF_RELC) != 0)
7972 type = STT_RELC;
7973 else if ((flags & BSF_SRELC) != 0)
7974 type = STT_SRELC;
7975 else
7976 type = STT_NOTYPE;
7977
7978 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7979 type = STT_TLS;
7980
7981 /* Processor-specific types. */
7982 if (type_ptr != NULL
7983 && bed->elf_backend_get_symbol_type)
7984 type = ((*bed->elf_backend_get_symbol_type)
7985 (&type_ptr->internal_elf_sym, type));
7986
7987 if (flags & BSF_SECTION_SYM)
7988 {
7989 if (flags & BSF_GLOBAL)
7990 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7991 else
7992 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7993 }
7994 else if (bfd_is_com_section (syms[idx]->section))
7995 {
7996 if (type != STT_TLS)
7997 {
7998 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7999 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8000 ? STT_COMMON : STT_OBJECT);
8001 else
8002 type = ((flags & BSF_ELF_COMMON) != 0
8003 ? STT_COMMON : STT_OBJECT);
8004 }
8005 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8006 }
8007 else if (bfd_is_und_section (syms[idx]->section))
8008 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8009 ? STB_WEAK
8010 : STB_GLOBAL),
8011 type);
8012 else if (flags & BSF_FILE)
8013 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8014 else
8015 {
8016 int bind = STB_LOCAL;
8017
8018 if (flags & BSF_LOCAL)
8019 bind = STB_LOCAL;
8020 else if (flags & BSF_GNU_UNIQUE)
8021 bind = STB_GNU_UNIQUE;
8022 else if (flags & BSF_WEAK)
8023 bind = STB_WEAK;
8024 else if (flags & BSF_GLOBAL)
8025 bind = STB_GLOBAL;
8026
8027 sym.st_info = ELF_ST_INFO (bind, type);
8028 }
8029
8030 if (type_ptr != NULL)
8031 {
8032 sym.st_other = type_ptr->internal_elf_sym.st_other;
8033 sym.st_target_internal
8034 = type_ptr->internal_elf_sym.st_target_internal;
8035 }
8036 else
8037 {
8038 sym.st_other = 0;
8039 sym.st_target_internal = 0;
8040 }
8041
8042 idx++;
8043 symstrtab[idx].sym = sym;
8044 symstrtab[idx].dest_index = outbound_syms_index;
8045 symstrtab[idx].destshndx_index = outbound_shndx_index;
8046
8047 outbound_syms_index++;
8048 if (outbound_shndx != NULL)
8049 outbound_shndx_index++;
8050 }
8051
8052 /* Finalize the .strtab section. */
8053 _bfd_elf_strtab_finalize (stt);
8054
8055 /* Swap out the .strtab section. */
8056 for (idx = 0; idx <= symcount; idx++)
8057 {
8058 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8059 if (elfsym->sym.st_name == (unsigned long) -1)
8060 elfsym->sym.st_name = 0;
8061 else
8062 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8063 elfsym->sym.st_name);
8064 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8065 (outbound_syms
8066 + (elfsym->dest_index
8067 * bed->s->sizeof_sym)),
8068 (outbound_shndx
8069 + (elfsym->destshndx_index
8070 * sizeof (Elf_External_Sym_Shndx))));
8071 }
8072 free (symstrtab);
8073
8074 *sttp = stt;
8075 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8076 symstrtab_hdr->sh_type = SHT_STRTAB;
8077 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8078 symstrtab_hdr->sh_addr = 0;
8079 symstrtab_hdr->sh_entsize = 0;
8080 symstrtab_hdr->sh_link = 0;
8081 symstrtab_hdr->sh_info = 0;
8082 symstrtab_hdr->sh_addralign = 1;
8083
8084 return TRUE;
8085 }
8086
8087 /* Return the number of bytes required to hold the symtab vector.
8088
8089 Note that we base it on the count plus 1, since we will null terminate
8090 the vector allocated based on this size. However, the ELF symbol table
8091 always has a dummy entry as symbol #0, so it ends up even. */
8092
8093 long
8094 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8095 {
8096 long symcount;
8097 long symtab_size;
8098 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8099
8100 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8101 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8102 if (symcount > 0)
8103 symtab_size -= sizeof (asymbol *);
8104
8105 return symtab_size;
8106 }
8107
8108 long
8109 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8110 {
8111 long symcount;
8112 long symtab_size;
8113 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8114
8115 if (elf_dynsymtab (abfd) == 0)
8116 {
8117 bfd_set_error (bfd_error_invalid_operation);
8118 return -1;
8119 }
8120
8121 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8122 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8123 if (symcount > 0)
8124 symtab_size -= sizeof (asymbol *);
8125
8126 return symtab_size;
8127 }
8128
8129 long
8130 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8131 sec_ptr asect)
8132 {
8133 return (asect->reloc_count + 1) * sizeof (arelent *);
8134 }
8135
8136 /* Canonicalize the relocs. */
8137
8138 long
8139 _bfd_elf_canonicalize_reloc (bfd *abfd,
8140 sec_ptr section,
8141 arelent **relptr,
8142 asymbol **symbols)
8143 {
8144 arelent *tblptr;
8145 unsigned int i;
8146 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8147
8148 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8149 return -1;
8150
8151 tblptr = section->relocation;
8152 for (i = 0; i < section->reloc_count; i++)
8153 *relptr++ = tblptr++;
8154
8155 *relptr = NULL;
8156
8157 return section->reloc_count;
8158 }
8159
8160 long
8161 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8162 {
8163 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8164 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8165
8166 if (symcount >= 0)
8167 bfd_get_symcount (abfd) = symcount;
8168 return symcount;
8169 }
8170
8171 long
8172 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8173 asymbol **allocation)
8174 {
8175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8176 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8177
8178 if (symcount >= 0)
8179 bfd_get_dynamic_symcount (abfd) = symcount;
8180 return symcount;
8181 }
8182
8183 /* Return the size required for the dynamic reloc entries. Any loadable
8184 section that was actually installed in the BFD, and has type SHT_REL
8185 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8186 dynamic reloc section. */
8187
8188 long
8189 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8190 {
8191 long ret;
8192 asection *s;
8193
8194 if (elf_dynsymtab (abfd) == 0)
8195 {
8196 bfd_set_error (bfd_error_invalid_operation);
8197 return -1;
8198 }
8199
8200 ret = sizeof (arelent *);
8201 for (s = abfd->sections; s != NULL; s = s->next)
8202 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8203 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8204 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8205 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8206 * sizeof (arelent *));
8207
8208 return ret;
8209 }
8210
8211 /* Canonicalize the dynamic relocation entries. Note that we return the
8212 dynamic relocations as a single block, although they are actually
8213 associated with particular sections; the interface, which was
8214 designed for SunOS style shared libraries, expects that there is only
8215 one set of dynamic relocs. Any loadable section that was actually
8216 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8217 dynamic symbol table, is considered to be a dynamic reloc section. */
8218
8219 long
8220 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8221 arelent **storage,
8222 asymbol **syms)
8223 {
8224 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8225 asection *s;
8226 long ret;
8227
8228 if (elf_dynsymtab (abfd) == 0)
8229 {
8230 bfd_set_error (bfd_error_invalid_operation);
8231 return -1;
8232 }
8233
8234 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8235 ret = 0;
8236 for (s = abfd->sections; s != NULL; s = s->next)
8237 {
8238 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8239 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8240 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8241 {
8242 arelent *p;
8243 long count, i;
8244
8245 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8246 return -1;
8247 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8248 p = s->relocation;
8249 for (i = 0; i < count; i++)
8250 *storage++ = p++;
8251 ret += count;
8252 }
8253 }
8254
8255 *storage = NULL;
8256
8257 return ret;
8258 }
8259 \f
8260 /* Read in the version information. */
8261
8262 bfd_boolean
8263 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8264 {
8265 bfd_byte *contents = NULL;
8266 unsigned int freeidx = 0;
8267
8268 if (elf_dynverref (abfd) != 0)
8269 {
8270 Elf_Internal_Shdr *hdr;
8271 Elf_External_Verneed *everneed;
8272 Elf_Internal_Verneed *iverneed;
8273 unsigned int i;
8274 bfd_byte *contents_end;
8275
8276 hdr = &elf_tdata (abfd)->dynverref_hdr;
8277
8278 if (hdr->sh_info == 0
8279 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8280 {
8281 error_return_bad_verref:
8282 _bfd_error_handler
8283 (_("%B: .gnu.version_r invalid entry"), abfd);
8284 bfd_set_error (bfd_error_bad_value);
8285 error_return_verref:
8286 elf_tdata (abfd)->verref = NULL;
8287 elf_tdata (abfd)->cverrefs = 0;
8288 goto error_return;
8289 }
8290
8291 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8292 if (contents == NULL)
8293 goto error_return_verref;
8294
8295 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8296 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8297 goto error_return_verref;
8298
8299 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8300 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8301
8302 if (elf_tdata (abfd)->verref == NULL)
8303 goto error_return_verref;
8304
8305 BFD_ASSERT (sizeof (Elf_External_Verneed)
8306 == sizeof (Elf_External_Vernaux));
8307 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8308 everneed = (Elf_External_Verneed *) contents;
8309 iverneed = elf_tdata (abfd)->verref;
8310 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8311 {
8312 Elf_External_Vernaux *evernaux;
8313 Elf_Internal_Vernaux *ivernaux;
8314 unsigned int j;
8315
8316 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8317
8318 iverneed->vn_bfd = abfd;
8319
8320 iverneed->vn_filename =
8321 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8322 iverneed->vn_file);
8323 if (iverneed->vn_filename == NULL)
8324 goto error_return_bad_verref;
8325
8326 if (iverneed->vn_cnt == 0)
8327 iverneed->vn_auxptr = NULL;
8328 else
8329 {
8330 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8331 bfd_alloc2 (abfd, iverneed->vn_cnt,
8332 sizeof (Elf_Internal_Vernaux));
8333 if (iverneed->vn_auxptr == NULL)
8334 goto error_return_verref;
8335 }
8336
8337 if (iverneed->vn_aux
8338 > (size_t) (contents_end - (bfd_byte *) everneed))
8339 goto error_return_bad_verref;
8340
8341 evernaux = ((Elf_External_Vernaux *)
8342 ((bfd_byte *) everneed + iverneed->vn_aux));
8343 ivernaux = iverneed->vn_auxptr;
8344 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8345 {
8346 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8347
8348 ivernaux->vna_nodename =
8349 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8350 ivernaux->vna_name);
8351 if (ivernaux->vna_nodename == NULL)
8352 goto error_return_bad_verref;
8353
8354 if (ivernaux->vna_other > freeidx)
8355 freeidx = ivernaux->vna_other;
8356
8357 ivernaux->vna_nextptr = NULL;
8358 if (ivernaux->vna_next == 0)
8359 {
8360 iverneed->vn_cnt = j + 1;
8361 break;
8362 }
8363 if (j + 1 < iverneed->vn_cnt)
8364 ivernaux->vna_nextptr = ivernaux + 1;
8365
8366 if (ivernaux->vna_next
8367 > (size_t) (contents_end - (bfd_byte *) evernaux))
8368 goto error_return_bad_verref;
8369
8370 evernaux = ((Elf_External_Vernaux *)
8371 ((bfd_byte *) evernaux + ivernaux->vna_next));
8372 }
8373
8374 iverneed->vn_nextref = NULL;
8375 if (iverneed->vn_next == 0)
8376 break;
8377 if (i + 1 < hdr->sh_info)
8378 iverneed->vn_nextref = iverneed + 1;
8379
8380 if (iverneed->vn_next
8381 > (size_t) (contents_end - (bfd_byte *) everneed))
8382 goto error_return_bad_verref;
8383
8384 everneed = ((Elf_External_Verneed *)
8385 ((bfd_byte *) everneed + iverneed->vn_next));
8386 }
8387 elf_tdata (abfd)->cverrefs = i;
8388
8389 free (contents);
8390 contents = NULL;
8391 }
8392
8393 if (elf_dynverdef (abfd) != 0)
8394 {
8395 Elf_Internal_Shdr *hdr;
8396 Elf_External_Verdef *everdef;
8397 Elf_Internal_Verdef *iverdef;
8398 Elf_Internal_Verdef *iverdefarr;
8399 Elf_Internal_Verdef iverdefmem;
8400 unsigned int i;
8401 unsigned int maxidx;
8402 bfd_byte *contents_end_def, *contents_end_aux;
8403
8404 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8405
8406 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8407 {
8408 error_return_bad_verdef:
8409 _bfd_error_handler
8410 (_("%B: .gnu.version_d invalid entry"), abfd);
8411 bfd_set_error (bfd_error_bad_value);
8412 error_return_verdef:
8413 elf_tdata (abfd)->verdef = NULL;
8414 elf_tdata (abfd)->cverdefs = 0;
8415 goto error_return;
8416 }
8417
8418 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8419 if (contents == NULL)
8420 goto error_return_verdef;
8421 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8422 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8423 goto error_return_verdef;
8424
8425 BFD_ASSERT (sizeof (Elf_External_Verdef)
8426 >= sizeof (Elf_External_Verdaux));
8427 contents_end_def = contents + hdr->sh_size
8428 - sizeof (Elf_External_Verdef);
8429 contents_end_aux = contents + hdr->sh_size
8430 - sizeof (Elf_External_Verdaux);
8431
8432 /* We know the number of entries in the section but not the maximum
8433 index. Therefore we have to run through all entries and find
8434 the maximum. */
8435 everdef = (Elf_External_Verdef *) contents;
8436 maxidx = 0;
8437 for (i = 0; i < hdr->sh_info; ++i)
8438 {
8439 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8440
8441 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8442 goto error_return_bad_verdef;
8443 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8444 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8445
8446 if (iverdefmem.vd_next == 0)
8447 break;
8448
8449 if (iverdefmem.vd_next
8450 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8451 goto error_return_bad_verdef;
8452
8453 everdef = ((Elf_External_Verdef *)
8454 ((bfd_byte *) everdef + iverdefmem.vd_next));
8455 }
8456
8457 if (default_imported_symver)
8458 {
8459 if (freeidx > maxidx)
8460 maxidx = ++freeidx;
8461 else
8462 freeidx = ++maxidx;
8463 }
8464
8465 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8466 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8467 if (elf_tdata (abfd)->verdef == NULL)
8468 goto error_return_verdef;
8469
8470 elf_tdata (abfd)->cverdefs = maxidx;
8471
8472 everdef = (Elf_External_Verdef *) contents;
8473 iverdefarr = elf_tdata (abfd)->verdef;
8474 for (i = 0; i < hdr->sh_info; i++)
8475 {
8476 Elf_External_Verdaux *everdaux;
8477 Elf_Internal_Verdaux *iverdaux;
8478 unsigned int j;
8479
8480 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8481
8482 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8483 goto error_return_bad_verdef;
8484
8485 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8486 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8487
8488 iverdef->vd_bfd = abfd;
8489
8490 if (iverdef->vd_cnt == 0)
8491 iverdef->vd_auxptr = NULL;
8492 else
8493 {
8494 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8495 bfd_alloc2 (abfd, iverdef->vd_cnt,
8496 sizeof (Elf_Internal_Verdaux));
8497 if (iverdef->vd_auxptr == NULL)
8498 goto error_return_verdef;
8499 }
8500
8501 if (iverdef->vd_aux
8502 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8503 goto error_return_bad_verdef;
8504
8505 everdaux = ((Elf_External_Verdaux *)
8506 ((bfd_byte *) everdef + iverdef->vd_aux));
8507 iverdaux = iverdef->vd_auxptr;
8508 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8509 {
8510 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8511
8512 iverdaux->vda_nodename =
8513 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8514 iverdaux->vda_name);
8515 if (iverdaux->vda_nodename == NULL)
8516 goto error_return_bad_verdef;
8517
8518 iverdaux->vda_nextptr = NULL;
8519 if (iverdaux->vda_next == 0)
8520 {
8521 iverdef->vd_cnt = j + 1;
8522 break;
8523 }
8524 if (j + 1 < iverdef->vd_cnt)
8525 iverdaux->vda_nextptr = iverdaux + 1;
8526
8527 if (iverdaux->vda_next
8528 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8529 goto error_return_bad_verdef;
8530
8531 everdaux = ((Elf_External_Verdaux *)
8532 ((bfd_byte *) everdaux + iverdaux->vda_next));
8533 }
8534
8535 iverdef->vd_nodename = NULL;
8536 if (iverdef->vd_cnt)
8537 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8538
8539 iverdef->vd_nextdef = NULL;
8540 if (iverdef->vd_next == 0)
8541 break;
8542 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8543 iverdef->vd_nextdef = iverdef + 1;
8544
8545 everdef = ((Elf_External_Verdef *)
8546 ((bfd_byte *) everdef + iverdef->vd_next));
8547 }
8548
8549 free (contents);
8550 contents = NULL;
8551 }
8552 else if (default_imported_symver)
8553 {
8554 if (freeidx < 3)
8555 freeidx = 3;
8556 else
8557 freeidx++;
8558
8559 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8560 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8561 if (elf_tdata (abfd)->verdef == NULL)
8562 goto error_return;
8563
8564 elf_tdata (abfd)->cverdefs = freeidx;
8565 }
8566
8567 /* Create a default version based on the soname. */
8568 if (default_imported_symver)
8569 {
8570 Elf_Internal_Verdef *iverdef;
8571 Elf_Internal_Verdaux *iverdaux;
8572
8573 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8574
8575 iverdef->vd_version = VER_DEF_CURRENT;
8576 iverdef->vd_flags = 0;
8577 iverdef->vd_ndx = freeidx;
8578 iverdef->vd_cnt = 1;
8579
8580 iverdef->vd_bfd = abfd;
8581
8582 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8583 if (iverdef->vd_nodename == NULL)
8584 goto error_return_verdef;
8585 iverdef->vd_nextdef = NULL;
8586 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8587 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8588 if (iverdef->vd_auxptr == NULL)
8589 goto error_return_verdef;
8590
8591 iverdaux = iverdef->vd_auxptr;
8592 iverdaux->vda_nodename = iverdef->vd_nodename;
8593 }
8594
8595 return TRUE;
8596
8597 error_return:
8598 if (contents != NULL)
8599 free (contents);
8600 return FALSE;
8601 }
8602 \f
8603 asymbol *
8604 _bfd_elf_make_empty_symbol (bfd *abfd)
8605 {
8606 elf_symbol_type *newsym;
8607
8608 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8609 if (!newsym)
8610 return NULL;
8611 newsym->symbol.the_bfd = abfd;
8612 return &newsym->symbol;
8613 }
8614
8615 void
8616 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8617 asymbol *symbol,
8618 symbol_info *ret)
8619 {
8620 bfd_symbol_info (symbol, ret);
8621 }
8622
8623 /* Return whether a symbol name implies a local symbol. Most targets
8624 use this function for the is_local_label_name entry point, but some
8625 override it. */
8626
8627 bfd_boolean
8628 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8629 const char *name)
8630 {
8631 /* Normal local symbols start with ``.L''. */
8632 if (name[0] == '.' && name[1] == 'L')
8633 return TRUE;
8634
8635 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8636 DWARF debugging symbols starting with ``..''. */
8637 if (name[0] == '.' && name[1] == '.')
8638 return TRUE;
8639
8640 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8641 emitting DWARF debugging output. I suspect this is actually a
8642 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8643 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8644 underscore to be emitted on some ELF targets). For ease of use,
8645 we treat such symbols as local. */
8646 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8647 return TRUE;
8648
8649 /* Treat assembler generated fake symbols, dollar local labels and
8650 forward-backward labels (aka local labels) as locals.
8651 These labels have the form:
8652
8653 L0^A.* (fake symbols)
8654
8655 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8656
8657 Versions which start with .L will have already been matched above,
8658 so we only need to match the rest. */
8659 if (name[0] == 'L' && ISDIGIT (name[1]))
8660 {
8661 bfd_boolean ret = FALSE;
8662 const char * p;
8663 char c;
8664
8665 for (p = name + 2; (c = *p); p++)
8666 {
8667 if (c == 1 || c == 2)
8668 {
8669 if (c == 1 && p == name + 2)
8670 /* A fake symbol. */
8671 return TRUE;
8672
8673 /* FIXME: We are being paranoid here and treating symbols like
8674 L0^Bfoo as if there were non-local, on the grounds that the
8675 assembler will never generate them. But can any symbol
8676 containing an ASCII value in the range 1-31 ever be anything
8677 other than some kind of local ? */
8678 ret = TRUE;
8679 }
8680
8681 if (! ISDIGIT (c))
8682 {
8683 ret = FALSE;
8684 break;
8685 }
8686 }
8687 return ret;
8688 }
8689
8690 return FALSE;
8691 }
8692
8693 alent *
8694 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8695 asymbol *symbol ATTRIBUTE_UNUSED)
8696 {
8697 abort ();
8698 return NULL;
8699 }
8700
8701 bfd_boolean
8702 _bfd_elf_set_arch_mach (bfd *abfd,
8703 enum bfd_architecture arch,
8704 unsigned long machine)
8705 {
8706 /* If this isn't the right architecture for this backend, and this
8707 isn't the generic backend, fail. */
8708 if (arch != get_elf_backend_data (abfd)->arch
8709 && arch != bfd_arch_unknown
8710 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8711 return FALSE;
8712
8713 return bfd_default_set_arch_mach (abfd, arch, machine);
8714 }
8715
8716 /* Find the nearest line to a particular section and offset,
8717 for error reporting. */
8718
8719 bfd_boolean
8720 _bfd_elf_find_nearest_line (bfd *abfd,
8721 asymbol **symbols,
8722 asection *section,
8723 bfd_vma offset,
8724 const char **filename_ptr,
8725 const char **functionname_ptr,
8726 unsigned int *line_ptr,
8727 unsigned int *discriminator_ptr)
8728 {
8729 bfd_boolean found;
8730
8731 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8732 filename_ptr, functionname_ptr,
8733 line_ptr, discriminator_ptr,
8734 dwarf_debug_sections, 0,
8735 &elf_tdata (abfd)->dwarf2_find_line_info)
8736 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8737 filename_ptr, functionname_ptr,
8738 line_ptr))
8739 {
8740 if (!*functionname_ptr)
8741 _bfd_elf_find_function (abfd, symbols, section, offset,
8742 *filename_ptr ? NULL : filename_ptr,
8743 functionname_ptr);
8744 return TRUE;
8745 }
8746
8747 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8748 &found, filename_ptr,
8749 functionname_ptr, line_ptr,
8750 &elf_tdata (abfd)->line_info))
8751 return FALSE;
8752 if (found && (*functionname_ptr || *line_ptr))
8753 return TRUE;
8754
8755 if (symbols == NULL)
8756 return FALSE;
8757
8758 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8759 filename_ptr, functionname_ptr))
8760 return FALSE;
8761
8762 *line_ptr = 0;
8763 return TRUE;
8764 }
8765
8766 /* Find the line for a symbol. */
8767
8768 bfd_boolean
8769 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8770 const char **filename_ptr, unsigned int *line_ptr)
8771 {
8772 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8773 filename_ptr, NULL, line_ptr, NULL,
8774 dwarf_debug_sections, 0,
8775 &elf_tdata (abfd)->dwarf2_find_line_info);
8776 }
8777
8778 /* After a call to bfd_find_nearest_line, successive calls to
8779 bfd_find_inliner_info can be used to get source information about
8780 each level of function inlining that terminated at the address
8781 passed to bfd_find_nearest_line. Currently this is only supported
8782 for DWARF2 with appropriate DWARF3 extensions. */
8783
8784 bfd_boolean
8785 _bfd_elf_find_inliner_info (bfd *abfd,
8786 const char **filename_ptr,
8787 const char **functionname_ptr,
8788 unsigned int *line_ptr)
8789 {
8790 bfd_boolean found;
8791 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8792 functionname_ptr, line_ptr,
8793 & elf_tdata (abfd)->dwarf2_find_line_info);
8794 return found;
8795 }
8796
8797 int
8798 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8799 {
8800 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8801 int ret = bed->s->sizeof_ehdr;
8802
8803 if (!bfd_link_relocatable (info))
8804 {
8805 bfd_size_type phdr_size = elf_program_header_size (abfd);
8806
8807 if (phdr_size == (bfd_size_type) -1)
8808 {
8809 struct elf_segment_map *m;
8810
8811 phdr_size = 0;
8812 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8813 phdr_size += bed->s->sizeof_phdr;
8814
8815 if (phdr_size == 0)
8816 phdr_size = get_program_header_size (abfd, info);
8817 }
8818
8819 elf_program_header_size (abfd) = phdr_size;
8820 ret += phdr_size;
8821 }
8822
8823 return ret;
8824 }
8825
8826 bfd_boolean
8827 _bfd_elf_set_section_contents (bfd *abfd,
8828 sec_ptr section,
8829 const void *location,
8830 file_ptr offset,
8831 bfd_size_type count)
8832 {
8833 Elf_Internal_Shdr *hdr;
8834 file_ptr pos;
8835
8836 if (! abfd->output_has_begun
8837 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8838 return FALSE;
8839
8840 if (!count)
8841 return TRUE;
8842
8843 hdr = &elf_section_data (section)->this_hdr;
8844 if (hdr->sh_offset == (file_ptr) -1)
8845 {
8846 /* We must compress this section. Write output to the buffer. */
8847 unsigned char *contents = hdr->contents;
8848 if ((offset + count) > hdr->sh_size
8849 || (section->flags & SEC_ELF_COMPRESS) == 0
8850 || contents == NULL)
8851 abort ();
8852 memcpy (contents + offset, location, count);
8853 return TRUE;
8854 }
8855 pos = hdr->sh_offset + offset;
8856 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8857 || bfd_bwrite (location, count, abfd) != count)
8858 return FALSE;
8859
8860 return TRUE;
8861 }
8862
8863 void
8864 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8865 arelent *cache_ptr ATTRIBUTE_UNUSED,
8866 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8867 {
8868 abort ();
8869 }
8870
8871 /* Try to convert a non-ELF reloc into an ELF one. */
8872
8873 bfd_boolean
8874 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8875 {
8876 /* Check whether we really have an ELF howto. */
8877
8878 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8879 {
8880 bfd_reloc_code_real_type code;
8881 reloc_howto_type *howto;
8882
8883 /* Alien reloc: Try to determine its type to replace it with an
8884 equivalent ELF reloc. */
8885
8886 if (areloc->howto->pc_relative)
8887 {
8888 switch (areloc->howto->bitsize)
8889 {
8890 case 8:
8891 code = BFD_RELOC_8_PCREL;
8892 break;
8893 case 12:
8894 code = BFD_RELOC_12_PCREL;
8895 break;
8896 case 16:
8897 code = BFD_RELOC_16_PCREL;
8898 break;
8899 case 24:
8900 code = BFD_RELOC_24_PCREL;
8901 break;
8902 case 32:
8903 code = BFD_RELOC_32_PCREL;
8904 break;
8905 case 64:
8906 code = BFD_RELOC_64_PCREL;
8907 break;
8908 default:
8909 goto fail;
8910 }
8911
8912 howto = bfd_reloc_type_lookup (abfd, code);
8913
8914 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8915 {
8916 if (howto->pcrel_offset)
8917 areloc->addend += areloc->address;
8918 else
8919 areloc->addend -= areloc->address; /* addend is unsigned!! */
8920 }
8921 }
8922 else
8923 {
8924 switch (areloc->howto->bitsize)
8925 {
8926 case 8:
8927 code = BFD_RELOC_8;
8928 break;
8929 case 14:
8930 code = BFD_RELOC_14;
8931 break;
8932 case 16:
8933 code = BFD_RELOC_16;
8934 break;
8935 case 26:
8936 code = BFD_RELOC_26;
8937 break;
8938 case 32:
8939 code = BFD_RELOC_32;
8940 break;
8941 case 64:
8942 code = BFD_RELOC_64;
8943 break;
8944 default:
8945 goto fail;
8946 }
8947
8948 howto = bfd_reloc_type_lookup (abfd, code);
8949 }
8950
8951 if (howto)
8952 areloc->howto = howto;
8953 else
8954 goto fail;
8955 }
8956
8957 return TRUE;
8958
8959 fail:
8960 _bfd_error_handler
8961 /* xgettext:c-format */
8962 (_("%B: unsupported relocation type %s"),
8963 abfd, areloc->howto->name);
8964 bfd_set_error (bfd_error_bad_value);
8965 return FALSE;
8966 }
8967
8968 bfd_boolean
8969 _bfd_elf_close_and_cleanup (bfd *abfd)
8970 {
8971 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8972 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8973 {
8974 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8975 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8976 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8977 }
8978
8979 return _bfd_generic_close_and_cleanup (abfd);
8980 }
8981
8982 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8983 in the relocation's offset. Thus we cannot allow any sort of sanity
8984 range-checking to interfere. There is nothing else to do in processing
8985 this reloc. */
8986
8987 bfd_reloc_status_type
8988 _bfd_elf_rel_vtable_reloc_fn
8989 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8990 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8991 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8992 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8993 {
8994 return bfd_reloc_ok;
8995 }
8996 \f
8997 /* Elf core file support. Much of this only works on native
8998 toolchains, since we rely on knowing the
8999 machine-dependent procfs structure in order to pick
9000 out details about the corefile. */
9001
9002 #ifdef HAVE_SYS_PROCFS_H
9003 /* Needed for new procfs interface on sparc-solaris. */
9004 # define _STRUCTURED_PROC 1
9005 # include <sys/procfs.h>
9006 #endif
9007
9008 /* Return a PID that identifies a "thread" for threaded cores, or the
9009 PID of the main process for non-threaded cores. */
9010
9011 static int
9012 elfcore_make_pid (bfd *abfd)
9013 {
9014 int pid;
9015
9016 pid = elf_tdata (abfd)->core->lwpid;
9017 if (pid == 0)
9018 pid = elf_tdata (abfd)->core->pid;
9019
9020 return pid;
9021 }
9022
9023 /* If there isn't a section called NAME, make one, using
9024 data from SECT. Note, this function will generate a
9025 reference to NAME, so you shouldn't deallocate or
9026 overwrite it. */
9027
9028 static bfd_boolean
9029 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9030 {
9031 asection *sect2;
9032
9033 if (bfd_get_section_by_name (abfd, name) != NULL)
9034 return TRUE;
9035
9036 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9037 if (sect2 == NULL)
9038 return FALSE;
9039
9040 sect2->size = sect->size;
9041 sect2->filepos = sect->filepos;
9042 sect2->alignment_power = sect->alignment_power;
9043 return TRUE;
9044 }
9045
9046 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9047 actually creates up to two pseudosections:
9048 - For the single-threaded case, a section named NAME, unless
9049 such a section already exists.
9050 - For the multi-threaded case, a section named "NAME/PID", where
9051 PID is elfcore_make_pid (abfd).
9052 Both pseudosections have identical contents. */
9053 bfd_boolean
9054 _bfd_elfcore_make_pseudosection (bfd *abfd,
9055 char *name,
9056 size_t size,
9057 ufile_ptr filepos)
9058 {
9059 char buf[100];
9060 char *threaded_name;
9061 size_t len;
9062 asection *sect;
9063
9064 /* Build the section name. */
9065
9066 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9067 len = strlen (buf) + 1;
9068 threaded_name = (char *) bfd_alloc (abfd, len);
9069 if (threaded_name == NULL)
9070 return FALSE;
9071 memcpy (threaded_name, buf, len);
9072
9073 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9074 SEC_HAS_CONTENTS);
9075 if (sect == NULL)
9076 return FALSE;
9077 sect->size = size;
9078 sect->filepos = filepos;
9079 sect->alignment_power = 2;
9080
9081 return elfcore_maybe_make_sect (abfd, name, sect);
9082 }
9083
9084 /* prstatus_t exists on:
9085 solaris 2.5+
9086 linux 2.[01] + glibc
9087 unixware 4.2
9088 */
9089
9090 #if defined (HAVE_PRSTATUS_T)
9091
9092 static bfd_boolean
9093 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9094 {
9095 size_t size;
9096 int offset;
9097
9098 if (note->descsz == sizeof (prstatus_t))
9099 {
9100 prstatus_t prstat;
9101
9102 size = sizeof (prstat.pr_reg);
9103 offset = offsetof (prstatus_t, pr_reg);
9104 memcpy (&prstat, note->descdata, sizeof (prstat));
9105
9106 /* Do not overwrite the core signal if it
9107 has already been set by another thread. */
9108 if (elf_tdata (abfd)->core->signal == 0)
9109 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9110 if (elf_tdata (abfd)->core->pid == 0)
9111 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9112
9113 /* pr_who exists on:
9114 solaris 2.5+
9115 unixware 4.2
9116 pr_who doesn't exist on:
9117 linux 2.[01]
9118 */
9119 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9120 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9121 #else
9122 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9123 #endif
9124 }
9125 #if defined (HAVE_PRSTATUS32_T)
9126 else if (note->descsz == sizeof (prstatus32_t))
9127 {
9128 /* 64-bit host, 32-bit corefile */
9129 prstatus32_t prstat;
9130
9131 size = sizeof (prstat.pr_reg);
9132 offset = offsetof (prstatus32_t, pr_reg);
9133 memcpy (&prstat, note->descdata, sizeof (prstat));
9134
9135 /* Do not overwrite the core signal if it
9136 has already been set by another thread. */
9137 if (elf_tdata (abfd)->core->signal == 0)
9138 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9139 if (elf_tdata (abfd)->core->pid == 0)
9140 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9141
9142 /* pr_who exists on:
9143 solaris 2.5+
9144 unixware 4.2
9145 pr_who doesn't exist on:
9146 linux 2.[01]
9147 */
9148 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9149 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9150 #else
9151 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9152 #endif
9153 }
9154 #endif /* HAVE_PRSTATUS32_T */
9155 else
9156 {
9157 /* Fail - we don't know how to handle any other
9158 note size (ie. data object type). */
9159 return TRUE;
9160 }
9161
9162 /* Make a ".reg/999" section and a ".reg" section. */
9163 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9164 size, note->descpos + offset);
9165 }
9166 #endif /* defined (HAVE_PRSTATUS_T) */
9167
9168 /* Create a pseudosection containing the exact contents of NOTE. */
9169 static bfd_boolean
9170 elfcore_make_note_pseudosection (bfd *abfd,
9171 char *name,
9172 Elf_Internal_Note *note)
9173 {
9174 return _bfd_elfcore_make_pseudosection (abfd, name,
9175 note->descsz, note->descpos);
9176 }
9177
9178 /* There isn't a consistent prfpregset_t across platforms,
9179 but it doesn't matter, because we don't have to pick this
9180 data structure apart. */
9181
9182 static bfd_boolean
9183 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9184 {
9185 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9186 }
9187
9188 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9189 type of NT_PRXFPREG. Just include the whole note's contents
9190 literally. */
9191
9192 static bfd_boolean
9193 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9194 {
9195 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9196 }
9197
9198 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9199 with a note type of NT_X86_XSTATE. Just include the whole note's
9200 contents literally. */
9201
9202 static bfd_boolean
9203 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9204 {
9205 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9206 }
9207
9208 static bfd_boolean
9209 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9210 {
9211 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9212 }
9213
9214 static bfd_boolean
9215 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9216 {
9217 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9218 }
9219
9220 static bfd_boolean
9221 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9222 {
9223 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9224 }
9225
9226 static bfd_boolean
9227 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9228 {
9229 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9230 }
9231
9232 static bfd_boolean
9233 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9234 {
9235 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9236 }
9237
9238 static bfd_boolean
9239 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9240 {
9241 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9242 }
9243
9244 static bfd_boolean
9245 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9246 {
9247 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9248 }
9249
9250 static bfd_boolean
9251 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9252 {
9253 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9254 }
9255
9256 static bfd_boolean
9257 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9258 {
9259 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9260 }
9261
9262 static bfd_boolean
9263 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9264 {
9265 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9266 }
9267
9268 static bfd_boolean
9269 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9270 {
9271 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9272 }
9273
9274 static bfd_boolean
9275 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9276 {
9277 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9278 }
9279
9280 static bfd_boolean
9281 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9282 {
9283 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9284 }
9285
9286 static bfd_boolean
9287 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9288 {
9289 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9290 }
9291
9292 static bfd_boolean
9293 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9294 {
9295 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9296 }
9297
9298 static bfd_boolean
9299 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9300 {
9301 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9302 }
9303
9304 static bfd_boolean
9305 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9306 {
9307 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9308 }
9309
9310 static bfd_boolean
9311 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9312 {
9313 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9314 }
9315
9316 static bfd_boolean
9317 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9318 {
9319 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9320 }
9321
9322 #if defined (HAVE_PRPSINFO_T)
9323 typedef prpsinfo_t elfcore_psinfo_t;
9324 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9325 typedef prpsinfo32_t elfcore_psinfo32_t;
9326 #endif
9327 #endif
9328
9329 #if defined (HAVE_PSINFO_T)
9330 typedef psinfo_t elfcore_psinfo_t;
9331 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9332 typedef psinfo32_t elfcore_psinfo32_t;
9333 #endif
9334 #endif
9335
9336 /* return a malloc'ed copy of a string at START which is at
9337 most MAX bytes long, possibly without a terminating '\0'.
9338 the copy will always have a terminating '\0'. */
9339
9340 char *
9341 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9342 {
9343 char *dups;
9344 char *end = (char *) memchr (start, '\0', max);
9345 size_t len;
9346
9347 if (end == NULL)
9348 len = max;
9349 else
9350 len = end - start;
9351
9352 dups = (char *) bfd_alloc (abfd, len + 1);
9353 if (dups == NULL)
9354 return NULL;
9355
9356 memcpy (dups, start, len);
9357 dups[len] = '\0';
9358
9359 return dups;
9360 }
9361
9362 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9363 static bfd_boolean
9364 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9365 {
9366 if (note->descsz == sizeof (elfcore_psinfo_t))
9367 {
9368 elfcore_psinfo_t psinfo;
9369
9370 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9371
9372 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9373 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9374 #endif
9375 elf_tdata (abfd)->core->program
9376 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9377 sizeof (psinfo.pr_fname));
9378
9379 elf_tdata (abfd)->core->command
9380 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9381 sizeof (psinfo.pr_psargs));
9382 }
9383 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9384 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9385 {
9386 /* 64-bit host, 32-bit corefile */
9387 elfcore_psinfo32_t psinfo;
9388
9389 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9390
9391 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9392 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9393 #endif
9394 elf_tdata (abfd)->core->program
9395 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9396 sizeof (psinfo.pr_fname));
9397
9398 elf_tdata (abfd)->core->command
9399 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9400 sizeof (psinfo.pr_psargs));
9401 }
9402 #endif
9403
9404 else
9405 {
9406 /* Fail - we don't know how to handle any other
9407 note size (ie. data object type). */
9408 return TRUE;
9409 }
9410
9411 /* Note that for some reason, a spurious space is tacked
9412 onto the end of the args in some (at least one anyway)
9413 implementations, so strip it off if it exists. */
9414
9415 {
9416 char *command = elf_tdata (abfd)->core->command;
9417 int n = strlen (command);
9418
9419 if (0 < n && command[n - 1] == ' ')
9420 command[n - 1] = '\0';
9421 }
9422
9423 return TRUE;
9424 }
9425 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9426
9427 #if defined (HAVE_PSTATUS_T)
9428 static bfd_boolean
9429 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9430 {
9431 if (note->descsz == sizeof (pstatus_t)
9432 #if defined (HAVE_PXSTATUS_T)
9433 || note->descsz == sizeof (pxstatus_t)
9434 #endif
9435 )
9436 {
9437 pstatus_t pstat;
9438
9439 memcpy (&pstat, note->descdata, sizeof (pstat));
9440
9441 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9442 }
9443 #if defined (HAVE_PSTATUS32_T)
9444 else if (note->descsz == sizeof (pstatus32_t))
9445 {
9446 /* 64-bit host, 32-bit corefile */
9447 pstatus32_t pstat;
9448
9449 memcpy (&pstat, note->descdata, sizeof (pstat));
9450
9451 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9452 }
9453 #endif
9454 /* Could grab some more details from the "representative"
9455 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9456 NT_LWPSTATUS note, presumably. */
9457
9458 return TRUE;
9459 }
9460 #endif /* defined (HAVE_PSTATUS_T) */
9461
9462 #if defined (HAVE_LWPSTATUS_T)
9463 static bfd_boolean
9464 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9465 {
9466 lwpstatus_t lwpstat;
9467 char buf[100];
9468 char *name;
9469 size_t len;
9470 asection *sect;
9471
9472 if (note->descsz != sizeof (lwpstat)
9473 #if defined (HAVE_LWPXSTATUS_T)
9474 && note->descsz != sizeof (lwpxstatus_t)
9475 #endif
9476 )
9477 return TRUE;
9478
9479 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9480
9481 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9482 /* Do not overwrite the core signal if it has already been set by
9483 another thread. */
9484 if (elf_tdata (abfd)->core->signal == 0)
9485 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9486
9487 /* Make a ".reg/999" section. */
9488
9489 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9490 len = strlen (buf) + 1;
9491 name = bfd_alloc (abfd, len);
9492 if (name == NULL)
9493 return FALSE;
9494 memcpy (name, buf, len);
9495
9496 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9497 if (sect == NULL)
9498 return FALSE;
9499
9500 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9501 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9502 sect->filepos = note->descpos
9503 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9504 #endif
9505
9506 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9507 sect->size = sizeof (lwpstat.pr_reg);
9508 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9509 #endif
9510
9511 sect->alignment_power = 2;
9512
9513 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9514 return FALSE;
9515
9516 /* Make a ".reg2/999" section */
9517
9518 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9519 len = strlen (buf) + 1;
9520 name = bfd_alloc (abfd, len);
9521 if (name == NULL)
9522 return FALSE;
9523 memcpy (name, buf, len);
9524
9525 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9526 if (sect == NULL)
9527 return FALSE;
9528
9529 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9530 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9531 sect->filepos = note->descpos
9532 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9533 #endif
9534
9535 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9536 sect->size = sizeof (lwpstat.pr_fpreg);
9537 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9538 #endif
9539
9540 sect->alignment_power = 2;
9541
9542 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9543 }
9544 #endif /* defined (HAVE_LWPSTATUS_T) */
9545
9546 static bfd_boolean
9547 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9548 {
9549 char buf[30];
9550 char *name;
9551 size_t len;
9552 asection *sect;
9553 int type;
9554 int is_active_thread;
9555 bfd_vma base_addr;
9556
9557 if (note->descsz < 728)
9558 return TRUE;
9559
9560 if (! CONST_STRNEQ (note->namedata, "win32"))
9561 return TRUE;
9562
9563 type = bfd_get_32 (abfd, note->descdata);
9564
9565 switch (type)
9566 {
9567 case 1 /* NOTE_INFO_PROCESS */:
9568 /* FIXME: need to add ->core->command. */
9569 /* process_info.pid */
9570 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9571 /* process_info.signal */
9572 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9573 break;
9574
9575 case 2 /* NOTE_INFO_THREAD */:
9576 /* Make a ".reg/999" section. */
9577 /* thread_info.tid */
9578 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9579
9580 len = strlen (buf) + 1;
9581 name = (char *) bfd_alloc (abfd, len);
9582 if (name == NULL)
9583 return FALSE;
9584
9585 memcpy (name, buf, len);
9586
9587 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9588 if (sect == NULL)
9589 return FALSE;
9590
9591 /* sizeof (thread_info.thread_context) */
9592 sect->size = 716;
9593 /* offsetof (thread_info.thread_context) */
9594 sect->filepos = note->descpos + 12;
9595 sect->alignment_power = 2;
9596
9597 /* thread_info.is_active_thread */
9598 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9599
9600 if (is_active_thread)
9601 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9602 return FALSE;
9603 break;
9604
9605 case 3 /* NOTE_INFO_MODULE */:
9606 /* Make a ".module/xxxxxxxx" section. */
9607 /* module_info.base_address */
9608 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9609 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9610
9611 len = strlen (buf) + 1;
9612 name = (char *) bfd_alloc (abfd, len);
9613 if (name == NULL)
9614 return FALSE;
9615
9616 memcpy (name, buf, len);
9617
9618 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9619
9620 if (sect == NULL)
9621 return FALSE;
9622
9623 sect->size = note->descsz;
9624 sect->filepos = note->descpos;
9625 sect->alignment_power = 2;
9626 break;
9627
9628 default:
9629 return TRUE;
9630 }
9631
9632 return TRUE;
9633 }
9634
9635 static bfd_boolean
9636 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9637 {
9638 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9639
9640 switch (note->type)
9641 {
9642 default:
9643 return TRUE;
9644
9645 case NT_PRSTATUS:
9646 if (bed->elf_backend_grok_prstatus)
9647 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9648 return TRUE;
9649 #if defined (HAVE_PRSTATUS_T)
9650 return elfcore_grok_prstatus (abfd, note);
9651 #else
9652 return TRUE;
9653 #endif
9654
9655 #if defined (HAVE_PSTATUS_T)
9656 case NT_PSTATUS:
9657 return elfcore_grok_pstatus (abfd, note);
9658 #endif
9659
9660 #if defined (HAVE_LWPSTATUS_T)
9661 case NT_LWPSTATUS:
9662 return elfcore_grok_lwpstatus (abfd, note);
9663 #endif
9664
9665 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9666 return elfcore_grok_prfpreg (abfd, note);
9667
9668 case NT_WIN32PSTATUS:
9669 return elfcore_grok_win32pstatus (abfd, note);
9670
9671 case NT_PRXFPREG: /* Linux SSE extension */
9672 if (note->namesz == 6
9673 && strcmp (note->namedata, "LINUX") == 0)
9674 return elfcore_grok_prxfpreg (abfd, note);
9675 else
9676 return TRUE;
9677
9678 case NT_X86_XSTATE: /* Linux XSAVE extension */
9679 if (note->namesz == 6
9680 && strcmp (note->namedata, "LINUX") == 0)
9681 return elfcore_grok_xstatereg (abfd, note);
9682 else
9683 return TRUE;
9684
9685 case NT_PPC_VMX:
9686 if (note->namesz == 6
9687 && strcmp (note->namedata, "LINUX") == 0)
9688 return elfcore_grok_ppc_vmx (abfd, note);
9689 else
9690 return TRUE;
9691
9692 case NT_PPC_VSX:
9693 if (note->namesz == 6
9694 && strcmp (note->namedata, "LINUX") == 0)
9695 return elfcore_grok_ppc_vsx (abfd, note);
9696 else
9697 return TRUE;
9698
9699 case NT_S390_HIGH_GPRS:
9700 if (note->namesz == 6
9701 && strcmp (note->namedata, "LINUX") == 0)
9702 return elfcore_grok_s390_high_gprs (abfd, note);
9703 else
9704 return TRUE;
9705
9706 case NT_S390_TIMER:
9707 if (note->namesz == 6
9708 && strcmp (note->namedata, "LINUX") == 0)
9709 return elfcore_grok_s390_timer (abfd, note);
9710 else
9711 return TRUE;
9712
9713 case NT_S390_TODCMP:
9714 if (note->namesz == 6
9715 && strcmp (note->namedata, "LINUX") == 0)
9716 return elfcore_grok_s390_todcmp (abfd, note);
9717 else
9718 return TRUE;
9719
9720 case NT_S390_TODPREG:
9721 if (note->namesz == 6
9722 && strcmp (note->namedata, "LINUX") == 0)
9723 return elfcore_grok_s390_todpreg (abfd, note);
9724 else
9725 return TRUE;
9726
9727 case NT_S390_CTRS:
9728 if (note->namesz == 6
9729 && strcmp (note->namedata, "LINUX") == 0)
9730 return elfcore_grok_s390_ctrs (abfd, note);
9731 else
9732 return TRUE;
9733
9734 case NT_S390_PREFIX:
9735 if (note->namesz == 6
9736 && strcmp (note->namedata, "LINUX") == 0)
9737 return elfcore_grok_s390_prefix (abfd, note);
9738 else
9739 return TRUE;
9740
9741 case NT_S390_LAST_BREAK:
9742 if (note->namesz == 6
9743 && strcmp (note->namedata, "LINUX") == 0)
9744 return elfcore_grok_s390_last_break (abfd, note);
9745 else
9746 return TRUE;
9747
9748 case NT_S390_SYSTEM_CALL:
9749 if (note->namesz == 6
9750 && strcmp (note->namedata, "LINUX") == 0)
9751 return elfcore_grok_s390_system_call (abfd, note);
9752 else
9753 return TRUE;
9754
9755 case NT_S390_TDB:
9756 if (note->namesz == 6
9757 && strcmp (note->namedata, "LINUX") == 0)
9758 return elfcore_grok_s390_tdb (abfd, note);
9759 else
9760 return TRUE;
9761
9762 case NT_S390_VXRS_LOW:
9763 if (note->namesz == 6
9764 && strcmp (note->namedata, "LINUX") == 0)
9765 return elfcore_grok_s390_vxrs_low (abfd, note);
9766 else
9767 return TRUE;
9768
9769 case NT_S390_VXRS_HIGH:
9770 if (note->namesz == 6
9771 && strcmp (note->namedata, "LINUX") == 0)
9772 return elfcore_grok_s390_vxrs_high (abfd, note);
9773 else
9774 return TRUE;
9775
9776 case NT_S390_GS_CB:
9777 if (note->namesz == 6
9778 && strcmp (note->namedata, "LINUX") == 0)
9779 return elfcore_grok_s390_gs_cb (abfd, note);
9780 else
9781 return TRUE;
9782
9783 case NT_S390_GS_BC:
9784 if (note->namesz == 6
9785 && strcmp (note->namedata, "LINUX") == 0)
9786 return elfcore_grok_s390_gs_bc (abfd, note);
9787 else
9788 return TRUE;
9789
9790 case NT_ARM_VFP:
9791 if (note->namesz == 6
9792 && strcmp (note->namedata, "LINUX") == 0)
9793 return elfcore_grok_arm_vfp (abfd, note);
9794 else
9795 return TRUE;
9796
9797 case NT_ARM_TLS:
9798 if (note->namesz == 6
9799 && strcmp (note->namedata, "LINUX") == 0)
9800 return elfcore_grok_aarch_tls (abfd, note);
9801 else
9802 return TRUE;
9803
9804 case NT_ARM_HW_BREAK:
9805 if (note->namesz == 6
9806 && strcmp (note->namedata, "LINUX") == 0)
9807 return elfcore_grok_aarch_hw_break (abfd, note);
9808 else
9809 return TRUE;
9810
9811 case NT_ARM_HW_WATCH:
9812 if (note->namesz == 6
9813 && strcmp (note->namedata, "LINUX") == 0)
9814 return elfcore_grok_aarch_hw_watch (abfd, note);
9815 else
9816 return TRUE;
9817
9818 case NT_PRPSINFO:
9819 case NT_PSINFO:
9820 if (bed->elf_backend_grok_psinfo)
9821 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9822 return TRUE;
9823 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9824 return elfcore_grok_psinfo (abfd, note);
9825 #else
9826 return TRUE;
9827 #endif
9828
9829 case NT_AUXV:
9830 {
9831 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9832 SEC_HAS_CONTENTS);
9833
9834 if (sect == NULL)
9835 return FALSE;
9836 sect->size = note->descsz;
9837 sect->filepos = note->descpos;
9838 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9839
9840 return TRUE;
9841 }
9842
9843 case NT_FILE:
9844 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9845 note);
9846
9847 case NT_SIGINFO:
9848 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9849 note);
9850
9851 }
9852 }
9853
9854 static bfd_boolean
9855 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9856 {
9857 struct bfd_build_id* build_id;
9858
9859 if (note->descsz == 0)
9860 return FALSE;
9861
9862 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9863 if (build_id == NULL)
9864 return FALSE;
9865
9866 build_id->size = note->descsz;
9867 memcpy (build_id->data, note->descdata, note->descsz);
9868 abfd->build_id = build_id;
9869
9870 return TRUE;
9871 }
9872
9873 static bfd_boolean
9874 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9875 {
9876 switch (note->type)
9877 {
9878 default:
9879 return TRUE;
9880
9881 case NT_GNU_PROPERTY_TYPE_0:
9882 return _bfd_elf_parse_gnu_properties (abfd, note);
9883
9884 case NT_GNU_BUILD_ID:
9885 return elfobj_grok_gnu_build_id (abfd, note);
9886 }
9887 }
9888
9889 static bfd_boolean
9890 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9891 {
9892 struct sdt_note *cur =
9893 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9894 + note->descsz);
9895
9896 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9897 cur->size = (bfd_size_type) note->descsz;
9898 memcpy (cur->data, note->descdata, note->descsz);
9899
9900 elf_tdata (abfd)->sdt_note_head = cur;
9901
9902 return TRUE;
9903 }
9904
9905 static bfd_boolean
9906 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9907 {
9908 switch (note->type)
9909 {
9910 case NT_STAPSDT:
9911 return elfobj_grok_stapsdt_note_1 (abfd, note);
9912
9913 default:
9914 return TRUE;
9915 }
9916 }
9917
9918 static bfd_boolean
9919 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9920 {
9921 size_t offset;
9922
9923 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9924 {
9925 case ELFCLASS32:
9926 if (note->descsz < 108)
9927 return FALSE;
9928 break;
9929
9930 case ELFCLASS64:
9931 if (note->descsz < 120)
9932 return FALSE;
9933 break;
9934
9935 default:
9936 return FALSE;
9937 }
9938
9939 /* Check for version 1 in pr_version. */
9940 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9941 return FALSE;
9942
9943 offset = 4;
9944
9945 /* Skip over pr_psinfosz. */
9946 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9947 offset += 4;
9948 else
9949 {
9950 offset += 4; /* Padding before pr_psinfosz. */
9951 offset += 8;
9952 }
9953
9954 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9955 elf_tdata (abfd)->core->program
9956 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9957 offset += 17;
9958
9959 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9960 elf_tdata (abfd)->core->command
9961 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9962 offset += 81;
9963
9964 /* Padding before pr_pid. */
9965 offset += 2;
9966
9967 /* The pr_pid field was added in version "1a". */
9968 if (note->descsz < offset + 4)
9969 return TRUE;
9970
9971 elf_tdata (abfd)->core->pid
9972 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9973
9974 return TRUE;
9975 }
9976
9977 static bfd_boolean
9978 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9979 {
9980 size_t offset;
9981 size_t size;
9982 size_t min_size;
9983
9984 /* Compute offset of pr_getregsz, skipping over pr_statussz.
9985 Also compute minimum size of this note. */
9986 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9987 {
9988 case ELFCLASS32:
9989 offset = 4 + 4;
9990 min_size = offset + (4 * 2) + 4 + 4 + 4;
9991 break;
9992
9993 case ELFCLASS64:
9994 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
9995 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
9996 break;
9997
9998 default:
9999 return FALSE;
10000 }
10001
10002 if (note->descsz < min_size)
10003 return FALSE;
10004
10005 /* Check for version 1 in pr_version. */
10006 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10007 return FALSE;
10008
10009 /* Extract size of pr_reg from pr_gregsetsz. */
10010 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10011 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10012 {
10013 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10014 offset += 4 * 2;
10015 }
10016 else
10017 {
10018 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10019 offset += 8 * 2;
10020 }
10021
10022 /* Skip over pr_osreldate. */
10023 offset += 4;
10024
10025 /* Read signal from pr_cursig. */
10026 if (elf_tdata (abfd)->core->signal == 0)
10027 elf_tdata (abfd)->core->signal
10028 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10029 offset += 4;
10030
10031 /* Read TID from pr_pid. */
10032 elf_tdata (abfd)->core->lwpid
10033 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10034 offset += 4;
10035
10036 /* Padding before pr_reg. */
10037 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10038 offset += 4;
10039
10040 /* Make sure that there is enough data remaining in the note. */
10041 if ((note->descsz - offset) < size)
10042 return FALSE;
10043
10044 /* Make a ".reg/999" section and a ".reg" section. */
10045 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10046 size, note->descpos + offset);
10047 }
10048
10049 static bfd_boolean
10050 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10051 {
10052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10053
10054 switch (note->type)
10055 {
10056 case NT_PRSTATUS:
10057 if (bed->elf_backend_grok_freebsd_prstatus)
10058 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10059 return TRUE;
10060 return elfcore_grok_freebsd_prstatus (abfd, note);
10061
10062 case NT_FPREGSET:
10063 return elfcore_grok_prfpreg (abfd, note);
10064
10065 case NT_PRPSINFO:
10066 return elfcore_grok_freebsd_psinfo (abfd, note);
10067
10068 case NT_FREEBSD_THRMISC:
10069 if (note->namesz == 8)
10070 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10071 else
10072 return TRUE;
10073
10074 case NT_FREEBSD_PROCSTAT_PROC:
10075 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10076 note);
10077
10078 case NT_FREEBSD_PROCSTAT_FILES:
10079 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10080 note);
10081
10082 case NT_FREEBSD_PROCSTAT_VMMAP:
10083 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10084 note);
10085
10086 case NT_FREEBSD_PROCSTAT_AUXV:
10087 {
10088 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10089 SEC_HAS_CONTENTS);
10090
10091 if (sect == NULL)
10092 return FALSE;
10093 sect->size = note->descsz - 4;
10094 sect->filepos = note->descpos + 4;
10095 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10096
10097 return TRUE;
10098 }
10099
10100 case NT_X86_XSTATE:
10101 if (note->namesz == 8)
10102 return elfcore_grok_xstatereg (abfd, note);
10103 else
10104 return TRUE;
10105
10106 case NT_FREEBSD_PTLWPINFO:
10107 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10108 note);
10109
10110 case NT_ARM_VFP:
10111 return elfcore_grok_arm_vfp (abfd, note);
10112
10113 default:
10114 return TRUE;
10115 }
10116 }
10117
10118 static bfd_boolean
10119 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10120 {
10121 char *cp;
10122
10123 cp = strchr (note->namedata, '@');
10124 if (cp != NULL)
10125 {
10126 *lwpidp = atoi(cp + 1);
10127 return TRUE;
10128 }
10129 return FALSE;
10130 }
10131
10132 static bfd_boolean
10133 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10134 {
10135 if (note->descsz <= 0x7c + 31)
10136 return FALSE;
10137
10138 /* Signal number at offset 0x08. */
10139 elf_tdata (abfd)->core->signal
10140 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10141
10142 /* Process ID at offset 0x50. */
10143 elf_tdata (abfd)->core->pid
10144 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10145
10146 /* Command name at 0x7c (max 32 bytes, including nul). */
10147 elf_tdata (abfd)->core->command
10148 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10149
10150 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10151 note);
10152 }
10153
10154 static bfd_boolean
10155 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10156 {
10157 int lwp;
10158
10159 if (elfcore_netbsd_get_lwpid (note, &lwp))
10160 elf_tdata (abfd)->core->lwpid = lwp;
10161
10162 if (note->type == NT_NETBSDCORE_PROCINFO)
10163 {
10164 /* NetBSD-specific core "procinfo". Note that we expect to
10165 find this note before any of the others, which is fine,
10166 since the kernel writes this note out first when it
10167 creates a core file. */
10168
10169 return elfcore_grok_netbsd_procinfo (abfd, note);
10170 }
10171
10172 /* As of Jan 2002 there are no other machine-independent notes
10173 defined for NetBSD core files. If the note type is less
10174 than the start of the machine-dependent note types, we don't
10175 understand it. */
10176
10177 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10178 return TRUE;
10179
10180
10181 switch (bfd_get_arch (abfd))
10182 {
10183 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10184 PT_GETFPREGS == mach+2. */
10185
10186 case bfd_arch_alpha:
10187 case bfd_arch_sparc:
10188 switch (note->type)
10189 {
10190 case NT_NETBSDCORE_FIRSTMACH+0:
10191 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10192
10193 case NT_NETBSDCORE_FIRSTMACH+2:
10194 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10195
10196 default:
10197 return TRUE;
10198 }
10199
10200 /* On all other arch's, PT_GETREGS == mach+1 and
10201 PT_GETFPREGS == mach+3. */
10202
10203 default:
10204 switch (note->type)
10205 {
10206 case NT_NETBSDCORE_FIRSTMACH+1:
10207 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10208
10209 case NT_NETBSDCORE_FIRSTMACH+3:
10210 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10211
10212 default:
10213 return TRUE;
10214 }
10215 }
10216 /* NOTREACHED */
10217 }
10218
10219 static bfd_boolean
10220 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10221 {
10222 if (note->descsz <= 0x48 + 31)
10223 return FALSE;
10224
10225 /* Signal number at offset 0x08. */
10226 elf_tdata (abfd)->core->signal
10227 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10228
10229 /* Process ID at offset 0x20. */
10230 elf_tdata (abfd)->core->pid
10231 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10232
10233 /* Command name at 0x48 (max 32 bytes, including nul). */
10234 elf_tdata (abfd)->core->command
10235 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10236
10237 return TRUE;
10238 }
10239
10240 static bfd_boolean
10241 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10242 {
10243 if (note->type == NT_OPENBSD_PROCINFO)
10244 return elfcore_grok_openbsd_procinfo (abfd, note);
10245
10246 if (note->type == NT_OPENBSD_REGS)
10247 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10248
10249 if (note->type == NT_OPENBSD_FPREGS)
10250 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10251
10252 if (note->type == NT_OPENBSD_XFPREGS)
10253 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10254
10255 if (note->type == NT_OPENBSD_AUXV)
10256 {
10257 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10258 SEC_HAS_CONTENTS);
10259
10260 if (sect == NULL)
10261 return FALSE;
10262 sect->size = note->descsz;
10263 sect->filepos = note->descpos;
10264 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10265
10266 return TRUE;
10267 }
10268
10269 if (note->type == NT_OPENBSD_WCOOKIE)
10270 {
10271 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10272 SEC_HAS_CONTENTS);
10273
10274 if (sect == NULL)
10275 return FALSE;
10276 sect->size = note->descsz;
10277 sect->filepos = note->descpos;
10278 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10279
10280 return TRUE;
10281 }
10282
10283 return TRUE;
10284 }
10285
10286 static bfd_boolean
10287 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10288 {
10289 void *ddata = note->descdata;
10290 char buf[100];
10291 char *name;
10292 asection *sect;
10293 short sig;
10294 unsigned flags;
10295
10296 if (note->descsz < 16)
10297 return FALSE;
10298
10299 /* nto_procfs_status 'pid' field is at offset 0. */
10300 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10301
10302 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10303 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10304
10305 /* nto_procfs_status 'flags' field is at offset 8. */
10306 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10307
10308 /* nto_procfs_status 'what' field is at offset 14. */
10309 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10310 {
10311 elf_tdata (abfd)->core->signal = sig;
10312 elf_tdata (abfd)->core->lwpid = *tid;
10313 }
10314
10315 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10316 do not come from signals so we make sure we set the current
10317 thread just in case. */
10318 if (flags & 0x00000080)
10319 elf_tdata (abfd)->core->lwpid = *tid;
10320
10321 /* Make a ".qnx_core_status/%d" section. */
10322 sprintf (buf, ".qnx_core_status/%ld", *tid);
10323
10324 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10325 if (name == NULL)
10326 return FALSE;
10327 strcpy (name, buf);
10328
10329 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10330 if (sect == NULL)
10331 return FALSE;
10332
10333 sect->size = note->descsz;
10334 sect->filepos = note->descpos;
10335 sect->alignment_power = 2;
10336
10337 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10338 }
10339
10340 static bfd_boolean
10341 elfcore_grok_nto_regs (bfd *abfd,
10342 Elf_Internal_Note *note,
10343 long tid,
10344 char *base)
10345 {
10346 char buf[100];
10347 char *name;
10348 asection *sect;
10349
10350 /* Make a "(base)/%d" section. */
10351 sprintf (buf, "%s/%ld", base, tid);
10352
10353 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10354 if (name == NULL)
10355 return FALSE;
10356 strcpy (name, buf);
10357
10358 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10359 if (sect == NULL)
10360 return FALSE;
10361
10362 sect->size = note->descsz;
10363 sect->filepos = note->descpos;
10364 sect->alignment_power = 2;
10365
10366 /* This is the current thread. */
10367 if (elf_tdata (abfd)->core->lwpid == tid)
10368 return elfcore_maybe_make_sect (abfd, base, sect);
10369
10370 return TRUE;
10371 }
10372
10373 #define BFD_QNT_CORE_INFO 7
10374 #define BFD_QNT_CORE_STATUS 8
10375 #define BFD_QNT_CORE_GREG 9
10376 #define BFD_QNT_CORE_FPREG 10
10377
10378 static bfd_boolean
10379 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10380 {
10381 /* Every GREG section has a STATUS section before it. Store the
10382 tid from the previous call to pass down to the next gregs
10383 function. */
10384 static long tid = 1;
10385
10386 switch (note->type)
10387 {
10388 case BFD_QNT_CORE_INFO:
10389 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10390 case BFD_QNT_CORE_STATUS:
10391 return elfcore_grok_nto_status (abfd, note, &tid);
10392 case BFD_QNT_CORE_GREG:
10393 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10394 case BFD_QNT_CORE_FPREG:
10395 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10396 default:
10397 return TRUE;
10398 }
10399 }
10400
10401 static bfd_boolean
10402 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10403 {
10404 char *name;
10405 asection *sect;
10406 size_t len;
10407
10408 /* Use note name as section name. */
10409 len = note->namesz;
10410 name = (char *) bfd_alloc (abfd, len);
10411 if (name == NULL)
10412 return FALSE;
10413 memcpy (name, note->namedata, len);
10414 name[len - 1] = '\0';
10415
10416 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10417 if (sect == NULL)
10418 return FALSE;
10419
10420 sect->size = note->descsz;
10421 sect->filepos = note->descpos;
10422 sect->alignment_power = 1;
10423
10424 return TRUE;
10425 }
10426
10427 /* Function: elfcore_write_note
10428
10429 Inputs:
10430 buffer to hold note, and current size of buffer
10431 name of note
10432 type of note
10433 data for note
10434 size of data for note
10435
10436 Writes note to end of buffer. ELF64 notes are written exactly as
10437 for ELF32, despite the current (as of 2006) ELF gabi specifying
10438 that they ought to have 8-byte namesz and descsz field, and have
10439 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10440
10441 Return:
10442 Pointer to realloc'd buffer, *BUFSIZ updated. */
10443
10444 char *
10445 elfcore_write_note (bfd *abfd,
10446 char *buf,
10447 int *bufsiz,
10448 const char *name,
10449 int type,
10450 const void *input,
10451 int size)
10452 {
10453 Elf_External_Note *xnp;
10454 size_t namesz;
10455 size_t newspace;
10456 char *dest;
10457
10458 namesz = 0;
10459 if (name != NULL)
10460 namesz = strlen (name) + 1;
10461
10462 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10463
10464 buf = (char *) realloc (buf, *bufsiz + newspace);
10465 if (buf == NULL)
10466 return buf;
10467 dest = buf + *bufsiz;
10468 *bufsiz += newspace;
10469 xnp = (Elf_External_Note *) dest;
10470 H_PUT_32 (abfd, namesz, xnp->namesz);
10471 H_PUT_32 (abfd, size, xnp->descsz);
10472 H_PUT_32 (abfd, type, xnp->type);
10473 dest = xnp->name;
10474 if (name != NULL)
10475 {
10476 memcpy (dest, name, namesz);
10477 dest += namesz;
10478 while (namesz & 3)
10479 {
10480 *dest++ = '\0';
10481 ++namesz;
10482 }
10483 }
10484 memcpy (dest, input, size);
10485 dest += size;
10486 while (size & 3)
10487 {
10488 *dest++ = '\0';
10489 ++size;
10490 }
10491 return buf;
10492 }
10493
10494 char *
10495 elfcore_write_prpsinfo (bfd *abfd,
10496 char *buf,
10497 int *bufsiz,
10498 const char *fname,
10499 const char *psargs)
10500 {
10501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10502
10503 if (bed->elf_backend_write_core_note != NULL)
10504 {
10505 char *ret;
10506 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10507 NT_PRPSINFO, fname, psargs);
10508 if (ret != NULL)
10509 return ret;
10510 }
10511
10512 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10513 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10514 if (bed->s->elfclass == ELFCLASS32)
10515 {
10516 #if defined (HAVE_PSINFO32_T)
10517 psinfo32_t data;
10518 int note_type = NT_PSINFO;
10519 #else
10520 prpsinfo32_t data;
10521 int note_type = NT_PRPSINFO;
10522 #endif
10523
10524 memset (&data, 0, sizeof (data));
10525 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10526 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10527 return elfcore_write_note (abfd, buf, bufsiz,
10528 "CORE", note_type, &data, sizeof (data));
10529 }
10530 else
10531 #endif
10532 {
10533 #if defined (HAVE_PSINFO_T)
10534 psinfo_t data;
10535 int note_type = NT_PSINFO;
10536 #else
10537 prpsinfo_t data;
10538 int note_type = NT_PRPSINFO;
10539 #endif
10540
10541 memset (&data, 0, sizeof (data));
10542 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10543 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10544 return elfcore_write_note (abfd, buf, bufsiz,
10545 "CORE", note_type, &data, sizeof (data));
10546 }
10547 #endif /* PSINFO_T or PRPSINFO_T */
10548
10549 free (buf);
10550 return NULL;
10551 }
10552
10553 char *
10554 elfcore_write_linux_prpsinfo32
10555 (bfd *abfd, char *buf, int *bufsiz,
10556 const struct elf_internal_linux_prpsinfo *prpsinfo)
10557 {
10558 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10559 {
10560 struct elf_external_linux_prpsinfo32_ugid16 data;
10561
10562 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10563 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10564 &data, sizeof (data));
10565 }
10566 else
10567 {
10568 struct elf_external_linux_prpsinfo32_ugid32 data;
10569
10570 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10571 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10572 &data, sizeof (data));
10573 }
10574 }
10575
10576 char *
10577 elfcore_write_linux_prpsinfo64
10578 (bfd *abfd, char *buf, int *bufsiz,
10579 const struct elf_internal_linux_prpsinfo *prpsinfo)
10580 {
10581 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10582 {
10583 struct elf_external_linux_prpsinfo64_ugid16 data;
10584
10585 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10586 return elfcore_write_note (abfd, buf, bufsiz,
10587 "CORE", NT_PRPSINFO, &data, sizeof (data));
10588 }
10589 else
10590 {
10591 struct elf_external_linux_prpsinfo64_ugid32 data;
10592
10593 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10594 return elfcore_write_note (abfd, buf, bufsiz,
10595 "CORE", NT_PRPSINFO, &data, sizeof (data));
10596 }
10597 }
10598
10599 char *
10600 elfcore_write_prstatus (bfd *abfd,
10601 char *buf,
10602 int *bufsiz,
10603 long pid,
10604 int cursig,
10605 const void *gregs)
10606 {
10607 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10608
10609 if (bed->elf_backend_write_core_note != NULL)
10610 {
10611 char *ret;
10612 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10613 NT_PRSTATUS,
10614 pid, cursig, gregs);
10615 if (ret != NULL)
10616 return ret;
10617 }
10618
10619 #if defined (HAVE_PRSTATUS_T)
10620 #if defined (HAVE_PRSTATUS32_T)
10621 if (bed->s->elfclass == ELFCLASS32)
10622 {
10623 prstatus32_t prstat;
10624
10625 memset (&prstat, 0, sizeof (prstat));
10626 prstat.pr_pid = pid;
10627 prstat.pr_cursig = cursig;
10628 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10629 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10630 NT_PRSTATUS, &prstat, sizeof (prstat));
10631 }
10632 else
10633 #endif
10634 {
10635 prstatus_t prstat;
10636
10637 memset (&prstat, 0, sizeof (prstat));
10638 prstat.pr_pid = pid;
10639 prstat.pr_cursig = cursig;
10640 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10641 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10642 NT_PRSTATUS, &prstat, sizeof (prstat));
10643 }
10644 #endif /* HAVE_PRSTATUS_T */
10645
10646 free (buf);
10647 return NULL;
10648 }
10649
10650 #if defined (HAVE_LWPSTATUS_T)
10651 char *
10652 elfcore_write_lwpstatus (bfd *abfd,
10653 char *buf,
10654 int *bufsiz,
10655 long pid,
10656 int cursig,
10657 const void *gregs)
10658 {
10659 lwpstatus_t lwpstat;
10660 const char *note_name = "CORE";
10661
10662 memset (&lwpstat, 0, sizeof (lwpstat));
10663 lwpstat.pr_lwpid = pid >> 16;
10664 lwpstat.pr_cursig = cursig;
10665 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10666 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10667 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10668 #if !defined(gregs)
10669 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10670 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10671 #else
10672 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10673 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10674 #endif
10675 #endif
10676 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10677 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10678 }
10679 #endif /* HAVE_LWPSTATUS_T */
10680
10681 #if defined (HAVE_PSTATUS_T)
10682 char *
10683 elfcore_write_pstatus (bfd *abfd,
10684 char *buf,
10685 int *bufsiz,
10686 long pid,
10687 int cursig ATTRIBUTE_UNUSED,
10688 const void *gregs ATTRIBUTE_UNUSED)
10689 {
10690 const char *note_name = "CORE";
10691 #if defined (HAVE_PSTATUS32_T)
10692 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10693
10694 if (bed->s->elfclass == ELFCLASS32)
10695 {
10696 pstatus32_t pstat;
10697
10698 memset (&pstat, 0, sizeof (pstat));
10699 pstat.pr_pid = pid & 0xffff;
10700 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10701 NT_PSTATUS, &pstat, sizeof (pstat));
10702 return buf;
10703 }
10704 else
10705 #endif
10706 {
10707 pstatus_t pstat;
10708
10709 memset (&pstat, 0, sizeof (pstat));
10710 pstat.pr_pid = pid & 0xffff;
10711 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10712 NT_PSTATUS, &pstat, sizeof (pstat));
10713 return buf;
10714 }
10715 }
10716 #endif /* HAVE_PSTATUS_T */
10717
10718 char *
10719 elfcore_write_prfpreg (bfd *abfd,
10720 char *buf,
10721 int *bufsiz,
10722 const void *fpregs,
10723 int size)
10724 {
10725 const char *note_name = "CORE";
10726 return elfcore_write_note (abfd, buf, bufsiz,
10727 note_name, NT_FPREGSET, fpregs, size);
10728 }
10729
10730 char *
10731 elfcore_write_prxfpreg (bfd *abfd,
10732 char *buf,
10733 int *bufsiz,
10734 const void *xfpregs,
10735 int size)
10736 {
10737 char *note_name = "LINUX";
10738 return elfcore_write_note (abfd, buf, bufsiz,
10739 note_name, NT_PRXFPREG, xfpregs, size);
10740 }
10741
10742 char *
10743 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10744 const void *xfpregs, int size)
10745 {
10746 char *note_name;
10747 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10748 note_name = "FreeBSD";
10749 else
10750 note_name = "LINUX";
10751 return elfcore_write_note (abfd, buf, bufsiz,
10752 note_name, NT_X86_XSTATE, xfpregs, size);
10753 }
10754
10755 char *
10756 elfcore_write_ppc_vmx (bfd *abfd,
10757 char *buf,
10758 int *bufsiz,
10759 const void *ppc_vmx,
10760 int size)
10761 {
10762 char *note_name = "LINUX";
10763 return elfcore_write_note (abfd, buf, bufsiz,
10764 note_name, NT_PPC_VMX, ppc_vmx, size);
10765 }
10766
10767 char *
10768 elfcore_write_ppc_vsx (bfd *abfd,
10769 char *buf,
10770 int *bufsiz,
10771 const void *ppc_vsx,
10772 int size)
10773 {
10774 char *note_name = "LINUX";
10775 return elfcore_write_note (abfd, buf, bufsiz,
10776 note_name, NT_PPC_VSX, ppc_vsx, size);
10777 }
10778
10779 static char *
10780 elfcore_write_s390_high_gprs (bfd *abfd,
10781 char *buf,
10782 int *bufsiz,
10783 const void *s390_high_gprs,
10784 int size)
10785 {
10786 char *note_name = "LINUX";
10787 return elfcore_write_note (abfd, buf, bufsiz,
10788 note_name, NT_S390_HIGH_GPRS,
10789 s390_high_gprs, size);
10790 }
10791
10792 char *
10793 elfcore_write_s390_timer (bfd *abfd,
10794 char *buf,
10795 int *bufsiz,
10796 const void *s390_timer,
10797 int size)
10798 {
10799 char *note_name = "LINUX";
10800 return elfcore_write_note (abfd, buf, bufsiz,
10801 note_name, NT_S390_TIMER, s390_timer, size);
10802 }
10803
10804 char *
10805 elfcore_write_s390_todcmp (bfd *abfd,
10806 char *buf,
10807 int *bufsiz,
10808 const void *s390_todcmp,
10809 int size)
10810 {
10811 char *note_name = "LINUX";
10812 return elfcore_write_note (abfd, buf, bufsiz,
10813 note_name, NT_S390_TODCMP, s390_todcmp, size);
10814 }
10815
10816 char *
10817 elfcore_write_s390_todpreg (bfd *abfd,
10818 char *buf,
10819 int *bufsiz,
10820 const void *s390_todpreg,
10821 int size)
10822 {
10823 char *note_name = "LINUX";
10824 return elfcore_write_note (abfd, buf, bufsiz,
10825 note_name, NT_S390_TODPREG, s390_todpreg, size);
10826 }
10827
10828 char *
10829 elfcore_write_s390_ctrs (bfd *abfd,
10830 char *buf,
10831 int *bufsiz,
10832 const void *s390_ctrs,
10833 int size)
10834 {
10835 char *note_name = "LINUX";
10836 return elfcore_write_note (abfd, buf, bufsiz,
10837 note_name, NT_S390_CTRS, s390_ctrs, size);
10838 }
10839
10840 char *
10841 elfcore_write_s390_prefix (bfd *abfd,
10842 char *buf,
10843 int *bufsiz,
10844 const void *s390_prefix,
10845 int size)
10846 {
10847 char *note_name = "LINUX";
10848 return elfcore_write_note (abfd, buf, bufsiz,
10849 note_name, NT_S390_PREFIX, s390_prefix, size);
10850 }
10851
10852 char *
10853 elfcore_write_s390_last_break (bfd *abfd,
10854 char *buf,
10855 int *bufsiz,
10856 const void *s390_last_break,
10857 int size)
10858 {
10859 char *note_name = "LINUX";
10860 return elfcore_write_note (abfd, buf, bufsiz,
10861 note_name, NT_S390_LAST_BREAK,
10862 s390_last_break, size);
10863 }
10864
10865 char *
10866 elfcore_write_s390_system_call (bfd *abfd,
10867 char *buf,
10868 int *bufsiz,
10869 const void *s390_system_call,
10870 int size)
10871 {
10872 char *note_name = "LINUX";
10873 return elfcore_write_note (abfd, buf, bufsiz,
10874 note_name, NT_S390_SYSTEM_CALL,
10875 s390_system_call, size);
10876 }
10877
10878 char *
10879 elfcore_write_s390_tdb (bfd *abfd,
10880 char *buf,
10881 int *bufsiz,
10882 const void *s390_tdb,
10883 int size)
10884 {
10885 char *note_name = "LINUX";
10886 return elfcore_write_note (abfd, buf, bufsiz,
10887 note_name, NT_S390_TDB, s390_tdb, size);
10888 }
10889
10890 char *
10891 elfcore_write_s390_vxrs_low (bfd *abfd,
10892 char *buf,
10893 int *bufsiz,
10894 const void *s390_vxrs_low,
10895 int size)
10896 {
10897 char *note_name = "LINUX";
10898 return elfcore_write_note (abfd, buf, bufsiz,
10899 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10900 }
10901
10902 char *
10903 elfcore_write_s390_vxrs_high (bfd *abfd,
10904 char *buf,
10905 int *bufsiz,
10906 const void *s390_vxrs_high,
10907 int size)
10908 {
10909 char *note_name = "LINUX";
10910 return elfcore_write_note (abfd, buf, bufsiz,
10911 note_name, NT_S390_VXRS_HIGH,
10912 s390_vxrs_high, size);
10913 }
10914
10915 char *
10916 elfcore_write_s390_gs_cb (bfd *abfd,
10917 char *buf,
10918 int *bufsiz,
10919 const void *s390_gs_cb,
10920 int size)
10921 {
10922 char *note_name = "LINUX";
10923 return elfcore_write_note (abfd, buf, bufsiz,
10924 note_name, NT_S390_GS_CB,
10925 s390_gs_cb, size);
10926 }
10927
10928 char *
10929 elfcore_write_s390_gs_bc (bfd *abfd,
10930 char *buf,
10931 int *bufsiz,
10932 const void *s390_gs_bc,
10933 int size)
10934 {
10935 char *note_name = "LINUX";
10936 return elfcore_write_note (abfd, buf, bufsiz,
10937 note_name, NT_S390_GS_BC,
10938 s390_gs_bc, size);
10939 }
10940
10941 char *
10942 elfcore_write_arm_vfp (bfd *abfd,
10943 char *buf,
10944 int *bufsiz,
10945 const void *arm_vfp,
10946 int size)
10947 {
10948 char *note_name = "LINUX";
10949 return elfcore_write_note (abfd, buf, bufsiz,
10950 note_name, NT_ARM_VFP, arm_vfp, size);
10951 }
10952
10953 char *
10954 elfcore_write_aarch_tls (bfd *abfd,
10955 char *buf,
10956 int *bufsiz,
10957 const void *aarch_tls,
10958 int size)
10959 {
10960 char *note_name = "LINUX";
10961 return elfcore_write_note (abfd, buf, bufsiz,
10962 note_name, NT_ARM_TLS, aarch_tls, size);
10963 }
10964
10965 char *
10966 elfcore_write_aarch_hw_break (bfd *abfd,
10967 char *buf,
10968 int *bufsiz,
10969 const void *aarch_hw_break,
10970 int size)
10971 {
10972 char *note_name = "LINUX";
10973 return elfcore_write_note (abfd, buf, bufsiz,
10974 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10975 }
10976
10977 char *
10978 elfcore_write_aarch_hw_watch (bfd *abfd,
10979 char *buf,
10980 int *bufsiz,
10981 const void *aarch_hw_watch,
10982 int size)
10983 {
10984 char *note_name = "LINUX";
10985 return elfcore_write_note (abfd, buf, bufsiz,
10986 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10987 }
10988
10989 char *
10990 elfcore_write_register_note (bfd *abfd,
10991 char *buf,
10992 int *bufsiz,
10993 const char *section,
10994 const void *data,
10995 int size)
10996 {
10997 if (strcmp (section, ".reg2") == 0)
10998 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10999 if (strcmp (section, ".reg-xfp") == 0)
11000 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11001 if (strcmp (section, ".reg-xstate") == 0)
11002 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11003 if (strcmp (section, ".reg-ppc-vmx") == 0)
11004 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11005 if (strcmp (section, ".reg-ppc-vsx") == 0)
11006 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11007 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11008 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11009 if (strcmp (section, ".reg-s390-timer") == 0)
11010 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11011 if (strcmp (section, ".reg-s390-todcmp") == 0)
11012 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11013 if (strcmp (section, ".reg-s390-todpreg") == 0)
11014 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11015 if (strcmp (section, ".reg-s390-ctrs") == 0)
11016 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11017 if (strcmp (section, ".reg-s390-prefix") == 0)
11018 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11019 if (strcmp (section, ".reg-s390-last-break") == 0)
11020 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11021 if (strcmp (section, ".reg-s390-system-call") == 0)
11022 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11023 if (strcmp (section, ".reg-s390-tdb") == 0)
11024 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11025 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11026 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11027 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11028 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11029 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11030 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11031 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11032 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11033 if (strcmp (section, ".reg-arm-vfp") == 0)
11034 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11035 if (strcmp (section, ".reg-aarch-tls") == 0)
11036 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11037 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11038 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11039 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11040 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11041 return NULL;
11042 }
11043
11044 static bfd_boolean
11045 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11046 size_t align)
11047 {
11048 char *p;
11049
11050 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11051 gABI specifies that PT_NOTE alignment should be aligned to 4
11052 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11053 align is less than 4, we use 4 byte alignment. */
11054 if (align < 4)
11055 align = 4;
11056 if (align != 4 && align != 8)
11057 return FALSE;
11058
11059 p = buf;
11060 while (p < buf + size)
11061 {
11062 Elf_External_Note *xnp = (Elf_External_Note *) p;
11063 Elf_Internal_Note in;
11064
11065 if (offsetof (Elf_External_Note, name) > buf - p + size)
11066 return FALSE;
11067
11068 in.type = H_GET_32 (abfd, xnp->type);
11069
11070 in.namesz = H_GET_32 (abfd, xnp->namesz);
11071 in.namedata = xnp->name;
11072 if (in.namesz > buf - in.namedata + size)
11073 return FALSE;
11074
11075 in.descsz = H_GET_32 (abfd, xnp->descsz);
11076 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11077 in.descpos = offset + (in.descdata - buf);
11078 if (in.descsz != 0
11079 && (in.descdata >= buf + size
11080 || in.descsz > buf - in.descdata + size))
11081 return FALSE;
11082
11083 switch (bfd_get_format (abfd))
11084 {
11085 default:
11086 return TRUE;
11087
11088 case bfd_core:
11089 {
11090 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11091 struct
11092 {
11093 const char * string;
11094 size_t len;
11095 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11096 }
11097 grokers[] =
11098 {
11099 GROKER_ELEMENT ("", elfcore_grok_note),
11100 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11101 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11102 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11103 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11104 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11105 };
11106 #undef GROKER_ELEMENT
11107 int i;
11108
11109 for (i = ARRAY_SIZE (grokers); i--;)
11110 {
11111 if (in.namesz >= grokers[i].len
11112 && strncmp (in.namedata, grokers[i].string,
11113 grokers[i].len) == 0)
11114 {
11115 if (! grokers[i].func (abfd, & in))
11116 return FALSE;
11117 break;
11118 }
11119 }
11120 break;
11121 }
11122
11123 case bfd_object:
11124 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11125 {
11126 if (! elfobj_grok_gnu_note (abfd, &in))
11127 return FALSE;
11128 }
11129 else if (in.namesz == sizeof "stapsdt"
11130 && strcmp (in.namedata, "stapsdt") == 0)
11131 {
11132 if (! elfobj_grok_stapsdt_note (abfd, &in))
11133 return FALSE;
11134 }
11135 break;
11136 }
11137
11138 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11139 }
11140
11141 return TRUE;
11142 }
11143
11144 static bfd_boolean
11145 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11146 size_t align)
11147 {
11148 char *buf;
11149
11150 if (size == 0 || (size + 1) == 0)
11151 return TRUE;
11152
11153 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11154 return FALSE;
11155
11156 buf = (char *) bfd_malloc (size + 1);
11157 if (buf == NULL)
11158 return FALSE;
11159
11160 /* PR 17512: file: ec08f814
11161 0-termintate the buffer so that string searches will not overflow. */
11162 buf[size] = 0;
11163
11164 if (bfd_bread (buf, size, abfd) != size
11165 || !elf_parse_notes (abfd, buf, size, offset, align))
11166 {
11167 free (buf);
11168 return FALSE;
11169 }
11170
11171 free (buf);
11172 return TRUE;
11173 }
11174 \f
11175 /* Providing external access to the ELF program header table. */
11176
11177 /* Return an upper bound on the number of bytes required to store a
11178 copy of ABFD's program header table entries. Return -1 if an error
11179 occurs; bfd_get_error will return an appropriate code. */
11180
11181 long
11182 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11183 {
11184 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11185 {
11186 bfd_set_error (bfd_error_wrong_format);
11187 return -1;
11188 }
11189
11190 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11191 }
11192
11193 /* Copy ABFD's program header table entries to *PHDRS. The entries
11194 will be stored as an array of Elf_Internal_Phdr structures, as
11195 defined in include/elf/internal.h. To find out how large the
11196 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11197
11198 Return the number of program header table entries read, or -1 if an
11199 error occurs; bfd_get_error will return an appropriate code. */
11200
11201 int
11202 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11203 {
11204 int num_phdrs;
11205
11206 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11207 {
11208 bfd_set_error (bfd_error_wrong_format);
11209 return -1;
11210 }
11211
11212 num_phdrs = elf_elfheader (abfd)->e_phnum;
11213 memcpy (phdrs, elf_tdata (abfd)->phdr,
11214 num_phdrs * sizeof (Elf_Internal_Phdr));
11215
11216 return num_phdrs;
11217 }
11218
11219 enum elf_reloc_type_class
11220 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11221 const asection *rel_sec ATTRIBUTE_UNUSED,
11222 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11223 {
11224 return reloc_class_normal;
11225 }
11226
11227 /* For RELA architectures, return the relocation value for a
11228 relocation against a local symbol. */
11229
11230 bfd_vma
11231 _bfd_elf_rela_local_sym (bfd *abfd,
11232 Elf_Internal_Sym *sym,
11233 asection **psec,
11234 Elf_Internal_Rela *rel)
11235 {
11236 asection *sec = *psec;
11237 bfd_vma relocation;
11238
11239 relocation = (sec->output_section->vma
11240 + sec->output_offset
11241 + sym->st_value);
11242 if ((sec->flags & SEC_MERGE)
11243 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11244 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11245 {
11246 rel->r_addend =
11247 _bfd_merged_section_offset (abfd, psec,
11248 elf_section_data (sec)->sec_info,
11249 sym->st_value + rel->r_addend);
11250 if (sec != *psec)
11251 {
11252 /* If we have changed the section, and our original section is
11253 marked with SEC_EXCLUDE, it means that the original
11254 SEC_MERGE section has been completely subsumed in some
11255 other SEC_MERGE section. In this case, we need to leave
11256 some info around for --emit-relocs. */
11257 if ((sec->flags & SEC_EXCLUDE) != 0)
11258 sec->kept_section = *psec;
11259 sec = *psec;
11260 }
11261 rel->r_addend -= relocation;
11262 rel->r_addend += sec->output_section->vma + sec->output_offset;
11263 }
11264 return relocation;
11265 }
11266
11267 bfd_vma
11268 _bfd_elf_rel_local_sym (bfd *abfd,
11269 Elf_Internal_Sym *sym,
11270 asection **psec,
11271 bfd_vma addend)
11272 {
11273 asection *sec = *psec;
11274
11275 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11276 return sym->st_value + addend;
11277
11278 return _bfd_merged_section_offset (abfd, psec,
11279 elf_section_data (sec)->sec_info,
11280 sym->st_value + addend);
11281 }
11282
11283 /* Adjust an address within a section. Given OFFSET within SEC, return
11284 the new offset within the section, based upon changes made to the
11285 section. Returns -1 if the offset is now invalid.
11286 The offset (in abnd out) is in target sized bytes, however big a
11287 byte may be. */
11288
11289 bfd_vma
11290 _bfd_elf_section_offset (bfd *abfd,
11291 struct bfd_link_info *info,
11292 asection *sec,
11293 bfd_vma offset)
11294 {
11295 switch (sec->sec_info_type)
11296 {
11297 case SEC_INFO_TYPE_STABS:
11298 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11299 offset);
11300 case SEC_INFO_TYPE_EH_FRAME:
11301 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11302
11303 default:
11304 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11305 {
11306 /* Reverse the offset. */
11307 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11308 bfd_size_type address_size = bed->s->arch_size / 8;
11309
11310 /* address_size and sec->size are in octets. Convert
11311 to bytes before subtracting the original offset. */
11312 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11313 }
11314 return offset;
11315 }
11316 }
11317 \f
11318 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11319 reconstruct an ELF file by reading the segments out of remote memory
11320 based on the ELF file header at EHDR_VMA and the ELF program headers it
11321 points to. If not null, *LOADBASEP is filled in with the difference
11322 between the VMAs from which the segments were read, and the VMAs the
11323 file headers (and hence BFD's idea of each section's VMA) put them at.
11324
11325 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11326 remote memory at target address VMA into the local buffer at MYADDR; it
11327 should return zero on success or an `errno' code on failure. TEMPL must
11328 be a BFD for an ELF target with the word size and byte order found in
11329 the remote memory. */
11330
11331 bfd *
11332 bfd_elf_bfd_from_remote_memory
11333 (bfd *templ,
11334 bfd_vma ehdr_vma,
11335 bfd_size_type size,
11336 bfd_vma *loadbasep,
11337 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11338 {
11339 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11340 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11341 }
11342 \f
11343 long
11344 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11345 long symcount ATTRIBUTE_UNUSED,
11346 asymbol **syms ATTRIBUTE_UNUSED,
11347 long dynsymcount,
11348 asymbol **dynsyms,
11349 asymbol **ret)
11350 {
11351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11352 asection *relplt;
11353 asymbol *s;
11354 const char *relplt_name;
11355 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11356 arelent *p;
11357 long count, i, n;
11358 size_t size;
11359 Elf_Internal_Shdr *hdr;
11360 char *names;
11361 asection *plt;
11362
11363 *ret = NULL;
11364
11365 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11366 return 0;
11367
11368 if (dynsymcount <= 0)
11369 return 0;
11370
11371 if (!bed->plt_sym_val)
11372 return 0;
11373
11374 relplt_name = bed->relplt_name;
11375 if (relplt_name == NULL)
11376 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11377 relplt = bfd_get_section_by_name (abfd, relplt_name);
11378 if (relplt == NULL)
11379 return 0;
11380
11381 hdr = &elf_section_data (relplt)->this_hdr;
11382 if (hdr->sh_link != elf_dynsymtab (abfd)
11383 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11384 return 0;
11385
11386 plt = bfd_get_section_by_name (abfd, ".plt");
11387 if (plt == NULL)
11388 return 0;
11389
11390 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11391 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11392 return -1;
11393
11394 count = relplt->size / hdr->sh_entsize;
11395 size = count * sizeof (asymbol);
11396 p = relplt->relocation;
11397 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11398 {
11399 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11400 if (p->addend != 0)
11401 {
11402 #ifdef BFD64
11403 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11404 #else
11405 size += sizeof ("+0x") - 1 + 8;
11406 #endif
11407 }
11408 }
11409
11410 s = *ret = (asymbol *) bfd_malloc (size);
11411 if (s == NULL)
11412 return -1;
11413
11414 names = (char *) (s + count);
11415 p = relplt->relocation;
11416 n = 0;
11417 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11418 {
11419 size_t len;
11420 bfd_vma addr;
11421
11422 addr = bed->plt_sym_val (i, plt, p);
11423 if (addr == (bfd_vma) -1)
11424 continue;
11425
11426 *s = **p->sym_ptr_ptr;
11427 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11428 we are defining a symbol, ensure one of them is set. */
11429 if ((s->flags & BSF_LOCAL) == 0)
11430 s->flags |= BSF_GLOBAL;
11431 s->flags |= BSF_SYNTHETIC;
11432 s->section = plt;
11433 s->value = addr - plt->vma;
11434 s->name = names;
11435 s->udata.p = NULL;
11436 len = strlen ((*p->sym_ptr_ptr)->name);
11437 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11438 names += len;
11439 if (p->addend != 0)
11440 {
11441 char buf[30], *a;
11442
11443 memcpy (names, "+0x", sizeof ("+0x") - 1);
11444 names += sizeof ("+0x") - 1;
11445 bfd_sprintf_vma (abfd, buf, p->addend);
11446 for (a = buf; *a == '0'; ++a)
11447 ;
11448 len = strlen (a);
11449 memcpy (names, a, len);
11450 names += len;
11451 }
11452 memcpy (names, "@plt", sizeof ("@plt"));
11453 names += sizeof ("@plt");
11454 ++s, ++n;
11455 }
11456
11457 return n;
11458 }
11459
11460 /* It is only used by x86-64 so far.
11461 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11462 but current usage would allow all of _bfd_std_section to be zero. */
11463 static const asymbol lcomm_sym
11464 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11465 asection _bfd_elf_large_com_section
11466 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11467 "LARGE_COMMON", 0, SEC_IS_COMMON);
11468
11469 void
11470 _bfd_elf_post_process_headers (bfd * abfd,
11471 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11472 {
11473 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11474
11475 i_ehdrp = elf_elfheader (abfd);
11476
11477 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11478
11479 /* To make things simpler for the loader on Linux systems we set the
11480 osabi field to ELFOSABI_GNU if the binary contains symbols of
11481 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11482 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11483 && elf_tdata (abfd)->has_gnu_symbols)
11484 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11485 }
11486
11487
11488 /* Return TRUE for ELF symbol types that represent functions.
11489 This is the default version of this function, which is sufficient for
11490 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11491
11492 bfd_boolean
11493 _bfd_elf_is_function_type (unsigned int type)
11494 {
11495 return (type == STT_FUNC
11496 || type == STT_GNU_IFUNC);
11497 }
11498
11499 /* If the ELF symbol SYM might be a function in SEC, return the
11500 function size and set *CODE_OFF to the function's entry point,
11501 otherwise return zero. */
11502
11503 bfd_size_type
11504 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11505 bfd_vma *code_off)
11506 {
11507 bfd_size_type size;
11508
11509 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11510 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11511 || sym->section != sec)
11512 return 0;
11513
11514 *code_off = sym->value;
11515 size = 0;
11516 if (!(sym->flags & BSF_SYNTHETIC))
11517 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11518 if (size == 0)
11519 size = 1;
11520 return size;
11521 }
This page took 0.253923 seconds and 5 git commands to generate.