Pass section when available to bfd_octets_per_byte
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || shstrtabsize > bfd_get_file_size (abfd)
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%pB: attempt to load strings from"
343 " a non-string section (number %d)"),
344 abfd, shindex);
345 return NULL;
346 }
347
348 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
349 return NULL;
350 }
351 else
352 {
353 /* PR 24273: The string section's contents may have already
354 been loaded elsewhere, eg because a corrupt file has the
355 string section index in the ELF header pointing at a group
356 section. So be paranoid, and test that the last byte of
357 the section is zero. */
358 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
359 return NULL;
360 }
361
362 if (strindex >= hdr->sh_size)
363 {
364 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
365 _bfd_error_handler
366 /* xgettext:c-format */
367 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
368 abfd, strindex, (uint64_t) hdr->sh_size,
369 (shindex == shstrndx && strindex == hdr->sh_name
370 ? ".shstrtab"
371 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
372 return NULL;
373 }
374
375 return ((char *) hdr->contents) + strindex;
376 }
377
378 /* Read and convert symbols to internal format.
379 SYMCOUNT specifies the number of symbols to read, starting from
380 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
381 are non-NULL, they are used to store the internal symbols, external
382 symbols, and symbol section index extensions, respectively.
383 Returns a pointer to the internal symbol buffer (malloced if necessary)
384 or NULL if there were no symbols or some kind of problem. */
385
386 Elf_Internal_Sym *
387 bfd_elf_get_elf_syms (bfd *ibfd,
388 Elf_Internal_Shdr *symtab_hdr,
389 size_t symcount,
390 size_t symoffset,
391 Elf_Internal_Sym *intsym_buf,
392 void *extsym_buf,
393 Elf_External_Sym_Shndx *extshndx_buf)
394 {
395 Elf_Internal_Shdr *shndx_hdr;
396 void *alloc_ext;
397 const bfd_byte *esym;
398 Elf_External_Sym_Shndx *alloc_extshndx;
399 Elf_External_Sym_Shndx *shndx;
400 Elf_Internal_Sym *alloc_intsym;
401 Elf_Internal_Sym *isym;
402 Elf_Internal_Sym *isymend;
403 const struct elf_backend_data *bed;
404 size_t extsym_size;
405 bfd_size_type amt;
406 file_ptr pos;
407
408 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
409 abort ();
410
411 if (symcount == 0)
412 return intsym_buf;
413
414 /* Normal syms might have section extension entries. */
415 shndx_hdr = NULL;
416 if (elf_symtab_shndx_list (ibfd) != NULL)
417 {
418 elf_section_list * entry;
419 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
420
421 /* Find an index section that is linked to this symtab section. */
422 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
423 {
424 /* PR 20063. */
425 if (entry->hdr.sh_link >= elf_numsections (ibfd))
426 continue;
427
428 if (sections[entry->hdr.sh_link] == symtab_hdr)
429 {
430 shndx_hdr = & entry->hdr;
431 break;
432 };
433 }
434
435 if (shndx_hdr == NULL)
436 {
437 if (symtab_hdr == & elf_symtab_hdr (ibfd))
438 /* Not really accurate, but this was how the old code used to work. */
439 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
440 /* Otherwise we do nothing. The assumption is that
441 the index table will not be needed. */
442 }
443 }
444
445 /* Read the symbols. */
446 alloc_ext = NULL;
447 alloc_extshndx = NULL;
448 alloc_intsym = NULL;
449 bed = get_elf_backend_data (ibfd);
450 extsym_size = bed->s->sizeof_sym;
451 amt = (bfd_size_type) symcount * extsym_size;
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc2 (symcount, extsym_size);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
471 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
472 if (extshndx_buf == NULL)
473 {
474 alloc_extshndx = (Elf_External_Sym_Shndx *)
475 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
476 extshndx_buf = alloc_extshndx;
477 }
478 if (extshndx_buf == NULL
479 || bfd_seek (ibfd, pos, SEEK_SET) != 0
480 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
481 {
482 intsym_buf = NULL;
483 goto out;
484 }
485 }
486
487 if (intsym_buf == NULL)
488 {
489 alloc_intsym = (Elf_Internal_Sym *)
490 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
491 intsym_buf = alloc_intsym;
492 if (intsym_buf == NULL)
493 goto out;
494 }
495
496 /* Convert the symbols to internal form. */
497 isymend = intsym_buf + symcount;
498 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
499 shndx = extshndx_buf;
500 isym < isymend;
501 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
502 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
503 {
504 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
505 /* xgettext:c-format */
506 _bfd_error_handler (_("%pB symbol number %lu references"
507 " nonexistent SHT_SYMTAB_SHNDX section"),
508 ibfd, (unsigned long) symoffset);
509 if (alloc_intsym != NULL)
510 free (alloc_intsym);
511 intsym_buf = NULL;
512 goto out;
513 }
514
515 out:
516 if (alloc_ext != NULL)
517 free (alloc_ext);
518 if (alloc_extshndx != NULL)
519 free (alloc_extshndx);
520
521 return intsym_buf;
522 }
523
524 /* Look up a symbol name. */
525 const char *
526 bfd_elf_sym_name (bfd *abfd,
527 Elf_Internal_Shdr *symtab_hdr,
528 Elf_Internal_Sym *isym,
529 asection *sym_sec)
530 {
531 const char *name;
532 unsigned int iname = isym->st_name;
533 unsigned int shindex = symtab_hdr->sh_link;
534
535 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
536 /* Check for a bogus st_shndx to avoid crashing. */
537 && isym->st_shndx < elf_numsections (abfd))
538 {
539 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
540 shindex = elf_elfheader (abfd)->e_shstrndx;
541 }
542
543 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
544 if (name == NULL)
545 name = "(null)";
546 else if (sym_sec && *name == '\0')
547 name = bfd_section_name (sym_sec);
548
549 return name;
550 }
551
552 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
553 sections. The first element is the flags, the rest are section
554 pointers. */
555
556 typedef union elf_internal_group {
557 Elf_Internal_Shdr *shdr;
558 unsigned int flags;
559 } Elf_Internal_Group;
560
561 /* Return the name of the group signature symbol. Why isn't the
562 signature just a string? */
563
564 static const char *
565 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
566 {
567 Elf_Internal_Shdr *hdr;
568 unsigned char esym[sizeof (Elf64_External_Sym)];
569 Elf_External_Sym_Shndx eshndx;
570 Elf_Internal_Sym isym;
571
572 /* First we need to ensure the symbol table is available. Make sure
573 that it is a symbol table section. */
574 if (ghdr->sh_link >= elf_numsections (abfd))
575 return NULL;
576 hdr = elf_elfsections (abfd) [ghdr->sh_link];
577 if (hdr->sh_type != SHT_SYMTAB
578 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
579 return NULL;
580
581 /* Go read the symbol. */
582 hdr = &elf_tdata (abfd)->symtab_hdr;
583 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
584 &isym, esym, &eshndx) == NULL)
585 return NULL;
586
587 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
588 }
589
590 /* Set next_in_group list pointer, and group name for NEWSECT. */
591
592 static bfd_boolean
593 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
594 {
595 unsigned int num_group = elf_tdata (abfd)->num_group;
596
597 /* If num_group is zero, read in all SHT_GROUP sections. The count
598 is set to -1 if there are no SHT_GROUP sections. */
599 if (num_group == 0)
600 {
601 unsigned int i, shnum;
602
603 /* First count the number of groups. If we have a SHT_GROUP
604 section with just a flag word (ie. sh_size is 4), ignore it. */
605 shnum = elf_numsections (abfd);
606 num_group = 0;
607
608 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
609 ( (shdr)->sh_type == SHT_GROUP \
610 && (shdr)->sh_size >= minsize \
611 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
612 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
613
614 for (i = 0; i < shnum; i++)
615 {
616 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
617
618 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
619 num_group += 1;
620 }
621
622 if (num_group == 0)
623 {
624 num_group = (unsigned) -1;
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = NULL;
627 }
628 else
629 {
630 /* We keep a list of elf section headers for group sections,
631 so we can find them quickly. */
632 bfd_size_type amt;
633
634 elf_tdata (abfd)->num_group = num_group;
635 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
636 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
637 if (elf_tdata (abfd)->group_sect_ptr == NULL)
638 return FALSE;
639 memset (elf_tdata (abfd)->group_sect_ptr, 0,
640 num_group * sizeof (Elf_Internal_Shdr *));
641 num_group = 0;
642
643 for (i = 0; i < shnum; i++)
644 {
645 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
646
647 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
648 {
649 unsigned char *src;
650 Elf_Internal_Group *dest;
651
652 /* Make sure the group section has a BFD section
653 attached to it. */
654 if (!bfd_section_from_shdr (abfd, i))
655 return FALSE;
656
657 /* Add to list of sections. */
658 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
659 num_group += 1;
660
661 /* Read the raw contents. */
662 BFD_ASSERT (sizeof (*dest) >= 4);
663 amt = shdr->sh_size * sizeof (*dest) / 4;
664 shdr->contents = (unsigned char *)
665 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
666 /* PR binutils/4110: Handle corrupt group headers. */
667 if (shdr->contents == NULL)
668 {
669 _bfd_error_handler
670 /* xgettext:c-format */
671 (_("%pB: corrupt size field in group section"
672 " header: %#" PRIx64),
673 abfd, (uint64_t) shdr->sh_size);
674 bfd_set_error (bfd_error_bad_value);
675 -- num_group;
676 continue;
677 }
678
679 memset (shdr->contents, 0, amt);
680
681 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
682 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
683 != shdr->sh_size))
684 {
685 _bfd_error_handler
686 /* xgettext:c-format */
687 (_("%pB: invalid size field in group section"
688 " header: %#" PRIx64 ""),
689 abfd, (uint64_t) shdr->sh_size);
690 bfd_set_error (bfd_error_bad_value);
691 -- num_group;
692 /* PR 17510: If the group contents are even
693 partially corrupt, do not allow any of the
694 contents to be used. */
695 memset (shdr->contents, 0, amt);
696 continue;
697 }
698
699 /* Translate raw contents, a flag word followed by an
700 array of elf section indices all in target byte order,
701 to the flag word followed by an array of elf section
702 pointers. */
703 src = shdr->contents + shdr->sh_size;
704 dest = (Elf_Internal_Group *) (shdr->contents + amt);
705
706 while (1)
707 {
708 unsigned int idx;
709
710 src -= 4;
711 --dest;
712 idx = H_GET_32 (abfd, src);
713 if (src == shdr->contents)
714 {
715 dest->flags = idx;
716 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
717 shdr->bfd_section->flags
718 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
719 break;
720 }
721 if (idx < shnum)
722 {
723 dest->shdr = elf_elfsections (abfd)[idx];
724 /* PR binutils/23199: All sections in a
725 section group should be marked with
726 SHF_GROUP. But some tools generate
727 broken objects without SHF_GROUP. Fix
728 them up here. */
729 dest->shdr->sh_flags |= SHF_GROUP;
730 }
731 if (idx >= shnum
732 || dest->shdr->sh_type == SHT_GROUP)
733 {
734 _bfd_error_handler
735 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
736 abfd, i);
737 dest->shdr = NULL;
738 }
739 }
740 }
741 }
742
743 /* PR 17510: Corrupt binaries might contain invalid groups. */
744 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
745 {
746 elf_tdata (abfd)->num_group = num_group;
747
748 /* If all groups are invalid then fail. */
749 if (num_group == 0)
750 {
751 elf_tdata (abfd)->group_sect_ptr = NULL;
752 elf_tdata (abfd)->num_group = num_group = -1;
753 _bfd_error_handler
754 (_("%pB: no valid group sections found"), abfd);
755 bfd_set_error (bfd_error_bad_value);
756 }
757 }
758 }
759 }
760
761 if (num_group != (unsigned) -1)
762 {
763 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
764 unsigned int j;
765
766 for (j = 0; j < num_group; j++)
767 {
768 /* Begin search from previous found group. */
769 unsigned i = (j + search_offset) % num_group;
770
771 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
772 Elf_Internal_Group *idx;
773 bfd_size_type n_elt;
774
775 if (shdr == NULL)
776 continue;
777
778 idx = (Elf_Internal_Group *) shdr->contents;
779 if (idx == NULL || shdr->sh_size < 4)
780 {
781 /* See PR 21957 for a reproducer. */
782 /* xgettext:c-format */
783 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
784 abfd, shdr->bfd_section);
785 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
786 bfd_set_error (bfd_error_bad_value);
787 return FALSE;
788 }
789 n_elt = shdr->sh_size / 4;
790
791 /* Look through this group's sections to see if current
792 section is a member. */
793 while (--n_elt != 0)
794 if ((++idx)->shdr == hdr)
795 {
796 asection *s = NULL;
797
798 /* We are a member of this group. Go looking through
799 other members to see if any others are linked via
800 next_in_group. */
801 idx = (Elf_Internal_Group *) shdr->contents;
802 n_elt = shdr->sh_size / 4;
803 while (--n_elt != 0)
804 if ((++idx)->shdr != NULL
805 && (s = idx->shdr->bfd_section) != NULL
806 && elf_next_in_group (s) != NULL)
807 break;
808 if (n_elt != 0)
809 {
810 /* Snarf the group name from other member, and
811 insert current section in circular list. */
812 elf_group_name (newsect) = elf_group_name (s);
813 elf_next_in_group (newsect) = elf_next_in_group (s);
814 elf_next_in_group (s) = newsect;
815 }
816 else
817 {
818 const char *gname;
819
820 gname = group_signature (abfd, shdr);
821 if (gname == NULL)
822 return FALSE;
823 elf_group_name (newsect) = gname;
824
825 /* Start a circular list with one element. */
826 elf_next_in_group (newsect) = newsect;
827 }
828
829 /* If the group section has been created, point to the
830 new member. */
831 if (shdr->bfd_section != NULL)
832 elf_next_in_group (shdr->bfd_section) = newsect;
833
834 elf_tdata (abfd)->group_search_offset = i;
835 j = num_group - 1;
836 break;
837 }
838 }
839 }
840
841 if (elf_group_name (newsect) == NULL)
842 {
843 /* xgettext:c-format */
844 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
845 abfd, newsect);
846 return FALSE;
847 }
848 return TRUE;
849 }
850
851 bfd_boolean
852 _bfd_elf_setup_sections (bfd *abfd)
853 {
854 unsigned int i;
855 unsigned int num_group = elf_tdata (abfd)->num_group;
856 bfd_boolean result = TRUE;
857 asection *s;
858
859 /* Process SHF_LINK_ORDER. */
860 for (s = abfd->sections; s != NULL; s = s->next)
861 {
862 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
863 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
864 {
865 unsigned int elfsec = this_hdr->sh_link;
866 /* FIXME: The old Intel compiler and old strip/objcopy may
867 not set the sh_link or sh_info fields. Hence we could
868 get the situation where elfsec is 0. */
869 if (elfsec == 0)
870 {
871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
872 if (bed->link_order_error_handler)
873 bed->link_order_error_handler
874 /* xgettext:c-format */
875 (_("%pB: warning: sh_link not set for section `%pA'"),
876 abfd, s);
877 }
878 else
879 {
880 asection *linksec = NULL;
881
882 if (elfsec < elf_numsections (abfd))
883 {
884 this_hdr = elf_elfsections (abfd)[elfsec];
885 linksec = this_hdr->bfd_section;
886 }
887
888 /* PR 1991, 2008:
889 Some strip/objcopy may leave an incorrect value in
890 sh_link. We don't want to proceed. */
891 if (linksec == NULL)
892 {
893 _bfd_error_handler
894 /* xgettext:c-format */
895 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
896 s->owner, elfsec, s);
897 result = FALSE;
898 }
899
900 elf_linked_to_section (s) = linksec;
901 }
902 }
903 else if (this_hdr->sh_type == SHT_GROUP
904 && elf_next_in_group (s) == NULL)
905 {
906 _bfd_error_handler
907 /* xgettext:c-format */
908 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
909 abfd, elf_section_data (s)->this_idx);
910 result = FALSE;
911 }
912 }
913
914 /* Process section groups. */
915 if (num_group == (unsigned) -1)
916 return result;
917
918 for (i = 0; i < num_group; i++)
919 {
920 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
921 Elf_Internal_Group *idx;
922 unsigned int n_elt;
923
924 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
925 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
926 {
927 _bfd_error_handler
928 /* xgettext:c-format */
929 (_("%pB: section group entry number %u is corrupt"),
930 abfd, i);
931 result = FALSE;
932 continue;
933 }
934
935 idx = (Elf_Internal_Group *) shdr->contents;
936 n_elt = shdr->sh_size / 4;
937
938 while (--n_elt != 0)
939 {
940 ++ idx;
941
942 if (idx->shdr == NULL)
943 continue;
944 else if (idx->shdr->bfd_section)
945 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
946 else if (idx->shdr->sh_type != SHT_RELA
947 && idx->shdr->sh_type != SHT_REL)
948 {
949 /* There are some unknown sections in the group. */
950 _bfd_error_handler
951 /* xgettext:c-format */
952 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
953 abfd,
954 idx->shdr->sh_type,
955 bfd_elf_string_from_elf_section (abfd,
956 (elf_elfheader (abfd)
957 ->e_shstrndx),
958 idx->shdr->sh_name),
959 shdr->bfd_section);
960 result = FALSE;
961 }
962 }
963 }
964
965 return result;
966 }
967
968 bfd_boolean
969 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
970 {
971 return elf_next_in_group (sec) != NULL;
972 }
973
974 const char *
975 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
976 {
977 if (elf_sec_group (sec) != NULL)
978 return elf_group_name (sec);
979 return NULL;
980 }
981
982 static char *
983 convert_debug_to_zdebug (bfd *abfd, const char *name)
984 {
985 unsigned int len = strlen (name);
986 char *new_name = bfd_alloc (abfd, len + 2);
987 if (new_name == NULL)
988 return NULL;
989 new_name[0] = '.';
990 new_name[1] = 'z';
991 memcpy (new_name + 2, name + 1, len);
992 return new_name;
993 }
994
995 static char *
996 convert_zdebug_to_debug (bfd *abfd, const char *name)
997 {
998 unsigned int len = strlen (name);
999 char *new_name = bfd_alloc (abfd, len);
1000 if (new_name == NULL)
1001 return NULL;
1002 new_name[0] = '.';
1003 memcpy (new_name + 1, name + 2, len - 1);
1004 return new_name;
1005 }
1006
1007 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1008
1009 struct lto_section
1010 {
1011 int16_t major_version;
1012 int16_t minor_version;
1013 unsigned char slim_object;
1014
1015 /* Flags is a private field that is not defined publicly. */
1016 uint16_t flags;
1017 };
1018
1019 /* Make a BFD section from an ELF section. We store a pointer to the
1020 BFD section in the bfd_section field of the header. */
1021
1022 bfd_boolean
1023 _bfd_elf_make_section_from_shdr (bfd *abfd,
1024 Elf_Internal_Shdr *hdr,
1025 const char *name,
1026 int shindex)
1027 {
1028 asection *newsect;
1029 flagword flags;
1030 const struct elf_backend_data *bed;
1031
1032 if (hdr->bfd_section != NULL)
1033 return TRUE;
1034
1035 newsect = bfd_make_section_anyway (abfd, name);
1036 if (newsect == NULL)
1037 return FALSE;
1038
1039 hdr->bfd_section = newsect;
1040 elf_section_data (newsect)->this_hdr = *hdr;
1041 elf_section_data (newsect)->this_idx = shindex;
1042
1043 /* Always use the real type/flags. */
1044 elf_section_type (newsect) = hdr->sh_type;
1045 elf_section_flags (newsect) = hdr->sh_flags;
1046
1047 newsect->filepos = hdr->sh_offset;
1048
1049 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1050 || !bfd_set_section_size (newsect, hdr->sh_size)
1051 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1052 return FALSE;
1053
1054 flags = SEC_NO_FLAGS;
1055 if (hdr->sh_type != SHT_NOBITS)
1056 flags |= SEC_HAS_CONTENTS;
1057 if (hdr->sh_type == SHT_GROUP)
1058 flags |= SEC_GROUP;
1059 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1060 {
1061 flags |= SEC_ALLOC;
1062 if (hdr->sh_type != SHT_NOBITS)
1063 flags |= SEC_LOAD;
1064 }
1065 if ((hdr->sh_flags & SHF_WRITE) == 0)
1066 flags |= SEC_READONLY;
1067 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1068 flags |= SEC_CODE;
1069 else if ((flags & SEC_LOAD) != 0)
1070 flags |= SEC_DATA;
1071 if ((hdr->sh_flags & SHF_MERGE) != 0)
1072 {
1073 flags |= SEC_MERGE;
1074 newsect->entsize = hdr->sh_entsize;
1075 }
1076 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1077 flags |= SEC_STRINGS;
1078 if (hdr->sh_flags & SHF_GROUP)
1079 if (!setup_group (abfd, hdr, newsect))
1080 return FALSE;
1081 if ((hdr->sh_flags & SHF_TLS) != 0)
1082 flags |= SEC_THREAD_LOCAL;
1083 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1084 flags |= SEC_EXCLUDE;
1085
1086 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1087 {
1088 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1089 but binutils as of 2019-07-23 did not set the EI_OSABI header
1090 byte. */
1091 case ELFOSABI_NONE:
1092 case ELFOSABI_GNU:
1093 case ELFOSABI_FREEBSD:
1094 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1095 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1096 break;
1097 }
1098
1099 if ((flags & SEC_ALLOC) == 0)
1100 {
1101 /* The debugging sections appear to be recognized only by name,
1102 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1103 if (name [0] == '.')
1104 {
1105 if (strncmp (name, ".debug", 6) == 0
1106 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1107 || strncmp (name, ".zdebug", 7) == 0)
1108 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1109 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1110 || strncmp (name, ".note.gnu", 9) == 0)
1111 flags |= SEC_ELF_OCTETS;
1112 else if (strncmp (name, ".line", 5) == 0
1113 || strncmp (name, ".stab", 5) == 0
1114 || strcmp (name, ".gdb_index") == 0)
1115 flags |= SEC_DEBUGGING;
1116 }
1117 }
1118
1119 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1120 only link a single copy of the section. This is used to support
1121 g++. g++ will emit each template expansion in its own section.
1122 The symbols will be defined as weak, so that multiple definitions
1123 are permitted. The GNU linker extension is to actually discard
1124 all but one of the sections. */
1125 if (CONST_STRNEQ (name, ".gnu.linkonce")
1126 && elf_next_in_group (newsect) == NULL)
1127 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1128
1129 bed = get_elf_backend_data (abfd);
1130 if (bed->elf_backend_section_flags)
1131 if (! bed->elf_backend_section_flags (&flags, hdr))
1132 return FALSE;
1133
1134 if (!bfd_set_section_flags (newsect, flags))
1135 return FALSE;
1136
1137 /* We do not parse the PT_NOTE segments as we are interested even in the
1138 separate debug info files which may have the segments offsets corrupted.
1139 PT_NOTEs from the core files are currently not parsed using BFD. */
1140 if (hdr->sh_type == SHT_NOTE)
1141 {
1142 bfd_byte *contents;
1143
1144 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1145 return FALSE;
1146
1147 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1148 hdr->sh_offset, hdr->sh_addralign);
1149 free (contents);
1150 }
1151
1152 if ((flags & SEC_ALLOC) != 0)
1153 {
1154 Elf_Internal_Phdr *phdr;
1155 unsigned int i, nload;
1156
1157 /* Some ELF linkers produce binaries with all the program header
1158 p_paddr fields zero. If we have such a binary with more than
1159 one PT_LOAD header, then leave the section lma equal to vma
1160 so that we don't create sections with overlapping lma. */
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 if (phdr->p_paddr != 0)
1164 break;
1165 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1166 ++nload;
1167 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1168 return TRUE;
1169
1170 phdr = elf_tdata (abfd)->phdr;
1171 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1172 {
1173 if (((phdr->p_type == PT_LOAD
1174 && (hdr->sh_flags & SHF_TLS) == 0)
1175 || phdr->p_type == PT_TLS)
1176 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1177 {
1178 if ((flags & SEC_LOAD) == 0)
1179 newsect->lma = (phdr->p_paddr
1180 + hdr->sh_addr - phdr->p_vaddr);
1181 else
1182 /* We used to use the same adjustment for SEC_LOAD
1183 sections, but that doesn't work if the segment
1184 is packed with code from multiple VMAs.
1185 Instead we calculate the section LMA based on
1186 the segment LMA. It is assumed that the
1187 segment will contain sections with contiguous
1188 LMAs, even if the VMAs are not. */
1189 newsect->lma = (phdr->p_paddr
1190 + hdr->sh_offset - phdr->p_offset);
1191
1192 /* With contiguous segments, we can't tell from file
1193 offsets whether a section with zero size should
1194 be placed at the end of one segment or the
1195 beginning of the next. Decide based on vaddr. */
1196 if (hdr->sh_addr >= phdr->p_vaddr
1197 && (hdr->sh_addr + hdr->sh_size
1198 <= phdr->p_vaddr + phdr->p_memsz))
1199 break;
1200 }
1201 }
1202 }
1203
1204 /* Compress/decompress DWARF debug sections with names: .debug_* and
1205 .zdebug_*, after the section flags is set. */
1206 if ((flags & SEC_DEBUGGING)
1207 && ((name[1] == 'd' && name[6] == '_')
1208 || (name[1] == 'z' && name[7] == '_')))
1209 {
1210 enum { nothing, compress, decompress } action = nothing;
1211 int compression_header_size;
1212 bfd_size_type uncompressed_size;
1213 unsigned int uncompressed_align_power;
1214 bfd_boolean compressed
1215 = bfd_is_section_compressed_with_header (abfd, newsect,
1216 &compression_header_size,
1217 &uncompressed_size,
1218 &uncompressed_align_power);
1219 if (compressed)
1220 {
1221 /* Compressed section. Check if we should decompress. */
1222 if ((abfd->flags & BFD_DECOMPRESS))
1223 action = decompress;
1224 }
1225
1226 /* Compress the uncompressed section or convert from/to .zdebug*
1227 section. Check if we should compress. */
1228 if (action == nothing)
1229 {
1230 if (newsect->size != 0
1231 && (abfd->flags & BFD_COMPRESS)
1232 && compression_header_size >= 0
1233 && uncompressed_size > 0
1234 && (!compressed
1235 || ((compression_header_size > 0)
1236 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1237 action = compress;
1238 else
1239 return TRUE;
1240 }
1241
1242 if (action == compress)
1243 {
1244 if (!bfd_init_section_compress_status (abfd, newsect))
1245 {
1246 _bfd_error_handler
1247 /* xgettext:c-format */
1248 (_("%pB: unable to initialize compress status for section %s"),
1249 abfd, name);
1250 return FALSE;
1251 }
1252 }
1253 else
1254 {
1255 if (!bfd_init_section_decompress_status (abfd, newsect))
1256 {
1257 _bfd_error_handler
1258 /* xgettext:c-format */
1259 (_("%pB: unable to initialize decompress status for section %s"),
1260 abfd, name);
1261 return FALSE;
1262 }
1263 }
1264
1265 if (abfd->is_linker_input)
1266 {
1267 if (name[1] == 'z'
1268 && (action == decompress
1269 || (action == compress
1270 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1271 {
1272 /* Convert section name from .zdebug_* to .debug_* so
1273 that linker will consider this section as a debug
1274 section. */
1275 char *new_name = convert_zdebug_to_debug (abfd, name);
1276 if (new_name == NULL)
1277 return FALSE;
1278 bfd_rename_section (newsect, new_name);
1279 }
1280 }
1281 else
1282 /* For objdump, don't rename the section. For objcopy, delay
1283 section rename to elf_fake_sections. */
1284 newsect->flags |= SEC_ELF_RENAME;
1285 }
1286
1287 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1288 section. */
1289 const char *lto_section_name = ".gnu.lto_.lto.";
1290 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1291 {
1292 struct lto_section lsection;
1293 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1294 sizeof (struct lto_section)))
1295 abfd->lto_slim_object = lsection.slim_object;
1296 }
1297
1298 return TRUE;
1299 }
1300
1301 const char *const bfd_elf_section_type_names[] =
1302 {
1303 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1304 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1305 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1306 };
1307
1308 /* ELF relocs are against symbols. If we are producing relocatable
1309 output, and the reloc is against an external symbol, and nothing
1310 has given us any additional addend, the resulting reloc will also
1311 be against the same symbol. In such a case, we don't want to
1312 change anything about the way the reloc is handled, since it will
1313 all be done at final link time. Rather than put special case code
1314 into bfd_perform_relocation, all the reloc types use this howto
1315 function. It just short circuits the reloc if producing
1316 relocatable output against an external symbol. */
1317
1318 bfd_reloc_status_type
1319 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1320 arelent *reloc_entry,
1321 asymbol *symbol,
1322 void *data ATTRIBUTE_UNUSED,
1323 asection *input_section,
1324 bfd *output_bfd,
1325 char **error_message ATTRIBUTE_UNUSED)
1326 {
1327 if (output_bfd != NULL
1328 && (symbol->flags & BSF_SECTION_SYM) == 0
1329 && (! reloc_entry->howto->partial_inplace
1330 || reloc_entry->addend == 0))
1331 {
1332 reloc_entry->address += input_section->output_offset;
1333 return bfd_reloc_ok;
1334 }
1335
1336 return bfd_reloc_continue;
1337 }
1338 \f
1339 /* Returns TRUE if section A matches section B.
1340 Names, addresses and links may be different, but everything else
1341 should be the same. */
1342
1343 static bfd_boolean
1344 section_match (const Elf_Internal_Shdr * a,
1345 const Elf_Internal_Shdr * b)
1346 {
1347 if (a->sh_type != b->sh_type
1348 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1349 || a->sh_addralign != b->sh_addralign
1350 || a->sh_entsize != b->sh_entsize)
1351 return FALSE;
1352 if (a->sh_type == SHT_SYMTAB
1353 || a->sh_type == SHT_STRTAB)
1354 return TRUE;
1355 return a->sh_size == b->sh_size;
1356 }
1357
1358 /* Find a section in OBFD that has the same characteristics
1359 as IHEADER. Return the index of this section or SHN_UNDEF if
1360 none can be found. Check's section HINT first, as this is likely
1361 to be the correct section. */
1362
1363 static unsigned int
1364 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1365 const unsigned int hint)
1366 {
1367 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1368 unsigned int i;
1369
1370 BFD_ASSERT (iheader != NULL);
1371
1372 /* See PR 20922 for a reproducer of the NULL test. */
1373 if (hint < elf_numsections (obfd)
1374 && oheaders[hint] != NULL
1375 && section_match (oheaders[hint], iheader))
1376 return hint;
1377
1378 for (i = 1; i < elf_numsections (obfd); i++)
1379 {
1380 Elf_Internal_Shdr * oheader = oheaders[i];
1381
1382 if (oheader == NULL)
1383 continue;
1384 if (section_match (oheader, iheader))
1385 /* FIXME: Do we care if there is a potential for
1386 multiple matches ? */
1387 return i;
1388 }
1389
1390 return SHN_UNDEF;
1391 }
1392
1393 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1394 Processor specific section, based upon a matching input section.
1395 Returns TRUE upon success, FALSE otherwise. */
1396
1397 static bfd_boolean
1398 copy_special_section_fields (const bfd *ibfd,
1399 bfd *obfd,
1400 const Elf_Internal_Shdr *iheader,
1401 Elf_Internal_Shdr *oheader,
1402 const unsigned int secnum)
1403 {
1404 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1405 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1406 bfd_boolean changed = FALSE;
1407 unsigned int sh_link;
1408
1409 if (oheader->sh_type == SHT_NOBITS)
1410 {
1411 /* This is a feature for objcopy --only-keep-debug:
1412 When a section's type is changed to NOBITS, we preserve
1413 the sh_link and sh_info fields so that they can be
1414 matched up with the original.
1415
1416 Note: Strictly speaking these assignments are wrong.
1417 The sh_link and sh_info fields should point to the
1418 relevent sections in the output BFD, which may not be in
1419 the same location as they were in the input BFD. But
1420 the whole point of this action is to preserve the
1421 original values of the sh_link and sh_info fields, so
1422 that they can be matched up with the section headers in
1423 the original file. So strictly speaking we may be
1424 creating an invalid ELF file, but it is only for a file
1425 that just contains debug info and only for sections
1426 without any contents. */
1427 if (oheader->sh_link == 0)
1428 oheader->sh_link = iheader->sh_link;
1429 if (oheader->sh_info == 0)
1430 oheader->sh_info = iheader->sh_info;
1431 return TRUE;
1432 }
1433
1434 /* Allow the target a chance to decide how these fields should be set. */
1435 if (bed->elf_backend_copy_special_section_fields != NULL
1436 && bed->elf_backend_copy_special_section_fields
1437 (ibfd, obfd, iheader, oheader))
1438 return TRUE;
1439
1440 /* We have an iheader which might match oheader, and which has non-zero
1441 sh_info and/or sh_link fields. Attempt to follow those links and find
1442 the section in the output bfd which corresponds to the linked section
1443 in the input bfd. */
1444 if (iheader->sh_link != SHN_UNDEF)
1445 {
1446 /* See PR 20931 for a reproducer. */
1447 if (iheader->sh_link >= elf_numsections (ibfd))
1448 {
1449 _bfd_error_handler
1450 /* xgettext:c-format */
1451 (_("%pB: invalid sh_link field (%d) in section number %d"),
1452 ibfd, iheader->sh_link, secnum);
1453 return FALSE;
1454 }
1455
1456 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1457 if (sh_link != SHN_UNDEF)
1458 {
1459 oheader->sh_link = sh_link;
1460 changed = TRUE;
1461 }
1462 else
1463 /* FIXME: Should we install iheader->sh_link
1464 if we could not find a match ? */
1465 _bfd_error_handler
1466 /* xgettext:c-format */
1467 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1468 }
1469
1470 if (iheader->sh_info)
1471 {
1472 /* The sh_info field can hold arbitrary information, but if the
1473 SHF_LINK_INFO flag is set then it should be interpreted as a
1474 section index. */
1475 if (iheader->sh_flags & SHF_INFO_LINK)
1476 {
1477 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1478 iheader->sh_info);
1479 if (sh_link != SHN_UNDEF)
1480 oheader->sh_flags |= SHF_INFO_LINK;
1481 }
1482 else
1483 /* No idea what it means - just copy it. */
1484 sh_link = iheader->sh_info;
1485
1486 if (sh_link != SHN_UNDEF)
1487 {
1488 oheader->sh_info = sh_link;
1489 changed = TRUE;
1490 }
1491 else
1492 _bfd_error_handler
1493 /* xgettext:c-format */
1494 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1495 }
1496
1497 return changed;
1498 }
1499
1500 /* Copy the program header and other data from one object module to
1501 another. */
1502
1503 bfd_boolean
1504 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1505 {
1506 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1507 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1508 const struct elf_backend_data *bed;
1509 unsigned int i;
1510
1511 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1512 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1513 return TRUE;
1514
1515 if (!elf_flags_init (obfd))
1516 {
1517 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1518 elf_flags_init (obfd) = TRUE;
1519 }
1520
1521 elf_gp (obfd) = elf_gp (ibfd);
1522
1523 /* Also copy the EI_OSABI field. */
1524 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1525 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1526
1527 /* If set, copy the EI_ABIVERSION field. */
1528 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1529 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1530 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1531
1532 /* Copy object attributes. */
1533 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1534
1535 if (iheaders == NULL || oheaders == NULL)
1536 return TRUE;
1537
1538 bed = get_elf_backend_data (obfd);
1539
1540 /* Possibly copy other fields in the section header. */
1541 for (i = 1; i < elf_numsections (obfd); i++)
1542 {
1543 unsigned int j;
1544 Elf_Internal_Shdr * oheader = oheaders[i];
1545
1546 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1547 because of a special case need for generating separate debug info
1548 files. See below for more details. */
1549 if (oheader == NULL
1550 || (oheader->sh_type != SHT_NOBITS
1551 && oheader->sh_type < SHT_LOOS))
1552 continue;
1553
1554 /* Ignore empty sections, and sections whose
1555 fields have already been initialised. */
1556 if (oheader->sh_size == 0
1557 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1558 continue;
1559
1560 /* Scan for the matching section in the input bfd.
1561 First we try for a direct mapping between the input and output sections. */
1562 for (j = 1; j < elf_numsections (ibfd); j++)
1563 {
1564 const Elf_Internal_Shdr * iheader = iheaders[j];
1565
1566 if (iheader == NULL)
1567 continue;
1568
1569 if (oheader->bfd_section != NULL
1570 && iheader->bfd_section != NULL
1571 && iheader->bfd_section->output_section != NULL
1572 && iheader->bfd_section->output_section == oheader->bfd_section)
1573 {
1574 /* We have found a connection from the input section to the
1575 output section. Attempt to copy the header fields. If
1576 this fails then do not try any further sections - there
1577 should only be a one-to-one mapping between input and output. */
1578 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1579 j = elf_numsections (ibfd);
1580 break;
1581 }
1582 }
1583
1584 if (j < elf_numsections (ibfd))
1585 continue;
1586
1587 /* That failed. So try to deduce the corresponding input section.
1588 Unfortunately we cannot compare names as the output string table
1589 is empty, so instead we check size, address and type. */
1590 for (j = 1; j < elf_numsections (ibfd); j++)
1591 {
1592 const Elf_Internal_Shdr * iheader = iheaders[j];
1593
1594 if (iheader == NULL)
1595 continue;
1596
1597 /* Try matching fields in the input section's header.
1598 Since --only-keep-debug turns all non-debug sections into
1599 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1600 input type. */
1601 if ((oheader->sh_type == SHT_NOBITS
1602 || iheader->sh_type == oheader->sh_type)
1603 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1604 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1605 && iheader->sh_addralign == oheader->sh_addralign
1606 && iheader->sh_entsize == oheader->sh_entsize
1607 && iheader->sh_size == oheader->sh_size
1608 && iheader->sh_addr == oheader->sh_addr
1609 && (iheader->sh_info != oheader->sh_info
1610 || iheader->sh_link != oheader->sh_link))
1611 {
1612 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1613 break;
1614 }
1615 }
1616
1617 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1618 {
1619 /* Final attempt. Call the backend copy function
1620 with a NULL input section. */
1621 if (bed->elf_backend_copy_special_section_fields != NULL)
1622 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1623 }
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 static const char *
1630 get_segment_type (unsigned int p_type)
1631 {
1632 const char *pt;
1633 switch (p_type)
1634 {
1635 case PT_NULL: pt = "NULL"; break;
1636 case PT_LOAD: pt = "LOAD"; break;
1637 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1638 case PT_INTERP: pt = "INTERP"; break;
1639 case PT_NOTE: pt = "NOTE"; break;
1640 case PT_SHLIB: pt = "SHLIB"; break;
1641 case PT_PHDR: pt = "PHDR"; break;
1642 case PT_TLS: pt = "TLS"; break;
1643 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1644 case PT_GNU_STACK: pt = "STACK"; break;
1645 case PT_GNU_RELRO: pt = "RELRO"; break;
1646 default: pt = NULL; break;
1647 }
1648 return pt;
1649 }
1650
1651 /* Print out the program headers. */
1652
1653 bfd_boolean
1654 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1655 {
1656 FILE *f = (FILE *) farg;
1657 Elf_Internal_Phdr *p;
1658 asection *s;
1659 bfd_byte *dynbuf = NULL;
1660
1661 p = elf_tdata (abfd)->phdr;
1662 if (p != NULL)
1663 {
1664 unsigned int i, c;
1665
1666 fprintf (f, _("\nProgram Header:\n"));
1667 c = elf_elfheader (abfd)->e_phnum;
1668 for (i = 0; i < c; i++, p++)
1669 {
1670 const char *pt = get_segment_type (p->p_type);
1671 char buf[20];
1672
1673 if (pt == NULL)
1674 {
1675 sprintf (buf, "0x%lx", p->p_type);
1676 pt = buf;
1677 }
1678 fprintf (f, "%8s off 0x", pt);
1679 bfd_fprintf_vma (abfd, f, p->p_offset);
1680 fprintf (f, " vaddr 0x");
1681 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1682 fprintf (f, " paddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_paddr);
1684 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1685 fprintf (f, " filesz 0x");
1686 bfd_fprintf_vma (abfd, f, p->p_filesz);
1687 fprintf (f, " memsz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_memsz);
1689 fprintf (f, " flags %c%c%c",
1690 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1691 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1692 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1693 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1694 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1695 fprintf (f, "\n");
1696 }
1697 }
1698
1699 s = bfd_get_section_by_name (abfd, ".dynamic");
1700 if (s != NULL)
1701 {
1702 unsigned int elfsec;
1703 unsigned long shlink;
1704 bfd_byte *extdyn, *extdynend;
1705 size_t extdynsize;
1706 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1707
1708 fprintf (f, _("\nDynamic Section:\n"));
1709
1710 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1711 goto error_return;
1712
1713 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1714 if (elfsec == SHN_BAD)
1715 goto error_return;
1716 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1717
1718 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1719 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1720
1721 extdyn = dynbuf;
1722 /* PR 17512: file: 6f427532. */
1723 if (s->size < extdynsize)
1724 goto error_return;
1725 extdynend = extdyn + s->size;
1726 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1727 Fix range check. */
1728 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731 const char *name = "";
1732 char ab[20];
1733 bfd_boolean stringp;
1734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1735
1736 (*swap_dyn_in) (abfd, extdyn, &dyn);
1737
1738 if (dyn.d_tag == DT_NULL)
1739 break;
1740
1741 stringp = FALSE;
1742 switch (dyn.d_tag)
1743 {
1744 default:
1745 if (bed->elf_backend_get_target_dtag)
1746 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1747
1748 if (!strcmp (name, ""))
1749 {
1750 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1751 name = ab;
1752 }
1753 break;
1754
1755 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1756 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1757 case DT_PLTGOT: name = "PLTGOT"; break;
1758 case DT_HASH: name = "HASH"; break;
1759 case DT_STRTAB: name = "STRTAB"; break;
1760 case DT_SYMTAB: name = "SYMTAB"; break;
1761 case DT_RELA: name = "RELA"; break;
1762 case DT_RELASZ: name = "RELASZ"; break;
1763 case DT_RELAENT: name = "RELAENT"; break;
1764 case DT_STRSZ: name = "STRSZ"; break;
1765 case DT_SYMENT: name = "SYMENT"; break;
1766 case DT_INIT: name = "INIT"; break;
1767 case DT_FINI: name = "FINI"; break;
1768 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1769 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1770 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1771 case DT_REL: name = "REL"; break;
1772 case DT_RELSZ: name = "RELSZ"; break;
1773 case DT_RELENT: name = "RELENT"; break;
1774 case DT_PLTREL: name = "PLTREL"; break;
1775 case DT_DEBUG: name = "DEBUG"; break;
1776 case DT_TEXTREL: name = "TEXTREL"; break;
1777 case DT_JMPREL: name = "JMPREL"; break;
1778 case DT_BIND_NOW: name = "BIND_NOW"; break;
1779 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1780 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1781 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1782 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1783 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1784 case DT_FLAGS: name = "FLAGS"; break;
1785 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1786 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1787 case DT_CHECKSUM: name = "CHECKSUM"; break;
1788 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1789 case DT_MOVEENT: name = "MOVEENT"; break;
1790 case DT_MOVESZ: name = "MOVESZ"; break;
1791 case DT_FEATURE: name = "FEATURE"; break;
1792 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1793 case DT_SYMINSZ: name = "SYMINSZ"; break;
1794 case DT_SYMINENT: name = "SYMINENT"; break;
1795 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1796 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1797 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1798 case DT_PLTPAD: name = "PLTPAD"; break;
1799 case DT_MOVETAB: name = "MOVETAB"; break;
1800 case DT_SYMINFO: name = "SYMINFO"; break;
1801 case DT_RELACOUNT: name = "RELACOUNT"; break;
1802 case DT_RELCOUNT: name = "RELCOUNT"; break;
1803 case DT_FLAGS_1: name = "FLAGS_1"; break;
1804 case DT_VERSYM: name = "VERSYM"; break;
1805 case DT_VERDEF: name = "VERDEF"; break;
1806 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1807 case DT_VERNEED: name = "VERNEED"; break;
1808 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1809 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1810 case DT_USED: name = "USED"; break;
1811 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1812 case DT_GNU_HASH: name = "GNU_HASH"; break;
1813 }
1814
1815 fprintf (f, " %-20s ", name);
1816 if (! stringp)
1817 {
1818 fprintf (f, "0x");
1819 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1820 }
1821 else
1822 {
1823 const char *string;
1824 unsigned int tagv = dyn.d_un.d_val;
1825
1826 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1827 if (string == NULL)
1828 goto error_return;
1829 fprintf (f, "%s", string);
1830 }
1831 fprintf (f, "\n");
1832 }
1833
1834 free (dynbuf);
1835 dynbuf = NULL;
1836 }
1837
1838 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1839 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1840 {
1841 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1842 return FALSE;
1843 }
1844
1845 if (elf_dynverdef (abfd) != 0)
1846 {
1847 Elf_Internal_Verdef *t;
1848
1849 fprintf (f, _("\nVersion definitions:\n"));
1850 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1851 {
1852 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1853 t->vd_flags, t->vd_hash,
1854 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1855 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1856 {
1857 Elf_Internal_Verdaux *a;
1858
1859 fprintf (f, "\t");
1860 for (a = t->vd_auxptr->vda_nextptr;
1861 a != NULL;
1862 a = a->vda_nextptr)
1863 fprintf (f, "%s ",
1864 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1865 fprintf (f, "\n");
1866 }
1867 }
1868 }
1869
1870 if (elf_dynverref (abfd) != 0)
1871 {
1872 Elf_Internal_Verneed *t;
1873
1874 fprintf (f, _("\nVersion References:\n"));
1875 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1876 {
1877 Elf_Internal_Vernaux *a;
1878
1879 fprintf (f, _(" required from %s:\n"),
1880 t->vn_filename ? t->vn_filename : "<corrupt>");
1881 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1882 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1883 a->vna_flags, a->vna_other,
1884 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1885 }
1886 }
1887
1888 return TRUE;
1889
1890 error_return:
1891 if (dynbuf != NULL)
1892 free (dynbuf);
1893 return FALSE;
1894 }
1895
1896 /* Get version string. */
1897
1898 const char *
1899 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1900 bfd_boolean *hidden)
1901 {
1902 const char *version_string = NULL;
1903 if (elf_dynversym (abfd) != 0
1904 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1905 {
1906 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1907
1908 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1909 vernum &= VERSYM_VERSION;
1910
1911 if (vernum == 0)
1912 version_string = "";
1913 else if (vernum == 1
1914 && (vernum > elf_tdata (abfd)->cverdefs
1915 || (elf_tdata (abfd)->verdef[0].vd_flags
1916 == VER_FLG_BASE)))
1917 version_string = "Base";
1918 else if (vernum <= elf_tdata (abfd)->cverdefs)
1919 version_string =
1920 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1921 else
1922 {
1923 Elf_Internal_Verneed *t;
1924
1925 version_string = _("<corrupt>");
1926 for (t = elf_tdata (abfd)->verref;
1927 t != NULL;
1928 t = t->vn_nextref)
1929 {
1930 Elf_Internal_Vernaux *a;
1931
1932 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1933 {
1934 if (a->vna_other == vernum)
1935 {
1936 version_string = a->vna_nodename;
1937 break;
1938 }
1939 }
1940 }
1941 }
1942 }
1943 return version_string;
1944 }
1945
1946 /* Display ELF-specific fields of a symbol. */
1947
1948 void
1949 bfd_elf_print_symbol (bfd *abfd,
1950 void *filep,
1951 asymbol *symbol,
1952 bfd_print_symbol_type how)
1953 {
1954 FILE *file = (FILE *) filep;
1955 switch (how)
1956 {
1957 case bfd_print_symbol_name:
1958 fprintf (file, "%s", symbol->name);
1959 break;
1960 case bfd_print_symbol_more:
1961 fprintf (file, "elf ");
1962 bfd_fprintf_vma (abfd, file, symbol->value);
1963 fprintf (file, " %x", symbol->flags);
1964 break;
1965 case bfd_print_symbol_all:
1966 {
1967 const char *section_name;
1968 const char *name = NULL;
1969 const struct elf_backend_data *bed;
1970 unsigned char st_other;
1971 bfd_vma val;
1972 const char *version_string;
1973 bfd_boolean hidden;
1974
1975 section_name = symbol->section ? symbol->section->name : "(*none*)";
1976
1977 bed = get_elf_backend_data (abfd);
1978 if (bed->elf_backend_print_symbol_all)
1979 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1980
1981 if (name == NULL)
1982 {
1983 name = symbol->name;
1984 bfd_print_symbol_vandf (abfd, file, symbol);
1985 }
1986
1987 fprintf (file, " %s\t", section_name);
1988 /* Print the "other" value for a symbol. For common symbols,
1989 we've already printed the size; now print the alignment.
1990 For other symbols, we have no specified alignment, and
1991 we've printed the address; now print the size. */
1992 if (symbol->section && bfd_is_com_section (symbol->section))
1993 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1994 else
1995 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1996 bfd_fprintf_vma (abfd, file, val);
1997
1998 /* If we have version information, print it. */
1999 version_string = _bfd_elf_get_symbol_version_string (abfd,
2000 symbol,
2001 &hidden);
2002 if (version_string)
2003 {
2004 if (!hidden)
2005 fprintf (file, " %-11s", version_string);
2006 else
2007 {
2008 int i;
2009
2010 fprintf (file, " (%s)", version_string);
2011 for (i = 10 - strlen (version_string); i > 0; --i)
2012 putc (' ', file);
2013 }
2014 }
2015
2016 /* If the st_other field is not zero, print it. */
2017 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2018
2019 switch (st_other)
2020 {
2021 case 0: break;
2022 case STV_INTERNAL: fprintf (file, " .internal"); break;
2023 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2024 case STV_PROTECTED: fprintf (file, " .protected"); break;
2025 default:
2026 /* Some other non-defined flags are also present, so print
2027 everything hex. */
2028 fprintf (file, " 0x%02x", (unsigned int) st_other);
2029 }
2030
2031 fprintf (file, " %s", name);
2032 }
2033 break;
2034 }
2035 }
2036 \f
2037 /* ELF .o/exec file reading */
2038
2039 /* Create a new bfd section from an ELF section header. */
2040
2041 bfd_boolean
2042 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2043 {
2044 Elf_Internal_Shdr *hdr;
2045 Elf_Internal_Ehdr *ehdr;
2046 const struct elf_backend_data *bed;
2047 const char *name;
2048 bfd_boolean ret = TRUE;
2049 static bfd_boolean * sections_being_created = NULL;
2050 static bfd * sections_being_created_abfd = NULL;
2051 static unsigned int nesting = 0;
2052
2053 if (shindex >= elf_numsections (abfd))
2054 return FALSE;
2055
2056 if (++ nesting > 3)
2057 {
2058 /* PR17512: A corrupt ELF binary might contain a recursive group of
2059 sections, with each the string indices pointing to the next in the
2060 loop. Detect this here, by refusing to load a section that we are
2061 already in the process of loading. We only trigger this test if
2062 we have nested at least three sections deep as normal ELF binaries
2063 can expect to recurse at least once.
2064
2065 FIXME: It would be better if this array was attached to the bfd,
2066 rather than being held in a static pointer. */
2067
2068 if (sections_being_created_abfd != abfd)
2069 sections_being_created = NULL;
2070 if (sections_being_created == NULL)
2071 {
2072 sections_being_created = (bfd_boolean *)
2073 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2074 sections_being_created_abfd = abfd;
2075 }
2076 if (sections_being_created [shindex])
2077 {
2078 _bfd_error_handler
2079 (_("%pB: warning: loop in section dependencies detected"), abfd);
2080 return FALSE;
2081 }
2082 sections_being_created [shindex] = TRUE;
2083 }
2084
2085 hdr = elf_elfsections (abfd)[shindex];
2086 ehdr = elf_elfheader (abfd);
2087 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2088 hdr->sh_name);
2089 if (name == NULL)
2090 goto fail;
2091
2092 bed = get_elf_backend_data (abfd);
2093 switch (hdr->sh_type)
2094 {
2095 case SHT_NULL:
2096 /* Inactive section. Throw it away. */
2097 goto success;
2098
2099 case SHT_PROGBITS: /* Normal section with contents. */
2100 case SHT_NOBITS: /* .bss section. */
2101 case SHT_HASH: /* .hash section. */
2102 case SHT_NOTE: /* .note section. */
2103 case SHT_INIT_ARRAY: /* .init_array section. */
2104 case SHT_FINI_ARRAY: /* .fini_array section. */
2105 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2106 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2107 case SHT_GNU_HASH: /* .gnu.hash section. */
2108 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2109 goto success;
2110
2111 case SHT_DYNAMIC: /* Dynamic linking information. */
2112 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2113 goto fail;
2114
2115 if (hdr->sh_link > elf_numsections (abfd))
2116 {
2117 /* PR 10478: Accept Solaris binaries with a sh_link
2118 field set to SHN_BEFORE or SHN_AFTER. */
2119 switch (bfd_get_arch (abfd))
2120 {
2121 case bfd_arch_i386:
2122 case bfd_arch_sparc:
2123 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2124 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2125 break;
2126 /* Otherwise fall through. */
2127 default:
2128 goto fail;
2129 }
2130 }
2131 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2132 goto fail;
2133 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2134 {
2135 Elf_Internal_Shdr *dynsymhdr;
2136
2137 /* The shared libraries distributed with hpux11 have a bogus
2138 sh_link field for the ".dynamic" section. Find the
2139 string table for the ".dynsym" section instead. */
2140 if (elf_dynsymtab (abfd) != 0)
2141 {
2142 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2143 hdr->sh_link = dynsymhdr->sh_link;
2144 }
2145 else
2146 {
2147 unsigned int i, num_sec;
2148
2149 num_sec = elf_numsections (abfd);
2150 for (i = 1; i < num_sec; i++)
2151 {
2152 dynsymhdr = elf_elfsections (abfd)[i];
2153 if (dynsymhdr->sh_type == SHT_DYNSYM)
2154 {
2155 hdr->sh_link = dynsymhdr->sh_link;
2156 break;
2157 }
2158 }
2159 }
2160 }
2161 goto success;
2162
2163 case SHT_SYMTAB: /* A symbol table. */
2164 if (elf_onesymtab (abfd) == shindex)
2165 goto success;
2166
2167 if (hdr->sh_entsize != bed->s->sizeof_sym)
2168 goto fail;
2169
2170 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2171 {
2172 if (hdr->sh_size != 0)
2173 goto fail;
2174 /* Some assemblers erroneously set sh_info to one with a
2175 zero sh_size. ld sees this as a global symbol count
2176 of (unsigned) -1. Fix it here. */
2177 hdr->sh_info = 0;
2178 goto success;
2179 }
2180
2181 /* PR 18854: A binary might contain more than one symbol table.
2182 Unusual, but possible. Warn, but continue. */
2183 if (elf_onesymtab (abfd) != 0)
2184 {
2185 _bfd_error_handler
2186 /* xgettext:c-format */
2187 (_("%pB: warning: multiple symbol tables detected"
2188 " - ignoring the table in section %u"),
2189 abfd, shindex);
2190 goto success;
2191 }
2192 elf_onesymtab (abfd) = shindex;
2193 elf_symtab_hdr (abfd) = *hdr;
2194 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2195 abfd->flags |= HAS_SYMS;
2196
2197 /* Sometimes a shared object will map in the symbol table. If
2198 SHF_ALLOC is set, and this is a shared object, then we also
2199 treat this section as a BFD section. We can not base the
2200 decision purely on SHF_ALLOC, because that flag is sometimes
2201 set in a relocatable object file, which would confuse the
2202 linker. */
2203 if ((hdr->sh_flags & SHF_ALLOC) != 0
2204 && (abfd->flags & DYNAMIC) != 0
2205 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2206 shindex))
2207 goto fail;
2208
2209 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2210 can't read symbols without that section loaded as well. It
2211 is most likely specified by the next section header. */
2212 {
2213 elf_section_list * entry;
2214 unsigned int i, num_sec;
2215
2216 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2217 if (entry->hdr.sh_link == shindex)
2218 goto success;
2219
2220 num_sec = elf_numsections (abfd);
2221 for (i = shindex + 1; i < num_sec; i++)
2222 {
2223 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2224
2225 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2226 && hdr2->sh_link == shindex)
2227 break;
2228 }
2229
2230 if (i == num_sec)
2231 for (i = 1; i < shindex; i++)
2232 {
2233 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2234
2235 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2236 && hdr2->sh_link == shindex)
2237 break;
2238 }
2239
2240 if (i != shindex)
2241 ret = bfd_section_from_shdr (abfd, i);
2242 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2243 goto success;
2244 }
2245
2246 case SHT_DYNSYM: /* A dynamic symbol table. */
2247 if (elf_dynsymtab (abfd) == shindex)
2248 goto success;
2249
2250 if (hdr->sh_entsize != bed->s->sizeof_sym)
2251 goto fail;
2252
2253 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2254 {
2255 if (hdr->sh_size != 0)
2256 goto fail;
2257
2258 /* Some linkers erroneously set sh_info to one with a
2259 zero sh_size. ld sees this as a global symbol count
2260 of (unsigned) -1. Fix it here. */
2261 hdr->sh_info = 0;
2262 goto success;
2263 }
2264
2265 /* PR 18854: A binary might contain more than one dynamic symbol table.
2266 Unusual, but possible. Warn, but continue. */
2267 if (elf_dynsymtab (abfd) != 0)
2268 {
2269 _bfd_error_handler
2270 /* xgettext:c-format */
2271 (_("%pB: warning: multiple dynamic symbol tables detected"
2272 " - ignoring the table in section %u"),
2273 abfd, shindex);
2274 goto success;
2275 }
2276 elf_dynsymtab (abfd) = shindex;
2277 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2278 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2279 abfd->flags |= HAS_SYMS;
2280
2281 /* Besides being a symbol table, we also treat this as a regular
2282 section, so that objcopy can handle it. */
2283 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2284 goto success;
2285
2286 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2287 {
2288 elf_section_list * entry;
2289
2290 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2291 if (entry->ndx == shindex)
2292 goto success;
2293
2294 entry = bfd_alloc (abfd, sizeof (*entry));
2295 if (entry == NULL)
2296 goto fail;
2297 entry->ndx = shindex;
2298 entry->hdr = * hdr;
2299 entry->next = elf_symtab_shndx_list (abfd);
2300 elf_symtab_shndx_list (abfd) = entry;
2301 elf_elfsections (abfd)[shindex] = & entry->hdr;
2302 goto success;
2303 }
2304
2305 case SHT_STRTAB: /* A string table. */
2306 if (hdr->bfd_section != NULL)
2307 goto success;
2308
2309 if (ehdr->e_shstrndx == shindex)
2310 {
2311 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2312 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2313 goto success;
2314 }
2315
2316 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2317 {
2318 symtab_strtab:
2319 elf_tdata (abfd)->strtab_hdr = *hdr;
2320 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2321 goto success;
2322 }
2323
2324 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2325 {
2326 dynsymtab_strtab:
2327 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2328 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2329 elf_elfsections (abfd)[shindex] = hdr;
2330 /* We also treat this as a regular section, so that objcopy
2331 can handle it. */
2332 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2333 shindex);
2334 goto success;
2335 }
2336
2337 /* If the string table isn't one of the above, then treat it as a
2338 regular section. We need to scan all the headers to be sure,
2339 just in case this strtab section appeared before the above. */
2340 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2341 {
2342 unsigned int i, num_sec;
2343
2344 num_sec = elf_numsections (abfd);
2345 for (i = 1; i < num_sec; i++)
2346 {
2347 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2348 if (hdr2->sh_link == shindex)
2349 {
2350 /* Prevent endless recursion on broken objects. */
2351 if (i == shindex)
2352 goto fail;
2353 if (! bfd_section_from_shdr (abfd, i))
2354 goto fail;
2355 if (elf_onesymtab (abfd) == i)
2356 goto symtab_strtab;
2357 if (elf_dynsymtab (abfd) == i)
2358 goto dynsymtab_strtab;
2359 }
2360 }
2361 }
2362 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2363 goto success;
2364
2365 case SHT_REL:
2366 case SHT_RELA:
2367 /* *These* do a lot of work -- but build no sections! */
2368 {
2369 asection *target_sect;
2370 Elf_Internal_Shdr *hdr2, **p_hdr;
2371 unsigned int num_sec = elf_numsections (abfd);
2372 struct bfd_elf_section_data *esdt;
2373
2374 if (hdr->sh_entsize
2375 != (bfd_size_type) (hdr->sh_type == SHT_REL
2376 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2377 goto fail;
2378
2379 /* Check for a bogus link to avoid crashing. */
2380 if (hdr->sh_link >= num_sec)
2381 {
2382 _bfd_error_handler
2383 /* xgettext:c-format */
2384 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2385 abfd, hdr->sh_link, name, shindex);
2386 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2387 shindex);
2388 goto success;
2389 }
2390
2391 /* For some incomprehensible reason Oracle distributes
2392 libraries for Solaris in which some of the objects have
2393 bogus sh_link fields. It would be nice if we could just
2394 reject them, but, unfortunately, some people need to use
2395 them. We scan through the section headers; if we find only
2396 one suitable symbol table, we clobber the sh_link to point
2397 to it. I hope this doesn't break anything.
2398
2399 Don't do it on executable nor shared library. */
2400 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2401 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2402 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2403 {
2404 unsigned int scan;
2405 int found;
2406
2407 found = 0;
2408 for (scan = 1; scan < num_sec; scan++)
2409 {
2410 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2411 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2412 {
2413 if (found != 0)
2414 {
2415 found = 0;
2416 break;
2417 }
2418 found = scan;
2419 }
2420 }
2421 if (found != 0)
2422 hdr->sh_link = found;
2423 }
2424
2425 /* Get the symbol table. */
2426 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2427 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2428 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2429 goto fail;
2430
2431 /* If this is an alloc section in an executable or shared
2432 library, or the reloc section does not use the main symbol
2433 table we don't treat it as a reloc section. BFD can't
2434 adequately represent such a section, so at least for now,
2435 we don't try. We just present it as a normal section. We
2436 also can't use it as a reloc section if it points to the
2437 null section, an invalid section, another reloc section, or
2438 its sh_link points to the null section. */
2439 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2440 && (hdr->sh_flags & SHF_ALLOC) != 0)
2441 || hdr->sh_link == SHN_UNDEF
2442 || hdr->sh_link != elf_onesymtab (abfd)
2443 || hdr->sh_info == SHN_UNDEF
2444 || hdr->sh_info >= num_sec
2445 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2446 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2447 {
2448 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2449 shindex);
2450 goto success;
2451 }
2452
2453 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2454 goto fail;
2455
2456 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2457 if (target_sect == NULL)
2458 goto fail;
2459
2460 esdt = elf_section_data (target_sect);
2461 if (hdr->sh_type == SHT_RELA)
2462 p_hdr = &esdt->rela.hdr;
2463 else
2464 p_hdr = &esdt->rel.hdr;
2465
2466 /* PR 17512: file: 0b4f81b7.
2467 Also see PR 24456, for a file which deliberately has two reloc
2468 sections. */
2469 if (*p_hdr != NULL)
2470 {
2471 _bfd_error_handler
2472 /* xgettext:c-format */
2473 (_("%pB: warning: multiple relocation sections for section %pA \
2474 found - ignoring all but the first"),
2475 abfd, target_sect);
2476 goto success;
2477 }
2478 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2479 if (hdr2 == NULL)
2480 goto fail;
2481 *hdr2 = *hdr;
2482 *p_hdr = hdr2;
2483 elf_elfsections (abfd)[shindex] = hdr2;
2484 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2485 * bed->s->int_rels_per_ext_rel);
2486 target_sect->flags |= SEC_RELOC;
2487 target_sect->relocation = NULL;
2488 target_sect->rel_filepos = hdr->sh_offset;
2489 /* In the section to which the relocations apply, mark whether
2490 its relocations are of the REL or RELA variety. */
2491 if (hdr->sh_size != 0)
2492 {
2493 if (hdr->sh_type == SHT_RELA)
2494 target_sect->use_rela_p = 1;
2495 }
2496 abfd->flags |= HAS_RELOC;
2497 goto success;
2498 }
2499
2500 case SHT_GNU_verdef:
2501 elf_dynverdef (abfd) = shindex;
2502 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2503 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2504 goto success;
2505
2506 case SHT_GNU_versym:
2507 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2508 goto fail;
2509
2510 elf_dynversym (abfd) = shindex;
2511 elf_tdata (abfd)->dynversym_hdr = *hdr;
2512 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2513 goto success;
2514
2515 case SHT_GNU_verneed:
2516 elf_dynverref (abfd) = shindex;
2517 elf_tdata (abfd)->dynverref_hdr = *hdr;
2518 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2519 goto success;
2520
2521 case SHT_SHLIB:
2522 goto success;
2523
2524 case SHT_GROUP:
2525 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2526 goto fail;
2527
2528 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2529 goto fail;
2530
2531 goto success;
2532
2533 default:
2534 /* Possibly an attributes section. */
2535 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2536 || hdr->sh_type == bed->obj_attrs_section_type)
2537 {
2538 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2539 goto fail;
2540 _bfd_elf_parse_attributes (abfd, hdr);
2541 goto success;
2542 }
2543
2544 /* Check for any processor-specific section types. */
2545 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2546 goto success;
2547
2548 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2549 {
2550 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2551 /* FIXME: How to properly handle allocated section reserved
2552 for applications? */
2553 _bfd_error_handler
2554 /* xgettext:c-format */
2555 (_("%pB: unknown type [%#x] section `%s'"),
2556 abfd, hdr->sh_type, name);
2557 else
2558 {
2559 /* Allow sections reserved for applications. */
2560 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2561 shindex);
2562 goto success;
2563 }
2564 }
2565 else if (hdr->sh_type >= SHT_LOPROC
2566 && hdr->sh_type <= SHT_HIPROC)
2567 /* FIXME: We should handle this section. */
2568 _bfd_error_handler
2569 /* xgettext:c-format */
2570 (_("%pB: unknown type [%#x] section `%s'"),
2571 abfd, hdr->sh_type, name);
2572 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2573 {
2574 /* Unrecognised OS-specific sections. */
2575 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2576 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2577 required to correctly process the section and the file should
2578 be rejected with an error message. */
2579 _bfd_error_handler
2580 /* xgettext:c-format */
2581 (_("%pB: unknown type [%#x] section `%s'"),
2582 abfd, hdr->sh_type, name);
2583 else
2584 {
2585 /* Otherwise it should be processed. */
2586 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2587 goto success;
2588 }
2589 }
2590 else
2591 /* FIXME: We should handle this section. */
2592 _bfd_error_handler
2593 /* xgettext:c-format */
2594 (_("%pB: unknown type [%#x] section `%s'"),
2595 abfd, hdr->sh_type, name);
2596
2597 goto fail;
2598 }
2599
2600 fail:
2601 ret = FALSE;
2602 success:
2603 if (sections_being_created && sections_being_created_abfd == abfd)
2604 sections_being_created [shindex] = FALSE;
2605 if (-- nesting == 0)
2606 {
2607 sections_being_created = NULL;
2608 sections_being_created_abfd = abfd;
2609 }
2610 return ret;
2611 }
2612
2613 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2614
2615 Elf_Internal_Sym *
2616 bfd_sym_from_r_symndx (struct sym_cache *cache,
2617 bfd *abfd,
2618 unsigned long r_symndx)
2619 {
2620 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2621
2622 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2623 {
2624 Elf_Internal_Shdr *symtab_hdr;
2625 unsigned char esym[sizeof (Elf64_External_Sym)];
2626 Elf_External_Sym_Shndx eshndx;
2627
2628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2629 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2630 &cache->sym[ent], esym, &eshndx) == NULL)
2631 return NULL;
2632
2633 if (cache->abfd != abfd)
2634 {
2635 memset (cache->indx, -1, sizeof (cache->indx));
2636 cache->abfd = abfd;
2637 }
2638 cache->indx[ent] = r_symndx;
2639 }
2640
2641 return &cache->sym[ent];
2642 }
2643
2644 /* Given an ELF section number, retrieve the corresponding BFD
2645 section. */
2646
2647 asection *
2648 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2649 {
2650 if (sec_index >= elf_numsections (abfd))
2651 return NULL;
2652 return elf_elfsections (abfd)[sec_index]->bfd_section;
2653 }
2654
2655 static const struct bfd_elf_special_section special_sections_b[] =
2656 {
2657 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2658 { NULL, 0, 0, 0, 0 }
2659 };
2660
2661 static const struct bfd_elf_special_section special_sections_c[] =
2662 {
2663 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2664 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2665 { NULL, 0, 0, 0, 0 }
2666 };
2667
2668 static const struct bfd_elf_special_section special_sections_d[] =
2669 {
2670 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2671 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2672 /* There are more DWARF sections than these, but they needn't be added here
2673 unless you have to cope with broken compilers that don't emit section
2674 attributes or you want to help the user writing assembler. */
2675 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2676 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2681 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2682 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2683 { NULL, 0, 0, 0, 0 }
2684 };
2685
2686 static const struct bfd_elf_special_section special_sections_f[] =
2687 {
2688 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2689 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2690 { NULL, 0 , 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_g[] =
2694 {
2695 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2696 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2697 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2698 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2699 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2700 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2701 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2702 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2703 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2704 { NULL, 0, 0, 0, 0 }
2705 };
2706
2707 static const struct bfd_elf_special_section special_sections_h[] =
2708 {
2709 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2710 { NULL, 0, 0, 0, 0 }
2711 };
2712
2713 static const struct bfd_elf_special_section special_sections_i[] =
2714 {
2715 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2716 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2717 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_l[] =
2722 {
2723 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2724 { NULL, 0, 0, 0, 0 }
2725 };
2726
2727 static const struct bfd_elf_special_section special_sections_n[] =
2728 {
2729 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2730 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2731 { NULL, 0, 0, 0, 0 }
2732 };
2733
2734 static const struct bfd_elf_special_section special_sections_p[] =
2735 {
2736 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2737 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2738 { NULL, 0, 0, 0, 0 }
2739 };
2740
2741 static const struct bfd_elf_special_section special_sections_r[] =
2742 {
2743 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2744 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2745 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2746 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2747 { NULL, 0, 0, 0, 0 }
2748 };
2749
2750 static const struct bfd_elf_special_section special_sections_s[] =
2751 {
2752 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2753 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2754 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2755 /* See struct bfd_elf_special_section declaration for the semantics of
2756 this special case where .prefix_length != strlen (.prefix). */
2757 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2758 { NULL, 0, 0, 0, 0 }
2759 };
2760
2761 static const struct bfd_elf_special_section special_sections_t[] =
2762 {
2763 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2764 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2765 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2766 { NULL, 0, 0, 0, 0 }
2767 };
2768
2769 static const struct bfd_elf_special_section special_sections_z[] =
2770 {
2771 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2772 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2773 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2774 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2775 { NULL, 0, 0, 0, 0 }
2776 };
2777
2778 static const struct bfd_elf_special_section * const special_sections[] =
2779 {
2780 special_sections_b, /* 'b' */
2781 special_sections_c, /* 'c' */
2782 special_sections_d, /* 'd' */
2783 NULL, /* 'e' */
2784 special_sections_f, /* 'f' */
2785 special_sections_g, /* 'g' */
2786 special_sections_h, /* 'h' */
2787 special_sections_i, /* 'i' */
2788 NULL, /* 'j' */
2789 NULL, /* 'k' */
2790 special_sections_l, /* 'l' */
2791 NULL, /* 'm' */
2792 special_sections_n, /* 'n' */
2793 NULL, /* 'o' */
2794 special_sections_p, /* 'p' */
2795 NULL, /* 'q' */
2796 special_sections_r, /* 'r' */
2797 special_sections_s, /* 's' */
2798 special_sections_t, /* 't' */
2799 NULL, /* 'u' */
2800 NULL, /* 'v' */
2801 NULL, /* 'w' */
2802 NULL, /* 'x' */
2803 NULL, /* 'y' */
2804 special_sections_z /* 'z' */
2805 };
2806
2807 const struct bfd_elf_special_section *
2808 _bfd_elf_get_special_section (const char *name,
2809 const struct bfd_elf_special_section *spec,
2810 unsigned int rela)
2811 {
2812 int i;
2813 int len;
2814
2815 len = strlen (name);
2816
2817 for (i = 0; spec[i].prefix != NULL; i++)
2818 {
2819 int suffix_len;
2820 int prefix_len = spec[i].prefix_length;
2821
2822 if (len < prefix_len)
2823 continue;
2824 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2825 continue;
2826
2827 suffix_len = spec[i].suffix_length;
2828 if (suffix_len <= 0)
2829 {
2830 if (name[prefix_len] != 0)
2831 {
2832 if (suffix_len == 0)
2833 continue;
2834 if (name[prefix_len] != '.'
2835 && (suffix_len == -2
2836 || (rela && spec[i].type == SHT_REL)))
2837 continue;
2838 }
2839 }
2840 else
2841 {
2842 if (len < prefix_len + suffix_len)
2843 continue;
2844 if (memcmp (name + len - suffix_len,
2845 spec[i].prefix + prefix_len,
2846 suffix_len) != 0)
2847 continue;
2848 }
2849 return &spec[i];
2850 }
2851
2852 return NULL;
2853 }
2854
2855 const struct bfd_elf_special_section *
2856 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2857 {
2858 int i;
2859 const struct bfd_elf_special_section *spec;
2860 const struct elf_backend_data *bed;
2861
2862 /* See if this is one of the special sections. */
2863 if (sec->name == NULL)
2864 return NULL;
2865
2866 bed = get_elf_backend_data (abfd);
2867 spec = bed->special_sections;
2868 if (spec)
2869 {
2870 spec = _bfd_elf_get_special_section (sec->name,
2871 bed->special_sections,
2872 sec->use_rela_p);
2873 if (spec != NULL)
2874 return spec;
2875 }
2876
2877 if (sec->name[0] != '.')
2878 return NULL;
2879
2880 i = sec->name[1] - 'b';
2881 if (i < 0 || i > 'z' - 'b')
2882 return NULL;
2883
2884 spec = special_sections[i];
2885
2886 if (spec == NULL)
2887 return NULL;
2888
2889 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2890 }
2891
2892 bfd_boolean
2893 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2894 {
2895 struct bfd_elf_section_data *sdata;
2896 const struct elf_backend_data *bed;
2897 const struct bfd_elf_special_section *ssect;
2898
2899 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2900 if (sdata == NULL)
2901 {
2902 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2903 sizeof (*sdata));
2904 if (sdata == NULL)
2905 return FALSE;
2906 sec->used_by_bfd = sdata;
2907 }
2908
2909 /* Indicate whether or not this section should use RELA relocations. */
2910 bed = get_elf_backend_data (abfd);
2911 sec->use_rela_p = bed->default_use_rela_p;
2912
2913 /* When we read a file, we don't need to set ELF section type and
2914 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2915 anyway. We will set ELF section type and flags for all linker
2916 created sections. If user specifies BFD section flags, we will
2917 set ELF section type and flags based on BFD section flags in
2918 elf_fake_sections. Special handling for .init_array/.fini_array
2919 output sections since they may contain .ctors/.dtors input
2920 sections. We don't want _bfd_elf_init_private_section_data to
2921 copy ELF section type from .ctors/.dtors input sections. */
2922 if (abfd->direction != read_direction
2923 || (sec->flags & SEC_LINKER_CREATED) != 0)
2924 {
2925 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2926 if (ssect != NULL
2927 && (!sec->flags
2928 || (sec->flags & SEC_LINKER_CREATED) != 0
2929 || ssect->type == SHT_INIT_ARRAY
2930 || ssect->type == SHT_FINI_ARRAY))
2931 {
2932 elf_section_type (sec) = ssect->type;
2933 elf_section_flags (sec) = ssect->attr;
2934 }
2935 }
2936
2937 return _bfd_generic_new_section_hook (abfd, sec);
2938 }
2939
2940 /* Create a new bfd section from an ELF program header.
2941
2942 Since program segments have no names, we generate a synthetic name
2943 of the form segment<NUM>, where NUM is generally the index in the
2944 program header table. For segments that are split (see below) we
2945 generate the names segment<NUM>a and segment<NUM>b.
2946
2947 Note that some program segments may have a file size that is different than
2948 (less than) the memory size. All this means is that at execution the
2949 system must allocate the amount of memory specified by the memory size,
2950 but only initialize it with the first "file size" bytes read from the
2951 file. This would occur for example, with program segments consisting
2952 of combined data+bss.
2953
2954 To handle the above situation, this routine generates TWO bfd sections
2955 for the single program segment. The first has the length specified by
2956 the file size of the segment, and the second has the length specified
2957 by the difference between the two sizes. In effect, the segment is split
2958 into its initialized and uninitialized parts.
2959
2960 */
2961
2962 bfd_boolean
2963 _bfd_elf_make_section_from_phdr (bfd *abfd,
2964 Elf_Internal_Phdr *hdr,
2965 int hdr_index,
2966 const char *type_name)
2967 {
2968 asection *newsect;
2969 char *name;
2970 char namebuf[64];
2971 size_t len;
2972 int split;
2973
2974 split = ((hdr->p_memsz > 0)
2975 && (hdr->p_filesz > 0)
2976 && (hdr->p_memsz > hdr->p_filesz));
2977
2978 if (hdr->p_filesz > 0)
2979 {
2980 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2981 len = strlen (namebuf) + 1;
2982 name = (char *) bfd_alloc (abfd, len);
2983 if (!name)
2984 return FALSE;
2985 memcpy (name, namebuf, len);
2986 newsect = bfd_make_section (abfd, name);
2987 if (newsect == NULL)
2988 return FALSE;
2989 newsect->vma = hdr->p_vaddr;
2990 newsect->lma = hdr->p_paddr;
2991 newsect->size = hdr->p_filesz;
2992 newsect->filepos = hdr->p_offset;
2993 newsect->flags |= SEC_HAS_CONTENTS;
2994 newsect->alignment_power = bfd_log2 (hdr->p_align);
2995 if (hdr->p_type == PT_LOAD)
2996 {
2997 newsect->flags |= SEC_ALLOC;
2998 newsect->flags |= SEC_LOAD;
2999 if (hdr->p_flags & PF_X)
3000 {
3001 /* FIXME: all we known is that it has execute PERMISSION,
3002 may be data. */
3003 newsect->flags |= SEC_CODE;
3004 }
3005 }
3006 if (!(hdr->p_flags & PF_W))
3007 {
3008 newsect->flags |= SEC_READONLY;
3009 }
3010 }
3011
3012 if (hdr->p_memsz > hdr->p_filesz)
3013 {
3014 bfd_vma align;
3015
3016 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3017 len = strlen (namebuf) + 1;
3018 name = (char *) bfd_alloc (abfd, len);
3019 if (!name)
3020 return FALSE;
3021 memcpy (name, namebuf, len);
3022 newsect = bfd_make_section (abfd, name);
3023 if (newsect == NULL)
3024 return FALSE;
3025 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3026 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3027 newsect->size = hdr->p_memsz - hdr->p_filesz;
3028 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3029 align = newsect->vma & -newsect->vma;
3030 if (align == 0 || align > hdr->p_align)
3031 align = hdr->p_align;
3032 newsect->alignment_power = bfd_log2 (align);
3033 if (hdr->p_type == PT_LOAD)
3034 {
3035 /* Hack for gdb. Segments that have not been modified do
3036 not have their contents written to a core file, on the
3037 assumption that a debugger can find the contents in the
3038 executable. We flag this case by setting the fake
3039 section size to zero. Note that "real" bss sections will
3040 always have their contents dumped to the core file. */
3041 if (bfd_get_format (abfd) == bfd_core)
3042 newsect->size = 0;
3043 newsect->flags |= SEC_ALLOC;
3044 if (hdr->p_flags & PF_X)
3045 newsect->flags |= SEC_CODE;
3046 }
3047 if (!(hdr->p_flags & PF_W))
3048 newsect->flags |= SEC_READONLY;
3049 }
3050
3051 return TRUE;
3052 }
3053
3054 static bfd_boolean
3055 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3056 {
3057 /* The return value is ignored. Build-ids are considered optional. */
3058 if (templ->xvec->flavour == bfd_target_elf_flavour)
3059 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3060 (templ, offset);
3061 return FALSE;
3062 }
3063
3064 bfd_boolean
3065 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3066 {
3067 const struct elf_backend_data *bed;
3068
3069 switch (hdr->p_type)
3070 {
3071 case PT_NULL:
3072 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3073
3074 case PT_LOAD:
3075 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3076 return FALSE;
3077 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3078 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3079 return TRUE;
3080
3081 case PT_DYNAMIC:
3082 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3083
3084 case PT_INTERP:
3085 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3086
3087 case PT_NOTE:
3088 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3089 return FALSE;
3090 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3091 hdr->p_align))
3092 return FALSE;
3093 return TRUE;
3094
3095 case PT_SHLIB:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3097
3098 case PT_PHDR:
3099 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3100
3101 case PT_GNU_EH_FRAME:
3102 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3103 "eh_frame_hdr");
3104
3105 case PT_GNU_STACK:
3106 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3107
3108 case PT_GNU_RELRO:
3109 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3110
3111 default:
3112 /* Check for any processor-specific program segment types. */
3113 bed = get_elf_backend_data (abfd);
3114 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3115 }
3116 }
3117
3118 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3119 REL or RELA. */
3120
3121 Elf_Internal_Shdr *
3122 _bfd_elf_single_rel_hdr (asection *sec)
3123 {
3124 if (elf_section_data (sec)->rel.hdr)
3125 {
3126 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3127 return elf_section_data (sec)->rel.hdr;
3128 }
3129 else
3130 return elf_section_data (sec)->rela.hdr;
3131 }
3132
3133 static bfd_boolean
3134 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3135 Elf_Internal_Shdr *rel_hdr,
3136 const char *sec_name,
3137 bfd_boolean use_rela_p)
3138 {
3139 char *name = (char *) bfd_alloc (abfd,
3140 sizeof ".rela" + strlen (sec_name));
3141 if (name == NULL)
3142 return FALSE;
3143
3144 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3145 rel_hdr->sh_name =
3146 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3147 FALSE);
3148 if (rel_hdr->sh_name == (unsigned int) -1)
3149 return FALSE;
3150
3151 return TRUE;
3152 }
3153
3154 /* Allocate and initialize a section-header for a new reloc section,
3155 containing relocations against ASECT. It is stored in RELDATA. If
3156 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3157 relocations. */
3158
3159 static bfd_boolean
3160 _bfd_elf_init_reloc_shdr (bfd *abfd,
3161 struct bfd_elf_section_reloc_data *reldata,
3162 const char *sec_name,
3163 bfd_boolean use_rela_p,
3164 bfd_boolean delay_st_name_p)
3165 {
3166 Elf_Internal_Shdr *rel_hdr;
3167 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3168
3169 BFD_ASSERT (reldata->hdr == NULL);
3170 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3171 reldata->hdr = rel_hdr;
3172
3173 if (delay_st_name_p)
3174 rel_hdr->sh_name = (unsigned int) -1;
3175 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3176 use_rela_p))
3177 return FALSE;
3178 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3179 rel_hdr->sh_entsize = (use_rela_p
3180 ? bed->s->sizeof_rela
3181 : bed->s->sizeof_rel);
3182 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3183 rel_hdr->sh_flags = 0;
3184 rel_hdr->sh_addr = 0;
3185 rel_hdr->sh_size = 0;
3186 rel_hdr->sh_offset = 0;
3187
3188 return TRUE;
3189 }
3190
3191 /* Return the default section type based on the passed in section flags. */
3192
3193 int
3194 bfd_elf_get_default_section_type (flagword flags)
3195 {
3196 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3197 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3198 return SHT_NOBITS;
3199 return SHT_PROGBITS;
3200 }
3201
3202 struct fake_section_arg
3203 {
3204 struct bfd_link_info *link_info;
3205 bfd_boolean failed;
3206 };
3207
3208 /* Set up an ELF internal section header for a section. */
3209
3210 static void
3211 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3212 {
3213 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3214 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3215 struct bfd_elf_section_data *esd = elf_section_data (asect);
3216 Elf_Internal_Shdr *this_hdr;
3217 unsigned int sh_type;
3218 const char *name = asect->name;
3219 bfd_boolean delay_st_name_p = FALSE;
3220
3221 if (arg->failed)
3222 {
3223 /* We already failed; just get out of the bfd_map_over_sections
3224 loop. */
3225 return;
3226 }
3227
3228 this_hdr = &esd->this_hdr;
3229
3230 if (arg->link_info)
3231 {
3232 /* ld: compress DWARF debug sections with names: .debug_*. */
3233 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3234 && (asect->flags & SEC_DEBUGGING)
3235 && name[1] == 'd'
3236 && name[6] == '_')
3237 {
3238 /* Set SEC_ELF_COMPRESS to indicate this section should be
3239 compressed. */
3240 asect->flags |= SEC_ELF_COMPRESS;
3241
3242 /* If this section will be compressed, delay adding section
3243 name to section name section after it is compressed in
3244 _bfd_elf_assign_file_positions_for_non_load. */
3245 delay_st_name_p = TRUE;
3246 }
3247 }
3248 else if ((asect->flags & SEC_ELF_RENAME))
3249 {
3250 /* objcopy: rename output DWARF debug section. */
3251 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3252 {
3253 /* When we decompress or compress with SHF_COMPRESSED,
3254 convert section name from .zdebug_* to .debug_* if
3255 needed. */
3256 if (name[1] == 'z')
3257 {
3258 char *new_name = convert_zdebug_to_debug (abfd, name);
3259 if (new_name == NULL)
3260 {
3261 arg->failed = TRUE;
3262 return;
3263 }
3264 name = new_name;
3265 }
3266 }
3267 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3268 {
3269 /* PR binutils/18087: Compression does not always make a
3270 section smaller. So only rename the section when
3271 compression has actually taken place. If input section
3272 name is .zdebug_*, we should never compress it again. */
3273 char *new_name = convert_debug_to_zdebug (abfd, name);
3274 if (new_name == NULL)
3275 {
3276 arg->failed = TRUE;
3277 return;
3278 }
3279 BFD_ASSERT (name[1] != 'z');
3280 name = new_name;
3281 }
3282 }
3283
3284 if (delay_st_name_p)
3285 this_hdr->sh_name = (unsigned int) -1;
3286 else
3287 {
3288 this_hdr->sh_name
3289 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3290 name, FALSE);
3291 if (this_hdr->sh_name == (unsigned int) -1)
3292 {
3293 arg->failed = TRUE;
3294 return;
3295 }
3296 }
3297
3298 /* Don't clear sh_flags. Assembler may set additional bits. */
3299
3300 if ((asect->flags & SEC_ALLOC) != 0
3301 || asect->user_set_vma)
3302 this_hdr->sh_addr = asect->vma;
3303 else
3304 this_hdr->sh_addr = 0;
3305
3306 this_hdr->sh_offset = 0;
3307 this_hdr->sh_size = asect->size;
3308 this_hdr->sh_link = 0;
3309 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3310 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3311 {
3312 _bfd_error_handler
3313 /* xgettext:c-format */
3314 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3315 abfd, asect->alignment_power, asect);
3316 arg->failed = TRUE;
3317 return;
3318 }
3319 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3320 /* The sh_entsize and sh_info fields may have been set already by
3321 copy_private_section_data. */
3322
3323 this_hdr->bfd_section = asect;
3324 this_hdr->contents = NULL;
3325
3326 /* If the section type is unspecified, we set it based on
3327 asect->flags. */
3328 if ((asect->flags & SEC_GROUP) != 0)
3329 sh_type = SHT_GROUP;
3330 else
3331 sh_type = bfd_elf_get_default_section_type (asect->flags);
3332
3333 if (this_hdr->sh_type == SHT_NULL)
3334 this_hdr->sh_type = sh_type;
3335 else if (this_hdr->sh_type == SHT_NOBITS
3336 && sh_type == SHT_PROGBITS
3337 && (asect->flags & SEC_ALLOC) != 0)
3338 {
3339 /* Warn if we are changing a NOBITS section to PROGBITS, but
3340 allow the link to proceed. This can happen when users link
3341 non-bss input sections to bss output sections, or emit data
3342 to a bss output section via a linker script. */
3343 _bfd_error_handler
3344 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3345 this_hdr->sh_type = sh_type;
3346 }
3347
3348 switch (this_hdr->sh_type)
3349 {
3350 default:
3351 break;
3352
3353 case SHT_STRTAB:
3354 case SHT_NOTE:
3355 case SHT_NOBITS:
3356 case SHT_PROGBITS:
3357 break;
3358
3359 case SHT_INIT_ARRAY:
3360 case SHT_FINI_ARRAY:
3361 case SHT_PREINIT_ARRAY:
3362 this_hdr->sh_entsize = bed->s->arch_size / 8;
3363 break;
3364
3365 case SHT_HASH:
3366 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3367 break;
3368
3369 case SHT_DYNSYM:
3370 this_hdr->sh_entsize = bed->s->sizeof_sym;
3371 break;
3372
3373 case SHT_DYNAMIC:
3374 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3375 break;
3376
3377 case SHT_RELA:
3378 if (get_elf_backend_data (abfd)->may_use_rela_p)
3379 this_hdr->sh_entsize = bed->s->sizeof_rela;
3380 break;
3381
3382 case SHT_REL:
3383 if (get_elf_backend_data (abfd)->may_use_rel_p)
3384 this_hdr->sh_entsize = bed->s->sizeof_rel;
3385 break;
3386
3387 case SHT_GNU_versym:
3388 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3389 break;
3390
3391 case SHT_GNU_verdef:
3392 this_hdr->sh_entsize = 0;
3393 /* objcopy or strip will copy over sh_info, but may not set
3394 cverdefs. The linker will set cverdefs, but sh_info will be
3395 zero. */
3396 if (this_hdr->sh_info == 0)
3397 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3398 else
3399 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3400 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3401 break;
3402
3403 case SHT_GNU_verneed:
3404 this_hdr->sh_entsize = 0;
3405 /* objcopy or strip will copy over sh_info, but may not set
3406 cverrefs. The linker will set cverrefs, but sh_info will be
3407 zero. */
3408 if (this_hdr->sh_info == 0)
3409 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3410 else
3411 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3412 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3413 break;
3414
3415 case SHT_GROUP:
3416 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3417 break;
3418
3419 case SHT_GNU_HASH:
3420 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3421 break;
3422 }
3423
3424 if ((asect->flags & SEC_ALLOC) != 0)
3425 this_hdr->sh_flags |= SHF_ALLOC;
3426 if ((asect->flags & SEC_READONLY) == 0)
3427 this_hdr->sh_flags |= SHF_WRITE;
3428 if ((asect->flags & SEC_CODE) != 0)
3429 this_hdr->sh_flags |= SHF_EXECINSTR;
3430 if ((asect->flags & SEC_MERGE) != 0)
3431 {
3432 this_hdr->sh_flags |= SHF_MERGE;
3433 this_hdr->sh_entsize = asect->entsize;
3434 }
3435 if ((asect->flags & SEC_STRINGS) != 0)
3436 this_hdr->sh_flags |= SHF_STRINGS;
3437 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3438 this_hdr->sh_flags |= SHF_GROUP;
3439 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3440 {
3441 this_hdr->sh_flags |= SHF_TLS;
3442 if (asect->size == 0
3443 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3444 {
3445 struct bfd_link_order *o = asect->map_tail.link_order;
3446
3447 this_hdr->sh_size = 0;
3448 if (o != NULL)
3449 {
3450 this_hdr->sh_size = o->offset + o->size;
3451 if (this_hdr->sh_size != 0)
3452 this_hdr->sh_type = SHT_NOBITS;
3453 }
3454 }
3455 }
3456 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3457 this_hdr->sh_flags |= SHF_EXCLUDE;
3458
3459 /* If the section has relocs, set up a section header for the
3460 SHT_REL[A] section. If two relocation sections are required for
3461 this section, it is up to the processor-specific back-end to
3462 create the other. */
3463 if ((asect->flags & SEC_RELOC) != 0)
3464 {
3465 /* When doing a relocatable link, create both REL and RELA sections if
3466 needed. */
3467 if (arg->link_info
3468 /* Do the normal setup if we wouldn't create any sections here. */
3469 && esd->rel.count + esd->rela.count > 0
3470 && (bfd_link_relocatable (arg->link_info)
3471 || arg->link_info->emitrelocations))
3472 {
3473 if (esd->rel.count && esd->rel.hdr == NULL
3474 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3475 FALSE, delay_st_name_p))
3476 {
3477 arg->failed = TRUE;
3478 return;
3479 }
3480 if (esd->rela.count && esd->rela.hdr == NULL
3481 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3482 TRUE, delay_st_name_p))
3483 {
3484 arg->failed = TRUE;
3485 return;
3486 }
3487 }
3488 else if (!_bfd_elf_init_reloc_shdr (abfd,
3489 (asect->use_rela_p
3490 ? &esd->rela : &esd->rel),
3491 name,
3492 asect->use_rela_p,
3493 delay_st_name_p))
3494 {
3495 arg->failed = TRUE;
3496 return;
3497 }
3498 }
3499
3500 /* Check for processor-specific section types. */
3501 sh_type = this_hdr->sh_type;
3502 if (bed->elf_backend_fake_sections
3503 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3504 {
3505 arg->failed = TRUE;
3506 return;
3507 }
3508
3509 if (sh_type == SHT_NOBITS && asect->size != 0)
3510 {
3511 /* Don't change the header type from NOBITS if we are being
3512 called for objcopy --only-keep-debug. */
3513 this_hdr->sh_type = sh_type;
3514 }
3515 }
3516
3517 /* Fill in the contents of a SHT_GROUP section. Called from
3518 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3519 when ELF targets use the generic linker, ld. Called for ld -r
3520 from bfd_elf_final_link. */
3521
3522 void
3523 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3524 {
3525 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3526 asection *elt, *first;
3527 unsigned char *loc;
3528 bfd_boolean gas;
3529
3530 /* Ignore linker created group section. See elfNN_ia64_object_p in
3531 elfxx-ia64.c. */
3532 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3533 || sec->size == 0
3534 || *failedptr)
3535 return;
3536
3537 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3538 {
3539 unsigned long symindx = 0;
3540
3541 /* elf_group_id will have been set up by objcopy and the
3542 generic linker. */
3543 if (elf_group_id (sec) != NULL)
3544 symindx = elf_group_id (sec)->udata.i;
3545
3546 if (symindx == 0)
3547 {
3548 /* If called from the assembler, swap_out_syms will have set up
3549 elf_section_syms. */
3550 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3551 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3552 }
3553 elf_section_data (sec)->this_hdr.sh_info = symindx;
3554 }
3555 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3556 {
3557 /* The ELF backend linker sets sh_info to -2 when the group
3558 signature symbol is global, and thus the index can't be
3559 set until all local symbols are output. */
3560 asection *igroup;
3561 struct bfd_elf_section_data *sec_data;
3562 unsigned long symndx;
3563 unsigned long extsymoff;
3564 struct elf_link_hash_entry *h;
3565
3566 /* The point of this little dance to the first SHF_GROUP section
3567 then back to the SHT_GROUP section is that this gets us to
3568 the SHT_GROUP in the input object. */
3569 igroup = elf_sec_group (elf_next_in_group (sec));
3570 sec_data = elf_section_data (igroup);
3571 symndx = sec_data->this_hdr.sh_info;
3572 extsymoff = 0;
3573 if (!elf_bad_symtab (igroup->owner))
3574 {
3575 Elf_Internal_Shdr *symtab_hdr;
3576
3577 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3578 extsymoff = symtab_hdr->sh_info;
3579 }
3580 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3581 while (h->root.type == bfd_link_hash_indirect
3582 || h->root.type == bfd_link_hash_warning)
3583 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3584
3585 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3586 }
3587
3588 /* The contents won't be allocated for "ld -r" or objcopy. */
3589 gas = TRUE;
3590 if (sec->contents == NULL)
3591 {
3592 gas = FALSE;
3593 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3594
3595 /* Arrange for the section to be written out. */
3596 elf_section_data (sec)->this_hdr.contents = sec->contents;
3597 if (sec->contents == NULL)
3598 {
3599 *failedptr = TRUE;
3600 return;
3601 }
3602 }
3603
3604 loc = sec->contents + sec->size;
3605
3606 /* Get the pointer to the first section in the group that gas
3607 squirreled away here. objcopy arranges for this to be set to the
3608 start of the input section group. */
3609 first = elt = elf_next_in_group (sec);
3610
3611 /* First element is a flag word. Rest of section is elf section
3612 indices for all the sections of the group. Write them backwards
3613 just to keep the group in the same order as given in .section
3614 directives, not that it matters. */
3615 while (elt != NULL)
3616 {
3617 asection *s;
3618
3619 s = elt;
3620 if (!gas)
3621 s = s->output_section;
3622 if (s != NULL
3623 && !bfd_is_abs_section (s))
3624 {
3625 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3626 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3627
3628 if (elf_sec->rel.hdr != NULL
3629 && (gas
3630 || (input_elf_sec->rel.hdr != NULL
3631 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3632 {
3633 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3634 loc -= 4;
3635 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3636 }
3637 if (elf_sec->rela.hdr != NULL
3638 && (gas
3639 || (input_elf_sec->rela.hdr != NULL
3640 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3641 {
3642 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3643 loc -= 4;
3644 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3645 }
3646 loc -= 4;
3647 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3648 }
3649 elt = elf_next_in_group (elt);
3650 if (elt == first)
3651 break;
3652 }
3653
3654 loc -= 4;
3655 BFD_ASSERT (loc == sec->contents);
3656
3657 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3658 }
3659
3660 /* Given NAME, the name of a relocation section stripped of its
3661 .rel/.rela prefix, return the section in ABFD to which the
3662 relocations apply. */
3663
3664 asection *
3665 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3666 {
3667 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3668 section likely apply to .got.plt or .got section. */
3669 if (get_elf_backend_data (abfd)->want_got_plt
3670 && strcmp (name, ".plt") == 0)
3671 {
3672 asection *sec;
3673
3674 name = ".got.plt";
3675 sec = bfd_get_section_by_name (abfd, name);
3676 if (sec != NULL)
3677 return sec;
3678 name = ".got";
3679 }
3680
3681 return bfd_get_section_by_name (abfd, name);
3682 }
3683
3684 /* Return the section to which RELOC_SEC applies. */
3685
3686 static asection *
3687 elf_get_reloc_section (asection *reloc_sec)
3688 {
3689 const char *name;
3690 unsigned int type;
3691 bfd *abfd;
3692 const struct elf_backend_data *bed;
3693
3694 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3695 if (type != SHT_REL && type != SHT_RELA)
3696 return NULL;
3697
3698 /* We look up the section the relocs apply to by name. */
3699 name = reloc_sec->name;
3700 if (strncmp (name, ".rel", 4) != 0)
3701 return NULL;
3702 name += 4;
3703 if (type == SHT_RELA && *name++ != 'a')
3704 return NULL;
3705
3706 abfd = reloc_sec->owner;
3707 bed = get_elf_backend_data (abfd);
3708 return bed->get_reloc_section (abfd, name);
3709 }
3710
3711 /* Assign all ELF section numbers. The dummy first section is handled here
3712 too. The link/info pointers for the standard section types are filled
3713 in here too, while we're at it. */
3714
3715 static bfd_boolean
3716 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3717 {
3718 struct elf_obj_tdata *t = elf_tdata (abfd);
3719 asection *sec;
3720 unsigned int section_number;
3721 Elf_Internal_Shdr **i_shdrp;
3722 struct bfd_elf_section_data *d;
3723 bfd_boolean need_symtab;
3724
3725 section_number = 1;
3726
3727 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3728
3729 /* SHT_GROUP sections are in relocatable files only. */
3730 if (link_info == NULL || !link_info->resolve_section_groups)
3731 {
3732 size_t reloc_count = 0;
3733
3734 /* Put SHT_GROUP sections first. */
3735 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3736 {
3737 d = elf_section_data (sec);
3738
3739 if (d->this_hdr.sh_type == SHT_GROUP)
3740 {
3741 if (sec->flags & SEC_LINKER_CREATED)
3742 {
3743 /* Remove the linker created SHT_GROUP sections. */
3744 bfd_section_list_remove (abfd, sec);
3745 abfd->section_count--;
3746 }
3747 else
3748 d->this_idx = section_number++;
3749 }
3750
3751 /* Count relocations. */
3752 reloc_count += sec->reloc_count;
3753 }
3754
3755 /* Clear HAS_RELOC if there are no relocations. */
3756 if (reloc_count == 0)
3757 abfd->flags &= ~HAS_RELOC;
3758 }
3759
3760 for (sec = abfd->sections; sec; sec = sec->next)
3761 {
3762 d = elf_section_data (sec);
3763
3764 if (d->this_hdr.sh_type != SHT_GROUP)
3765 d->this_idx = section_number++;
3766 if (d->this_hdr.sh_name != (unsigned int) -1)
3767 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3768 if (d->rel.hdr)
3769 {
3770 d->rel.idx = section_number++;
3771 if (d->rel.hdr->sh_name != (unsigned int) -1)
3772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3773 }
3774 else
3775 d->rel.idx = 0;
3776
3777 if (d->rela.hdr)
3778 {
3779 d->rela.idx = section_number++;
3780 if (d->rela.hdr->sh_name != (unsigned int) -1)
3781 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3782 }
3783 else
3784 d->rela.idx = 0;
3785 }
3786
3787 need_symtab = (bfd_get_symcount (abfd) > 0
3788 || (link_info == NULL
3789 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3790 == HAS_RELOC)));
3791 if (need_symtab)
3792 {
3793 elf_onesymtab (abfd) = section_number++;
3794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3795 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3796 {
3797 elf_section_list *entry;
3798
3799 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3800
3801 entry = bfd_zalloc (abfd, sizeof (*entry));
3802 entry->ndx = section_number++;
3803 elf_symtab_shndx_list (abfd) = entry;
3804 entry->hdr.sh_name
3805 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3806 ".symtab_shndx", FALSE);
3807 if (entry->hdr.sh_name == (unsigned int) -1)
3808 return FALSE;
3809 }
3810 elf_strtab_sec (abfd) = section_number++;
3811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3812 }
3813
3814 elf_shstrtab_sec (abfd) = section_number++;
3815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3816 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3817
3818 if (section_number >= SHN_LORESERVE)
3819 {
3820 /* xgettext:c-format */
3821 _bfd_error_handler (_("%pB: too many sections: %u"),
3822 abfd, section_number);
3823 return FALSE;
3824 }
3825
3826 elf_numsections (abfd) = section_number;
3827 elf_elfheader (abfd)->e_shnum = section_number;
3828
3829 /* Set up the list of section header pointers, in agreement with the
3830 indices. */
3831 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3832 sizeof (Elf_Internal_Shdr *));
3833 if (i_shdrp == NULL)
3834 return FALSE;
3835
3836 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3837 sizeof (Elf_Internal_Shdr));
3838 if (i_shdrp[0] == NULL)
3839 {
3840 bfd_release (abfd, i_shdrp);
3841 return FALSE;
3842 }
3843
3844 elf_elfsections (abfd) = i_shdrp;
3845
3846 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3847 if (need_symtab)
3848 {
3849 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3850 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3851 {
3852 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3853 BFD_ASSERT (entry != NULL);
3854 i_shdrp[entry->ndx] = & entry->hdr;
3855 entry->hdr.sh_link = elf_onesymtab (abfd);
3856 }
3857 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3858 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3859 }
3860
3861 for (sec = abfd->sections; sec; sec = sec->next)
3862 {
3863 asection *s;
3864
3865 d = elf_section_data (sec);
3866
3867 i_shdrp[d->this_idx] = &d->this_hdr;
3868 if (d->rel.idx != 0)
3869 i_shdrp[d->rel.idx] = d->rel.hdr;
3870 if (d->rela.idx != 0)
3871 i_shdrp[d->rela.idx] = d->rela.hdr;
3872
3873 /* Fill in the sh_link and sh_info fields while we're at it. */
3874
3875 /* sh_link of a reloc section is the section index of the symbol
3876 table. sh_info is the section index of the section to which
3877 the relocation entries apply. */
3878 if (d->rel.idx != 0)
3879 {
3880 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3881 d->rel.hdr->sh_info = d->this_idx;
3882 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3883 }
3884 if (d->rela.idx != 0)
3885 {
3886 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3887 d->rela.hdr->sh_info = d->this_idx;
3888 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3889 }
3890
3891 /* We need to set up sh_link for SHF_LINK_ORDER. */
3892 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3893 {
3894 s = elf_linked_to_section (sec);
3895 if (s)
3896 {
3897 /* elf_linked_to_section points to the input section. */
3898 if (link_info != NULL)
3899 {
3900 /* Check discarded linkonce section. */
3901 if (discarded_section (s))
3902 {
3903 asection *kept;
3904 _bfd_error_handler
3905 /* xgettext:c-format */
3906 (_("%pB: sh_link of section `%pA' points to"
3907 " discarded section `%pA' of `%pB'"),
3908 abfd, d->this_hdr.bfd_section,
3909 s, s->owner);
3910 /* Point to the kept section if it has the same
3911 size as the discarded one. */
3912 kept = _bfd_elf_check_kept_section (s, link_info);
3913 if (kept == NULL)
3914 {
3915 bfd_set_error (bfd_error_bad_value);
3916 return FALSE;
3917 }
3918 s = kept;
3919 }
3920
3921 s = s->output_section;
3922 BFD_ASSERT (s != NULL);
3923 }
3924 else
3925 {
3926 /* Handle objcopy. */
3927 if (s->output_section == NULL)
3928 {
3929 _bfd_error_handler
3930 /* xgettext:c-format */
3931 (_("%pB: sh_link of section `%pA' points to"
3932 " removed section `%pA' of `%pB'"),
3933 abfd, d->this_hdr.bfd_section, s, s->owner);
3934 bfd_set_error (bfd_error_bad_value);
3935 return FALSE;
3936 }
3937 s = s->output_section;
3938 }
3939 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3940 }
3941 else
3942 {
3943 /* PR 290:
3944 The Intel C compiler generates SHT_IA_64_UNWIND with
3945 SHF_LINK_ORDER. But it doesn't set the sh_link or
3946 sh_info fields. Hence we could get the situation
3947 where s is NULL. */
3948 const struct elf_backend_data *bed
3949 = get_elf_backend_data (abfd);
3950 if (bed->link_order_error_handler)
3951 bed->link_order_error_handler
3952 /* xgettext:c-format */
3953 (_("%pB: warning: sh_link not set for section `%pA'"),
3954 abfd, sec);
3955 }
3956 }
3957
3958 switch (d->this_hdr.sh_type)
3959 {
3960 case SHT_REL:
3961 case SHT_RELA:
3962 /* A reloc section which we are treating as a normal BFD
3963 section. sh_link is the section index of the symbol
3964 table. sh_info is the section index of the section to
3965 which the relocation entries apply. We assume that an
3966 allocated reloc section uses the dynamic symbol table.
3967 FIXME: How can we be sure? */
3968 s = bfd_get_section_by_name (abfd, ".dynsym");
3969 if (s != NULL)
3970 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3971
3972 s = elf_get_reloc_section (sec);
3973 if (s != NULL)
3974 {
3975 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3976 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3977 }
3978 break;
3979
3980 case SHT_STRTAB:
3981 /* We assume that a section named .stab*str is a stabs
3982 string section. We look for a section with the same name
3983 but without the trailing ``str'', and set its sh_link
3984 field to point to this section. */
3985 if (CONST_STRNEQ (sec->name, ".stab")
3986 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3987 {
3988 size_t len;
3989 char *alc;
3990
3991 len = strlen (sec->name);
3992 alc = (char *) bfd_malloc (len - 2);
3993 if (alc == NULL)
3994 return FALSE;
3995 memcpy (alc, sec->name, len - 3);
3996 alc[len - 3] = '\0';
3997 s = bfd_get_section_by_name (abfd, alc);
3998 free (alc);
3999 if (s != NULL)
4000 {
4001 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4002
4003 /* This is a .stab section. */
4004 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4005 elf_section_data (s)->this_hdr.sh_entsize
4006 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4007 }
4008 }
4009 break;
4010
4011 case SHT_DYNAMIC:
4012 case SHT_DYNSYM:
4013 case SHT_GNU_verneed:
4014 case SHT_GNU_verdef:
4015 /* sh_link is the section header index of the string table
4016 used for the dynamic entries, or the symbol table, or the
4017 version strings. */
4018 s = bfd_get_section_by_name (abfd, ".dynstr");
4019 if (s != NULL)
4020 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4021 break;
4022
4023 case SHT_GNU_LIBLIST:
4024 /* sh_link is the section header index of the prelink library
4025 list used for the dynamic entries, or the symbol table, or
4026 the version strings. */
4027 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4028 ? ".dynstr" : ".gnu.libstr");
4029 if (s != NULL)
4030 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4031 break;
4032
4033 case SHT_HASH:
4034 case SHT_GNU_HASH:
4035 case SHT_GNU_versym:
4036 /* sh_link is the section header index of the symbol table
4037 this hash table or version table is for. */
4038 s = bfd_get_section_by_name (abfd, ".dynsym");
4039 if (s != NULL)
4040 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4041 break;
4042
4043 case SHT_GROUP:
4044 d->this_hdr.sh_link = elf_onesymtab (abfd);
4045 }
4046 }
4047
4048 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4049 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4050 debug section name from .debug_* to .zdebug_* if needed. */
4051
4052 return TRUE;
4053 }
4054
4055 static bfd_boolean
4056 sym_is_global (bfd *abfd, asymbol *sym)
4057 {
4058 /* If the backend has a special mapping, use it. */
4059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4060 if (bed->elf_backend_sym_is_global)
4061 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4062
4063 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4064 || bfd_is_und_section (bfd_asymbol_section (sym))
4065 || bfd_is_com_section (bfd_asymbol_section (sym)));
4066 }
4067
4068 /* Filter global symbols of ABFD to include in the import library. All
4069 SYMCOUNT symbols of ABFD can be examined from their pointers in
4070 SYMS. Pointers of symbols to keep should be stored contiguously at
4071 the beginning of that array.
4072
4073 Returns the number of symbols to keep. */
4074
4075 unsigned int
4076 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4077 asymbol **syms, long symcount)
4078 {
4079 long src_count, dst_count = 0;
4080
4081 for (src_count = 0; src_count < symcount; src_count++)
4082 {
4083 asymbol *sym = syms[src_count];
4084 char *name = (char *) bfd_asymbol_name (sym);
4085 struct bfd_link_hash_entry *h;
4086
4087 if (!sym_is_global (abfd, sym))
4088 continue;
4089
4090 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4091 if (h == NULL)
4092 continue;
4093 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4094 continue;
4095 if (h->linker_def || h->ldscript_def)
4096 continue;
4097
4098 syms[dst_count++] = sym;
4099 }
4100
4101 syms[dst_count] = NULL;
4102
4103 return dst_count;
4104 }
4105
4106 /* Don't output section symbols for sections that are not going to be
4107 output, that are duplicates or there is no BFD section. */
4108
4109 static bfd_boolean
4110 ignore_section_sym (bfd *abfd, asymbol *sym)
4111 {
4112 elf_symbol_type *type_ptr;
4113
4114 if (sym == NULL)
4115 return FALSE;
4116
4117 if ((sym->flags & BSF_SECTION_SYM) == 0)
4118 return FALSE;
4119
4120 if (sym->section == NULL)
4121 return TRUE;
4122
4123 type_ptr = elf_symbol_from (abfd, sym);
4124 return ((type_ptr != NULL
4125 && type_ptr->internal_elf_sym.st_shndx != 0
4126 && bfd_is_abs_section (sym->section))
4127 || !(sym->section->owner == abfd
4128 || (sym->section->output_section != NULL
4129 && sym->section->output_section->owner == abfd
4130 && sym->section->output_offset == 0)
4131 || bfd_is_abs_section (sym->section)));
4132 }
4133
4134 /* Map symbol from it's internal number to the external number, moving
4135 all local symbols to be at the head of the list. */
4136
4137 static bfd_boolean
4138 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4139 {
4140 unsigned int symcount = bfd_get_symcount (abfd);
4141 asymbol **syms = bfd_get_outsymbols (abfd);
4142 asymbol **sect_syms;
4143 unsigned int num_locals = 0;
4144 unsigned int num_globals = 0;
4145 unsigned int num_locals2 = 0;
4146 unsigned int num_globals2 = 0;
4147 unsigned int max_index = 0;
4148 unsigned int idx;
4149 asection *asect;
4150 asymbol **new_syms;
4151
4152 #ifdef DEBUG
4153 fprintf (stderr, "elf_map_symbols\n");
4154 fflush (stderr);
4155 #endif
4156
4157 for (asect = abfd->sections; asect; asect = asect->next)
4158 {
4159 if (max_index < asect->index)
4160 max_index = asect->index;
4161 }
4162
4163 max_index++;
4164 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4165 if (sect_syms == NULL)
4166 return FALSE;
4167 elf_section_syms (abfd) = sect_syms;
4168 elf_num_section_syms (abfd) = max_index;
4169
4170 /* Init sect_syms entries for any section symbols we have already
4171 decided to output. */
4172 for (idx = 0; idx < symcount; idx++)
4173 {
4174 asymbol *sym = syms[idx];
4175
4176 if ((sym->flags & BSF_SECTION_SYM) != 0
4177 && sym->value == 0
4178 && !ignore_section_sym (abfd, sym)
4179 && !bfd_is_abs_section (sym->section))
4180 {
4181 asection *sec = sym->section;
4182
4183 if (sec->owner != abfd)
4184 sec = sec->output_section;
4185
4186 sect_syms[sec->index] = syms[idx];
4187 }
4188 }
4189
4190 /* Classify all of the symbols. */
4191 for (idx = 0; idx < symcount; idx++)
4192 {
4193 if (sym_is_global (abfd, syms[idx]))
4194 num_globals++;
4195 else if (!ignore_section_sym (abfd, syms[idx]))
4196 num_locals++;
4197 }
4198
4199 /* We will be adding a section symbol for each normal BFD section. Most
4200 sections will already have a section symbol in outsymbols, but
4201 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4202 at least in that case. */
4203 for (asect = abfd->sections; asect; asect = asect->next)
4204 {
4205 if (sect_syms[asect->index] == NULL)
4206 {
4207 if (!sym_is_global (abfd, asect->symbol))
4208 num_locals++;
4209 else
4210 num_globals++;
4211 }
4212 }
4213
4214 /* Now sort the symbols so the local symbols are first. */
4215 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4216 sizeof (asymbol *));
4217
4218 if (new_syms == NULL)
4219 return FALSE;
4220
4221 for (idx = 0; idx < symcount; idx++)
4222 {
4223 asymbol *sym = syms[idx];
4224 unsigned int i;
4225
4226 if (sym_is_global (abfd, sym))
4227 i = num_locals + num_globals2++;
4228 else if (!ignore_section_sym (abfd, sym))
4229 i = num_locals2++;
4230 else
4231 continue;
4232 new_syms[i] = sym;
4233 sym->udata.i = i + 1;
4234 }
4235 for (asect = abfd->sections; asect; asect = asect->next)
4236 {
4237 if (sect_syms[asect->index] == NULL)
4238 {
4239 asymbol *sym = asect->symbol;
4240 unsigned int i;
4241
4242 sect_syms[asect->index] = sym;
4243 if (!sym_is_global (abfd, sym))
4244 i = num_locals2++;
4245 else
4246 i = num_locals + num_globals2++;
4247 new_syms[i] = sym;
4248 sym->udata.i = i + 1;
4249 }
4250 }
4251
4252 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4253
4254 *pnum_locals = num_locals;
4255 return TRUE;
4256 }
4257
4258 /* Align to the maximum file alignment that could be required for any
4259 ELF data structure. */
4260
4261 static inline file_ptr
4262 align_file_position (file_ptr off, int align)
4263 {
4264 return (off + align - 1) & ~(align - 1);
4265 }
4266
4267 /* Assign a file position to a section, optionally aligning to the
4268 required section alignment. */
4269
4270 file_ptr
4271 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4272 file_ptr offset,
4273 bfd_boolean align)
4274 {
4275 if (align && i_shdrp->sh_addralign > 1)
4276 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4277 i_shdrp->sh_offset = offset;
4278 if (i_shdrp->bfd_section != NULL)
4279 i_shdrp->bfd_section->filepos = offset;
4280 if (i_shdrp->sh_type != SHT_NOBITS)
4281 offset += i_shdrp->sh_size;
4282 return offset;
4283 }
4284
4285 /* Compute the file positions we are going to put the sections at, and
4286 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4287 is not NULL, this is being called by the ELF backend linker. */
4288
4289 bfd_boolean
4290 _bfd_elf_compute_section_file_positions (bfd *abfd,
4291 struct bfd_link_info *link_info)
4292 {
4293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4294 struct fake_section_arg fsargs;
4295 bfd_boolean failed;
4296 struct elf_strtab_hash *strtab = NULL;
4297 Elf_Internal_Shdr *shstrtab_hdr;
4298 bfd_boolean need_symtab;
4299
4300 if (abfd->output_has_begun)
4301 return TRUE;
4302
4303 /* Do any elf backend specific processing first. */
4304 if (bed->elf_backend_begin_write_processing)
4305 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4306
4307 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4308 return FALSE;
4309
4310 fsargs.failed = FALSE;
4311 fsargs.link_info = link_info;
4312 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4313 if (fsargs.failed)
4314 return FALSE;
4315
4316 if (!assign_section_numbers (abfd, link_info))
4317 return FALSE;
4318
4319 /* The backend linker builds symbol table information itself. */
4320 need_symtab = (link_info == NULL
4321 && (bfd_get_symcount (abfd) > 0
4322 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4323 == HAS_RELOC)));
4324 if (need_symtab)
4325 {
4326 /* Non-zero if doing a relocatable link. */
4327 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4328
4329 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4330 return FALSE;
4331 }
4332
4333 failed = FALSE;
4334 if (link_info == NULL)
4335 {
4336 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4337 if (failed)
4338 return FALSE;
4339 }
4340
4341 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4342 /* sh_name was set in init_file_header. */
4343 shstrtab_hdr->sh_type = SHT_STRTAB;
4344 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4345 shstrtab_hdr->sh_addr = 0;
4346 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4347 shstrtab_hdr->sh_entsize = 0;
4348 shstrtab_hdr->sh_link = 0;
4349 shstrtab_hdr->sh_info = 0;
4350 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4351 shstrtab_hdr->sh_addralign = 1;
4352
4353 if (!assign_file_positions_except_relocs (abfd, link_info))
4354 return FALSE;
4355
4356 if (need_symtab)
4357 {
4358 file_ptr off;
4359 Elf_Internal_Shdr *hdr;
4360
4361 off = elf_next_file_pos (abfd);
4362
4363 hdr = & elf_symtab_hdr (abfd);
4364 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4365
4366 if (elf_symtab_shndx_list (abfd) != NULL)
4367 {
4368 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4369 if (hdr->sh_size != 0)
4370 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4371 /* FIXME: What about other symtab_shndx sections in the list ? */
4372 }
4373
4374 hdr = &elf_tdata (abfd)->strtab_hdr;
4375 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4376
4377 elf_next_file_pos (abfd) = off;
4378
4379 /* Now that we know where the .strtab section goes, write it
4380 out. */
4381 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4382 || ! _bfd_elf_strtab_emit (abfd, strtab))
4383 return FALSE;
4384 _bfd_elf_strtab_free (strtab);
4385 }
4386
4387 abfd->output_has_begun = TRUE;
4388
4389 return TRUE;
4390 }
4391
4392 /* Make an initial estimate of the size of the program header. If we
4393 get the number wrong here, we'll redo section placement. */
4394
4395 static bfd_size_type
4396 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4397 {
4398 size_t segs;
4399 asection *s;
4400 const struct elf_backend_data *bed;
4401
4402 /* Assume we will need exactly two PT_LOAD segments: one for text
4403 and one for data. */
4404 segs = 2;
4405
4406 s = bfd_get_section_by_name (abfd, ".interp");
4407 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4408 {
4409 /* If we have a loadable interpreter section, we need a
4410 PT_INTERP segment. In this case, assume we also need a
4411 PT_PHDR segment, although that may not be true for all
4412 targets. */
4413 segs += 2;
4414 }
4415
4416 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4417 {
4418 /* We need a PT_DYNAMIC segment. */
4419 ++segs;
4420 }
4421
4422 if (info != NULL && info->relro)
4423 {
4424 /* We need a PT_GNU_RELRO segment. */
4425 ++segs;
4426 }
4427
4428 if (elf_eh_frame_hdr (abfd))
4429 {
4430 /* We need a PT_GNU_EH_FRAME segment. */
4431 ++segs;
4432 }
4433
4434 if (elf_stack_flags (abfd))
4435 {
4436 /* We need a PT_GNU_STACK segment. */
4437 ++segs;
4438 }
4439
4440 s = bfd_get_section_by_name (abfd,
4441 NOTE_GNU_PROPERTY_SECTION_NAME);
4442 if (s != NULL && s->size != 0)
4443 {
4444 /* We need a PT_GNU_PROPERTY segment. */
4445 ++segs;
4446 }
4447
4448 for (s = abfd->sections; s != NULL; s = s->next)
4449 {
4450 if ((s->flags & SEC_LOAD) != 0
4451 && elf_section_type (s) == SHT_NOTE)
4452 {
4453 unsigned int alignment_power;
4454 /* We need a PT_NOTE segment. */
4455 ++segs;
4456 /* Try to create just one PT_NOTE segment for all adjacent
4457 loadable SHT_NOTE sections. gABI requires that within a
4458 PT_NOTE segment (and also inside of each SHT_NOTE section)
4459 each note should have the same alignment. So we check
4460 whether the sections are correctly aligned. */
4461 alignment_power = s->alignment_power;
4462 while (s->next != NULL
4463 && s->next->alignment_power == alignment_power
4464 && (s->next->flags & SEC_LOAD) != 0
4465 && elf_section_type (s->next) == SHT_NOTE)
4466 s = s->next;
4467 }
4468 }
4469
4470 for (s = abfd->sections; s != NULL; s = s->next)
4471 {
4472 if (s->flags & SEC_THREAD_LOCAL)
4473 {
4474 /* We need a PT_TLS segment. */
4475 ++segs;
4476 break;
4477 }
4478 }
4479
4480 bed = get_elf_backend_data (abfd);
4481
4482 if ((abfd->flags & D_PAGED) != 0
4483 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4484 {
4485 /* Add a PT_GNU_MBIND segment for each mbind section. */
4486 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4487 for (s = abfd->sections; s != NULL; s = s->next)
4488 if (elf_section_flags (s) & SHF_GNU_MBIND)
4489 {
4490 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4491 {
4492 _bfd_error_handler
4493 /* xgettext:c-format */
4494 (_("%pB: GNU_MBIND section `%pA' has invalid "
4495 "sh_info field: %d"),
4496 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4497 continue;
4498 }
4499 /* Align mbind section to page size. */
4500 if (s->alignment_power < page_align_power)
4501 s->alignment_power = page_align_power;
4502 segs ++;
4503 }
4504 }
4505
4506 /* Let the backend count up any program headers it might need. */
4507 if (bed->elf_backend_additional_program_headers)
4508 {
4509 int a;
4510
4511 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4512 if (a == -1)
4513 abort ();
4514 segs += a;
4515 }
4516
4517 return segs * bed->s->sizeof_phdr;
4518 }
4519
4520 /* Find the segment that contains the output_section of section. */
4521
4522 Elf_Internal_Phdr *
4523 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4524 {
4525 struct elf_segment_map *m;
4526 Elf_Internal_Phdr *p;
4527
4528 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4529 m != NULL;
4530 m = m->next, p++)
4531 {
4532 int i;
4533
4534 for (i = m->count - 1; i >= 0; i--)
4535 if (m->sections[i] == section)
4536 return p;
4537 }
4538
4539 return NULL;
4540 }
4541
4542 /* Create a mapping from a set of sections to a program segment. */
4543
4544 static struct elf_segment_map *
4545 make_mapping (bfd *abfd,
4546 asection **sections,
4547 unsigned int from,
4548 unsigned int to,
4549 bfd_boolean phdr)
4550 {
4551 struct elf_segment_map *m;
4552 unsigned int i;
4553 asection **hdrpp;
4554 bfd_size_type amt;
4555
4556 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4557 amt += (to - from) * sizeof (asection *);
4558 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4559 if (m == NULL)
4560 return NULL;
4561 m->next = NULL;
4562 m->p_type = PT_LOAD;
4563 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4564 m->sections[i - from] = *hdrpp;
4565 m->count = to - from;
4566
4567 if (from == 0 && phdr)
4568 {
4569 /* Include the headers in the first PT_LOAD segment. */
4570 m->includes_filehdr = 1;
4571 m->includes_phdrs = 1;
4572 }
4573
4574 return m;
4575 }
4576
4577 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4578 on failure. */
4579
4580 struct elf_segment_map *
4581 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4582 {
4583 struct elf_segment_map *m;
4584
4585 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4586 sizeof (struct elf_segment_map));
4587 if (m == NULL)
4588 return NULL;
4589 m->next = NULL;
4590 m->p_type = PT_DYNAMIC;
4591 m->count = 1;
4592 m->sections[0] = dynsec;
4593
4594 return m;
4595 }
4596
4597 /* Possibly add or remove segments from the segment map. */
4598
4599 static bfd_boolean
4600 elf_modify_segment_map (bfd *abfd,
4601 struct bfd_link_info *info,
4602 bfd_boolean remove_empty_load)
4603 {
4604 struct elf_segment_map **m;
4605 const struct elf_backend_data *bed;
4606
4607 /* The placement algorithm assumes that non allocated sections are
4608 not in PT_LOAD segments. We ensure this here by removing such
4609 sections from the segment map. We also remove excluded
4610 sections. Finally, any PT_LOAD segment without sections is
4611 removed. */
4612 m = &elf_seg_map (abfd);
4613 while (*m)
4614 {
4615 unsigned int i, new_count;
4616
4617 for (new_count = 0, i = 0; i < (*m)->count; i++)
4618 {
4619 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4620 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4621 || (*m)->p_type != PT_LOAD))
4622 {
4623 (*m)->sections[new_count] = (*m)->sections[i];
4624 new_count++;
4625 }
4626 }
4627 (*m)->count = new_count;
4628
4629 if (remove_empty_load
4630 && (*m)->p_type == PT_LOAD
4631 && (*m)->count == 0
4632 && !(*m)->includes_phdrs)
4633 *m = (*m)->next;
4634 else
4635 m = &(*m)->next;
4636 }
4637
4638 bed = get_elf_backend_data (abfd);
4639 if (bed->elf_backend_modify_segment_map != NULL)
4640 {
4641 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4642 return FALSE;
4643 }
4644
4645 return TRUE;
4646 }
4647
4648 #define IS_TBSS(s) \
4649 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4650
4651 /* Set up a mapping from BFD sections to program segments. */
4652
4653 bfd_boolean
4654 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4655 {
4656 unsigned int count;
4657 struct elf_segment_map *m;
4658 asection **sections = NULL;
4659 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4660 bfd_boolean no_user_phdrs;
4661
4662 no_user_phdrs = elf_seg_map (abfd) == NULL;
4663
4664 if (info != NULL)
4665 info->user_phdrs = !no_user_phdrs;
4666
4667 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4668 {
4669 asection *s;
4670 unsigned int i;
4671 struct elf_segment_map *mfirst;
4672 struct elf_segment_map **pm;
4673 asection *last_hdr;
4674 bfd_vma last_size;
4675 unsigned int hdr_index;
4676 bfd_vma maxpagesize;
4677 asection **hdrpp;
4678 bfd_boolean phdr_in_segment;
4679 bfd_boolean writable;
4680 bfd_boolean executable;
4681 int tls_count = 0;
4682 asection *first_tls = NULL;
4683 asection *first_mbind = NULL;
4684 asection *dynsec, *eh_frame_hdr;
4685 bfd_size_type amt;
4686 bfd_vma addr_mask, wrap_to = 0;
4687 bfd_size_type phdr_size;
4688
4689 /* Select the allocated sections, and sort them. */
4690
4691 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4692 sizeof (asection *));
4693 if (sections == NULL)
4694 goto error_return;
4695
4696 /* Calculate top address, avoiding undefined behaviour of shift
4697 left operator when shift count is equal to size of type
4698 being shifted. */
4699 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4700 addr_mask = (addr_mask << 1) + 1;
4701
4702 i = 0;
4703 for (s = abfd->sections; s != NULL; s = s->next)
4704 {
4705 if ((s->flags & SEC_ALLOC) != 0)
4706 {
4707 /* target_index is unused until bfd_elf_final_link
4708 starts output of section symbols. Use it to make
4709 qsort stable. */
4710 s->target_index = i;
4711 sections[i] = s;
4712 ++i;
4713 /* A wrapping section potentially clashes with header. */
4714 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4715 wrap_to = (s->lma + s->size) & addr_mask;
4716 }
4717 }
4718 BFD_ASSERT (i <= bfd_count_sections (abfd));
4719 count = i;
4720
4721 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4722
4723 phdr_size = elf_program_header_size (abfd);
4724 if (phdr_size == (bfd_size_type) -1)
4725 phdr_size = get_program_header_size (abfd, info);
4726 phdr_size += bed->s->sizeof_ehdr;
4727 maxpagesize = bed->maxpagesize;
4728 if (maxpagesize == 0)
4729 maxpagesize = 1;
4730 phdr_in_segment = info != NULL && info->load_phdrs;
4731 if (count != 0
4732 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4733 >= (phdr_size & (maxpagesize - 1))))
4734 /* For compatibility with old scripts that may not be using
4735 SIZEOF_HEADERS, add headers when it looks like space has
4736 been left for them. */
4737 phdr_in_segment = TRUE;
4738
4739 /* Build the mapping. */
4740 mfirst = NULL;
4741 pm = &mfirst;
4742
4743 /* If we have a .interp section, then create a PT_PHDR segment for
4744 the program headers and a PT_INTERP segment for the .interp
4745 section. */
4746 s = bfd_get_section_by_name (abfd, ".interp");
4747 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4748 {
4749 amt = sizeof (struct elf_segment_map);
4750 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4751 if (m == NULL)
4752 goto error_return;
4753 m->next = NULL;
4754 m->p_type = PT_PHDR;
4755 m->p_flags = PF_R;
4756 m->p_flags_valid = 1;
4757 m->includes_phdrs = 1;
4758 phdr_in_segment = TRUE;
4759 *pm = m;
4760 pm = &m->next;
4761
4762 amt = sizeof (struct elf_segment_map);
4763 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4764 if (m == NULL)
4765 goto error_return;
4766 m->next = NULL;
4767 m->p_type = PT_INTERP;
4768 m->count = 1;
4769 m->sections[0] = s;
4770
4771 *pm = m;
4772 pm = &m->next;
4773 }
4774
4775 /* Look through the sections. We put sections in the same program
4776 segment when the start of the second section can be placed within
4777 a few bytes of the end of the first section. */
4778 last_hdr = NULL;
4779 last_size = 0;
4780 hdr_index = 0;
4781 writable = FALSE;
4782 executable = FALSE;
4783 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4784 if (dynsec != NULL
4785 && (dynsec->flags & SEC_LOAD) == 0)
4786 dynsec = NULL;
4787
4788 if ((abfd->flags & D_PAGED) == 0)
4789 phdr_in_segment = FALSE;
4790
4791 /* Deal with -Ttext or something similar such that the first section
4792 is not adjacent to the program headers. This is an
4793 approximation, since at this point we don't know exactly how many
4794 program headers we will need. */
4795 if (phdr_in_segment && count > 0)
4796 {
4797 bfd_vma phdr_lma;
4798 bfd_boolean separate_phdr = FALSE;
4799
4800 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4801 if (info != NULL
4802 && info->separate_code
4803 && (sections[0]->flags & SEC_CODE) != 0)
4804 {
4805 /* If data sections should be separate from code and
4806 thus not executable, and the first section is
4807 executable then put the file and program headers in
4808 their own PT_LOAD. */
4809 separate_phdr = TRUE;
4810 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4811 == (sections[0]->lma & addr_mask & -maxpagesize)))
4812 {
4813 /* The file and program headers are currently on the
4814 same page as the first section. Put them on the
4815 previous page if we can. */
4816 if (phdr_lma >= maxpagesize)
4817 phdr_lma -= maxpagesize;
4818 else
4819 separate_phdr = FALSE;
4820 }
4821 }
4822 if ((sections[0]->lma & addr_mask) < phdr_lma
4823 || (sections[0]->lma & addr_mask) < phdr_size)
4824 /* If file and program headers would be placed at the end
4825 of memory then it's probably better to omit them. */
4826 phdr_in_segment = FALSE;
4827 else if (phdr_lma < wrap_to)
4828 /* If a section wraps around to where we'll be placing
4829 file and program headers, then the headers will be
4830 overwritten. */
4831 phdr_in_segment = FALSE;
4832 else if (separate_phdr)
4833 {
4834 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4835 if (m == NULL)
4836 goto error_return;
4837 m->p_paddr = phdr_lma;
4838 m->p_vaddr_offset
4839 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4840 m->p_paddr_valid = 1;
4841 *pm = m;
4842 pm = &m->next;
4843 phdr_in_segment = FALSE;
4844 }
4845 }
4846
4847 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4848 {
4849 asection *hdr;
4850 bfd_boolean new_segment;
4851
4852 hdr = *hdrpp;
4853
4854 /* See if this section and the last one will fit in the same
4855 segment. */
4856
4857 if (last_hdr == NULL)
4858 {
4859 /* If we don't have a segment yet, then we don't need a new
4860 one (we build the last one after this loop). */
4861 new_segment = FALSE;
4862 }
4863 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4864 {
4865 /* If this section has a different relation between the
4866 virtual address and the load address, then we need a new
4867 segment. */
4868 new_segment = TRUE;
4869 }
4870 else if (hdr->lma < last_hdr->lma + last_size
4871 || last_hdr->lma + last_size < last_hdr->lma)
4872 {
4873 /* If this section has a load address that makes it overlap
4874 the previous section, then we need a new segment. */
4875 new_segment = TRUE;
4876 }
4877 else if ((abfd->flags & D_PAGED) != 0
4878 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4879 == (hdr->lma & -maxpagesize)))
4880 {
4881 /* If we are demand paged then we can't map two disk
4882 pages onto the same memory page. */
4883 new_segment = FALSE;
4884 }
4885 /* In the next test we have to be careful when last_hdr->lma is close
4886 to the end of the address space. If the aligned address wraps
4887 around to the start of the address space, then there are no more
4888 pages left in memory and it is OK to assume that the current
4889 section can be included in the current segment. */
4890 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4891 + maxpagesize > last_hdr->lma)
4892 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4893 + maxpagesize <= hdr->lma))
4894 {
4895 /* If putting this section in this segment would force us to
4896 skip a page in the segment, then we need a new segment. */
4897 new_segment = TRUE;
4898 }
4899 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4900 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4901 {
4902 /* We don't want to put a loaded section after a
4903 nonloaded (ie. bss style) section in the same segment
4904 as that will force the non-loaded section to be loaded.
4905 Consider .tbss sections as loaded for this purpose. */
4906 new_segment = TRUE;
4907 }
4908 else if ((abfd->flags & D_PAGED) == 0)
4909 {
4910 /* If the file is not demand paged, which means that we
4911 don't require the sections to be correctly aligned in the
4912 file, then there is no other reason for a new segment. */
4913 new_segment = FALSE;
4914 }
4915 else if (info != NULL
4916 && info->separate_code
4917 && executable != ((hdr->flags & SEC_CODE) != 0))
4918 {
4919 new_segment = TRUE;
4920 }
4921 else if (! writable
4922 && (hdr->flags & SEC_READONLY) == 0)
4923 {
4924 /* We don't want to put a writable section in a read only
4925 segment. */
4926 new_segment = TRUE;
4927 }
4928 else
4929 {
4930 /* Otherwise, we can use the same segment. */
4931 new_segment = FALSE;
4932 }
4933
4934 /* Allow interested parties a chance to override our decision. */
4935 if (last_hdr != NULL
4936 && info != NULL
4937 && info->callbacks->override_segment_assignment != NULL)
4938 new_segment
4939 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4940 last_hdr,
4941 new_segment);
4942
4943 if (! new_segment)
4944 {
4945 if ((hdr->flags & SEC_READONLY) == 0)
4946 writable = TRUE;
4947 if ((hdr->flags & SEC_CODE) != 0)
4948 executable = TRUE;
4949 last_hdr = hdr;
4950 /* .tbss sections effectively have zero size. */
4951 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4952 continue;
4953 }
4954
4955 /* We need a new program segment. We must create a new program
4956 header holding all the sections from hdr_index until hdr. */
4957
4958 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4959 if (m == NULL)
4960 goto error_return;
4961
4962 *pm = m;
4963 pm = &m->next;
4964
4965 if ((hdr->flags & SEC_READONLY) == 0)
4966 writable = TRUE;
4967 else
4968 writable = FALSE;
4969
4970 if ((hdr->flags & SEC_CODE) == 0)
4971 executable = FALSE;
4972 else
4973 executable = TRUE;
4974
4975 last_hdr = hdr;
4976 /* .tbss sections effectively have zero size. */
4977 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4978 hdr_index = i;
4979 phdr_in_segment = FALSE;
4980 }
4981
4982 /* Create a final PT_LOAD program segment, but not if it's just
4983 for .tbss. */
4984 if (last_hdr != NULL
4985 && (i - hdr_index != 1
4986 || !IS_TBSS (last_hdr)))
4987 {
4988 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4989 if (m == NULL)
4990 goto error_return;
4991
4992 *pm = m;
4993 pm = &m->next;
4994 }
4995
4996 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4997 if (dynsec != NULL)
4998 {
4999 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5000 if (m == NULL)
5001 goto error_return;
5002 *pm = m;
5003 pm = &m->next;
5004 }
5005
5006 /* For each batch of consecutive loadable SHT_NOTE sections,
5007 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5008 because if we link together nonloadable .note sections and
5009 loadable .note sections, we will generate two .note sections
5010 in the output file. */
5011 for (s = abfd->sections; s != NULL; s = s->next)
5012 {
5013 if ((s->flags & SEC_LOAD) != 0
5014 && elf_section_type (s) == SHT_NOTE)
5015 {
5016 asection *s2;
5017 unsigned int alignment_power = s->alignment_power;
5018
5019 count = 1;
5020 for (s2 = s; s2->next != NULL; s2 = s2->next)
5021 {
5022 if (s2->next->alignment_power == alignment_power
5023 && (s2->next->flags & SEC_LOAD) != 0
5024 && elf_section_type (s2->next) == SHT_NOTE
5025 && align_power (s2->lma + s2->size,
5026 alignment_power)
5027 == s2->next->lma)
5028 count++;
5029 else
5030 break;
5031 }
5032 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5033 amt += count * sizeof (asection *);
5034 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5035 if (m == NULL)
5036 goto error_return;
5037 m->next = NULL;
5038 m->p_type = PT_NOTE;
5039 m->count = count;
5040 while (count > 1)
5041 {
5042 m->sections[m->count - count--] = s;
5043 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5044 s = s->next;
5045 }
5046 m->sections[m->count - 1] = s;
5047 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5048 *pm = m;
5049 pm = &m->next;
5050 }
5051 if (s->flags & SEC_THREAD_LOCAL)
5052 {
5053 if (! tls_count)
5054 first_tls = s;
5055 tls_count++;
5056 }
5057 if (first_mbind == NULL
5058 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5059 first_mbind = s;
5060 }
5061
5062 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5063 if (tls_count > 0)
5064 {
5065 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5066 amt += tls_count * sizeof (asection *);
5067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5068 if (m == NULL)
5069 goto error_return;
5070 m->next = NULL;
5071 m->p_type = PT_TLS;
5072 m->count = tls_count;
5073 /* Mandated PF_R. */
5074 m->p_flags = PF_R;
5075 m->p_flags_valid = 1;
5076 s = first_tls;
5077 for (i = 0; i < (unsigned int) tls_count; ++i)
5078 {
5079 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5080 {
5081 _bfd_error_handler
5082 (_("%pB: TLS sections are not adjacent:"), abfd);
5083 s = first_tls;
5084 i = 0;
5085 while (i < (unsigned int) tls_count)
5086 {
5087 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5088 {
5089 _bfd_error_handler (_(" TLS: %pA"), s);
5090 i++;
5091 }
5092 else
5093 _bfd_error_handler (_(" non-TLS: %pA"), s);
5094 s = s->next;
5095 }
5096 bfd_set_error (bfd_error_bad_value);
5097 goto error_return;
5098 }
5099 m->sections[i] = s;
5100 s = s->next;
5101 }
5102
5103 *pm = m;
5104 pm = &m->next;
5105 }
5106
5107 if (first_mbind
5108 && (abfd->flags & D_PAGED) != 0
5109 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5110 for (s = first_mbind; s != NULL; s = s->next)
5111 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5112 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5113 {
5114 /* Mandated PF_R. */
5115 unsigned long p_flags = PF_R;
5116 if ((s->flags & SEC_READONLY) == 0)
5117 p_flags |= PF_W;
5118 if ((s->flags & SEC_CODE) != 0)
5119 p_flags |= PF_X;
5120
5121 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5122 m = bfd_zalloc (abfd, amt);
5123 if (m == NULL)
5124 goto error_return;
5125 m->next = NULL;
5126 m->p_type = (PT_GNU_MBIND_LO
5127 + elf_section_data (s)->this_hdr.sh_info);
5128 m->count = 1;
5129 m->p_flags_valid = 1;
5130 m->sections[0] = s;
5131 m->p_flags = p_flags;
5132
5133 *pm = m;
5134 pm = &m->next;
5135 }
5136
5137 s = bfd_get_section_by_name (abfd,
5138 NOTE_GNU_PROPERTY_SECTION_NAME);
5139 if (s != NULL && s->size != 0)
5140 {
5141 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5142 m = bfd_zalloc (abfd, amt);
5143 if (m == NULL)
5144 goto error_return;
5145 m->next = NULL;
5146 m->p_type = PT_GNU_PROPERTY;
5147 m->count = 1;
5148 m->p_flags_valid = 1;
5149 m->sections[0] = s;
5150 m->p_flags = PF_R;
5151 *pm = m;
5152 pm = &m->next;
5153 }
5154
5155 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5156 segment. */
5157 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5158 if (eh_frame_hdr != NULL
5159 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5160 {
5161 amt = sizeof (struct elf_segment_map);
5162 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5163 if (m == NULL)
5164 goto error_return;
5165 m->next = NULL;
5166 m->p_type = PT_GNU_EH_FRAME;
5167 m->count = 1;
5168 m->sections[0] = eh_frame_hdr->output_section;
5169
5170 *pm = m;
5171 pm = &m->next;
5172 }
5173
5174 if (elf_stack_flags (abfd))
5175 {
5176 amt = sizeof (struct elf_segment_map);
5177 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5178 if (m == NULL)
5179 goto error_return;
5180 m->next = NULL;
5181 m->p_type = PT_GNU_STACK;
5182 m->p_flags = elf_stack_flags (abfd);
5183 m->p_align = bed->stack_align;
5184 m->p_flags_valid = 1;
5185 m->p_align_valid = m->p_align != 0;
5186 if (info->stacksize > 0)
5187 {
5188 m->p_size = info->stacksize;
5189 m->p_size_valid = 1;
5190 }
5191
5192 *pm = m;
5193 pm = &m->next;
5194 }
5195
5196 if (info != NULL && info->relro)
5197 {
5198 for (m = mfirst; m != NULL; m = m->next)
5199 {
5200 if (m->p_type == PT_LOAD
5201 && m->count != 0
5202 && m->sections[0]->vma >= info->relro_start
5203 && m->sections[0]->vma < info->relro_end)
5204 {
5205 i = m->count;
5206 while (--i != (unsigned) -1)
5207 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5208 == (SEC_LOAD | SEC_HAS_CONTENTS))
5209 break;
5210
5211 if (i != (unsigned) -1)
5212 break;
5213 }
5214 }
5215
5216 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5217 if (m != NULL)
5218 {
5219 amt = sizeof (struct elf_segment_map);
5220 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5221 if (m == NULL)
5222 goto error_return;
5223 m->next = NULL;
5224 m->p_type = PT_GNU_RELRO;
5225 *pm = m;
5226 pm = &m->next;
5227 }
5228 }
5229
5230 free (sections);
5231 elf_seg_map (abfd) = mfirst;
5232 }
5233
5234 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5235 return FALSE;
5236
5237 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5238 ++count;
5239 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5240
5241 return TRUE;
5242
5243 error_return:
5244 if (sections != NULL)
5245 free (sections);
5246 return FALSE;
5247 }
5248
5249 /* Sort sections by address. */
5250
5251 static int
5252 elf_sort_sections (const void *arg1, const void *arg2)
5253 {
5254 const asection *sec1 = *(const asection **) arg1;
5255 const asection *sec2 = *(const asection **) arg2;
5256 bfd_size_type size1, size2;
5257
5258 /* Sort by LMA first, since this is the address used to
5259 place the section into a segment. */
5260 if (sec1->lma < sec2->lma)
5261 return -1;
5262 else if (sec1->lma > sec2->lma)
5263 return 1;
5264
5265 /* Then sort by VMA. Normally the LMA and the VMA will be
5266 the same, and this will do nothing. */
5267 if (sec1->vma < sec2->vma)
5268 return -1;
5269 else if (sec1->vma > sec2->vma)
5270 return 1;
5271
5272 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5273
5274 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5275
5276 if (TOEND (sec1))
5277 {
5278 if (!TOEND (sec2))
5279 return 1;
5280 }
5281 else if (TOEND (sec2))
5282 return -1;
5283
5284 #undef TOEND
5285
5286 /* Sort by size, to put zero sized sections
5287 before others at the same address. */
5288
5289 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5290 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5291
5292 if (size1 < size2)
5293 return -1;
5294 if (size1 > size2)
5295 return 1;
5296
5297 return sec1->target_index - sec2->target_index;
5298 }
5299
5300 /* This qsort comparison functions sorts PT_LOAD segments first and
5301 by p_paddr, for assign_file_positions_for_load_sections. */
5302
5303 static int
5304 elf_sort_segments (const void *arg1, const void *arg2)
5305 {
5306 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5307 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5308
5309 if (m1->p_type != m2->p_type)
5310 {
5311 if (m1->p_type == PT_NULL)
5312 return 1;
5313 if (m2->p_type == PT_NULL)
5314 return -1;
5315 return m1->p_type < m2->p_type ? -1 : 1;
5316 }
5317 if (m1->includes_filehdr != m2->includes_filehdr)
5318 return m1->includes_filehdr ? -1 : 1;
5319 if (m1->no_sort_lma != m2->no_sort_lma)
5320 return m1->no_sort_lma ? -1 : 1;
5321 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5322 {
5323 bfd_vma lma1, lma2;
5324 lma1 = 0;
5325 if (m1->p_paddr_valid)
5326 lma1 = m1->p_paddr;
5327 else if (m1->count != 0)
5328 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5329 lma2 = 0;
5330 if (m2->p_paddr_valid)
5331 lma2 = m2->p_paddr;
5332 else if (m2->count != 0)
5333 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5334 if (lma1 != lma2)
5335 return lma1 < lma2 ? -1 : 1;
5336 }
5337 if (m1->idx != m2->idx)
5338 return m1->idx < m2->idx ? -1 : 1;
5339 return 0;
5340 }
5341
5342 /* Ian Lance Taylor writes:
5343
5344 We shouldn't be using % with a negative signed number. That's just
5345 not good. We have to make sure either that the number is not
5346 negative, or that the number has an unsigned type. When the types
5347 are all the same size they wind up as unsigned. When file_ptr is a
5348 larger signed type, the arithmetic winds up as signed long long,
5349 which is wrong.
5350
5351 What we're trying to say here is something like ``increase OFF by
5352 the least amount that will cause it to be equal to the VMA modulo
5353 the page size.'' */
5354 /* In other words, something like:
5355
5356 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5357 off_offset = off % bed->maxpagesize;
5358 if (vma_offset < off_offset)
5359 adjustment = vma_offset + bed->maxpagesize - off_offset;
5360 else
5361 adjustment = vma_offset - off_offset;
5362
5363 which can be collapsed into the expression below. */
5364
5365 static file_ptr
5366 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5367 {
5368 /* PR binutils/16199: Handle an alignment of zero. */
5369 if (maxpagesize == 0)
5370 maxpagesize = 1;
5371 return ((vma - off) % maxpagesize);
5372 }
5373
5374 static void
5375 print_segment_map (const struct elf_segment_map *m)
5376 {
5377 unsigned int j;
5378 const char *pt = get_segment_type (m->p_type);
5379 char buf[32];
5380
5381 if (pt == NULL)
5382 {
5383 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5384 sprintf (buf, "LOPROC+%7.7x",
5385 (unsigned int) (m->p_type - PT_LOPROC));
5386 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5387 sprintf (buf, "LOOS+%7.7x",
5388 (unsigned int) (m->p_type - PT_LOOS));
5389 else
5390 snprintf (buf, sizeof (buf), "%8.8x",
5391 (unsigned int) m->p_type);
5392 pt = buf;
5393 }
5394 fflush (stdout);
5395 fprintf (stderr, "%s:", pt);
5396 for (j = 0; j < m->count; j++)
5397 fprintf (stderr, " %s", m->sections [j]->name);
5398 putc ('\n',stderr);
5399 fflush (stderr);
5400 }
5401
5402 static bfd_boolean
5403 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5404 {
5405 void *buf;
5406 bfd_boolean ret;
5407
5408 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5409 return FALSE;
5410 buf = bfd_zmalloc (len);
5411 if (buf == NULL)
5412 return FALSE;
5413 ret = bfd_bwrite (buf, len, abfd) == len;
5414 free (buf);
5415 return ret;
5416 }
5417
5418 /* Assign file positions to the sections based on the mapping from
5419 sections to segments. This function also sets up some fields in
5420 the file header. */
5421
5422 static bfd_boolean
5423 assign_file_positions_for_load_sections (bfd *abfd,
5424 struct bfd_link_info *link_info)
5425 {
5426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5427 struct elf_segment_map *m;
5428 struct elf_segment_map *phdr_load_seg;
5429 Elf_Internal_Phdr *phdrs;
5430 Elf_Internal_Phdr *p;
5431 file_ptr off;
5432 bfd_size_type maxpagesize;
5433 unsigned int alloc, actual;
5434 unsigned int i, j;
5435 struct elf_segment_map **sorted_seg_map;
5436
5437 if (link_info == NULL
5438 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5439 return FALSE;
5440
5441 alloc = 0;
5442 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5443 m->idx = alloc++;
5444
5445 if (alloc)
5446 {
5447 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5448 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5449 }
5450 else
5451 {
5452 /* PR binutils/12467. */
5453 elf_elfheader (abfd)->e_phoff = 0;
5454 elf_elfheader (abfd)->e_phentsize = 0;
5455 }
5456
5457 elf_elfheader (abfd)->e_phnum = alloc;
5458
5459 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5460 {
5461 actual = alloc;
5462 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5463 }
5464 else
5465 {
5466 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5467 BFD_ASSERT (elf_program_header_size (abfd)
5468 == actual * bed->s->sizeof_phdr);
5469 BFD_ASSERT (actual >= alloc);
5470 }
5471
5472 if (alloc == 0)
5473 {
5474 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5475 return TRUE;
5476 }
5477
5478 /* We're writing the size in elf_program_header_size (abfd),
5479 see assign_file_positions_except_relocs, so make sure we have
5480 that amount allocated, with trailing space cleared.
5481 The variable alloc contains the computed need, while
5482 elf_program_header_size (abfd) contains the size used for the
5483 layout.
5484 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5485 where the layout is forced to according to a larger size in the
5486 last iterations for the testcase ld-elf/header. */
5487 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5488 + alloc * sizeof (*sorted_seg_map)));
5489 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5490 elf_tdata (abfd)->phdr = phdrs;
5491 if (phdrs == NULL)
5492 return FALSE;
5493
5494 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5495 {
5496 sorted_seg_map[j] = m;
5497 /* If elf_segment_map is not from map_sections_to_segments, the
5498 sections may not be correctly ordered. NOTE: sorting should
5499 not be done to the PT_NOTE section of a corefile, which may
5500 contain several pseudo-sections artificially created by bfd.
5501 Sorting these pseudo-sections breaks things badly. */
5502 if (m->count > 1
5503 && !(elf_elfheader (abfd)->e_type == ET_CORE
5504 && m->p_type == PT_NOTE))
5505 {
5506 for (i = 0; i < m->count; i++)
5507 m->sections[i]->target_index = i;
5508 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5509 elf_sort_sections);
5510 }
5511 }
5512 if (alloc > 1)
5513 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5514 elf_sort_segments);
5515
5516 maxpagesize = 1;
5517 if ((abfd->flags & D_PAGED) != 0)
5518 maxpagesize = bed->maxpagesize;
5519
5520 /* Sections must map to file offsets past the ELF file header. */
5521 off = bed->s->sizeof_ehdr;
5522 /* And if one of the PT_LOAD headers doesn't include the program
5523 headers then we'll be mapping program headers in the usual
5524 position after the ELF file header. */
5525 phdr_load_seg = NULL;
5526 for (j = 0; j < alloc; j++)
5527 {
5528 m = sorted_seg_map[j];
5529 if (m->p_type != PT_LOAD)
5530 break;
5531 if (m->includes_phdrs)
5532 {
5533 phdr_load_seg = m;
5534 break;
5535 }
5536 }
5537 if (phdr_load_seg == NULL)
5538 off += actual * bed->s->sizeof_phdr;
5539
5540 for (j = 0; j < alloc; j++)
5541 {
5542 asection **secpp;
5543 bfd_vma off_adjust;
5544 bfd_boolean no_contents;
5545
5546 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5547 number of sections with contents contributing to both p_filesz
5548 and p_memsz, followed by a number of sections with no contents
5549 that just contribute to p_memsz. In this loop, OFF tracks next
5550 available file offset for PT_LOAD and PT_NOTE segments. */
5551 m = sorted_seg_map[j];
5552 p = phdrs + m->idx;
5553 p->p_type = m->p_type;
5554 p->p_flags = m->p_flags;
5555
5556 if (m->count == 0)
5557 p->p_vaddr = m->p_vaddr_offset;
5558 else
5559 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5560
5561 if (m->p_paddr_valid)
5562 p->p_paddr = m->p_paddr;
5563 else if (m->count == 0)
5564 p->p_paddr = 0;
5565 else
5566 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5567
5568 if (p->p_type == PT_LOAD
5569 && (abfd->flags & D_PAGED) != 0)
5570 {
5571 /* p_align in demand paged PT_LOAD segments effectively stores
5572 the maximum page size. When copying an executable with
5573 objcopy, we set m->p_align from the input file. Use this
5574 value for maxpagesize rather than bed->maxpagesize, which
5575 may be different. Note that we use maxpagesize for PT_TLS
5576 segment alignment later in this function, so we are relying
5577 on at least one PT_LOAD segment appearing before a PT_TLS
5578 segment. */
5579 if (m->p_align_valid)
5580 maxpagesize = m->p_align;
5581
5582 p->p_align = maxpagesize;
5583 }
5584 else if (m->p_align_valid)
5585 p->p_align = m->p_align;
5586 else if (m->count == 0)
5587 p->p_align = 1 << bed->s->log_file_align;
5588
5589 if (m == phdr_load_seg)
5590 {
5591 if (!m->includes_filehdr)
5592 p->p_offset = off;
5593 off += actual * bed->s->sizeof_phdr;
5594 }
5595
5596 no_contents = FALSE;
5597 off_adjust = 0;
5598 if (p->p_type == PT_LOAD
5599 && m->count > 0)
5600 {
5601 bfd_size_type align;
5602 unsigned int align_power = 0;
5603
5604 if (m->p_align_valid)
5605 align = p->p_align;
5606 else
5607 {
5608 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5609 {
5610 unsigned int secalign;
5611
5612 secalign = bfd_section_alignment (*secpp);
5613 if (secalign > align_power)
5614 align_power = secalign;
5615 }
5616 align = (bfd_size_type) 1 << align_power;
5617 if (align < maxpagesize)
5618 align = maxpagesize;
5619 }
5620
5621 for (i = 0; i < m->count; i++)
5622 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5623 /* If we aren't making room for this section, then
5624 it must be SHT_NOBITS regardless of what we've
5625 set via struct bfd_elf_special_section. */
5626 elf_section_type (m->sections[i]) = SHT_NOBITS;
5627
5628 /* Find out whether this segment contains any loadable
5629 sections. */
5630 no_contents = TRUE;
5631 for (i = 0; i < m->count; i++)
5632 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5633 {
5634 no_contents = FALSE;
5635 break;
5636 }
5637
5638 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5639
5640 /* Broken hardware and/or kernel require that files do not
5641 map the same page with different permissions on some hppa
5642 processors. */
5643 if (j != 0
5644 && (abfd->flags & D_PAGED) != 0
5645 && bed->no_page_alias
5646 && (off & (maxpagesize - 1)) != 0
5647 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5648 off_adjust += maxpagesize;
5649 off += off_adjust;
5650 if (no_contents)
5651 {
5652 /* We shouldn't need to align the segment on disk since
5653 the segment doesn't need file space, but the gABI
5654 arguably requires the alignment and glibc ld.so
5655 checks it. So to comply with the alignment
5656 requirement but not waste file space, we adjust
5657 p_offset for just this segment. (OFF_ADJUST is
5658 subtracted from OFF later.) This may put p_offset
5659 past the end of file, but that shouldn't matter. */
5660 }
5661 else
5662 off_adjust = 0;
5663 }
5664 /* Make sure the .dynamic section is the first section in the
5665 PT_DYNAMIC segment. */
5666 else if (p->p_type == PT_DYNAMIC
5667 && m->count > 1
5668 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5669 {
5670 _bfd_error_handler
5671 (_("%pB: The first section in the PT_DYNAMIC segment"
5672 " is not the .dynamic section"),
5673 abfd);
5674 bfd_set_error (bfd_error_bad_value);
5675 return FALSE;
5676 }
5677 /* Set the note section type to SHT_NOTE. */
5678 else if (p->p_type == PT_NOTE)
5679 for (i = 0; i < m->count; i++)
5680 elf_section_type (m->sections[i]) = SHT_NOTE;
5681
5682 if (m->includes_filehdr)
5683 {
5684 if (!m->p_flags_valid)
5685 p->p_flags |= PF_R;
5686 p->p_filesz = bed->s->sizeof_ehdr;
5687 p->p_memsz = bed->s->sizeof_ehdr;
5688 if (p->p_type == PT_LOAD)
5689 {
5690 if (m->count > 0)
5691 {
5692 if (p->p_vaddr < (bfd_vma) off
5693 || (!m->p_paddr_valid
5694 && p->p_paddr < (bfd_vma) off))
5695 {
5696 _bfd_error_handler
5697 (_("%pB: not enough room for program headers,"
5698 " try linking with -N"),
5699 abfd);
5700 bfd_set_error (bfd_error_bad_value);
5701 return FALSE;
5702 }
5703 p->p_vaddr -= off;
5704 if (!m->p_paddr_valid)
5705 p->p_paddr -= off;
5706 }
5707 }
5708 else if (sorted_seg_map[0]->includes_filehdr)
5709 {
5710 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5711 p->p_vaddr = filehdr->p_vaddr;
5712 if (!m->p_paddr_valid)
5713 p->p_paddr = filehdr->p_paddr;
5714 }
5715 }
5716
5717 if (m->includes_phdrs)
5718 {
5719 if (!m->p_flags_valid)
5720 p->p_flags |= PF_R;
5721 p->p_filesz += actual * bed->s->sizeof_phdr;
5722 p->p_memsz += actual * bed->s->sizeof_phdr;
5723 if (!m->includes_filehdr)
5724 {
5725 if (p->p_type == PT_LOAD)
5726 {
5727 elf_elfheader (abfd)->e_phoff = p->p_offset;
5728 if (m->count > 0)
5729 {
5730 p->p_vaddr -= off - p->p_offset;
5731 if (!m->p_paddr_valid)
5732 p->p_paddr -= off - p->p_offset;
5733 }
5734 }
5735 else if (phdr_load_seg != NULL)
5736 {
5737 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5738 bfd_vma phdr_off = 0;
5739 if (phdr_load_seg->includes_filehdr)
5740 phdr_off = bed->s->sizeof_ehdr;
5741 p->p_vaddr = phdr->p_vaddr + phdr_off;
5742 if (!m->p_paddr_valid)
5743 p->p_paddr = phdr->p_paddr + phdr_off;
5744 p->p_offset = phdr->p_offset + phdr_off;
5745 }
5746 else
5747 p->p_offset = bed->s->sizeof_ehdr;
5748 }
5749 }
5750
5751 if (p->p_type == PT_LOAD
5752 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5753 {
5754 if (!m->includes_filehdr && !m->includes_phdrs)
5755 p->p_offset = off;
5756 else
5757 {
5758 file_ptr adjust;
5759
5760 adjust = off - (p->p_offset + p->p_filesz);
5761 if (!no_contents)
5762 p->p_filesz += adjust;
5763 p->p_memsz += adjust;
5764 }
5765 }
5766
5767 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5768 maps. Set filepos for sections in PT_LOAD segments, and in
5769 core files, for sections in PT_NOTE segments.
5770 assign_file_positions_for_non_load_sections will set filepos
5771 for other sections and update p_filesz for other segments. */
5772 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5773 {
5774 asection *sec;
5775 bfd_size_type align;
5776 Elf_Internal_Shdr *this_hdr;
5777
5778 sec = *secpp;
5779 this_hdr = &elf_section_data (sec)->this_hdr;
5780 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5781
5782 if ((p->p_type == PT_LOAD
5783 || p->p_type == PT_TLS)
5784 && (this_hdr->sh_type != SHT_NOBITS
5785 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5786 && ((this_hdr->sh_flags & SHF_TLS) == 0
5787 || p->p_type == PT_TLS))))
5788 {
5789 bfd_vma p_start = p->p_paddr;
5790 bfd_vma p_end = p_start + p->p_memsz;
5791 bfd_vma s_start = sec->lma;
5792 bfd_vma adjust = s_start - p_end;
5793
5794 if (adjust != 0
5795 && (s_start < p_end
5796 || p_end < p_start))
5797 {
5798 _bfd_error_handler
5799 /* xgettext:c-format */
5800 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5801 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5802 adjust = 0;
5803 sec->lma = p_end;
5804 }
5805 p->p_memsz += adjust;
5806
5807 if (this_hdr->sh_type != SHT_NOBITS)
5808 {
5809 if (p->p_type == PT_LOAD)
5810 {
5811 if (p->p_filesz + adjust < p->p_memsz)
5812 {
5813 /* We have a PROGBITS section following NOBITS ones.
5814 Allocate file space for the NOBITS section(s) and
5815 zero it. */
5816 adjust = p->p_memsz - p->p_filesz;
5817 if (!write_zeros (abfd, off, adjust))
5818 return FALSE;
5819 }
5820 off += adjust;
5821 }
5822 p->p_filesz += adjust;
5823 }
5824 }
5825
5826 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5827 {
5828 /* The section at i == 0 is the one that actually contains
5829 everything. */
5830 if (i == 0)
5831 {
5832 this_hdr->sh_offset = sec->filepos = off;
5833 off += this_hdr->sh_size;
5834 p->p_filesz = this_hdr->sh_size;
5835 p->p_memsz = 0;
5836 p->p_align = 1;
5837 }
5838 else
5839 {
5840 /* The rest are fake sections that shouldn't be written. */
5841 sec->filepos = 0;
5842 sec->size = 0;
5843 sec->flags = 0;
5844 continue;
5845 }
5846 }
5847 else
5848 {
5849 if (p->p_type == PT_LOAD)
5850 {
5851 this_hdr->sh_offset = sec->filepos = off;
5852 if (this_hdr->sh_type != SHT_NOBITS)
5853 off += this_hdr->sh_size;
5854 }
5855 else if (this_hdr->sh_type == SHT_NOBITS
5856 && (this_hdr->sh_flags & SHF_TLS) != 0
5857 && this_hdr->sh_offset == 0)
5858 {
5859 /* This is a .tbss section that didn't get a PT_LOAD.
5860 (See _bfd_elf_map_sections_to_segments "Create a
5861 final PT_LOAD".) Set sh_offset to the value it
5862 would have if we had created a zero p_filesz and
5863 p_memsz PT_LOAD header for the section. This
5864 also makes the PT_TLS header have the same
5865 p_offset value. */
5866 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5867 off, align);
5868 this_hdr->sh_offset = sec->filepos = off + adjust;
5869 }
5870
5871 if (this_hdr->sh_type != SHT_NOBITS)
5872 {
5873 p->p_filesz += this_hdr->sh_size;
5874 /* A load section without SHF_ALLOC is something like
5875 a note section in a PT_NOTE segment. These take
5876 file space but are not loaded into memory. */
5877 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5878 p->p_memsz += this_hdr->sh_size;
5879 }
5880 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5881 {
5882 if (p->p_type == PT_TLS)
5883 p->p_memsz += this_hdr->sh_size;
5884
5885 /* .tbss is special. It doesn't contribute to p_memsz of
5886 normal segments. */
5887 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5888 p->p_memsz += this_hdr->sh_size;
5889 }
5890
5891 if (align > p->p_align
5892 && !m->p_align_valid
5893 && (p->p_type != PT_LOAD
5894 || (abfd->flags & D_PAGED) == 0))
5895 p->p_align = align;
5896 }
5897
5898 if (!m->p_flags_valid)
5899 {
5900 p->p_flags |= PF_R;
5901 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5902 p->p_flags |= PF_X;
5903 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5904 p->p_flags |= PF_W;
5905 }
5906 }
5907
5908 off -= off_adjust;
5909
5910 /* PR ld/20815 - Check that the program header segment, if
5911 present, will be loaded into memory. */
5912 if (p->p_type == PT_PHDR
5913 && phdr_load_seg == NULL
5914 && !(bed->elf_backend_allow_non_load_phdr != NULL
5915 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5916 {
5917 /* The fix for this error is usually to edit the linker script being
5918 used and set up the program headers manually. Either that or
5919 leave room for the headers at the start of the SECTIONS. */
5920 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5921 " by LOAD segment"),
5922 abfd);
5923 return FALSE;
5924 }
5925
5926 /* Check that all sections are in a PT_LOAD segment.
5927 Don't check funky gdb generated core files. */
5928 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5929 {
5930 bfd_boolean check_vma = TRUE;
5931
5932 for (i = 1; i < m->count; i++)
5933 if (m->sections[i]->vma == m->sections[i - 1]->vma
5934 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5935 ->this_hdr), p) != 0
5936 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5937 ->this_hdr), p) != 0)
5938 {
5939 /* Looks like we have overlays packed into the segment. */
5940 check_vma = FALSE;
5941 break;
5942 }
5943
5944 for (i = 0; i < m->count; i++)
5945 {
5946 Elf_Internal_Shdr *this_hdr;
5947 asection *sec;
5948
5949 sec = m->sections[i];
5950 this_hdr = &(elf_section_data(sec)->this_hdr);
5951 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5952 && !ELF_TBSS_SPECIAL (this_hdr, p))
5953 {
5954 _bfd_error_handler
5955 /* xgettext:c-format */
5956 (_("%pB: section `%pA' can't be allocated in segment %d"),
5957 abfd, sec, j);
5958 print_segment_map (m);
5959 }
5960 }
5961 }
5962 }
5963
5964 elf_next_file_pos (abfd) = off;
5965
5966 if (link_info != NULL
5967 && phdr_load_seg != NULL
5968 && phdr_load_seg->includes_filehdr)
5969 {
5970 /* There is a segment that contains both the file headers and the
5971 program headers, so provide a symbol __ehdr_start pointing there.
5972 A program can use this to examine itself robustly. */
5973
5974 struct elf_link_hash_entry *hash
5975 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5976 FALSE, FALSE, TRUE);
5977 /* If the symbol was referenced and not defined, define it. */
5978 if (hash != NULL
5979 && (hash->root.type == bfd_link_hash_new
5980 || hash->root.type == bfd_link_hash_undefined
5981 || hash->root.type == bfd_link_hash_undefweak
5982 || hash->root.type == bfd_link_hash_common))
5983 {
5984 asection *s = NULL;
5985 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
5986
5987 if (phdr_load_seg->count != 0)
5988 /* The segment contains sections, so use the first one. */
5989 s = phdr_load_seg->sections[0];
5990 else
5991 /* Use the first (i.e. lowest-addressed) section in any segment. */
5992 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5993 if (m->p_type == PT_LOAD && m->count != 0)
5994 {
5995 s = m->sections[0];
5996 break;
5997 }
5998
5999 if (s != NULL)
6000 {
6001 hash->root.u.def.value = filehdr_vaddr - s->vma;
6002 hash->root.u.def.section = s;
6003 }
6004 else
6005 {
6006 hash->root.u.def.value = filehdr_vaddr;
6007 hash->root.u.def.section = bfd_abs_section_ptr;
6008 }
6009
6010 hash->root.type = bfd_link_hash_defined;
6011 hash->def_regular = 1;
6012 hash->non_elf = 0;
6013 }
6014 }
6015
6016 return TRUE;
6017 }
6018
6019 /* Determine if a bfd is a debuginfo file. Unfortunately there
6020 is no defined method for detecting such files, so we have to
6021 use heuristics instead. */
6022
6023 bfd_boolean
6024 is_debuginfo_file (bfd *abfd)
6025 {
6026 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6027 return FALSE;
6028
6029 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6030 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6031 Elf_Internal_Shdr **headerp;
6032
6033 for (headerp = start_headers; headerp < end_headers; headerp ++)
6034 {
6035 Elf_Internal_Shdr *header = * headerp;
6036
6037 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6038 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6039 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6040 && header->sh_type != SHT_NOBITS
6041 && header->sh_type != SHT_NOTE)
6042 return FALSE;
6043 }
6044
6045 return TRUE;
6046 }
6047
6048 /* Assign file positions for the other sections, except for compressed debugging
6049 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6050
6051 static bfd_boolean
6052 assign_file_positions_for_non_load_sections (bfd *abfd,
6053 struct bfd_link_info *link_info)
6054 {
6055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6056 Elf_Internal_Shdr **i_shdrpp;
6057 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6058 Elf_Internal_Phdr *phdrs;
6059 Elf_Internal_Phdr *p;
6060 struct elf_segment_map *m;
6061 file_ptr off;
6062
6063 i_shdrpp = elf_elfsections (abfd);
6064 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6065 off = elf_next_file_pos (abfd);
6066 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6067 {
6068 Elf_Internal_Shdr *hdr;
6069
6070 hdr = *hdrpp;
6071 if (hdr->bfd_section != NULL
6072 && (hdr->bfd_section->filepos != 0
6073 || (hdr->sh_type == SHT_NOBITS
6074 && hdr->contents == NULL)))
6075 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6076 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6077 {
6078 if (hdr->sh_size != 0
6079 /* PR 24717 - debuginfo files are known to be not strictly
6080 compliant with the ELF standard. In particular they often
6081 have .note.gnu.property sections that are outside of any
6082 loadable segment. This is not a problem for such files,
6083 so do not warn about them. */
6084 && ! is_debuginfo_file (abfd))
6085 _bfd_error_handler
6086 /* xgettext:c-format */
6087 (_("%pB: warning: allocated section `%s' not in segment"),
6088 abfd,
6089 (hdr->bfd_section == NULL
6090 ? "*unknown*"
6091 : hdr->bfd_section->name));
6092 /* We don't need to page align empty sections. */
6093 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6094 off += vma_page_aligned_bias (hdr->sh_addr, off,
6095 bed->maxpagesize);
6096 else
6097 off += vma_page_aligned_bias (hdr->sh_addr, off,
6098 hdr->sh_addralign);
6099 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6100 FALSE);
6101 }
6102 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6103 && hdr->bfd_section == NULL)
6104 /* We don't know the offset of these sections yet: their size has
6105 not been decided. */
6106 || (hdr->bfd_section != NULL
6107 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6108 || (bfd_section_is_ctf (hdr->bfd_section)
6109 && abfd->is_linker_output)))
6110 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6111 || (elf_symtab_shndx_list (abfd) != NULL
6112 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6113 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6114 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6115 hdr->sh_offset = -1;
6116 else
6117 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6118 }
6119 elf_next_file_pos (abfd) = off;
6120
6121 /* Now that we have set the section file positions, we can set up
6122 the file positions for the non PT_LOAD segments. */
6123 phdrs = elf_tdata (abfd)->phdr;
6124 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6125 {
6126 if (p->p_type == PT_GNU_RELRO)
6127 {
6128 bfd_vma start, end;
6129 bfd_boolean ok;
6130
6131 if (link_info != NULL)
6132 {
6133 /* During linking the range of the RELRO segment is passed
6134 in link_info. Note that there may be padding between
6135 relro_start and the first RELRO section. */
6136 start = link_info->relro_start;
6137 end = link_info->relro_end;
6138 }
6139 else if (m->count != 0)
6140 {
6141 if (!m->p_size_valid)
6142 abort ();
6143 start = m->sections[0]->vma;
6144 end = start + m->p_size;
6145 }
6146 else
6147 {
6148 start = 0;
6149 end = 0;
6150 }
6151
6152 ok = FALSE;
6153 if (start < end)
6154 {
6155 struct elf_segment_map *lm;
6156 const Elf_Internal_Phdr *lp;
6157 unsigned int i;
6158
6159 /* Find a LOAD segment containing a section in the RELRO
6160 segment. */
6161 for (lm = elf_seg_map (abfd), lp = phdrs;
6162 lm != NULL;
6163 lm = lm->next, lp++)
6164 {
6165 if (lp->p_type == PT_LOAD
6166 && lm->count != 0
6167 && (lm->sections[lm->count - 1]->vma
6168 + (!IS_TBSS (lm->sections[lm->count - 1])
6169 ? lm->sections[lm->count - 1]->size
6170 : 0)) > start
6171 && lm->sections[0]->vma < end)
6172 break;
6173 }
6174
6175 if (lm != NULL)
6176 {
6177 /* Find the section starting the RELRO segment. */
6178 for (i = 0; i < lm->count; i++)
6179 {
6180 asection *s = lm->sections[i];
6181 if (s->vma >= start
6182 && s->vma < end
6183 && s->size != 0)
6184 break;
6185 }
6186
6187 if (i < lm->count)
6188 {
6189 p->p_vaddr = lm->sections[i]->vma;
6190 p->p_paddr = lm->sections[i]->lma;
6191 p->p_offset = lm->sections[i]->filepos;
6192 p->p_memsz = end - p->p_vaddr;
6193 p->p_filesz = p->p_memsz;
6194
6195 /* The RELRO segment typically ends a few bytes
6196 into .got.plt but other layouts are possible.
6197 In cases where the end does not match any
6198 loaded section (for instance is in file
6199 padding), trim p_filesz back to correspond to
6200 the end of loaded section contents. */
6201 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6202 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6203
6204 /* Preserve the alignment and flags if they are
6205 valid. The gold linker generates RW/4 for
6206 the PT_GNU_RELRO section. It is better for
6207 objcopy/strip to honor these attributes
6208 otherwise gdb will choke when using separate
6209 debug files. */
6210 if (!m->p_align_valid)
6211 p->p_align = 1;
6212 if (!m->p_flags_valid)
6213 p->p_flags = PF_R;
6214 ok = TRUE;
6215 }
6216 }
6217 }
6218 if (link_info != NULL)
6219 BFD_ASSERT (ok);
6220 if (!ok)
6221 memset (p, 0, sizeof *p);
6222 }
6223 else if (p->p_type == PT_GNU_STACK)
6224 {
6225 if (m->p_size_valid)
6226 p->p_memsz = m->p_size;
6227 }
6228 else if (m->count != 0)
6229 {
6230 unsigned int i;
6231
6232 if (p->p_type != PT_LOAD
6233 && (p->p_type != PT_NOTE
6234 || bfd_get_format (abfd) != bfd_core))
6235 {
6236 /* A user specified segment layout may include a PHDR
6237 segment that overlaps with a LOAD segment... */
6238 if (p->p_type == PT_PHDR)
6239 {
6240 m->count = 0;
6241 continue;
6242 }
6243
6244 if (m->includes_filehdr || m->includes_phdrs)
6245 {
6246 /* PR 17512: file: 2195325e. */
6247 _bfd_error_handler
6248 (_("%pB: error: non-load segment %d includes file header "
6249 "and/or program header"),
6250 abfd, (int) (p - phdrs));
6251 return FALSE;
6252 }
6253
6254 p->p_filesz = 0;
6255 p->p_offset = m->sections[0]->filepos;
6256 for (i = m->count; i-- != 0;)
6257 {
6258 asection *sect = m->sections[i];
6259 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6260 if (hdr->sh_type != SHT_NOBITS)
6261 {
6262 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6263 + hdr->sh_size);
6264 break;
6265 }
6266 }
6267 }
6268 }
6269 }
6270
6271 return TRUE;
6272 }
6273
6274 static elf_section_list *
6275 find_section_in_list (unsigned int i, elf_section_list * list)
6276 {
6277 for (;list != NULL; list = list->next)
6278 if (list->ndx == i)
6279 break;
6280 return list;
6281 }
6282
6283 /* Work out the file positions of all the sections. This is called by
6284 _bfd_elf_compute_section_file_positions. All the section sizes and
6285 VMAs must be known before this is called.
6286
6287 Reloc sections come in two flavours: Those processed specially as
6288 "side-channel" data attached to a section to which they apply, and those that
6289 bfd doesn't process as relocations. The latter sort are stored in a normal
6290 bfd section by bfd_section_from_shdr. We don't consider the former sort
6291 here, unless they form part of the loadable image. Reloc sections not
6292 assigned here (and compressed debugging sections and CTF sections which
6293 nothing else in the file can rely upon) will be handled later by
6294 assign_file_positions_for_relocs.
6295
6296 We also don't set the positions of the .symtab and .strtab here. */
6297
6298 static bfd_boolean
6299 assign_file_positions_except_relocs (bfd *abfd,
6300 struct bfd_link_info *link_info)
6301 {
6302 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6303 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6305 unsigned int alloc;
6306
6307 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6308 && bfd_get_format (abfd) != bfd_core)
6309 {
6310 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6311 unsigned int num_sec = elf_numsections (abfd);
6312 Elf_Internal_Shdr **hdrpp;
6313 unsigned int i;
6314 file_ptr off;
6315
6316 /* Start after the ELF header. */
6317 off = i_ehdrp->e_ehsize;
6318
6319 /* We are not creating an executable, which means that we are
6320 not creating a program header, and that the actual order of
6321 the sections in the file is unimportant. */
6322 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6323 {
6324 Elf_Internal_Shdr *hdr;
6325
6326 hdr = *hdrpp;
6327 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6328 && hdr->bfd_section == NULL)
6329 /* Do not assign offsets for these sections yet: we don't know
6330 their sizes. */
6331 || (hdr->bfd_section != NULL
6332 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6333 || (bfd_section_is_ctf (hdr->bfd_section)
6334 && abfd->is_linker_output)))
6335 || i == elf_onesymtab (abfd)
6336 || (elf_symtab_shndx_list (abfd) != NULL
6337 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6338 || i == elf_strtab_sec (abfd)
6339 || i == elf_shstrtab_sec (abfd))
6340 {
6341 hdr->sh_offset = -1;
6342 }
6343 else
6344 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6345 }
6346
6347 elf_next_file_pos (abfd) = off;
6348 elf_program_header_size (abfd) = 0;
6349 }
6350 else
6351 {
6352 /* Assign file positions for the loaded sections based on the
6353 assignment of sections to segments. */
6354 if (!assign_file_positions_for_load_sections (abfd, link_info))
6355 return FALSE;
6356
6357 /* And for non-load sections. */
6358 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6359 return FALSE;
6360 }
6361
6362 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6363 return FALSE;
6364
6365 /* Write out the program headers. */
6366 alloc = i_ehdrp->e_phnum;
6367 if (alloc != 0)
6368 {
6369 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6370 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6371 return FALSE;
6372 }
6373
6374 return TRUE;
6375 }
6376
6377 bfd_boolean
6378 _bfd_elf_init_file_header (bfd *abfd,
6379 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6380 {
6381 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6382 struct elf_strtab_hash *shstrtab;
6383 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6384
6385 i_ehdrp = elf_elfheader (abfd);
6386
6387 shstrtab = _bfd_elf_strtab_init ();
6388 if (shstrtab == NULL)
6389 return FALSE;
6390
6391 elf_shstrtab (abfd) = shstrtab;
6392
6393 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6394 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6395 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6396 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6397
6398 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6399 i_ehdrp->e_ident[EI_DATA] =
6400 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6401 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6402
6403 if ((abfd->flags & DYNAMIC) != 0)
6404 i_ehdrp->e_type = ET_DYN;
6405 else if ((abfd->flags & EXEC_P) != 0)
6406 i_ehdrp->e_type = ET_EXEC;
6407 else if (bfd_get_format (abfd) == bfd_core)
6408 i_ehdrp->e_type = ET_CORE;
6409 else
6410 i_ehdrp->e_type = ET_REL;
6411
6412 switch (bfd_get_arch (abfd))
6413 {
6414 case bfd_arch_unknown:
6415 i_ehdrp->e_machine = EM_NONE;
6416 break;
6417
6418 /* There used to be a long list of cases here, each one setting
6419 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6420 in the corresponding bfd definition. To avoid duplication,
6421 the switch was removed. Machines that need special handling
6422 can generally do it in elf_backend_final_write_processing(),
6423 unless they need the information earlier than the final write.
6424 Such need can generally be supplied by replacing the tests for
6425 e_machine with the conditions used to determine it. */
6426 default:
6427 i_ehdrp->e_machine = bed->elf_machine_code;
6428 }
6429
6430 i_ehdrp->e_version = bed->s->ev_current;
6431 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6432
6433 /* No program header, for now. */
6434 i_ehdrp->e_phoff = 0;
6435 i_ehdrp->e_phentsize = 0;
6436 i_ehdrp->e_phnum = 0;
6437
6438 /* Each bfd section is section header entry. */
6439 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6440 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6441
6442 elf_tdata (abfd)->symtab_hdr.sh_name =
6443 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6444 elf_tdata (abfd)->strtab_hdr.sh_name =
6445 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6446 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6447 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6448 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6449 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6450 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6451 return FALSE;
6452
6453 return TRUE;
6454 }
6455
6456 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6457
6458 FIXME: We used to have code here to sort the PT_LOAD segments into
6459 ascending order, as per the ELF spec. But this breaks some programs,
6460 including the Linux kernel. But really either the spec should be
6461 changed or the programs updated. */
6462
6463 bfd_boolean
6464 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6465 {
6466 if (link_info != NULL && bfd_link_pie (link_info))
6467 {
6468 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6469 unsigned int num_segments = i_ehdrp->e_phnum;
6470 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6471 Elf_Internal_Phdr *segment = tdata->phdr;
6472 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6473
6474 /* Find the lowest p_vaddr in PT_LOAD segments. */
6475 bfd_vma p_vaddr = (bfd_vma) -1;
6476 for (; segment < end_segment; segment++)
6477 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6478 p_vaddr = segment->p_vaddr;
6479
6480 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6481 segments is non-zero. */
6482 if (p_vaddr)
6483 i_ehdrp->e_type = ET_EXEC;
6484 }
6485 return TRUE;
6486 }
6487
6488 /* Assign file positions for all the reloc sections which are not part
6489 of the loadable file image, and the file position of section headers. */
6490
6491 static bfd_boolean
6492 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6493 {
6494 file_ptr off;
6495 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6496 Elf_Internal_Shdr *shdrp;
6497 Elf_Internal_Ehdr *i_ehdrp;
6498 const struct elf_backend_data *bed;
6499
6500 off = elf_next_file_pos (abfd);
6501
6502 shdrpp = elf_elfsections (abfd);
6503 end_shdrpp = shdrpp + elf_numsections (abfd);
6504 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6505 {
6506 shdrp = *shdrpp;
6507 if (shdrp->sh_offset == -1)
6508 {
6509 asection *sec = shdrp->bfd_section;
6510 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6511 || shdrp->sh_type == SHT_RELA);
6512 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6513 if (is_rel
6514 || is_ctf
6515 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6516 {
6517 if (!is_rel && !is_ctf)
6518 {
6519 const char *name = sec->name;
6520 struct bfd_elf_section_data *d;
6521
6522 /* Compress DWARF debug sections. */
6523 if (!bfd_compress_section (abfd, sec,
6524 shdrp->contents))
6525 return FALSE;
6526
6527 if (sec->compress_status == COMPRESS_SECTION_DONE
6528 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6529 {
6530 /* If section is compressed with zlib-gnu, convert
6531 section name from .debug_* to .zdebug_*. */
6532 char *new_name
6533 = convert_debug_to_zdebug (abfd, name);
6534 if (new_name == NULL)
6535 return FALSE;
6536 name = new_name;
6537 }
6538 /* Add section name to section name section. */
6539 if (shdrp->sh_name != (unsigned int) -1)
6540 abort ();
6541 shdrp->sh_name
6542 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6543 name, FALSE);
6544 d = elf_section_data (sec);
6545
6546 /* Add reloc section name to section name section. */
6547 if (d->rel.hdr
6548 && !_bfd_elf_set_reloc_sh_name (abfd,
6549 d->rel.hdr,
6550 name, FALSE))
6551 return FALSE;
6552 if (d->rela.hdr
6553 && !_bfd_elf_set_reloc_sh_name (abfd,
6554 d->rela.hdr,
6555 name, TRUE))
6556 return FALSE;
6557
6558 /* Update section size and contents. */
6559 shdrp->sh_size = sec->size;
6560 shdrp->contents = sec->contents;
6561 shdrp->bfd_section->contents = NULL;
6562 }
6563 else if (is_ctf)
6564 {
6565 /* Update section size and contents. */
6566 shdrp->sh_size = sec->size;
6567 shdrp->contents = sec->contents;
6568 }
6569
6570 off = _bfd_elf_assign_file_position_for_section (shdrp,
6571 off,
6572 TRUE);
6573 }
6574 }
6575 }
6576
6577 /* Place section name section after DWARF debug sections have been
6578 compressed. */
6579 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6580 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6581 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6582 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6583
6584 /* Place the section headers. */
6585 i_ehdrp = elf_elfheader (abfd);
6586 bed = get_elf_backend_data (abfd);
6587 off = align_file_position (off, 1 << bed->s->log_file_align);
6588 i_ehdrp->e_shoff = off;
6589 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6590 elf_next_file_pos (abfd) = off;
6591
6592 return TRUE;
6593 }
6594
6595 bfd_boolean
6596 _bfd_elf_write_object_contents (bfd *abfd)
6597 {
6598 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6599 Elf_Internal_Shdr **i_shdrp;
6600 bfd_boolean failed;
6601 unsigned int count, num_sec;
6602 struct elf_obj_tdata *t;
6603
6604 if (! abfd->output_has_begun
6605 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6606 return FALSE;
6607 /* Do not rewrite ELF data when the BFD has been opened for update.
6608 abfd->output_has_begun was set to TRUE on opening, so creation of new
6609 sections, and modification of existing section sizes was restricted.
6610 This means the ELF header, program headers and section headers can't have
6611 changed.
6612 If the contents of any sections has been modified, then those changes have
6613 already been written to the BFD. */
6614 else if (abfd->direction == both_direction)
6615 {
6616 BFD_ASSERT (abfd->output_has_begun);
6617 return TRUE;
6618 }
6619
6620 i_shdrp = elf_elfsections (abfd);
6621
6622 failed = FALSE;
6623 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6624 if (failed)
6625 return FALSE;
6626
6627 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6628 return FALSE;
6629
6630 /* After writing the headers, we need to write the sections too... */
6631 num_sec = elf_numsections (abfd);
6632 for (count = 1; count < num_sec; count++)
6633 {
6634 i_shdrp[count]->sh_name
6635 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6636 i_shdrp[count]->sh_name);
6637 if (bed->elf_backend_section_processing)
6638 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6639 return FALSE;
6640 if (i_shdrp[count]->contents)
6641 {
6642 bfd_size_type amt = i_shdrp[count]->sh_size;
6643
6644 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6645 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6646 return FALSE;
6647 }
6648 }
6649
6650 /* Write out the section header names. */
6651 t = elf_tdata (abfd);
6652 if (elf_shstrtab (abfd) != NULL
6653 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6654 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6655 return FALSE;
6656
6657 if (!(*bed->elf_backend_final_write_processing) (abfd))
6658 return FALSE;
6659
6660 if (!bed->s->write_shdrs_and_ehdr (abfd))
6661 return FALSE;
6662
6663 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6664 if (t->o->build_id.after_write_object_contents != NULL)
6665 return (*t->o->build_id.after_write_object_contents) (abfd);
6666
6667 return TRUE;
6668 }
6669
6670 bfd_boolean
6671 _bfd_elf_write_corefile_contents (bfd *abfd)
6672 {
6673 /* Hopefully this can be done just like an object file. */
6674 return _bfd_elf_write_object_contents (abfd);
6675 }
6676
6677 /* Given a section, search the header to find them. */
6678
6679 unsigned int
6680 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6681 {
6682 const struct elf_backend_data *bed;
6683 unsigned int sec_index;
6684
6685 if (elf_section_data (asect) != NULL
6686 && elf_section_data (asect)->this_idx != 0)
6687 return elf_section_data (asect)->this_idx;
6688
6689 if (bfd_is_abs_section (asect))
6690 sec_index = SHN_ABS;
6691 else if (bfd_is_com_section (asect))
6692 sec_index = SHN_COMMON;
6693 else if (bfd_is_und_section (asect))
6694 sec_index = SHN_UNDEF;
6695 else
6696 sec_index = SHN_BAD;
6697
6698 bed = get_elf_backend_data (abfd);
6699 if (bed->elf_backend_section_from_bfd_section)
6700 {
6701 int retval = sec_index;
6702
6703 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6704 return retval;
6705 }
6706
6707 if (sec_index == SHN_BAD)
6708 bfd_set_error (bfd_error_nonrepresentable_section);
6709
6710 return sec_index;
6711 }
6712
6713 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6714 on error. */
6715
6716 int
6717 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6718 {
6719 asymbol *asym_ptr = *asym_ptr_ptr;
6720 int idx;
6721 flagword flags = asym_ptr->flags;
6722
6723 /* When gas creates relocations against local labels, it creates its
6724 own symbol for the section, but does put the symbol into the
6725 symbol chain, so udata is 0. When the linker is generating
6726 relocatable output, this section symbol may be for one of the
6727 input sections rather than the output section. */
6728 if (asym_ptr->udata.i == 0
6729 && (flags & BSF_SECTION_SYM)
6730 && asym_ptr->section)
6731 {
6732 asection *sec;
6733 int indx;
6734
6735 sec = asym_ptr->section;
6736 if (sec->owner != abfd && sec->output_section != NULL)
6737 sec = sec->output_section;
6738 if (sec->owner == abfd
6739 && (indx = sec->index) < elf_num_section_syms (abfd)
6740 && elf_section_syms (abfd)[indx] != NULL)
6741 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6742 }
6743
6744 idx = asym_ptr->udata.i;
6745
6746 if (idx == 0)
6747 {
6748 /* This case can occur when using --strip-symbol on a symbol
6749 which is used in a relocation entry. */
6750 _bfd_error_handler
6751 /* xgettext:c-format */
6752 (_("%pB: symbol `%s' required but not present"),
6753 abfd, bfd_asymbol_name (asym_ptr));
6754 bfd_set_error (bfd_error_no_symbols);
6755 return -1;
6756 }
6757
6758 #if DEBUG & 4
6759 {
6760 fprintf (stderr,
6761 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6762 (long) asym_ptr, asym_ptr->name, idx, flags);
6763 fflush (stderr);
6764 }
6765 #endif
6766
6767 return idx;
6768 }
6769
6770 /* Rewrite program header information. */
6771
6772 static bfd_boolean
6773 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6774 {
6775 Elf_Internal_Ehdr *iehdr;
6776 struct elf_segment_map *map;
6777 struct elf_segment_map *map_first;
6778 struct elf_segment_map **pointer_to_map;
6779 Elf_Internal_Phdr *segment;
6780 asection *section;
6781 unsigned int i;
6782 unsigned int num_segments;
6783 bfd_boolean phdr_included = FALSE;
6784 bfd_boolean p_paddr_valid;
6785 bfd_vma maxpagesize;
6786 struct elf_segment_map *phdr_adjust_seg = NULL;
6787 unsigned int phdr_adjust_num = 0;
6788 const struct elf_backend_data *bed;
6789
6790 bed = get_elf_backend_data (ibfd);
6791 iehdr = elf_elfheader (ibfd);
6792
6793 map_first = NULL;
6794 pointer_to_map = &map_first;
6795
6796 num_segments = elf_elfheader (ibfd)->e_phnum;
6797 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6798
6799 /* Returns the end address of the segment + 1. */
6800 #define SEGMENT_END(segment, start) \
6801 (start + (segment->p_memsz > segment->p_filesz \
6802 ? segment->p_memsz : segment->p_filesz))
6803
6804 #define SECTION_SIZE(section, segment) \
6805 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6806 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6807 ? section->size : 0)
6808
6809 /* Returns TRUE if the given section is contained within
6810 the given segment. VMA addresses are compared. */
6811 #define IS_CONTAINED_BY_VMA(section, segment) \
6812 (section->vma >= segment->p_vaddr \
6813 && (section->vma + SECTION_SIZE (section, segment) \
6814 <= (SEGMENT_END (segment, segment->p_vaddr))))
6815
6816 /* Returns TRUE if the given section is contained within
6817 the given segment. LMA addresses are compared. */
6818 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6819 (section->lma >= base \
6820 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6821 && (section->lma + SECTION_SIZE (section, segment) \
6822 <= SEGMENT_END (segment, base)))
6823
6824 /* Handle PT_NOTE segment. */
6825 #define IS_NOTE(p, s) \
6826 (p->p_type == PT_NOTE \
6827 && elf_section_type (s) == SHT_NOTE \
6828 && (bfd_vma) s->filepos >= p->p_offset \
6829 && ((bfd_vma) s->filepos + s->size \
6830 <= p->p_offset + p->p_filesz))
6831
6832 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6833 etc. */
6834 #define IS_COREFILE_NOTE(p, s) \
6835 (IS_NOTE (p, s) \
6836 && bfd_get_format (ibfd) == bfd_core \
6837 && s->vma == 0 \
6838 && s->lma == 0)
6839
6840 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6841 linker, which generates a PT_INTERP section with p_vaddr and
6842 p_memsz set to 0. */
6843 #define IS_SOLARIS_PT_INTERP(p, s) \
6844 (p->p_vaddr == 0 \
6845 && p->p_paddr == 0 \
6846 && p->p_memsz == 0 \
6847 && p->p_filesz > 0 \
6848 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6849 && s->size > 0 \
6850 && (bfd_vma) s->filepos >= p->p_offset \
6851 && ((bfd_vma) s->filepos + s->size \
6852 <= p->p_offset + p->p_filesz))
6853
6854 /* Decide if the given section should be included in the given segment.
6855 A section will be included if:
6856 1. It is within the address space of the segment -- we use the LMA
6857 if that is set for the segment and the VMA otherwise,
6858 2. It is an allocated section or a NOTE section in a PT_NOTE
6859 segment.
6860 3. There is an output section associated with it,
6861 4. The section has not already been allocated to a previous segment.
6862 5. PT_GNU_STACK segments do not include any sections.
6863 6. PT_TLS segment includes only SHF_TLS sections.
6864 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6865 8. PT_DYNAMIC should not contain empty sections at the beginning
6866 (with the possible exception of .dynamic). */
6867 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6868 ((((segment->p_paddr \
6869 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6870 : IS_CONTAINED_BY_VMA (section, segment)) \
6871 && (section->flags & SEC_ALLOC) != 0) \
6872 || IS_NOTE (segment, section)) \
6873 && segment->p_type != PT_GNU_STACK \
6874 && (segment->p_type != PT_TLS \
6875 || (section->flags & SEC_THREAD_LOCAL)) \
6876 && (segment->p_type == PT_LOAD \
6877 || segment->p_type == PT_TLS \
6878 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6879 && (segment->p_type != PT_DYNAMIC \
6880 || SECTION_SIZE (section, segment) > 0 \
6881 || (segment->p_paddr \
6882 ? segment->p_paddr != section->lma \
6883 : segment->p_vaddr != section->vma) \
6884 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6885 && (segment->p_type != PT_LOAD || !section->segment_mark))
6886
6887 /* If the output section of a section in the input segment is NULL,
6888 it is removed from the corresponding output segment. */
6889 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6890 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6891 && section->output_section != NULL)
6892
6893 /* Returns TRUE iff seg1 starts after the end of seg2. */
6894 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6895 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6896
6897 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6898 their VMA address ranges and their LMA address ranges overlap.
6899 It is possible to have overlapping VMA ranges without overlapping LMA
6900 ranges. RedBoot images for example can have both .data and .bss mapped
6901 to the same VMA range, but with the .data section mapped to a different
6902 LMA. */
6903 #define SEGMENT_OVERLAPS(seg1, seg2) \
6904 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6905 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6906 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6907 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6908
6909 /* Initialise the segment mark field. */
6910 for (section = ibfd->sections; section != NULL; section = section->next)
6911 section->segment_mark = FALSE;
6912
6913 /* The Solaris linker creates program headers in which all the
6914 p_paddr fields are zero. When we try to objcopy or strip such a
6915 file, we get confused. Check for this case, and if we find it
6916 don't set the p_paddr_valid fields. */
6917 p_paddr_valid = FALSE;
6918 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6919 i < num_segments;
6920 i++, segment++)
6921 if (segment->p_paddr != 0)
6922 {
6923 p_paddr_valid = TRUE;
6924 break;
6925 }
6926
6927 /* Scan through the segments specified in the program header
6928 of the input BFD. For this first scan we look for overlaps
6929 in the loadable segments. These can be created by weird
6930 parameters to objcopy. Also, fix some solaris weirdness. */
6931 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6932 i < num_segments;
6933 i++, segment++)
6934 {
6935 unsigned int j;
6936 Elf_Internal_Phdr *segment2;
6937
6938 if (segment->p_type == PT_INTERP)
6939 for (section = ibfd->sections; section; section = section->next)
6940 if (IS_SOLARIS_PT_INTERP (segment, section))
6941 {
6942 /* Mininal change so that the normal section to segment
6943 assignment code will work. */
6944 segment->p_vaddr = section->vma;
6945 break;
6946 }
6947
6948 if (segment->p_type != PT_LOAD)
6949 {
6950 /* Remove PT_GNU_RELRO segment. */
6951 if (segment->p_type == PT_GNU_RELRO)
6952 segment->p_type = PT_NULL;
6953 continue;
6954 }
6955
6956 /* Determine if this segment overlaps any previous segments. */
6957 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6958 {
6959 bfd_signed_vma extra_length;
6960
6961 if (segment2->p_type != PT_LOAD
6962 || !SEGMENT_OVERLAPS (segment, segment2))
6963 continue;
6964
6965 /* Merge the two segments together. */
6966 if (segment2->p_vaddr < segment->p_vaddr)
6967 {
6968 /* Extend SEGMENT2 to include SEGMENT and then delete
6969 SEGMENT. */
6970 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6971 - SEGMENT_END (segment2, segment2->p_vaddr));
6972
6973 if (extra_length > 0)
6974 {
6975 segment2->p_memsz += extra_length;
6976 segment2->p_filesz += extra_length;
6977 }
6978
6979 segment->p_type = PT_NULL;
6980
6981 /* Since we have deleted P we must restart the outer loop. */
6982 i = 0;
6983 segment = elf_tdata (ibfd)->phdr;
6984 break;
6985 }
6986 else
6987 {
6988 /* Extend SEGMENT to include SEGMENT2 and then delete
6989 SEGMENT2. */
6990 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6991 - SEGMENT_END (segment, segment->p_vaddr));
6992
6993 if (extra_length > 0)
6994 {
6995 segment->p_memsz += extra_length;
6996 segment->p_filesz += extra_length;
6997 }
6998
6999 segment2->p_type = PT_NULL;
7000 }
7001 }
7002 }
7003
7004 /* The second scan attempts to assign sections to segments. */
7005 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7006 i < num_segments;
7007 i++, segment++)
7008 {
7009 unsigned int section_count;
7010 asection **sections;
7011 asection *output_section;
7012 unsigned int isec;
7013 asection *matching_lma;
7014 asection *suggested_lma;
7015 unsigned int j;
7016 bfd_size_type amt;
7017 asection *first_section;
7018
7019 if (segment->p_type == PT_NULL)
7020 continue;
7021
7022 first_section = NULL;
7023 /* Compute how many sections might be placed into this segment. */
7024 for (section = ibfd->sections, section_count = 0;
7025 section != NULL;
7026 section = section->next)
7027 {
7028 /* Find the first section in the input segment, which may be
7029 removed from the corresponding output segment. */
7030 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7031 {
7032 if (first_section == NULL)
7033 first_section = section;
7034 if (section->output_section != NULL)
7035 ++section_count;
7036 }
7037 }
7038
7039 /* Allocate a segment map big enough to contain
7040 all of the sections we have selected. */
7041 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7042 amt += (bfd_size_type) section_count * sizeof (asection *);
7043 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7044 if (map == NULL)
7045 return FALSE;
7046
7047 /* Initialise the fields of the segment map. Default to
7048 using the physical address of the segment in the input BFD. */
7049 map->next = NULL;
7050 map->p_type = segment->p_type;
7051 map->p_flags = segment->p_flags;
7052 map->p_flags_valid = 1;
7053
7054 /* If the first section in the input segment is removed, there is
7055 no need to preserve segment physical address in the corresponding
7056 output segment. */
7057 if (!first_section || first_section->output_section != NULL)
7058 {
7059 map->p_paddr = segment->p_paddr;
7060 map->p_paddr_valid = p_paddr_valid;
7061 }
7062
7063 /* Determine if this segment contains the ELF file header
7064 and if it contains the program headers themselves. */
7065 map->includes_filehdr = (segment->p_offset == 0
7066 && segment->p_filesz >= iehdr->e_ehsize);
7067 map->includes_phdrs = 0;
7068
7069 if (!phdr_included || segment->p_type != PT_LOAD)
7070 {
7071 map->includes_phdrs =
7072 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7073 && (segment->p_offset + segment->p_filesz
7074 >= ((bfd_vma) iehdr->e_phoff
7075 + iehdr->e_phnum * iehdr->e_phentsize)));
7076
7077 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7078 phdr_included = TRUE;
7079 }
7080
7081 if (section_count == 0)
7082 {
7083 /* Special segments, such as the PT_PHDR segment, may contain
7084 no sections, but ordinary, loadable segments should contain
7085 something. They are allowed by the ELF spec however, so only
7086 a warning is produced.
7087 There is however the valid use case of embedded systems which
7088 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7089 flash memory with zeros. No warning is shown for that case. */
7090 if (segment->p_type == PT_LOAD
7091 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7092 /* xgettext:c-format */
7093 _bfd_error_handler
7094 (_("%pB: warning: empty loadable segment detected"
7095 " at vaddr=%#" PRIx64 ", is this intentional?"),
7096 ibfd, (uint64_t) segment->p_vaddr);
7097
7098 map->p_vaddr_offset = segment->p_vaddr;
7099 map->count = 0;
7100 *pointer_to_map = map;
7101 pointer_to_map = &map->next;
7102
7103 continue;
7104 }
7105
7106 /* Now scan the sections in the input BFD again and attempt
7107 to add their corresponding output sections to the segment map.
7108 The problem here is how to handle an output section which has
7109 been moved (ie had its LMA changed). There are four possibilities:
7110
7111 1. None of the sections have been moved.
7112 In this case we can continue to use the segment LMA from the
7113 input BFD.
7114
7115 2. All of the sections have been moved by the same amount.
7116 In this case we can change the segment's LMA to match the LMA
7117 of the first section.
7118
7119 3. Some of the sections have been moved, others have not.
7120 In this case those sections which have not been moved can be
7121 placed in the current segment which will have to have its size,
7122 and possibly its LMA changed, and a new segment or segments will
7123 have to be created to contain the other sections.
7124
7125 4. The sections have been moved, but not by the same amount.
7126 In this case we can change the segment's LMA to match the LMA
7127 of the first section and we will have to create a new segment
7128 or segments to contain the other sections.
7129
7130 In order to save time, we allocate an array to hold the section
7131 pointers that we are interested in. As these sections get assigned
7132 to a segment, they are removed from this array. */
7133
7134 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7135 if (sections == NULL)
7136 return FALSE;
7137
7138 /* Step One: Scan for segment vs section LMA conflicts.
7139 Also add the sections to the section array allocated above.
7140 Also add the sections to the current segment. In the common
7141 case, where the sections have not been moved, this means that
7142 we have completely filled the segment, and there is nothing
7143 more to do. */
7144 isec = 0;
7145 matching_lma = NULL;
7146 suggested_lma = NULL;
7147
7148 for (section = first_section, j = 0;
7149 section != NULL;
7150 section = section->next)
7151 {
7152 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7153 {
7154 output_section = section->output_section;
7155
7156 sections[j++] = section;
7157
7158 /* The Solaris native linker always sets p_paddr to 0.
7159 We try to catch that case here, and set it to the
7160 correct value. Note - some backends require that
7161 p_paddr be left as zero. */
7162 if (!p_paddr_valid
7163 && segment->p_vaddr != 0
7164 && !bed->want_p_paddr_set_to_zero
7165 && isec == 0
7166 && output_section->lma != 0
7167 && (align_power (segment->p_vaddr
7168 + (map->includes_filehdr
7169 ? iehdr->e_ehsize : 0)
7170 + (map->includes_phdrs
7171 ? iehdr->e_phnum * iehdr->e_phentsize
7172 : 0),
7173 output_section->alignment_power)
7174 == output_section->vma))
7175 map->p_paddr = segment->p_vaddr;
7176
7177 /* Match up the physical address of the segment with the
7178 LMA address of the output section. */
7179 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7180 || IS_COREFILE_NOTE (segment, section)
7181 || (bed->want_p_paddr_set_to_zero
7182 && IS_CONTAINED_BY_VMA (output_section, segment)))
7183 {
7184 if (matching_lma == NULL
7185 || output_section->lma < matching_lma->lma)
7186 matching_lma = output_section;
7187
7188 /* We assume that if the section fits within the segment
7189 then it does not overlap any other section within that
7190 segment. */
7191 map->sections[isec++] = output_section;
7192 }
7193 else if (suggested_lma == NULL)
7194 suggested_lma = output_section;
7195
7196 if (j == section_count)
7197 break;
7198 }
7199 }
7200
7201 BFD_ASSERT (j == section_count);
7202
7203 /* Step Two: Adjust the physical address of the current segment,
7204 if necessary. */
7205 if (isec == section_count)
7206 {
7207 /* All of the sections fitted within the segment as currently
7208 specified. This is the default case. Add the segment to
7209 the list of built segments and carry on to process the next
7210 program header in the input BFD. */
7211 map->count = section_count;
7212 *pointer_to_map = map;
7213 pointer_to_map = &map->next;
7214
7215 if (p_paddr_valid
7216 && !bed->want_p_paddr_set_to_zero)
7217 {
7218 bfd_vma hdr_size = 0;
7219 if (map->includes_filehdr)
7220 hdr_size = iehdr->e_ehsize;
7221 if (map->includes_phdrs)
7222 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7223
7224 /* Account for padding before the first section in the
7225 segment. */
7226 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7227 }
7228
7229 free (sections);
7230 continue;
7231 }
7232 else
7233 {
7234 /* Change the current segment's physical address to match
7235 the LMA of the first section that fitted, or if no
7236 section fitted, the first section. */
7237 if (matching_lma == NULL)
7238 matching_lma = suggested_lma;
7239
7240 map->p_paddr = matching_lma->lma;
7241
7242 /* Offset the segment physical address from the lma
7243 to allow for space taken up by elf headers. */
7244 if (map->includes_phdrs)
7245 {
7246 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7247
7248 /* iehdr->e_phnum is just an estimate of the number
7249 of program headers that we will need. Make a note
7250 here of the number we used and the segment we chose
7251 to hold these headers, so that we can adjust the
7252 offset when we know the correct value. */
7253 phdr_adjust_num = iehdr->e_phnum;
7254 phdr_adjust_seg = map;
7255 }
7256
7257 if (map->includes_filehdr)
7258 {
7259 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7260 map->p_paddr -= iehdr->e_ehsize;
7261 /* We've subtracted off the size of headers from the
7262 first section lma, but there may have been some
7263 alignment padding before that section too. Try to
7264 account for that by adjusting the segment lma down to
7265 the same alignment. */
7266 if (segment->p_align != 0 && segment->p_align < align)
7267 align = segment->p_align;
7268 map->p_paddr &= -align;
7269 }
7270 }
7271
7272 /* Step Three: Loop over the sections again, this time assigning
7273 those that fit to the current segment and removing them from the
7274 sections array; but making sure not to leave large gaps. Once all
7275 possible sections have been assigned to the current segment it is
7276 added to the list of built segments and if sections still remain
7277 to be assigned, a new segment is constructed before repeating
7278 the loop. */
7279 isec = 0;
7280 do
7281 {
7282 map->count = 0;
7283 suggested_lma = NULL;
7284
7285 /* Fill the current segment with sections that fit. */
7286 for (j = 0; j < section_count; j++)
7287 {
7288 section = sections[j];
7289
7290 if (section == NULL)
7291 continue;
7292
7293 output_section = section->output_section;
7294
7295 BFD_ASSERT (output_section != NULL);
7296
7297 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7298 || IS_COREFILE_NOTE (segment, section))
7299 {
7300 if (map->count == 0)
7301 {
7302 /* If the first section in a segment does not start at
7303 the beginning of the segment, then something is
7304 wrong. */
7305 if (align_power (map->p_paddr
7306 + (map->includes_filehdr
7307 ? iehdr->e_ehsize : 0)
7308 + (map->includes_phdrs
7309 ? iehdr->e_phnum * iehdr->e_phentsize
7310 : 0),
7311 output_section->alignment_power)
7312 != output_section->lma)
7313 goto sorry;
7314 }
7315 else
7316 {
7317 asection *prev_sec;
7318
7319 prev_sec = map->sections[map->count - 1];
7320
7321 /* If the gap between the end of the previous section
7322 and the start of this section is more than
7323 maxpagesize then we need to start a new segment. */
7324 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7325 maxpagesize)
7326 < BFD_ALIGN (output_section->lma, maxpagesize))
7327 || (prev_sec->lma + prev_sec->size
7328 > output_section->lma))
7329 {
7330 if (suggested_lma == NULL)
7331 suggested_lma = output_section;
7332
7333 continue;
7334 }
7335 }
7336
7337 map->sections[map->count++] = output_section;
7338 ++isec;
7339 sections[j] = NULL;
7340 if (segment->p_type == PT_LOAD)
7341 section->segment_mark = TRUE;
7342 }
7343 else if (suggested_lma == NULL)
7344 suggested_lma = output_section;
7345 }
7346
7347 /* PR 23932. A corrupt input file may contain sections that cannot
7348 be assigned to any segment - because for example they have a
7349 negative size - or segments that do not contain any sections. */
7350 if (map->count == 0)
7351 {
7352 sorry:
7353 bfd_set_error (bfd_error_sorry);
7354 free (sections);
7355 return FALSE;
7356 }
7357
7358 /* Add the current segment to the list of built segments. */
7359 *pointer_to_map = map;
7360 pointer_to_map = &map->next;
7361
7362 if (isec < section_count)
7363 {
7364 /* We still have not allocated all of the sections to
7365 segments. Create a new segment here, initialise it
7366 and carry on looping. */
7367 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7368 amt += (bfd_size_type) section_count * sizeof (asection *);
7369 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7370 if (map == NULL)
7371 {
7372 free (sections);
7373 return FALSE;
7374 }
7375
7376 /* Initialise the fields of the segment map. Set the physical
7377 physical address to the LMA of the first section that has
7378 not yet been assigned. */
7379 map->next = NULL;
7380 map->p_type = segment->p_type;
7381 map->p_flags = segment->p_flags;
7382 map->p_flags_valid = 1;
7383 map->p_paddr = suggested_lma->lma;
7384 map->p_paddr_valid = p_paddr_valid;
7385 map->includes_filehdr = 0;
7386 map->includes_phdrs = 0;
7387 }
7388 }
7389 while (isec < section_count);
7390
7391 free (sections);
7392 }
7393
7394 elf_seg_map (obfd) = map_first;
7395
7396 /* If we had to estimate the number of program headers that were
7397 going to be needed, then check our estimate now and adjust
7398 the offset if necessary. */
7399 if (phdr_adjust_seg != NULL)
7400 {
7401 unsigned int count;
7402
7403 for (count = 0, map = map_first; map != NULL; map = map->next)
7404 count++;
7405
7406 if (count > phdr_adjust_num)
7407 phdr_adjust_seg->p_paddr
7408 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7409
7410 for (map = map_first; map != NULL; map = map->next)
7411 if (map->p_type == PT_PHDR)
7412 {
7413 bfd_vma adjust
7414 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7415 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7416 break;
7417 }
7418 }
7419
7420 #undef SEGMENT_END
7421 #undef SECTION_SIZE
7422 #undef IS_CONTAINED_BY_VMA
7423 #undef IS_CONTAINED_BY_LMA
7424 #undef IS_NOTE
7425 #undef IS_COREFILE_NOTE
7426 #undef IS_SOLARIS_PT_INTERP
7427 #undef IS_SECTION_IN_INPUT_SEGMENT
7428 #undef INCLUDE_SECTION_IN_SEGMENT
7429 #undef SEGMENT_AFTER_SEGMENT
7430 #undef SEGMENT_OVERLAPS
7431 return TRUE;
7432 }
7433
7434 /* Copy ELF program header information. */
7435
7436 static bfd_boolean
7437 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7438 {
7439 Elf_Internal_Ehdr *iehdr;
7440 struct elf_segment_map *map;
7441 struct elf_segment_map *map_first;
7442 struct elf_segment_map **pointer_to_map;
7443 Elf_Internal_Phdr *segment;
7444 unsigned int i;
7445 unsigned int num_segments;
7446 bfd_boolean phdr_included = FALSE;
7447 bfd_boolean p_paddr_valid;
7448
7449 iehdr = elf_elfheader (ibfd);
7450
7451 map_first = NULL;
7452 pointer_to_map = &map_first;
7453
7454 /* If all the segment p_paddr fields are zero, don't set
7455 map->p_paddr_valid. */
7456 p_paddr_valid = FALSE;
7457 num_segments = elf_elfheader (ibfd)->e_phnum;
7458 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7459 i < num_segments;
7460 i++, segment++)
7461 if (segment->p_paddr != 0)
7462 {
7463 p_paddr_valid = TRUE;
7464 break;
7465 }
7466
7467 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7468 i < num_segments;
7469 i++, segment++)
7470 {
7471 asection *section;
7472 unsigned int section_count;
7473 bfd_size_type amt;
7474 Elf_Internal_Shdr *this_hdr;
7475 asection *first_section = NULL;
7476 asection *lowest_section;
7477
7478 /* Compute how many sections are in this segment. */
7479 for (section = ibfd->sections, section_count = 0;
7480 section != NULL;
7481 section = section->next)
7482 {
7483 this_hdr = &(elf_section_data(section)->this_hdr);
7484 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7485 {
7486 if (first_section == NULL)
7487 first_section = section;
7488 section_count++;
7489 }
7490 }
7491
7492 /* Allocate a segment map big enough to contain
7493 all of the sections we have selected. */
7494 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7495 amt += (bfd_size_type) section_count * sizeof (asection *);
7496 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7497 if (map == NULL)
7498 return FALSE;
7499
7500 /* Initialize the fields of the output segment map with the
7501 input segment. */
7502 map->next = NULL;
7503 map->p_type = segment->p_type;
7504 map->p_flags = segment->p_flags;
7505 map->p_flags_valid = 1;
7506 map->p_paddr = segment->p_paddr;
7507 map->p_paddr_valid = p_paddr_valid;
7508 map->p_align = segment->p_align;
7509 map->p_align_valid = 1;
7510 map->p_vaddr_offset = 0;
7511
7512 if (map->p_type == PT_GNU_RELRO
7513 || map->p_type == PT_GNU_STACK)
7514 {
7515 /* The PT_GNU_RELRO segment may contain the first a few
7516 bytes in the .got.plt section even if the whole .got.plt
7517 section isn't in the PT_GNU_RELRO segment. We won't
7518 change the size of the PT_GNU_RELRO segment.
7519 Similarly, PT_GNU_STACK size is significant on uclinux
7520 systems. */
7521 map->p_size = segment->p_memsz;
7522 map->p_size_valid = 1;
7523 }
7524
7525 /* Determine if this segment contains the ELF file header
7526 and if it contains the program headers themselves. */
7527 map->includes_filehdr = (segment->p_offset == 0
7528 && segment->p_filesz >= iehdr->e_ehsize);
7529
7530 map->includes_phdrs = 0;
7531 if (! phdr_included || segment->p_type != PT_LOAD)
7532 {
7533 map->includes_phdrs =
7534 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7535 && (segment->p_offset + segment->p_filesz
7536 >= ((bfd_vma) iehdr->e_phoff
7537 + iehdr->e_phnum * iehdr->e_phentsize)));
7538
7539 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7540 phdr_included = TRUE;
7541 }
7542
7543 lowest_section = NULL;
7544 if (section_count != 0)
7545 {
7546 unsigned int isec = 0;
7547
7548 for (section = first_section;
7549 section != NULL;
7550 section = section->next)
7551 {
7552 this_hdr = &(elf_section_data(section)->this_hdr);
7553 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7554 {
7555 map->sections[isec++] = section->output_section;
7556 if ((section->flags & SEC_ALLOC) != 0)
7557 {
7558 bfd_vma seg_off;
7559
7560 if (lowest_section == NULL
7561 || section->lma < lowest_section->lma)
7562 lowest_section = section;
7563
7564 /* Section lmas are set up from PT_LOAD header
7565 p_paddr in _bfd_elf_make_section_from_shdr.
7566 If this header has a p_paddr that disagrees
7567 with the section lma, flag the p_paddr as
7568 invalid. */
7569 if ((section->flags & SEC_LOAD) != 0)
7570 seg_off = this_hdr->sh_offset - segment->p_offset;
7571 else
7572 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7573 if (section->lma - segment->p_paddr != seg_off)
7574 map->p_paddr_valid = FALSE;
7575 }
7576 if (isec == section_count)
7577 break;
7578 }
7579 }
7580 }
7581
7582 if (section_count == 0)
7583 map->p_vaddr_offset = segment->p_vaddr;
7584 else if (map->p_paddr_valid)
7585 {
7586 /* Account for padding before the first section in the segment. */
7587 bfd_vma hdr_size = 0;
7588 if (map->includes_filehdr)
7589 hdr_size = iehdr->e_ehsize;
7590 if (map->includes_phdrs)
7591 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7592
7593 map->p_vaddr_offset = (map->p_paddr + hdr_size
7594 - (lowest_section ? lowest_section->lma : 0));
7595 }
7596
7597 map->count = section_count;
7598 *pointer_to_map = map;
7599 pointer_to_map = &map->next;
7600 }
7601
7602 elf_seg_map (obfd) = map_first;
7603 return TRUE;
7604 }
7605
7606 /* Copy private BFD data. This copies or rewrites ELF program header
7607 information. */
7608
7609 static bfd_boolean
7610 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7611 {
7612 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7613 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7614 return TRUE;
7615
7616 if (elf_tdata (ibfd)->phdr == NULL)
7617 return TRUE;
7618
7619 if (ibfd->xvec == obfd->xvec)
7620 {
7621 /* Check to see if any sections in the input BFD
7622 covered by ELF program header have changed. */
7623 Elf_Internal_Phdr *segment;
7624 asection *section, *osec;
7625 unsigned int i, num_segments;
7626 Elf_Internal_Shdr *this_hdr;
7627 const struct elf_backend_data *bed;
7628
7629 bed = get_elf_backend_data (ibfd);
7630
7631 /* Regenerate the segment map if p_paddr is set to 0. */
7632 if (bed->want_p_paddr_set_to_zero)
7633 goto rewrite;
7634
7635 /* Initialize the segment mark field. */
7636 for (section = obfd->sections; section != NULL;
7637 section = section->next)
7638 section->segment_mark = FALSE;
7639
7640 num_segments = elf_elfheader (ibfd)->e_phnum;
7641 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7642 i < num_segments;
7643 i++, segment++)
7644 {
7645 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7646 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7647 which severly confuses things, so always regenerate the segment
7648 map in this case. */
7649 if (segment->p_paddr == 0
7650 && segment->p_memsz == 0
7651 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7652 goto rewrite;
7653
7654 for (section = ibfd->sections;
7655 section != NULL; section = section->next)
7656 {
7657 /* We mark the output section so that we know it comes
7658 from the input BFD. */
7659 osec = section->output_section;
7660 if (osec)
7661 osec->segment_mark = TRUE;
7662
7663 /* Check if this section is covered by the segment. */
7664 this_hdr = &(elf_section_data(section)->this_hdr);
7665 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7666 {
7667 /* FIXME: Check if its output section is changed or
7668 removed. What else do we need to check? */
7669 if (osec == NULL
7670 || section->flags != osec->flags
7671 || section->lma != osec->lma
7672 || section->vma != osec->vma
7673 || section->size != osec->size
7674 || section->rawsize != osec->rawsize
7675 || section->alignment_power != osec->alignment_power)
7676 goto rewrite;
7677 }
7678 }
7679 }
7680
7681 /* Check to see if any output section do not come from the
7682 input BFD. */
7683 for (section = obfd->sections; section != NULL;
7684 section = section->next)
7685 {
7686 if (!section->segment_mark)
7687 goto rewrite;
7688 else
7689 section->segment_mark = FALSE;
7690 }
7691
7692 return copy_elf_program_header (ibfd, obfd);
7693 }
7694
7695 rewrite:
7696 if (ibfd->xvec == obfd->xvec)
7697 {
7698 /* When rewriting program header, set the output maxpagesize to
7699 the maximum alignment of input PT_LOAD segments. */
7700 Elf_Internal_Phdr *segment;
7701 unsigned int i;
7702 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7703 bfd_vma maxpagesize = 0;
7704
7705 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7706 i < num_segments;
7707 i++, segment++)
7708 if (segment->p_type == PT_LOAD
7709 && maxpagesize < segment->p_align)
7710 {
7711 /* PR 17512: file: f17299af. */
7712 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7713 /* xgettext:c-format */
7714 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7715 PRIx64 " is too large"),
7716 ibfd, (uint64_t) segment->p_align);
7717 else
7718 maxpagesize = segment->p_align;
7719 }
7720
7721 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7722 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7723 }
7724
7725 return rewrite_elf_program_header (ibfd, obfd);
7726 }
7727
7728 /* Initialize private output section information from input section. */
7729
7730 bfd_boolean
7731 _bfd_elf_init_private_section_data (bfd *ibfd,
7732 asection *isec,
7733 bfd *obfd,
7734 asection *osec,
7735 struct bfd_link_info *link_info)
7736
7737 {
7738 Elf_Internal_Shdr *ihdr, *ohdr;
7739 bfd_boolean final_link = (link_info != NULL
7740 && !bfd_link_relocatable (link_info));
7741
7742 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7743 || obfd->xvec->flavour != bfd_target_elf_flavour)
7744 return TRUE;
7745
7746 BFD_ASSERT (elf_section_data (osec) != NULL);
7747
7748 /* For objcopy and relocatable link, don't copy the output ELF
7749 section type from input if the output BFD section flags have been
7750 set to something different. For a final link allow some flags
7751 that the linker clears to differ. */
7752 if (elf_section_type (osec) == SHT_NULL
7753 && (osec->flags == isec->flags
7754 || (final_link
7755 && ((osec->flags ^ isec->flags)
7756 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7757 elf_section_type (osec) = elf_section_type (isec);
7758
7759 /* FIXME: Is this correct for all OS/PROC specific flags? */
7760 elf_section_flags (osec) |= (elf_section_flags (isec)
7761 & (SHF_MASKOS | SHF_MASKPROC));
7762
7763 /* Copy sh_info from input for mbind section. */
7764 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7765 && elf_section_flags (isec) & SHF_GNU_MBIND)
7766 elf_section_data (osec)->this_hdr.sh_info
7767 = elf_section_data (isec)->this_hdr.sh_info;
7768
7769 /* Set things up for objcopy and relocatable link. The output
7770 SHT_GROUP section will have its elf_next_in_group pointing back
7771 to the input group members. Ignore linker created group section.
7772 See elfNN_ia64_object_p in elfxx-ia64.c. */
7773 if ((link_info == NULL
7774 || !link_info->resolve_section_groups)
7775 && (elf_sec_group (isec) == NULL
7776 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7777 {
7778 if (elf_section_flags (isec) & SHF_GROUP)
7779 elf_section_flags (osec) |= SHF_GROUP;
7780 elf_next_in_group (osec) = elf_next_in_group (isec);
7781 elf_section_data (osec)->group = elf_section_data (isec)->group;
7782 }
7783
7784 /* If not decompress, preserve SHF_COMPRESSED. */
7785 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7786 elf_section_flags (osec) |= (elf_section_flags (isec)
7787 & SHF_COMPRESSED);
7788
7789 ihdr = &elf_section_data (isec)->this_hdr;
7790
7791 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7792 don't use the output section of the linked-to section since it
7793 may be NULL at this point. */
7794 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7795 {
7796 ohdr = &elf_section_data (osec)->this_hdr;
7797 ohdr->sh_flags |= SHF_LINK_ORDER;
7798 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7799 }
7800
7801 osec->use_rela_p = isec->use_rela_p;
7802
7803 return TRUE;
7804 }
7805
7806 /* Copy private section information. This copies over the entsize
7807 field, and sometimes the info field. */
7808
7809 bfd_boolean
7810 _bfd_elf_copy_private_section_data (bfd *ibfd,
7811 asection *isec,
7812 bfd *obfd,
7813 asection *osec)
7814 {
7815 Elf_Internal_Shdr *ihdr, *ohdr;
7816
7817 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7818 || obfd->xvec->flavour != bfd_target_elf_flavour)
7819 return TRUE;
7820
7821 ihdr = &elf_section_data (isec)->this_hdr;
7822 ohdr = &elf_section_data (osec)->this_hdr;
7823
7824 ohdr->sh_entsize = ihdr->sh_entsize;
7825
7826 if (ihdr->sh_type == SHT_SYMTAB
7827 || ihdr->sh_type == SHT_DYNSYM
7828 || ihdr->sh_type == SHT_GNU_verneed
7829 || ihdr->sh_type == SHT_GNU_verdef)
7830 ohdr->sh_info = ihdr->sh_info;
7831
7832 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7833 NULL);
7834 }
7835
7836 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7837 necessary if we are removing either the SHT_GROUP section or any of
7838 the group member sections. DISCARDED is the value that a section's
7839 output_section has if the section will be discarded, NULL when this
7840 function is called from objcopy, bfd_abs_section_ptr when called
7841 from the linker. */
7842
7843 bfd_boolean
7844 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7845 {
7846 asection *isec;
7847
7848 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7849 if (elf_section_type (isec) == SHT_GROUP)
7850 {
7851 asection *first = elf_next_in_group (isec);
7852 asection *s = first;
7853 bfd_size_type removed = 0;
7854
7855 while (s != NULL)
7856 {
7857 /* If this member section is being output but the
7858 SHT_GROUP section is not, then clear the group info
7859 set up by _bfd_elf_copy_private_section_data. */
7860 if (s->output_section != discarded
7861 && isec->output_section == discarded)
7862 {
7863 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7864 elf_group_name (s->output_section) = NULL;
7865 }
7866 /* Conversely, if the member section is not being output
7867 but the SHT_GROUP section is, then adjust its size. */
7868 else if (s->output_section == discarded
7869 && isec->output_section != discarded)
7870 {
7871 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7872 removed += 4;
7873 if (elf_sec->rel.hdr != NULL
7874 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7875 removed += 4;
7876 if (elf_sec->rela.hdr != NULL
7877 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7878 removed += 4;
7879 }
7880 s = elf_next_in_group (s);
7881 if (s == first)
7882 break;
7883 }
7884 if (removed != 0)
7885 {
7886 if (discarded != NULL)
7887 {
7888 /* If we've been called for ld -r, then we need to
7889 adjust the input section size. */
7890 if (isec->rawsize == 0)
7891 isec->rawsize = isec->size;
7892 isec->size = isec->rawsize - removed;
7893 if (isec->size <= 4)
7894 {
7895 isec->size = 0;
7896 isec->flags |= SEC_EXCLUDE;
7897 }
7898 }
7899 else
7900 {
7901 /* Adjust the output section size when called from
7902 objcopy. */
7903 isec->output_section->size -= removed;
7904 if (isec->output_section->size <= 4)
7905 {
7906 isec->output_section->size = 0;
7907 isec->output_section->flags |= SEC_EXCLUDE;
7908 }
7909 }
7910 }
7911 }
7912
7913 return TRUE;
7914 }
7915
7916 /* Copy private header information. */
7917
7918 bfd_boolean
7919 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7920 {
7921 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7922 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7923 return TRUE;
7924
7925 /* Copy over private BFD data if it has not already been copied.
7926 This must be done here, rather than in the copy_private_bfd_data
7927 entry point, because the latter is called after the section
7928 contents have been set, which means that the program headers have
7929 already been worked out. */
7930 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7931 {
7932 if (! copy_private_bfd_data (ibfd, obfd))
7933 return FALSE;
7934 }
7935
7936 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7937 }
7938
7939 /* Copy private symbol information. If this symbol is in a section
7940 which we did not map into a BFD section, try to map the section
7941 index correctly. We use special macro definitions for the mapped
7942 section indices; these definitions are interpreted by the
7943 swap_out_syms function. */
7944
7945 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7946 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7947 #define MAP_STRTAB (SHN_HIOS + 3)
7948 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7949 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7950
7951 bfd_boolean
7952 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7953 asymbol *isymarg,
7954 bfd *obfd,
7955 asymbol *osymarg)
7956 {
7957 elf_symbol_type *isym, *osym;
7958
7959 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7960 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7961 return TRUE;
7962
7963 isym = elf_symbol_from (ibfd, isymarg);
7964 osym = elf_symbol_from (obfd, osymarg);
7965
7966 if (isym != NULL
7967 && isym->internal_elf_sym.st_shndx != 0
7968 && osym != NULL
7969 && bfd_is_abs_section (isym->symbol.section))
7970 {
7971 unsigned int shndx;
7972
7973 shndx = isym->internal_elf_sym.st_shndx;
7974 if (shndx == elf_onesymtab (ibfd))
7975 shndx = MAP_ONESYMTAB;
7976 else if (shndx == elf_dynsymtab (ibfd))
7977 shndx = MAP_DYNSYMTAB;
7978 else if (shndx == elf_strtab_sec (ibfd))
7979 shndx = MAP_STRTAB;
7980 else if (shndx == elf_shstrtab_sec (ibfd))
7981 shndx = MAP_SHSTRTAB;
7982 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7983 shndx = MAP_SYM_SHNDX;
7984 osym->internal_elf_sym.st_shndx = shndx;
7985 }
7986
7987 return TRUE;
7988 }
7989
7990 /* Swap out the symbols. */
7991
7992 static bfd_boolean
7993 swap_out_syms (bfd *abfd,
7994 struct elf_strtab_hash **sttp,
7995 int relocatable_p)
7996 {
7997 const struct elf_backend_data *bed;
7998 int symcount;
7999 asymbol **syms;
8000 struct elf_strtab_hash *stt;
8001 Elf_Internal_Shdr *symtab_hdr;
8002 Elf_Internal_Shdr *symtab_shndx_hdr;
8003 Elf_Internal_Shdr *symstrtab_hdr;
8004 struct elf_sym_strtab *symstrtab;
8005 bfd_byte *outbound_syms;
8006 bfd_byte *outbound_shndx;
8007 unsigned long outbound_syms_index;
8008 unsigned long outbound_shndx_index;
8009 int idx;
8010 unsigned int num_locals;
8011 bfd_size_type amt;
8012 bfd_boolean name_local_sections;
8013
8014 if (!elf_map_symbols (abfd, &num_locals))
8015 return FALSE;
8016
8017 /* Dump out the symtabs. */
8018 stt = _bfd_elf_strtab_init ();
8019 if (stt == NULL)
8020 return FALSE;
8021
8022 bed = get_elf_backend_data (abfd);
8023 symcount = bfd_get_symcount (abfd);
8024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8025 symtab_hdr->sh_type = SHT_SYMTAB;
8026 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8027 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8028 symtab_hdr->sh_info = num_locals + 1;
8029 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8030
8031 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8032 symstrtab_hdr->sh_type = SHT_STRTAB;
8033
8034 /* Allocate buffer to swap out the .strtab section. */
8035 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8036 sizeof (*symstrtab));
8037 if (symstrtab == NULL)
8038 {
8039 _bfd_elf_strtab_free (stt);
8040 return FALSE;
8041 }
8042
8043 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8044 bed->s->sizeof_sym);
8045 if (outbound_syms == NULL)
8046 {
8047 error_return:
8048 _bfd_elf_strtab_free (stt);
8049 free (symstrtab);
8050 return FALSE;
8051 }
8052 symtab_hdr->contents = outbound_syms;
8053 outbound_syms_index = 0;
8054
8055 outbound_shndx = NULL;
8056 outbound_shndx_index = 0;
8057
8058 if (elf_symtab_shndx_list (abfd))
8059 {
8060 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8061 if (symtab_shndx_hdr->sh_name != 0)
8062 {
8063 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8064 outbound_shndx = (bfd_byte *)
8065 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8066 if (outbound_shndx == NULL)
8067 goto error_return;
8068
8069 symtab_shndx_hdr->contents = outbound_shndx;
8070 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8071 symtab_shndx_hdr->sh_size = amt;
8072 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8073 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8074 }
8075 /* FIXME: What about any other headers in the list ? */
8076 }
8077
8078 /* Now generate the data (for "contents"). */
8079 {
8080 /* Fill in zeroth symbol and swap it out. */
8081 Elf_Internal_Sym sym;
8082 sym.st_name = 0;
8083 sym.st_value = 0;
8084 sym.st_size = 0;
8085 sym.st_info = 0;
8086 sym.st_other = 0;
8087 sym.st_shndx = SHN_UNDEF;
8088 sym.st_target_internal = 0;
8089 symstrtab[0].sym = sym;
8090 symstrtab[0].dest_index = outbound_syms_index;
8091 symstrtab[0].destshndx_index = outbound_shndx_index;
8092 outbound_syms_index++;
8093 if (outbound_shndx != NULL)
8094 outbound_shndx_index++;
8095 }
8096
8097 name_local_sections
8098 = (bed->elf_backend_name_local_section_symbols
8099 && bed->elf_backend_name_local_section_symbols (abfd));
8100
8101 syms = bfd_get_outsymbols (abfd);
8102 for (idx = 0; idx < symcount;)
8103 {
8104 Elf_Internal_Sym sym;
8105 bfd_vma value = syms[idx]->value;
8106 elf_symbol_type *type_ptr;
8107 flagword flags = syms[idx]->flags;
8108 int type;
8109
8110 if (!name_local_sections
8111 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8112 {
8113 /* Local section symbols have no name. */
8114 sym.st_name = (unsigned long) -1;
8115 }
8116 else
8117 {
8118 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8119 to get the final offset for st_name. */
8120 sym.st_name
8121 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8122 FALSE);
8123 if (sym.st_name == (unsigned long) -1)
8124 goto error_return;
8125 }
8126
8127 type_ptr = elf_symbol_from (abfd, syms[idx]);
8128
8129 if ((flags & BSF_SECTION_SYM) == 0
8130 && bfd_is_com_section (syms[idx]->section))
8131 {
8132 /* ELF common symbols put the alignment into the `value' field,
8133 and the size into the `size' field. This is backwards from
8134 how BFD handles it, so reverse it here. */
8135 sym.st_size = value;
8136 if (type_ptr == NULL
8137 || type_ptr->internal_elf_sym.st_value == 0)
8138 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8139 else
8140 sym.st_value = type_ptr->internal_elf_sym.st_value;
8141 sym.st_shndx = _bfd_elf_section_from_bfd_section
8142 (abfd, syms[idx]->section);
8143 }
8144 else
8145 {
8146 asection *sec = syms[idx]->section;
8147 unsigned int shndx;
8148
8149 if (sec->output_section)
8150 {
8151 value += sec->output_offset;
8152 sec = sec->output_section;
8153 }
8154
8155 /* Don't add in the section vma for relocatable output. */
8156 if (! relocatable_p)
8157 value += sec->vma;
8158 sym.st_value = value;
8159 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8160
8161 if (bfd_is_abs_section (sec)
8162 && type_ptr != NULL
8163 && type_ptr->internal_elf_sym.st_shndx != 0)
8164 {
8165 /* This symbol is in a real ELF section which we did
8166 not create as a BFD section. Undo the mapping done
8167 by copy_private_symbol_data. */
8168 shndx = type_ptr->internal_elf_sym.st_shndx;
8169 switch (shndx)
8170 {
8171 case MAP_ONESYMTAB:
8172 shndx = elf_onesymtab (abfd);
8173 break;
8174 case MAP_DYNSYMTAB:
8175 shndx = elf_dynsymtab (abfd);
8176 break;
8177 case MAP_STRTAB:
8178 shndx = elf_strtab_sec (abfd);
8179 break;
8180 case MAP_SHSTRTAB:
8181 shndx = elf_shstrtab_sec (abfd);
8182 break;
8183 case MAP_SYM_SHNDX:
8184 if (elf_symtab_shndx_list (abfd))
8185 shndx = elf_symtab_shndx_list (abfd)->ndx;
8186 break;
8187 default:
8188 shndx = SHN_ABS;
8189 break;
8190 }
8191 }
8192 else
8193 {
8194 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8195
8196 if (shndx == SHN_BAD)
8197 {
8198 asection *sec2;
8199
8200 /* Writing this would be a hell of a lot easier if
8201 we had some decent documentation on bfd, and
8202 knew what to expect of the library, and what to
8203 demand of applications. For example, it
8204 appears that `objcopy' might not set the
8205 section of a symbol to be a section that is
8206 actually in the output file. */
8207 sec2 = bfd_get_section_by_name (abfd, sec->name);
8208 if (sec2 != NULL)
8209 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8210 if (shndx == SHN_BAD)
8211 {
8212 /* xgettext:c-format */
8213 _bfd_error_handler
8214 (_("unable to find equivalent output section"
8215 " for symbol '%s' from section '%s'"),
8216 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8217 sec->name);
8218 bfd_set_error (bfd_error_invalid_operation);
8219 goto error_return;
8220 }
8221 }
8222 }
8223
8224 sym.st_shndx = shndx;
8225 }
8226
8227 if ((flags & BSF_THREAD_LOCAL) != 0)
8228 type = STT_TLS;
8229 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8230 type = STT_GNU_IFUNC;
8231 else if ((flags & BSF_FUNCTION) != 0)
8232 type = STT_FUNC;
8233 else if ((flags & BSF_OBJECT) != 0)
8234 type = STT_OBJECT;
8235 else if ((flags & BSF_RELC) != 0)
8236 type = STT_RELC;
8237 else if ((flags & BSF_SRELC) != 0)
8238 type = STT_SRELC;
8239 else
8240 type = STT_NOTYPE;
8241
8242 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8243 type = STT_TLS;
8244
8245 /* Processor-specific types. */
8246 if (type_ptr != NULL
8247 && bed->elf_backend_get_symbol_type)
8248 type = ((*bed->elf_backend_get_symbol_type)
8249 (&type_ptr->internal_elf_sym, type));
8250
8251 if (flags & BSF_SECTION_SYM)
8252 {
8253 if (flags & BSF_GLOBAL)
8254 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8255 else
8256 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8257 }
8258 else if (bfd_is_com_section (syms[idx]->section))
8259 {
8260 if (type != STT_TLS)
8261 {
8262 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8263 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8264 ? STT_COMMON : STT_OBJECT);
8265 else
8266 type = ((flags & BSF_ELF_COMMON) != 0
8267 ? STT_COMMON : STT_OBJECT);
8268 }
8269 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8270 }
8271 else if (bfd_is_und_section (syms[idx]->section))
8272 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8273 ? STB_WEAK
8274 : STB_GLOBAL),
8275 type);
8276 else if (flags & BSF_FILE)
8277 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8278 else
8279 {
8280 int bind = STB_LOCAL;
8281
8282 if (flags & BSF_LOCAL)
8283 bind = STB_LOCAL;
8284 else if (flags & BSF_GNU_UNIQUE)
8285 bind = STB_GNU_UNIQUE;
8286 else if (flags & BSF_WEAK)
8287 bind = STB_WEAK;
8288 else if (flags & BSF_GLOBAL)
8289 bind = STB_GLOBAL;
8290
8291 sym.st_info = ELF_ST_INFO (bind, type);
8292 }
8293
8294 if (type_ptr != NULL)
8295 {
8296 sym.st_other = type_ptr->internal_elf_sym.st_other;
8297 sym.st_target_internal
8298 = type_ptr->internal_elf_sym.st_target_internal;
8299 }
8300 else
8301 {
8302 sym.st_other = 0;
8303 sym.st_target_internal = 0;
8304 }
8305
8306 idx++;
8307 symstrtab[idx].sym = sym;
8308 symstrtab[idx].dest_index = outbound_syms_index;
8309 symstrtab[idx].destshndx_index = outbound_shndx_index;
8310
8311 outbound_syms_index++;
8312 if (outbound_shndx != NULL)
8313 outbound_shndx_index++;
8314 }
8315
8316 /* Finalize the .strtab section. */
8317 _bfd_elf_strtab_finalize (stt);
8318
8319 /* Swap out the .strtab section. */
8320 for (idx = 0; idx <= symcount; idx++)
8321 {
8322 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8323 if (elfsym->sym.st_name == (unsigned long) -1)
8324 elfsym->sym.st_name = 0;
8325 else
8326 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8327 elfsym->sym.st_name);
8328 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8329 (outbound_syms
8330 + (elfsym->dest_index
8331 * bed->s->sizeof_sym)),
8332 (outbound_shndx
8333 + (elfsym->destshndx_index
8334 * sizeof (Elf_External_Sym_Shndx))));
8335 }
8336 free (symstrtab);
8337
8338 *sttp = stt;
8339 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8340 symstrtab_hdr->sh_type = SHT_STRTAB;
8341 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8342 symstrtab_hdr->sh_addr = 0;
8343 symstrtab_hdr->sh_entsize = 0;
8344 symstrtab_hdr->sh_link = 0;
8345 symstrtab_hdr->sh_info = 0;
8346 symstrtab_hdr->sh_addralign = 1;
8347
8348 return TRUE;
8349 }
8350
8351 /* Return the number of bytes required to hold the symtab vector.
8352
8353 Note that we base it on the count plus 1, since we will null terminate
8354 the vector allocated based on this size. However, the ELF symbol table
8355 always has a dummy entry as symbol #0, so it ends up even. */
8356
8357 long
8358 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8359 {
8360 bfd_size_type symcount;
8361 long symtab_size;
8362 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8363
8364 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8365 if (symcount >= LONG_MAX / sizeof (asymbol *))
8366 {
8367 bfd_set_error (bfd_error_file_too_big);
8368 return -1;
8369 }
8370 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8371 if (symcount > 0)
8372 symtab_size -= sizeof (asymbol *);
8373
8374 return symtab_size;
8375 }
8376
8377 long
8378 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8379 {
8380 bfd_size_type symcount;
8381 long symtab_size;
8382 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8383
8384 if (elf_dynsymtab (abfd) == 0)
8385 {
8386 bfd_set_error (bfd_error_invalid_operation);
8387 return -1;
8388 }
8389
8390 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8391 if (symcount >= LONG_MAX / sizeof (asymbol *))
8392 {
8393 bfd_set_error (bfd_error_file_too_big);
8394 return -1;
8395 }
8396 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8397 if (symcount > 0)
8398 symtab_size -= sizeof (asymbol *);
8399
8400 return symtab_size;
8401 }
8402
8403 long
8404 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8405 sec_ptr asect)
8406 {
8407 #if SIZEOF_LONG == SIZEOF_INT
8408 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8409 {
8410 bfd_set_error (bfd_error_file_too_big);
8411 return -1;
8412 }
8413 #endif
8414 return (asect->reloc_count + 1) * sizeof (arelent *);
8415 }
8416
8417 /* Canonicalize the relocs. */
8418
8419 long
8420 _bfd_elf_canonicalize_reloc (bfd *abfd,
8421 sec_ptr section,
8422 arelent **relptr,
8423 asymbol **symbols)
8424 {
8425 arelent *tblptr;
8426 unsigned int i;
8427 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8428
8429 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8430 return -1;
8431
8432 tblptr = section->relocation;
8433 for (i = 0; i < section->reloc_count; i++)
8434 *relptr++ = tblptr++;
8435
8436 *relptr = NULL;
8437
8438 return section->reloc_count;
8439 }
8440
8441 long
8442 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8443 {
8444 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8445 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8446
8447 if (symcount >= 0)
8448 abfd->symcount = symcount;
8449 return symcount;
8450 }
8451
8452 long
8453 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8454 asymbol **allocation)
8455 {
8456 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8457 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8458
8459 if (symcount >= 0)
8460 abfd->dynsymcount = symcount;
8461 return symcount;
8462 }
8463
8464 /* Return the size required for the dynamic reloc entries. Any loadable
8465 section that was actually installed in the BFD, and has type SHT_REL
8466 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8467 dynamic reloc section. */
8468
8469 long
8470 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8471 {
8472 bfd_size_type count;
8473 asection *s;
8474
8475 if (elf_dynsymtab (abfd) == 0)
8476 {
8477 bfd_set_error (bfd_error_invalid_operation);
8478 return -1;
8479 }
8480
8481 count = 1;
8482 for (s = abfd->sections; s != NULL; s = s->next)
8483 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8484 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8485 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8486 {
8487 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8488 if (count > LONG_MAX / sizeof (arelent *))
8489 {
8490 bfd_set_error (bfd_error_file_too_big);
8491 return -1;
8492 }
8493 }
8494 return count * sizeof (arelent *);
8495 }
8496
8497 /* Canonicalize the dynamic relocation entries. Note that we return the
8498 dynamic relocations as a single block, although they are actually
8499 associated with particular sections; the interface, which was
8500 designed for SunOS style shared libraries, expects that there is only
8501 one set of dynamic relocs. Any loadable section that was actually
8502 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8503 dynamic symbol table, is considered to be a dynamic reloc section. */
8504
8505 long
8506 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8507 arelent **storage,
8508 asymbol **syms)
8509 {
8510 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8511 asection *s;
8512 long ret;
8513
8514 if (elf_dynsymtab (abfd) == 0)
8515 {
8516 bfd_set_error (bfd_error_invalid_operation);
8517 return -1;
8518 }
8519
8520 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8521 ret = 0;
8522 for (s = abfd->sections; s != NULL; s = s->next)
8523 {
8524 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8525 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8526 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8527 {
8528 arelent *p;
8529 long count, i;
8530
8531 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8532 return -1;
8533 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8534 p = s->relocation;
8535 for (i = 0; i < count; i++)
8536 *storage++ = p++;
8537 ret += count;
8538 }
8539 }
8540
8541 *storage = NULL;
8542
8543 return ret;
8544 }
8545 \f
8546 /* Read in the version information. */
8547
8548 bfd_boolean
8549 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8550 {
8551 bfd_byte *contents = NULL;
8552 unsigned int freeidx = 0;
8553
8554 if (elf_dynverref (abfd) != 0)
8555 {
8556 Elf_Internal_Shdr *hdr;
8557 Elf_External_Verneed *everneed;
8558 Elf_Internal_Verneed *iverneed;
8559 unsigned int i;
8560 bfd_byte *contents_end;
8561
8562 hdr = &elf_tdata (abfd)->dynverref_hdr;
8563
8564 if (hdr->sh_info == 0
8565 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8566 {
8567 error_return_bad_verref:
8568 _bfd_error_handler
8569 (_("%pB: .gnu.version_r invalid entry"), abfd);
8570 bfd_set_error (bfd_error_bad_value);
8571 error_return_verref:
8572 elf_tdata (abfd)->verref = NULL;
8573 elf_tdata (abfd)->cverrefs = 0;
8574 goto error_return;
8575 }
8576
8577 ufile_ptr filesize = bfd_get_file_size (abfd);
8578 if (filesize > 0 && filesize < hdr->sh_size)
8579 {
8580 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8581 of memory. */
8582 bfd_set_error (bfd_error_no_memory);
8583 _bfd_error_handler
8584 /* xgettext:c-format */
8585 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8586 abfd, (uint64_t) hdr->sh_size);
8587 goto error_return_verref;
8588 }
8589 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8590 if (contents == NULL)
8591 goto error_return_verref;
8592
8593 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8594 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8595 goto error_return_verref;
8596
8597 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8598 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8599
8600 if (elf_tdata (abfd)->verref == NULL)
8601 goto error_return_verref;
8602
8603 BFD_ASSERT (sizeof (Elf_External_Verneed)
8604 == sizeof (Elf_External_Vernaux));
8605 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8606 everneed = (Elf_External_Verneed *) contents;
8607 iverneed = elf_tdata (abfd)->verref;
8608 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8609 {
8610 Elf_External_Vernaux *evernaux;
8611 Elf_Internal_Vernaux *ivernaux;
8612 unsigned int j;
8613
8614 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8615
8616 iverneed->vn_bfd = abfd;
8617
8618 iverneed->vn_filename =
8619 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8620 iverneed->vn_file);
8621 if (iverneed->vn_filename == NULL)
8622 goto error_return_bad_verref;
8623
8624 if (iverneed->vn_cnt == 0)
8625 iverneed->vn_auxptr = NULL;
8626 else
8627 {
8628 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8629 bfd_alloc2 (abfd, iverneed->vn_cnt,
8630 sizeof (Elf_Internal_Vernaux));
8631 if (iverneed->vn_auxptr == NULL)
8632 goto error_return_verref;
8633 }
8634
8635 if (iverneed->vn_aux
8636 > (size_t) (contents_end - (bfd_byte *) everneed))
8637 goto error_return_bad_verref;
8638
8639 evernaux = ((Elf_External_Vernaux *)
8640 ((bfd_byte *) everneed + iverneed->vn_aux));
8641 ivernaux = iverneed->vn_auxptr;
8642 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8643 {
8644 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8645
8646 ivernaux->vna_nodename =
8647 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8648 ivernaux->vna_name);
8649 if (ivernaux->vna_nodename == NULL)
8650 goto error_return_bad_verref;
8651
8652 if (ivernaux->vna_other > freeidx)
8653 freeidx = ivernaux->vna_other;
8654
8655 ivernaux->vna_nextptr = NULL;
8656 if (ivernaux->vna_next == 0)
8657 {
8658 iverneed->vn_cnt = j + 1;
8659 break;
8660 }
8661 if (j + 1 < iverneed->vn_cnt)
8662 ivernaux->vna_nextptr = ivernaux + 1;
8663
8664 if (ivernaux->vna_next
8665 > (size_t) (contents_end - (bfd_byte *) evernaux))
8666 goto error_return_bad_verref;
8667
8668 evernaux = ((Elf_External_Vernaux *)
8669 ((bfd_byte *) evernaux + ivernaux->vna_next));
8670 }
8671
8672 iverneed->vn_nextref = NULL;
8673 if (iverneed->vn_next == 0)
8674 break;
8675 if (i + 1 < hdr->sh_info)
8676 iverneed->vn_nextref = iverneed + 1;
8677
8678 if (iverneed->vn_next
8679 > (size_t) (contents_end - (bfd_byte *) everneed))
8680 goto error_return_bad_verref;
8681
8682 everneed = ((Elf_External_Verneed *)
8683 ((bfd_byte *) everneed + iverneed->vn_next));
8684 }
8685 elf_tdata (abfd)->cverrefs = i;
8686
8687 free (contents);
8688 contents = NULL;
8689 }
8690
8691 if (elf_dynverdef (abfd) != 0)
8692 {
8693 Elf_Internal_Shdr *hdr;
8694 Elf_External_Verdef *everdef;
8695 Elf_Internal_Verdef *iverdef;
8696 Elf_Internal_Verdef *iverdefarr;
8697 Elf_Internal_Verdef iverdefmem;
8698 unsigned int i;
8699 unsigned int maxidx;
8700 bfd_byte *contents_end_def, *contents_end_aux;
8701
8702 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8703
8704 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8705 {
8706 error_return_bad_verdef:
8707 _bfd_error_handler
8708 (_("%pB: .gnu.version_d invalid entry"), abfd);
8709 bfd_set_error (bfd_error_bad_value);
8710 error_return_verdef:
8711 elf_tdata (abfd)->verdef = NULL;
8712 elf_tdata (abfd)->cverdefs = 0;
8713 goto error_return;
8714 }
8715
8716 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8717 if (contents == NULL)
8718 goto error_return_verdef;
8719 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8720 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8721 goto error_return_verdef;
8722
8723 BFD_ASSERT (sizeof (Elf_External_Verdef)
8724 >= sizeof (Elf_External_Verdaux));
8725 contents_end_def = contents + hdr->sh_size
8726 - sizeof (Elf_External_Verdef);
8727 contents_end_aux = contents + hdr->sh_size
8728 - sizeof (Elf_External_Verdaux);
8729
8730 /* We know the number of entries in the section but not the maximum
8731 index. Therefore we have to run through all entries and find
8732 the maximum. */
8733 everdef = (Elf_External_Verdef *) contents;
8734 maxidx = 0;
8735 for (i = 0; i < hdr->sh_info; ++i)
8736 {
8737 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8738
8739 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8740 goto error_return_bad_verdef;
8741 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8742 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8743
8744 if (iverdefmem.vd_next == 0)
8745 break;
8746
8747 if (iverdefmem.vd_next
8748 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8749 goto error_return_bad_verdef;
8750
8751 everdef = ((Elf_External_Verdef *)
8752 ((bfd_byte *) everdef + iverdefmem.vd_next));
8753 }
8754
8755 if (default_imported_symver)
8756 {
8757 if (freeidx > maxidx)
8758 maxidx = ++freeidx;
8759 else
8760 freeidx = ++maxidx;
8761 }
8762
8763 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8764 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8765 if (elf_tdata (abfd)->verdef == NULL)
8766 goto error_return_verdef;
8767
8768 elf_tdata (abfd)->cverdefs = maxidx;
8769
8770 everdef = (Elf_External_Verdef *) contents;
8771 iverdefarr = elf_tdata (abfd)->verdef;
8772 for (i = 0; i < hdr->sh_info; i++)
8773 {
8774 Elf_External_Verdaux *everdaux;
8775 Elf_Internal_Verdaux *iverdaux;
8776 unsigned int j;
8777
8778 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8779
8780 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8781 goto error_return_bad_verdef;
8782
8783 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8784 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8785
8786 iverdef->vd_bfd = abfd;
8787
8788 if (iverdef->vd_cnt == 0)
8789 iverdef->vd_auxptr = NULL;
8790 else
8791 {
8792 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8793 bfd_alloc2 (abfd, iverdef->vd_cnt,
8794 sizeof (Elf_Internal_Verdaux));
8795 if (iverdef->vd_auxptr == NULL)
8796 goto error_return_verdef;
8797 }
8798
8799 if (iverdef->vd_aux
8800 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8801 goto error_return_bad_verdef;
8802
8803 everdaux = ((Elf_External_Verdaux *)
8804 ((bfd_byte *) everdef + iverdef->vd_aux));
8805 iverdaux = iverdef->vd_auxptr;
8806 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8807 {
8808 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8809
8810 iverdaux->vda_nodename =
8811 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8812 iverdaux->vda_name);
8813 if (iverdaux->vda_nodename == NULL)
8814 goto error_return_bad_verdef;
8815
8816 iverdaux->vda_nextptr = NULL;
8817 if (iverdaux->vda_next == 0)
8818 {
8819 iverdef->vd_cnt = j + 1;
8820 break;
8821 }
8822 if (j + 1 < iverdef->vd_cnt)
8823 iverdaux->vda_nextptr = iverdaux + 1;
8824
8825 if (iverdaux->vda_next
8826 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8827 goto error_return_bad_verdef;
8828
8829 everdaux = ((Elf_External_Verdaux *)
8830 ((bfd_byte *) everdaux + iverdaux->vda_next));
8831 }
8832
8833 iverdef->vd_nodename = NULL;
8834 if (iverdef->vd_cnt)
8835 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8836
8837 iverdef->vd_nextdef = NULL;
8838 if (iverdef->vd_next == 0)
8839 break;
8840 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8841 iverdef->vd_nextdef = iverdef + 1;
8842
8843 everdef = ((Elf_External_Verdef *)
8844 ((bfd_byte *) everdef + iverdef->vd_next));
8845 }
8846
8847 free (contents);
8848 contents = NULL;
8849 }
8850 else if (default_imported_symver)
8851 {
8852 if (freeidx < 3)
8853 freeidx = 3;
8854 else
8855 freeidx++;
8856
8857 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8858 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8859 if (elf_tdata (abfd)->verdef == NULL)
8860 goto error_return;
8861
8862 elf_tdata (abfd)->cverdefs = freeidx;
8863 }
8864
8865 /* Create a default version based on the soname. */
8866 if (default_imported_symver)
8867 {
8868 Elf_Internal_Verdef *iverdef;
8869 Elf_Internal_Verdaux *iverdaux;
8870
8871 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8872
8873 iverdef->vd_version = VER_DEF_CURRENT;
8874 iverdef->vd_flags = 0;
8875 iverdef->vd_ndx = freeidx;
8876 iverdef->vd_cnt = 1;
8877
8878 iverdef->vd_bfd = abfd;
8879
8880 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8881 if (iverdef->vd_nodename == NULL)
8882 goto error_return_verdef;
8883 iverdef->vd_nextdef = NULL;
8884 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8885 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8886 if (iverdef->vd_auxptr == NULL)
8887 goto error_return_verdef;
8888
8889 iverdaux = iverdef->vd_auxptr;
8890 iverdaux->vda_nodename = iverdef->vd_nodename;
8891 }
8892
8893 return TRUE;
8894
8895 error_return:
8896 if (contents != NULL)
8897 free (contents);
8898 return FALSE;
8899 }
8900 \f
8901 asymbol *
8902 _bfd_elf_make_empty_symbol (bfd *abfd)
8903 {
8904 elf_symbol_type *newsym;
8905
8906 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8907 if (!newsym)
8908 return NULL;
8909 newsym->symbol.the_bfd = abfd;
8910 return &newsym->symbol;
8911 }
8912
8913 void
8914 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8915 asymbol *symbol,
8916 symbol_info *ret)
8917 {
8918 bfd_symbol_info (symbol, ret);
8919 }
8920
8921 /* Return whether a symbol name implies a local symbol. Most targets
8922 use this function for the is_local_label_name entry point, but some
8923 override it. */
8924
8925 bfd_boolean
8926 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8927 const char *name)
8928 {
8929 /* Normal local symbols start with ``.L''. */
8930 if (name[0] == '.' && name[1] == 'L')
8931 return TRUE;
8932
8933 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8934 DWARF debugging symbols starting with ``..''. */
8935 if (name[0] == '.' && name[1] == '.')
8936 return TRUE;
8937
8938 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8939 emitting DWARF debugging output. I suspect this is actually a
8940 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8941 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8942 underscore to be emitted on some ELF targets). For ease of use,
8943 we treat such symbols as local. */
8944 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8945 return TRUE;
8946
8947 /* Treat assembler generated fake symbols, dollar local labels and
8948 forward-backward labels (aka local labels) as locals.
8949 These labels have the form:
8950
8951 L0^A.* (fake symbols)
8952
8953 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8954
8955 Versions which start with .L will have already been matched above,
8956 so we only need to match the rest. */
8957 if (name[0] == 'L' && ISDIGIT (name[1]))
8958 {
8959 bfd_boolean ret = FALSE;
8960 const char * p;
8961 char c;
8962
8963 for (p = name + 2; (c = *p); p++)
8964 {
8965 if (c == 1 || c == 2)
8966 {
8967 if (c == 1 && p == name + 2)
8968 /* A fake symbol. */
8969 return TRUE;
8970
8971 /* FIXME: We are being paranoid here and treating symbols like
8972 L0^Bfoo as if there were non-local, on the grounds that the
8973 assembler will never generate them. But can any symbol
8974 containing an ASCII value in the range 1-31 ever be anything
8975 other than some kind of local ? */
8976 ret = TRUE;
8977 }
8978
8979 if (! ISDIGIT (c))
8980 {
8981 ret = FALSE;
8982 break;
8983 }
8984 }
8985 return ret;
8986 }
8987
8988 return FALSE;
8989 }
8990
8991 alent *
8992 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8993 asymbol *symbol ATTRIBUTE_UNUSED)
8994 {
8995 abort ();
8996 return NULL;
8997 }
8998
8999 bfd_boolean
9000 _bfd_elf_set_arch_mach (bfd *abfd,
9001 enum bfd_architecture arch,
9002 unsigned long machine)
9003 {
9004 /* If this isn't the right architecture for this backend, and this
9005 isn't the generic backend, fail. */
9006 if (arch != get_elf_backend_data (abfd)->arch
9007 && arch != bfd_arch_unknown
9008 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9009 return FALSE;
9010
9011 return bfd_default_set_arch_mach (abfd, arch, machine);
9012 }
9013
9014 /* Find the nearest line to a particular section and offset,
9015 for error reporting. */
9016
9017 bfd_boolean
9018 _bfd_elf_find_nearest_line (bfd *abfd,
9019 asymbol **symbols,
9020 asection *section,
9021 bfd_vma offset,
9022 const char **filename_ptr,
9023 const char **functionname_ptr,
9024 unsigned int *line_ptr,
9025 unsigned int *discriminator_ptr)
9026 {
9027 bfd_boolean found;
9028
9029 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9030 filename_ptr, functionname_ptr,
9031 line_ptr, discriminator_ptr,
9032 dwarf_debug_sections,
9033 &elf_tdata (abfd)->dwarf2_find_line_info)
9034 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9035 filename_ptr, functionname_ptr,
9036 line_ptr))
9037 {
9038 if (!*functionname_ptr)
9039 _bfd_elf_find_function (abfd, symbols, section, offset,
9040 *filename_ptr ? NULL : filename_ptr,
9041 functionname_ptr);
9042 return TRUE;
9043 }
9044
9045 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9046 &found, filename_ptr,
9047 functionname_ptr, line_ptr,
9048 &elf_tdata (abfd)->line_info))
9049 return FALSE;
9050 if (found && (*functionname_ptr || *line_ptr))
9051 return TRUE;
9052
9053 if (symbols == NULL)
9054 return FALSE;
9055
9056 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9057 filename_ptr, functionname_ptr))
9058 return FALSE;
9059
9060 *line_ptr = 0;
9061 return TRUE;
9062 }
9063
9064 /* Find the line for a symbol. */
9065
9066 bfd_boolean
9067 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9068 const char **filename_ptr, unsigned int *line_ptr)
9069 {
9070 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9071 filename_ptr, NULL, line_ptr, NULL,
9072 dwarf_debug_sections,
9073 &elf_tdata (abfd)->dwarf2_find_line_info);
9074 }
9075
9076 /* After a call to bfd_find_nearest_line, successive calls to
9077 bfd_find_inliner_info can be used to get source information about
9078 each level of function inlining that terminated at the address
9079 passed to bfd_find_nearest_line. Currently this is only supported
9080 for DWARF2 with appropriate DWARF3 extensions. */
9081
9082 bfd_boolean
9083 _bfd_elf_find_inliner_info (bfd *abfd,
9084 const char **filename_ptr,
9085 const char **functionname_ptr,
9086 unsigned int *line_ptr)
9087 {
9088 bfd_boolean found;
9089 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9090 functionname_ptr, line_ptr,
9091 & elf_tdata (abfd)->dwarf2_find_line_info);
9092 return found;
9093 }
9094
9095 int
9096 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9097 {
9098 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9099 int ret = bed->s->sizeof_ehdr;
9100
9101 if (!bfd_link_relocatable (info))
9102 {
9103 bfd_size_type phdr_size = elf_program_header_size (abfd);
9104
9105 if (phdr_size == (bfd_size_type) -1)
9106 {
9107 struct elf_segment_map *m;
9108
9109 phdr_size = 0;
9110 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9111 phdr_size += bed->s->sizeof_phdr;
9112
9113 if (phdr_size == 0)
9114 phdr_size = get_program_header_size (abfd, info);
9115 }
9116
9117 elf_program_header_size (abfd) = phdr_size;
9118 ret += phdr_size;
9119 }
9120
9121 return ret;
9122 }
9123
9124 bfd_boolean
9125 _bfd_elf_set_section_contents (bfd *abfd,
9126 sec_ptr section,
9127 const void *location,
9128 file_ptr offset,
9129 bfd_size_type count)
9130 {
9131 Elf_Internal_Shdr *hdr;
9132 file_ptr pos;
9133
9134 if (! abfd->output_has_begun
9135 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9136 return FALSE;
9137
9138 if (!count)
9139 return TRUE;
9140
9141 hdr = &elf_section_data (section)->this_hdr;
9142 if (hdr->sh_offset == (file_ptr) -1)
9143 {
9144 if (bfd_section_is_ctf (section))
9145 /* Nothing to do with this section: the contents are generated
9146 later. */
9147 return TRUE;
9148
9149 /* We must compress this section. Write output to the buffer. */
9150 unsigned char *contents = hdr->contents;
9151 if ((offset + count) > hdr->sh_size
9152 || (section->flags & SEC_ELF_COMPRESS) == 0
9153 || contents == NULL)
9154 abort ();
9155 memcpy (contents + offset, location, count);
9156 return TRUE;
9157 }
9158 pos = hdr->sh_offset + offset;
9159 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9160 || bfd_bwrite (location, count, abfd) != count)
9161 return FALSE;
9162
9163 return TRUE;
9164 }
9165
9166 bfd_boolean
9167 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9168 arelent *cache_ptr ATTRIBUTE_UNUSED,
9169 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9170 {
9171 abort ();
9172 return FALSE;
9173 }
9174
9175 /* Try to convert a non-ELF reloc into an ELF one. */
9176
9177 bfd_boolean
9178 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9179 {
9180 /* Check whether we really have an ELF howto. */
9181
9182 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9183 {
9184 bfd_reloc_code_real_type code;
9185 reloc_howto_type *howto;
9186
9187 /* Alien reloc: Try to determine its type to replace it with an
9188 equivalent ELF reloc. */
9189
9190 if (areloc->howto->pc_relative)
9191 {
9192 switch (areloc->howto->bitsize)
9193 {
9194 case 8:
9195 code = BFD_RELOC_8_PCREL;
9196 break;
9197 case 12:
9198 code = BFD_RELOC_12_PCREL;
9199 break;
9200 case 16:
9201 code = BFD_RELOC_16_PCREL;
9202 break;
9203 case 24:
9204 code = BFD_RELOC_24_PCREL;
9205 break;
9206 case 32:
9207 code = BFD_RELOC_32_PCREL;
9208 break;
9209 case 64:
9210 code = BFD_RELOC_64_PCREL;
9211 break;
9212 default:
9213 goto fail;
9214 }
9215
9216 howto = bfd_reloc_type_lookup (abfd, code);
9217
9218 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9219 {
9220 if (howto->pcrel_offset)
9221 areloc->addend += areloc->address;
9222 else
9223 areloc->addend -= areloc->address; /* addend is unsigned!! */
9224 }
9225 }
9226 else
9227 {
9228 switch (areloc->howto->bitsize)
9229 {
9230 case 8:
9231 code = BFD_RELOC_8;
9232 break;
9233 case 14:
9234 code = BFD_RELOC_14;
9235 break;
9236 case 16:
9237 code = BFD_RELOC_16;
9238 break;
9239 case 26:
9240 code = BFD_RELOC_26;
9241 break;
9242 case 32:
9243 code = BFD_RELOC_32;
9244 break;
9245 case 64:
9246 code = BFD_RELOC_64;
9247 break;
9248 default:
9249 goto fail;
9250 }
9251
9252 howto = bfd_reloc_type_lookup (abfd, code);
9253 }
9254
9255 if (howto)
9256 areloc->howto = howto;
9257 else
9258 goto fail;
9259 }
9260
9261 return TRUE;
9262
9263 fail:
9264 /* xgettext:c-format */
9265 _bfd_error_handler (_("%pB: %s unsupported"),
9266 abfd, areloc->howto->name);
9267 bfd_set_error (bfd_error_sorry);
9268 return FALSE;
9269 }
9270
9271 bfd_boolean
9272 _bfd_elf_close_and_cleanup (bfd *abfd)
9273 {
9274 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9275 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9276 {
9277 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9278 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9279 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9280 }
9281
9282 return _bfd_generic_close_and_cleanup (abfd);
9283 }
9284
9285 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9286 in the relocation's offset. Thus we cannot allow any sort of sanity
9287 range-checking to interfere. There is nothing else to do in processing
9288 this reloc. */
9289
9290 bfd_reloc_status_type
9291 _bfd_elf_rel_vtable_reloc_fn
9292 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9293 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9294 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9295 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9296 {
9297 return bfd_reloc_ok;
9298 }
9299 \f
9300 /* Elf core file support. Much of this only works on native
9301 toolchains, since we rely on knowing the
9302 machine-dependent procfs structure in order to pick
9303 out details about the corefile. */
9304
9305 #ifdef HAVE_SYS_PROCFS_H
9306 /* Needed for new procfs interface on sparc-solaris. */
9307 # define _STRUCTURED_PROC 1
9308 # include <sys/procfs.h>
9309 #endif
9310
9311 /* Return a PID that identifies a "thread" for threaded cores, or the
9312 PID of the main process for non-threaded cores. */
9313
9314 static int
9315 elfcore_make_pid (bfd *abfd)
9316 {
9317 int pid;
9318
9319 pid = elf_tdata (abfd)->core->lwpid;
9320 if (pid == 0)
9321 pid = elf_tdata (abfd)->core->pid;
9322
9323 return pid;
9324 }
9325
9326 /* If there isn't a section called NAME, make one, using
9327 data from SECT. Note, this function will generate a
9328 reference to NAME, so you shouldn't deallocate or
9329 overwrite it. */
9330
9331 static bfd_boolean
9332 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9333 {
9334 asection *sect2;
9335
9336 if (bfd_get_section_by_name (abfd, name) != NULL)
9337 return TRUE;
9338
9339 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9340 if (sect2 == NULL)
9341 return FALSE;
9342
9343 sect2->size = sect->size;
9344 sect2->filepos = sect->filepos;
9345 sect2->alignment_power = sect->alignment_power;
9346 return TRUE;
9347 }
9348
9349 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9350 actually creates up to two pseudosections:
9351 - For the single-threaded case, a section named NAME, unless
9352 such a section already exists.
9353 - For the multi-threaded case, a section named "NAME/PID", where
9354 PID is elfcore_make_pid (abfd).
9355 Both pseudosections have identical contents. */
9356 bfd_boolean
9357 _bfd_elfcore_make_pseudosection (bfd *abfd,
9358 char *name,
9359 size_t size,
9360 ufile_ptr filepos)
9361 {
9362 char buf[100];
9363 char *threaded_name;
9364 size_t len;
9365 asection *sect;
9366
9367 /* Build the section name. */
9368
9369 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9370 len = strlen (buf) + 1;
9371 threaded_name = (char *) bfd_alloc (abfd, len);
9372 if (threaded_name == NULL)
9373 return FALSE;
9374 memcpy (threaded_name, buf, len);
9375
9376 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9377 SEC_HAS_CONTENTS);
9378 if (sect == NULL)
9379 return FALSE;
9380 sect->size = size;
9381 sect->filepos = filepos;
9382 sect->alignment_power = 2;
9383
9384 return elfcore_maybe_make_sect (abfd, name, sect);
9385 }
9386
9387 static bfd_boolean
9388 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9389 size_t offs)
9390 {
9391 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9392 SEC_HAS_CONTENTS);
9393
9394 if (sect == NULL)
9395 return FALSE;
9396
9397 sect->size = note->descsz - offs;
9398 sect->filepos = note->descpos + offs;
9399 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9400
9401 return TRUE;
9402 }
9403
9404 /* prstatus_t exists on:
9405 solaris 2.5+
9406 linux 2.[01] + glibc
9407 unixware 4.2
9408 */
9409
9410 #if defined (HAVE_PRSTATUS_T)
9411
9412 static bfd_boolean
9413 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9414 {
9415 size_t size;
9416 int offset;
9417
9418 if (note->descsz == sizeof (prstatus_t))
9419 {
9420 prstatus_t prstat;
9421
9422 size = sizeof (prstat.pr_reg);
9423 offset = offsetof (prstatus_t, pr_reg);
9424 memcpy (&prstat, note->descdata, sizeof (prstat));
9425
9426 /* Do not overwrite the core signal if it
9427 has already been set by another thread. */
9428 if (elf_tdata (abfd)->core->signal == 0)
9429 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9430 if (elf_tdata (abfd)->core->pid == 0)
9431 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9432
9433 /* pr_who exists on:
9434 solaris 2.5+
9435 unixware 4.2
9436 pr_who doesn't exist on:
9437 linux 2.[01]
9438 */
9439 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9440 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9441 #else
9442 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9443 #endif
9444 }
9445 #if defined (HAVE_PRSTATUS32_T)
9446 else if (note->descsz == sizeof (prstatus32_t))
9447 {
9448 /* 64-bit host, 32-bit corefile */
9449 prstatus32_t prstat;
9450
9451 size = sizeof (prstat.pr_reg);
9452 offset = offsetof (prstatus32_t, pr_reg);
9453 memcpy (&prstat, note->descdata, sizeof (prstat));
9454
9455 /* Do not overwrite the core signal if it
9456 has already been set by another thread. */
9457 if (elf_tdata (abfd)->core->signal == 0)
9458 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9459 if (elf_tdata (abfd)->core->pid == 0)
9460 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9461
9462 /* pr_who exists on:
9463 solaris 2.5+
9464 unixware 4.2
9465 pr_who doesn't exist on:
9466 linux 2.[01]
9467 */
9468 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9469 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9470 #else
9471 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9472 #endif
9473 }
9474 #endif /* HAVE_PRSTATUS32_T */
9475 else
9476 {
9477 /* Fail - we don't know how to handle any other
9478 note size (ie. data object type). */
9479 return TRUE;
9480 }
9481
9482 /* Make a ".reg/999" section and a ".reg" section. */
9483 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9484 size, note->descpos + offset);
9485 }
9486 #endif /* defined (HAVE_PRSTATUS_T) */
9487
9488 /* Create a pseudosection containing the exact contents of NOTE. */
9489 static bfd_boolean
9490 elfcore_make_note_pseudosection (bfd *abfd,
9491 char *name,
9492 Elf_Internal_Note *note)
9493 {
9494 return _bfd_elfcore_make_pseudosection (abfd, name,
9495 note->descsz, note->descpos);
9496 }
9497
9498 /* There isn't a consistent prfpregset_t across platforms,
9499 but it doesn't matter, because we don't have to pick this
9500 data structure apart. */
9501
9502 static bfd_boolean
9503 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9504 {
9505 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9506 }
9507
9508 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9509 type of NT_PRXFPREG. Just include the whole note's contents
9510 literally. */
9511
9512 static bfd_boolean
9513 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9514 {
9515 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9516 }
9517
9518 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9519 with a note type of NT_X86_XSTATE. Just include the whole note's
9520 contents literally. */
9521
9522 static bfd_boolean
9523 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9524 {
9525 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9526 }
9527
9528 static bfd_boolean
9529 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9530 {
9531 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9532 }
9533
9534 static bfd_boolean
9535 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9536 {
9537 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9538 }
9539
9540 static bfd_boolean
9541 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9542 {
9543 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9544 }
9545
9546 static bfd_boolean
9547 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9548 {
9549 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9550 }
9551
9552 static bfd_boolean
9553 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9554 {
9555 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9556 }
9557
9558 static bfd_boolean
9559 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9560 {
9561 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9562 }
9563
9564 static bfd_boolean
9565 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9566 {
9567 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9568 }
9569
9570 static bfd_boolean
9571 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9572 {
9573 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9574 }
9575
9576 static bfd_boolean
9577 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9578 {
9579 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9580 }
9581
9582 static bfd_boolean
9583 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9584 {
9585 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9586 }
9587
9588 static bfd_boolean
9589 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9590 {
9591 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9592 }
9593
9594 static bfd_boolean
9595 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9596 {
9597 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9598 }
9599
9600 static bfd_boolean
9601 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9602 {
9603 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9604 }
9605
9606 static bfd_boolean
9607 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9608 {
9609 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9610 }
9611
9612 static bfd_boolean
9613 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9614 {
9615 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9616 }
9617
9618 static bfd_boolean
9619 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9620 {
9621 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9622 }
9623
9624 static bfd_boolean
9625 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9626 {
9627 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9628 }
9629
9630 static bfd_boolean
9631 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9632 {
9633 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9634 }
9635
9636 static bfd_boolean
9637 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9638 {
9639 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9640 }
9641
9642 static bfd_boolean
9643 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9644 {
9645 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9646 }
9647
9648 static bfd_boolean
9649 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9650 {
9651 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9652 }
9653
9654 static bfd_boolean
9655 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9656 {
9657 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9658 }
9659
9660 static bfd_boolean
9661 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9662 {
9663 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9664 }
9665
9666 static bfd_boolean
9667 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9668 {
9669 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9670 }
9671
9672 static bfd_boolean
9673 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9674 {
9675 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9676 }
9677
9678 static bfd_boolean
9679 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9680 {
9681 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9682 }
9683
9684 static bfd_boolean
9685 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9686 {
9687 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9688 }
9689
9690 static bfd_boolean
9691 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9692 {
9693 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9694 }
9695
9696 static bfd_boolean
9697 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9698 {
9699 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9700 }
9701
9702 static bfd_boolean
9703 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9704 {
9705 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9706 }
9707
9708 static bfd_boolean
9709 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9710 {
9711 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9712 }
9713
9714 static bfd_boolean
9715 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9716 {
9717 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9718 }
9719
9720 static bfd_boolean
9721 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9722 {
9723 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9724 }
9725
9726 static bfd_boolean
9727 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9728 {
9729 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9730 }
9731
9732 #if defined (HAVE_PRPSINFO_T)
9733 typedef prpsinfo_t elfcore_psinfo_t;
9734 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9735 typedef prpsinfo32_t elfcore_psinfo32_t;
9736 #endif
9737 #endif
9738
9739 #if defined (HAVE_PSINFO_T)
9740 typedef psinfo_t elfcore_psinfo_t;
9741 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9742 typedef psinfo32_t elfcore_psinfo32_t;
9743 #endif
9744 #endif
9745
9746 /* return a malloc'ed copy of a string at START which is at
9747 most MAX bytes long, possibly without a terminating '\0'.
9748 the copy will always have a terminating '\0'. */
9749
9750 char *
9751 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9752 {
9753 char *dups;
9754 char *end = (char *) memchr (start, '\0', max);
9755 size_t len;
9756
9757 if (end == NULL)
9758 len = max;
9759 else
9760 len = end - start;
9761
9762 dups = (char *) bfd_alloc (abfd, len + 1);
9763 if (dups == NULL)
9764 return NULL;
9765
9766 memcpy (dups, start, len);
9767 dups[len] = '\0';
9768
9769 return dups;
9770 }
9771
9772 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9773 static bfd_boolean
9774 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9775 {
9776 if (note->descsz == sizeof (elfcore_psinfo_t))
9777 {
9778 elfcore_psinfo_t psinfo;
9779
9780 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9781
9782 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9783 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9784 #endif
9785 elf_tdata (abfd)->core->program
9786 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9787 sizeof (psinfo.pr_fname));
9788
9789 elf_tdata (abfd)->core->command
9790 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9791 sizeof (psinfo.pr_psargs));
9792 }
9793 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9794 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9795 {
9796 /* 64-bit host, 32-bit corefile */
9797 elfcore_psinfo32_t psinfo;
9798
9799 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9800
9801 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9802 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9803 #endif
9804 elf_tdata (abfd)->core->program
9805 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9806 sizeof (psinfo.pr_fname));
9807
9808 elf_tdata (abfd)->core->command
9809 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9810 sizeof (psinfo.pr_psargs));
9811 }
9812 #endif
9813
9814 else
9815 {
9816 /* Fail - we don't know how to handle any other
9817 note size (ie. data object type). */
9818 return TRUE;
9819 }
9820
9821 /* Note that for some reason, a spurious space is tacked
9822 onto the end of the args in some (at least one anyway)
9823 implementations, so strip it off if it exists. */
9824
9825 {
9826 char *command = elf_tdata (abfd)->core->command;
9827 int n = strlen (command);
9828
9829 if (0 < n && command[n - 1] == ' ')
9830 command[n - 1] = '\0';
9831 }
9832
9833 return TRUE;
9834 }
9835 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9836
9837 #if defined (HAVE_PSTATUS_T)
9838 static bfd_boolean
9839 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9840 {
9841 if (note->descsz == sizeof (pstatus_t)
9842 #if defined (HAVE_PXSTATUS_T)
9843 || note->descsz == sizeof (pxstatus_t)
9844 #endif
9845 )
9846 {
9847 pstatus_t pstat;
9848
9849 memcpy (&pstat, note->descdata, sizeof (pstat));
9850
9851 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9852 }
9853 #if defined (HAVE_PSTATUS32_T)
9854 else if (note->descsz == sizeof (pstatus32_t))
9855 {
9856 /* 64-bit host, 32-bit corefile */
9857 pstatus32_t pstat;
9858
9859 memcpy (&pstat, note->descdata, sizeof (pstat));
9860
9861 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9862 }
9863 #endif
9864 /* Could grab some more details from the "representative"
9865 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9866 NT_LWPSTATUS note, presumably. */
9867
9868 return TRUE;
9869 }
9870 #endif /* defined (HAVE_PSTATUS_T) */
9871
9872 #if defined (HAVE_LWPSTATUS_T)
9873 static bfd_boolean
9874 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9875 {
9876 lwpstatus_t lwpstat;
9877 char buf[100];
9878 char *name;
9879 size_t len;
9880 asection *sect;
9881
9882 if (note->descsz != sizeof (lwpstat)
9883 #if defined (HAVE_LWPXSTATUS_T)
9884 && note->descsz != sizeof (lwpxstatus_t)
9885 #endif
9886 )
9887 return TRUE;
9888
9889 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9890
9891 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9892 /* Do not overwrite the core signal if it has already been set by
9893 another thread. */
9894 if (elf_tdata (abfd)->core->signal == 0)
9895 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9896
9897 /* Make a ".reg/999" section. */
9898
9899 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9900 len = strlen (buf) + 1;
9901 name = bfd_alloc (abfd, len);
9902 if (name == NULL)
9903 return FALSE;
9904 memcpy (name, buf, len);
9905
9906 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9907 if (sect == NULL)
9908 return FALSE;
9909
9910 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9911 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9912 sect->filepos = note->descpos
9913 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9914 #endif
9915
9916 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9917 sect->size = sizeof (lwpstat.pr_reg);
9918 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9919 #endif
9920
9921 sect->alignment_power = 2;
9922
9923 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9924 return FALSE;
9925
9926 /* Make a ".reg2/999" section */
9927
9928 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9929 len = strlen (buf) + 1;
9930 name = bfd_alloc (abfd, len);
9931 if (name == NULL)
9932 return FALSE;
9933 memcpy (name, buf, len);
9934
9935 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9936 if (sect == NULL)
9937 return FALSE;
9938
9939 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9940 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9941 sect->filepos = note->descpos
9942 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9943 #endif
9944
9945 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9946 sect->size = sizeof (lwpstat.pr_fpreg);
9947 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9948 #endif
9949
9950 sect->alignment_power = 2;
9951
9952 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9953 }
9954 #endif /* defined (HAVE_LWPSTATUS_T) */
9955
9956 static bfd_boolean
9957 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9958 {
9959 char buf[30];
9960 char *name;
9961 size_t len;
9962 asection *sect;
9963 int type;
9964 int is_active_thread;
9965 bfd_vma base_addr;
9966
9967 if (note->descsz < 728)
9968 return TRUE;
9969
9970 if (! CONST_STRNEQ (note->namedata, "win32"))
9971 return TRUE;
9972
9973 type = bfd_get_32 (abfd, note->descdata);
9974
9975 switch (type)
9976 {
9977 case 1 /* NOTE_INFO_PROCESS */:
9978 /* FIXME: need to add ->core->command. */
9979 /* process_info.pid */
9980 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9981 /* process_info.signal */
9982 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9983 break;
9984
9985 case 2 /* NOTE_INFO_THREAD */:
9986 /* Make a ".reg/999" section. */
9987 /* thread_info.tid */
9988 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9989
9990 len = strlen (buf) + 1;
9991 name = (char *) bfd_alloc (abfd, len);
9992 if (name == NULL)
9993 return FALSE;
9994
9995 memcpy (name, buf, len);
9996
9997 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9998 if (sect == NULL)
9999 return FALSE;
10000
10001 /* sizeof (thread_info.thread_context) */
10002 sect->size = 716;
10003 /* offsetof (thread_info.thread_context) */
10004 sect->filepos = note->descpos + 12;
10005 sect->alignment_power = 2;
10006
10007 /* thread_info.is_active_thread */
10008 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10009
10010 if (is_active_thread)
10011 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10012 return FALSE;
10013 break;
10014
10015 case 3 /* NOTE_INFO_MODULE */:
10016 /* Make a ".module/xxxxxxxx" section. */
10017 /* module_info.base_address */
10018 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10019 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10020
10021 len = strlen (buf) + 1;
10022 name = (char *) bfd_alloc (abfd, len);
10023 if (name == NULL)
10024 return FALSE;
10025
10026 memcpy (name, buf, len);
10027
10028 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10029
10030 if (sect == NULL)
10031 return FALSE;
10032
10033 sect->size = note->descsz;
10034 sect->filepos = note->descpos;
10035 sect->alignment_power = 2;
10036 break;
10037
10038 default:
10039 return TRUE;
10040 }
10041
10042 return TRUE;
10043 }
10044
10045 static bfd_boolean
10046 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10047 {
10048 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10049
10050 switch (note->type)
10051 {
10052 default:
10053 return TRUE;
10054
10055 case NT_PRSTATUS:
10056 if (bed->elf_backend_grok_prstatus)
10057 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10058 return TRUE;
10059 #if defined (HAVE_PRSTATUS_T)
10060 return elfcore_grok_prstatus (abfd, note);
10061 #else
10062 return TRUE;
10063 #endif
10064
10065 #if defined (HAVE_PSTATUS_T)
10066 case NT_PSTATUS:
10067 return elfcore_grok_pstatus (abfd, note);
10068 #endif
10069
10070 #if defined (HAVE_LWPSTATUS_T)
10071 case NT_LWPSTATUS:
10072 return elfcore_grok_lwpstatus (abfd, note);
10073 #endif
10074
10075 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10076 return elfcore_grok_prfpreg (abfd, note);
10077
10078 case NT_WIN32PSTATUS:
10079 return elfcore_grok_win32pstatus (abfd, note);
10080
10081 case NT_PRXFPREG: /* Linux SSE extension */
10082 if (note->namesz == 6
10083 && strcmp (note->namedata, "LINUX") == 0)
10084 return elfcore_grok_prxfpreg (abfd, note);
10085 else
10086 return TRUE;
10087
10088 case NT_X86_XSTATE: /* Linux XSAVE extension */
10089 if (note->namesz == 6
10090 && strcmp (note->namedata, "LINUX") == 0)
10091 return elfcore_grok_xstatereg (abfd, note);
10092 else
10093 return TRUE;
10094
10095 case NT_PPC_VMX:
10096 if (note->namesz == 6
10097 && strcmp (note->namedata, "LINUX") == 0)
10098 return elfcore_grok_ppc_vmx (abfd, note);
10099 else
10100 return TRUE;
10101
10102 case NT_PPC_VSX:
10103 if (note->namesz == 6
10104 && strcmp (note->namedata, "LINUX") == 0)
10105 return elfcore_grok_ppc_vsx (abfd, note);
10106 else
10107 return TRUE;
10108
10109 case NT_PPC_TAR:
10110 if (note->namesz == 6
10111 && strcmp (note->namedata, "LINUX") == 0)
10112 return elfcore_grok_ppc_tar (abfd, note);
10113 else
10114 return TRUE;
10115
10116 case NT_PPC_PPR:
10117 if (note->namesz == 6
10118 && strcmp (note->namedata, "LINUX") == 0)
10119 return elfcore_grok_ppc_ppr (abfd, note);
10120 else
10121 return TRUE;
10122
10123 case NT_PPC_DSCR:
10124 if (note->namesz == 6
10125 && strcmp (note->namedata, "LINUX") == 0)
10126 return elfcore_grok_ppc_dscr (abfd, note);
10127 else
10128 return TRUE;
10129
10130 case NT_PPC_EBB:
10131 if (note->namesz == 6
10132 && strcmp (note->namedata, "LINUX") == 0)
10133 return elfcore_grok_ppc_ebb (abfd, note);
10134 else
10135 return TRUE;
10136
10137 case NT_PPC_PMU:
10138 if (note->namesz == 6
10139 && strcmp (note->namedata, "LINUX") == 0)
10140 return elfcore_grok_ppc_pmu (abfd, note);
10141 else
10142 return TRUE;
10143
10144 case NT_PPC_TM_CGPR:
10145 if (note->namesz == 6
10146 && strcmp (note->namedata, "LINUX") == 0)
10147 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10148 else
10149 return TRUE;
10150
10151 case NT_PPC_TM_CFPR:
10152 if (note->namesz == 6
10153 && strcmp (note->namedata, "LINUX") == 0)
10154 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10155 else
10156 return TRUE;
10157
10158 case NT_PPC_TM_CVMX:
10159 if (note->namesz == 6
10160 && strcmp (note->namedata, "LINUX") == 0)
10161 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10162 else
10163 return TRUE;
10164
10165 case NT_PPC_TM_CVSX:
10166 if (note->namesz == 6
10167 && strcmp (note->namedata, "LINUX") == 0)
10168 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10169 else
10170 return TRUE;
10171
10172 case NT_PPC_TM_SPR:
10173 if (note->namesz == 6
10174 && strcmp (note->namedata, "LINUX") == 0)
10175 return elfcore_grok_ppc_tm_spr (abfd, note);
10176 else
10177 return TRUE;
10178
10179 case NT_PPC_TM_CTAR:
10180 if (note->namesz == 6
10181 && strcmp (note->namedata, "LINUX") == 0)
10182 return elfcore_grok_ppc_tm_ctar (abfd, note);
10183 else
10184 return TRUE;
10185
10186 case NT_PPC_TM_CPPR:
10187 if (note->namesz == 6
10188 && strcmp (note->namedata, "LINUX") == 0)
10189 return elfcore_grok_ppc_tm_cppr (abfd, note);
10190 else
10191 return TRUE;
10192
10193 case NT_PPC_TM_CDSCR:
10194 if (note->namesz == 6
10195 && strcmp (note->namedata, "LINUX") == 0)
10196 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10197 else
10198 return TRUE;
10199
10200 case NT_S390_HIGH_GPRS:
10201 if (note->namesz == 6
10202 && strcmp (note->namedata, "LINUX") == 0)
10203 return elfcore_grok_s390_high_gprs (abfd, note);
10204 else
10205 return TRUE;
10206
10207 case NT_S390_TIMER:
10208 if (note->namesz == 6
10209 && strcmp (note->namedata, "LINUX") == 0)
10210 return elfcore_grok_s390_timer (abfd, note);
10211 else
10212 return TRUE;
10213
10214 case NT_S390_TODCMP:
10215 if (note->namesz == 6
10216 && strcmp (note->namedata, "LINUX") == 0)
10217 return elfcore_grok_s390_todcmp (abfd, note);
10218 else
10219 return TRUE;
10220
10221 case NT_S390_TODPREG:
10222 if (note->namesz == 6
10223 && strcmp (note->namedata, "LINUX") == 0)
10224 return elfcore_grok_s390_todpreg (abfd, note);
10225 else
10226 return TRUE;
10227
10228 case NT_S390_CTRS:
10229 if (note->namesz == 6
10230 && strcmp (note->namedata, "LINUX") == 0)
10231 return elfcore_grok_s390_ctrs (abfd, note);
10232 else
10233 return TRUE;
10234
10235 case NT_S390_PREFIX:
10236 if (note->namesz == 6
10237 && strcmp (note->namedata, "LINUX") == 0)
10238 return elfcore_grok_s390_prefix (abfd, note);
10239 else
10240 return TRUE;
10241
10242 case NT_S390_LAST_BREAK:
10243 if (note->namesz == 6
10244 && strcmp (note->namedata, "LINUX") == 0)
10245 return elfcore_grok_s390_last_break (abfd, note);
10246 else
10247 return TRUE;
10248
10249 case NT_S390_SYSTEM_CALL:
10250 if (note->namesz == 6
10251 && strcmp (note->namedata, "LINUX") == 0)
10252 return elfcore_grok_s390_system_call (abfd, note);
10253 else
10254 return TRUE;
10255
10256 case NT_S390_TDB:
10257 if (note->namesz == 6
10258 && strcmp (note->namedata, "LINUX") == 0)
10259 return elfcore_grok_s390_tdb (abfd, note);
10260 else
10261 return TRUE;
10262
10263 case NT_S390_VXRS_LOW:
10264 if (note->namesz == 6
10265 && strcmp (note->namedata, "LINUX") == 0)
10266 return elfcore_grok_s390_vxrs_low (abfd, note);
10267 else
10268 return TRUE;
10269
10270 case NT_S390_VXRS_HIGH:
10271 if (note->namesz == 6
10272 && strcmp (note->namedata, "LINUX") == 0)
10273 return elfcore_grok_s390_vxrs_high (abfd, note);
10274 else
10275 return TRUE;
10276
10277 case NT_S390_GS_CB:
10278 if (note->namesz == 6
10279 && strcmp (note->namedata, "LINUX") == 0)
10280 return elfcore_grok_s390_gs_cb (abfd, note);
10281 else
10282 return TRUE;
10283
10284 case NT_S390_GS_BC:
10285 if (note->namesz == 6
10286 && strcmp (note->namedata, "LINUX") == 0)
10287 return elfcore_grok_s390_gs_bc (abfd, note);
10288 else
10289 return TRUE;
10290
10291 case NT_ARM_VFP:
10292 if (note->namesz == 6
10293 && strcmp (note->namedata, "LINUX") == 0)
10294 return elfcore_grok_arm_vfp (abfd, note);
10295 else
10296 return TRUE;
10297
10298 case NT_ARM_TLS:
10299 if (note->namesz == 6
10300 && strcmp (note->namedata, "LINUX") == 0)
10301 return elfcore_grok_aarch_tls (abfd, note);
10302 else
10303 return TRUE;
10304
10305 case NT_ARM_HW_BREAK:
10306 if (note->namesz == 6
10307 && strcmp (note->namedata, "LINUX") == 0)
10308 return elfcore_grok_aarch_hw_break (abfd, note);
10309 else
10310 return TRUE;
10311
10312 case NT_ARM_HW_WATCH:
10313 if (note->namesz == 6
10314 && strcmp (note->namedata, "LINUX") == 0)
10315 return elfcore_grok_aarch_hw_watch (abfd, note);
10316 else
10317 return TRUE;
10318
10319 case NT_ARM_SVE:
10320 if (note->namesz == 6
10321 && strcmp (note->namedata, "LINUX") == 0)
10322 return elfcore_grok_aarch_sve (abfd, note);
10323 else
10324 return TRUE;
10325
10326 case NT_ARM_PAC_MASK:
10327 if (note->namesz == 6
10328 && strcmp (note->namedata, "LINUX") == 0)
10329 return elfcore_grok_aarch_pauth (abfd, note);
10330 else
10331 return TRUE;
10332
10333 case NT_PRPSINFO:
10334 case NT_PSINFO:
10335 if (bed->elf_backend_grok_psinfo)
10336 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10337 return TRUE;
10338 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10339 return elfcore_grok_psinfo (abfd, note);
10340 #else
10341 return TRUE;
10342 #endif
10343
10344 case NT_AUXV:
10345 return elfcore_make_auxv_note_section (abfd, note, 0);
10346
10347 case NT_FILE:
10348 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10349 note);
10350
10351 case NT_SIGINFO:
10352 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10353 note);
10354
10355 }
10356 }
10357
10358 static bfd_boolean
10359 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10360 {
10361 struct bfd_build_id* build_id;
10362
10363 if (note->descsz == 0)
10364 return FALSE;
10365
10366 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10367 if (build_id == NULL)
10368 return FALSE;
10369
10370 build_id->size = note->descsz;
10371 memcpy (build_id->data, note->descdata, note->descsz);
10372 abfd->build_id = build_id;
10373
10374 return TRUE;
10375 }
10376
10377 static bfd_boolean
10378 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10379 {
10380 switch (note->type)
10381 {
10382 default:
10383 return TRUE;
10384
10385 case NT_GNU_PROPERTY_TYPE_0:
10386 return _bfd_elf_parse_gnu_properties (abfd, note);
10387
10388 case NT_GNU_BUILD_ID:
10389 return elfobj_grok_gnu_build_id (abfd, note);
10390 }
10391 }
10392
10393 static bfd_boolean
10394 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10395 {
10396 struct sdt_note *cur =
10397 (struct sdt_note *) bfd_alloc (abfd,
10398 sizeof (struct sdt_note) + note->descsz);
10399
10400 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10401 cur->size = (bfd_size_type) note->descsz;
10402 memcpy (cur->data, note->descdata, note->descsz);
10403
10404 elf_tdata (abfd)->sdt_note_head = cur;
10405
10406 return TRUE;
10407 }
10408
10409 static bfd_boolean
10410 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10411 {
10412 switch (note->type)
10413 {
10414 case NT_STAPSDT:
10415 return elfobj_grok_stapsdt_note_1 (abfd, note);
10416
10417 default:
10418 return TRUE;
10419 }
10420 }
10421
10422 static bfd_boolean
10423 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10424 {
10425 size_t offset;
10426
10427 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10428 {
10429 case ELFCLASS32:
10430 if (note->descsz < 108)
10431 return FALSE;
10432 break;
10433
10434 case ELFCLASS64:
10435 if (note->descsz < 120)
10436 return FALSE;
10437 break;
10438
10439 default:
10440 return FALSE;
10441 }
10442
10443 /* Check for version 1 in pr_version. */
10444 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10445 return FALSE;
10446
10447 offset = 4;
10448
10449 /* Skip over pr_psinfosz. */
10450 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10451 offset += 4;
10452 else
10453 {
10454 offset += 4; /* Padding before pr_psinfosz. */
10455 offset += 8;
10456 }
10457
10458 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10459 elf_tdata (abfd)->core->program
10460 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10461 offset += 17;
10462
10463 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10464 elf_tdata (abfd)->core->command
10465 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10466 offset += 81;
10467
10468 /* Padding before pr_pid. */
10469 offset += 2;
10470
10471 /* The pr_pid field was added in version "1a". */
10472 if (note->descsz < offset + 4)
10473 return TRUE;
10474
10475 elf_tdata (abfd)->core->pid
10476 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10477
10478 return TRUE;
10479 }
10480
10481 static bfd_boolean
10482 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10483 {
10484 size_t offset;
10485 size_t size;
10486 size_t min_size;
10487
10488 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10489 Also compute minimum size of this note. */
10490 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10491 {
10492 case ELFCLASS32:
10493 offset = 4 + 4;
10494 min_size = offset + (4 * 2) + 4 + 4 + 4;
10495 break;
10496
10497 case ELFCLASS64:
10498 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10499 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10500 break;
10501
10502 default:
10503 return FALSE;
10504 }
10505
10506 if (note->descsz < min_size)
10507 return FALSE;
10508
10509 /* Check for version 1 in pr_version. */
10510 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10511 return FALSE;
10512
10513 /* Extract size of pr_reg from pr_gregsetsz. */
10514 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10515 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10516 {
10517 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10518 offset += 4 * 2;
10519 }
10520 else
10521 {
10522 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10523 offset += 8 * 2;
10524 }
10525
10526 /* Skip over pr_osreldate. */
10527 offset += 4;
10528
10529 /* Read signal from pr_cursig. */
10530 if (elf_tdata (abfd)->core->signal == 0)
10531 elf_tdata (abfd)->core->signal
10532 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10533 offset += 4;
10534
10535 /* Read TID from pr_pid. */
10536 elf_tdata (abfd)->core->lwpid
10537 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10538 offset += 4;
10539
10540 /* Padding before pr_reg. */
10541 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10542 offset += 4;
10543
10544 /* Make sure that there is enough data remaining in the note. */
10545 if ((note->descsz - offset) < size)
10546 return FALSE;
10547
10548 /* Make a ".reg/999" section and a ".reg" section. */
10549 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10550 size, note->descpos + offset);
10551 }
10552
10553 static bfd_boolean
10554 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10555 {
10556 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10557
10558 switch (note->type)
10559 {
10560 case NT_PRSTATUS:
10561 if (bed->elf_backend_grok_freebsd_prstatus)
10562 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10563 return TRUE;
10564 return elfcore_grok_freebsd_prstatus (abfd, note);
10565
10566 case NT_FPREGSET:
10567 return elfcore_grok_prfpreg (abfd, note);
10568
10569 case NT_PRPSINFO:
10570 return elfcore_grok_freebsd_psinfo (abfd, note);
10571
10572 case NT_FREEBSD_THRMISC:
10573 if (note->namesz == 8)
10574 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10575 else
10576 return TRUE;
10577
10578 case NT_FREEBSD_PROCSTAT_PROC:
10579 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10580 note);
10581
10582 case NT_FREEBSD_PROCSTAT_FILES:
10583 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10584 note);
10585
10586 case NT_FREEBSD_PROCSTAT_VMMAP:
10587 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10588 note);
10589
10590 case NT_FREEBSD_PROCSTAT_AUXV:
10591 return elfcore_make_auxv_note_section (abfd, note, 4);
10592
10593 case NT_X86_XSTATE:
10594 if (note->namesz == 8)
10595 return elfcore_grok_xstatereg (abfd, note);
10596 else
10597 return TRUE;
10598
10599 case NT_FREEBSD_PTLWPINFO:
10600 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10601 note);
10602
10603 case NT_ARM_VFP:
10604 return elfcore_grok_arm_vfp (abfd, note);
10605
10606 default:
10607 return TRUE;
10608 }
10609 }
10610
10611 static bfd_boolean
10612 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10613 {
10614 char *cp;
10615
10616 cp = strchr (note->namedata, '@');
10617 if (cp != NULL)
10618 {
10619 *lwpidp = atoi(cp + 1);
10620 return TRUE;
10621 }
10622 return FALSE;
10623 }
10624
10625 static bfd_boolean
10626 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10627 {
10628 if (note->descsz <= 0x7c + 31)
10629 return FALSE;
10630
10631 /* Signal number at offset 0x08. */
10632 elf_tdata (abfd)->core->signal
10633 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10634
10635 /* Process ID at offset 0x50. */
10636 elf_tdata (abfd)->core->pid
10637 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10638
10639 /* Command name at 0x7c (max 32 bytes, including nul). */
10640 elf_tdata (abfd)->core->command
10641 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10642
10643 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10644 note);
10645 }
10646
10647 static bfd_boolean
10648 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10649 {
10650 int lwp;
10651
10652 if (elfcore_netbsd_get_lwpid (note, &lwp))
10653 elf_tdata (abfd)->core->lwpid = lwp;
10654
10655 switch (note->type)
10656 {
10657 case NT_NETBSDCORE_PROCINFO:
10658 /* NetBSD-specific core "procinfo". Note that we expect to
10659 find this note before any of the others, which is fine,
10660 since the kernel writes this note out first when it
10661 creates a core file. */
10662 return elfcore_grok_netbsd_procinfo (abfd, note);
10663 #ifdef NT_NETBSDCORE_AUXV
10664 case NT_NETBSDCORE_AUXV:
10665 /* NetBSD-specific Elf Auxiliary Vector data. */
10666 return elfcore_make_auxv_note_section (abfd, note, 4);
10667 #endif
10668 default:
10669 break;
10670 }
10671
10672 /* As of March 2017 there are no other machine-independent notes
10673 defined for NetBSD core files. If the note type is less
10674 than the start of the machine-dependent note types, we don't
10675 understand it. */
10676
10677 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10678 return TRUE;
10679
10680
10681 switch (bfd_get_arch (abfd))
10682 {
10683 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10684 PT_GETFPREGS == mach+2. */
10685
10686 case bfd_arch_alpha:
10687 case bfd_arch_sparc:
10688 switch (note->type)
10689 {
10690 case NT_NETBSDCORE_FIRSTMACH+0:
10691 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10692
10693 case NT_NETBSDCORE_FIRSTMACH+2:
10694 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10695
10696 default:
10697 return TRUE;
10698 }
10699
10700 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10701 There's also old PT___GETREGS40 == mach + 1 for old reg
10702 structure which lacks GBR. */
10703
10704 case bfd_arch_sh:
10705 switch (note->type)
10706 {
10707 case NT_NETBSDCORE_FIRSTMACH+3:
10708 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10709
10710 case NT_NETBSDCORE_FIRSTMACH+5:
10711 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10712
10713 default:
10714 return TRUE;
10715 }
10716
10717 /* On all other arch's, PT_GETREGS == mach+1 and
10718 PT_GETFPREGS == mach+3. */
10719
10720 default:
10721 switch (note->type)
10722 {
10723 case NT_NETBSDCORE_FIRSTMACH+1:
10724 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10725
10726 case NT_NETBSDCORE_FIRSTMACH+3:
10727 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10728
10729 default:
10730 return TRUE;
10731 }
10732 }
10733 /* NOTREACHED */
10734 }
10735
10736 static bfd_boolean
10737 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10738 {
10739 if (note->descsz <= 0x48 + 31)
10740 return FALSE;
10741
10742 /* Signal number at offset 0x08. */
10743 elf_tdata (abfd)->core->signal
10744 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10745
10746 /* Process ID at offset 0x20. */
10747 elf_tdata (abfd)->core->pid
10748 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10749
10750 /* Command name at 0x48 (max 32 bytes, including nul). */
10751 elf_tdata (abfd)->core->command
10752 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10753
10754 return TRUE;
10755 }
10756
10757 static bfd_boolean
10758 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10759 {
10760 if (note->type == NT_OPENBSD_PROCINFO)
10761 return elfcore_grok_openbsd_procinfo (abfd, note);
10762
10763 if (note->type == NT_OPENBSD_REGS)
10764 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10765
10766 if (note->type == NT_OPENBSD_FPREGS)
10767 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10768
10769 if (note->type == NT_OPENBSD_XFPREGS)
10770 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10771
10772 if (note->type == NT_OPENBSD_AUXV)
10773 return elfcore_make_auxv_note_section (abfd, note, 0);
10774
10775 if (note->type == NT_OPENBSD_WCOOKIE)
10776 {
10777 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10778 SEC_HAS_CONTENTS);
10779
10780 if (sect == NULL)
10781 return FALSE;
10782 sect->size = note->descsz;
10783 sect->filepos = note->descpos;
10784 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10785
10786 return TRUE;
10787 }
10788
10789 return TRUE;
10790 }
10791
10792 static bfd_boolean
10793 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10794 {
10795 void *ddata = note->descdata;
10796 char buf[100];
10797 char *name;
10798 asection *sect;
10799 short sig;
10800 unsigned flags;
10801
10802 if (note->descsz < 16)
10803 return FALSE;
10804
10805 /* nto_procfs_status 'pid' field is at offset 0. */
10806 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10807
10808 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10809 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10810
10811 /* nto_procfs_status 'flags' field is at offset 8. */
10812 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10813
10814 /* nto_procfs_status 'what' field is at offset 14. */
10815 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10816 {
10817 elf_tdata (abfd)->core->signal = sig;
10818 elf_tdata (abfd)->core->lwpid = *tid;
10819 }
10820
10821 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10822 do not come from signals so we make sure we set the current
10823 thread just in case. */
10824 if (flags & 0x00000080)
10825 elf_tdata (abfd)->core->lwpid = *tid;
10826
10827 /* Make a ".qnx_core_status/%d" section. */
10828 sprintf (buf, ".qnx_core_status/%ld", *tid);
10829
10830 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10831 if (name == NULL)
10832 return FALSE;
10833 strcpy (name, buf);
10834
10835 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10836 if (sect == NULL)
10837 return FALSE;
10838
10839 sect->size = note->descsz;
10840 sect->filepos = note->descpos;
10841 sect->alignment_power = 2;
10842
10843 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10844 }
10845
10846 static bfd_boolean
10847 elfcore_grok_nto_regs (bfd *abfd,
10848 Elf_Internal_Note *note,
10849 long tid,
10850 char *base)
10851 {
10852 char buf[100];
10853 char *name;
10854 asection *sect;
10855
10856 /* Make a "(base)/%d" section. */
10857 sprintf (buf, "%s/%ld", base, tid);
10858
10859 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10860 if (name == NULL)
10861 return FALSE;
10862 strcpy (name, buf);
10863
10864 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10865 if (sect == NULL)
10866 return FALSE;
10867
10868 sect->size = note->descsz;
10869 sect->filepos = note->descpos;
10870 sect->alignment_power = 2;
10871
10872 /* This is the current thread. */
10873 if (elf_tdata (abfd)->core->lwpid == tid)
10874 return elfcore_maybe_make_sect (abfd, base, sect);
10875
10876 return TRUE;
10877 }
10878
10879 #define BFD_QNT_CORE_INFO 7
10880 #define BFD_QNT_CORE_STATUS 8
10881 #define BFD_QNT_CORE_GREG 9
10882 #define BFD_QNT_CORE_FPREG 10
10883
10884 static bfd_boolean
10885 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10886 {
10887 /* Every GREG section has a STATUS section before it. Store the
10888 tid from the previous call to pass down to the next gregs
10889 function. */
10890 static long tid = 1;
10891
10892 switch (note->type)
10893 {
10894 case BFD_QNT_CORE_INFO:
10895 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10896 case BFD_QNT_CORE_STATUS:
10897 return elfcore_grok_nto_status (abfd, note, &tid);
10898 case BFD_QNT_CORE_GREG:
10899 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10900 case BFD_QNT_CORE_FPREG:
10901 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10902 default:
10903 return TRUE;
10904 }
10905 }
10906
10907 static bfd_boolean
10908 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10909 {
10910 char *name;
10911 asection *sect;
10912 size_t len;
10913
10914 /* Use note name as section name. */
10915 len = note->namesz;
10916 name = (char *) bfd_alloc (abfd, len);
10917 if (name == NULL)
10918 return FALSE;
10919 memcpy (name, note->namedata, len);
10920 name[len - 1] = '\0';
10921
10922 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10923 if (sect == NULL)
10924 return FALSE;
10925
10926 sect->size = note->descsz;
10927 sect->filepos = note->descpos;
10928 sect->alignment_power = 1;
10929
10930 return TRUE;
10931 }
10932
10933 /* Function: elfcore_write_note
10934
10935 Inputs:
10936 buffer to hold note, and current size of buffer
10937 name of note
10938 type of note
10939 data for note
10940 size of data for note
10941
10942 Writes note to end of buffer. ELF64 notes are written exactly as
10943 for ELF32, despite the current (as of 2006) ELF gabi specifying
10944 that they ought to have 8-byte namesz and descsz field, and have
10945 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10946
10947 Return:
10948 Pointer to realloc'd buffer, *BUFSIZ updated. */
10949
10950 char *
10951 elfcore_write_note (bfd *abfd,
10952 char *buf,
10953 int *bufsiz,
10954 const char *name,
10955 int type,
10956 const void *input,
10957 int size)
10958 {
10959 Elf_External_Note *xnp;
10960 size_t namesz;
10961 size_t newspace;
10962 char *dest;
10963
10964 namesz = 0;
10965 if (name != NULL)
10966 namesz = strlen (name) + 1;
10967
10968 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10969
10970 buf = (char *) realloc (buf, *bufsiz + newspace);
10971 if (buf == NULL)
10972 return buf;
10973 dest = buf + *bufsiz;
10974 *bufsiz += newspace;
10975 xnp = (Elf_External_Note *) dest;
10976 H_PUT_32 (abfd, namesz, xnp->namesz);
10977 H_PUT_32 (abfd, size, xnp->descsz);
10978 H_PUT_32 (abfd, type, xnp->type);
10979 dest = xnp->name;
10980 if (name != NULL)
10981 {
10982 memcpy (dest, name, namesz);
10983 dest += namesz;
10984 while (namesz & 3)
10985 {
10986 *dest++ = '\0';
10987 ++namesz;
10988 }
10989 }
10990 memcpy (dest, input, size);
10991 dest += size;
10992 while (size & 3)
10993 {
10994 *dest++ = '\0';
10995 ++size;
10996 }
10997 return buf;
10998 }
10999
11000 /* gcc-8 warns (*) on all the strncpy calls in this function about
11001 possible string truncation. The "truncation" is not a bug. We
11002 have an external representation of structs with fields that are not
11003 necessarily NULL terminated and corresponding internal
11004 representation fields that are one larger so that they can always
11005 be NULL terminated.
11006 gcc versions between 4.2 and 4.6 do not allow pragma control of
11007 diagnostics inside functions, giving a hard error if you try to use
11008 the finer control available with later versions.
11009 gcc prior to 4.2 warns about diagnostic push and pop.
11010 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11011 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11012 (*) Depending on your system header files! */
11013 #if GCC_VERSION >= 8000
11014 # pragma GCC diagnostic push
11015 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11016 #endif
11017 char *
11018 elfcore_write_prpsinfo (bfd *abfd,
11019 char *buf,
11020 int *bufsiz,
11021 const char *fname,
11022 const char *psargs)
11023 {
11024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11025
11026 if (bed->elf_backend_write_core_note != NULL)
11027 {
11028 char *ret;
11029 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11030 NT_PRPSINFO, fname, psargs);
11031 if (ret != NULL)
11032 return ret;
11033 }
11034
11035 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11036 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11037 if (bed->s->elfclass == ELFCLASS32)
11038 {
11039 # if defined (HAVE_PSINFO32_T)
11040 psinfo32_t data;
11041 int note_type = NT_PSINFO;
11042 # else
11043 prpsinfo32_t data;
11044 int note_type = NT_PRPSINFO;
11045 # endif
11046
11047 memset (&data, 0, sizeof (data));
11048 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11049 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11050 return elfcore_write_note (abfd, buf, bufsiz,
11051 "CORE", note_type, &data, sizeof (data));
11052 }
11053 else
11054 # endif
11055 {
11056 # if defined (HAVE_PSINFO_T)
11057 psinfo_t data;
11058 int note_type = NT_PSINFO;
11059 # else
11060 prpsinfo_t data;
11061 int note_type = NT_PRPSINFO;
11062 # endif
11063
11064 memset (&data, 0, sizeof (data));
11065 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11066 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11067 return elfcore_write_note (abfd, buf, bufsiz,
11068 "CORE", note_type, &data, sizeof (data));
11069 }
11070 #endif /* PSINFO_T or PRPSINFO_T */
11071
11072 free (buf);
11073 return NULL;
11074 }
11075 #if GCC_VERSION >= 8000
11076 # pragma GCC diagnostic pop
11077 #endif
11078
11079 char *
11080 elfcore_write_linux_prpsinfo32
11081 (bfd *abfd, char *buf, int *bufsiz,
11082 const struct elf_internal_linux_prpsinfo *prpsinfo)
11083 {
11084 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11085 {
11086 struct elf_external_linux_prpsinfo32_ugid16 data;
11087
11088 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11089 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11090 &data, sizeof (data));
11091 }
11092 else
11093 {
11094 struct elf_external_linux_prpsinfo32_ugid32 data;
11095
11096 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11097 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11098 &data, sizeof (data));
11099 }
11100 }
11101
11102 char *
11103 elfcore_write_linux_prpsinfo64
11104 (bfd *abfd, char *buf, int *bufsiz,
11105 const struct elf_internal_linux_prpsinfo *prpsinfo)
11106 {
11107 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11108 {
11109 struct elf_external_linux_prpsinfo64_ugid16 data;
11110
11111 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11112 return elfcore_write_note (abfd, buf, bufsiz,
11113 "CORE", NT_PRPSINFO, &data, sizeof (data));
11114 }
11115 else
11116 {
11117 struct elf_external_linux_prpsinfo64_ugid32 data;
11118
11119 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11120 return elfcore_write_note (abfd, buf, bufsiz,
11121 "CORE", NT_PRPSINFO, &data, sizeof (data));
11122 }
11123 }
11124
11125 char *
11126 elfcore_write_prstatus (bfd *abfd,
11127 char *buf,
11128 int *bufsiz,
11129 long pid,
11130 int cursig,
11131 const void *gregs)
11132 {
11133 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11134
11135 if (bed->elf_backend_write_core_note != NULL)
11136 {
11137 char *ret;
11138 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11139 NT_PRSTATUS,
11140 pid, cursig, gregs);
11141 if (ret != NULL)
11142 return ret;
11143 }
11144
11145 #if defined (HAVE_PRSTATUS_T)
11146 #if defined (HAVE_PRSTATUS32_T)
11147 if (bed->s->elfclass == ELFCLASS32)
11148 {
11149 prstatus32_t prstat;
11150
11151 memset (&prstat, 0, sizeof (prstat));
11152 prstat.pr_pid = pid;
11153 prstat.pr_cursig = cursig;
11154 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11155 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11156 NT_PRSTATUS, &prstat, sizeof (prstat));
11157 }
11158 else
11159 #endif
11160 {
11161 prstatus_t prstat;
11162
11163 memset (&prstat, 0, sizeof (prstat));
11164 prstat.pr_pid = pid;
11165 prstat.pr_cursig = cursig;
11166 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11167 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11168 NT_PRSTATUS, &prstat, sizeof (prstat));
11169 }
11170 #endif /* HAVE_PRSTATUS_T */
11171
11172 free (buf);
11173 return NULL;
11174 }
11175
11176 #if defined (HAVE_LWPSTATUS_T)
11177 char *
11178 elfcore_write_lwpstatus (bfd *abfd,
11179 char *buf,
11180 int *bufsiz,
11181 long pid,
11182 int cursig,
11183 const void *gregs)
11184 {
11185 lwpstatus_t lwpstat;
11186 const char *note_name = "CORE";
11187
11188 memset (&lwpstat, 0, sizeof (lwpstat));
11189 lwpstat.pr_lwpid = pid >> 16;
11190 lwpstat.pr_cursig = cursig;
11191 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11192 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11193 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11194 #if !defined(gregs)
11195 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11196 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11197 #else
11198 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11199 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11200 #endif
11201 #endif
11202 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11203 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11204 }
11205 #endif /* HAVE_LWPSTATUS_T */
11206
11207 #if defined (HAVE_PSTATUS_T)
11208 char *
11209 elfcore_write_pstatus (bfd *abfd,
11210 char *buf,
11211 int *bufsiz,
11212 long pid,
11213 int cursig ATTRIBUTE_UNUSED,
11214 const void *gregs ATTRIBUTE_UNUSED)
11215 {
11216 const char *note_name = "CORE";
11217 #if defined (HAVE_PSTATUS32_T)
11218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11219
11220 if (bed->s->elfclass == ELFCLASS32)
11221 {
11222 pstatus32_t pstat;
11223
11224 memset (&pstat, 0, sizeof (pstat));
11225 pstat.pr_pid = pid & 0xffff;
11226 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11227 NT_PSTATUS, &pstat, sizeof (pstat));
11228 return buf;
11229 }
11230 else
11231 #endif
11232 {
11233 pstatus_t pstat;
11234
11235 memset (&pstat, 0, sizeof (pstat));
11236 pstat.pr_pid = pid & 0xffff;
11237 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11238 NT_PSTATUS, &pstat, sizeof (pstat));
11239 return buf;
11240 }
11241 }
11242 #endif /* HAVE_PSTATUS_T */
11243
11244 char *
11245 elfcore_write_prfpreg (bfd *abfd,
11246 char *buf,
11247 int *bufsiz,
11248 const void *fpregs,
11249 int size)
11250 {
11251 const char *note_name = "CORE";
11252 return elfcore_write_note (abfd, buf, bufsiz,
11253 note_name, NT_FPREGSET, fpregs, size);
11254 }
11255
11256 char *
11257 elfcore_write_prxfpreg (bfd *abfd,
11258 char *buf,
11259 int *bufsiz,
11260 const void *xfpregs,
11261 int size)
11262 {
11263 char *note_name = "LINUX";
11264 return elfcore_write_note (abfd, buf, bufsiz,
11265 note_name, NT_PRXFPREG, xfpregs, size);
11266 }
11267
11268 char *
11269 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11270 const void *xfpregs, int size)
11271 {
11272 char *note_name;
11273 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11274 note_name = "FreeBSD";
11275 else
11276 note_name = "LINUX";
11277 return elfcore_write_note (abfd, buf, bufsiz,
11278 note_name, NT_X86_XSTATE, xfpregs, size);
11279 }
11280
11281 char *
11282 elfcore_write_ppc_vmx (bfd *abfd,
11283 char *buf,
11284 int *bufsiz,
11285 const void *ppc_vmx,
11286 int size)
11287 {
11288 char *note_name = "LINUX";
11289 return elfcore_write_note (abfd, buf, bufsiz,
11290 note_name, NT_PPC_VMX, ppc_vmx, size);
11291 }
11292
11293 char *
11294 elfcore_write_ppc_vsx (bfd *abfd,
11295 char *buf,
11296 int *bufsiz,
11297 const void *ppc_vsx,
11298 int size)
11299 {
11300 char *note_name = "LINUX";
11301 return elfcore_write_note (abfd, buf, bufsiz,
11302 note_name, NT_PPC_VSX, ppc_vsx, size);
11303 }
11304
11305 char *
11306 elfcore_write_ppc_tar (bfd *abfd,
11307 char *buf,
11308 int *bufsiz,
11309 const void *ppc_tar,
11310 int size)
11311 {
11312 char *note_name = "LINUX";
11313 return elfcore_write_note (abfd, buf, bufsiz,
11314 note_name, NT_PPC_TAR, ppc_tar, size);
11315 }
11316
11317 char *
11318 elfcore_write_ppc_ppr (bfd *abfd,
11319 char *buf,
11320 int *bufsiz,
11321 const void *ppc_ppr,
11322 int size)
11323 {
11324 char *note_name = "LINUX";
11325 return elfcore_write_note (abfd, buf, bufsiz,
11326 note_name, NT_PPC_PPR, ppc_ppr, size);
11327 }
11328
11329 char *
11330 elfcore_write_ppc_dscr (bfd *abfd,
11331 char *buf,
11332 int *bufsiz,
11333 const void *ppc_dscr,
11334 int size)
11335 {
11336 char *note_name = "LINUX";
11337 return elfcore_write_note (abfd, buf, bufsiz,
11338 note_name, NT_PPC_DSCR, ppc_dscr, size);
11339 }
11340
11341 char *
11342 elfcore_write_ppc_ebb (bfd *abfd,
11343 char *buf,
11344 int *bufsiz,
11345 const void *ppc_ebb,
11346 int size)
11347 {
11348 char *note_name = "LINUX";
11349 return elfcore_write_note (abfd, buf, bufsiz,
11350 note_name, NT_PPC_EBB, ppc_ebb, size);
11351 }
11352
11353 char *
11354 elfcore_write_ppc_pmu (bfd *abfd,
11355 char *buf,
11356 int *bufsiz,
11357 const void *ppc_pmu,
11358 int size)
11359 {
11360 char *note_name = "LINUX";
11361 return elfcore_write_note (abfd, buf, bufsiz,
11362 note_name, NT_PPC_PMU, ppc_pmu, size);
11363 }
11364
11365 char *
11366 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11367 char *buf,
11368 int *bufsiz,
11369 const void *ppc_tm_cgpr,
11370 int size)
11371 {
11372 char *note_name = "LINUX";
11373 return elfcore_write_note (abfd, buf, bufsiz,
11374 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11375 }
11376
11377 char *
11378 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11379 char *buf,
11380 int *bufsiz,
11381 const void *ppc_tm_cfpr,
11382 int size)
11383 {
11384 char *note_name = "LINUX";
11385 return elfcore_write_note (abfd, buf, bufsiz,
11386 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11387 }
11388
11389 char *
11390 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11391 char *buf,
11392 int *bufsiz,
11393 const void *ppc_tm_cvmx,
11394 int size)
11395 {
11396 char *note_name = "LINUX";
11397 return elfcore_write_note (abfd, buf, bufsiz,
11398 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11399 }
11400
11401 char *
11402 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11403 char *buf,
11404 int *bufsiz,
11405 const void *ppc_tm_cvsx,
11406 int size)
11407 {
11408 char *note_name = "LINUX";
11409 return elfcore_write_note (abfd, buf, bufsiz,
11410 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11411 }
11412
11413 char *
11414 elfcore_write_ppc_tm_spr (bfd *abfd,
11415 char *buf,
11416 int *bufsiz,
11417 const void *ppc_tm_spr,
11418 int size)
11419 {
11420 char *note_name = "LINUX";
11421 return elfcore_write_note (abfd, buf, bufsiz,
11422 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11423 }
11424
11425 char *
11426 elfcore_write_ppc_tm_ctar (bfd *abfd,
11427 char *buf,
11428 int *bufsiz,
11429 const void *ppc_tm_ctar,
11430 int size)
11431 {
11432 char *note_name = "LINUX";
11433 return elfcore_write_note (abfd, buf, bufsiz,
11434 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11435 }
11436
11437 char *
11438 elfcore_write_ppc_tm_cppr (bfd *abfd,
11439 char *buf,
11440 int *bufsiz,
11441 const void *ppc_tm_cppr,
11442 int size)
11443 {
11444 char *note_name = "LINUX";
11445 return elfcore_write_note (abfd, buf, bufsiz,
11446 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11447 }
11448
11449 char *
11450 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11451 char *buf,
11452 int *bufsiz,
11453 const void *ppc_tm_cdscr,
11454 int size)
11455 {
11456 char *note_name = "LINUX";
11457 return elfcore_write_note (abfd, buf, bufsiz,
11458 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11459 }
11460
11461 static char *
11462 elfcore_write_s390_high_gprs (bfd *abfd,
11463 char *buf,
11464 int *bufsiz,
11465 const void *s390_high_gprs,
11466 int size)
11467 {
11468 char *note_name = "LINUX";
11469 return elfcore_write_note (abfd, buf, bufsiz,
11470 note_name, NT_S390_HIGH_GPRS,
11471 s390_high_gprs, size);
11472 }
11473
11474 char *
11475 elfcore_write_s390_timer (bfd *abfd,
11476 char *buf,
11477 int *bufsiz,
11478 const void *s390_timer,
11479 int size)
11480 {
11481 char *note_name = "LINUX";
11482 return elfcore_write_note (abfd, buf, bufsiz,
11483 note_name, NT_S390_TIMER, s390_timer, size);
11484 }
11485
11486 char *
11487 elfcore_write_s390_todcmp (bfd *abfd,
11488 char *buf,
11489 int *bufsiz,
11490 const void *s390_todcmp,
11491 int size)
11492 {
11493 char *note_name = "LINUX";
11494 return elfcore_write_note (abfd, buf, bufsiz,
11495 note_name, NT_S390_TODCMP, s390_todcmp, size);
11496 }
11497
11498 char *
11499 elfcore_write_s390_todpreg (bfd *abfd,
11500 char *buf,
11501 int *bufsiz,
11502 const void *s390_todpreg,
11503 int size)
11504 {
11505 char *note_name = "LINUX";
11506 return elfcore_write_note (abfd, buf, bufsiz,
11507 note_name, NT_S390_TODPREG, s390_todpreg, size);
11508 }
11509
11510 char *
11511 elfcore_write_s390_ctrs (bfd *abfd,
11512 char *buf,
11513 int *bufsiz,
11514 const void *s390_ctrs,
11515 int size)
11516 {
11517 char *note_name = "LINUX";
11518 return elfcore_write_note (abfd, buf, bufsiz,
11519 note_name, NT_S390_CTRS, s390_ctrs, size);
11520 }
11521
11522 char *
11523 elfcore_write_s390_prefix (bfd *abfd,
11524 char *buf,
11525 int *bufsiz,
11526 const void *s390_prefix,
11527 int size)
11528 {
11529 char *note_name = "LINUX";
11530 return elfcore_write_note (abfd, buf, bufsiz,
11531 note_name, NT_S390_PREFIX, s390_prefix, size);
11532 }
11533
11534 char *
11535 elfcore_write_s390_last_break (bfd *abfd,
11536 char *buf,
11537 int *bufsiz,
11538 const void *s390_last_break,
11539 int size)
11540 {
11541 char *note_name = "LINUX";
11542 return elfcore_write_note (abfd, buf, bufsiz,
11543 note_name, NT_S390_LAST_BREAK,
11544 s390_last_break, size);
11545 }
11546
11547 char *
11548 elfcore_write_s390_system_call (bfd *abfd,
11549 char *buf,
11550 int *bufsiz,
11551 const void *s390_system_call,
11552 int size)
11553 {
11554 char *note_name = "LINUX";
11555 return elfcore_write_note (abfd, buf, bufsiz,
11556 note_name, NT_S390_SYSTEM_CALL,
11557 s390_system_call, size);
11558 }
11559
11560 char *
11561 elfcore_write_s390_tdb (bfd *abfd,
11562 char *buf,
11563 int *bufsiz,
11564 const void *s390_tdb,
11565 int size)
11566 {
11567 char *note_name = "LINUX";
11568 return elfcore_write_note (abfd, buf, bufsiz,
11569 note_name, NT_S390_TDB, s390_tdb, size);
11570 }
11571
11572 char *
11573 elfcore_write_s390_vxrs_low (bfd *abfd,
11574 char *buf,
11575 int *bufsiz,
11576 const void *s390_vxrs_low,
11577 int size)
11578 {
11579 char *note_name = "LINUX";
11580 return elfcore_write_note (abfd, buf, bufsiz,
11581 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11582 }
11583
11584 char *
11585 elfcore_write_s390_vxrs_high (bfd *abfd,
11586 char *buf,
11587 int *bufsiz,
11588 const void *s390_vxrs_high,
11589 int size)
11590 {
11591 char *note_name = "LINUX";
11592 return elfcore_write_note (abfd, buf, bufsiz,
11593 note_name, NT_S390_VXRS_HIGH,
11594 s390_vxrs_high, size);
11595 }
11596
11597 char *
11598 elfcore_write_s390_gs_cb (bfd *abfd,
11599 char *buf,
11600 int *bufsiz,
11601 const void *s390_gs_cb,
11602 int size)
11603 {
11604 char *note_name = "LINUX";
11605 return elfcore_write_note (abfd, buf, bufsiz,
11606 note_name, NT_S390_GS_CB,
11607 s390_gs_cb, size);
11608 }
11609
11610 char *
11611 elfcore_write_s390_gs_bc (bfd *abfd,
11612 char *buf,
11613 int *bufsiz,
11614 const void *s390_gs_bc,
11615 int size)
11616 {
11617 char *note_name = "LINUX";
11618 return elfcore_write_note (abfd, buf, bufsiz,
11619 note_name, NT_S390_GS_BC,
11620 s390_gs_bc, size);
11621 }
11622
11623 char *
11624 elfcore_write_arm_vfp (bfd *abfd,
11625 char *buf,
11626 int *bufsiz,
11627 const void *arm_vfp,
11628 int size)
11629 {
11630 char *note_name = "LINUX";
11631 return elfcore_write_note (abfd, buf, bufsiz,
11632 note_name, NT_ARM_VFP, arm_vfp, size);
11633 }
11634
11635 char *
11636 elfcore_write_aarch_tls (bfd *abfd,
11637 char *buf,
11638 int *bufsiz,
11639 const void *aarch_tls,
11640 int size)
11641 {
11642 char *note_name = "LINUX";
11643 return elfcore_write_note (abfd, buf, bufsiz,
11644 note_name, NT_ARM_TLS, aarch_tls, size);
11645 }
11646
11647 char *
11648 elfcore_write_aarch_hw_break (bfd *abfd,
11649 char *buf,
11650 int *bufsiz,
11651 const void *aarch_hw_break,
11652 int size)
11653 {
11654 char *note_name = "LINUX";
11655 return elfcore_write_note (abfd, buf, bufsiz,
11656 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11657 }
11658
11659 char *
11660 elfcore_write_aarch_hw_watch (bfd *abfd,
11661 char *buf,
11662 int *bufsiz,
11663 const void *aarch_hw_watch,
11664 int size)
11665 {
11666 char *note_name = "LINUX";
11667 return elfcore_write_note (abfd, buf, bufsiz,
11668 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11669 }
11670
11671 char *
11672 elfcore_write_aarch_sve (bfd *abfd,
11673 char *buf,
11674 int *bufsiz,
11675 const void *aarch_sve,
11676 int size)
11677 {
11678 char *note_name = "LINUX";
11679 return elfcore_write_note (abfd, buf, bufsiz,
11680 note_name, NT_ARM_SVE, aarch_sve, size);
11681 }
11682
11683 char *
11684 elfcore_write_aarch_pauth (bfd *abfd,
11685 char *buf,
11686 int *bufsiz,
11687 const void *aarch_pauth,
11688 int size)
11689 {
11690 char *note_name = "LINUX";
11691 return elfcore_write_note (abfd, buf, bufsiz,
11692 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11693 }
11694
11695 char *
11696 elfcore_write_register_note (bfd *abfd,
11697 char *buf,
11698 int *bufsiz,
11699 const char *section,
11700 const void *data,
11701 int size)
11702 {
11703 if (strcmp (section, ".reg2") == 0)
11704 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11705 if (strcmp (section, ".reg-xfp") == 0)
11706 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11707 if (strcmp (section, ".reg-xstate") == 0)
11708 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11709 if (strcmp (section, ".reg-ppc-vmx") == 0)
11710 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11711 if (strcmp (section, ".reg-ppc-vsx") == 0)
11712 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11713 if (strcmp (section, ".reg-ppc-tar") == 0)
11714 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11715 if (strcmp (section, ".reg-ppc-ppr") == 0)
11716 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11717 if (strcmp (section, ".reg-ppc-dscr") == 0)
11718 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11719 if (strcmp (section, ".reg-ppc-ebb") == 0)
11720 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11721 if (strcmp (section, ".reg-ppc-pmu") == 0)
11722 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11723 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11724 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11725 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11726 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11727 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11728 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11729 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11730 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11731 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11732 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11733 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11734 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11735 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11736 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11737 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11738 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11739 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11740 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11741 if (strcmp (section, ".reg-s390-timer") == 0)
11742 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11743 if (strcmp (section, ".reg-s390-todcmp") == 0)
11744 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11745 if (strcmp (section, ".reg-s390-todpreg") == 0)
11746 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11747 if (strcmp (section, ".reg-s390-ctrs") == 0)
11748 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11749 if (strcmp (section, ".reg-s390-prefix") == 0)
11750 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11751 if (strcmp (section, ".reg-s390-last-break") == 0)
11752 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11753 if (strcmp (section, ".reg-s390-system-call") == 0)
11754 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11755 if (strcmp (section, ".reg-s390-tdb") == 0)
11756 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11757 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11758 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11759 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11760 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11761 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11762 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11763 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11764 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11765 if (strcmp (section, ".reg-arm-vfp") == 0)
11766 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11767 if (strcmp (section, ".reg-aarch-tls") == 0)
11768 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11769 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11770 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11771 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11772 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11773 if (strcmp (section, ".reg-aarch-sve") == 0)
11774 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11775 if (strcmp (section, ".reg-aarch-pauth") == 0)
11776 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11777 return NULL;
11778 }
11779
11780 static bfd_boolean
11781 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11782 size_t align)
11783 {
11784 char *p;
11785
11786 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11787 gABI specifies that PT_NOTE alignment should be aligned to 4
11788 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11789 align is less than 4, we use 4 byte alignment. */
11790 if (align < 4)
11791 align = 4;
11792 if (align != 4 && align != 8)
11793 return FALSE;
11794
11795 p = buf;
11796 while (p < buf + size)
11797 {
11798 Elf_External_Note *xnp = (Elf_External_Note *) p;
11799 Elf_Internal_Note in;
11800
11801 if (offsetof (Elf_External_Note, name) > buf - p + size)
11802 return FALSE;
11803
11804 in.type = H_GET_32 (abfd, xnp->type);
11805
11806 in.namesz = H_GET_32 (abfd, xnp->namesz);
11807 in.namedata = xnp->name;
11808 if (in.namesz > buf - in.namedata + size)
11809 return FALSE;
11810
11811 in.descsz = H_GET_32 (abfd, xnp->descsz);
11812 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11813 in.descpos = offset + (in.descdata - buf);
11814 if (in.descsz != 0
11815 && (in.descdata >= buf + size
11816 || in.descsz > buf - in.descdata + size))
11817 return FALSE;
11818
11819 switch (bfd_get_format (abfd))
11820 {
11821 default:
11822 return TRUE;
11823
11824 case bfd_core:
11825 {
11826 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11827 struct
11828 {
11829 const char * string;
11830 size_t len;
11831 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11832 }
11833 grokers[] =
11834 {
11835 GROKER_ELEMENT ("", elfcore_grok_note),
11836 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11837 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11838 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11839 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11840 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11841 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11842 };
11843 #undef GROKER_ELEMENT
11844 int i;
11845
11846 for (i = ARRAY_SIZE (grokers); i--;)
11847 {
11848 if (in.namesz >= grokers[i].len
11849 && strncmp (in.namedata, grokers[i].string,
11850 grokers[i].len) == 0)
11851 {
11852 if (! grokers[i].func (abfd, & in))
11853 return FALSE;
11854 break;
11855 }
11856 }
11857 break;
11858 }
11859
11860 case bfd_object:
11861 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11862 {
11863 if (! elfobj_grok_gnu_note (abfd, &in))
11864 return FALSE;
11865 }
11866 else if (in.namesz == sizeof "stapsdt"
11867 && strcmp (in.namedata, "stapsdt") == 0)
11868 {
11869 if (! elfobj_grok_stapsdt_note (abfd, &in))
11870 return FALSE;
11871 }
11872 break;
11873 }
11874
11875 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11876 }
11877
11878 return TRUE;
11879 }
11880
11881 bfd_boolean
11882 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11883 size_t align)
11884 {
11885 char *buf;
11886
11887 if (size == 0 || (size + 1) == 0)
11888 return TRUE;
11889
11890 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11891 return FALSE;
11892
11893 buf = (char *) bfd_malloc (size + 1);
11894 if (buf == NULL)
11895 return FALSE;
11896
11897 /* PR 17512: file: ec08f814
11898 0-termintate the buffer so that string searches will not overflow. */
11899 buf[size] = 0;
11900
11901 if (bfd_bread (buf, size, abfd) != size
11902 || !elf_parse_notes (abfd, buf, size, offset, align))
11903 {
11904 free (buf);
11905 return FALSE;
11906 }
11907
11908 free (buf);
11909 return TRUE;
11910 }
11911 \f
11912 /* Providing external access to the ELF program header table. */
11913
11914 /* Return an upper bound on the number of bytes required to store a
11915 copy of ABFD's program header table entries. Return -1 if an error
11916 occurs; bfd_get_error will return an appropriate code. */
11917
11918 long
11919 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11920 {
11921 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11922 {
11923 bfd_set_error (bfd_error_wrong_format);
11924 return -1;
11925 }
11926
11927 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11928 }
11929
11930 /* Copy ABFD's program header table entries to *PHDRS. The entries
11931 will be stored as an array of Elf_Internal_Phdr structures, as
11932 defined in include/elf/internal.h. To find out how large the
11933 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11934
11935 Return the number of program header table entries read, or -1 if an
11936 error occurs; bfd_get_error will return an appropriate code. */
11937
11938 int
11939 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11940 {
11941 int num_phdrs;
11942
11943 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11944 {
11945 bfd_set_error (bfd_error_wrong_format);
11946 return -1;
11947 }
11948
11949 num_phdrs = elf_elfheader (abfd)->e_phnum;
11950 if (num_phdrs != 0)
11951 memcpy (phdrs, elf_tdata (abfd)->phdr,
11952 num_phdrs * sizeof (Elf_Internal_Phdr));
11953
11954 return num_phdrs;
11955 }
11956
11957 enum elf_reloc_type_class
11958 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11959 const asection *rel_sec ATTRIBUTE_UNUSED,
11960 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11961 {
11962 return reloc_class_normal;
11963 }
11964
11965 /* For RELA architectures, return the relocation value for a
11966 relocation against a local symbol. */
11967
11968 bfd_vma
11969 _bfd_elf_rela_local_sym (bfd *abfd,
11970 Elf_Internal_Sym *sym,
11971 asection **psec,
11972 Elf_Internal_Rela *rel)
11973 {
11974 asection *sec = *psec;
11975 bfd_vma relocation;
11976
11977 relocation = (sec->output_section->vma
11978 + sec->output_offset
11979 + sym->st_value);
11980 if ((sec->flags & SEC_MERGE)
11981 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11982 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11983 {
11984 rel->r_addend =
11985 _bfd_merged_section_offset (abfd, psec,
11986 elf_section_data (sec)->sec_info,
11987 sym->st_value + rel->r_addend);
11988 if (sec != *psec)
11989 {
11990 /* If we have changed the section, and our original section is
11991 marked with SEC_EXCLUDE, it means that the original
11992 SEC_MERGE section has been completely subsumed in some
11993 other SEC_MERGE section. In this case, we need to leave
11994 some info around for --emit-relocs. */
11995 if ((sec->flags & SEC_EXCLUDE) != 0)
11996 sec->kept_section = *psec;
11997 sec = *psec;
11998 }
11999 rel->r_addend -= relocation;
12000 rel->r_addend += sec->output_section->vma + sec->output_offset;
12001 }
12002 return relocation;
12003 }
12004
12005 bfd_vma
12006 _bfd_elf_rel_local_sym (bfd *abfd,
12007 Elf_Internal_Sym *sym,
12008 asection **psec,
12009 bfd_vma addend)
12010 {
12011 asection *sec = *psec;
12012
12013 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12014 return sym->st_value + addend;
12015
12016 return _bfd_merged_section_offset (abfd, psec,
12017 elf_section_data (sec)->sec_info,
12018 sym->st_value + addend);
12019 }
12020
12021 /* Adjust an address within a section. Given OFFSET within SEC, return
12022 the new offset within the section, based upon changes made to the
12023 section. Returns -1 if the offset is now invalid.
12024 The offset (in abnd out) is in target sized bytes, however big a
12025 byte may be. */
12026
12027 bfd_vma
12028 _bfd_elf_section_offset (bfd *abfd,
12029 struct bfd_link_info *info,
12030 asection *sec,
12031 bfd_vma offset)
12032 {
12033 switch (sec->sec_info_type)
12034 {
12035 case SEC_INFO_TYPE_STABS:
12036 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12037 offset);
12038 case SEC_INFO_TYPE_EH_FRAME:
12039 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12040
12041 default:
12042 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12043 {
12044 /* Reverse the offset. */
12045 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12046 bfd_size_type address_size = bed->s->arch_size / 8;
12047
12048 /* address_size and sec->size are in octets. Convert
12049 to bytes before subtracting the original offset. */
12050 offset = ((sec->size - address_size)
12051 / bfd_octets_per_byte (abfd, sec) - offset);
12052 }
12053 return offset;
12054 }
12055 }
12056 \f
12057 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12058 reconstruct an ELF file by reading the segments out of remote memory
12059 based on the ELF file header at EHDR_VMA and the ELF program headers it
12060 points to. If not null, *LOADBASEP is filled in with the difference
12061 between the VMAs from which the segments were read, and the VMAs the
12062 file headers (and hence BFD's idea of each section's VMA) put them at.
12063
12064 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12065 remote memory at target address VMA into the local buffer at MYADDR; it
12066 should return zero on success or an `errno' code on failure. TEMPL must
12067 be a BFD for an ELF target with the word size and byte order found in
12068 the remote memory. */
12069
12070 bfd *
12071 bfd_elf_bfd_from_remote_memory
12072 (bfd *templ,
12073 bfd_vma ehdr_vma,
12074 bfd_size_type size,
12075 bfd_vma *loadbasep,
12076 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12077 {
12078 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12079 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12080 }
12081 \f
12082 long
12083 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12084 long symcount ATTRIBUTE_UNUSED,
12085 asymbol **syms ATTRIBUTE_UNUSED,
12086 long dynsymcount,
12087 asymbol **dynsyms,
12088 asymbol **ret)
12089 {
12090 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12091 asection *relplt;
12092 asymbol *s;
12093 const char *relplt_name;
12094 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12095 arelent *p;
12096 long count, i, n;
12097 size_t size;
12098 Elf_Internal_Shdr *hdr;
12099 char *names;
12100 asection *plt;
12101
12102 *ret = NULL;
12103
12104 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12105 return 0;
12106
12107 if (dynsymcount <= 0)
12108 return 0;
12109
12110 if (!bed->plt_sym_val)
12111 return 0;
12112
12113 relplt_name = bed->relplt_name;
12114 if (relplt_name == NULL)
12115 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12116 relplt = bfd_get_section_by_name (abfd, relplt_name);
12117 if (relplt == NULL)
12118 return 0;
12119
12120 hdr = &elf_section_data (relplt)->this_hdr;
12121 if (hdr->sh_link != elf_dynsymtab (abfd)
12122 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12123 return 0;
12124
12125 plt = bfd_get_section_by_name (abfd, ".plt");
12126 if (plt == NULL)
12127 return 0;
12128
12129 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12130 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12131 return -1;
12132
12133 count = relplt->size / hdr->sh_entsize;
12134 size = count * sizeof (asymbol);
12135 p = relplt->relocation;
12136 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12137 {
12138 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12139 if (p->addend != 0)
12140 {
12141 #ifdef BFD64
12142 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12143 #else
12144 size += sizeof ("+0x") - 1 + 8;
12145 #endif
12146 }
12147 }
12148
12149 s = *ret = (asymbol *) bfd_malloc (size);
12150 if (s == NULL)
12151 return -1;
12152
12153 names = (char *) (s + count);
12154 p = relplt->relocation;
12155 n = 0;
12156 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12157 {
12158 size_t len;
12159 bfd_vma addr;
12160
12161 addr = bed->plt_sym_val (i, plt, p);
12162 if (addr == (bfd_vma) -1)
12163 continue;
12164
12165 *s = **p->sym_ptr_ptr;
12166 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12167 we are defining a symbol, ensure one of them is set. */
12168 if ((s->flags & BSF_LOCAL) == 0)
12169 s->flags |= BSF_GLOBAL;
12170 s->flags |= BSF_SYNTHETIC;
12171 s->section = plt;
12172 s->value = addr - plt->vma;
12173 s->name = names;
12174 s->udata.p = NULL;
12175 len = strlen ((*p->sym_ptr_ptr)->name);
12176 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12177 names += len;
12178 if (p->addend != 0)
12179 {
12180 char buf[30], *a;
12181
12182 memcpy (names, "+0x", sizeof ("+0x") - 1);
12183 names += sizeof ("+0x") - 1;
12184 bfd_sprintf_vma (abfd, buf, p->addend);
12185 for (a = buf; *a == '0'; ++a)
12186 ;
12187 len = strlen (a);
12188 memcpy (names, a, len);
12189 names += len;
12190 }
12191 memcpy (names, "@plt", sizeof ("@plt"));
12192 names += sizeof ("@plt");
12193 ++s, ++n;
12194 }
12195
12196 return n;
12197 }
12198
12199 /* It is only used by x86-64 so far.
12200 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12201 but current usage would allow all of _bfd_std_section to be zero. */
12202 static const asymbol lcomm_sym
12203 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12204 asection _bfd_elf_large_com_section
12205 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12206 "LARGE_COMMON", 0, SEC_IS_COMMON);
12207
12208 bfd_boolean
12209 _bfd_elf_final_write_processing (bfd *abfd)
12210 {
12211 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12212
12213 i_ehdrp = elf_elfheader (abfd);
12214
12215 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12216 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12217
12218 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12219 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12220 STB_GNU_UNIQUE binding. */
12221 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12222 {
12223 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12224 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12225 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12226 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12227 {
12228 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12229 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12230 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12231 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12232 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12233 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12234 bfd_set_error (bfd_error_sorry);
12235 return FALSE;
12236 }
12237 }
12238 return TRUE;
12239 }
12240
12241
12242 /* Return TRUE for ELF symbol types that represent functions.
12243 This is the default version of this function, which is sufficient for
12244 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12245
12246 bfd_boolean
12247 _bfd_elf_is_function_type (unsigned int type)
12248 {
12249 return (type == STT_FUNC
12250 || type == STT_GNU_IFUNC);
12251 }
12252
12253 /* If the ELF symbol SYM might be a function in SEC, return the
12254 function size and set *CODE_OFF to the function's entry point,
12255 otherwise return zero. */
12256
12257 bfd_size_type
12258 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12259 bfd_vma *code_off)
12260 {
12261 bfd_size_type size;
12262
12263 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12264 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12265 || sym->section != sec)
12266 return 0;
12267
12268 *code_off = sym->value;
12269 size = 0;
12270 if (!(sym->flags & BSF_SYNTHETIC))
12271 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12272 if (size == 0)
12273 size = 1;
12274 return size;
12275 }
This page took 0.27831 seconds and 5 git commands to generate.