Prevent a buffer overrun error when attempting to parse a corrupt ELF file.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 static char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354 else
355 {
356 /* PR 24273: The string section's contents may have already
357 been loaded elsewhere, eg because a corrupt file has the
358 string section index in the ELF header pointing at a group
359 section. So be paranoid, and test that the last byte of
360 the section is zero. */
361 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
362 return NULL;
363 }
364
365 if (strindex >= hdr->sh_size)
366 {
367 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
368 _bfd_error_handler
369 /* xgettext:c-format */
370 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
371 abfd, strindex, (uint64_t) hdr->sh_size,
372 (shindex == shstrndx && strindex == hdr->sh_name
373 ? ".shstrtab"
374 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
375 return NULL;
376 }
377
378 return ((char *) hdr->contents) + strindex;
379 }
380
381 /* Read and convert symbols to internal format.
382 SYMCOUNT specifies the number of symbols to read, starting from
383 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
384 are non-NULL, they are used to store the internal symbols, external
385 symbols, and symbol section index extensions, respectively.
386 Returns a pointer to the internal symbol buffer (malloced if necessary)
387 or NULL if there were no symbols or some kind of problem. */
388
389 Elf_Internal_Sym *
390 bfd_elf_get_elf_syms (bfd *ibfd,
391 Elf_Internal_Shdr *symtab_hdr,
392 size_t symcount,
393 size_t symoffset,
394 Elf_Internal_Sym *intsym_buf,
395 void *extsym_buf,
396 Elf_External_Sym_Shndx *extshndx_buf)
397 {
398 Elf_Internal_Shdr *shndx_hdr;
399 void *alloc_ext;
400 const bfd_byte *esym;
401 Elf_External_Sym_Shndx *alloc_extshndx;
402 Elf_External_Sym_Shndx *shndx;
403 Elf_Internal_Sym *alloc_intsym;
404 Elf_Internal_Sym *isym;
405 Elf_Internal_Sym *isymend;
406 const struct elf_backend_data *bed;
407 size_t extsym_size;
408 bfd_size_type amt;
409 file_ptr pos;
410
411 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
412 abort ();
413
414 if (symcount == 0)
415 return intsym_buf;
416
417 /* Normal syms might have section extension entries. */
418 shndx_hdr = NULL;
419 if (elf_symtab_shndx_list (ibfd) != NULL)
420 {
421 elf_section_list * entry;
422 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
423
424 /* Find an index section that is linked to this symtab section. */
425 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
426 {
427 /* PR 20063. */
428 if (entry->hdr.sh_link >= elf_numsections (ibfd))
429 continue;
430
431 if (sections[entry->hdr.sh_link] == symtab_hdr)
432 {
433 shndx_hdr = & entry->hdr;
434 break;
435 };
436 }
437
438 if (shndx_hdr == NULL)
439 {
440 if (symtab_hdr == & elf_symtab_hdr (ibfd))
441 /* Not really accurate, but this was how the old code used to work. */
442 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
443 /* Otherwise we do nothing. The assumption is that
444 the index table will not be needed. */
445 }
446 }
447
448 /* Read the symbols. */
449 alloc_ext = NULL;
450 alloc_extshndx = NULL;
451 alloc_intsym = NULL;
452 bed = get_elf_backend_data (ibfd);
453 extsym_size = bed->s->sizeof_sym;
454 amt = (bfd_size_type) symcount * extsym_size;
455 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
456 if (extsym_buf == NULL)
457 {
458 alloc_ext = bfd_malloc2 (symcount, extsym_size);
459 extsym_buf = alloc_ext;
460 }
461 if (extsym_buf == NULL
462 || bfd_seek (ibfd, pos, SEEK_SET) != 0
463 || bfd_bread (extsym_buf, amt, ibfd) != amt)
464 {
465 intsym_buf = NULL;
466 goto out;
467 }
468
469 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
470 extshndx_buf = NULL;
471 else
472 {
473 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
474 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
475 if (extshndx_buf == NULL)
476 {
477 alloc_extshndx = (Elf_External_Sym_Shndx *)
478 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 alloc_intsym = (Elf_Internal_Sym *)
493 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
494 intsym_buf = alloc_intsym;
495 if (intsym_buf == NULL)
496 goto out;
497 }
498
499 /* Convert the symbols to internal form. */
500 isymend = intsym_buf + symcount;
501 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
502 shndx = extshndx_buf;
503 isym < isymend;
504 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
505 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
506 {
507 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
508 /* xgettext:c-format */
509 _bfd_error_handler (_("%pB symbol number %lu references"
510 " nonexistent SHT_SYMTAB_SHNDX section"),
511 ibfd, (unsigned long) symoffset);
512 if (alloc_intsym != NULL)
513 free (alloc_intsym);
514 intsym_buf = NULL;
515 goto out;
516 }
517
518 out:
519 if (alloc_ext != NULL)
520 free (alloc_ext);
521 if (alloc_extshndx != NULL)
522 free (alloc_extshndx);
523
524 return intsym_buf;
525 }
526
527 /* Look up a symbol name. */
528 const char *
529 bfd_elf_sym_name (bfd *abfd,
530 Elf_Internal_Shdr *symtab_hdr,
531 Elf_Internal_Sym *isym,
532 asection *sym_sec)
533 {
534 const char *name;
535 unsigned int iname = isym->st_name;
536 unsigned int shindex = symtab_hdr->sh_link;
537
538 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
539 /* Check for a bogus st_shndx to avoid crashing. */
540 && isym->st_shndx < elf_numsections (abfd))
541 {
542 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
543 shindex = elf_elfheader (abfd)->e_shstrndx;
544 }
545
546 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
547 if (name == NULL)
548 name = "(null)";
549 else if (sym_sec && *name == '\0')
550 name = bfd_section_name (abfd, sym_sec);
551
552 return name;
553 }
554
555 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
556 sections. The first element is the flags, the rest are section
557 pointers. */
558
559 typedef union elf_internal_group {
560 Elf_Internal_Shdr *shdr;
561 unsigned int flags;
562 } Elf_Internal_Group;
563
564 /* Return the name of the group signature symbol. Why isn't the
565 signature just a string? */
566
567 static const char *
568 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
569 {
570 Elf_Internal_Shdr *hdr;
571 unsigned char esym[sizeof (Elf64_External_Sym)];
572 Elf_External_Sym_Shndx eshndx;
573 Elf_Internal_Sym isym;
574
575 /* First we need to ensure the symbol table is available. Make sure
576 that it is a symbol table section. */
577 if (ghdr->sh_link >= elf_numsections (abfd))
578 return NULL;
579 hdr = elf_elfsections (abfd) [ghdr->sh_link];
580 if (hdr->sh_type != SHT_SYMTAB
581 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
582 return NULL;
583
584 /* Go read the symbol. */
585 hdr = &elf_tdata (abfd)->symtab_hdr;
586 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
587 &isym, esym, &eshndx) == NULL)
588 return NULL;
589
590 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
591 }
592
593 /* Set next_in_group list pointer, and group name for NEWSECT. */
594
595 static bfd_boolean
596 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
597 {
598 unsigned int num_group = elf_tdata (abfd)->num_group;
599
600 /* If num_group is zero, read in all SHT_GROUP sections. The count
601 is set to -1 if there are no SHT_GROUP sections. */
602 if (num_group == 0)
603 {
604 unsigned int i, shnum;
605
606 /* First count the number of groups. If we have a SHT_GROUP
607 section with just a flag word (ie. sh_size is 4), ignore it. */
608 shnum = elf_numsections (abfd);
609 num_group = 0;
610
611 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
612 ( (shdr)->sh_type == SHT_GROUP \
613 && (shdr)->sh_size >= minsize \
614 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
615 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
616
617 for (i = 0; i < shnum; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
620
621 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
622 num_group += 1;
623 }
624
625 if (num_group == 0)
626 {
627 num_group = (unsigned) -1;
628 elf_tdata (abfd)->num_group = num_group;
629 elf_tdata (abfd)->group_sect_ptr = NULL;
630 }
631 else
632 {
633 /* We keep a list of elf section headers for group sections,
634 so we can find them quickly. */
635 bfd_size_type amt;
636
637 elf_tdata (abfd)->num_group = num_group;
638 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
639 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
640 if (elf_tdata (abfd)->group_sect_ptr == NULL)
641 return FALSE;
642 memset (elf_tdata (abfd)->group_sect_ptr, 0,
643 num_group * sizeof (Elf_Internal_Shdr *));
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4);
666 amt = shdr->sh_size * sizeof (*dest) / 4;
667 shdr->contents = (unsigned char *)
668 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
669 /* PR binutils/4110: Handle corrupt group headers. */
670 if (shdr->contents == NULL)
671 {
672 _bfd_error_handler
673 /* xgettext:c-format */
674 (_("%pB: corrupt size field in group section"
675 " header: %#" PRIx64),
676 abfd, (uint64_t) shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 continue;
680 }
681
682 memset (shdr->contents, 0, amt);
683
684 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
685 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
686 != shdr->sh_size))
687 {
688 _bfd_error_handler
689 /* xgettext:c-format */
690 (_("%pB: invalid size field in group section"
691 " header: %#" PRIx64 ""),
692 abfd, (uint64_t) shdr->sh_size);
693 bfd_set_error (bfd_error_bad_value);
694 -- num_group;
695 /* PR 17510: If the group contents are even
696 partially corrupt, do not allow any of the
697 contents to be used. */
698 memset (shdr->contents, 0, amt);
699 continue;
700 }
701
702 /* Translate raw contents, a flag word followed by an
703 array of elf section indices all in target byte order,
704 to the flag word followed by an array of elf section
705 pointers. */
706 src = shdr->contents + shdr->sh_size;
707 dest = (Elf_Internal_Group *) (shdr->contents + amt);
708
709 while (1)
710 {
711 unsigned int idx;
712
713 src -= 4;
714 --dest;
715 idx = H_GET_32 (abfd, src);
716 if (src == shdr->contents)
717 {
718 dest->flags = idx;
719 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
720 shdr->bfd_section->flags
721 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
722 break;
723 }
724 if (idx < shnum)
725 {
726 dest->shdr = elf_elfsections (abfd)[idx];
727 /* PR binutils/23199: All sections in a
728 section group should be marked with
729 SHF_GROUP. But some tools generate
730 broken objects without SHF_GROUP. Fix
731 them up here. */
732 dest->shdr->sh_flags |= SHF_GROUP;
733 }
734 if (idx >= shnum
735 || dest->shdr->sh_type == SHT_GROUP)
736 {
737 _bfd_error_handler
738 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
739 abfd, i);
740 dest->shdr = NULL;
741 }
742 }
743 }
744 }
745
746 /* PR 17510: Corrupt binaries might contain invalid groups. */
747 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
748 {
749 elf_tdata (abfd)->num_group = num_group;
750
751 /* If all groups are invalid then fail. */
752 if (num_group == 0)
753 {
754 elf_tdata (abfd)->group_sect_ptr = NULL;
755 elf_tdata (abfd)->num_group = num_group = -1;
756 _bfd_error_handler
757 (_("%pB: no valid group sections found"), abfd);
758 bfd_set_error (bfd_error_bad_value);
759 }
760 }
761 }
762 }
763
764 if (num_group != (unsigned) -1)
765 {
766 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
767 unsigned int j;
768
769 for (j = 0; j < num_group; j++)
770 {
771 /* Begin search from previous found group. */
772 unsigned i = (j + search_offset) % num_group;
773
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx;
776 bfd_size_type n_elt;
777
778 if (shdr == NULL)
779 continue;
780
781 idx = (Elf_Internal_Group *) shdr->contents;
782 if (idx == NULL || shdr->sh_size < 4)
783 {
784 /* See PR 21957 for a reproducer. */
785 /* xgettext:c-format */
786 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
787 abfd, shdr->bfd_section);
788 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
789 bfd_set_error (bfd_error_bad_value);
790 return FALSE;
791 }
792 n_elt = shdr->sh_size / 4;
793
794 /* Look through this group's sections to see if current
795 section is a member. */
796 while (--n_elt != 0)
797 if ((++idx)->shdr == hdr)
798 {
799 asection *s = NULL;
800
801 /* We are a member of this group. Go looking through
802 other members to see if any others are linked via
803 next_in_group. */
804 idx = (Elf_Internal_Group *) shdr->contents;
805 n_elt = shdr->sh_size / 4;
806 while (--n_elt != 0)
807 if ((++idx)->shdr != NULL
808 && (s = idx->shdr->bfd_section) != NULL
809 && elf_next_in_group (s) != NULL)
810 break;
811 if (n_elt != 0)
812 {
813 /* Snarf the group name from other member, and
814 insert current section in circular list. */
815 elf_group_name (newsect) = elf_group_name (s);
816 elf_next_in_group (newsect) = elf_next_in_group (s);
817 elf_next_in_group (s) = newsect;
818 }
819 else
820 {
821 const char *gname;
822
823 gname = group_signature (abfd, shdr);
824 if (gname == NULL)
825 return FALSE;
826 elf_group_name (newsect) = gname;
827
828 /* Start a circular list with one element. */
829 elf_next_in_group (newsect) = newsect;
830 }
831
832 /* If the group section has been created, point to the
833 new member. */
834 if (shdr->bfd_section != NULL)
835 elf_next_in_group (shdr->bfd_section) = newsect;
836
837 elf_tdata (abfd)->group_search_offset = i;
838 j = num_group - 1;
839 break;
840 }
841 }
842 }
843
844 if (elf_group_name (newsect) == NULL)
845 {
846 /* xgettext:c-format */
847 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
848 abfd, newsect);
849 return FALSE;
850 }
851 return TRUE;
852 }
853
854 bfd_boolean
855 _bfd_elf_setup_sections (bfd *abfd)
856 {
857 unsigned int i;
858 unsigned int num_group = elf_tdata (abfd)->num_group;
859 bfd_boolean result = TRUE;
860 asection *s;
861
862 /* Process SHF_LINK_ORDER. */
863 for (s = abfd->sections; s != NULL; s = s->next)
864 {
865 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
866 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
867 {
868 unsigned int elfsec = this_hdr->sh_link;
869 /* FIXME: The old Intel compiler and old strip/objcopy may
870 not set the sh_link or sh_info fields. Hence we could
871 get the situation where elfsec is 0. */
872 if (elfsec == 0)
873 {
874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
875 if (bed->link_order_error_handler)
876 bed->link_order_error_handler
877 /* xgettext:c-format */
878 (_("%pB: warning: sh_link not set for section `%pA'"),
879 abfd, s);
880 }
881 else
882 {
883 asection *linksec = NULL;
884
885 if (elfsec < elf_numsections (abfd))
886 {
887 this_hdr = elf_elfsections (abfd)[elfsec];
888 linksec = this_hdr->bfd_section;
889 }
890
891 /* PR 1991, 2008:
892 Some strip/objcopy may leave an incorrect value in
893 sh_link. We don't want to proceed. */
894 if (linksec == NULL)
895 {
896 _bfd_error_handler
897 /* xgettext:c-format */
898 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
899 s->owner, elfsec, s);
900 result = FALSE;
901 }
902
903 elf_linked_to_section (s) = linksec;
904 }
905 }
906 else if (this_hdr->sh_type == SHT_GROUP
907 && elf_next_in_group (s) == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
912 abfd, elf_section_data (s)->this_idx);
913 result = FALSE;
914 }
915 }
916
917 /* Process section groups. */
918 if (num_group == (unsigned) -1)
919 return result;
920
921 for (i = 0; i < num_group; i++)
922 {
923 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
924 Elf_Internal_Group *idx;
925 unsigned int n_elt;
926
927 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
928 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
929 {
930 _bfd_error_handler
931 /* xgettext:c-format */
932 (_("%pB: section group entry number %u is corrupt"),
933 abfd, i);
934 result = FALSE;
935 continue;
936 }
937
938 idx = (Elf_Internal_Group *) shdr->contents;
939 n_elt = shdr->sh_size / 4;
940
941 while (--n_elt != 0)
942 {
943 ++ idx;
944
945 if (idx->shdr == NULL)
946 continue;
947 else if (idx->shdr->bfd_section)
948 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
949 else if (idx->shdr->sh_type != SHT_RELA
950 && idx->shdr->sh_type != SHT_REL)
951 {
952 /* There are some unknown sections in the group. */
953 _bfd_error_handler
954 /* xgettext:c-format */
955 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
956 abfd,
957 idx->shdr->sh_type,
958 bfd_elf_string_from_elf_section (abfd,
959 (elf_elfheader (abfd)
960 ->e_shstrndx),
961 idx->shdr->sh_name),
962 shdr->bfd_section);
963 result = FALSE;
964 }
965 }
966 }
967
968 return result;
969 }
970
971 bfd_boolean
972 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
973 {
974 return elf_next_in_group (sec) != NULL;
975 }
976
977 static char *
978 convert_debug_to_zdebug (bfd *abfd, const char *name)
979 {
980 unsigned int len = strlen (name);
981 char *new_name = bfd_alloc (abfd, len + 2);
982 if (new_name == NULL)
983 return NULL;
984 new_name[0] = '.';
985 new_name[1] = 'z';
986 memcpy (new_name + 2, name + 1, len);
987 return new_name;
988 }
989
990 static char *
991 convert_zdebug_to_debug (bfd *abfd, const char *name)
992 {
993 unsigned int len = strlen (name);
994 char *new_name = bfd_alloc (abfd, len);
995 if (new_name == NULL)
996 return NULL;
997 new_name[0] = '.';
998 memcpy (new_name + 1, name + 2, len - 1);
999 return new_name;
1000 }
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014
1015 if (hdr->bfd_section != NULL)
1016 return TRUE;
1017
1018 newsect = bfd_make_section_anyway (abfd, name);
1019 if (newsect == NULL)
1020 return FALSE;
1021
1022 hdr->bfd_section = newsect;
1023 elf_section_data (newsect)->this_hdr = *hdr;
1024 elf_section_data (newsect)->this_idx = shindex;
1025
1026 /* Always use the real type/flags. */
1027 elf_section_type (newsect) = hdr->sh_type;
1028 elf_section_flags (newsect) = hdr->sh_flags;
1029
1030 newsect->filepos = hdr->sh_offset;
1031
1032 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1033 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1034 || ! bfd_set_section_alignment (abfd, newsect,
1035 bfd_log2 (hdr->sh_addralign)))
1036 return FALSE;
1037
1038 flags = SEC_NO_FLAGS;
1039 if (hdr->sh_type != SHT_NOBITS)
1040 flags |= SEC_HAS_CONTENTS;
1041 if (hdr->sh_type == SHT_GROUP)
1042 flags |= SEC_GROUP;
1043 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1044 {
1045 flags |= SEC_ALLOC;
1046 if (hdr->sh_type != SHT_NOBITS)
1047 flags |= SEC_LOAD;
1048 }
1049 if ((hdr->sh_flags & SHF_WRITE) == 0)
1050 flags |= SEC_READONLY;
1051 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1052 flags |= SEC_CODE;
1053 else if ((flags & SEC_LOAD) != 0)
1054 flags |= SEC_DATA;
1055 if ((hdr->sh_flags & SHF_MERGE) != 0)
1056 {
1057 flags |= SEC_MERGE;
1058 newsect->entsize = hdr->sh_entsize;
1059 }
1060 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1061 flags |= SEC_STRINGS;
1062 if (hdr->sh_flags & SHF_GROUP)
1063 if (!setup_group (abfd, hdr, newsect))
1064 return FALSE;
1065 if ((hdr->sh_flags & SHF_TLS) != 0)
1066 flags |= SEC_THREAD_LOCAL;
1067 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1068 flags |= SEC_EXCLUDE;
1069
1070 if ((flags & SEC_ALLOC) == 0)
1071 {
1072 /* The debugging sections appear to be recognized only by name,
1073 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1074 if (name [0] == '.')
1075 {
1076 const char *p;
1077 int n;
1078 if (name[1] == 'd')
1079 p = ".debug", n = 6;
1080 else if (name[1] == 'g' && name[2] == 'n')
1081 p = ".gnu.linkonce.wi.", n = 17;
1082 else if (name[1] == 'g' && name[2] == 'd')
1083 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1084 else if (name[1] == 'l')
1085 p = ".line", n = 5;
1086 else if (name[1] == 's')
1087 p = ".stab", n = 5;
1088 else if (name[1] == 'z')
1089 p = ".zdebug", n = 7;
1090 else
1091 p = NULL, n = 0;
1092 if (p != NULL && strncmp (name, p, n) == 0)
1093 flags |= SEC_DEBUGGING;
1094 }
1095 }
1096
1097 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1098 only link a single copy of the section. This is used to support
1099 g++. g++ will emit each template expansion in its own section.
1100 The symbols will be defined as weak, so that multiple definitions
1101 are permitted. The GNU linker extension is to actually discard
1102 all but one of the sections. */
1103 if (CONST_STRNEQ (name, ".gnu.linkonce")
1104 && elf_next_in_group (newsect) == NULL)
1105 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1106
1107 bed = get_elf_backend_data (abfd);
1108 if (bed->elf_backend_section_flags)
1109 if (! bed->elf_backend_section_flags (&flags, hdr))
1110 return FALSE;
1111
1112 if (! bfd_set_section_flags (abfd, newsect, flags))
1113 return FALSE;
1114
1115 /* We do not parse the PT_NOTE segments as we are interested even in the
1116 separate debug info files which may have the segments offsets corrupted.
1117 PT_NOTEs from the core files are currently not parsed using BFD. */
1118 if (hdr->sh_type == SHT_NOTE)
1119 {
1120 bfd_byte *contents;
1121
1122 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1123 return FALSE;
1124
1125 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1126 hdr->sh_offset, hdr->sh_addralign);
1127 free (contents);
1128 }
1129
1130 if ((flags & SEC_ALLOC) != 0)
1131 {
1132 Elf_Internal_Phdr *phdr;
1133 unsigned int i, nload;
1134
1135 /* Some ELF linkers produce binaries with all the program header
1136 p_paddr fields zero. If we have such a binary with more than
1137 one PT_LOAD header, then leave the section lma equal to vma
1138 so that we don't create sections with overlapping lma. */
1139 phdr = elf_tdata (abfd)->phdr;
1140 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1141 if (phdr->p_paddr != 0)
1142 break;
1143 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1144 ++nload;
1145 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1146 return TRUE;
1147
1148 phdr = elf_tdata (abfd)->phdr;
1149 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1150 {
1151 if (((phdr->p_type == PT_LOAD
1152 && (hdr->sh_flags & SHF_TLS) == 0)
1153 || phdr->p_type == PT_TLS)
1154 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1155 {
1156 if ((flags & SEC_LOAD) == 0)
1157 newsect->lma = (phdr->p_paddr
1158 + hdr->sh_addr - phdr->p_vaddr);
1159 else
1160 /* We used to use the same adjustment for SEC_LOAD
1161 sections, but that doesn't work if the segment
1162 is packed with code from multiple VMAs.
1163 Instead we calculate the section LMA based on
1164 the segment LMA. It is assumed that the
1165 segment will contain sections with contiguous
1166 LMAs, even if the VMAs are not. */
1167 newsect->lma = (phdr->p_paddr
1168 + hdr->sh_offset - phdr->p_offset);
1169
1170 /* With contiguous segments, we can't tell from file
1171 offsets whether a section with zero size should
1172 be placed at the end of one segment or the
1173 beginning of the next. Decide based on vaddr. */
1174 if (hdr->sh_addr >= phdr->p_vaddr
1175 && (hdr->sh_addr + hdr->sh_size
1176 <= phdr->p_vaddr + phdr->p_memsz))
1177 break;
1178 }
1179 }
1180 }
1181
1182 /* Compress/decompress DWARF debug sections with names: .debug_* and
1183 .zdebug_*, after the section flags is set. */
1184 if ((flags & SEC_DEBUGGING)
1185 && ((name[1] == 'd' && name[6] == '_')
1186 || (name[1] == 'z' && name[7] == '_')))
1187 {
1188 enum { nothing, compress, decompress } action = nothing;
1189 int compression_header_size;
1190 bfd_size_type uncompressed_size;
1191 unsigned int uncompressed_align_power;
1192 bfd_boolean compressed
1193 = bfd_is_section_compressed_with_header (abfd, newsect,
1194 &compression_header_size,
1195 &uncompressed_size,
1196 &uncompressed_align_power);
1197 if (compressed)
1198 {
1199 /* Compressed section. Check if we should decompress. */
1200 if ((abfd->flags & BFD_DECOMPRESS))
1201 action = decompress;
1202 }
1203
1204 /* Compress the uncompressed section or convert from/to .zdebug*
1205 section. Check if we should compress. */
1206 if (action == nothing)
1207 {
1208 if (newsect->size != 0
1209 && (abfd->flags & BFD_COMPRESS)
1210 && compression_header_size >= 0
1211 && uncompressed_size > 0
1212 && (!compressed
1213 || ((compression_header_size > 0)
1214 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1215 action = compress;
1216 else
1217 return TRUE;
1218 }
1219
1220 if (action == compress)
1221 {
1222 if (!bfd_init_section_compress_status (abfd, newsect))
1223 {
1224 _bfd_error_handler
1225 /* xgettext:c-format */
1226 (_("%pB: unable to initialize compress status for section %s"),
1227 abfd, name);
1228 return FALSE;
1229 }
1230 }
1231 else
1232 {
1233 if (!bfd_init_section_decompress_status (abfd, newsect))
1234 {
1235 _bfd_error_handler
1236 /* xgettext:c-format */
1237 (_("%pB: unable to initialize decompress status for section %s"),
1238 abfd, name);
1239 return FALSE;
1240 }
1241 }
1242
1243 if (abfd->is_linker_input)
1244 {
1245 if (name[1] == 'z'
1246 && (action == decompress
1247 || (action == compress
1248 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1249 {
1250 /* Convert section name from .zdebug_* to .debug_* so
1251 that linker will consider this section as a debug
1252 section. */
1253 char *new_name = convert_zdebug_to_debug (abfd, name);
1254 if (new_name == NULL)
1255 return FALSE;
1256 bfd_rename_section (abfd, newsect, new_name);
1257 }
1258 }
1259 else
1260 /* For objdump, don't rename the section. For objcopy, delay
1261 section rename to elf_fake_sections. */
1262 newsect->flags |= SEC_ELF_RENAME;
1263 }
1264
1265 return TRUE;
1266 }
1267
1268 const char *const bfd_elf_section_type_names[] =
1269 {
1270 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1271 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1272 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1273 };
1274
1275 /* ELF relocs are against symbols. If we are producing relocatable
1276 output, and the reloc is against an external symbol, and nothing
1277 has given us any additional addend, the resulting reloc will also
1278 be against the same symbol. In such a case, we don't want to
1279 change anything about the way the reloc is handled, since it will
1280 all be done at final link time. Rather than put special case code
1281 into bfd_perform_relocation, all the reloc types use this howto
1282 function. It just short circuits the reloc if producing
1283 relocatable output against an external symbol. */
1284
1285 bfd_reloc_status_type
1286 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1287 arelent *reloc_entry,
1288 asymbol *symbol,
1289 void *data ATTRIBUTE_UNUSED,
1290 asection *input_section,
1291 bfd *output_bfd,
1292 char **error_message ATTRIBUTE_UNUSED)
1293 {
1294 if (output_bfd != NULL
1295 && (symbol->flags & BSF_SECTION_SYM) == 0
1296 && (! reloc_entry->howto->partial_inplace
1297 || reloc_entry->addend == 0))
1298 {
1299 reloc_entry->address += input_section->output_offset;
1300 return bfd_reloc_ok;
1301 }
1302
1303 return bfd_reloc_continue;
1304 }
1305 \f
1306 /* Returns TRUE if section A matches section B.
1307 Names, addresses and links may be different, but everything else
1308 should be the same. */
1309
1310 static bfd_boolean
1311 section_match (const Elf_Internal_Shdr * a,
1312 const Elf_Internal_Shdr * b)
1313 {
1314 if (a->sh_type != b->sh_type
1315 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1316 || a->sh_addralign != b->sh_addralign
1317 || a->sh_entsize != b->sh_entsize)
1318 return FALSE;
1319 if (a->sh_type == SHT_SYMTAB
1320 || a->sh_type == SHT_STRTAB)
1321 return TRUE;
1322 return a->sh_size == b->sh_size;
1323 }
1324
1325 /* Find a section in OBFD that has the same characteristics
1326 as IHEADER. Return the index of this section or SHN_UNDEF if
1327 none can be found. Check's section HINT first, as this is likely
1328 to be the correct section. */
1329
1330 static unsigned int
1331 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1332 const unsigned int hint)
1333 {
1334 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1335 unsigned int i;
1336
1337 BFD_ASSERT (iheader != NULL);
1338
1339 /* See PR 20922 for a reproducer of the NULL test. */
1340 if (hint < elf_numsections (obfd)
1341 && oheaders[hint] != NULL
1342 && section_match (oheaders[hint], iheader))
1343 return hint;
1344
1345 for (i = 1; i < elf_numsections (obfd); i++)
1346 {
1347 Elf_Internal_Shdr * oheader = oheaders[i];
1348
1349 if (oheader == NULL)
1350 continue;
1351 if (section_match (oheader, iheader))
1352 /* FIXME: Do we care if there is a potential for
1353 multiple matches ? */
1354 return i;
1355 }
1356
1357 return SHN_UNDEF;
1358 }
1359
1360 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1361 Processor specific section, based upon a matching input section.
1362 Returns TRUE upon success, FALSE otherwise. */
1363
1364 static bfd_boolean
1365 copy_special_section_fields (const bfd *ibfd,
1366 bfd *obfd,
1367 const Elf_Internal_Shdr *iheader,
1368 Elf_Internal_Shdr *oheader,
1369 const unsigned int secnum)
1370 {
1371 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1372 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1373 bfd_boolean changed = FALSE;
1374 unsigned int sh_link;
1375
1376 if (oheader->sh_type == SHT_NOBITS)
1377 {
1378 /* This is a feature for objcopy --only-keep-debug:
1379 When a section's type is changed to NOBITS, we preserve
1380 the sh_link and sh_info fields so that they can be
1381 matched up with the original.
1382
1383 Note: Strictly speaking these assignments are wrong.
1384 The sh_link and sh_info fields should point to the
1385 relevent sections in the output BFD, which may not be in
1386 the same location as they were in the input BFD. But
1387 the whole point of this action is to preserve the
1388 original values of the sh_link and sh_info fields, so
1389 that they can be matched up with the section headers in
1390 the original file. So strictly speaking we may be
1391 creating an invalid ELF file, but it is only for a file
1392 that just contains debug info and only for sections
1393 without any contents. */
1394 if (oheader->sh_link == 0)
1395 oheader->sh_link = iheader->sh_link;
1396 if (oheader->sh_info == 0)
1397 oheader->sh_info = iheader->sh_info;
1398 return TRUE;
1399 }
1400
1401 /* Allow the target a chance to decide how these fields should be set. */
1402 if (bed->elf_backend_copy_special_section_fields != NULL
1403 && bed->elf_backend_copy_special_section_fields
1404 (ibfd, obfd, iheader, oheader))
1405 return TRUE;
1406
1407 /* We have an iheader which might match oheader, and which has non-zero
1408 sh_info and/or sh_link fields. Attempt to follow those links and find
1409 the section in the output bfd which corresponds to the linked section
1410 in the input bfd. */
1411 if (iheader->sh_link != SHN_UNDEF)
1412 {
1413 /* See PR 20931 for a reproducer. */
1414 if (iheader->sh_link >= elf_numsections (ibfd))
1415 {
1416 _bfd_error_handler
1417 /* xgettext:c-format */
1418 (_("%pB: invalid sh_link field (%d) in section number %d"),
1419 ibfd, iheader->sh_link, secnum);
1420 return FALSE;
1421 }
1422
1423 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1424 if (sh_link != SHN_UNDEF)
1425 {
1426 oheader->sh_link = sh_link;
1427 changed = TRUE;
1428 }
1429 else
1430 /* FIXME: Should we install iheader->sh_link
1431 if we could not find a match ? */
1432 _bfd_error_handler
1433 /* xgettext:c-format */
1434 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1435 }
1436
1437 if (iheader->sh_info)
1438 {
1439 /* The sh_info field can hold arbitrary information, but if the
1440 SHF_LINK_INFO flag is set then it should be interpreted as a
1441 section index. */
1442 if (iheader->sh_flags & SHF_INFO_LINK)
1443 {
1444 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1445 iheader->sh_info);
1446 if (sh_link != SHN_UNDEF)
1447 oheader->sh_flags |= SHF_INFO_LINK;
1448 }
1449 else
1450 /* No idea what it means - just copy it. */
1451 sh_link = iheader->sh_info;
1452
1453 if (sh_link != SHN_UNDEF)
1454 {
1455 oheader->sh_info = sh_link;
1456 changed = TRUE;
1457 }
1458 else
1459 _bfd_error_handler
1460 /* xgettext:c-format */
1461 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1462 }
1463
1464 return changed;
1465 }
1466
1467 /* Copy the program header and other data from one object module to
1468 another. */
1469
1470 bfd_boolean
1471 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1472 {
1473 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1474 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1475 const struct elf_backend_data *bed;
1476 unsigned int i;
1477
1478 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1479 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1480 return TRUE;
1481
1482 if (!elf_flags_init (obfd))
1483 {
1484 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1485 elf_flags_init (obfd) = TRUE;
1486 }
1487
1488 elf_gp (obfd) = elf_gp (ibfd);
1489
1490 /* Also copy the EI_OSABI field. */
1491 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1492 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1493
1494 /* If set, copy the EI_ABIVERSION field. */
1495 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1496 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1497 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1498
1499 /* Copy object attributes. */
1500 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1501
1502 if (iheaders == NULL || oheaders == NULL)
1503 return TRUE;
1504
1505 bed = get_elf_backend_data (obfd);
1506
1507 /* Possibly copy other fields in the section header. */
1508 for (i = 1; i < elf_numsections (obfd); i++)
1509 {
1510 unsigned int j;
1511 Elf_Internal_Shdr * oheader = oheaders[i];
1512
1513 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1514 because of a special case need for generating separate debug info
1515 files. See below for more details. */
1516 if (oheader == NULL
1517 || (oheader->sh_type != SHT_NOBITS
1518 && oheader->sh_type < SHT_LOOS))
1519 continue;
1520
1521 /* Ignore empty sections, and sections whose
1522 fields have already been initialised. */
1523 if (oheader->sh_size == 0
1524 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1525 continue;
1526
1527 /* Scan for the matching section in the input bfd.
1528 First we try for a direct mapping between the input and output sections. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 if (oheader->bfd_section != NULL
1537 && iheader->bfd_section != NULL
1538 && iheader->bfd_section->output_section != NULL
1539 && iheader->bfd_section->output_section == oheader->bfd_section)
1540 {
1541 /* We have found a connection from the input section to the
1542 output section. Attempt to copy the header fields. If
1543 this fails then do not try any further sections - there
1544 should only be a one-to-one mapping between input and output. */
1545 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1546 j = elf_numsections (ibfd);
1547 break;
1548 }
1549 }
1550
1551 if (j < elf_numsections (ibfd))
1552 continue;
1553
1554 /* That failed. So try to deduce the corresponding input section.
1555 Unfortunately we cannot compare names as the output string table
1556 is empty, so instead we check size, address and type. */
1557 for (j = 1; j < elf_numsections (ibfd); j++)
1558 {
1559 const Elf_Internal_Shdr * iheader = iheaders[j];
1560
1561 if (iheader == NULL)
1562 continue;
1563
1564 /* Try matching fields in the input section's header.
1565 Since --only-keep-debug turns all non-debug sections into
1566 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1567 input type. */
1568 if ((oheader->sh_type == SHT_NOBITS
1569 || iheader->sh_type == oheader->sh_type)
1570 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1571 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1572 && iheader->sh_addralign == oheader->sh_addralign
1573 && iheader->sh_entsize == oheader->sh_entsize
1574 && iheader->sh_size == oheader->sh_size
1575 && iheader->sh_addr == oheader->sh_addr
1576 && (iheader->sh_info != oheader->sh_info
1577 || iheader->sh_link != oheader->sh_link))
1578 {
1579 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1580 break;
1581 }
1582 }
1583
1584 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1585 {
1586 /* Final attempt. Call the backend copy function
1587 with a NULL input section. */
1588 if (bed->elf_backend_copy_special_section_fields != NULL)
1589 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1590 }
1591 }
1592
1593 return TRUE;
1594 }
1595
1596 static const char *
1597 get_segment_type (unsigned int p_type)
1598 {
1599 const char *pt;
1600 switch (p_type)
1601 {
1602 case PT_NULL: pt = "NULL"; break;
1603 case PT_LOAD: pt = "LOAD"; break;
1604 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1605 case PT_INTERP: pt = "INTERP"; break;
1606 case PT_NOTE: pt = "NOTE"; break;
1607 case PT_SHLIB: pt = "SHLIB"; break;
1608 case PT_PHDR: pt = "PHDR"; break;
1609 case PT_TLS: pt = "TLS"; break;
1610 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1611 case PT_GNU_STACK: pt = "STACK"; break;
1612 case PT_GNU_RELRO: pt = "RELRO"; break;
1613 default: pt = NULL; break;
1614 }
1615 return pt;
1616 }
1617
1618 /* Print out the program headers. */
1619
1620 bfd_boolean
1621 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1622 {
1623 FILE *f = (FILE *) farg;
1624 Elf_Internal_Phdr *p;
1625 asection *s;
1626 bfd_byte *dynbuf = NULL;
1627
1628 p = elf_tdata (abfd)->phdr;
1629 if (p != NULL)
1630 {
1631 unsigned int i, c;
1632
1633 fprintf (f, _("\nProgram Header:\n"));
1634 c = elf_elfheader (abfd)->e_phnum;
1635 for (i = 0; i < c; i++, p++)
1636 {
1637 const char *pt = get_segment_type (p->p_type);
1638 char buf[20];
1639
1640 if (pt == NULL)
1641 {
1642 sprintf (buf, "0x%lx", p->p_type);
1643 pt = buf;
1644 }
1645 fprintf (f, "%8s off 0x", pt);
1646 bfd_fprintf_vma (abfd, f, p->p_offset);
1647 fprintf (f, " vaddr 0x");
1648 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1649 fprintf (f, " paddr 0x");
1650 bfd_fprintf_vma (abfd, f, p->p_paddr);
1651 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1652 fprintf (f, " filesz 0x");
1653 bfd_fprintf_vma (abfd, f, p->p_filesz);
1654 fprintf (f, " memsz 0x");
1655 bfd_fprintf_vma (abfd, f, p->p_memsz);
1656 fprintf (f, " flags %c%c%c",
1657 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1658 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1659 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1660 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1661 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1662 fprintf (f, "\n");
1663 }
1664 }
1665
1666 s = bfd_get_section_by_name (abfd, ".dynamic");
1667 if (s != NULL)
1668 {
1669 unsigned int elfsec;
1670 unsigned long shlink;
1671 bfd_byte *extdyn, *extdynend;
1672 size_t extdynsize;
1673 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1674
1675 fprintf (f, _("\nDynamic Section:\n"));
1676
1677 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1678 goto error_return;
1679
1680 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1681 if (elfsec == SHN_BAD)
1682 goto error_return;
1683 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1684
1685 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1686 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1687
1688 extdyn = dynbuf;
1689 /* PR 17512: file: 6f427532. */
1690 if (s->size < extdynsize)
1691 goto error_return;
1692 extdynend = extdyn + s->size;
1693 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1694 Fix range check. */
1695 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1696 {
1697 Elf_Internal_Dyn dyn;
1698 const char *name = "";
1699 char ab[20];
1700 bfd_boolean stringp;
1701 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1702
1703 (*swap_dyn_in) (abfd, extdyn, &dyn);
1704
1705 if (dyn.d_tag == DT_NULL)
1706 break;
1707
1708 stringp = FALSE;
1709 switch (dyn.d_tag)
1710 {
1711 default:
1712 if (bed->elf_backend_get_target_dtag)
1713 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1714
1715 if (!strcmp (name, ""))
1716 {
1717 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1718 name = ab;
1719 }
1720 break;
1721
1722 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1723 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1724 case DT_PLTGOT: name = "PLTGOT"; break;
1725 case DT_HASH: name = "HASH"; break;
1726 case DT_STRTAB: name = "STRTAB"; break;
1727 case DT_SYMTAB: name = "SYMTAB"; break;
1728 case DT_RELA: name = "RELA"; break;
1729 case DT_RELASZ: name = "RELASZ"; break;
1730 case DT_RELAENT: name = "RELAENT"; break;
1731 case DT_STRSZ: name = "STRSZ"; break;
1732 case DT_SYMENT: name = "SYMENT"; break;
1733 case DT_INIT: name = "INIT"; break;
1734 case DT_FINI: name = "FINI"; break;
1735 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1736 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1737 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1738 case DT_REL: name = "REL"; break;
1739 case DT_RELSZ: name = "RELSZ"; break;
1740 case DT_RELENT: name = "RELENT"; break;
1741 case DT_PLTREL: name = "PLTREL"; break;
1742 case DT_DEBUG: name = "DEBUG"; break;
1743 case DT_TEXTREL: name = "TEXTREL"; break;
1744 case DT_JMPREL: name = "JMPREL"; break;
1745 case DT_BIND_NOW: name = "BIND_NOW"; break;
1746 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1747 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1748 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1749 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1750 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1751 case DT_FLAGS: name = "FLAGS"; break;
1752 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1753 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1754 case DT_CHECKSUM: name = "CHECKSUM"; break;
1755 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1756 case DT_MOVEENT: name = "MOVEENT"; break;
1757 case DT_MOVESZ: name = "MOVESZ"; break;
1758 case DT_FEATURE: name = "FEATURE"; break;
1759 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1760 case DT_SYMINSZ: name = "SYMINSZ"; break;
1761 case DT_SYMINENT: name = "SYMINENT"; break;
1762 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1763 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1764 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1765 case DT_PLTPAD: name = "PLTPAD"; break;
1766 case DT_MOVETAB: name = "MOVETAB"; break;
1767 case DT_SYMINFO: name = "SYMINFO"; break;
1768 case DT_RELACOUNT: name = "RELACOUNT"; break;
1769 case DT_RELCOUNT: name = "RELCOUNT"; break;
1770 case DT_FLAGS_1: name = "FLAGS_1"; break;
1771 case DT_VERSYM: name = "VERSYM"; break;
1772 case DT_VERDEF: name = "VERDEF"; break;
1773 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1774 case DT_VERNEED: name = "VERNEED"; break;
1775 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1776 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1777 case DT_USED: name = "USED"; break;
1778 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1779 case DT_GNU_HASH: name = "GNU_HASH"; break;
1780 }
1781
1782 fprintf (f, " %-20s ", name);
1783 if (! stringp)
1784 {
1785 fprintf (f, "0x");
1786 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1787 }
1788 else
1789 {
1790 const char *string;
1791 unsigned int tagv = dyn.d_un.d_val;
1792
1793 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1794 if (string == NULL)
1795 goto error_return;
1796 fprintf (f, "%s", string);
1797 }
1798 fprintf (f, "\n");
1799 }
1800
1801 free (dynbuf);
1802 dynbuf = NULL;
1803 }
1804
1805 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1806 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1807 {
1808 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1809 return FALSE;
1810 }
1811
1812 if (elf_dynverdef (abfd) != 0)
1813 {
1814 Elf_Internal_Verdef *t;
1815
1816 fprintf (f, _("\nVersion definitions:\n"));
1817 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1818 {
1819 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1820 t->vd_flags, t->vd_hash,
1821 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1822 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1823 {
1824 Elf_Internal_Verdaux *a;
1825
1826 fprintf (f, "\t");
1827 for (a = t->vd_auxptr->vda_nextptr;
1828 a != NULL;
1829 a = a->vda_nextptr)
1830 fprintf (f, "%s ",
1831 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1832 fprintf (f, "\n");
1833 }
1834 }
1835 }
1836
1837 if (elf_dynverref (abfd) != 0)
1838 {
1839 Elf_Internal_Verneed *t;
1840
1841 fprintf (f, _("\nVersion References:\n"));
1842 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1843 {
1844 Elf_Internal_Vernaux *a;
1845
1846 fprintf (f, _(" required from %s:\n"),
1847 t->vn_filename ? t->vn_filename : "<corrupt>");
1848 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1849 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1850 a->vna_flags, a->vna_other,
1851 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1852 }
1853 }
1854
1855 return TRUE;
1856
1857 error_return:
1858 if (dynbuf != NULL)
1859 free (dynbuf);
1860 return FALSE;
1861 }
1862
1863 /* Get version string. */
1864
1865 const char *
1866 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1867 bfd_boolean *hidden)
1868 {
1869 const char *version_string = NULL;
1870 if (elf_dynversym (abfd) != 0
1871 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1872 {
1873 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1874
1875 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1876 vernum &= VERSYM_VERSION;
1877
1878 if (vernum == 0)
1879 version_string = "";
1880 else if (vernum == 1
1881 && (vernum > elf_tdata (abfd)->cverdefs
1882 || (elf_tdata (abfd)->verdef[0].vd_flags
1883 == VER_FLG_BASE)))
1884 version_string = "Base";
1885 else if (vernum <= elf_tdata (abfd)->cverdefs)
1886 version_string =
1887 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1888 else
1889 {
1890 Elf_Internal_Verneed *t;
1891
1892 version_string = _("<corrupt>");
1893 for (t = elf_tdata (abfd)->verref;
1894 t != NULL;
1895 t = t->vn_nextref)
1896 {
1897 Elf_Internal_Vernaux *a;
1898
1899 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1900 {
1901 if (a->vna_other == vernum)
1902 {
1903 version_string = a->vna_nodename;
1904 break;
1905 }
1906 }
1907 }
1908 }
1909 }
1910 return version_string;
1911 }
1912
1913 /* Display ELF-specific fields of a symbol. */
1914
1915 void
1916 bfd_elf_print_symbol (bfd *abfd,
1917 void *filep,
1918 asymbol *symbol,
1919 bfd_print_symbol_type how)
1920 {
1921 FILE *file = (FILE *) filep;
1922 switch (how)
1923 {
1924 case bfd_print_symbol_name:
1925 fprintf (file, "%s", symbol->name);
1926 break;
1927 case bfd_print_symbol_more:
1928 fprintf (file, "elf ");
1929 bfd_fprintf_vma (abfd, file, symbol->value);
1930 fprintf (file, " %x", symbol->flags);
1931 break;
1932 case bfd_print_symbol_all:
1933 {
1934 const char *section_name;
1935 const char *name = NULL;
1936 const struct elf_backend_data *bed;
1937 unsigned char st_other;
1938 bfd_vma val;
1939 const char *version_string;
1940 bfd_boolean hidden;
1941
1942 section_name = symbol->section ? symbol->section->name : "(*none*)";
1943
1944 bed = get_elf_backend_data (abfd);
1945 if (bed->elf_backend_print_symbol_all)
1946 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1947
1948 if (name == NULL)
1949 {
1950 name = symbol->name;
1951 bfd_print_symbol_vandf (abfd, file, symbol);
1952 }
1953
1954 fprintf (file, " %s\t", section_name);
1955 /* Print the "other" value for a symbol. For common symbols,
1956 we've already printed the size; now print the alignment.
1957 For other symbols, we have no specified alignment, and
1958 we've printed the address; now print the size. */
1959 if (symbol->section && bfd_is_com_section (symbol->section))
1960 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1961 else
1962 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1963 bfd_fprintf_vma (abfd, file, val);
1964
1965 /* If we have version information, print it. */
1966 version_string = _bfd_elf_get_symbol_version_string (abfd,
1967 symbol,
1968 &hidden);
1969 if (version_string)
1970 {
1971 if (!hidden)
1972 fprintf (file, " %-11s", version_string);
1973 else
1974 {
1975 int i;
1976
1977 fprintf (file, " (%s)", version_string);
1978 for (i = 10 - strlen (version_string); i > 0; --i)
1979 putc (' ', file);
1980 }
1981 }
1982
1983 /* If the st_other field is not zero, print it. */
1984 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1985
1986 switch (st_other)
1987 {
1988 case 0: break;
1989 case STV_INTERNAL: fprintf (file, " .internal"); break;
1990 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1991 case STV_PROTECTED: fprintf (file, " .protected"); break;
1992 default:
1993 /* Some other non-defined flags are also present, so print
1994 everything hex. */
1995 fprintf (file, " 0x%02x", (unsigned int) st_other);
1996 }
1997
1998 fprintf (file, " %s", name);
1999 }
2000 break;
2001 }
2002 }
2003 \f
2004 /* ELF .o/exec file reading */
2005
2006 /* Create a new bfd section from an ELF section header. */
2007
2008 bfd_boolean
2009 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2010 {
2011 Elf_Internal_Shdr *hdr;
2012 Elf_Internal_Ehdr *ehdr;
2013 const struct elf_backend_data *bed;
2014 const char *name;
2015 bfd_boolean ret = TRUE;
2016 static bfd_boolean * sections_being_created = NULL;
2017 static bfd * sections_being_created_abfd = NULL;
2018 static unsigned int nesting = 0;
2019
2020 if (shindex >= elf_numsections (abfd))
2021 return FALSE;
2022
2023 if (++ nesting > 3)
2024 {
2025 /* PR17512: A corrupt ELF binary might contain a recursive group of
2026 sections, with each the string indices pointing to the next in the
2027 loop. Detect this here, by refusing to load a section that we are
2028 already in the process of loading. We only trigger this test if
2029 we have nested at least three sections deep as normal ELF binaries
2030 can expect to recurse at least once.
2031
2032 FIXME: It would be better if this array was attached to the bfd,
2033 rather than being held in a static pointer. */
2034
2035 if (sections_being_created_abfd != abfd)
2036 sections_being_created = NULL;
2037 if (sections_being_created == NULL)
2038 {
2039 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2040 sections_being_created = (bfd_boolean *)
2041 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2042 sections_being_created_abfd = abfd;
2043 }
2044 if (sections_being_created [shindex])
2045 {
2046 _bfd_error_handler
2047 (_("%pB: warning: loop in section dependencies detected"), abfd);
2048 return FALSE;
2049 }
2050 sections_being_created [shindex] = TRUE;
2051 }
2052
2053 hdr = elf_elfsections (abfd)[shindex];
2054 ehdr = elf_elfheader (abfd);
2055 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2056 hdr->sh_name);
2057 if (name == NULL)
2058 goto fail;
2059
2060 bed = get_elf_backend_data (abfd);
2061 switch (hdr->sh_type)
2062 {
2063 case SHT_NULL:
2064 /* Inactive section. Throw it away. */
2065 goto success;
2066
2067 case SHT_PROGBITS: /* Normal section with contents. */
2068 case SHT_NOBITS: /* .bss section. */
2069 case SHT_HASH: /* .hash section. */
2070 case SHT_NOTE: /* .note section. */
2071 case SHT_INIT_ARRAY: /* .init_array section. */
2072 case SHT_FINI_ARRAY: /* .fini_array section. */
2073 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2074 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2075 case SHT_GNU_HASH: /* .gnu.hash section. */
2076 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2077 goto success;
2078
2079 case SHT_DYNAMIC: /* Dynamic linking information. */
2080 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2081 goto fail;
2082
2083 if (hdr->sh_link > elf_numsections (abfd))
2084 {
2085 /* PR 10478: Accept Solaris binaries with a sh_link
2086 field set to SHN_BEFORE or SHN_AFTER. */
2087 switch (bfd_get_arch (abfd))
2088 {
2089 case bfd_arch_i386:
2090 case bfd_arch_sparc:
2091 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2092 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2093 break;
2094 /* Otherwise fall through. */
2095 default:
2096 goto fail;
2097 }
2098 }
2099 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2100 goto fail;
2101 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2102 {
2103 Elf_Internal_Shdr *dynsymhdr;
2104
2105 /* The shared libraries distributed with hpux11 have a bogus
2106 sh_link field for the ".dynamic" section. Find the
2107 string table for the ".dynsym" section instead. */
2108 if (elf_dynsymtab (abfd) != 0)
2109 {
2110 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2111 hdr->sh_link = dynsymhdr->sh_link;
2112 }
2113 else
2114 {
2115 unsigned int i, num_sec;
2116
2117 num_sec = elf_numsections (abfd);
2118 for (i = 1; i < num_sec; i++)
2119 {
2120 dynsymhdr = elf_elfsections (abfd)[i];
2121 if (dynsymhdr->sh_type == SHT_DYNSYM)
2122 {
2123 hdr->sh_link = dynsymhdr->sh_link;
2124 break;
2125 }
2126 }
2127 }
2128 }
2129 goto success;
2130
2131 case SHT_SYMTAB: /* A symbol table. */
2132 if (elf_onesymtab (abfd) == shindex)
2133 goto success;
2134
2135 if (hdr->sh_entsize != bed->s->sizeof_sym)
2136 goto fail;
2137
2138 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2139 {
2140 if (hdr->sh_size != 0)
2141 goto fail;
2142 /* Some assemblers erroneously set sh_info to one with a
2143 zero sh_size. ld sees this as a global symbol count
2144 of (unsigned) -1. Fix it here. */
2145 hdr->sh_info = 0;
2146 goto success;
2147 }
2148
2149 /* PR 18854: A binary might contain more than one symbol table.
2150 Unusual, but possible. Warn, but continue. */
2151 if (elf_onesymtab (abfd) != 0)
2152 {
2153 _bfd_error_handler
2154 /* xgettext:c-format */
2155 (_("%pB: warning: multiple symbol tables detected"
2156 " - ignoring the table in section %u"),
2157 abfd, shindex);
2158 goto success;
2159 }
2160 elf_onesymtab (abfd) = shindex;
2161 elf_symtab_hdr (abfd) = *hdr;
2162 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2163 abfd->flags |= HAS_SYMS;
2164
2165 /* Sometimes a shared object will map in the symbol table. If
2166 SHF_ALLOC is set, and this is a shared object, then we also
2167 treat this section as a BFD section. We can not base the
2168 decision purely on SHF_ALLOC, because that flag is sometimes
2169 set in a relocatable object file, which would confuse the
2170 linker. */
2171 if ((hdr->sh_flags & SHF_ALLOC) != 0
2172 && (abfd->flags & DYNAMIC) != 0
2173 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2174 shindex))
2175 goto fail;
2176
2177 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2178 can't read symbols without that section loaded as well. It
2179 is most likely specified by the next section header. */
2180 {
2181 elf_section_list * entry;
2182 unsigned int i, num_sec;
2183
2184 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2185 if (entry->hdr.sh_link == shindex)
2186 goto success;
2187
2188 num_sec = elf_numsections (abfd);
2189 for (i = shindex + 1; i < num_sec; i++)
2190 {
2191 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2192
2193 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2194 && hdr2->sh_link == shindex)
2195 break;
2196 }
2197
2198 if (i == num_sec)
2199 for (i = 1; i < shindex; i++)
2200 {
2201 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2202
2203 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2204 && hdr2->sh_link == shindex)
2205 break;
2206 }
2207
2208 if (i != shindex)
2209 ret = bfd_section_from_shdr (abfd, i);
2210 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2211 goto success;
2212 }
2213
2214 case SHT_DYNSYM: /* A dynamic symbol table. */
2215 if (elf_dynsymtab (abfd) == shindex)
2216 goto success;
2217
2218 if (hdr->sh_entsize != bed->s->sizeof_sym)
2219 goto fail;
2220
2221 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2222 {
2223 if (hdr->sh_size != 0)
2224 goto fail;
2225
2226 /* Some linkers erroneously set sh_info to one with a
2227 zero sh_size. ld sees this as a global symbol count
2228 of (unsigned) -1. Fix it here. */
2229 hdr->sh_info = 0;
2230 goto success;
2231 }
2232
2233 /* PR 18854: A binary might contain more than one dynamic symbol table.
2234 Unusual, but possible. Warn, but continue. */
2235 if (elf_dynsymtab (abfd) != 0)
2236 {
2237 _bfd_error_handler
2238 /* xgettext:c-format */
2239 (_("%pB: warning: multiple dynamic symbol tables detected"
2240 " - ignoring the table in section %u"),
2241 abfd, shindex);
2242 goto success;
2243 }
2244 elf_dynsymtab (abfd) = shindex;
2245 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2246 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2247 abfd->flags |= HAS_SYMS;
2248
2249 /* Besides being a symbol table, we also treat this as a regular
2250 section, so that objcopy can handle it. */
2251 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2252 goto success;
2253
2254 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2255 {
2256 elf_section_list * entry;
2257
2258 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2259 if (entry->ndx == shindex)
2260 goto success;
2261
2262 entry = bfd_alloc (abfd, sizeof * entry);
2263 if (entry == NULL)
2264 goto fail;
2265 entry->ndx = shindex;
2266 entry->hdr = * hdr;
2267 entry->next = elf_symtab_shndx_list (abfd);
2268 elf_symtab_shndx_list (abfd) = entry;
2269 elf_elfsections (abfd)[shindex] = & entry->hdr;
2270 goto success;
2271 }
2272
2273 case SHT_STRTAB: /* A string table. */
2274 if (hdr->bfd_section != NULL)
2275 goto success;
2276
2277 if (ehdr->e_shstrndx == shindex)
2278 {
2279 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2280 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2281 goto success;
2282 }
2283
2284 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2285 {
2286 symtab_strtab:
2287 elf_tdata (abfd)->strtab_hdr = *hdr;
2288 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2289 goto success;
2290 }
2291
2292 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2293 {
2294 dynsymtab_strtab:
2295 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2296 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2297 elf_elfsections (abfd)[shindex] = hdr;
2298 /* We also treat this as a regular section, so that objcopy
2299 can handle it. */
2300 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2301 shindex);
2302 goto success;
2303 }
2304
2305 /* If the string table isn't one of the above, then treat it as a
2306 regular section. We need to scan all the headers to be sure,
2307 just in case this strtab section appeared before the above. */
2308 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2309 {
2310 unsigned int i, num_sec;
2311
2312 num_sec = elf_numsections (abfd);
2313 for (i = 1; i < num_sec; i++)
2314 {
2315 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2316 if (hdr2->sh_link == shindex)
2317 {
2318 /* Prevent endless recursion on broken objects. */
2319 if (i == shindex)
2320 goto fail;
2321 if (! bfd_section_from_shdr (abfd, i))
2322 goto fail;
2323 if (elf_onesymtab (abfd) == i)
2324 goto symtab_strtab;
2325 if (elf_dynsymtab (abfd) == i)
2326 goto dynsymtab_strtab;
2327 }
2328 }
2329 }
2330 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2331 goto success;
2332
2333 case SHT_REL:
2334 case SHT_RELA:
2335 /* *These* do a lot of work -- but build no sections! */
2336 {
2337 asection *target_sect;
2338 Elf_Internal_Shdr *hdr2, **p_hdr;
2339 unsigned int num_sec = elf_numsections (abfd);
2340 struct bfd_elf_section_data *esdt;
2341
2342 if (hdr->sh_entsize
2343 != (bfd_size_type) (hdr->sh_type == SHT_REL
2344 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2345 goto fail;
2346
2347 /* Check for a bogus link to avoid crashing. */
2348 if (hdr->sh_link >= num_sec)
2349 {
2350 _bfd_error_handler
2351 /* xgettext:c-format */
2352 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2353 abfd, hdr->sh_link, name, shindex);
2354 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2355 shindex);
2356 goto success;
2357 }
2358
2359 /* For some incomprehensible reason Oracle distributes
2360 libraries for Solaris in which some of the objects have
2361 bogus sh_link fields. It would be nice if we could just
2362 reject them, but, unfortunately, some people need to use
2363 them. We scan through the section headers; if we find only
2364 one suitable symbol table, we clobber the sh_link to point
2365 to it. I hope this doesn't break anything.
2366
2367 Don't do it on executable nor shared library. */
2368 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2369 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2370 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2371 {
2372 unsigned int scan;
2373 int found;
2374
2375 found = 0;
2376 for (scan = 1; scan < num_sec; scan++)
2377 {
2378 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2379 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2380 {
2381 if (found != 0)
2382 {
2383 found = 0;
2384 break;
2385 }
2386 found = scan;
2387 }
2388 }
2389 if (found != 0)
2390 hdr->sh_link = found;
2391 }
2392
2393 /* Get the symbol table. */
2394 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2395 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2396 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2397 goto fail;
2398
2399 /* If this is an alloc section in an executable or shared
2400 library, or the reloc section does not use the main symbol
2401 table we don't treat it as a reloc section. BFD can't
2402 adequately represent such a section, so at least for now,
2403 we don't try. We just present it as a normal section. We
2404 also can't use it as a reloc section if it points to the
2405 null section, an invalid section, another reloc section, or
2406 its sh_link points to the null section. */
2407 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2408 && (hdr->sh_flags & SHF_ALLOC) != 0)
2409 || hdr->sh_link == SHN_UNDEF
2410 || hdr->sh_link != elf_onesymtab (abfd)
2411 || hdr->sh_info == SHN_UNDEF
2412 || hdr->sh_info >= num_sec
2413 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2414 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2415 {
2416 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2417 shindex);
2418 goto success;
2419 }
2420
2421 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2422 goto fail;
2423
2424 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2425 if (target_sect == NULL)
2426 goto fail;
2427
2428 esdt = elf_section_data (target_sect);
2429 if (hdr->sh_type == SHT_RELA)
2430 p_hdr = &esdt->rela.hdr;
2431 else
2432 p_hdr = &esdt->rel.hdr;
2433
2434 /* PR 17512: file: 0b4f81b7. */
2435 if (*p_hdr != NULL)
2436 goto fail;
2437 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2438 if (hdr2 == NULL)
2439 goto fail;
2440 *hdr2 = *hdr;
2441 *p_hdr = hdr2;
2442 elf_elfsections (abfd)[shindex] = hdr2;
2443 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2444 * bed->s->int_rels_per_ext_rel);
2445 target_sect->flags |= SEC_RELOC;
2446 target_sect->relocation = NULL;
2447 target_sect->rel_filepos = hdr->sh_offset;
2448 /* In the section to which the relocations apply, mark whether
2449 its relocations are of the REL or RELA variety. */
2450 if (hdr->sh_size != 0)
2451 {
2452 if (hdr->sh_type == SHT_RELA)
2453 target_sect->use_rela_p = 1;
2454 }
2455 abfd->flags |= HAS_RELOC;
2456 goto success;
2457 }
2458
2459 case SHT_GNU_verdef:
2460 elf_dynverdef (abfd) = shindex;
2461 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2462 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2463 goto success;
2464
2465 case SHT_GNU_versym:
2466 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2467 goto fail;
2468
2469 elf_dynversym (abfd) = shindex;
2470 elf_tdata (abfd)->dynversym_hdr = *hdr;
2471 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2472 goto success;
2473
2474 case SHT_GNU_verneed:
2475 elf_dynverref (abfd) = shindex;
2476 elf_tdata (abfd)->dynverref_hdr = *hdr;
2477 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2478 goto success;
2479
2480 case SHT_SHLIB:
2481 goto success;
2482
2483 case SHT_GROUP:
2484 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2485 goto fail;
2486
2487 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2488 goto fail;
2489
2490 goto success;
2491
2492 default:
2493 /* Possibly an attributes section. */
2494 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2495 || hdr->sh_type == bed->obj_attrs_section_type)
2496 {
2497 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2498 goto fail;
2499 _bfd_elf_parse_attributes (abfd, hdr);
2500 goto success;
2501 }
2502
2503 /* Check for any processor-specific section types. */
2504 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2505 goto success;
2506
2507 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2508 {
2509 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2510 /* FIXME: How to properly handle allocated section reserved
2511 for applications? */
2512 _bfd_error_handler
2513 /* xgettext:c-format */
2514 (_("%pB: unknown type [%#x] section `%s'"),
2515 abfd, hdr->sh_type, name);
2516 else
2517 {
2518 /* Allow sections reserved for applications. */
2519 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2520 shindex);
2521 goto success;
2522 }
2523 }
2524 else if (hdr->sh_type >= SHT_LOPROC
2525 && hdr->sh_type <= SHT_HIPROC)
2526 /* FIXME: We should handle this section. */
2527 _bfd_error_handler
2528 /* xgettext:c-format */
2529 (_("%pB: unknown type [%#x] section `%s'"),
2530 abfd, hdr->sh_type, name);
2531 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2532 {
2533 /* Unrecognised OS-specific sections. */
2534 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2535 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2536 required to correctly process the section and the file should
2537 be rejected with an error message. */
2538 _bfd_error_handler
2539 /* xgettext:c-format */
2540 (_("%pB: unknown type [%#x] section `%s'"),
2541 abfd, hdr->sh_type, name);
2542 else
2543 {
2544 /* Otherwise it should be processed. */
2545 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2546 goto success;
2547 }
2548 }
2549 else
2550 /* FIXME: We should handle this section. */
2551 _bfd_error_handler
2552 /* xgettext:c-format */
2553 (_("%pB: unknown type [%#x] section `%s'"),
2554 abfd, hdr->sh_type, name);
2555
2556 goto fail;
2557 }
2558
2559 fail:
2560 ret = FALSE;
2561 success:
2562 if (sections_being_created && sections_being_created_abfd == abfd)
2563 sections_being_created [shindex] = FALSE;
2564 if (-- nesting == 0)
2565 {
2566 sections_being_created = NULL;
2567 sections_being_created_abfd = abfd;
2568 }
2569 return ret;
2570 }
2571
2572 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2573
2574 Elf_Internal_Sym *
2575 bfd_sym_from_r_symndx (struct sym_cache *cache,
2576 bfd *abfd,
2577 unsigned long r_symndx)
2578 {
2579 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2580
2581 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2582 {
2583 Elf_Internal_Shdr *symtab_hdr;
2584 unsigned char esym[sizeof (Elf64_External_Sym)];
2585 Elf_External_Sym_Shndx eshndx;
2586
2587 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2588 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2589 &cache->sym[ent], esym, &eshndx) == NULL)
2590 return NULL;
2591
2592 if (cache->abfd != abfd)
2593 {
2594 memset (cache->indx, -1, sizeof (cache->indx));
2595 cache->abfd = abfd;
2596 }
2597 cache->indx[ent] = r_symndx;
2598 }
2599
2600 return &cache->sym[ent];
2601 }
2602
2603 /* Given an ELF section number, retrieve the corresponding BFD
2604 section. */
2605
2606 asection *
2607 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2608 {
2609 if (sec_index >= elf_numsections (abfd))
2610 return NULL;
2611 return elf_elfsections (abfd)[sec_index]->bfd_section;
2612 }
2613
2614 static const struct bfd_elf_special_section special_sections_b[] =
2615 {
2616 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2617 { NULL, 0, 0, 0, 0 }
2618 };
2619
2620 static const struct bfd_elf_special_section special_sections_c[] =
2621 {
2622 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2623 { NULL, 0, 0, 0, 0 }
2624 };
2625
2626 static const struct bfd_elf_special_section special_sections_d[] =
2627 {
2628 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2629 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2630 /* There are more DWARF sections than these, but they needn't be added here
2631 unless you have to cope with broken compilers that don't emit section
2632 attributes or you want to help the user writing assembler. */
2633 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2634 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2635 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2636 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2637 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2638 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2639 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2640 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2641 { NULL, 0, 0, 0, 0 }
2642 };
2643
2644 static const struct bfd_elf_special_section special_sections_f[] =
2645 {
2646 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2647 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2648 { NULL, 0 , 0, 0, 0 }
2649 };
2650
2651 static const struct bfd_elf_special_section special_sections_g[] =
2652 {
2653 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2654 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2655 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2656 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2657 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2658 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2659 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2660 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2661 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2662 { NULL, 0, 0, 0, 0 }
2663 };
2664
2665 static const struct bfd_elf_special_section special_sections_h[] =
2666 {
2667 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2668 { NULL, 0, 0, 0, 0 }
2669 };
2670
2671 static const struct bfd_elf_special_section special_sections_i[] =
2672 {
2673 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2674 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2675 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2676 { NULL, 0, 0, 0, 0 }
2677 };
2678
2679 static const struct bfd_elf_special_section special_sections_l[] =
2680 {
2681 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section special_sections_n[] =
2686 {
2687 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2689 { NULL, 0, 0, 0, 0 }
2690 };
2691
2692 static const struct bfd_elf_special_section special_sections_p[] =
2693 {
2694 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2695 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2696 { NULL, 0, 0, 0, 0 }
2697 };
2698
2699 static const struct bfd_elf_special_section special_sections_r[] =
2700 {
2701 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2702 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2703 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2704 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2705 { NULL, 0, 0, 0, 0 }
2706 };
2707
2708 static const struct bfd_elf_special_section special_sections_s[] =
2709 {
2710 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2711 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2712 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2713 /* See struct bfd_elf_special_section declaration for the semantics of
2714 this special case where .prefix_length != strlen (.prefix). */
2715 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2716 { NULL, 0, 0, 0, 0 }
2717 };
2718
2719 static const struct bfd_elf_special_section special_sections_t[] =
2720 {
2721 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2722 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2723 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2724 { NULL, 0, 0, 0, 0 }
2725 };
2726
2727 static const struct bfd_elf_special_section special_sections_z[] =
2728 {
2729 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2730 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2731 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2732 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2733 { NULL, 0, 0, 0, 0 }
2734 };
2735
2736 static const struct bfd_elf_special_section * const special_sections[] =
2737 {
2738 special_sections_b, /* 'b' */
2739 special_sections_c, /* 'c' */
2740 special_sections_d, /* 'd' */
2741 NULL, /* 'e' */
2742 special_sections_f, /* 'f' */
2743 special_sections_g, /* 'g' */
2744 special_sections_h, /* 'h' */
2745 special_sections_i, /* 'i' */
2746 NULL, /* 'j' */
2747 NULL, /* 'k' */
2748 special_sections_l, /* 'l' */
2749 NULL, /* 'm' */
2750 special_sections_n, /* 'n' */
2751 NULL, /* 'o' */
2752 special_sections_p, /* 'p' */
2753 NULL, /* 'q' */
2754 special_sections_r, /* 'r' */
2755 special_sections_s, /* 's' */
2756 special_sections_t, /* 't' */
2757 NULL, /* 'u' */
2758 NULL, /* 'v' */
2759 NULL, /* 'w' */
2760 NULL, /* 'x' */
2761 NULL, /* 'y' */
2762 special_sections_z /* 'z' */
2763 };
2764
2765 const struct bfd_elf_special_section *
2766 _bfd_elf_get_special_section (const char *name,
2767 const struct bfd_elf_special_section *spec,
2768 unsigned int rela)
2769 {
2770 int i;
2771 int len;
2772
2773 len = strlen (name);
2774
2775 for (i = 0; spec[i].prefix != NULL; i++)
2776 {
2777 int suffix_len;
2778 int prefix_len = spec[i].prefix_length;
2779
2780 if (len < prefix_len)
2781 continue;
2782 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2783 continue;
2784
2785 suffix_len = spec[i].suffix_length;
2786 if (suffix_len <= 0)
2787 {
2788 if (name[prefix_len] != 0)
2789 {
2790 if (suffix_len == 0)
2791 continue;
2792 if (name[prefix_len] != '.'
2793 && (suffix_len == -2
2794 || (rela && spec[i].type == SHT_REL)))
2795 continue;
2796 }
2797 }
2798 else
2799 {
2800 if (len < prefix_len + suffix_len)
2801 continue;
2802 if (memcmp (name + len - suffix_len,
2803 spec[i].prefix + prefix_len,
2804 suffix_len) != 0)
2805 continue;
2806 }
2807 return &spec[i];
2808 }
2809
2810 return NULL;
2811 }
2812
2813 const struct bfd_elf_special_section *
2814 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2815 {
2816 int i;
2817 const struct bfd_elf_special_section *spec;
2818 const struct elf_backend_data *bed;
2819
2820 /* See if this is one of the special sections. */
2821 if (sec->name == NULL)
2822 return NULL;
2823
2824 bed = get_elf_backend_data (abfd);
2825 spec = bed->special_sections;
2826 if (spec)
2827 {
2828 spec = _bfd_elf_get_special_section (sec->name,
2829 bed->special_sections,
2830 sec->use_rela_p);
2831 if (spec != NULL)
2832 return spec;
2833 }
2834
2835 if (sec->name[0] != '.')
2836 return NULL;
2837
2838 i = sec->name[1] - 'b';
2839 if (i < 0 || i > 'z' - 'b')
2840 return NULL;
2841
2842 spec = special_sections[i];
2843
2844 if (spec == NULL)
2845 return NULL;
2846
2847 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2848 }
2849
2850 bfd_boolean
2851 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2852 {
2853 struct bfd_elf_section_data *sdata;
2854 const struct elf_backend_data *bed;
2855 const struct bfd_elf_special_section *ssect;
2856
2857 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2858 if (sdata == NULL)
2859 {
2860 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2861 sizeof (*sdata));
2862 if (sdata == NULL)
2863 return FALSE;
2864 sec->used_by_bfd = sdata;
2865 }
2866
2867 /* Indicate whether or not this section should use RELA relocations. */
2868 bed = get_elf_backend_data (abfd);
2869 sec->use_rela_p = bed->default_use_rela_p;
2870
2871 /* When we read a file, we don't need to set ELF section type and
2872 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2873 anyway. We will set ELF section type and flags for all linker
2874 created sections. If user specifies BFD section flags, we will
2875 set ELF section type and flags based on BFD section flags in
2876 elf_fake_sections. Special handling for .init_array/.fini_array
2877 output sections since they may contain .ctors/.dtors input
2878 sections. We don't want _bfd_elf_init_private_section_data to
2879 copy ELF section type from .ctors/.dtors input sections. */
2880 if (abfd->direction != read_direction
2881 || (sec->flags & SEC_LINKER_CREATED) != 0)
2882 {
2883 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2884 if (ssect != NULL
2885 && (!sec->flags
2886 || (sec->flags & SEC_LINKER_CREATED) != 0
2887 || ssect->type == SHT_INIT_ARRAY
2888 || ssect->type == SHT_FINI_ARRAY))
2889 {
2890 elf_section_type (sec) = ssect->type;
2891 elf_section_flags (sec) = ssect->attr;
2892 }
2893 }
2894
2895 return _bfd_generic_new_section_hook (abfd, sec);
2896 }
2897
2898 /* Create a new bfd section from an ELF program header.
2899
2900 Since program segments have no names, we generate a synthetic name
2901 of the form segment<NUM>, where NUM is generally the index in the
2902 program header table. For segments that are split (see below) we
2903 generate the names segment<NUM>a and segment<NUM>b.
2904
2905 Note that some program segments may have a file size that is different than
2906 (less than) the memory size. All this means is that at execution the
2907 system must allocate the amount of memory specified by the memory size,
2908 but only initialize it with the first "file size" bytes read from the
2909 file. This would occur for example, with program segments consisting
2910 of combined data+bss.
2911
2912 To handle the above situation, this routine generates TWO bfd sections
2913 for the single program segment. The first has the length specified by
2914 the file size of the segment, and the second has the length specified
2915 by the difference between the two sizes. In effect, the segment is split
2916 into its initialized and uninitialized parts.
2917
2918 */
2919
2920 bfd_boolean
2921 _bfd_elf_make_section_from_phdr (bfd *abfd,
2922 Elf_Internal_Phdr *hdr,
2923 int hdr_index,
2924 const char *type_name)
2925 {
2926 asection *newsect;
2927 char *name;
2928 char namebuf[64];
2929 size_t len;
2930 int split;
2931
2932 split = ((hdr->p_memsz > 0)
2933 && (hdr->p_filesz > 0)
2934 && (hdr->p_memsz > hdr->p_filesz));
2935
2936 if (hdr->p_filesz > 0)
2937 {
2938 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2939 len = strlen (namebuf) + 1;
2940 name = (char *) bfd_alloc (abfd, len);
2941 if (!name)
2942 return FALSE;
2943 memcpy (name, namebuf, len);
2944 newsect = bfd_make_section (abfd, name);
2945 if (newsect == NULL)
2946 return FALSE;
2947 newsect->vma = hdr->p_vaddr;
2948 newsect->lma = hdr->p_paddr;
2949 newsect->size = hdr->p_filesz;
2950 newsect->filepos = hdr->p_offset;
2951 newsect->flags |= SEC_HAS_CONTENTS;
2952 newsect->alignment_power = bfd_log2 (hdr->p_align);
2953 if (hdr->p_type == PT_LOAD)
2954 {
2955 newsect->flags |= SEC_ALLOC;
2956 newsect->flags |= SEC_LOAD;
2957 if (hdr->p_flags & PF_X)
2958 {
2959 /* FIXME: all we known is that it has execute PERMISSION,
2960 may be data. */
2961 newsect->flags |= SEC_CODE;
2962 }
2963 }
2964 if (!(hdr->p_flags & PF_W))
2965 {
2966 newsect->flags |= SEC_READONLY;
2967 }
2968 }
2969
2970 if (hdr->p_memsz > hdr->p_filesz)
2971 {
2972 bfd_vma align;
2973
2974 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2975 len = strlen (namebuf) + 1;
2976 name = (char *) bfd_alloc (abfd, len);
2977 if (!name)
2978 return FALSE;
2979 memcpy (name, namebuf, len);
2980 newsect = bfd_make_section (abfd, name);
2981 if (newsect == NULL)
2982 return FALSE;
2983 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2984 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2985 newsect->size = hdr->p_memsz - hdr->p_filesz;
2986 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2987 align = newsect->vma & -newsect->vma;
2988 if (align == 0 || align > hdr->p_align)
2989 align = hdr->p_align;
2990 newsect->alignment_power = bfd_log2 (align);
2991 if (hdr->p_type == PT_LOAD)
2992 {
2993 /* Hack for gdb. Segments that have not been modified do
2994 not have their contents written to a core file, on the
2995 assumption that a debugger can find the contents in the
2996 executable. We flag this case by setting the fake
2997 section size to zero. Note that "real" bss sections will
2998 always have their contents dumped to the core file. */
2999 if (bfd_get_format (abfd) == bfd_core)
3000 newsect->size = 0;
3001 newsect->flags |= SEC_ALLOC;
3002 if (hdr->p_flags & PF_X)
3003 newsect->flags |= SEC_CODE;
3004 }
3005 if (!(hdr->p_flags & PF_W))
3006 newsect->flags |= SEC_READONLY;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 bfd_boolean
3013 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3014 {
3015 const struct elf_backend_data *bed;
3016
3017 switch (hdr->p_type)
3018 {
3019 case PT_NULL:
3020 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3021
3022 case PT_LOAD:
3023 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3024
3025 case PT_DYNAMIC:
3026 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3027
3028 case PT_INTERP:
3029 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3030
3031 case PT_NOTE:
3032 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3033 return FALSE;
3034 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3035 hdr->p_align))
3036 return FALSE;
3037 return TRUE;
3038
3039 case PT_SHLIB:
3040 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3041
3042 case PT_PHDR:
3043 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3044
3045 case PT_GNU_EH_FRAME:
3046 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3047 "eh_frame_hdr");
3048
3049 case PT_GNU_STACK:
3050 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3051
3052 case PT_GNU_RELRO:
3053 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3054
3055 default:
3056 /* Check for any processor-specific program segment types. */
3057 bed = get_elf_backend_data (abfd);
3058 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3059 }
3060 }
3061
3062 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3063 REL or RELA. */
3064
3065 Elf_Internal_Shdr *
3066 _bfd_elf_single_rel_hdr (asection *sec)
3067 {
3068 if (elf_section_data (sec)->rel.hdr)
3069 {
3070 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3071 return elf_section_data (sec)->rel.hdr;
3072 }
3073 else
3074 return elf_section_data (sec)->rela.hdr;
3075 }
3076
3077 static bfd_boolean
3078 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3079 Elf_Internal_Shdr *rel_hdr,
3080 const char *sec_name,
3081 bfd_boolean use_rela_p)
3082 {
3083 char *name = (char *) bfd_alloc (abfd,
3084 sizeof ".rela" + strlen (sec_name));
3085 if (name == NULL)
3086 return FALSE;
3087
3088 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3089 rel_hdr->sh_name =
3090 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3091 FALSE);
3092 if (rel_hdr->sh_name == (unsigned int) -1)
3093 return FALSE;
3094
3095 return TRUE;
3096 }
3097
3098 /* Allocate and initialize a section-header for a new reloc section,
3099 containing relocations against ASECT. It is stored in RELDATA. If
3100 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3101 relocations. */
3102
3103 static bfd_boolean
3104 _bfd_elf_init_reloc_shdr (bfd *abfd,
3105 struct bfd_elf_section_reloc_data *reldata,
3106 const char *sec_name,
3107 bfd_boolean use_rela_p,
3108 bfd_boolean delay_st_name_p)
3109 {
3110 Elf_Internal_Shdr *rel_hdr;
3111 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3112
3113 BFD_ASSERT (reldata->hdr == NULL);
3114 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3115 reldata->hdr = rel_hdr;
3116
3117 if (delay_st_name_p)
3118 rel_hdr->sh_name = (unsigned int) -1;
3119 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3120 use_rela_p))
3121 return FALSE;
3122 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3123 rel_hdr->sh_entsize = (use_rela_p
3124 ? bed->s->sizeof_rela
3125 : bed->s->sizeof_rel);
3126 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3127 rel_hdr->sh_flags = 0;
3128 rel_hdr->sh_addr = 0;
3129 rel_hdr->sh_size = 0;
3130 rel_hdr->sh_offset = 0;
3131
3132 return TRUE;
3133 }
3134
3135 /* Return the default section type based on the passed in section flags. */
3136
3137 int
3138 bfd_elf_get_default_section_type (flagword flags)
3139 {
3140 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3141 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3142 return SHT_NOBITS;
3143 return SHT_PROGBITS;
3144 }
3145
3146 struct fake_section_arg
3147 {
3148 struct bfd_link_info *link_info;
3149 bfd_boolean failed;
3150 };
3151
3152 /* Set up an ELF internal section header for a section. */
3153
3154 static void
3155 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3156 {
3157 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3158 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3159 struct bfd_elf_section_data *esd = elf_section_data (asect);
3160 Elf_Internal_Shdr *this_hdr;
3161 unsigned int sh_type;
3162 const char *name = asect->name;
3163 bfd_boolean delay_st_name_p = FALSE;
3164
3165 if (arg->failed)
3166 {
3167 /* We already failed; just get out of the bfd_map_over_sections
3168 loop. */
3169 return;
3170 }
3171
3172 this_hdr = &esd->this_hdr;
3173
3174 if (arg->link_info)
3175 {
3176 /* ld: compress DWARF debug sections with names: .debug_*. */
3177 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3178 && (asect->flags & SEC_DEBUGGING)
3179 && name[1] == 'd'
3180 && name[6] == '_')
3181 {
3182 /* Set SEC_ELF_COMPRESS to indicate this section should be
3183 compressed. */
3184 asect->flags |= SEC_ELF_COMPRESS;
3185
3186 /* If this section will be compressed, delay adding section
3187 name to section name section after it is compressed in
3188 _bfd_elf_assign_file_positions_for_non_load. */
3189 delay_st_name_p = TRUE;
3190 }
3191 }
3192 else if ((asect->flags & SEC_ELF_RENAME))
3193 {
3194 /* objcopy: rename output DWARF debug section. */
3195 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3196 {
3197 /* When we decompress or compress with SHF_COMPRESSED,
3198 convert section name from .zdebug_* to .debug_* if
3199 needed. */
3200 if (name[1] == 'z')
3201 {
3202 char *new_name = convert_zdebug_to_debug (abfd, name);
3203 if (new_name == NULL)
3204 {
3205 arg->failed = TRUE;
3206 return;
3207 }
3208 name = new_name;
3209 }
3210 }
3211 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3212 {
3213 /* PR binutils/18087: Compression does not always make a
3214 section smaller. So only rename the section when
3215 compression has actually taken place. If input section
3216 name is .zdebug_*, we should never compress it again. */
3217 char *new_name = convert_debug_to_zdebug (abfd, name);
3218 if (new_name == NULL)
3219 {
3220 arg->failed = TRUE;
3221 return;
3222 }
3223 BFD_ASSERT (name[1] != 'z');
3224 name = new_name;
3225 }
3226 }
3227
3228 if (delay_st_name_p)
3229 this_hdr->sh_name = (unsigned int) -1;
3230 else
3231 {
3232 this_hdr->sh_name
3233 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3234 name, FALSE);
3235 if (this_hdr->sh_name == (unsigned int) -1)
3236 {
3237 arg->failed = TRUE;
3238 return;
3239 }
3240 }
3241
3242 /* Don't clear sh_flags. Assembler may set additional bits. */
3243
3244 if ((asect->flags & SEC_ALLOC) != 0
3245 || asect->user_set_vma)
3246 this_hdr->sh_addr = asect->vma;
3247 else
3248 this_hdr->sh_addr = 0;
3249
3250 this_hdr->sh_offset = 0;
3251 this_hdr->sh_size = asect->size;
3252 this_hdr->sh_link = 0;
3253 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3254 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3255 {
3256 _bfd_error_handler
3257 /* xgettext:c-format */
3258 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3259 abfd, asect->alignment_power, asect);
3260 arg->failed = TRUE;
3261 return;
3262 }
3263 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3264 /* The sh_entsize and sh_info fields may have been set already by
3265 copy_private_section_data. */
3266
3267 this_hdr->bfd_section = asect;
3268 this_hdr->contents = NULL;
3269
3270 /* If the section type is unspecified, we set it based on
3271 asect->flags. */
3272 if ((asect->flags & SEC_GROUP) != 0)
3273 sh_type = SHT_GROUP;
3274 else
3275 sh_type = bfd_elf_get_default_section_type (asect->flags);
3276
3277 if (this_hdr->sh_type == SHT_NULL)
3278 this_hdr->sh_type = sh_type;
3279 else if (this_hdr->sh_type == SHT_NOBITS
3280 && sh_type == SHT_PROGBITS
3281 && (asect->flags & SEC_ALLOC) != 0)
3282 {
3283 /* Warn if we are changing a NOBITS section to PROGBITS, but
3284 allow the link to proceed. This can happen when users link
3285 non-bss input sections to bss output sections, or emit data
3286 to a bss output section via a linker script. */
3287 _bfd_error_handler
3288 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3289 this_hdr->sh_type = sh_type;
3290 }
3291
3292 switch (this_hdr->sh_type)
3293 {
3294 default:
3295 break;
3296
3297 case SHT_STRTAB:
3298 case SHT_NOTE:
3299 case SHT_NOBITS:
3300 case SHT_PROGBITS:
3301 break;
3302
3303 case SHT_INIT_ARRAY:
3304 case SHT_FINI_ARRAY:
3305 case SHT_PREINIT_ARRAY:
3306 this_hdr->sh_entsize = bed->s->arch_size / 8;
3307 break;
3308
3309 case SHT_HASH:
3310 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3311 break;
3312
3313 case SHT_DYNSYM:
3314 this_hdr->sh_entsize = bed->s->sizeof_sym;
3315 break;
3316
3317 case SHT_DYNAMIC:
3318 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3319 break;
3320
3321 case SHT_RELA:
3322 if (get_elf_backend_data (abfd)->may_use_rela_p)
3323 this_hdr->sh_entsize = bed->s->sizeof_rela;
3324 break;
3325
3326 case SHT_REL:
3327 if (get_elf_backend_data (abfd)->may_use_rel_p)
3328 this_hdr->sh_entsize = bed->s->sizeof_rel;
3329 break;
3330
3331 case SHT_GNU_versym:
3332 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3333 break;
3334
3335 case SHT_GNU_verdef:
3336 this_hdr->sh_entsize = 0;
3337 /* objcopy or strip will copy over sh_info, but may not set
3338 cverdefs. The linker will set cverdefs, but sh_info will be
3339 zero. */
3340 if (this_hdr->sh_info == 0)
3341 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3342 else
3343 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3344 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3345 break;
3346
3347 case SHT_GNU_verneed:
3348 this_hdr->sh_entsize = 0;
3349 /* objcopy or strip will copy over sh_info, but may not set
3350 cverrefs. The linker will set cverrefs, but sh_info will be
3351 zero. */
3352 if (this_hdr->sh_info == 0)
3353 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3354 else
3355 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3356 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3357 break;
3358
3359 case SHT_GROUP:
3360 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3361 break;
3362
3363 case SHT_GNU_HASH:
3364 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3365 break;
3366 }
3367
3368 if ((asect->flags & SEC_ALLOC) != 0)
3369 this_hdr->sh_flags |= SHF_ALLOC;
3370 if ((asect->flags & SEC_READONLY) == 0)
3371 this_hdr->sh_flags |= SHF_WRITE;
3372 if ((asect->flags & SEC_CODE) != 0)
3373 this_hdr->sh_flags |= SHF_EXECINSTR;
3374 if ((asect->flags & SEC_MERGE) != 0)
3375 {
3376 this_hdr->sh_flags |= SHF_MERGE;
3377 this_hdr->sh_entsize = asect->entsize;
3378 }
3379 if ((asect->flags & SEC_STRINGS) != 0)
3380 this_hdr->sh_flags |= SHF_STRINGS;
3381 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3382 this_hdr->sh_flags |= SHF_GROUP;
3383 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3384 {
3385 this_hdr->sh_flags |= SHF_TLS;
3386 if (asect->size == 0
3387 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3388 {
3389 struct bfd_link_order *o = asect->map_tail.link_order;
3390
3391 this_hdr->sh_size = 0;
3392 if (o != NULL)
3393 {
3394 this_hdr->sh_size = o->offset + o->size;
3395 if (this_hdr->sh_size != 0)
3396 this_hdr->sh_type = SHT_NOBITS;
3397 }
3398 }
3399 }
3400 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3401 this_hdr->sh_flags |= SHF_EXCLUDE;
3402
3403 /* If the section has relocs, set up a section header for the
3404 SHT_REL[A] section. If two relocation sections are required for
3405 this section, it is up to the processor-specific back-end to
3406 create the other. */
3407 if ((asect->flags & SEC_RELOC) != 0)
3408 {
3409 /* When doing a relocatable link, create both REL and RELA sections if
3410 needed. */
3411 if (arg->link_info
3412 /* Do the normal setup if we wouldn't create any sections here. */
3413 && esd->rel.count + esd->rela.count > 0
3414 && (bfd_link_relocatable (arg->link_info)
3415 || arg->link_info->emitrelocations))
3416 {
3417 if (esd->rel.count && esd->rel.hdr == NULL
3418 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3419 FALSE, delay_st_name_p))
3420 {
3421 arg->failed = TRUE;
3422 return;
3423 }
3424 if (esd->rela.count && esd->rela.hdr == NULL
3425 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3426 TRUE, delay_st_name_p))
3427 {
3428 arg->failed = TRUE;
3429 return;
3430 }
3431 }
3432 else if (!_bfd_elf_init_reloc_shdr (abfd,
3433 (asect->use_rela_p
3434 ? &esd->rela : &esd->rel),
3435 name,
3436 asect->use_rela_p,
3437 delay_st_name_p))
3438 {
3439 arg->failed = TRUE;
3440 return;
3441 }
3442 }
3443
3444 /* Check for processor-specific section types. */
3445 sh_type = this_hdr->sh_type;
3446 if (bed->elf_backend_fake_sections
3447 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3448 {
3449 arg->failed = TRUE;
3450 return;
3451 }
3452
3453 if (sh_type == SHT_NOBITS && asect->size != 0)
3454 {
3455 /* Don't change the header type from NOBITS if we are being
3456 called for objcopy --only-keep-debug. */
3457 this_hdr->sh_type = sh_type;
3458 }
3459 }
3460
3461 /* Fill in the contents of a SHT_GROUP section. Called from
3462 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3463 when ELF targets use the generic linker, ld. Called for ld -r
3464 from bfd_elf_final_link. */
3465
3466 void
3467 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3468 {
3469 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3470 asection *elt, *first;
3471 unsigned char *loc;
3472 bfd_boolean gas;
3473
3474 /* Ignore linker created group section. See elfNN_ia64_object_p in
3475 elfxx-ia64.c. */
3476 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3477 || *failedptr)
3478 return;
3479
3480 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3481 {
3482 unsigned long symindx = 0;
3483
3484 /* elf_group_id will have been set up by objcopy and the
3485 generic linker. */
3486 if (elf_group_id (sec) != NULL)
3487 symindx = elf_group_id (sec)->udata.i;
3488
3489 if (symindx == 0)
3490 {
3491 /* If called from the assembler, swap_out_syms will have set up
3492 elf_section_syms. */
3493 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3494 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3495 }
3496 elf_section_data (sec)->this_hdr.sh_info = symindx;
3497 }
3498 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3499 {
3500 /* The ELF backend linker sets sh_info to -2 when the group
3501 signature symbol is global, and thus the index can't be
3502 set until all local symbols are output. */
3503 asection *igroup;
3504 struct bfd_elf_section_data *sec_data;
3505 unsigned long symndx;
3506 unsigned long extsymoff;
3507 struct elf_link_hash_entry *h;
3508
3509 /* The point of this little dance to the first SHF_GROUP section
3510 then back to the SHT_GROUP section is that this gets us to
3511 the SHT_GROUP in the input object. */
3512 igroup = elf_sec_group (elf_next_in_group (sec));
3513 sec_data = elf_section_data (igroup);
3514 symndx = sec_data->this_hdr.sh_info;
3515 extsymoff = 0;
3516 if (!elf_bad_symtab (igroup->owner))
3517 {
3518 Elf_Internal_Shdr *symtab_hdr;
3519
3520 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3521 extsymoff = symtab_hdr->sh_info;
3522 }
3523 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3524 while (h->root.type == bfd_link_hash_indirect
3525 || h->root.type == bfd_link_hash_warning)
3526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3527
3528 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3529 }
3530
3531 /* The contents won't be allocated for "ld -r" or objcopy. */
3532 gas = TRUE;
3533 if (sec->contents == NULL)
3534 {
3535 gas = FALSE;
3536 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3537
3538 /* Arrange for the section to be written out. */
3539 elf_section_data (sec)->this_hdr.contents = sec->contents;
3540 if (sec->contents == NULL)
3541 {
3542 *failedptr = TRUE;
3543 return;
3544 }
3545 }
3546
3547 loc = sec->contents + sec->size;
3548
3549 /* Get the pointer to the first section in the group that gas
3550 squirreled away here. objcopy arranges for this to be set to the
3551 start of the input section group. */
3552 first = elt = elf_next_in_group (sec);
3553
3554 /* First element is a flag word. Rest of section is elf section
3555 indices for all the sections of the group. Write them backwards
3556 just to keep the group in the same order as given in .section
3557 directives, not that it matters. */
3558 while (elt != NULL)
3559 {
3560 asection *s;
3561
3562 s = elt;
3563 if (!gas)
3564 s = s->output_section;
3565 if (s != NULL
3566 && !bfd_is_abs_section (s))
3567 {
3568 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3569 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3570
3571 if (elf_sec->rel.hdr != NULL
3572 && (gas
3573 || (input_elf_sec->rel.hdr != NULL
3574 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3575 {
3576 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3577 loc -= 4;
3578 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3579 }
3580 if (elf_sec->rela.hdr != NULL
3581 && (gas
3582 || (input_elf_sec->rela.hdr != NULL
3583 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3584 {
3585 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3586 loc -= 4;
3587 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3588 }
3589 loc -= 4;
3590 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3591 }
3592 elt = elf_next_in_group (elt);
3593 if (elt == first)
3594 break;
3595 }
3596
3597 loc -= 4;
3598 BFD_ASSERT (loc == sec->contents);
3599
3600 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3601 }
3602
3603 /* Given NAME, the name of a relocation section stripped of its
3604 .rel/.rela prefix, return the section in ABFD to which the
3605 relocations apply. */
3606
3607 asection *
3608 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3609 {
3610 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3611 section likely apply to .got.plt or .got section. */
3612 if (get_elf_backend_data (abfd)->want_got_plt
3613 && strcmp (name, ".plt") == 0)
3614 {
3615 asection *sec;
3616
3617 name = ".got.plt";
3618 sec = bfd_get_section_by_name (abfd, name);
3619 if (sec != NULL)
3620 return sec;
3621 name = ".got";
3622 }
3623
3624 return bfd_get_section_by_name (abfd, name);
3625 }
3626
3627 /* Return the section to which RELOC_SEC applies. */
3628
3629 static asection *
3630 elf_get_reloc_section (asection *reloc_sec)
3631 {
3632 const char *name;
3633 unsigned int type;
3634 bfd *abfd;
3635 const struct elf_backend_data *bed;
3636
3637 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3638 if (type != SHT_REL && type != SHT_RELA)
3639 return NULL;
3640
3641 /* We look up the section the relocs apply to by name. */
3642 name = reloc_sec->name;
3643 if (strncmp (name, ".rel", 4) != 0)
3644 return NULL;
3645 name += 4;
3646 if (type == SHT_RELA && *name++ != 'a')
3647 return NULL;
3648
3649 abfd = reloc_sec->owner;
3650 bed = get_elf_backend_data (abfd);
3651 return bed->get_reloc_section (abfd, name);
3652 }
3653
3654 /* Assign all ELF section numbers. The dummy first section is handled here
3655 too. The link/info pointers for the standard section types are filled
3656 in here too, while we're at it. */
3657
3658 static bfd_boolean
3659 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3660 {
3661 struct elf_obj_tdata *t = elf_tdata (abfd);
3662 asection *sec;
3663 unsigned int section_number;
3664 Elf_Internal_Shdr **i_shdrp;
3665 struct bfd_elf_section_data *d;
3666 bfd_boolean need_symtab;
3667
3668 section_number = 1;
3669
3670 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3671
3672 /* SHT_GROUP sections are in relocatable files only. */
3673 if (link_info == NULL || !link_info->resolve_section_groups)
3674 {
3675 size_t reloc_count = 0;
3676
3677 /* Put SHT_GROUP sections first. */
3678 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3679 {
3680 d = elf_section_data (sec);
3681
3682 if (d->this_hdr.sh_type == SHT_GROUP)
3683 {
3684 if (sec->flags & SEC_LINKER_CREATED)
3685 {
3686 /* Remove the linker created SHT_GROUP sections. */
3687 bfd_section_list_remove (abfd, sec);
3688 abfd->section_count--;
3689 }
3690 else
3691 d->this_idx = section_number++;
3692 }
3693
3694 /* Count relocations. */
3695 reloc_count += sec->reloc_count;
3696 }
3697
3698 /* Clear HAS_RELOC if there are no relocations. */
3699 if (reloc_count == 0)
3700 abfd->flags &= ~HAS_RELOC;
3701 }
3702
3703 for (sec = abfd->sections; sec; sec = sec->next)
3704 {
3705 d = elf_section_data (sec);
3706
3707 if (d->this_hdr.sh_type != SHT_GROUP)
3708 d->this_idx = section_number++;
3709 if (d->this_hdr.sh_name != (unsigned int) -1)
3710 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3711 if (d->rel.hdr)
3712 {
3713 d->rel.idx = section_number++;
3714 if (d->rel.hdr->sh_name != (unsigned int) -1)
3715 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3716 }
3717 else
3718 d->rel.idx = 0;
3719
3720 if (d->rela.hdr)
3721 {
3722 d->rela.idx = section_number++;
3723 if (d->rela.hdr->sh_name != (unsigned int) -1)
3724 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3725 }
3726 else
3727 d->rela.idx = 0;
3728 }
3729
3730 need_symtab = (bfd_get_symcount (abfd) > 0
3731 || (link_info == NULL
3732 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3733 == HAS_RELOC)));
3734 if (need_symtab)
3735 {
3736 elf_onesymtab (abfd) = section_number++;
3737 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3738 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3739 {
3740 elf_section_list * entry;
3741
3742 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3743
3744 entry = bfd_zalloc (abfd, sizeof * entry);
3745 entry->ndx = section_number++;
3746 elf_symtab_shndx_list (abfd) = entry;
3747 entry->hdr.sh_name
3748 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3749 ".symtab_shndx", FALSE);
3750 if (entry->hdr.sh_name == (unsigned int) -1)
3751 return FALSE;
3752 }
3753 elf_strtab_sec (abfd) = section_number++;
3754 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3755 }
3756
3757 elf_shstrtab_sec (abfd) = section_number++;
3758 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3759 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3760
3761 if (section_number >= SHN_LORESERVE)
3762 {
3763 /* xgettext:c-format */
3764 _bfd_error_handler (_("%pB: too many sections: %u"),
3765 abfd, section_number);
3766 return FALSE;
3767 }
3768
3769 elf_numsections (abfd) = section_number;
3770 elf_elfheader (abfd)->e_shnum = section_number;
3771
3772 /* Set up the list of section header pointers, in agreement with the
3773 indices. */
3774 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3775 sizeof (Elf_Internal_Shdr *));
3776 if (i_shdrp == NULL)
3777 return FALSE;
3778
3779 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3780 sizeof (Elf_Internal_Shdr));
3781 if (i_shdrp[0] == NULL)
3782 {
3783 bfd_release (abfd, i_shdrp);
3784 return FALSE;
3785 }
3786
3787 elf_elfsections (abfd) = i_shdrp;
3788
3789 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3790 if (need_symtab)
3791 {
3792 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3793 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3794 {
3795 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3796 BFD_ASSERT (entry != NULL);
3797 i_shdrp[entry->ndx] = & entry->hdr;
3798 entry->hdr.sh_link = elf_onesymtab (abfd);
3799 }
3800 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3801 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3802 }
3803
3804 for (sec = abfd->sections; sec; sec = sec->next)
3805 {
3806 asection *s;
3807
3808 d = elf_section_data (sec);
3809
3810 i_shdrp[d->this_idx] = &d->this_hdr;
3811 if (d->rel.idx != 0)
3812 i_shdrp[d->rel.idx] = d->rel.hdr;
3813 if (d->rela.idx != 0)
3814 i_shdrp[d->rela.idx] = d->rela.hdr;
3815
3816 /* Fill in the sh_link and sh_info fields while we're at it. */
3817
3818 /* sh_link of a reloc section is the section index of the symbol
3819 table. sh_info is the section index of the section to which
3820 the relocation entries apply. */
3821 if (d->rel.idx != 0)
3822 {
3823 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3824 d->rel.hdr->sh_info = d->this_idx;
3825 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3826 }
3827 if (d->rela.idx != 0)
3828 {
3829 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3830 d->rela.hdr->sh_info = d->this_idx;
3831 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3832 }
3833
3834 /* We need to set up sh_link for SHF_LINK_ORDER. */
3835 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3836 {
3837 s = elf_linked_to_section (sec);
3838 if (s)
3839 {
3840 /* elf_linked_to_section points to the input section. */
3841 if (link_info != NULL)
3842 {
3843 /* Check discarded linkonce section. */
3844 if (discarded_section (s))
3845 {
3846 asection *kept;
3847 _bfd_error_handler
3848 /* xgettext:c-format */
3849 (_("%pB: sh_link of section `%pA' points to"
3850 " discarded section `%pA' of `%pB'"),
3851 abfd, d->this_hdr.bfd_section,
3852 s, s->owner);
3853 /* Point to the kept section if it has the same
3854 size as the discarded one. */
3855 kept = _bfd_elf_check_kept_section (s, link_info);
3856 if (kept == NULL)
3857 {
3858 bfd_set_error (bfd_error_bad_value);
3859 return FALSE;
3860 }
3861 s = kept;
3862 }
3863
3864 s = s->output_section;
3865 BFD_ASSERT (s != NULL);
3866 }
3867 else
3868 {
3869 /* Handle objcopy. */
3870 if (s->output_section == NULL)
3871 {
3872 _bfd_error_handler
3873 /* xgettext:c-format */
3874 (_("%pB: sh_link of section `%pA' points to"
3875 " removed section `%pA' of `%pB'"),
3876 abfd, d->this_hdr.bfd_section, s, s->owner);
3877 bfd_set_error (bfd_error_bad_value);
3878 return FALSE;
3879 }
3880 s = s->output_section;
3881 }
3882 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3883 }
3884 else
3885 {
3886 /* PR 290:
3887 The Intel C compiler generates SHT_IA_64_UNWIND with
3888 SHF_LINK_ORDER. But it doesn't set the sh_link or
3889 sh_info fields. Hence we could get the situation
3890 where s is NULL. */
3891 const struct elf_backend_data *bed
3892 = get_elf_backend_data (abfd);
3893 if (bed->link_order_error_handler)
3894 bed->link_order_error_handler
3895 /* xgettext:c-format */
3896 (_("%pB: warning: sh_link not set for section `%pA'"),
3897 abfd, sec);
3898 }
3899 }
3900
3901 switch (d->this_hdr.sh_type)
3902 {
3903 case SHT_REL:
3904 case SHT_RELA:
3905 /* A reloc section which we are treating as a normal BFD
3906 section. sh_link is the section index of the symbol
3907 table. sh_info is the section index of the section to
3908 which the relocation entries apply. We assume that an
3909 allocated reloc section uses the dynamic symbol table.
3910 FIXME: How can we be sure? */
3911 s = bfd_get_section_by_name (abfd, ".dynsym");
3912 if (s != NULL)
3913 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3914
3915 s = elf_get_reloc_section (sec);
3916 if (s != NULL)
3917 {
3918 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3919 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3920 }
3921 break;
3922
3923 case SHT_STRTAB:
3924 /* We assume that a section named .stab*str is a stabs
3925 string section. We look for a section with the same name
3926 but without the trailing ``str'', and set its sh_link
3927 field to point to this section. */
3928 if (CONST_STRNEQ (sec->name, ".stab")
3929 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3930 {
3931 size_t len;
3932 char *alc;
3933
3934 len = strlen (sec->name);
3935 alc = (char *) bfd_malloc (len - 2);
3936 if (alc == NULL)
3937 return FALSE;
3938 memcpy (alc, sec->name, len - 3);
3939 alc[len - 3] = '\0';
3940 s = bfd_get_section_by_name (abfd, alc);
3941 free (alc);
3942 if (s != NULL)
3943 {
3944 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3945
3946 /* This is a .stab section. */
3947 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3948 elf_section_data (s)->this_hdr.sh_entsize
3949 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3950 }
3951 }
3952 break;
3953
3954 case SHT_DYNAMIC:
3955 case SHT_DYNSYM:
3956 case SHT_GNU_verneed:
3957 case SHT_GNU_verdef:
3958 /* sh_link is the section header index of the string table
3959 used for the dynamic entries, or the symbol table, or the
3960 version strings. */
3961 s = bfd_get_section_by_name (abfd, ".dynstr");
3962 if (s != NULL)
3963 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3964 break;
3965
3966 case SHT_GNU_LIBLIST:
3967 /* sh_link is the section header index of the prelink library
3968 list used for the dynamic entries, or the symbol table, or
3969 the version strings. */
3970 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3971 ? ".dynstr" : ".gnu.libstr");
3972 if (s != NULL)
3973 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3974 break;
3975
3976 case SHT_HASH:
3977 case SHT_GNU_HASH:
3978 case SHT_GNU_versym:
3979 /* sh_link is the section header index of the symbol table
3980 this hash table or version table is for. */
3981 s = bfd_get_section_by_name (abfd, ".dynsym");
3982 if (s != NULL)
3983 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3984 break;
3985
3986 case SHT_GROUP:
3987 d->this_hdr.sh_link = elf_onesymtab (abfd);
3988 }
3989 }
3990
3991 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3992 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3993 debug section name from .debug_* to .zdebug_* if needed. */
3994
3995 return TRUE;
3996 }
3997
3998 static bfd_boolean
3999 sym_is_global (bfd *abfd, asymbol *sym)
4000 {
4001 /* If the backend has a special mapping, use it. */
4002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4003 if (bed->elf_backend_sym_is_global)
4004 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4005
4006 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4007 || bfd_is_und_section (bfd_get_section (sym))
4008 || bfd_is_com_section (bfd_get_section (sym)));
4009 }
4010
4011 /* Filter global symbols of ABFD to include in the import library. All
4012 SYMCOUNT symbols of ABFD can be examined from their pointers in
4013 SYMS. Pointers of symbols to keep should be stored contiguously at
4014 the beginning of that array.
4015
4016 Returns the number of symbols to keep. */
4017
4018 unsigned int
4019 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4020 asymbol **syms, long symcount)
4021 {
4022 long src_count, dst_count = 0;
4023
4024 for (src_count = 0; src_count < symcount; src_count++)
4025 {
4026 asymbol *sym = syms[src_count];
4027 char *name = (char *) bfd_asymbol_name (sym);
4028 struct bfd_link_hash_entry *h;
4029
4030 if (!sym_is_global (abfd, sym))
4031 continue;
4032
4033 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4034 if (h == NULL)
4035 continue;
4036 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4037 continue;
4038 if (h->linker_def || h->ldscript_def)
4039 continue;
4040
4041 syms[dst_count++] = sym;
4042 }
4043
4044 syms[dst_count] = NULL;
4045
4046 return dst_count;
4047 }
4048
4049 /* Don't output section symbols for sections that are not going to be
4050 output, that are duplicates or there is no BFD section. */
4051
4052 static bfd_boolean
4053 ignore_section_sym (bfd *abfd, asymbol *sym)
4054 {
4055 elf_symbol_type *type_ptr;
4056
4057 if (sym == NULL)
4058 return FALSE;
4059
4060 if ((sym->flags & BSF_SECTION_SYM) == 0)
4061 return FALSE;
4062
4063 if (sym->section == NULL)
4064 return TRUE;
4065
4066 type_ptr = elf_symbol_from (abfd, sym);
4067 return ((type_ptr != NULL
4068 && type_ptr->internal_elf_sym.st_shndx != 0
4069 && bfd_is_abs_section (sym->section))
4070 || !(sym->section->owner == abfd
4071 || (sym->section->output_section != NULL
4072 && sym->section->output_section->owner == abfd
4073 && sym->section->output_offset == 0)
4074 || bfd_is_abs_section (sym->section)));
4075 }
4076
4077 /* Map symbol from it's internal number to the external number, moving
4078 all local symbols to be at the head of the list. */
4079
4080 static bfd_boolean
4081 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4082 {
4083 unsigned int symcount = bfd_get_symcount (abfd);
4084 asymbol **syms = bfd_get_outsymbols (abfd);
4085 asymbol **sect_syms;
4086 unsigned int num_locals = 0;
4087 unsigned int num_globals = 0;
4088 unsigned int num_locals2 = 0;
4089 unsigned int num_globals2 = 0;
4090 unsigned int max_index = 0;
4091 unsigned int idx;
4092 asection *asect;
4093 asymbol **new_syms;
4094
4095 #ifdef DEBUG
4096 fprintf (stderr, "elf_map_symbols\n");
4097 fflush (stderr);
4098 #endif
4099
4100 for (asect = abfd->sections; asect; asect = asect->next)
4101 {
4102 if (max_index < asect->index)
4103 max_index = asect->index;
4104 }
4105
4106 max_index++;
4107 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4108 if (sect_syms == NULL)
4109 return FALSE;
4110 elf_section_syms (abfd) = sect_syms;
4111 elf_num_section_syms (abfd) = max_index;
4112
4113 /* Init sect_syms entries for any section symbols we have already
4114 decided to output. */
4115 for (idx = 0; idx < symcount; idx++)
4116 {
4117 asymbol *sym = syms[idx];
4118
4119 if ((sym->flags & BSF_SECTION_SYM) != 0
4120 && sym->value == 0
4121 && !ignore_section_sym (abfd, sym)
4122 && !bfd_is_abs_section (sym->section))
4123 {
4124 asection *sec = sym->section;
4125
4126 if (sec->owner != abfd)
4127 sec = sec->output_section;
4128
4129 sect_syms[sec->index] = syms[idx];
4130 }
4131 }
4132
4133 /* Classify all of the symbols. */
4134 for (idx = 0; idx < symcount; idx++)
4135 {
4136 if (sym_is_global (abfd, syms[idx]))
4137 num_globals++;
4138 else if (!ignore_section_sym (abfd, syms[idx]))
4139 num_locals++;
4140 }
4141
4142 /* We will be adding a section symbol for each normal BFD section. Most
4143 sections will already have a section symbol in outsymbols, but
4144 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4145 at least in that case. */
4146 for (asect = abfd->sections; asect; asect = asect->next)
4147 {
4148 if (sect_syms[asect->index] == NULL)
4149 {
4150 if (!sym_is_global (abfd, asect->symbol))
4151 num_locals++;
4152 else
4153 num_globals++;
4154 }
4155 }
4156
4157 /* Now sort the symbols so the local symbols are first. */
4158 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4159 sizeof (asymbol *));
4160
4161 if (new_syms == NULL)
4162 return FALSE;
4163
4164 for (idx = 0; idx < symcount; idx++)
4165 {
4166 asymbol *sym = syms[idx];
4167 unsigned int i;
4168
4169 if (sym_is_global (abfd, sym))
4170 i = num_locals + num_globals2++;
4171 else if (!ignore_section_sym (abfd, sym))
4172 i = num_locals2++;
4173 else
4174 continue;
4175 new_syms[i] = sym;
4176 sym->udata.i = i + 1;
4177 }
4178 for (asect = abfd->sections; asect; asect = asect->next)
4179 {
4180 if (sect_syms[asect->index] == NULL)
4181 {
4182 asymbol *sym = asect->symbol;
4183 unsigned int i;
4184
4185 sect_syms[asect->index] = sym;
4186 if (!sym_is_global (abfd, sym))
4187 i = num_locals2++;
4188 else
4189 i = num_locals + num_globals2++;
4190 new_syms[i] = sym;
4191 sym->udata.i = i + 1;
4192 }
4193 }
4194
4195 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4196
4197 *pnum_locals = num_locals;
4198 return TRUE;
4199 }
4200
4201 /* Align to the maximum file alignment that could be required for any
4202 ELF data structure. */
4203
4204 static inline file_ptr
4205 align_file_position (file_ptr off, int align)
4206 {
4207 return (off + align - 1) & ~(align - 1);
4208 }
4209
4210 /* Assign a file position to a section, optionally aligning to the
4211 required section alignment. */
4212
4213 file_ptr
4214 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4215 file_ptr offset,
4216 bfd_boolean align)
4217 {
4218 if (align && i_shdrp->sh_addralign > 1)
4219 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4220 i_shdrp->sh_offset = offset;
4221 if (i_shdrp->bfd_section != NULL)
4222 i_shdrp->bfd_section->filepos = offset;
4223 if (i_shdrp->sh_type != SHT_NOBITS)
4224 offset += i_shdrp->sh_size;
4225 return offset;
4226 }
4227
4228 /* Compute the file positions we are going to put the sections at, and
4229 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4230 is not NULL, this is being called by the ELF backend linker. */
4231
4232 bfd_boolean
4233 _bfd_elf_compute_section_file_positions (bfd *abfd,
4234 struct bfd_link_info *link_info)
4235 {
4236 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4237 struct fake_section_arg fsargs;
4238 bfd_boolean failed;
4239 struct elf_strtab_hash *strtab = NULL;
4240 Elf_Internal_Shdr *shstrtab_hdr;
4241 bfd_boolean need_symtab;
4242
4243 if (abfd->output_has_begun)
4244 return TRUE;
4245
4246 /* Do any elf backend specific processing first. */
4247 if (bed->elf_backend_begin_write_processing)
4248 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4249
4250 if (! prep_headers (abfd))
4251 return FALSE;
4252
4253 /* Post process the headers if necessary. */
4254 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4255
4256 fsargs.failed = FALSE;
4257 fsargs.link_info = link_info;
4258 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4259 if (fsargs.failed)
4260 return FALSE;
4261
4262 if (!assign_section_numbers (abfd, link_info))
4263 return FALSE;
4264
4265 /* The backend linker builds symbol table information itself. */
4266 need_symtab = (link_info == NULL
4267 && (bfd_get_symcount (abfd) > 0
4268 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4269 == HAS_RELOC)));
4270 if (need_symtab)
4271 {
4272 /* Non-zero if doing a relocatable link. */
4273 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4274
4275 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4276 return FALSE;
4277 }
4278
4279 failed = FALSE;
4280 if (link_info == NULL)
4281 {
4282 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4283 if (failed)
4284 return FALSE;
4285 }
4286
4287 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4288 /* sh_name was set in prep_headers. */
4289 shstrtab_hdr->sh_type = SHT_STRTAB;
4290 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4291 shstrtab_hdr->sh_addr = 0;
4292 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4293 shstrtab_hdr->sh_entsize = 0;
4294 shstrtab_hdr->sh_link = 0;
4295 shstrtab_hdr->sh_info = 0;
4296 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4297 shstrtab_hdr->sh_addralign = 1;
4298
4299 if (!assign_file_positions_except_relocs (abfd, link_info))
4300 return FALSE;
4301
4302 if (need_symtab)
4303 {
4304 file_ptr off;
4305 Elf_Internal_Shdr *hdr;
4306
4307 off = elf_next_file_pos (abfd);
4308
4309 hdr = & elf_symtab_hdr (abfd);
4310 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4311
4312 if (elf_symtab_shndx_list (abfd) != NULL)
4313 {
4314 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4315 if (hdr->sh_size != 0)
4316 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4317 /* FIXME: What about other symtab_shndx sections in the list ? */
4318 }
4319
4320 hdr = &elf_tdata (abfd)->strtab_hdr;
4321 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4322
4323 elf_next_file_pos (abfd) = off;
4324
4325 /* Now that we know where the .strtab section goes, write it
4326 out. */
4327 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4328 || ! _bfd_elf_strtab_emit (abfd, strtab))
4329 return FALSE;
4330 _bfd_elf_strtab_free (strtab);
4331 }
4332
4333 abfd->output_has_begun = TRUE;
4334
4335 return TRUE;
4336 }
4337
4338 /* Make an initial estimate of the size of the program header. If we
4339 get the number wrong here, we'll redo section placement. */
4340
4341 static bfd_size_type
4342 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4343 {
4344 size_t segs;
4345 asection *s;
4346 const struct elf_backend_data *bed;
4347
4348 /* Assume we will need exactly two PT_LOAD segments: one for text
4349 and one for data. */
4350 segs = 2;
4351
4352 s = bfd_get_section_by_name (abfd, ".interp");
4353 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4354 {
4355 /* If we have a loadable interpreter section, we need a
4356 PT_INTERP segment. In this case, assume we also need a
4357 PT_PHDR segment, although that may not be true for all
4358 targets. */
4359 segs += 2;
4360 }
4361
4362 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4363 {
4364 /* We need a PT_DYNAMIC segment. */
4365 ++segs;
4366 }
4367
4368 if (info != NULL && info->relro)
4369 {
4370 /* We need a PT_GNU_RELRO segment. */
4371 ++segs;
4372 }
4373
4374 if (elf_eh_frame_hdr (abfd))
4375 {
4376 /* We need a PT_GNU_EH_FRAME segment. */
4377 ++segs;
4378 }
4379
4380 if (elf_stack_flags (abfd))
4381 {
4382 /* We need a PT_GNU_STACK segment. */
4383 ++segs;
4384 }
4385
4386 s = bfd_get_section_by_name (abfd,
4387 NOTE_GNU_PROPERTY_SECTION_NAME);
4388 if (s != NULL && s->size != 0)
4389 {
4390 /* We need a PT_GNU_PROPERTY segment. */
4391 ++segs;
4392 }
4393
4394 for (s = abfd->sections; s != NULL; s = s->next)
4395 {
4396 if ((s->flags & SEC_LOAD) != 0
4397 && elf_section_type (s) == SHT_NOTE)
4398 {
4399 unsigned int alignment_power;
4400 /* We need a PT_NOTE segment. */
4401 ++segs;
4402 /* Try to create just one PT_NOTE segment for all adjacent
4403 loadable SHT_NOTE sections. gABI requires that within a
4404 PT_NOTE segment (and also inside of each SHT_NOTE section)
4405 each note should have the same alignment. So we check
4406 whether the sections are correctly aligned. */
4407 alignment_power = s->alignment_power;
4408 while (s->next != NULL
4409 && s->next->alignment_power == alignment_power
4410 && (s->next->flags & SEC_LOAD) != 0
4411 && elf_section_type (s->next) == SHT_NOTE)
4412 s = s->next;
4413 }
4414 }
4415
4416 for (s = abfd->sections; s != NULL; s = s->next)
4417 {
4418 if (s->flags & SEC_THREAD_LOCAL)
4419 {
4420 /* We need a PT_TLS segment. */
4421 ++segs;
4422 break;
4423 }
4424 }
4425
4426 bed = get_elf_backend_data (abfd);
4427
4428 if ((abfd->flags & D_PAGED) != 0)
4429 {
4430 /* Add a PT_GNU_MBIND segment for each mbind section. */
4431 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4432 for (s = abfd->sections; s != NULL; s = s->next)
4433 if (elf_section_flags (s) & SHF_GNU_MBIND)
4434 {
4435 if (elf_section_data (s)->this_hdr.sh_info
4436 > PT_GNU_MBIND_NUM)
4437 {
4438 _bfd_error_handler
4439 /* xgettext:c-format */
4440 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4441 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4442 continue;
4443 }
4444 /* Align mbind section to page size. */
4445 if (s->alignment_power < page_align_power)
4446 s->alignment_power = page_align_power;
4447 segs ++;
4448 }
4449 }
4450
4451 /* Let the backend count up any program headers it might need. */
4452 if (bed->elf_backend_additional_program_headers)
4453 {
4454 int a;
4455
4456 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4457 if (a == -1)
4458 abort ();
4459 segs += a;
4460 }
4461
4462 return segs * bed->s->sizeof_phdr;
4463 }
4464
4465 /* Find the segment that contains the output_section of section. */
4466
4467 Elf_Internal_Phdr *
4468 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4469 {
4470 struct elf_segment_map *m;
4471 Elf_Internal_Phdr *p;
4472
4473 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4474 m != NULL;
4475 m = m->next, p++)
4476 {
4477 int i;
4478
4479 for (i = m->count - 1; i >= 0; i--)
4480 if (m->sections[i] == section)
4481 return p;
4482 }
4483
4484 return NULL;
4485 }
4486
4487 /* Create a mapping from a set of sections to a program segment. */
4488
4489 static struct elf_segment_map *
4490 make_mapping (bfd *abfd,
4491 asection **sections,
4492 unsigned int from,
4493 unsigned int to,
4494 bfd_boolean phdr)
4495 {
4496 struct elf_segment_map *m;
4497 unsigned int i;
4498 asection **hdrpp;
4499 bfd_size_type amt;
4500
4501 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4502 amt += (to - from) * sizeof (asection *);
4503 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4504 if (m == NULL)
4505 return NULL;
4506 m->next = NULL;
4507 m->p_type = PT_LOAD;
4508 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4509 m->sections[i - from] = *hdrpp;
4510 m->count = to - from;
4511
4512 if (from == 0 && phdr)
4513 {
4514 /* Include the headers in the first PT_LOAD segment. */
4515 m->includes_filehdr = 1;
4516 m->includes_phdrs = 1;
4517 }
4518
4519 return m;
4520 }
4521
4522 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4523 on failure. */
4524
4525 struct elf_segment_map *
4526 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4527 {
4528 struct elf_segment_map *m;
4529
4530 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4531 sizeof (struct elf_segment_map));
4532 if (m == NULL)
4533 return NULL;
4534 m->next = NULL;
4535 m->p_type = PT_DYNAMIC;
4536 m->count = 1;
4537 m->sections[0] = dynsec;
4538
4539 return m;
4540 }
4541
4542 /* Possibly add or remove segments from the segment map. */
4543
4544 static bfd_boolean
4545 elf_modify_segment_map (bfd *abfd,
4546 struct bfd_link_info *info,
4547 bfd_boolean remove_empty_load)
4548 {
4549 struct elf_segment_map **m;
4550 const struct elf_backend_data *bed;
4551
4552 /* The placement algorithm assumes that non allocated sections are
4553 not in PT_LOAD segments. We ensure this here by removing such
4554 sections from the segment map. We also remove excluded
4555 sections. Finally, any PT_LOAD segment without sections is
4556 removed. */
4557 m = &elf_seg_map (abfd);
4558 while (*m)
4559 {
4560 unsigned int i, new_count;
4561
4562 for (new_count = 0, i = 0; i < (*m)->count; i++)
4563 {
4564 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4565 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4566 || (*m)->p_type != PT_LOAD))
4567 {
4568 (*m)->sections[new_count] = (*m)->sections[i];
4569 new_count++;
4570 }
4571 }
4572 (*m)->count = new_count;
4573
4574 if (remove_empty_load
4575 && (*m)->p_type == PT_LOAD
4576 && (*m)->count == 0
4577 && !(*m)->includes_phdrs)
4578 *m = (*m)->next;
4579 else
4580 m = &(*m)->next;
4581 }
4582
4583 bed = get_elf_backend_data (abfd);
4584 if (bed->elf_backend_modify_segment_map != NULL)
4585 {
4586 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4587 return FALSE;
4588 }
4589
4590 return TRUE;
4591 }
4592
4593 #define IS_TBSS(s) \
4594 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4595
4596 /* Set up a mapping from BFD sections to program segments. */
4597
4598 bfd_boolean
4599 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4600 {
4601 unsigned int count;
4602 struct elf_segment_map *m;
4603 asection **sections = NULL;
4604 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4605 bfd_boolean no_user_phdrs;
4606
4607 no_user_phdrs = elf_seg_map (abfd) == NULL;
4608
4609 if (info != NULL)
4610 info->user_phdrs = !no_user_phdrs;
4611
4612 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4613 {
4614 asection *s;
4615 unsigned int i;
4616 struct elf_segment_map *mfirst;
4617 struct elf_segment_map **pm;
4618 asection *last_hdr;
4619 bfd_vma last_size;
4620 unsigned int hdr_index;
4621 bfd_vma maxpagesize;
4622 asection **hdrpp;
4623 bfd_boolean phdr_in_segment;
4624 bfd_boolean writable;
4625 bfd_boolean executable;
4626 int tls_count = 0;
4627 asection *first_tls = NULL;
4628 asection *first_mbind = NULL;
4629 asection *dynsec, *eh_frame_hdr;
4630 bfd_size_type amt;
4631 bfd_vma addr_mask, wrap_to = 0;
4632 bfd_size_type phdr_size;
4633
4634 /* Select the allocated sections, and sort them. */
4635
4636 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4637 sizeof (asection *));
4638 if (sections == NULL)
4639 goto error_return;
4640
4641 /* Calculate top address, avoiding undefined behaviour of shift
4642 left operator when shift count is equal to size of type
4643 being shifted. */
4644 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4645 addr_mask = (addr_mask << 1) + 1;
4646
4647 i = 0;
4648 for (s = abfd->sections; s != NULL; s = s->next)
4649 {
4650 if ((s->flags & SEC_ALLOC) != 0)
4651 {
4652 sections[i] = s;
4653 ++i;
4654 /* A wrapping section potentially clashes with header. */
4655 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4656 wrap_to = (s->lma + s->size) & addr_mask;
4657 }
4658 }
4659 BFD_ASSERT (i <= bfd_count_sections (abfd));
4660 count = i;
4661
4662 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4663
4664 phdr_size = elf_program_header_size (abfd);
4665 if (phdr_size == (bfd_size_type) -1)
4666 phdr_size = get_program_header_size (abfd, info);
4667 phdr_size += bed->s->sizeof_ehdr;
4668 maxpagesize = bed->maxpagesize;
4669 if (maxpagesize == 0)
4670 maxpagesize = 1;
4671 phdr_in_segment = info != NULL && info->load_phdrs;
4672 if (count != 0
4673 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4674 >= (phdr_size & (maxpagesize - 1))))
4675 /* For compatibility with old scripts that may not be using
4676 SIZEOF_HEADERS, add headers when it looks like space has
4677 been left for them. */
4678 phdr_in_segment = TRUE;
4679
4680 /* Build the mapping. */
4681 mfirst = NULL;
4682 pm = &mfirst;
4683
4684 /* If we have a .interp section, then create a PT_PHDR segment for
4685 the program headers and a PT_INTERP segment for the .interp
4686 section. */
4687 s = bfd_get_section_by_name (abfd, ".interp");
4688 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4689 {
4690 amt = sizeof (struct elf_segment_map);
4691 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4692 if (m == NULL)
4693 goto error_return;
4694 m->next = NULL;
4695 m->p_type = PT_PHDR;
4696 m->p_flags = PF_R;
4697 m->p_flags_valid = 1;
4698 m->includes_phdrs = 1;
4699 phdr_in_segment = TRUE;
4700 *pm = m;
4701 pm = &m->next;
4702
4703 amt = sizeof (struct elf_segment_map);
4704 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4705 if (m == NULL)
4706 goto error_return;
4707 m->next = NULL;
4708 m->p_type = PT_INTERP;
4709 m->count = 1;
4710 m->sections[0] = s;
4711
4712 *pm = m;
4713 pm = &m->next;
4714 }
4715
4716 /* Look through the sections. We put sections in the same program
4717 segment when the start of the second section can be placed within
4718 a few bytes of the end of the first section. */
4719 last_hdr = NULL;
4720 last_size = 0;
4721 hdr_index = 0;
4722 writable = FALSE;
4723 executable = FALSE;
4724 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4725 if (dynsec != NULL
4726 && (dynsec->flags & SEC_LOAD) == 0)
4727 dynsec = NULL;
4728
4729 if ((abfd->flags & D_PAGED) == 0)
4730 phdr_in_segment = FALSE;
4731
4732 /* Deal with -Ttext or something similar such that the first section
4733 is not adjacent to the program headers. This is an
4734 approximation, since at this point we don't know exactly how many
4735 program headers we will need. */
4736 if (phdr_in_segment && count > 0)
4737 {
4738 bfd_vma phdr_lma;
4739 bfd_boolean separate_phdr = FALSE;
4740
4741 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4742 if (info != NULL
4743 && info->separate_code
4744 && (sections[0]->flags & SEC_CODE) != 0)
4745 {
4746 /* If data sections should be separate from code and
4747 thus not executable, and the first section is
4748 executable then put the file and program headers in
4749 their own PT_LOAD. */
4750 separate_phdr = TRUE;
4751 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4752 == (sections[0]->lma & addr_mask & -maxpagesize)))
4753 {
4754 /* The file and program headers are currently on the
4755 same page as the first section. Put them on the
4756 previous page if we can. */
4757 if (phdr_lma >= maxpagesize)
4758 phdr_lma -= maxpagesize;
4759 else
4760 separate_phdr = FALSE;
4761 }
4762 }
4763 if ((sections[0]->lma & addr_mask) < phdr_lma
4764 || (sections[0]->lma & addr_mask) < phdr_size)
4765 /* If file and program headers would be placed at the end
4766 of memory then it's probably better to omit them. */
4767 phdr_in_segment = FALSE;
4768 else if (phdr_lma < wrap_to)
4769 /* If a section wraps around to where we'll be placing
4770 file and program headers, then the headers will be
4771 overwritten. */
4772 phdr_in_segment = FALSE;
4773 else if (separate_phdr)
4774 {
4775 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4776 if (m == NULL)
4777 goto error_return;
4778 m->p_paddr = phdr_lma;
4779 m->p_vaddr_offset
4780 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4781 m->p_paddr_valid = 1;
4782 *pm = m;
4783 pm = &m->next;
4784 phdr_in_segment = FALSE;
4785 }
4786 }
4787
4788 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4789 {
4790 asection *hdr;
4791 bfd_boolean new_segment;
4792
4793 hdr = *hdrpp;
4794
4795 /* See if this section and the last one will fit in the same
4796 segment. */
4797
4798 if (last_hdr == NULL)
4799 {
4800 /* If we don't have a segment yet, then we don't need a new
4801 one (we build the last one after this loop). */
4802 new_segment = FALSE;
4803 }
4804 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4805 {
4806 /* If this section has a different relation between the
4807 virtual address and the load address, then we need a new
4808 segment. */
4809 new_segment = TRUE;
4810 }
4811 else if (hdr->lma < last_hdr->lma + last_size
4812 || last_hdr->lma + last_size < last_hdr->lma)
4813 {
4814 /* If this section has a load address that makes it overlap
4815 the previous section, then we need a new segment. */
4816 new_segment = TRUE;
4817 }
4818 else if ((abfd->flags & D_PAGED) != 0
4819 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4820 == (hdr->lma & -maxpagesize)))
4821 {
4822 /* If we are demand paged then we can't map two disk
4823 pages onto the same memory page. */
4824 new_segment = FALSE;
4825 }
4826 /* In the next test we have to be careful when last_hdr->lma is close
4827 to the end of the address space. If the aligned address wraps
4828 around to the start of the address space, then there are no more
4829 pages left in memory and it is OK to assume that the current
4830 section can be included in the current segment. */
4831 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4832 + maxpagesize > last_hdr->lma)
4833 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4834 + maxpagesize <= hdr->lma))
4835 {
4836 /* If putting this section in this segment would force us to
4837 skip a page in the segment, then we need a new segment. */
4838 new_segment = TRUE;
4839 }
4840 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4841 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4842 {
4843 /* We don't want to put a loaded section after a
4844 nonloaded (ie. bss style) section in the same segment
4845 as that will force the non-loaded section to be loaded.
4846 Consider .tbss sections as loaded for this purpose. */
4847 new_segment = TRUE;
4848 }
4849 else if ((abfd->flags & D_PAGED) == 0)
4850 {
4851 /* If the file is not demand paged, which means that we
4852 don't require the sections to be correctly aligned in the
4853 file, then there is no other reason for a new segment. */
4854 new_segment = FALSE;
4855 }
4856 else if (info != NULL
4857 && info->separate_code
4858 && executable != ((hdr->flags & SEC_CODE) != 0))
4859 {
4860 new_segment = TRUE;
4861 }
4862 else if (! writable
4863 && (hdr->flags & SEC_READONLY) == 0)
4864 {
4865 /* We don't want to put a writable section in a read only
4866 segment. */
4867 new_segment = TRUE;
4868 }
4869 else
4870 {
4871 /* Otherwise, we can use the same segment. */
4872 new_segment = FALSE;
4873 }
4874
4875 /* Allow interested parties a chance to override our decision. */
4876 if (last_hdr != NULL
4877 && info != NULL
4878 && info->callbacks->override_segment_assignment != NULL)
4879 new_segment
4880 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4881 last_hdr,
4882 new_segment);
4883
4884 if (! new_segment)
4885 {
4886 if ((hdr->flags & SEC_READONLY) == 0)
4887 writable = TRUE;
4888 if ((hdr->flags & SEC_CODE) != 0)
4889 executable = TRUE;
4890 last_hdr = hdr;
4891 /* .tbss sections effectively have zero size. */
4892 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4893 continue;
4894 }
4895
4896 /* We need a new program segment. We must create a new program
4897 header holding all the sections from hdr_index until hdr. */
4898
4899 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4900 if (m == NULL)
4901 goto error_return;
4902
4903 *pm = m;
4904 pm = &m->next;
4905
4906 if ((hdr->flags & SEC_READONLY) == 0)
4907 writable = TRUE;
4908 else
4909 writable = FALSE;
4910
4911 if ((hdr->flags & SEC_CODE) == 0)
4912 executable = FALSE;
4913 else
4914 executable = TRUE;
4915
4916 last_hdr = hdr;
4917 /* .tbss sections effectively have zero size. */
4918 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4919 hdr_index = i;
4920 phdr_in_segment = FALSE;
4921 }
4922
4923 /* Create a final PT_LOAD program segment, but not if it's just
4924 for .tbss. */
4925 if (last_hdr != NULL
4926 && (i - hdr_index != 1
4927 || !IS_TBSS (last_hdr)))
4928 {
4929 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4930 if (m == NULL)
4931 goto error_return;
4932
4933 *pm = m;
4934 pm = &m->next;
4935 }
4936
4937 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4938 if (dynsec != NULL)
4939 {
4940 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4941 if (m == NULL)
4942 goto error_return;
4943 *pm = m;
4944 pm = &m->next;
4945 }
4946
4947 /* For each batch of consecutive loadable SHT_NOTE sections,
4948 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4949 because if we link together nonloadable .note sections and
4950 loadable .note sections, we will generate two .note sections
4951 in the output file. */
4952 for (s = abfd->sections; s != NULL; s = s->next)
4953 {
4954 if ((s->flags & SEC_LOAD) != 0
4955 && elf_section_type (s) == SHT_NOTE)
4956 {
4957 asection *s2;
4958 unsigned int alignment_power = s->alignment_power;
4959
4960 count = 1;
4961 for (s2 = s; s2->next != NULL; s2 = s2->next)
4962 {
4963 if (s2->next->alignment_power == alignment_power
4964 && (s2->next->flags & SEC_LOAD) != 0
4965 && elf_section_type (s2->next) == SHT_NOTE
4966 && align_power (s2->lma + s2->size,
4967 alignment_power)
4968 == s2->next->lma)
4969 count++;
4970 else
4971 break;
4972 }
4973 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4974 amt += count * sizeof (asection *);
4975 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4976 if (m == NULL)
4977 goto error_return;
4978 m->next = NULL;
4979 m->p_type = PT_NOTE;
4980 m->count = count;
4981 while (count > 1)
4982 {
4983 m->sections[m->count - count--] = s;
4984 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4985 s = s->next;
4986 }
4987 m->sections[m->count - 1] = s;
4988 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4989 *pm = m;
4990 pm = &m->next;
4991 }
4992 if (s->flags & SEC_THREAD_LOCAL)
4993 {
4994 if (! tls_count)
4995 first_tls = s;
4996 tls_count++;
4997 }
4998 if (first_mbind == NULL
4999 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5000 first_mbind = s;
5001 }
5002
5003 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5004 if (tls_count > 0)
5005 {
5006 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5007 amt += tls_count * sizeof (asection *);
5008 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5009 if (m == NULL)
5010 goto error_return;
5011 m->next = NULL;
5012 m->p_type = PT_TLS;
5013 m->count = tls_count;
5014 /* Mandated PF_R. */
5015 m->p_flags = PF_R;
5016 m->p_flags_valid = 1;
5017 s = first_tls;
5018 for (i = 0; i < (unsigned int) tls_count; ++i)
5019 {
5020 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5021 {
5022 _bfd_error_handler
5023 (_("%pB: TLS sections are not adjacent:"), abfd);
5024 s = first_tls;
5025 i = 0;
5026 while (i < (unsigned int) tls_count)
5027 {
5028 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5029 {
5030 _bfd_error_handler (_(" TLS: %pA"), s);
5031 i++;
5032 }
5033 else
5034 _bfd_error_handler (_(" non-TLS: %pA"), s);
5035 s = s->next;
5036 }
5037 bfd_set_error (bfd_error_bad_value);
5038 goto error_return;
5039 }
5040 m->sections[i] = s;
5041 s = s->next;
5042 }
5043
5044 *pm = m;
5045 pm = &m->next;
5046 }
5047
5048 if (first_mbind && (abfd->flags & D_PAGED) != 0)
5049 for (s = first_mbind; s != NULL; s = s->next)
5050 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5051 && (elf_section_data (s)->this_hdr.sh_info
5052 <= PT_GNU_MBIND_NUM))
5053 {
5054 /* Mandated PF_R. */
5055 unsigned long p_flags = PF_R;
5056 if ((s->flags & SEC_READONLY) == 0)
5057 p_flags |= PF_W;
5058 if ((s->flags & SEC_CODE) != 0)
5059 p_flags |= PF_X;
5060
5061 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5062 m = bfd_zalloc (abfd, amt);
5063 if (m == NULL)
5064 goto error_return;
5065 m->next = NULL;
5066 m->p_type = (PT_GNU_MBIND_LO
5067 + elf_section_data (s)->this_hdr.sh_info);
5068 m->count = 1;
5069 m->p_flags_valid = 1;
5070 m->sections[0] = s;
5071 m->p_flags = p_flags;
5072
5073 *pm = m;
5074 pm = &m->next;
5075 }
5076
5077 s = bfd_get_section_by_name (abfd,
5078 NOTE_GNU_PROPERTY_SECTION_NAME);
5079 if (s != NULL && s->size != 0)
5080 {
5081 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5082 m = bfd_zalloc (abfd, amt);
5083 if (m == NULL)
5084 goto error_return;
5085 m->next = NULL;
5086 m->p_type = PT_GNU_PROPERTY;
5087 m->count = 1;
5088 m->p_flags_valid = 1;
5089 m->sections[0] = s;
5090 m->p_flags = PF_R;
5091 *pm = m;
5092 pm = &m->next;
5093 }
5094
5095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5096 segment. */
5097 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5098 if (eh_frame_hdr != NULL
5099 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5100 {
5101 amt = sizeof (struct elf_segment_map);
5102 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5103 if (m == NULL)
5104 goto error_return;
5105 m->next = NULL;
5106 m->p_type = PT_GNU_EH_FRAME;
5107 m->count = 1;
5108 m->sections[0] = eh_frame_hdr->output_section;
5109
5110 *pm = m;
5111 pm = &m->next;
5112 }
5113
5114 if (elf_stack_flags (abfd))
5115 {
5116 amt = sizeof (struct elf_segment_map);
5117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5118 if (m == NULL)
5119 goto error_return;
5120 m->next = NULL;
5121 m->p_type = PT_GNU_STACK;
5122 m->p_flags = elf_stack_flags (abfd);
5123 m->p_align = bed->stack_align;
5124 m->p_flags_valid = 1;
5125 m->p_align_valid = m->p_align != 0;
5126 if (info->stacksize > 0)
5127 {
5128 m->p_size = info->stacksize;
5129 m->p_size_valid = 1;
5130 }
5131
5132 *pm = m;
5133 pm = &m->next;
5134 }
5135
5136 if (info != NULL && info->relro)
5137 {
5138 for (m = mfirst; m != NULL; m = m->next)
5139 {
5140 if (m->p_type == PT_LOAD
5141 && m->count != 0
5142 && m->sections[0]->vma >= info->relro_start
5143 && m->sections[0]->vma < info->relro_end)
5144 {
5145 i = m->count;
5146 while (--i != (unsigned) -1)
5147 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5148 == (SEC_LOAD | SEC_HAS_CONTENTS))
5149 break;
5150
5151 if (i != (unsigned) -1)
5152 break;
5153 }
5154 }
5155
5156 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5157 if (m != NULL)
5158 {
5159 amt = sizeof (struct elf_segment_map);
5160 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5161 if (m == NULL)
5162 goto error_return;
5163 m->next = NULL;
5164 m->p_type = PT_GNU_RELRO;
5165 *pm = m;
5166 pm = &m->next;
5167 }
5168 }
5169
5170 free (sections);
5171 elf_seg_map (abfd) = mfirst;
5172 }
5173
5174 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5175 return FALSE;
5176
5177 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5178 ++count;
5179 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5180
5181 return TRUE;
5182
5183 error_return:
5184 if (sections != NULL)
5185 free (sections);
5186 return FALSE;
5187 }
5188
5189 /* Sort sections by address. */
5190
5191 static int
5192 elf_sort_sections (const void *arg1, const void *arg2)
5193 {
5194 const asection *sec1 = *(const asection **) arg1;
5195 const asection *sec2 = *(const asection **) arg2;
5196 bfd_size_type size1, size2;
5197
5198 /* Sort by LMA first, since this is the address used to
5199 place the section into a segment. */
5200 if (sec1->lma < sec2->lma)
5201 return -1;
5202 else if (sec1->lma > sec2->lma)
5203 return 1;
5204
5205 /* Then sort by VMA. Normally the LMA and the VMA will be
5206 the same, and this will do nothing. */
5207 if (sec1->vma < sec2->vma)
5208 return -1;
5209 else if (sec1->vma > sec2->vma)
5210 return 1;
5211
5212 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5213
5214 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5215
5216 if (TOEND (sec1))
5217 {
5218 if (TOEND (sec2))
5219 {
5220 /* If the indices are the same, do not return 0
5221 here, but continue to try the next comparison. */
5222 if (sec1->target_index - sec2->target_index != 0)
5223 return sec1->target_index - sec2->target_index;
5224 }
5225 else
5226 return 1;
5227 }
5228 else if (TOEND (sec2))
5229 return -1;
5230
5231 #undef TOEND
5232
5233 /* Sort by size, to put zero sized sections
5234 before others at the same address. */
5235
5236 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5237 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5238
5239 if (size1 < size2)
5240 return -1;
5241 if (size1 > size2)
5242 return 1;
5243
5244 return sec1->target_index - sec2->target_index;
5245 }
5246
5247 /* Ian Lance Taylor writes:
5248
5249 We shouldn't be using % with a negative signed number. That's just
5250 not good. We have to make sure either that the number is not
5251 negative, or that the number has an unsigned type. When the types
5252 are all the same size they wind up as unsigned. When file_ptr is a
5253 larger signed type, the arithmetic winds up as signed long long,
5254 which is wrong.
5255
5256 What we're trying to say here is something like ``increase OFF by
5257 the least amount that will cause it to be equal to the VMA modulo
5258 the page size.'' */
5259 /* In other words, something like:
5260
5261 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5262 off_offset = off % bed->maxpagesize;
5263 if (vma_offset < off_offset)
5264 adjustment = vma_offset + bed->maxpagesize - off_offset;
5265 else
5266 adjustment = vma_offset - off_offset;
5267
5268 which can be collapsed into the expression below. */
5269
5270 static file_ptr
5271 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5272 {
5273 /* PR binutils/16199: Handle an alignment of zero. */
5274 if (maxpagesize == 0)
5275 maxpagesize = 1;
5276 return ((vma - off) % maxpagesize);
5277 }
5278
5279 static void
5280 print_segment_map (const struct elf_segment_map *m)
5281 {
5282 unsigned int j;
5283 const char *pt = get_segment_type (m->p_type);
5284 char buf[32];
5285
5286 if (pt == NULL)
5287 {
5288 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5289 sprintf (buf, "LOPROC+%7.7x",
5290 (unsigned int) (m->p_type - PT_LOPROC));
5291 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5292 sprintf (buf, "LOOS+%7.7x",
5293 (unsigned int) (m->p_type - PT_LOOS));
5294 else
5295 snprintf (buf, sizeof (buf), "%8.8x",
5296 (unsigned int) m->p_type);
5297 pt = buf;
5298 }
5299 fflush (stdout);
5300 fprintf (stderr, "%s:", pt);
5301 for (j = 0; j < m->count; j++)
5302 fprintf (stderr, " %s", m->sections [j]->name);
5303 putc ('\n',stderr);
5304 fflush (stderr);
5305 }
5306
5307 static bfd_boolean
5308 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5309 {
5310 void *buf;
5311 bfd_boolean ret;
5312
5313 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5314 return FALSE;
5315 buf = bfd_zmalloc (len);
5316 if (buf == NULL)
5317 return FALSE;
5318 ret = bfd_bwrite (buf, len, abfd) == len;
5319 free (buf);
5320 return ret;
5321 }
5322
5323 /* Assign file positions to the sections based on the mapping from
5324 sections to segments. This function also sets up some fields in
5325 the file header. */
5326
5327 static bfd_boolean
5328 assign_file_positions_for_load_sections (bfd *abfd,
5329 struct bfd_link_info *link_info)
5330 {
5331 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5332 struct elf_segment_map *m;
5333 Elf_Internal_Phdr *phdrs;
5334 Elf_Internal_Phdr *p;
5335 file_ptr off;
5336 bfd_size_type maxpagesize;
5337 unsigned int pt_load_count = 0;
5338 unsigned int alloc;
5339 unsigned int i, j;
5340 bfd_vma header_pad = 0;
5341
5342 if (link_info == NULL
5343 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5344 return FALSE;
5345
5346 alloc = 0;
5347 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5348 {
5349 ++alloc;
5350 if (m->header_size)
5351 header_pad = m->header_size;
5352 }
5353
5354 if (alloc)
5355 {
5356 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5357 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5358 }
5359 else
5360 {
5361 /* PR binutils/12467. */
5362 elf_elfheader (abfd)->e_phoff = 0;
5363 elf_elfheader (abfd)->e_phentsize = 0;
5364 }
5365
5366 elf_elfheader (abfd)->e_phnum = alloc;
5367
5368 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5369 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5370 else
5371 BFD_ASSERT (elf_program_header_size (abfd)
5372 >= alloc * bed->s->sizeof_phdr);
5373
5374 if (alloc == 0)
5375 {
5376 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5377 return TRUE;
5378 }
5379
5380 /* We're writing the size in elf_program_header_size (abfd),
5381 see assign_file_positions_except_relocs, so make sure we have
5382 that amount allocated, with trailing space cleared.
5383 The variable alloc contains the computed need, while
5384 elf_program_header_size (abfd) contains the size used for the
5385 layout.
5386 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5387 where the layout is forced to according to a larger size in the
5388 last iterations for the testcase ld-elf/header. */
5389 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5390 == 0);
5391 phdrs = (Elf_Internal_Phdr *)
5392 bfd_zalloc2 (abfd,
5393 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5394 sizeof (Elf_Internal_Phdr));
5395 elf_tdata (abfd)->phdr = phdrs;
5396 if (phdrs == NULL)
5397 return FALSE;
5398
5399 maxpagesize = 1;
5400 if ((abfd->flags & D_PAGED) != 0)
5401 maxpagesize = bed->maxpagesize;
5402
5403 off = bed->s->sizeof_ehdr;
5404 off += alloc * bed->s->sizeof_phdr;
5405 if (header_pad < (bfd_vma) off)
5406 header_pad = 0;
5407 else
5408 header_pad -= off;
5409 off += header_pad;
5410
5411 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5412 m != NULL;
5413 m = m->next, p++, j++)
5414 {
5415 asection **secpp;
5416 bfd_vma off_adjust;
5417 bfd_boolean no_contents;
5418
5419 /* If elf_segment_map is not from map_sections_to_segments, the
5420 sections may not be correctly ordered. NOTE: sorting should
5421 not be done to the PT_NOTE section of a corefile, which may
5422 contain several pseudo-sections artificially created by bfd.
5423 Sorting these pseudo-sections breaks things badly. */
5424 if (m->count > 1
5425 && !(elf_elfheader (abfd)->e_type == ET_CORE
5426 && m->p_type == PT_NOTE))
5427 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5428 elf_sort_sections);
5429
5430 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5431 number of sections with contents contributing to both p_filesz
5432 and p_memsz, followed by a number of sections with no contents
5433 that just contribute to p_memsz. In this loop, OFF tracks next
5434 available file offset for PT_LOAD and PT_NOTE segments. */
5435 p->p_type = m->p_type;
5436 p->p_flags = m->p_flags;
5437
5438 if (m->count == 0)
5439 p->p_vaddr = m->p_vaddr_offset;
5440 else
5441 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5442
5443 if (m->p_paddr_valid)
5444 p->p_paddr = m->p_paddr;
5445 else if (m->count == 0)
5446 p->p_paddr = 0;
5447 else
5448 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5449
5450 if (p->p_type == PT_LOAD
5451 && (abfd->flags & D_PAGED) != 0)
5452 {
5453 /* p_align in demand paged PT_LOAD segments effectively stores
5454 the maximum page size. When copying an executable with
5455 objcopy, we set m->p_align from the input file. Use this
5456 value for maxpagesize rather than bed->maxpagesize, which
5457 may be different. Note that we use maxpagesize for PT_TLS
5458 segment alignment later in this function, so we are relying
5459 on at least one PT_LOAD segment appearing before a PT_TLS
5460 segment. */
5461 if (m->p_align_valid)
5462 maxpagesize = m->p_align;
5463
5464 p->p_align = maxpagesize;
5465 pt_load_count += 1;
5466 }
5467 else if (m->p_align_valid)
5468 p->p_align = m->p_align;
5469 else if (m->count == 0)
5470 p->p_align = 1 << bed->s->log_file_align;
5471 else
5472 p->p_align = 0;
5473
5474 no_contents = FALSE;
5475 off_adjust = 0;
5476 if (p->p_type == PT_LOAD
5477 && m->count > 0)
5478 {
5479 bfd_size_type align;
5480 unsigned int align_power = 0;
5481
5482 if (m->p_align_valid)
5483 align = p->p_align;
5484 else
5485 {
5486 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5487 {
5488 unsigned int secalign;
5489
5490 secalign = bfd_get_section_alignment (abfd, *secpp);
5491 if (secalign > align_power)
5492 align_power = secalign;
5493 }
5494 align = (bfd_size_type) 1 << align_power;
5495 if (align < maxpagesize)
5496 align = maxpagesize;
5497 }
5498
5499 for (i = 0; i < m->count; i++)
5500 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5501 /* If we aren't making room for this section, then
5502 it must be SHT_NOBITS regardless of what we've
5503 set via struct bfd_elf_special_section. */
5504 elf_section_type (m->sections[i]) = SHT_NOBITS;
5505
5506 /* Find out whether this segment contains any loadable
5507 sections. */
5508 no_contents = TRUE;
5509 for (i = 0; i < m->count; i++)
5510 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5511 {
5512 no_contents = FALSE;
5513 break;
5514 }
5515
5516 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5517
5518 /* Broken hardware and/or kernel require that files do not
5519 map the same page with different permissions on some hppa
5520 processors. */
5521 if (pt_load_count > 1
5522 && bed->no_page_alias
5523 && (off & (maxpagesize - 1)) != 0
5524 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5525 off_adjust += maxpagesize;
5526 off += off_adjust;
5527 if (no_contents)
5528 {
5529 /* We shouldn't need to align the segment on disk since
5530 the segment doesn't need file space, but the gABI
5531 arguably requires the alignment and glibc ld.so
5532 checks it. So to comply with the alignment
5533 requirement but not waste file space, we adjust
5534 p_offset for just this segment. (OFF_ADJUST is
5535 subtracted from OFF later.) This may put p_offset
5536 past the end of file, but that shouldn't matter. */
5537 }
5538 else
5539 off_adjust = 0;
5540 }
5541 /* Make sure the .dynamic section is the first section in the
5542 PT_DYNAMIC segment. */
5543 else if (p->p_type == PT_DYNAMIC
5544 && m->count > 1
5545 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5546 {
5547 _bfd_error_handler
5548 (_("%pB: The first section in the PT_DYNAMIC segment"
5549 " is not the .dynamic section"),
5550 abfd);
5551 bfd_set_error (bfd_error_bad_value);
5552 return FALSE;
5553 }
5554 /* Set the note section type to SHT_NOTE. */
5555 else if (p->p_type == PT_NOTE)
5556 for (i = 0; i < m->count; i++)
5557 elf_section_type (m->sections[i]) = SHT_NOTE;
5558
5559 p->p_offset = 0;
5560 p->p_filesz = 0;
5561 p->p_memsz = 0;
5562
5563 if (m->includes_filehdr)
5564 {
5565 if (!m->p_flags_valid)
5566 p->p_flags |= PF_R;
5567 p->p_filesz = bed->s->sizeof_ehdr;
5568 p->p_memsz = bed->s->sizeof_ehdr;
5569 if (m->count > 0)
5570 {
5571 if (p->p_vaddr < (bfd_vma) off
5572 || (!m->p_paddr_valid
5573 && p->p_paddr < (bfd_vma) off))
5574 {
5575 _bfd_error_handler
5576 (_("%pB: not enough room for program headers,"
5577 " try linking with -N"),
5578 abfd);
5579 bfd_set_error (bfd_error_bad_value);
5580 return FALSE;
5581 }
5582
5583 p->p_vaddr -= off;
5584 if (!m->p_paddr_valid)
5585 p->p_paddr -= off;
5586 }
5587 }
5588
5589 if (m->includes_phdrs)
5590 {
5591 if (!m->p_flags_valid)
5592 p->p_flags |= PF_R;
5593
5594 if (!m->includes_filehdr)
5595 {
5596 p->p_offset = bed->s->sizeof_ehdr;
5597
5598 if (m->count > 0)
5599 {
5600 p->p_vaddr -= off - p->p_offset;
5601 if (!m->p_paddr_valid)
5602 p->p_paddr -= off - p->p_offset;
5603 }
5604 }
5605
5606 p->p_filesz += alloc * bed->s->sizeof_phdr;
5607 p->p_memsz += alloc * bed->s->sizeof_phdr;
5608 if (m->count)
5609 {
5610 p->p_filesz += header_pad;
5611 p->p_memsz += header_pad;
5612 }
5613 }
5614
5615 if (p->p_type == PT_LOAD
5616 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5617 {
5618 if (!m->includes_filehdr && !m->includes_phdrs)
5619 p->p_offset = off;
5620 else
5621 {
5622 file_ptr adjust;
5623
5624 adjust = off - (p->p_offset + p->p_filesz);
5625 if (!no_contents)
5626 p->p_filesz += adjust;
5627 p->p_memsz += adjust;
5628 }
5629 }
5630
5631 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5632 maps. Set filepos for sections in PT_LOAD segments, and in
5633 core files, for sections in PT_NOTE segments.
5634 assign_file_positions_for_non_load_sections will set filepos
5635 for other sections and update p_filesz for other segments. */
5636 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5637 {
5638 asection *sec;
5639 bfd_size_type align;
5640 Elf_Internal_Shdr *this_hdr;
5641
5642 sec = *secpp;
5643 this_hdr = &elf_section_data (sec)->this_hdr;
5644 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5645
5646 if ((p->p_type == PT_LOAD
5647 || p->p_type == PT_TLS)
5648 && (this_hdr->sh_type != SHT_NOBITS
5649 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5650 && ((this_hdr->sh_flags & SHF_TLS) == 0
5651 || p->p_type == PT_TLS))))
5652 {
5653 bfd_vma p_start = p->p_paddr;
5654 bfd_vma p_end = p_start + p->p_memsz;
5655 bfd_vma s_start = sec->lma;
5656 bfd_vma adjust = s_start - p_end;
5657
5658 if (adjust != 0
5659 && (s_start < p_end
5660 || p_end < p_start))
5661 {
5662 _bfd_error_handler
5663 /* xgettext:c-format */
5664 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5665 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5666 adjust = 0;
5667 sec->lma = p_end;
5668 }
5669 p->p_memsz += adjust;
5670
5671 if (this_hdr->sh_type != SHT_NOBITS)
5672 {
5673 if (p->p_filesz + adjust < p->p_memsz)
5674 {
5675 /* We have a PROGBITS section following NOBITS ones.
5676 Allocate file space for the NOBITS section(s) and
5677 zero it. */
5678 adjust = p->p_memsz - p->p_filesz;
5679 if (!write_zeros (abfd, off, adjust))
5680 return FALSE;
5681 }
5682 off += adjust;
5683 p->p_filesz += adjust;
5684 }
5685 }
5686
5687 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5688 {
5689 /* The section at i == 0 is the one that actually contains
5690 everything. */
5691 if (i == 0)
5692 {
5693 this_hdr->sh_offset = sec->filepos = off;
5694 off += this_hdr->sh_size;
5695 p->p_filesz = this_hdr->sh_size;
5696 p->p_memsz = 0;
5697 p->p_align = 1;
5698 }
5699 else
5700 {
5701 /* The rest are fake sections that shouldn't be written. */
5702 sec->filepos = 0;
5703 sec->size = 0;
5704 sec->flags = 0;
5705 continue;
5706 }
5707 }
5708 else
5709 {
5710 if (p->p_type == PT_LOAD)
5711 {
5712 this_hdr->sh_offset = sec->filepos = off;
5713 if (this_hdr->sh_type != SHT_NOBITS)
5714 off += this_hdr->sh_size;
5715 }
5716 else if (this_hdr->sh_type == SHT_NOBITS
5717 && (this_hdr->sh_flags & SHF_TLS) != 0
5718 && this_hdr->sh_offset == 0)
5719 {
5720 /* This is a .tbss section that didn't get a PT_LOAD.
5721 (See _bfd_elf_map_sections_to_segments "Create a
5722 final PT_LOAD".) Set sh_offset to the value it
5723 would have if we had created a zero p_filesz and
5724 p_memsz PT_LOAD header for the section. This
5725 also makes the PT_TLS header have the same
5726 p_offset value. */
5727 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5728 off, align);
5729 this_hdr->sh_offset = sec->filepos = off + adjust;
5730 }
5731
5732 if (this_hdr->sh_type != SHT_NOBITS)
5733 {
5734 p->p_filesz += this_hdr->sh_size;
5735 /* A load section without SHF_ALLOC is something like
5736 a note section in a PT_NOTE segment. These take
5737 file space but are not loaded into memory. */
5738 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5739 p->p_memsz += this_hdr->sh_size;
5740 }
5741 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5742 {
5743 if (p->p_type == PT_TLS)
5744 p->p_memsz += this_hdr->sh_size;
5745
5746 /* .tbss is special. It doesn't contribute to p_memsz of
5747 normal segments. */
5748 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5749 p->p_memsz += this_hdr->sh_size;
5750 }
5751
5752 if (align > p->p_align
5753 && !m->p_align_valid
5754 && (p->p_type != PT_LOAD
5755 || (abfd->flags & D_PAGED) == 0))
5756 p->p_align = align;
5757 }
5758
5759 if (!m->p_flags_valid)
5760 {
5761 p->p_flags |= PF_R;
5762 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5763 p->p_flags |= PF_X;
5764 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5765 p->p_flags |= PF_W;
5766 }
5767 }
5768
5769 off -= off_adjust;
5770
5771 /* Check that all sections are in a PT_LOAD segment.
5772 Don't check funky gdb generated core files. */
5773 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5774 {
5775 bfd_boolean check_vma = TRUE;
5776
5777 for (i = 1; i < m->count; i++)
5778 if (m->sections[i]->vma == m->sections[i - 1]->vma
5779 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5780 ->this_hdr), p) != 0
5781 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5782 ->this_hdr), p) != 0)
5783 {
5784 /* Looks like we have overlays packed into the segment. */
5785 check_vma = FALSE;
5786 break;
5787 }
5788
5789 for (i = 0; i < m->count; i++)
5790 {
5791 Elf_Internal_Shdr *this_hdr;
5792 asection *sec;
5793
5794 sec = m->sections[i];
5795 this_hdr = &(elf_section_data(sec)->this_hdr);
5796 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5797 && !ELF_TBSS_SPECIAL (this_hdr, p))
5798 {
5799 _bfd_error_handler
5800 /* xgettext:c-format */
5801 (_("%pB: section `%pA' can't be allocated in segment %d"),
5802 abfd, sec, j);
5803 print_segment_map (m);
5804 }
5805 }
5806 }
5807 }
5808
5809 elf_next_file_pos (abfd) = off;
5810 return TRUE;
5811 }
5812
5813 /* Assign file positions for the other sections. */
5814
5815 static bfd_boolean
5816 assign_file_positions_for_non_load_sections (bfd *abfd,
5817 struct bfd_link_info *link_info)
5818 {
5819 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5820 Elf_Internal_Shdr **i_shdrpp;
5821 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5822 Elf_Internal_Phdr *phdrs;
5823 Elf_Internal_Phdr *p;
5824 struct elf_segment_map *m;
5825 struct elf_segment_map *hdrs_segment;
5826 bfd_vma filehdr_vaddr, filehdr_paddr;
5827 bfd_vma phdrs_vaddr, phdrs_paddr;
5828 file_ptr off;
5829 unsigned int count;
5830
5831 i_shdrpp = elf_elfsections (abfd);
5832 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5833 off = elf_next_file_pos (abfd);
5834 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5835 {
5836 Elf_Internal_Shdr *hdr;
5837
5838 hdr = *hdrpp;
5839 if (hdr->bfd_section != NULL
5840 && (hdr->bfd_section->filepos != 0
5841 || (hdr->sh_type == SHT_NOBITS
5842 && hdr->contents == NULL)))
5843 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5844 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5845 {
5846 if (hdr->sh_size != 0)
5847 _bfd_error_handler
5848 /* xgettext:c-format */
5849 (_("%pB: warning: allocated section `%s' not in segment"),
5850 abfd,
5851 (hdr->bfd_section == NULL
5852 ? "*unknown*"
5853 : hdr->bfd_section->name));
5854 /* We don't need to page align empty sections. */
5855 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5856 off += vma_page_aligned_bias (hdr->sh_addr, off,
5857 bed->maxpagesize);
5858 else
5859 off += vma_page_aligned_bias (hdr->sh_addr, off,
5860 hdr->sh_addralign);
5861 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5862 FALSE);
5863 }
5864 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5865 && hdr->bfd_section == NULL)
5866 || (hdr->bfd_section != NULL
5867 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5868 /* Compress DWARF debug sections. */
5869 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5870 || (elf_symtab_shndx_list (abfd) != NULL
5871 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5872 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5873 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5874 hdr->sh_offset = -1;
5875 else
5876 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5877 }
5878
5879 /* Now that we have set the section file positions, we can set up
5880 the file positions for the non PT_LOAD segments. */
5881 count = 0;
5882 filehdr_vaddr = 0;
5883 filehdr_paddr = 0;
5884 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5885 phdrs_paddr = 0;
5886 hdrs_segment = NULL;
5887 phdrs = elf_tdata (abfd)->phdr;
5888 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5889 {
5890 ++count;
5891 if (p->p_type != PT_LOAD)
5892 continue;
5893
5894 if (m->includes_filehdr)
5895 {
5896 filehdr_vaddr = p->p_vaddr;
5897 filehdr_paddr = p->p_paddr;
5898 }
5899 if (m->includes_phdrs)
5900 {
5901 phdrs_vaddr = p->p_vaddr;
5902 phdrs_paddr = p->p_paddr;
5903 if (m->includes_filehdr)
5904 {
5905 hdrs_segment = m;
5906 phdrs_vaddr += bed->s->sizeof_ehdr;
5907 phdrs_paddr += bed->s->sizeof_ehdr;
5908 }
5909 }
5910 }
5911
5912 if (hdrs_segment != NULL && link_info != NULL)
5913 {
5914 /* There is a segment that contains both the file headers and the
5915 program headers, so provide a symbol __ehdr_start pointing there.
5916 A program can use this to examine itself robustly. */
5917
5918 struct elf_link_hash_entry *hash
5919 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5920 FALSE, FALSE, TRUE);
5921 /* If the symbol was referenced and not defined, define it. */
5922 if (hash != NULL
5923 && (hash->root.type == bfd_link_hash_new
5924 || hash->root.type == bfd_link_hash_undefined
5925 || hash->root.type == bfd_link_hash_undefweak
5926 || hash->root.type == bfd_link_hash_common))
5927 {
5928 asection *s = NULL;
5929 if (hdrs_segment->count != 0)
5930 /* The segment contains sections, so use the first one. */
5931 s = hdrs_segment->sections[0];
5932 else
5933 /* Use the first (i.e. lowest-addressed) section in any segment. */
5934 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5935 if (m->count != 0)
5936 {
5937 s = m->sections[0];
5938 break;
5939 }
5940
5941 if (s != NULL)
5942 {
5943 hash->root.u.def.value = filehdr_vaddr - s->vma;
5944 hash->root.u.def.section = s;
5945 }
5946 else
5947 {
5948 hash->root.u.def.value = filehdr_vaddr;
5949 hash->root.u.def.section = bfd_abs_section_ptr;
5950 }
5951
5952 hash->root.type = bfd_link_hash_defined;
5953 hash->def_regular = 1;
5954 hash->non_elf = 0;
5955 }
5956 }
5957
5958 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5959 {
5960 if (p->p_type == PT_GNU_RELRO)
5961 {
5962 bfd_vma start, end;
5963 bfd_boolean ok;
5964
5965 if (link_info != NULL)
5966 {
5967 /* During linking the range of the RELRO segment is passed
5968 in link_info. Note that there may be padding between
5969 relro_start and the first RELRO section. */
5970 start = link_info->relro_start;
5971 end = link_info->relro_end;
5972 }
5973 else if (m->count != 0)
5974 {
5975 if (!m->p_size_valid)
5976 abort ();
5977 start = m->sections[0]->vma;
5978 end = start + m->p_size;
5979 }
5980 else
5981 {
5982 start = 0;
5983 end = 0;
5984 }
5985
5986 ok = FALSE;
5987 if (start < end)
5988 {
5989 struct elf_segment_map *lm;
5990 const Elf_Internal_Phdr *lp;
5991 unsigned int i;
5992
5993 /* Find a LOAD segment containing a section in the RELRO
5994 segment. */
5995 for (lm = elf_seg_map (abfd), lp = phdrs;
5996 lm != NULL;
5997 lm = lm->next, lp++)
5998 {
5999 if (lp->p_type == PT_LOAD
6000 && lm->count != 0
6001 && (lm->sections[lm->count - 1]->vma
6002 + (!IS_TBSS (lm->sections[lm->count - 1])
6003 ? lm->sections[lm->count - 1]->size
6004 : 0)) > start
6005 && lm->sections[0]->vma < end)
6006 break;
6007 }
6008
6009 if (lm != NULL)
6010 {
6011 /* Find the section starting the RELRO segment. */
6012 for (i = 0; i < lm->count; i++)
6013 {
6014 asection *s = lm->sections[i];
6015 if (s->vma >= start
6016 && s->vma < end
6017 && s->size != 0)
6018 break;
6019 }
6020
6021 if (i < lm->count)
6022 {
6023 p->p_vaddr = lm->sections[i]->vma;
6024 p->p_paddr = lm->sections[i]->lma;
6025 p->p_offset = lm->sections[i]->filepos;
6026 p->p_memsz = end - p->p_vaddr;
6027 p->p_filesz = p->p_memsz;
6028
6029 /* The RELRO segment typically ends a few bytes
6030 into .got.plt but other layouts are possible.
6031 In cases where the end does not match any
6032 loaded section (for instance is in file
6033 padding), trim p_filesz back to correspond to
6034 the end of loaded section contents. */
6035 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6036 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6037
6038 /* Preserve the alignment and flags if they are
6039 valid. The gold linker generates RW/4 for
6040 the PT_GNU_RELRO section. It is better for
6041 objcopy/strip to honor these attributes
6042 otherwise gdb will choke when using separate
6043 debug files. */
6044 if (!m->p_align_valid)
6045 p->p_align = 1;
6046 if (!m->p_flags_valid)
6047 p->p_flags = PF_R;
6048 ok = TRUE;
6049 }
6050 }
6051 }
6052 if (link_info != NULL)
6053 BFD_ASSERT (ok);
6054 if (!ok)
6055 memset (p, 0, sizeof *p);
6056 }
6057 else if (p->p_type == PT_GNU_STACK)
6058 {
6059 if (m->p_size_valid)
6060 p->p_memsz = m->p_size;
6061 }
6062 else if (m->count != 0)
6063 {
6064 unsigned int i;
6065
6066 if (p->p_type != PT_LOAD
6067 && (p->p_type != PT_NOTE
6068 || bfd_get_format (abfd) != bfd_core))
6069 {
6070 /* A user specified segment layout may include a PHDR
6071 segment that overlaps with a LOAD segment... */
6072 if (p->p_type == PT_PHDR)
6073 {
6074 m->count = 0;
6075 continue;
6076 }
6077
6078 if (m->includes_filehdr || m->includes_phdrs)
6079 {
6080 /* PR 17512: file: 2195325e. */
6081 _bfd_error_handler
6082 (_("%pB: error: non-load segment %d includes file header "
6083 "and/or program header"),
6084 abfd, (int) (p - phdrs));
6085 return FALSE;
6086 }
6087
6088 p->p_filesz = 0;
6089 p->p_offset = m->sections[0]->filepos;
6090 for (i = m->count; i-- != 0;)
6091 {
6092 asection *sect = m->sections[i];
6093 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6094 if (hdr->sh_type != SHT_NOBITS)
6095 {
6096 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6097 + hdr->sh_size);
6098 break;
6099 }
6100 }
6101 }
6102 }
6103 else if (m->includes_filehdr)
6104 {
6105 p->p_vaddr = filehdr_vaddr;
6106 if (! m->p_paddr_valid)
6107 p->p_paddr = filehdr_paddr;
6108 }
6109 else if (m->includes_phdrs)
6110 {
6111 p->p_vaddr = phdrs_vaddr;
6112 if (! m->p_paddr_valid)
6113 p->p_paddr = phdrs_paddr;
6114 }
6115 }
6116
6117 elf_next_file_pos (abfd) = off;
6118
6119 return TRUE;
6120 }
6121
6122 static elf_section_list *
6123 find_section_in_list (unsigned int i, elf_section_list * list)
6124 {
6125 for (;list != NULL; list = list->next)
6126 if (list->ndx == i)
6127 break;
6128 return list;
6129 }
6130
6131 /* Work out the file positions of all the sections. This is called by
6132 _bfd_elf_compute_section_file_positions. All the section sizes and
6133 VMAs must be known before this is called.
6134
6135 Reloc sections come in two flavours: Those processed specially as
6136 "side-channel" data attached to a section to which they apply, and
6137 those that bfd doesn't process as relocations. The latter sort are
6138 stored in a normal bfd section by bfd_section_from_shdr. We don't
6139 consider the former sort here, unless they form part of the loadable
6140 image. Reloc sections not assigned here will be handled later by
6141 assign_file_positions_for_relocs.
6142
6143 We also don't set the positions of the .symtab and .strtab here. */
6144
6145 static bfd_boolean
6146 assign_file_positions_except_relocs (bfd *abfd,
6147 struct bfd_link_info *link_info)
6148 {
6149 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6150 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6152
6153 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6154 && bfd_get_format (abfd) != bfd_core)
6155 {
6156 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6157 unsigned int num_sec = elf_numsections (abfd);
6158 Elf_Internal_Shdr **hdrpp;
6159 unsigned int i;
6160 file_ptr off;
6161
6162 /* Start after the ELF header. */
6163 off = i_ehdrp->e_ehsize;
6164
6165 /* We are not creating an executable, which means that we are
6166 not creating a program header, and that the actual order of
6167 the sections in the file is unimportant. */
6168 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6169 {
6170 Elf_Internal_Shdr *hdr;
6171
6172 hdr = *hdrpp;
6173 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6174 && hdr->bfd_section == NULL)
6175 || (hdr->bfd_section != NULL
6176 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6177 /* Compress DWARF debug sections. */
6178 || i == elf_onesymtab (abfd)
6179 || (elf_symtab_shndx_list (abfd) != NULL
6180 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6181 || i == elf_strtab_sec (abfd)
6182 || i == elf_shstrtab_sec (abfd))
6183 {
6184 hdr->sh_offset = -1;
6185 }
6186 else
6187 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6188 }
6189
6190 elf_next_file_pos (abfd) = off;
6191 }
6192 else
6193 {
6194 unsigned int alloc;
6195
6196 /* Assign file positions for the loaded sections based on the
6197 assignment of sections to segments. */
6198 if (!assign_file_positions_for_load_sections (abfd, link_info))
6199 return FALSE;
6200
6201 /* And for non-load sections. */
6202 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6203 return FALSE;
6204
6205 if (bed->elf_backend_modify_program_headers != NULL)
6206 {
6207 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6208 return FALSE;
6209 }
6210
6211 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6212 if (link_info != NULL && bfd_link_pie (link_info))
6213 {
6214 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6215 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6216 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6217
6218 /* Find the lowest p_vaddr in PT_LOAD segments. */
6219 bfd_vma p_vaddr = (bfd_vma) -1;
6220 for (; segment < end_segment; segment++)
6221 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6222 p_vaddr = segment->p_vaddr;
6223
6224 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6225 segments is non-zero. */
6226 if (p_vaddr)
6227 i_ehdrp->e_type = ET_EXEC;
6228 }
6229
6230 /* Write out the program headers. */
6231 alloc = elf_elfheader (abfd)->e_phnum;
6232 if (alloc == 0)
6233 return TRUE;
6234
6235 /* PR ld/20815 - Check that the program header segment, if present, will
6236 be loaded into memory. FIXME: The check below is not sufficient as
6237 really all PT_LOAD segments should be checked before issuing an error
6238 message. Plus the PHDR segment does not have to be the first segment
6239 in the program header table. But this version of the check should
6240 catch all real world use cases.
6241
6242 FIXME: We used to have code here to sort the PT_LOAD segments into
6243 ascending order, as per the ELF spec. But this breaks some programs,
6244 including the Linux kernel. But really either the spec should be
6245 changed or the programs updated. */
6246 if (alloc > 1
6247 && tdata->phdr[0].p_type == PT_PHDR
6248 && (bed->elf_backend_allow_non_load_phdr == NULL
6249 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6250 alloc))
6251 && tdata->phdr[1].p_type == PT_LOAD
6252 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6253 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6254 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6255 {
6256 /* The fix for this error is usually to edit the linker script being
6257 used and set up the program headers manually. Either that or
6258 leave room for the headers at the start of the SECTIONS. */
6259 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6260 " by LOAD segment"),
6261 abfd);
6262 return FALSE;
6263 }
6264
6265 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6266 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6267 return FALSE;
6268 }
6269
6270 return TRUE;
6271 }
6272
6273 static bfd_boolean
6274 prep_headers (bfd *abfd)
6275 {
6276 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6277 struct elf_strtab_hash *shstrtab;
6278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6279
6280 i_ehdrp = elf_elfheader (abfd);
6281
6282 shstrtab = _bfd_elf_strtab_init ();
6283 if (shstrtab == NULL)
6284 return FALSE;
6285
6286 elf_shstrtab (abfd) = shstrtab;
6287
6288 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6289 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6290 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6291 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6292
6293 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6294 i_ehdrp->e_ident[EI_DATA] =
6295 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6296 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6297
6298 if ((abfd->flags & DYNAMIC) != 0)
6299 i_ehdrp->e_type = ET_DYN;
6300 else if ((abfd->flags & EXEC_P) != 0)
6301 i_ehdrp->e_type = ET_EXEC;
6302 else if (bfd_get_format (abfd) == bfd_core)
6303 i_ehdrp->e_type = ET_CORE;
6304 else
6305 i_ehdrp->e_type = ET_REL;
6306
6307 switch (bfd_get_arch (abfd))
6308 {
6309 case bfd_arch_unknown:
6310 i_ehdrp->e_machine = EM_NONE;
6311 break;
6312
6313 /* There used to be a long list of cases here, each one setting
6314 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6315 in the corresponding bfd definition. To avoid duplication,
6316 the switch was removed. Machines that need special handling
6317 can generally do it in elf_backend_final_write_processing(),
6318 unless they need the information earlier than the final write.
6319 Such need can generally be supplied by replacing the tests for
6320 e_machine with the conditions used to determine it. */
6321 default:
6322 i_ehdrp->e_machine = bed->elf_machine_code;
6323 }
6324
6325 i_ehdrp->e_version = bed->s->ev_current;
6326 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6327
6328 /* No program header, for now. */
6329 i_ehdrp->e_phoff = 0;
6330 i_ehdrp->e_phentsize = 0;
6331 i_ehdrp->e_phnum = 0;
6332
6333 /* Each bfd section is section header entry. */
6334 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6335 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6336
6337 /* If we're building an executable, we'll need a program header table. */
6338 if (abfd->flags & EXEC_P)
6339 /* It all happens later. */
6340 ;
6341 else
6342 {
6343 i_ehdrp->e_phentsize = 0;
6344 i_ehdrp->e_phoff = 0;
6345 }
6346
6347 elf_tdata (abfd)->symtab_hdr.sh_name =
6348 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6349 elf_tdata (abfd)->strtab_hdr.sh_name =
6350 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6351 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6352 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6353 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6354 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6355 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6356 return FALSE;
6357
6358 return TRUE;
6359 }
6360
6361 /* Assign file positions for all the reloc sections which are not part
6362 of the loadable file image, and the file position of section headers. */
6363
6364 static bfd_boolean
6365 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6366 {
6367 file_ptr off;
6368 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6369 Elf_Internal_Shdr *shdrp;
6370 Elf_Internal_Ehdr *i_ehdrp;
6371 const struct elf_backend_data *bed;
6372
6373 off = elf_next_file_pos (abfd);
6374
6375 shdrpp = elf_elfsections (abfd);
6376 end_shdrpp = shdrpp + elf_numsections (abfd);
6377 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6378 {
6379 shdrp = *shdrpp;
6380 if (shdrp->sh_offset == -1)
6381 {
6382 asection *sec = shdrp->bfd_section;
6383 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6384 || shdrp->sh_type == SHT_RELA);
6385 if (is_rel
6386 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6387 {
6388 if (!is_rel)
6389 {
6390 const char *name = sec->name;
6391 struct bfd_elf_section_data *d;
6392
6393 /* Compress DWARF debug sections. */
6394 if (!bfd_compress_section (abfd, sec,
6395 shdrp->contents))
6396 return FALSE;
6397
6398 if (sec->compress_status == COMPRESS_SECTION_DONE
6399 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6400 {
6401 /* If section is compressed with zlib-gnu, convert
6402 section name from .debug_* to .zdebug_*. */
6403 char *new_name
6404 = convert_debug_to_zdebug (abfd, name);
6405 if (new_name == NULL)
6406 return FALSE;
6407 name = new_name;
6408 }
6409 /* Add section name to section name section. */
6410 if (shdrp->sh_name != (unsigned int) -1)
6411 abort ();
6412 shdrp->sh_name
6413 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6414 name, FALSE);
6415 d = elf_section_data (sec);
6416
6417 /* Add reloc section name to section name section. */
6418 if (d->rel.hdr
6419 && !_bfd_elf_set_reloc_sh_name (abfd,
6420 d->rel.hdr,
6421 name, FALSE))
6422 return FALSE;
6423 if (d->rela.hdr
6424 && !_bfd_elf_set_reloc_sh_name (abfd,
6425 d->rela.hdr,
6426 name, TRUE))
6427 return FALSE;
6428
6429 /* Update section size and contents. */
6430 shdrp->sh_size = sec->size;
6431 shdrp->contents = sec->contents;
6432 shdrp->bfd_section->contents = NULL;
6433 }
6434 off = _bfd_elf_assign_file_position_for_section (shdrp,
6435 off,
6436 TRUE);
6437 }
6438 }
6439 }
6440
6441 /* Place section name section after DWARF debug sections have been
6442 compressed. */
6443 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6444 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6445 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6446 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6447
6448 /* Place the section headers. */
6449 i_ehdrp = elf_elfheader (abfd);
6450 bed = get_elf_backend_data (abfd);
6451 off = align_file_position (off, 1 << bed->s->log_file_align);
6452 i_ehdrp->e_shoff = off;
6453 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6454 elf_next_file_pos (abfd) = off;
6455
6456 return TRUE;
6457 }
6458
6459 bfd_boolean
6460 _bfd_elf_write_object_contents (bfd *abfd)
6461 {
6462 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6463 Elf_Internal_Shdr **i_shdrp;
6464 bfd_boolean failed;
6465 unsigned int count, num_sec;
6466 struct elf_obj_tdata *t;
6467
6468 if (! abfd->output_has_begun
6469 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6470 return FALSE;
6471 /* Do not rewrite ELF data when the BFD has been opened for update.
6472 abfd->output_has_begun was set to TRUE on opening, so creation of new
6473 sections, and modification of existing section sizes was restricted.
6474 This means the ELF header, program headers and section headers can't have
6475 changed.
6476 If the contents of any sections has been modified, then those changes have
6477 already been written to the BFD. */
6478 else if (abfd->direction == both_direction)
6479 {
6480 BFD_ASSERT (abfd->output_has_begun);
6481 return TRUE;
6482 }
6483
6484 i_shdrp = elf_elfsections (abfd);
6485
6486 failed = FALSE;
6487 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6488 if (failed)
6489 return FALSE;
6490
6491 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6492 return FALSE;
6493
6494 /* After writing the headers, we need to write the sections too... */
6495 num_sec = elf_numsections (abfd);
6496 for (count = 1; count < num_sec; count++)
6497 {
6498 i_shdrp[count]->sh_name
6499 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6500 i_shdrp[count]->sh_name);
6501 if (bed->elf_backend_section_processing)
6502 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6503 return FALSE;
6504 if (i_shdrp[count]->contents)
6505 {
6506 bfd_size_type amt = i_shdrp[count]->sh_size;
6507
6508 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6509 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6510 return FALSE;
6511 }
6512 }
6513
6514 /* Write out the section header names. */
6515 t = elf_tdata (abfd);
6516 if (elf_shstrtab (abfd) != NULL
6517 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6518 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6519 return FALSE;
6520
6521 if (bed->elf_backend_final_write_processing)
6522 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6523
6524 if (!bed->s->write_shdrs_and_ehdr (abfd))
6525 return FALSE;
6526
6527 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6528 if (t->o->build_id.after_write_object_contents != NULL)
6529 return (*t->o->build_id.after_write_object_contents) (abfd);
6530
6531 return TRUE;
6532 }
6533
6534 bfd_boolean
6535 _bfd_elf_write_corefile_contents (bfd *abfd)
6536 {
6537 /* Hopefully this can be done just like an object file. */
6538 return _bfd_elf_write_object_contents (abfd);
6539 }
6540
6541 /* Given a section, search the header to find them. */
6542
6543 unsigned int
6544 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6545 {
6546 const struct elf_backend_data *bed;
6547 unsigned int sec_index;
6548
6549 if (elf_section_data (asect) != NULL
6550 && elf_section_data (asect)->this_idx != 0)
6551 return elf_section_data (asect)->this_idx;
6552
6553 if (bfd_is_abs_section (asect))
6554 sec_index = SHN_ABS;
6555 else if (bfd_is_com_section (asect))
6556 sec_index = SHN_COMMON;
6557 else if (bfd_is_und_section (asect))
6558 sec_index = SHN_UNDEF;
6559 else
6560 sec_index = SHN_BAD;
6561
6562 bed = get_elf_backend_data (abfd);
6563 if (bed->elf_backend_section_from_bfd_section)
6564 {
6565 int retval = sec_index;
6566
6567 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6568 return retval;
6569 }
6570
6571 if (sec_index == SHN_BAD)
6572 bfd_set_error (bfd_error_nonrepresentable_section);
6573
6574 return sec_index;
6575 }
6576
6577 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6578 on error. */
6579
6580 int
6581 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6582 {
6583 asymbol *asym_ptr = *asym_ptr_ptr;
6584 int idx;
6585 flagword flags = asym_ptr->flags;
6586
6587 /* When gas creates relocations against local labels, it creates its
6588 own symbol for the section, but does put the symbol into the
6589 symbol chain, so udata is 0. When the linker is generating
6590 relocatable output, this section symbol may be for one of the
6591 input sections rather than the output section. */
6592 if (asym_ptr->udata.i == 0
6593 && (flags & BSF_SECTION_SYM)
6594 && asym_ptr->section)
6595 {
6596 asection *sec;
6597 int indx;
6598
6599 sec = asym_ptr->section;
6600 if (sec->owner != abfd && sec->output_section != NULL)
6601 sec = sec->output_section;
6602 if (sec->owner == abfd
6603 && (indx = sec->index) < elf_num_section_syms (abfd)
6604 && elf_section_syms (abfd)[indx] != NULL)
6605 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6606 }
6607
6608 idx = asym_ptr->udata.i;
6609
6610 if (idx == 0)
6611 {
6612 /* This case can occur when using --strip-symbol on a symbol
6613 which is used in a relocation entry. */
6614 _bfd_error_handler
6615 /* xgettext:c-format */
6616 (_("%pB: symbol `%s' required but not present"),
6617 abfd, bfd_asymbol_name (asym_ptr));
6618 bfd_set_error (bfd_error_no_symbols);
6619 return -1;
6620 }
6621
6622 #if DEBUG & 4
6623 {
6624 fprintf (stderr,
6625 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6626 (long) asym_ptr, asym_ptr->name, idx, flags);
6627 fflush (stderr);
6628 }
6629 #endif
6630
6631 return idx;
6632 }
6633
6634 /* Rewrite program header information. */
6635
6636 static bfd_boolean
6637 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6638 {
6639 Elf_Internal_Ehdr *iehdr;
6640 struct elf_segment_map *map;
6641 struct elf_segment_map *map_first;
6642 struct elf_segment_map **pointer_to_map;
6643 Elf_Internal_Phdr *segment;
6644 asection *section;
6645 unsigned int i;
6646 unsigned int num_segments;
6647 bfd_boolean phdr_included = FALSE;
6648 bfd_boolean p_paddr_valid;
6649 bfd_vma maxpagesize;
6650 struct elf_segment_map *phdr_adjust_seg = NULL;
6651 unsigned int phdr_adjust_num = 0;
6652 const struct elf_backend_data *bed;
6653
6654 bed = get_elf_backend_data (ibfd);
6655 iehdr = elf_elfheader (ibfd);
6656
6657 map_first = NULL;
6658 pointer_to_map = &map_first;
6659
6660 num_segments = elf_elfheader (ibfd)->e_phnum;
6661 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6662
6663 /* Returns the end address of the segment + 1. */
6664 #define SEGMENT_END(segment, start) \
6665 (start + (segment->p_memsz > segment->p_filesz \
6666 ? segment->p_memsz : segment->p_filesz))
6667
6668 #define SECTION_SIZE(section, segment) \
6669 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6670 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6671 ? section->size : 0)
6672
6673 /* Returns TRUE if the given section is contained within
6674 the given segment. VMA addresses are compared. */
6675 #define IS_CONTAINED_BY_VMA(section, segment) \
6676 (section->vma >= segment->p_vaddr \
6677 && (section->vma + SECTION_SIZE (section, segment) \
6678 <= (SEGMENT_END (segment, segment->p_vaddr))))
6679
6680 /* Returns TRUE if the given section is contained within
6681 the given segment. LMA addresses are compared. */
6682 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6683 (section->lma >= base \
6684 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6685 && (section->lma + SECTION_SIZE (section, segment) \
6686 <= SEGMENT_END (segment, base)))
6687
6688 /* Handle PT_NOTE segment. */
6689 #define IS_NOTE(p, s) \
6690 (p->p_type == PT_NOTE \
6691 && elf_section_type (s) == SHT_NOTE \
6692 && (bfd_vma) s->filepos >= p->p_offset \
6693 && ((bfd_vma) s->filepos + s->size \
6694 <= p->p_offset + p->p_filesz))
6695
6696 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6697 etc. */
6698 #define IS_COREFILE_NOTE(p, s) \
6699 (IS_NOTE (p, s) \
6700 && bfd_get_format (ibfd) == bfd_core \
6701 && s->vma == 0 \
6702 && s->lma == 0)
6703
6704 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6705 linker, which generates a PT_INTERP section with p_vaddr and
6706 p_memsz set to 0. */
6707 #define IS_SOLARIS_PT_INTERP(p, s) \
6708 (p->p_vaddr == 0 \
6709 && p->p_paddr == 0 \
6710 && p->p_memsz == 0 \
6711 && p->p_filesz > 0 \
6712 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6713 && s->size > 0 \
6714 && (bfd_vma) s->filepos >= p->p_offset \
6715 && ((bfd_vma) s->filepos + s->size \
6716 <= p->p_offset + p->p_filesz))
6717
6718 /* Decide if the given section should be included in the given segment.
6719 A section will be included if:
6720 1. It is within the address space of the segment -- we use the LMA
6721 if that is set for the segment and the VMA otherwise,
6722 2. It is an allocated section or a NOTE section in a PT_NOTE
6723 segment.
6724 3. There is an output section associated with it,
6725 4. The section has not already been allocated to a previous segment.
6726 5. PT_GNU_STACK segments do not include any sections.
6727 6. PT_TLS segment includes only SHF_TLS sections.
6728 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6729 8. PT_DYNAMIC should not contain empty sections at the beginning
6730 (with the possible exception of .dynamic). */
6731 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6732 ((((segment->p_paddr \
6733 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6734 : IS_CONTAINED_BY_VMA (section, segment)) \
6735 && (section->flags & SEC_ALLOC) != 0) \
6736 || IS_NOTE (segment, section)) \
6737 && segment->p_type != PT_GNU_STACK \
6738 && (segment->p_type != PT_TLS \
6739 || (section->flags & SEC_THREAD_LOCAL)) \
6740 && (segment->p_type == PT_LOAD \
6741 || segment->p_type == PT_TLS \
6742 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6743 && (segment->p_type != PT_DYNAMIC \
6744 || SECTION_SIZE (section, segment) > 0 \
6745 || (segment->p_paddr \
6746 ? segment->p_paddr != section->lma \
6747 : segment->p_vaddr != section->vma) \
6748 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6749 == 0)) \
6750 && (segment->p_type != PT_LOAD || !section->segment_mark))
6751
6752 /* If the output section of a section in the input segment is NULL,
6753 it is removed from the corresponding output segment. */
6754 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6755 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6756 && section->output_section != NULL)
6757
6758 /* Returns TRUE iff seg1 starts after the end of seg2. */
6759 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6760 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6761
6762 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6763 their VMA address ranges and their LMA address ranges overlap.
6764 It is possible to have overlapping VMA ranges without overlapping LMA
6765 ranges. RedBoot images for example can have both .data and .bss mapped
6766 to the same VMA range, but with the .data section mapped to a different
6767 LMA. */
6768 #define SEGMENT_OVERLAPS(seg1, seg2) \
6769 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6770 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6771 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6772 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6773
6774 /* Initialise the segment mark field. */
6775 for (section = ibfd->sections; section != NULL; section = section->next)
6776 section->segment_mark = FALSE;
6777
6778 /* The Solaris linker creates program headers in which all the
6779 p_paddr fields are zero. When we try to objcopy or strip such a
6780 file, we get confused. Check for this case, and if we find it
6781 don't set the p_paddr_valid fields. */
6782 p_paddr_valid = FALSE;
6783 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6784 i < num_segments;
6785 i++, segment++)
6786 if (segment->p_paddr != 0)
6787 {
6788 p_paddr_valid = TRUE;
6789 break;
6790 }
6791
6792 /* Scan through the segments specified in the program header
6793 of the input BFD. For this first scan we look for overlaps
6794 in the loadable segments. These can be created by weird
6795 parameters to objcopy. Also, fix some solaris weirdness. */
6796 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6797 i < num_segments;
6798 i++, segment++)
6799 {
6800 unsigned int j;
6801 Elf_Internal_Phdr *segment2;
6802
6803 if (segment->p_type == PT_INTERP)
6804 for (section = ibfd->sections; section; section = section->next)
6805 if (IS_SOLARIS_PT_INTERP (segment, section))
6806 {
6807 /* Mininal change so that the normal section to segment
6808 assignment code will work. */
6809 segment->p_vaddr = section->vma;
6810 break;
6811 }
6812
6813 if (segment->p_type != PT_LOAD)
6814 {
6815 /* Remove PT_GNU_RELRO segment. */
6816 if (segment->p_type == PT_GNU_RELRO)
6817 segment->p_type = PT_NULL;
6818 continue;
6819 }
6820
6821 /* Determine if this segment overlaps any previous segments. */
6822 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6823 {
6824 bfd_signed_vma extra_length;
6825
6826 if (segment2->p_type != PT_LOAD
6827 || !SEGMENT_OVERLAPS (segment, segment2))
6828 continue;
6829
6830 /* Merge the two segments together. */
6831 if (segment2->p_vaddr < segment->p_vaddr)
6832 {
6833 /* Extend SEGMENT2 to include SEGMENT and then delete
6834 SEGMENT. */
6835 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6836 - SEGMENT_END (segment2, segment2->p_vaddr));
6837
6838 if (extra_length > 0)
6839 {
6840 segment2->p_memsz += extra_length;
6841 segment2->p_filesz += extra_length;
6842 }
6843
6844 segment->p_type = PT_NULL;
6845
6846 /* Since we have deleted P we must restart the outer loop. */
6847 i = 0;
6848 segment = elf_tdata (ibfd)->phdr;
6849 break;
6850 }
6851 else
6852 {
6853 /* Extend SEGMENT to include SEGMENT2 and then delete
6854 SEGMENT2. */
6855 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6856 - SEGMENT_END (segment, segment->p_vaddr));
6857
6858 if (extra_length > 0)
6859 {
6860 segment->p_memsz += extra_length;
6861 segment->p_filesz += extra_length;
6862 }
6863
6864 segment2->p_type = PT_NULL;
6865 }
6866 }
6867 }
6868
6869 /* The second scan attempts to assign sections to segments. */
6870 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6871 i < num_segments;
6872 i++, segment++)
6873 {
6874 unsigned int section_count;
6875 asection **sections;
6876 asection *output_section;
6877 unsigned int isec;
6878 asection *matching_lma;
6879 asection *suggested_lma;
6880 unsigned int j;
6881 bfd_size_type amt;
6882 asection *first_section;
6883
6884 if (segment->p_type == PT_NULL)
6885 continue;
6886
6887 first_section = NULL;
6888 /* Compute how many sections might be placed into this segment. */
6889 for (section = ibfd->sections, section_count = 0;
6890 section != NULL;
6891 section = section->next)
6892 {
6893 /* Find the first section in the input segment, which may be
6894 removed from the corresponding output segment. */
6895 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6896 {
6897 if (first_section == NULL)
6898 first_section = section;
6899 if (section->output_section != NULL)
6900 ++section_count;
6901 }
6902 }
6903
6904 /* Allocate a segment map big enough to contain
6905 all of the sections we have selected. */
6906 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6907 amt += (bfd_size_type) section_count * sizeof (asection *);
6908 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6909 if (map == NULL)
6910 return FALSE;
6911
6912 /* Initialise the fields of the segment map. Default to
6913 using the physical address of the segment in the input BFD. */
6914 map->next = NULL;
6915 map->p_type = segment->p_type;
6916 map->p_flags = segment->p_flags;
6917 map->p_flags_valid = 1;
6918
6919 /* If the first section in the input segment is removed, there is
6920 no need to preserve segment physical address in the corresponding
6921 output segment. */
6922 if (!first_section || first_section->output_section != NULL)
6923 {
6924 map->p_paddr = segment->p_paddr;
6925 map->p_paddr_valid = p_paddr_valid;
6926 }
6927
6928 /* Determine if this segment contains the ELF file header
6929 and if it contains the program headers themselves. */
6930 map->includes_filehdr = (segment->p_offset == 0
6931 && segment->p_filesz >= iehdr->e_ehsize);
6932 map->includes_phdrs = 0;
6933
6934 if (!phdr_included || segment->p_type != PT_LOAD)
6935 {
6936 map->includes_phdrs =
6937 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6938 && (segment->p_offset + segment->p_filesz
6939 >= ((bfd_vma) iehdr->e_phoff
6940 + iehdr->e_phnum * iehdr->e_phentsize)));
6941
6942 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6943 phdr_included = TRUE;
6944 }
6945
6946 if (section_count == 0)
6947 {
6948 /* Special segments, such as the PT_PHDR segment, may contain
6949 no sections, but ordinary, loadable segments should contain
6950 something. They are allowed by the ELF spec however, so only
6951 a warning is produced.
6952 There is however the valid use case of embedded systems which
6953 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6954 flash memory with zeros. No warning is shown for that case. */
6955 if (segment->p_type == PT_LOAD
6956 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6957 /* xgettext:c-format */
6958 _bfd_error_handler
6959 (_("%pB: warning: empty loadable segment detected"
6960 " at vaddr=%#" PRIx64 ", is this intentional?"),
6961 ibfd, (uint64_t) segment->p_vaddr);
6962
6963 map->p_vaddr_offset = segment->p_vaddr;
6964 map->count = 0;
6965 *pointer_to_map = map;
6966 pointer_to_map = &map->next;
6967
6968 continue;
6969 }
6970
6971 /* Now scan the sections in the input BFD again and attempt
6972 to add their corresponding output sections to the segment map.
6973 The problem here is how to handle an output section which has
6974 been moved (ie had its LMA changed). There are four possibilities:
6975
6976 1. None of the sections have been moved.
6977 In this case we can continue to use the segment LMA from the
6978 input BFD.
6979
6980 2. All of the sections have been moved by the same amount.
6981 In this case we can change the segment's LMA to match the LMA
6982 of the first section.
6983
6984 3. Some of the sections have been moved, others have not.
6985 In this case those sections which have not been moved can be
6986 placed in the current segment which will have to have its size,
6987 and possibly its LMA changed, and a new segment or segments will
6988 have to be created to contain the other sections.
6989
6990 4. The sections have been moved, but not by the same amount.
6991 In this case we can change the segment's LMA to match the LMA
6992 of the first section and we will have to create a new segment
6993 or segments to contain the other sections.
6994
6995 In order to save time, we allocate an array to hold the section
6996 pointers that we are interested in. As these sections get assigned
6997 to a segment, they are removed from this array. */
6998
6999 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7000 if (sections == NULL)
7001 return FALSE;
7002
7003 /* Step One: Scan for segment vs section LMA conflicts.
7004 Also add the sections to the section array allocated above.
7005 Also add the sections to the current segment. In the common
7006 case, where the sections have not been moved, this means that
7007 we have completely filled the segment, and there is nothing
7008 more to do. */
7009 isec = 0;
7010 matching_lma = NULL;
7011 suggested_lma = NULL;
7012
7013 for (section = first_section, j = 0;
7014 section != NULL;
7015 section = section->next)
7016 {
7017 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7018 {
7019 output_section = section->output_section;
7020
7021 sections[j++] = section;
7022
7023 /* The Solaris native linker always sets p_paddr to 0.
7024 We try to catch that case here, and set it to the
7025 correct value. Note - some backends require that
7026 p_paddr be left as zero. */
7027 if (!p_paddr_valid
7028 && segment->p_vaddr != 0
7029 && !bed->want_p_paddr_set_to_zero
7030 && isec == 0
7031 && output_section->lma != 0
7032 && (align_power (segment->p_vaddr
7033 + (map->includes_filehdr
7034 ? iehdr->e_ehsize : 0)
7035 + (map->includes_phdrs
7036 ? iehdr->e_phnum * iehdr->e_phentsize
7037 : 0),
7038 output_section->alignment_power)
7039 == output_section->vma))
7040 map->p_paddr = segment->p_vaddr;
7041
7042 /* Match up the physical address of the segment with the
7043 LMA address of the output section. */
7044 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7045 || IS_COREFILE_NOTE (segment, section)
7046 || (bed->want_p_paddr_set_to_zero
7047 && IS_CONTAINED_BY_VMA (output_section, segment)))
7048 {
7049 if (matching_lma == NULL
7050 || output_section->lma < matching_lma->lma)
7051 matching_lma = output_section;
7052
7053 /* We assume that if the section fits within the segment
7054 then it does not overlap any other section within that
7055 segment. */
7056 map->sections[isec++] = output_section;
7057 }
7058 else if (suggested_lma == NULL)
7059 suggested_lma = output_section;
7060
7061 if (j == section_count)
7062 break;
7063 }
7064 }
7065
7066 BFD_ASSERT (j == section_count);
7067
7068 /* Step Two: Adjust the physical address of the current segment,
7069 if necessary. */
7070 if (isec == section_count)
7071 {
7072 /* All of the sections fitted within the segment as currently
7073 specified. This is the default case. Add the segment to
7074 the list of built segments and carry on to process the next
7075 program header in the input BFD. */
7076 map->count = section_count;
7077 *pointer_to_map = map;
7078 pointer_to_map = &map->next;
7079
7080 if (p_paddr_valid
7081 && !bed->want_p_paddr_set_to_zero
7082 && matching_lma->lma != map->p_paddr
7083 && !map->includes_filehdr
7084 && !map->includes_phdrs)
7085 /* There is some padding before the first section in the
7086 segment. So, we must account for that in the output
7087 segment's vma. */
7088 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7089
7090 free (sections);
7091 continue;
7092 }
7093 else
7094 {
7095 /* Change the current segment's physical address to match
7096 the LMA of the first section that fitted, or if no
7097 section fitted, the first section. */
7098 if (matching_lma == NULL)
7099 matching_lma = suggested_lma;
7100
7101 map->p_paddr = matching_lma->lma;
7102
7103 /* Offset the segment physical address from the lma
7104 to allow for space taken up by elf headers. */
7105 if (map->includes_phdrs)
7106 {
7107 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7108
7109 /* iehdr->e_phnum is just an estimate of the number
7110 of program headers that we will need. Make a note
7111 here of the number we used and the segment we chose
7112 to hold these headers, so that we can adjust the
7113 offset when we know the correct value. */
7114 phdr_adjust_num = iehdr->e_phnum;
7115 phdr_adjust_seg = map;
7116 }
7117
7118 if (map->includes_filehdr)
7119 {
7120 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7121 map->p_paddr -= iehdr->e_ehsize;
7122 /* We've subtracted off the size of headers from the
7123 first section lma, but there may have been some
7124 alignment padding before that section too. Try to
7125 account for that by adjusting the segment lma down to
7126 the same alignment. */
7127 if (segment->p_align != 0 && segment->p_align < align)
7128 align = segment->p_align;
7129 map->p_paddr &= -align;
7130 }
7131 }
7132
7133 /* Step Three: Loop over the sections again, this time assigning
7134 those that fit to the current segment and removing them from the
7135 sections array; but making sure not to leave large gaps. Once all
7136 possible sections have been assigned to the current segment it is
7137 added to the list of built segments and if sections still remain
7138 to be assigned, a new segment is constructed before repeating
7139 the loop. */
7140 isec = 0;
7141 do
7142 {
7143 map->count = 0;
7144 suggested_lma = NULL;
7145
7146 /* Fill the current segment with sections that fit. */
7147 for (j = 0; j < section_count; j++)
7148 {
7149 section = sections[j];
7150
7151 if (section == NULL)
7152 continue;
7153
7154 output_section = section->output_section;
7155
7156 BFD_ASSERT (output_section != NULL);
7157
7158 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7159 || IS_COREFILE_NOTE (segment, section))
7160 {
7161 if (map->count == 0)
7162 {
7163 /* If the first section in a segment does not start at
7164 the beginning of the segment, then something is
7165 wrong. */
7166 if (align_power (map->p_paddr
7167 + (map->includes_filehdr
7168 ? iehdr->e_ehsize : 0)
7169 + (map->includes_phdrs
7170 ? iehdr->e_phnum * iehdr->e_phentsize
7171 : 0),
7172 output_section->alignment_power)
7173 != output_section->lma)
7174 abort ();
7175 }
7176 else
7177 {
7178 asection *prev_sec;
7179
7180 prev_sec = map->sections[map->count - 1];
7181
7182 /* If the gap between the end of the previous section
7183 and the start of this section is more than
7184 maxpagesize then we need to start a new segment. */
7185 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7186 maxpagesize)
7187 < BFD_ALIGN (output_section->lma, maxpagesize))
7188 || (prev_sec->lma + prev_sec->size
7189 > output_section->lma))
7190 {
7191 if (suggested_lma == NULL)
7192 suggested_lma = output_section;
7193
7194 continue;
7195 }
7196 }
7197
7198 map->sections[map->count++] = output_section;
7199 ++isec;
7200 sections[j] = NULL;
7201 if (segment->p_type == PT_LOAD)
7202 section->segment_mark = TRUE;
7203 }
7204 else if (suggested_lma == NULL)
7205 suggested_lma = output_section;
7206 }
7207
7208 /* PR 23932. A corrupt input file may contain sections that cannot
7209 be assigned to any segment - because for example they have a
7210 negative size - or segments that do not contain any sections. */
7211 if (map->count == 0)
7212 {
7213 bfd_set_error (bfd_error_bad_value);
7214 free (sections);
7215 return FALSE;
7216 }
7217
7218 /* Add the current segment to the list of built segments. */
7219 *pointer_to_map = map;
7220 pointer_to_map = &map->next;
7221
7222 if (isec < section_count)
7223 {
7224 /* We still have not allocated all of the sections to
7225 segments. Create a new segment here, initialise it
7226 and carry on looping. */
7227 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7228 amt += (bfd_size_type) section_count * sizeof (asection *);
7229 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7230 if (map == NULL)
7231 {
7232 free (sections);
7233 return FALSE;
7234 }
7235
7236 /* Initialise the fields of the segment map. Set the physical
7237 physical address to the LMA of the first section that has
7238 not yet been assigned. */
7239 map->next = NULL;
7240 map->p_type = segment->p_type;
7241 map->p_flags = segment->p_flags;
7242 map->p_flags_valid = 1;
7243 map->p_paddr = suggested_lma->lma;
7244 map->p_paddr_valid = p_paddr_valid;
7245 map->includes_filehdr = 0;
7246 map->includes_phdrs = 0;
7247 }
7248 }
7249 while (isec < section_count);
7250
7251 free (sections);
7252 }
7253
7254 elf_seg_map (obfd) = map_first;
7255
7256 /* If we had to estimate the number of program headers that were
7257 going to be needed, then check our estimate now and adjust
7258 the offset if necessary. */
7259 if (phdr_adjust_seg != NULL)
7260 {
7261 unsigned int count;
7262
7263 for (count = 0, map = map_first; map != NULL; map = map->next)
7264 count++;
7265
7266 if (count > phdr_adjust_num)
7267 phdr_adjust_seg->p_paddr
7268 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7269
7270 for (map = map_first; map != NULL; map = map->next)
7271 if (map->p_type == PT_PHDR)
7272 {
7273 bfd_vma adjust
7274 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7275 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7276 break;
7277 }
7278 }
7279
7280 #undef SEGMENT_END
7281 #undef SECTION_SIZE
7282 #undef IS_CONTAINED_BY_VMA
7283 #undef IS_CONTAINED_BY_LMA
7284 #undef IS_NOTE
7285 #undef IS_COREFILE_NOTE
7286 #undef IS_SOLARIS_PT_INTERP
7287 #undef IS_SECTION_IN_INPUT_SEGMENT
7288 #undef INCLUDE_SECTION_IN_SEGMENT
7289 #undef SEGMENT_AFTER_SEGMENT
7290 #undef SEGMENT_OVERLAPS
7291 return TRUE;
7292 }
7293
7294 /* Copy ELF program header information. */
7295
7296 static bfd_boolean
7297 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7298 {
7299 Elf_Internal_Ehdr *iehdr;
7300 struct elf_segment_map *map;
7301 struct elf_segment_map *map_first;
7302 struct elf_segment_map **pointer_to_map;
7303 Elf_Internal_Phdr *segment;
7304 unsigned int i;
7305 unsigned int num_segments;
7306 bfd_boolean phdr_included = FALSE;
7307 bfd_boolean p_paddr_valid;
7308
7309 iehdr = elf_elfheader (ibfd);
7310
7311 map_first = NULL;
7312 pointer_to_map = &map_first;
7313
7314 /* If all the segment p_paddr fields are zero, don't set
7315 map->p_paddr_valid. */
7316 p_paddr_valid = FALSE;
7317 num_segments = elf_elfheader (ibfd)->e_phnum;
7318 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7319 i < num_segments;
7320 i++, segment++)
7321 if (segment->p_paddr != 0)
7322 {
7323 p_paddr_valid = TRUE;
7324 break;
7325 }
7326
7327 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7328 i < num_segments;
7329 i++, segment++)
7330 {
7331 asection *section;
7332 unsigned int section_count;
7333 bfd_size_type amt;
7334 Elf_Internal_Shdr *this_hdr;
7335 asection *first_section = NULL;
7336 asection *lowest_section;
7337 bfd_boolean no_contents = TRUE;
7338
7339 /* Compute how many sections are in this segment. */
7340 for (section = ibfd->sections, section_count = 0;
7341 section != NULL;
7342 section = section->next)
7343 {
7344 this_hdr = &(elf_section_data(section)->this_hdr);
7345 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7346 {
7347 if (first_section == NULL)
7348 first_section = section;
7349 if (elf_section_type (section) != SHT_NOBITS)
7350 no_contents = FALSE;
7351 section_count++;
7352 }
7353 }
7354
7355 /* Allocate a segment map big enough to contain
7356 all of the sections we have selected. */
7357 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7358 amt += (bfd_size_type) section_count * sizeof (asection *);
7359 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7360 if (map == NULL)
7361 return FALSE;
7362
7363 /* Initialize the fields of the output segment map with the
7364 input segment. */
7365 map->next = NULL;
7366 map->p_type = segment->p_type;
7367 map->p_flags = segment->p_flags;
7368 map->p_flags_valid = 1;
7369 map->p_paddr = segment->p_paddr;
7370 map->p_paddr_valid = p_paddr_valid;
7371 map->p_align = segment->p_align;
7372 map->p_align_valid = 1;
7373 map->p_vaddr_offset = 0;
7374
7375 if (map->p_type == PT_GNU_RELRO
7376 || map->p_type == PT_GNU_STACK)
7377 {
7378 /* The PT_GNU_RELRO segment may contain the first a few
7379 bytes in the .got.plt section even if the whole .got.plt
7380 section isn't in the PT_GNU_RELRO segment. We won't
7381 change the size of the PT_GNU_RELRO segment.
7382 Similarly, PT_GNU_STACK size is significant on uclinux
7383 systems. */
7384 map->p_size = segment->p_memsz;
7385 map->p_size_valid = 1;
7386 }
7387
7388 /* Determine if this segment contains the ELF file header
7389 and if it contains the program headers themselves. */
7390 map->includes_filehdr = (segment->p_offset == 0
7391 && segment->p_filesz >= iehdr->e_ehsize);
7392
7393 map->includes_phdrs = 0;
7394 if (! phdr_included || segment->p_type != PT_LOAD)
7395 {
7396 map->includes_phdrs =
7397 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7398 && (segment->p_offset + segment->p_filesz
7399 >= ((bfd_vma) iehdr->e_phoff
7400 + iehdr->e_phnum * iehdr->e_phentsize)));
7401
7402 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7403 phdr_included = TRUE;
7404 }
7405
7406 lowest_section = NULL;
7407 if (section_count != 0)
7408 {
7409 unsigned int isec = 0;
7410
7411 for (section = first_section;
7412 section != NULL;
7413 section = section->next)
7414 {
7415 this_hdr = &(elf_section_data(section)->this_hdr);
7416 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7417 {
7418 map->sections[isec++] = section->output_section;
7419 if ((section->flags & SEC_ALLOC) != 0)
7420 {
7421 bfd_vma seg_off;
7422
7423 if (lowest_section == NULL
7424 || section->lma < lowest_section->lma)
7425 lowest_section = section;
7426
7427 /* Section lmas are set up from PT_LOAD header
7428 p_paddr in _bfd_elf_make_section_from_shdr.
7429 If this header has a p_paddr that disagrees
7430 with the section lma, flag the p_paddr as
7431 invalid. */
7432 if ((section->flags & SEC_LOAD) != 0)
7433 seg_off = this_hdr->sh_offset - segment->p_offset;
7434 else
7435 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7436 if (section->lma - segment->p_paddr != seg_off)
7437 map->p_paddr_valid = FALSE;
7438 }
7439 if (isec == section_count)
7440 break;
7441 }
7442 }
7443 }
7444
7445 if (map->includes_filehdr && lowest_section != NULL)
7446 {
7447 /* Try to keep the space used by the headers plus any
7448 padding fixed. If there are sections with file contents
7449 in this segment then the lowest sh_offset is the best
7450 guess. Otherwise the segment only has file contents for
7451 the headers, and p_filesz is the best guess. */
7452 if (no_contents)
7453 map->header_size = segment->p_filesz;
7454 else
7455 map->header_size = lowest_section->filepos;
7456 }
7457
7458 if (section_count == 0)
7459 map->p_vaddr_offset = segment->p_vaddr;
7460 else if (!map->includes_phdrs
7461 && !map->includes_filehdr
7462 && map->p_paddr_valid)
7463 /* Account for padding before the first section. */
7464 map->p_vaddr_offset = (segment->p_paddr
7465 - (lowest_section ? lowest_section->lma : 0));
7466
7467 map->count = section_count;
7468 *pointer_to_map = map;
7469 pointer_to_map = &map->next;
7470 }
7471
7472 elf_seg_map (obfd) = map_first;
7473 return TRUE;
7474 }
7475
7476 /* Copy private BFD data. This copies or rewrites ELF program header
7477 information. */
7478
7479 static bfd_boolean
7480 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7481 {
7482 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7483 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7484 return TRUE;
7485
7486 if (elf_tdata (ibfd)->phdr == NULL)
7487 return TRUE;
7488
7489 if (ibfd->xvec == obfd->xvec)
7490 {
7491 /* Check to see if any sections in the input BFD
7492 covered by ELF program header have changed. */
7493 Elf_Internal_Phdr *segment;
7494 asection *section, *osec;
7495 unsigned int i, num_segments;
7496 Elf_Internal_Shdr *this_hdr;
7497 const struct elf_backend_data *bed;
7498
7499 bed = get_elf_backend_data (ibfd);
7500
7501 /* Regenerate the segment map if p_paddr is set to 0. */
7502 if (bed->want_p_paddr_set_to_zero)
7503 goto rewrite;
7504
7505 /* Initialize the segment mark field. */
7506 for (section = obfd->sections; section != NULL;
7507 section = section->next)
7508 section->segment_mark = FALSE;
7509
7510 num_segments = elf_elfheader (ibfd)->e_phnum;
7511 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7512 i < num_segments;
7513 i++, segment++)
7514 {
7515 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7516 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7517 which severly confuses things, so always regenerate the segment
7518 map in this case. */
7519 if (segment->p_paddr == 0
7520 && segment->p_memsz == 0
7521 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7522 goto rewrite;
7523
7524 for (section = ibfd->sections;
7525 section != NULL; section = section->next)
7526 {
7527 /* We mark the output section so that we know it comes
7528 from the input BFD. */
7529 osec = section->output_section;
7530 if (osec)
7531 osec->segment_mark = TRUE;
7532
7533 /* Check if this section is covered by the segment. */
7534 this_hdr = &(elf_section_data(section)->this_hdr);
7535 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7536 {
7537 /* FIXME: Check if its output section is changed or
7538 removed. What else do we need to check? */
7539 if (osec == NULL
7540 || section->flags != osec->flags
7541 || section->lma != osec->lma
7542 || section->vma != osec->vma
7543 || section->size != osec->size
7544 || section->rawsize != osec->rawsize
7545 || section->alignment_power != osec->alignment_power)
7546 goto rewrite;
7547 }
7548 }
7549 }
7550
7551 /* Check to see if any output section do not come from the
7552 input BFD. */
7553 for (section = obfd->sections; section != NULL;
7554 section = section->next)
7555 {
7556 if (!section->segment_mark)
7557 goto rewrite;
7558 else
7559 section->segment_mark = FALSE;
7560 }
7561
7562 return copy_elf_program_header (ibfd, obfd);
7563 }
7564
7565 rewrite:
7566 if (ibfd->xvec == obfd->xvec)
7567 {
7568 /* When rewriting program header, set the output maxpagesize to
7569 the maximum alignment of input PT_LOAD segments. */
7570 Elf_Internal_Phdr *segment;
7571 unsigned int i;
7572 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7573 bfd_vma maxpagesize = 0;
7574
7575 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7576 i < num_segments;
7577 i++, segment++)
7578 if (segment->p_type == PT_LOAD
7579 && maxpagesize < segment->p_align)
7580 {
7581 /* PR 17512: file: f17299af. */
7582 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7583 /* xgettext:c-format */
7584 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7585 PRIx64 " is too large"),
7586 ibfd, (uint64_t) segment->p_align);
7587 else
7588 maxpagesize = segment->p_align;
7589 }
7590
7591 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7592 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7593 }
7594
7595 return rewrite_elf_program_header (ibfd, obfd);
7596 }
7597
7598 /* Initialize private output section information from input section. */
7599
7600 bfd_boolean
7601 _bfd_elf_init_private_section_data (bfd *ibfd,
7602 asection *isec,
7603 bfd *obfd,
7604 asection *osec,
7605 struct bfd_link_info *link_info)
7606
7607 {
7608 Elf_Internal_Shdr *ihdr, *ohdr;
7609 bfd_boolean final_link = (link_info != NULL
7610 && !bfd_link_relocatable (link_info));
7611
7612 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7613 || obfd->xvec->flavour != bfd_target_elf_flavour)
7614 return TRUE;
7615
7616 BFD_ASSERT (elf_section_data (osec) != NULL);
7617
7618 /* For objcopy and relocatable link, don't copy the output ELF
7619 section type from input if the output BFD section flags have been
7620 set to something different. For a final link allow some flags
7621 that the linker clears to differ. */
7622 if (elf_section_type (osec) == SHT_NULL
7623 && (osec->flags == isec->flags
7624 || (final_link
7625 && ((osec->flags ^ isec->flags)
7626 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7627 elf_section_type (osec) = elf_section_type (isec);
7628
7629 /* FIXME: Is this correct for all OS/PROC specific flags? */
7630 elf_section_flags (osec) |= (elf_section_flags (isec)
7631 & (SHF_MASKOS | SHF_MASKPROC));
7632
7633 /* Copy sh_info from input for mbind section. */
7634 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7635 elf_section_data (osec)->this_hdr.sh_info
7636 = elf_section_data (isec)->this_hdr.sh_info;
7637
7638 /* Set things up for objcopy and relocatable link. The output
7639 SHT_GROUP section will have its elf_next_in_group pointing back
7640 to the input group members. Ignore linker created group section.
7641 See elfNN_ia64_object_p in elfxx-ia64.c. */
7642 if ((link_info == NULL
7643 || !link_info->resolve_section_groups)
7644 && (elf_sec_group (isec) == NULL
7645 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7646 {
7647 if (elf_section_flags (isec) & SHF_GROUP)
7648 elf_section_flags (osec) |= SHF_GROUP;
7649 elf_next_in_group (osec) = elf_next_in_group (isec);
7650 elf_section_data (osec)->group = elf_section_data (isec)->group;
7651 }
7652
7653 /* If not decompress, preserve SHF_COMPRESSED. */
7654 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7655 elf_section_flags (osec) |= (elf_section_flags (isec)
7656 & SHF_COMPRESSED);
7657
7658 ihdr = &elf_section_data (isec)->this_hdr;
7659
7660 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7661 don't use the output section of the linked-to section since it
7662 may be NULL at this point. */
7663 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7664 {
7665 ohdr = &elf_section_data (osec)->this_hdr;
7666 ohdr->sh_flags |= SHF_LINK_ORDER;
7667 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7668 }
7669
7670 osec->use_rela_p = isec->use_rela_p;
7671
7672 return TRUE;
7673 }
7674
7675 /* Copy private section information. This copies over the entsize
7676 field, and sometimes the info field. */
7677
7678 bfd_boolean
7679 _bfd_elf_copy_private_section_data (bfd *ibfd,
7680 asection *isec,
7681 bfd *obfd,
7682 asection *osec)
7683 {
7684 Elf_Internal_Shdr *ihdr, *ohdr;
7685
7686 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7687 || obfd->xvec->flavour != bfd_target_elf_flavour)
7688 return TRUE;
7689
7690 ihdr = &elf_section_data (isec)->this_hdr;
7691 ohdr = &elf_section_data (osec)->this_hdr;
7692
7693 ohdr->sh_entsize = ihdr->sh_entsize;
7694
7695 if (ihdr->sh_type == SHT_SYMTAB
7696 || ihdr->sh_type == SHT_DYNSYM
7697 || ihdr->sh_type == SHT_GNU_verneed
7698 || ihdr->sh_type == SHT_GNU_verdef)
7699 ohdr->sh_info = ihdr->sh_info;
7700
7701 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7702 NULL);
7703 }
7704
7705 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7706 necessary if we are removing either the SHT_GROUP section or any of
7707 the group member sections. DISCARDED is the value that a section's
7708 output_section has if the section will be discarded, NULL when this
7709 function is called from objcopy, bfd_abs_section_ptr when called
7710 from the linker. */
7711
7712 bfd_boolean
7713 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7714 {
7715 asection *isec;
7716
7717 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7718 if (elf_section_type (isec) == SHT_GROUP)
7719 {
7720 asection *first = elf_next_in_group (isec);
7721 asection *s = first;
7722 bfd_size_type removed = 0;
7723
7724 while (s != NULL)
7725 {
7726 /* If this member section is being output but the
7727 SHT_GROUP section is not, then clear the group info
7728 set up by _bfd_elf_copy_private_section_data. */
7729 if (s->output_section != discarded
7730 && isec->output_section == discarded)
7731 {
7732 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7733 elf_group_name (s->output_section) = NULL;
7734 }
7735 /* Conversely, if the member section is not being output
7736 but the SHT_GROUP section is, then adjust its size. */
7737 else if (s->output_section == discarded
7738 && isec->output_section != discarded)
7739 {
7740 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7741 removed += 4;
7742 if (elf_sec->rel.hdr != NULL
7743 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7744 removed += 4;
7745 if (elf_sec->rela.hdr != NULL
7746 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7747 removed += 4;
7748 }
7749 s = elf_next_in_group (s);
7750 if (s == first)
7751 break;
7752 }
7753 if (removed != 0)
7754 {
7755 if (discarded != NULL)
7756 {
7757 /* If we've been called for ld -r, then we need to
7758 adjust the input section size. */
7759 if (isec->rawsize == 0)
7760 isec->rawsize = isec->size;
7761 isec->size = isec->rawsize - removed;
7762 if (isec->size <= 4)
7763 {
7764 isec->size = 0;
7765 isec->flags |= SEC_EXCLUDE;
7766 }
7767 }
7768 else
7769 {
7770 /* Adjust the output section size when called from
7771 objcopy. */
7772 isec->output_section->size -= removed;
7773 if (isec->output_section->size <= 4)
7774 {
7775 isec->output_section->size = 0;
7776 isec->output_section->flags |= SEC_EXCLUDE;
7777 }
7778 }
7779 }
7780 }
7781
7782 return TRUE;
7783 }
7784
7785 /* Copy private header information. */
7786
7787 bfd_boolean
7788 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7789 {
7790 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7791 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7792 return TRUE;
7793
7794 /* Copy over private BFD data if it has not already been copied.
7795 This must be done here, rather than in the copy_private_bfd_data
7796 entry point, because the latter is called after the section
7797 contents have been set, which means that the program headers have
7798 already been worked out. */
7799 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7800 {
7801 if (! copy_private_bfd_data (ibfd, obfd))
7802 return FALSE;
7803 }
7804
7805 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7806 }
7807
7808 /* Copy private symbol information. If this symbol is in a section
7809 which we did not map into a BFD section, try to map the section
7810 index correctly. We use special macro definitions for the mapped
7811 section indices; these definitions are interpreted by the
7812 swap_out_syms function. */
7813
7814 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7815 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7816 #define MAP_STRTAB (SHN_HIOS + 3)
7817 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7818 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7819
7820 bfd_boolean
7821 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7822 asymbol *isymarg,
7823 bfd *obfd,
7824 asymbol *osymarg)
7825 {
7826 elf_symbol_type *isym, *osym;
7827
7828 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7829 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7830 return TRUE;
7831
7832 isym = elf_symbol_from (ibfd, isymarg);
7833 osym = elf_symbol_from (obfd, osymarg);
7834
7835 if (isym != NULL
7836 && isym->internal_elf_sym.st_shndx != 0
7837 && osym != NULL
7838 && bfd_is_abs_section (isym->symbol.section))
7839 {
7840 unsigned int shndx;
7841
7842 shndx = isym->internal_elf_sym.st_shndx;
7843 if (shndx == elf_onesymtab (ibfd))
7844 shndx = MAP_ONESYMTAB;
7845 else if (shndx == elf_dynsymtab (ibfd))
7846 shndx = MAP_DYNSYMTAB;
7847 else if (shndx == elf_strtab_sec (ibfd))
7848 shndx = MAP_STRTAB;
7849 else if (shndx == elf_shstrtab_sec (ibfd))
7850 shndx = MAP_SHSTRTAB;
7851 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7852 shndx = MAP_SYM_SHNDX;
7853 osym->internal_elf_sym.st_shndx = shndx;
7854 }
7855
7856 return TRUE;
7857 }
7858
7859 /* Swap out the symbols. */
7860
7861 static bfd_boolean
7862 swap_out_syms (bfd *abfd,
7863 struct elf_strtab_hash **sttp,
7864 int relocatable_p)
7865 {
7866 const struct elf_backend_data *bed;
7867 int symcount;
7868 asymbol **syms;
7869 struct elf_strtab_hash *stt;
7870 Elf_Internal_Shdr *symtab_hdr;
7871 Elf_Internal_Shdr *symtab_shndx_hdr;
7872 Elf_Internal_Shdr *symstrtab_hdr;
7873 struct elf_sym_strtab *symstrtab;
7874 bfd_byte *outbound_syms;
7875 bfd_byte *outbound_shndx;
7876 unsigned long outbound_syms_index;
7877 unsigned long outbound_shndx_index;
7878 int idx;
7879 unsigned int num_locals;
7880 bfd_size_type amt;
7881 bfd_boolean name_local_sections;
7882
7883 if (!elf_map_symbols (abfd, &num_locals))
7884 return FALSE;
7885
7886 /* Dump out the symtabs. */
7887 stt = _bfd_elf_strtab_init ();
7888 if (stt == NULL)
7889 return FALSE;
7890
7891 bed = get_elf_backend_data (abfd);
7892 symcount = bfd_get_symcount (abfd);
7893 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7894 symtab_hdr->sh_type = SHT_SYMTAB;
7895 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7896 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7897 symtab_hdr->sh_info = num_locals + 1;
7898 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7899
7900 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7901 symstrtab_hdr->sh_type = SHT_STRTAB;
7902
7903 /* Allocate buffer to swap out the .strtab section. */
7904 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7905 * sizeof (*symstrtab));
7906 if (symstrtab == NULL)
7907 {
7908 _bfd_elf_strtab_free (stt);
7909 return FALSE;
7910 }
7911
7912 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7913 bed->s->sizeof_sym);
7914 if (outbound_syms == NULL)
7915 {
7916 error_return:
7917 _bfd_elf_strtab_free (stt);
7918 free (symstrtab);
7919 return FALSE;
7920 }
7921 symtab_hdr->contents = outbound_syms;
7922 outbound_syms_index = 0;
7923
7924 outbound_shndx = NULL;
7925 outbound_shndx_index = 0;
7926
7927 if (elf_symtab_shndx_list (abfd))
7928 {
7929 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7930 if (symtab_shndx_hdr->sh_name != 0)
7931 {
7932 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7933 outbound_shndx = (bfd_byte *)
7934 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7935 if (outbound_shndx == NULL)
7936 goto error_return;
7937
7938 symtab_shndx_hdr->contents = outbound_shndx;
7939 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7940 symtab_shndx_hdr->sh_size = amt;
7941 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7942 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7943 }
7944 /* FIXME: What about any other headers in the list ? */
7945 }
7946
7947 /* Now generate the data (for "contents"). */
7948 {
7949 /* Fill in zeroth symbol and swap it out. */
7950 Elf_Internal_Sym sym;
7951 sym.st_name = 0;
7952 sym.st_value = 0;
7953 sym.st_size = 0;
7954 sym.st_info = 0;
7955 sym.st_other = 0;
7956 sym.st_shndx = SHN_UNDEF;
7957 sym.st_target_internal = 0;
7958 symstrtab[0].sym = sym;
7959 symstrtab[0].dest_index = outbound_syms_index;
7960 symstrtab[0].destshndx_index = outbound_shndx_index;
7961 outbound_syms_index++;
7962 if (outbound_shndx != NULL)
7963 outbound_shndx_index++;
7964 }
7965
7966 name_local_sections
7967 = (bed->elf_backend_name_local_section_symbols
7968 && bed->elf_backend_name_local_section_symbols (abfd));
7969
7970 syms = bfd_get_outsymbols (abfd);
7971 for (idx = 0; idx < symcount;)
7972 {
7973 Elf_Internal_Sym sym;
7974 bfd_vma value = syms[idx]->value;
7975 elf_symbol_type *type_ptr;
7976 flagword flags = syms[idx]->flags;
7977 int type;
7978
7979 if (!name_local_sections
7980 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7981 {
7982 /* Local section symbols have no name. */
7983 sym.st_name = (unsigned long) -1;
7984 }
7985 else
7986 {
7987 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7988 to get the final offset for st_name. */
7989 sym.st_name
7990 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7991 FALSE);
7992 if (sym.st_name == (unsigned long) -1)
7993 goto error_return;
7994 }
7995
7996 type_ptr = elf_symbol_from (abfd, syms[idx]);
7997
7998 if ((flags & BSF_SECTION_SYM) == 0
7999 && bfd_is_com_section (syms[idx]->section))
8000 {
8001 /* ELF common symbols put the alignment into the `value' field,
8002 and the size into the `size' field. This is backwards from
8003 how BFD handles it, so reverse it here. */
8004 sym.st_size = value;
8005 if (type_ptr == NULL
8006 || type_ptr->internal_elf_sym.st_value == 0)
8007 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8008 else
8009 sym.st_value = type_ptr->internal_elf_sym.st_value;
8010 sym.st_shndx = _bfd_elf_section_from_bfd_section
8011 (abfd, syms[idx]->section);
8012 }
8013 else
8014 {
8015 asection *sec = syms[idx]->section;
8016 unsigned int shndx;
8017
8018 if (sec->output_section)
8019 {
8020 value += sec->output_offset;
8021 sec = sec->output_section;
8022 }
8023
8024 /* Don't add in the section vma for relocatable output. */
8025 if (! relocatable_p)
8026 value += sec->vma;
8027 sym.st_value = value;
8028 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8029
8030 if (bfd_is_abs_section (sec)
8031 && type_ptr != NULL
8032 && type_ptr->internal_elf_sym.st_shndx != 0)
8033 {
8034 /* This symbol is in a real ELF section which we did
8035 not create as a BFD section. Undo the mapping done
8036 by copy_private_symbol_data. */
8037 shndx = type_ptr->internal_elf_sym.st_shndx;
8038 switch (shndx)
8039 {
8040 case MAP_ONESYMTAB:
8041 shndx = elf_onesymtab (abfd);
8042 break;
8043 case MAP_DYNSYMTAB:
8044 shndx = elf_dynsymtab (abfd);
8045 break;
8046 case MAP_STRTAB:
8047 shndx = elf_strtab_sec (abfd);
8048 break;
8049 case MAP_SHSTRTAB:
8050 shndx = elf_shstrtab_sec (abfd);
8051 break;
8052 case MAP_SYM_SHNDX:
8053 if (elf_symtab_shndx_list (abfd))
8054 shndx = elf_symtab_shndx_list (abfd)->ndx;
8055 break;
8056 default:
8057 shndx = SHN_ABS;
8058 break;
8059 }
8060 }
8061 else
8062 {
8063 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8064
8065 if (shndx == SHN_BAD)
8066 {
8067 asection *sec2;
8068
8069 /* Writing this would be a hell of a lot easier if
8070 we had some decent documentation on bfd, and
8071 knew what to expect of the library, and what to
8072 demand of applications. For example, it
8073 appears that `objcopy' might not set the
8074 section of a symbol to be a section that is
8075 actually in the output file. */
8076 sec2 = bfd_get_section_by_name (abfd, sec->name);
8077 if (sec2 != NULL)
8078 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8079 if (shndx == SHN_BAD)
8080 {
8081 /* xgettext:c-format */
8082 _bfd_error_handler
8083 (_("unable to find equivalent output section"
8084 " for symbol '%s' from section '%s'"),
8085 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8086 sec->name);
8087 bfd_set_error (bfd_error_invalid_operation);
8088 goto error_return;
8089 }
8090 }
8091 }
8092
8093 sym.st_shndx = shndx;
8094 }
8095
8096 if ((flags & BSF_THREAD_LOCAL) != 0)
8097 type = STT_TLS;
8098 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8099 type = STT_GNU_IFUNC;
8100 else if ((flags & BSF_FUNCTION) != 0)
8101 type = STT_FUNC;
8102 else if ((flags & BSF_OBJECT) != 0)
8103 type = STT_OBJECT;
8104 else if ((flags & BSF_RELC) != 0)
8105 type = STT_RELC;
8106 else if ((flags & BSF_SRELC) != 0)
8107 type = STT_SRELC;
8108 else
8109 type = STT_NOTYPE;
8110
8111 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8112 type = STT_TLS;
8113
8114 /* Processor-specific types. */
8115 if (type_ptr != NULL
8116 && bed->elf_backend_get_symbol_type)
8117 type = ((*bed->elf_backend_get_symbol_type)
8118 (&type_ptr->internal_elf_sym, type));
8119
8120 if (flags & BSF_SECTION_SYM)
8121 {
8122 if (flags & BSF_GLOBAL)
8123 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8124 else
8125 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8126 }
8127 else if (bfd_is_com_section (syms[idx]->section))
8128 {
8129 if (type != STT_TLS)
8130 {
8131 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8132 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8133 ? STT_COMMON : STT_OBJECT);
8134 else
8135 type = ((flags & BSF_ELF_COMMON) != 0
8136 ? STT_COMMON : STT_OBJECT);
8137 }
8138 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8139 }
8140 else if (bfd_is_und_section (syms[idx]->section))
8141 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8142 ? STB_WEAK
8143 : STB_GLOBAL),
8144 type);
8145 else if (flags & BSF_FILE)
8146 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8147 else
8148 {
8149 int bind = STB_LOCAL;
8150
8151 if (flags & BSF_LOCAL)
8152 bind = STB_LOCAL;
8153 else if (flags & BSF_GNU_UNIQUE)
8154 bind = STB_GNU_UNIQUE;
8155 else if (flags & BSF_WEAK)
8156 bind = STB_WEAK;
8157 else if (flags & BSF_GLOBAL)
8158 bind = STB_GLOBAL;
8159
8160 sym.st_info = ELF_ST_INFO (bind, type);
8161 }
8162
8163 if (type_ptr != NULL)
8164 {
8165 sym.st_other = type_ptr->internal_elf_sym.st_other;
8166 sym.st_target_internal
8167 = type_ptr->internal_elf_sym.st_target_internal;
8168 }
8169 else
8170 {
8171 sym.st_other = 0;
8172 sym.st_target_internal = 0;
8173 }
8174
8175 idx++;
8176 symstrtab[idx].sym = sym;
8177 symstrtab[idx].dest_index = outbound_syms_index;
8178 symstrtab[idx].destshndx_index = outbound_shndx_index;
8179
8180 outbound_syms_index++;
8181 if (outbound_shndx != NULL)
8182 outbound_shndx_index++;
8183 }
8184
8185 /* Finalize the .strtab section. */
8186 _bfd_elf_strtab_finalize (stt);
8187
8188 /* Swap out the .strtab section. */
8189 for (idx = 0; idx <= symcount; idx++)
8190 {
8191 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8192 if (elfsym->sym.st_name == (unsigned long) -1)
8193 elfsym->sym.st_name = 0;
8194 else
8195 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8196 elfsym->sym.st_name);
8197 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8198 (outbound_syms
8199 + (elfsym->dest_index
8200 * bed->s->sizeof_sym)),
8201 (outbound_shndx
8202 + (elfsym->destshndx_index
8203 * sizeof (Elf_External_Sym_Shndx))));
8204 }
8205 free (symstrtab);
8206
8207 *sttp = stt;
8208 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8209 symstrtab_hdr->sh_type = SHT_STRTAB;
8210 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8211 symstrtab_hdr->sh_addr = 0;
8212 symstrtab_hdr->sh_entsize = 0;
8213 symstrtab_hdr->sh_link = 0;
8214 symstrtab_hdr->sh_info = 0;
8215 symstrtab_hdr->sh_addralign = 1;
8216
8217 return TRUE;
8218 }
8219
8220 /* Return the number of bytes required to hold the symtab vector.
8221
8222 Note that we base it on the count plus 1, since we will null terminate
8223 the vector allocated based on this size. However, the ELF symbol table
8224 always has a dummy entry as symbol #0, so it ends up even. */
8225
8226 long
8227 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8228 {
8229 bfd_size_type symcount;
8230 long symtab_size;
8231 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8232
8233 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8234 if (symcount >= LONG_MAX / sizeof (asymbol *))
8235 {
8236 bfd_set_error (bfd_error_file_too_big);
8237 return -1;
8238 }
8239 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8240 if (symcount > 0)
8241 symtab_size -= sizeof (asymbol *);
8242
8243 return symtab_size;
8244 }
8245
8246 long
8247 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8248 {
8249 bfd_size_type symcount;
8250 long symtab_size;
8251 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8252
8253 if (elf_dynsymtab (abfd) == 0)
8254 {
8255 bfd_set_error (bfd_error_invalid_operation);
8256 return -1;
8257 }
8258
8259 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8260 if (symcount >= LONG_MAX / sizeof (asymbol *))
8261 {
8262 bfd_set_error (bfd_error_file_too_big);
8263 return -1;
8264 }
8265 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8266 if (symcount > 0)
8267 symtab_size -= sizeof (asymbol *);
8268
8269 return symtab_size;
8270 }
8271
8272 long
8273 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8274 sec_ptr asect)
8275 {
8276 return (asect->reloc_count + 1) * sizeof (arelent *);
8277 }
8278
8279 /* Canonicalize the relocs. */
8280
8281 long
8282 _bfd_elf_canonicalize_reloc (bfd *abfd,
8283 sec_ptr section,
8284 arelent **relptr,
8285 asymbol **symbols)
8286 {
8287 arelent *tblptr;
8288 unsigned int i;
8289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8290
8291 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8292 return -1;
8293
8294 tblptr = section->relocation;
8295 for (i = 0; i < section->reloc_count; i++)
8296 *relptr++ = tblptr++;
8297
8298 *relptr = NULL;
8299
8300 return section->reloc_count;
8301 }
8302
8303 long
8304 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8305 {
8306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8307 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8308
8309 if (symcount >= 0)
8310 bfd_get_symcount (abfd) = symcount;
8311 return symcount;
8312 }
8313
8314 long
8315 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8316 asymbol **allocation)
8317 {
8318 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8319 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8320
8321 if (symcount >= 0)
8322 bfd_get_dynamic_symcount (abfd) = symcount;
8323 return symcount;
8324 }
8325
8326 /* Return the size required for the dynamic reloc entries. Any loadable
8327 section that was actually installed in the BFD, and has type SHT_REL
8328 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8329 dynamic reloc section. */
8330
8331 long
8332 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8333 {
8334 bfd_size_type count;
8335 asection *s;
8336
8337 if (elf_dynsymtab (abfd) == 0)
8338 {
8339 bfd_set_error (bfd_error_invalid_operation);
8340 return -1;
8341 }
8342
8343 count = 1;
8344 for (s = abfd->sections; s != NULL; s = s->next)
8345 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8346 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8347 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8348 {
8349 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8350 if (count > LONG_MAX / sizeof (arelent *))
8351 {
8352 bfd_set_error (bfd_error_file_too_big);
8353 return -1;
8354 }
8355 }
8356 return count * sizeof (arelent *);
8357 }
8358
8359 /* Canonicalize the dynamic relocation entries. Note that we return the
8360 dynamic relocations as a single block, although they are actually
8361 associated with particular sections; the interface, which was
8362 designed for SunOS style shared libraries, expects that there is only
8363 one set of dynamic relocs. Any loadable section that was actually
8364 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8365 dynamic symbol table, is considered to be a dynamic reloc section. */
8366
8367 long
8368 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8369 arelent **storage,
8370 asymbol **syms)
8371 {
8372 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8373 asection *s;
8374 long ret;
8375
8376 if (elf_dynsymtab (abfd) == 0)
8377 {
8378 bfd_set_error (bfd_error_invalid_operation);
8379 return -1;
8380 }
8381
8382 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8383 ret = 0;
8384 for (s = abfd->sections; s != NULL; s = s->next)
8385 {
8386 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8387 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8388 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8389 {
8390 arelent *p;
8391 long count, i;
8392
8393 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8394 return -1;
8395 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8396 p = s->relocation;
8397 for (i = 0; i < count; i++)
8398 *storage++ = p++;
8399 ret += count;
8400 }
8401 }
8402
8403 *storage = NULL;
8404
8405 return ret;
8406 }
8407 \f
8408 /* Read in the version information. */
8409
8410 bfd_boolean
8411 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8412 {
8413 bfd_byte *contents = NULL;
8414 unsigned int freeidx = 0;
8415
8416 if (elf_dynverref (abfd) != 0)
8417 {
8418 Elf_Internal_Shdr *hdr;
8419 Elf_External_Verneed *everneed;
8420 Elf_Internal_Verneed *iverneed;
8421 unsigned int i;
8422 bfd_byte *contents_end;
8423
8424 hdr = &elf_tdata (abfd)->dynverref_hdr;
8425
8426 if (hdr->sh_info == 0
8427 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8428 {
8429 error_return_bad_verref:
8430 _bfd_error_handler
8431 (_("%pB: .gnu.version_r invalid entry"), abfd);
8432 bfd_set_error (bfd_error_bad_value);
8433 error_return_verref:
8434 elf_tdata (abfd)->verref = NULL;
8435 elf_tdata (abfd)->cverrefs = 0;
8436 goto error_return;
8437 }
8438
8439 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8440 if (contents == NULL)
8441 goto error_return_verref;
8442
8443 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8444 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8445 goto error_return_verref;
8446
8447 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8448 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8449
8450 if (elf_tdata (abfd)->verref == NULL)
8451 goto error_return_verref;
8452
8453 BFD_ASSERT (sizeof (Elf_External_Verneed)
8454 == sizeof (Elf_External_Vernaux));
8455 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8456 everneed = (Elf_External_Verneed *) contents;
8457 iverneed = elf_tdata (abfd)->verref;
8458 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8459 {
8460 Elf_External_Vernaux *evernaux;
8461 Elf_Internal_Vernaux *ivernaux;
8462 unsigned int j;
8463
8464 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8465
8466 iverneed->vn_bfd = abfd;
8467
8468 iverneed->vn_filename =
8469 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8470 iverneed->vn_file);
8471 if (iverneed->vn_filename == NULL)
8472 goto error_return_bad_verref;
8473
8474 if (iverneed->vn_cnt == 0)
8475 iverneed->vn_auxptr = NULL;
8476 else
8477 {
8478 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8479 bfd_alloc2 (abfd, iverneed->vn_cnt,
8480 sizeof (Elf_Internal_Vernaux));
8481 if (iverneed->vn_auxptr == NULL)
8482 goto error_return_verref;
8483 }
8484
8485 if (iverneed->vn_aux
8486 > (size_t) (contents_end - (bfd_byte *) everneed))
8487 goto error_return_bad_verref;
8488
8489 evernaux = ((Elf_External_Vernaux *)
8490 ((bfd_byte *) everneed + iverneed->vn_aux));
8491 ivernaux = iverneed->vn_auxptr;
8492 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8493 {
8494 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8495
8496 ivernaux->vna_nodename =
8497 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8498 ivernaux->vna_name);
8499 if (ivernaux->vna_nodename == NULL)
8500 goto error_return_bad_verref;
8501
8502 if (ivernaux->vna_other > freeidx)
8503 freeidx = ivernaux->vna_other;
8504
8505 ivernaux->vna_nextptr = NULL;
8506 if (ivernaux->vna_next == 0)
8507 {
8508 iverneed->vn_cnt = j + 1;
8509 break;
8510 }
8511 if (j + 1 < iverneed->vn_cnt)
8512 ivernaux->vna_nextptr = ivernaux + 1;
8513
8514 if (ivernaux->vna_next
8515 > (size_t) (contents_end - (bfd_byte *) evernaux))
8516 goto error_return_bad_verref;
8517
8518 evernaux = ((Elf_External_Vernaux *)
8519 ((bfd_byte *) evernaux + ivernaux->vna_next));
8520 }
8521
8522 iverneed->vn_nextref = NULL;
8523 if (iverneed->vn_next == 0)
8524 break;
8525 if (i + 1 < hdr->sh_info)
8526 iverneed->vn_nextref = iverneed + 1;
8527
8528 if (iverneed->vn_next
8529 > (size_t) (contents_end - (bfd_byte *) everneed))
8530 goto error_return_bad_verref;
8531
8532 everneed = ((Elf_External_Verneed *)
8533 ((bfd_byte *) everneed + iverneed->vn_next));
8534 }
8535 elf_tdata (abfd)->cverrefs = i;
8536
8537 free (contents);
8538 contents = NULL;
8539 }
8540
8541 if (elf_dynverdef (abfd) != 0)
8542 {
8543 Elf_Internal_Shdr *hdr;
8544 Elf_External_Verdef *everdef;
8545 Elf_Internal_Verdef *iverdef;
8546 Elf_Internal_Verdef *iverdefarr;
8547 Elf_Internal_Verdef iverdefmem;
8548 unsigned int i;
8549 unsigned int maxidx;
8550 bfd_byte *contents_end_def, *contents_end_aux;
8551
8552 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8553
8554 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8555 {
8556 error_return_bad_verdef:
8557 _bfd_error_handler
8558 (_("%pB: .gnu.version_d invalid entry"), abfd);
8559 bfd_set_error (bfd_error_bad_value);
8560 error_return_verdef:
8561 elf_tdata (abfd)->verdef = NULL;
8562 elf_tdata (abfd)->cverdefs = 0;
8563 goto error_return;
8564 }
8565
8566 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8567 if (contents == NULL)
8568 goto error_return_verdef;
8569 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8570 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8571 goto error_return_verdef;
8572
8573 BFD_ASSERT (sizeof (Elf_External_Verdef)
8574 >= sizeof (Elf_External_Verdaux));
8575 contents_end_def = contents + hdr->sh_size
8576 - sizeof (Elf_External_Verdef);
8577 contents_end_aux = contents + hdr->sh_size
8578 - sizeof (Elf_External_Verdaux);
8579
8580 /* We know the number of entries in the section but not the maximum
8581 index. Therefore we have to run through all entries and find
8582 the maximum. */
8583 everdef = (Elf_External_Verdef *) contents;
8584 maxidx = 0;
8585 for (i = 0; i < hdr->sh_info; ++i)
8586 {
8587 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8588
8589 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8590 goto error_return_bad_verdef;
8591 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8592 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8593
8594 if (iverdefmem.vd_next == 0)
8595 break;
8596
8597 if (iverdefmem.vd_next
8598 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8599 goto error_return_bad_verdef;
8600
8601 everdef = ((Elf_External_Verdef *)
8602 ((bfd_byte *) everdef + iverdefmem.vd_next));
8603 }
8604
8605 if (default_imported_symver)
8606 {
8607 if (freeidx > maxidx)
8608 maxidx = ++freeidx;
8609 else
8610 freeidx = ++maxidx;
8611 }
8612
8613 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8614 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8615 if (elf_tdata (abfd)->verdef == NULL)
8616 goto error_return_verdef;
8617
8618 elf_tdata (abfd)->cverdefs = maxidx;
8619
8620 everdef = (Elf_External_Verdef *) contents;
8621 iverdefarr = elf_tdata (abfd)->verdef;
8622 for (i = 0; i < hdr->sh_info; i++)
8623 {
8624 Elf_External_Verdaux *everdaux;
8625 Elf_Internal_Verdaux *iverdaux;
8626 unsigned int j;
8627
8628 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8629
8630 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8631 goto error_return_bad_verdef;
8632
8633 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8634 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8635
8636 iverdef->vd_bfd = abfd;
8637
8638 if (iverdef->vd_cnt == 0)
8639 iverdef->vd_auxptr = NULL;
8640 else
8641 {
8642 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8643 bfd_alloc2 (abfd, iverdef->vd_cnt,
8644 sizeof (Elf_Internal_Verdaux));
8645 if (iverdef->vd_auxptr == NULL)
8646 goto error_return_verdef;
8647 }
8648
8649 if (iverdef->vd_aux
8650 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8651 goto error_return_bad_verdef;
8652
8653 everdaux = ((Elf_External_Verdaux *)
8654 ((bfd_byte *) everdef + iverdef->vd_aux));
8655 iverdaux = iverdef->vd_auxptr;
8656 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8657 {
8658 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8659
8660 iverdaux->vda_nodename =
8661 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8662 iverdaux->vda_name);
8663 if (iverdaux->vda_nodename == NULL)
8664 goto error_return_bad_verdef;
8665
8666 iverdaux->vda_nextptr = NULL;
8667 if (iverdaux->vda_next == 0)
8668 {
8669 iverdef->vd_cnt = j + 1;
8670 break;
8671 }
8672 if (j + 1 < iverdef->vd_cnt)
8673 iverdaux->vda_nextptr = iverdaux + 1;
8674
8675 if (iverdaux->vda_next
8676 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8677 goto error_return_bad_verdef;
8678
8679 everdaux = ((Elf_External_Verdaux *)
8680 ((bfd_byte *) everdaux + iverdaux->vda_next));
8681 }
8682
8683 iverdef->vd_nodename = NULL;
8684 if (iverdef->vd_cnt)
8685 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8686
8687 iverdef->vd_nextdef = NULL;
8688 if (iverdef->vd_next == 0)
8689 break;
8690 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8691 iverdef->vd_nextdef = iverdef + 1;
8692
8693 everdef = ((Elf_External_Verdef *)
8694 ((bfd_byte *) everdef + iverdef->vd_next));
8695 }
8696
8697 free (contents);
8698 contents = NULL;
8699 }
8700 else if (default_imported_symver)
8701 {
8702 if (freeidx < 3)
8703 freeidx = 3;
8704 else
8705 freeidx++;
8706
8707 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8708 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8709 if (elf_tdata (abfd)->verdef == NULL)
8710 goto error_return;
8711
8712 elf_tdata (abfd)->cverdefs = freeidx;
8713 }
8714
8715 /* Create a default version based on the soname. */
8716 if (default_imported_symver)
8717 {
8718 Elf_Internal_Verdef *iverdef;
8719 Elf_Internal_Verdaux *iverdaux;
8720
8721 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8722
8723 iverdef->vd_version = VER_DEF_CURRENT;
8724 iverdef->vd_flags = 0;
8725 iverdef->vd_ndx = freeidx;
8726 iverdef->vd_cnt = 1;
8727
8728 iverdef->vd_bfd = abfd;
8729
8730 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8731 if (iverdef->vd_nodename == NULL)
8732 goto error_return_verdef;
8733 iverdef->vd_nextdef = NULL;
8734 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8735 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8736 if (iverdef->vd_auxptr == NULL)
8737 goto error_return_verdef;
8738
8739 iverdaux = iverdef->vd_auxptr;
8740 iverdaux->vda_nodename = iverdef->vd_nodename;
8741 }
8742
8743 return TRUE;
8744
8745 error_return:
8746 if (contents != NULL)
8747 free (contents);
8748 return FALSE;
8749 }
8750 \f
8751 asymbol *
8752 _bfd_elf_make_empty_symbol (bfd *abfd)
8753 {
8754 elf_symbol_type *newsym;
8755
8756 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8757 if (!newsym)
8758 return NULL;
8759 newsym->symbol.the_bfd = abfd;
8760 return &newsym->symbol;
8761 }
8762
8763 void
8764 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8765 asymbol *symbol,
8766 symbol_info *ret)
8767 {
8768 bfd_symbol_info (symbol, ret);
8769 }
8770
8771 /* Return whether a symbol name implies a local symbol. Most targets
8772 use this function for the is_local_label_name entry point, but some
8773 override it. */
8774
8775 bfd_boolean
8776 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8777 const char *name)
8778 {
8779 /* Normal local symbols start with ``.L''. */
8780 if (name[0] == '.' && name[1] == 'L')
8781 return TRUE;
8782
8783 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8784 DWARF debugging symbols starting with ``..''. */
8785 if (name[0] == '.' && name[1] == '.')
8786 return TRUE;
8787
8788 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8789 emitting DWARF debugging output. I suspect this is actually a
8790 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8791 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8792 underscore to be emitted on some ELF targets). For ease of use,
8793 we treat such symbols as local. */
8794 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8795 return TRUE;
8796
8797 /* Treat assembler generated fake symbols, dollar local labels and
8798 forward-backward labels (aka local labels) as locals.
8799 These labels have the form:
8800
8801 L0^A.* (fake symbols)
8802
8803 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8804
8805 Versions which start with .L will have already been matched above,
8806 so we only need to match the rest. */
8807 if (name[0] == 'L' && ISDIGIT (name[1]))
8808 {
8809 bfd_boolean ret = FALSE;
8810 const char * p;
8811 char c;
8812
8813 for (p = name + 2; (c = *p); p++)
8814 {
8815 if (c == 1 || c == 2)
8816 {
8817 if (c == 1 && p == name + 2)
8818 /* A fake symbol. */
8819 return TRUE;
8820
8821 /* FIXME: We are being paranoid here and treating symbols like
8822 L0^Bfoo as if there were non-local, on the grounds that the
8823 assembler will never generate them. But can any symbol
8824 containing an ASCII value in the range 1-31 ever be anything
8825 other than some kind of local ? */
8826 ret = TRUE;
8827 }
8828
8829 if (! ISDIGIT (c))
8830 {
8831 ret = FALSE;
8832 break;
8833 }
8834 }
8835 return ret;
8836 }
8837
8838 return FALSE;
8839 }
8840
8841 alent *
8842 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8843 asymbol *symbol ATTRIBUTE_UNUSED)
8844 {
8845 abort ();
8846 return NULL;
8847 }
8848
8849 bfd_boolean
8850 _bfd_elf_set_arch_mach (bfd *abfd,
8851 enum bfd_architecture arch,
8852 unsigned long machine)
8853 {
8854 /* If this isn't the right architecture for this backend, and this
8855 isn't the generic backend, fail. */
8856 if (arch != get_elf_backend_data (abfd)->arch
8857 && arch != bfd_arch_unknown
8858 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8859 return FALSE;
8860
8861 return bfd_default_set_arch_mach (abfd, arch, machine);
8862 }
8863
8864 /* Find the nearest line to a particular section and offset,
8865 for error reporting. */
8866
8867 bfd_boolean
8868 _bfd_elf_find_nearest_line (bfd *abfd,
8869 asymbol **symbols,
8870 asection *section,
8871 bfd_vma offset,
8872 const char **filename_ptr,
8873 const char **functionname_ptr,
8874 unsigned int *line_ptr,
8875 unsigned int *discriminator_ptr)
8876 {
8877 bfd_boolean found;
8878
8879 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8880 filename_ptr, functionname_ptr,
8881 line_ptr, discriminator_ptr,
8882 dwarf_debug_sections, 0,
8883 &elf_tdata (abfd)->dwarf2_find_line_info)
8884 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8885 filename_ptr, functionname_ptr,
8886 line_ptr))
8887 {
8888 if (!*functionname_ptr)
8889 _bfd_elf_find_function (abfd, symbols, section, offset,
8890 *filename_ptr ? NULL : filename_ptr,
8891 functionname_ptr);
8892 return TRUE;
8893 }
8894
8895 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8896 &found, filename_ptr,
8897 functionname_ptr, line_ptr,
8898 &elf_tdata (abfd)->line_info))
8899 return FALSE;
8900 if (found && (*functionname_ptr || *line_ptr))
8901 return TRUE;
8902
8903 if (symbols == NULL)
8904 return FALSE;
8905
8906 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8907 filename_ptr, functionname_ptr))
8908 return FALSE;
8909
8910 *line_ptr = 0;
8911 return TRUE;
8912 }
8913
8914 /* Find the line for a symbol. */
8915
8916 bfd_boolean
8917 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8918 const char **filename_ptr, unsigned int *line_ptr)
8919 {
8920 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8921 filename_ptr, NULL, line_ptr, NULL,
8922 dwarf_debug_sections, 0,
8923 &elf_tdata (abfd)->dwarf2_find_line_info);
8924 }
8925
8926 /* After a call to bfd_find_nearest_line, successive calls to
8927 bfd_find_inliner_info can be used to get source information about
8928 each level of function inlining that terminated at the address
8929 passed to bfd_find_nearest_line. Currently this is only supported
8930 for DWARF2 with appropriate DWARF3 extensions. */
8931
8932 bfd_boolean
8933 _bfd_elf_find_inliner_info (bfd *abfd,
8934 const char **filename_ptr,
8935 const char **functionname_ptr,
8936 unsigned int *line_ptr)
8937 {
8938 bfd_boolean found;
8939 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8940 functionname_ptr, line_ptr,
8941 & elf_tdata (abfd)->dwarf2_find_line_info);
8942 return found;
8943 }
8944
8945 int
8946 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8947 {
8948 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8949 int ret = bed->s->sizeof_ehdr;
8950
8951 if (!bfd_link_relocatable (info))
8952 {
8953 bfd_size_type phdr_size = elf_program_header_size (abfd);
8954
8955 if (phdr_size == (bfd_size_type) -1)
8956 {
8957 struct elf_segment_map *m;
8958
8959 phdr_size = 0;
8960 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8961 phdr_size += bed->s->sizeof_phdr;
8962
8963 if (phdr_size == 0)
8964 phdr_size = get_program_header_size (abfd, info);
8965 }
8966
8967 elf_program_header_size (abfd) = phdr_size;
8968 ret += phdr_size;
8969 }
8970
8971 return ret;
8972 }
8973
8974 bfd_boolean
8975 _bfd_elf_set_section_contents (bfd *abfd,
8976 sec_ptr section,
8977 const void *location,
8978 file_ptr offset,
8979 bfd_size_type count)
8980 {
8981 Elf_Internal_Shdr *hdr;
8982 file_ptr pos;
8983
8984 if (! abfd->output_has_begun
8985 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8986 return FALSE;
8987
8988 if (!count)
8989 return TRUE;
8990
8991 hdr = &elf_section_data (section)->this_hdr;
8992 if (hdr->sh_offset == (file_ptr) -1)
8993 {
8994 /* We must compress this section. Write output to the buffer. */
8995 unsigned char *contents = hdr->contents;
8996 if ((offset + count) > hdr->sh_size
8997 || (section->flags & SEC_ELF_COMPRESS) == 0
8998 || contents == NULL)
8999 abort ();
9000 memcpy (contents + offset, location, count);
9001 return TRUE;
9002 }
9003 pos = hdr->sh_offset + offset;
9004 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9005 || bfd_bwrite (location, count, abfd) != count)
9006 return FALSE;
9007
9008 return TRUE;
9009 }
9010
9011 bfd_boolean
9012 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9013 arelent *cache_ptr ATTRIBUTE_UNUSED,
9014 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9015 {
9016 abort ();
9017 return FALSE;
9018 }
9019
9020 /* Try to convert a non-ELF reloc into an ELF one. */
9021
9022 bfd_boolean
9023 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9024 {
9025 /* Check whether we really have an ELF howto. */
9026
9027 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9028 {
9029 bfd_reloc_code_real_type code;
9030 reloc_howto_type *howto;
9031
9032 /* Alien reloc: Try to determine its type to replace it with an
9033 equivalent ELF reloc. */
9034
9035 if (areloc->howto->pc_relative)
9036 {
9037 switch (areloc->howto->bitsize)
9038 {
9039 case 8:
9040 code = BFD_RELOC_8_PCREL;
9041 break;
9042 case 12:
9043 code = BFD_RELOC_12_PCREL;
9044 break;
9045 case 16:
9046 code = BFD_RELOC_16_PCREL;
9047 break;
9048 case 24:
9049 code = BFD_RELOC_24_PCREL;
9050 break;
9051 case 32:
9052 code = BFD_RELOC_32_PCREL;
9053 break;
9054 case 64:
9055 code = BFD_RELOC_64_PCREL;
9056 break;
9057 default:
9058 goto fail;
9059 }
9060
9061 howto = bfd_reloc_type_lookup (abfd, code);
9062
9063 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9064 {
9065 if (howto->pcrel_offset)
9066 areloc->addend += areloc->address;
9067 else
9068 areloc->addend -= areloc->address; /* addend is unsigned!! */
9069 }
9070 }
9071 else
9072 {
9073 switch (areloc->howto->bitsize)
9074 {
9075 case 8:
9076 code = BFD_RELOC_8;
9077 break;
9078 case 14:
9079 code = BFD_RELOC_14;
9080 break;
9081 case 16:
9082 code = BFD_RELOC_16;
9083 break;
9084 case 26:
9085 code = BFD_RELOC_26;
9086 break;
9087 case 32:
9088 code = BFD_RELOC_32;
9089 break;
9090 case 64:
9091 code = BFD_RELOC_64;
9092 break;
9093 default:
9094 goto fail;
9095 }
9096
9097 howto = bfd_reloc_type_lookup (abfd, code);
9098 }
9099
9100 if (howto)
9101 areloc->howto = howto;
9102 else
9103 goto fail;
9104 }
9105
9106 return TRUE;
9107
9108 fail:
9109 /* xgettext:c-format */
9110 _bfd_error_handler (_("%pB: %s unsupported"),
9111 abfd, areloc->howto->name);
9112 bfd_set_error (bfd_error_bad_value);
9113 return FALSE;
9114 }
9115
9116 bfd_boolean
9117 _bfd_elf_close_and_cleanup (bfd *abfd)
9118 {
9119 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9120 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9121 {
9122 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9123 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9124 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9125 }
9126
9127 return _bfd_generic_close_and_cleanup (abfd);
9128 }
9129
9130 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9131 in the relocation's offset. Thus we cannot allow any sort of sanity
9132 range-checking to interfere. There is nothing else to do in processing
9133 this reloc. */
9134
9135 bfd_reloc_status_type
9136 _bfd_elf_rel_vtable_reloc_fn
9137 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9138 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9139 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9140 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9141 {
9142 return bfd_reloc_ok;
9143 }
9144 \f
9145 /* Elf core file support. Much of this only works on native
9146 toolchains, since we rely on knowing the
9147 machine-dependent procfs structure in order to pick
9148 out details about the corefile. */
9149
9150 #ifdef HAVE_SYS_PROCFS_H
9151 /* Needed for new procfs interface on sparc-solaris. */
9152 # define _STRUCTURED_PROC 1
9153 # include <sys/procfs.h>
9154 #endif
9155
9156 /* Return a PID that identifies a "thread" for threaded cores, or the
9157 PID of the main process for non-threaded cores. */
9158
9159 static int
9160 elfcore_make_pid (bfd *abfd)
9161 {
9162 int pid;
9163
9164 pid = elf_tdata (abfd)->core->lwpid;
9165 if (pid == 0)
9166 pid = elf_tdata (abfd)->core->pid;
9167
9168 return pid;
9169 }
9170
9171 /* If there isn't a section called NAME, make one, using
9172 data from SECT. Note, this function will generate a
9173 reference to NAME, so you shouldn't deallocate or
9174 overwrite it. */
9175
9176 static bfd_boolean
9177 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9178 {
9179 asection *sect2;
9180
9181 if (bfd_get_section_by_name (abfd, name) != NULL)
9182 return TRUE;
9183
9184 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9185 if (sect2 == NULL)
9186 return FALSE;
9187
9188 sect2->size = sect->size;
9189 sect2->filepos = sect->filepos;
9190 sect2->alignment_power = sect->alignment_power;
9191 return TRUE;
9192 }
9193
9194 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9195 actually creates up to two pseudosections:
9196 - For the single-threaded case, a section named NAME, unless
9197 such a section already exists.
9198 - For the multi-threaded case, a section named "NAME/PID", where
9199 PID is elfcore_make_pid (abfd).
9200 Both pseudosections have identical contents. */
9201 bfd_boolean
9202 _bfd_elfcore_make_pseudosection (bfd *abfd,
9203 char *name,
9204 size_t size,
9205 ufile_ptr filepos)
9206 {
9207 char buf[100];
9208 char *threaded_name;
9209 size_t len;
9210 asection *sect;
9211
9212 /* Build the section name. */
9213
9214 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9215 len = strlen (buf) + 1;
9216 threaded_name = (char *) bfd_alloc (abfd, len);
9217 if (threaded_name == NULL)
9218 return FALSE;
9219 memcpy (threaded_name, buf, len);
9220
9221 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9222 SEC_HAS_CONTENTS);
9223 if (sect == NULL)
9224 return FALSE;
9225 sect->size = size;
9226 sect->filepos = filepos;
9227 sect->alignment_power = 2;
9228
9229 return elfcore_maybe_make_sect (abfd, name, sect);
9230 }
9231
9232 /* prstatus_t exists on:
9233 solaris 2.5+
9234 linux 2.[01] + glibc
9235 unixware 4.2
9236 */
9237
9238 #if defined (HAVE_PRSTATUS_T)
9239
9240 static bfd_boolean
9241 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9242 {
9243 size_t size;
9244 int offset;
9245
9246 if (note->descsz == sizeof (prstatus_t))
9247 {
9248 prstatus_t prstat;
9249
9250 size = sizeof (prstat.pr_reg);
9251 offset = offsetof (prstatus_t, pr_reg);
9252 memcpy (&prstat, note->descdata, sizeof (prstat));
9253
9254 /* Do not overwrite the core signal if it
9255 has already been set by another thread. */
9256 if (elf_tdata (abfd)->core->signal == 0)
9257 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9258 if (elf_tdata (abfd)->core->pid == 0)
9259 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9260
9261 /* pr_who exists on:
9262 solaris 2.5+
9263 unixware 4.2
9264 pr_who doesn't exist on:
9265 linux 2.[01]
9266 */
9267 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9268 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9269 #else
9270 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9271 #endif
9272 }
9273 #if defined (HAVE_PRSTATUS32_T)
9274 else if (note->descsz == sizeof (prstatus32_t))
9275 {
9276 /* 64-bit host, 32-bit corefile */
9277 prstatus32_t prstat;
9278
9279 size = sizeof (prstat.pr_reg);
9280 offset = offsetof (prstatus32_t, pr_reg);
9281 memcpy (&prstat, note->descdata, sizeof (prstat));
9282
9283 /* Do not overwrite the core signal if it
9284 has already been set by another thread. */
9285 if (elf_tdata (abfd)->core->signal == 0)
9286 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9287 if (elf_tdata (abfd)->core->pid == 0)
9288 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9289
9290 /* pr_who exists on:
9291 solaris 2.5+
9292 unixware 4.2
9293 pr_who doesn't exist on:
9294 linux 2.[01]
9295 */
9296 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9297 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9298 #else
9299 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9300 #endif
9301 }
9302 #endif /* HAVE_PRSTATUS32_T */
9303 else
9304 {
9305 /* Fail - we don't know how to handle any other
9306 note size (ie. data object type). */
9307 return TRUE;
9308 }
9309
9310 /* Make a ".reg/999" section and a ".reg" section. */
9311 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9312 size, note->descpos + offset);
9313 }
9314 #endif /* defined (HAVE_PRSTATUS_T) */
9315
9316 /* Create a pseudosection containing the exact contents of NOTE. */
9317 static bfd_boolean
9318 elfcore_make_note_pseudosection (bfd *abfd,
9319 char *name,
9320 Elf_Internal_Note *note)
9321 {
9322 return _bfd_elfcore_make_pseudosection (abfd, name,
9323 note->descsz, note->descpos);
9324 }
9325
9326 /* There isn't a consistent prfpregset_t across platforms,
9327 but it doesn't matter, because we don't have to pick this
9328 data structure apart. */
9329
9330 static bfd_boolean
9331 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9332 {
9333 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9334 }
9335
9336 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9337 type of NT_PRXFPREG. Just include the whole note's contents
9338 literally. */
9339
9340 static bfd_boolean
9341 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9342 {
9343 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9344 }
9345
9346 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9347 with a note type of NT_X86_XSTATE. Just include the whole note's
9348 contents literally. */
9349
9350 static bfd_boolean
9351 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9352 {
9353 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9354 }
9355
9356 static bfd_boolean
9357 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9358 {
9359 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9360 }
9361
9362 static bfd_boolean
9363 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9364 {
9365 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9366 }
9367
9368 static bfd_boolean
9369 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9370 {
9371 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9372 }
9373
9374 static bfd_boolean
9375 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9376 {
9377 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9378 }
9379
9380 static bfd_boolean
9381 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9382 {
9383 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9384 }
9385
9386 static bfd_boolean
9387 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9388 {
9389 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9390 }
9391
9392 static bfd_boolean
9393 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9394 {
9395 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9396 }
9397
9398 static bfd_boolean
9399 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9400 {
9401 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9402 }
9403
9404 static bfd_boolean
9405 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9406 {
9407 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9408 }
9409
9410 static bfd_boolean
9411 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9412 {
9413 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9414 }
9415
9416 static bfd_boolean
9417 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9418 {
9419 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9420 }
9421
9422 static bfd_boolean
9423 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9424 {
9425 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9426 }
9427
9428 static bfd_boolean
9429 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9430 {
9431 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9432 }
9433
9434 static bfd_boolean
9435 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9436 {
9437 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9438 }
9439
9440 static bfd_boolean
9441 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9442 {
9443 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9444 }
9445
9446 static bfd_boolean
9447 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9448 {
9449 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9450 }
9451
9452 static bfd_boolean
9453 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9454 {
9455 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9456 }
9457
9458 static bfd_boolean
9459 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9460 {
9461 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9462 }
9463
9464 static bfd_boolean
9465 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9466 {
9467 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9468 }
9469
9470 static bfd_boolean
9471 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9472 {
9473 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9474 }
9475
9476 static bfd_boolean
9477 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9478 {
9479 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9480 }
9481
9482 static bfd_boolean
9483 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9484 {
9485 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9486 }
9487
9488 static bfd_boolean
9489 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9490 {
9491 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9492 }
9493
9494 static bfd_boolean
9495 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9496 {
9497 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9498 }
9499
9500 static bfd_boolean
9501 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9502 {
9503 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9504 }
9505
9506 static bfd_boolean
9507 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9508 {
9509 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9510 }
9511
9512 static bfd_boolean
9513 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9514 {
9515 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9516 }
9517
9518 static bfd_boolean
9519 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9520 {
9521 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9522 }
9523
9524 static bfd_boolean
9525 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9526 {
9527 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9528 }
9529
9530 static bfd_boolean
9531 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9532 {
9533 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9534 }
9535
9536 static bfd_boolean
9537 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9538 {
9539 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9540 }
9541
9542 static bfd_boolean
9543 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9544 {
9545 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9546 }
9547
9548 static bfd_boolean
9549 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9550 {
9551 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9552 }
9553
9554 static bfd_boolean
9555 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9556 {
9557 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9558 }
9559
9560 #if defined (HAVE_PRPSINFO_T)
9561 typedef prpsinfo_t elfcore_psinfo_t;
9562 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9563 typedef prpsinfo32_t elfcore_psinfo32_t;
9564 #endif
9565 #endif
9566
9567 #if defined (HAVE_PSINFO_T)
9568 typedef psinfo_t elfcore_psinfo_t;
9569 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9570 typedef psinfo32_t elfcore_psinfo32_t;
9571 #endif
9572 #endif
9573
9574 /* return a malloc'ed copy of a string at START which is at
9575 most MAX bytes long, possibly without a terminating '\0'.
9576 the copy will always have a terminating '\0'. */
9577
9578 char *
9579 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9580 {
9581 char *dups;
9582 char *end = (char *) memchr (start, '\0', max);
9583 size_t len;
9584
9585 if (end == NULL)
9586 len = max;
9587 else
9588 len = end - start;
9589
9590 dups = (char *) bfd_alloc (abfd, len + 1);
9591 if (dups == NULL)
9592 return NULL;
9593
9594 memcpy (dups, start, len);
9595 dups[len] = '\0';
9596
9597 return dups;
9598 }
9599
9600 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9601 static bfd_boolean
9602 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9603 {
9604 if (note->descsz == sizeof (elfcore_psinfo_t))
9605 {
9606 elfcore_psinfo_t psinfo;
9607
9608 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9609
9610 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9611 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9612 #endif
9613 elf_tdata (abfd)->core->program
9614 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9615 sizeof (psinfo.pr_fname));
9616
9617 elf_tdata (abfd)->core->command
9618 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9619 sizeof (psinfo.pr_psargs));
9620 }
9621 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9622 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9623 {
9624 /* 64-bit host, 32-bit corefile */
9625 elfcore_psinfo32_t psinfo;
9626
9627 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9628
9629 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9630 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9631 #endif
9632 elf_tdata (abfd)->core->program
9633 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9634 sizeof (psinfo.pr_fname));
9635
9636 elf_tdata (abfd)->core->command
9637 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9638 sizeof (psinfo.pr_psargs));
9639 }
9640 #endif
9641
9642 else
9643 {
9644 /* Fail - we don't know how to handle any other
9645 note size (ie. data object type). */
9646 return TRUE;
9647 }
9648
9649 /* Note that for some reason, a spurious space is tacked
9650 onto the end of the args in some (at least one anyway)
9651 implementations, so strip it off if it exists. */
9652
9653 {
9654 char *command = elf_tdata (abfd)->core->command;
9655 int n = strlen (command);
9656
9657 if (0 < n && command[n - 1] == ' ')
9658 command[n - 1] = '\0';
9659 }
9660
9661 return TRUE;
9662 }
9663 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9664
9665 #if defined (HAVE_PSTATUS_T)
9666 static bfd_boolean
9667 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9668 {
9669 if (note->descsz == sizeof (pstatus_t)
9670 #if defined (HAVE_PXSTATUS_T)
9671 || note->descsz == sizeof (pxstatus_t)
9672 #endif
9673 )
9674 {
9675 pstatus_t pstat;
9676
9677 memcpy (&pstat, note->descdata, sizeof (pstat));
9678
9679 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9680 }
9681 #if defined (HAVE_PSTATUS32_T)
9682 else if (note->descsz == sizeof (pstatus32_t))
9683 {
9684 /* 64-bit host, 32-bit corefile */
9685 pstatus32_t pstat;
9686
9687 memcpy (&pstat, note->descdata, sizeof (pstat));
9688
9689 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9690 }
9691 #endif
9692 /* Could grab some more details from the "representative"
9693 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9694 NT_LWPSTATUS note, presumably. */
9695
9696 return TRUE;
9697 }
9698 #endif /* defined (HAVE_PSTATUS_T) */
9699
9700 #if defined (HAVE_LWPSTATUS_T)
9701 static bfd_boolean
9702 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9703 {
9704 lwpstatus_t lwpstat;
9705 char buf[100];
9706 char *name;
9707 size_t len;
9708 asection *sect;
9709
9710 if (note->descsz != sizeof (lwpstat)
9711 #if defined (HAVE_LWPXSTATUS_T)
9712 && note->descsz != sizeof (lwpxstatus_t)
9713 #endif
9714 )
9715 return TRUE;
9716
9717 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9718
9719 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9720 /* Do not overwrite the core signal if it has already been set by
9721 another thread. */
9722 if (elf_tdata (abfd)->core->signal == 0)
9723 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9724
9725 /* Make a ".reg/999" section. */
9726
9727 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9728 len = strlen (buf) + 1;
9729 name = bfd_alloc (abfd, len);
9730 if (name == NULL)
9731 return FALSE;
9732 memcpy (name, buf, len);
9733
9734 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9735 if (sect == NULL)
9736 return FALSE;
9737
9738 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9739 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9740 sect->filepos = note->descpos
9741 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9742 #endif
9743
9744 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9745 sect->size = sizeof (lwpstat.pr_reg);
9746 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9747 #endif
9748
9749 sect->alignment_power = 2;
9750
9751 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9752 return FALSE;
9753
9754 /* Make a ".reg2/999" section */
9755
9756 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9757 len = strlen (buf) + 1;
9758 name = bfd_alloc (abfd, len);
9759 if (name == NULL)
9760 return FALSE;
9761 memcpy (name, buf, len);
9762
9763 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9764 if (sect == NULL)
9765 return FALSE;
9766
9767 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9768 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9769 sect->filepos = note->descpos
9770 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9771 #endif
9772
9773 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9774 sect->size = sizeof (lwpstat.pr_fpreg);
9775 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9776 #endif
9777
9778 sect->alignment_power = 2;
9779
9780 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9781 }
9782 #endif /* defined (HAVE_LWPSTATUS_T) */
9783
9784 static bfd_boolean
9785 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9786 {
9787 char buf[30];
9788 char *name;
9789 size_t len;
9790 asection *sect;
9791 int type;
9792 int is_active_thread;
9793 bfd_vma base_addr;
9794
9795 if (note->descsz < 728)
9796 return TRUE;
9797
9798 if (! CONST_STRNEQ (note->namedata, "win32"))
9799 return TRUE;
9800
9801 type = bfd_get_32 (abfd, note->descdata);
9802
9803 switch (type)
9804 {
9805 case 1 /* NOTE_INFO_PROCESS */:
9806 /* FIXME: need to add ->core->command. */
9807 /* process_info.pid */
9808 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9809 /* process_info.signal */
9810 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9811 break;
9812
9813 case 2 /* NOTE_INFO_THREAD */:
9814 /* Make a ".reg/999" section. */
9815 /* thread_info.tid */
9816 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9817
9818 len = strlen (buf) + 1;
9819 name = (char *) bfd_alloc (abfd, len);
9820 if (name == NULL)
9821 return FALSE;
9822
9823 memcpy (name, buf, len);
9824
9825 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9826 if (sect == NULL)
9827 return FALSE;
9828
9829 /* sizeof (thread_info.thread_context) */
9830 sect->size = 716;
9831 /* offsetof (thread_info.thread_context) */
9832 sect->filepos = note->descpos + 12;
9833 sect->alignment_power = 2;
9834
9835 /* thread_info.is_active_thread */
9836 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9837
9838 if (is_active_thread)
9839 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9840 return FALSE;
9841 break;
9842
9843 case 3 /* NOTE_INFO_MODULE */:
9844 /* Make a ".module/xxxxxxxx" section. */
9845 /* module_info.base_address */
9846 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9847 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9848
9849 len = strlen (buf) + 1;
9850 name = (char *) bfd_alloc (abfd, len);
9851 if (name == NULL)
9852 return FALSE;
9853
9854 memcpy (name, buf, len);
9855
9856 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9857
9858 if (sect == NULL)
9859 return FALSE;
9860
9861 sect->size = note->descsz;
9862 sect->filepos = note->descpos;
9863 sect->alignment_power = 2;
9864 break;
9865
9866 default:
9867 return TRUE;
9868 }
9869
9870 return TRUE;
9871 }
9872
9873 static bfd_boolean
9874 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9875 {
9876 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9877
9878 switch (note->type)
9879 {
9880 default:
9881 return TRUE;
9882
9883 case NT_PRSTATUS:
9884 if (bed->elf_backend_grok_prstatus)
9885 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9886 return TRUE;
9887 #if defined (HAVE_PRSTATUS_T)
9888 return elfcore_grok_prstatus (abfd, note);
9889 #else
9890 return TRUE;
9891 #endif
9892
9893 #if defined (HAVE_PSTATUS_T)
9894 case NT_PSTATUS:
9895 return elfcore_grok_pstatus (abfd, note);
9896 #endif
9897
9898 #if defined (HAVE_LWPSTATUS_T)
9899 case NT_LWPSTATUS:
9900 return elfcore_grok_lwpstatus (abfd, note);
9901 #endif
9902
9903 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9904 return elfcore_grok_prfpreg (abfd, note);
9905
9906 case NT_WIN32PSTATUS:
9907 return elfcore_grok_win32pstatus (abfd, note);
9908
9909 case NT_PRXFPREG: /* Linux SSE extension */
9910 if (note->namesz == 6
9911 && strcmp (note->namedata, "LINUX") == 0)
9912 return elfcore_grok_prxfpreg (abfd, note);
9913 else
9914 return TRUE;
9915
9916 case NT_X86_XSTATE: /* Linux XSAVE extension */
9917 if (note->namesz == 6
9918 && strcmp (note->namedata, "LINUX") == 0)
9919 return elfcore_grok_xstatereg (abfd, note);
9920 else
9921 return TRUE;
9922
9923 case NT_PPC_VMX:
9924 if (note->namesz == 6
9925 && strcmp (note->namedata, "LINUX") == 0)
9926 return elfcore_grok_ppc_vmx (abfd, note);
9927 else
9928 return TRUE;
9929
9930 case NT_PPC_VSX:
9931 if (note->namesz == 6
9932 && strcmp (note->namedata, "LINUX") == 0)
9933 return elfcore_grok_ppc_vsx (abfd, note);
9934 else
9935 return TRUE;
9936
9937 case NT_PPC_TAR:
9938 if (note->namesz == 6
9939 && strcmp (note->namedata, "LINUX") == 0)
9940 return elfcore_grok_ppc_tar (abfd, note);
9941 else
9942 return TRUE;
9943
9944 case NT_PPC_PPR:
9945 if (note->namesz == 6
9946 && strcmp (note->namedata, "LINUX") == 0)
9947 return elfcore_grok_ppc_ppr (abfd, note);
9948 else
9949 return TRUE;
9950
9951 case NT_PPC_DSCR:
9952 if (note->namesz == 6
9953 && strcmp (note->namedata, "LINUX") == 0)
9954 return elfcore_grok_ppc_dscr (abfd, note);
9955 else
9956 return TRUE;
9957
9958 case NT_PPC_EBB:
9959 if (note->namesz == 6
9960 && strcmp (note->namedata, "LINUX") == 0)
9961 return elfcore_grok_ppc_ebb (abfd, note);
9962 else
9963 return TRUE;
9964
9965 case NT_PPC_PMU:
9966 if (note->namesz == 6
9967 && strcmp (note->namedata, "LINUX") == 0)
9968 return elfcore_grok_ppc_pmu (abfd, note);
9969 else
9970 return TRUE;
9971
9972 case NT_PPC_TM_CGPR:
9973 if (note->namesz == 6
9974 && strcmp (note->namedata, "LINUX") == 0)
9975 return elfcore_grok_ppc_tm_cgpr (abfd, note);
9976 else
9977 return TRUE;
9978
9979 case NT_PPC_TM_CFPR:
9980 if (note->namesz == 6
9981 && strcmp (note->namedata, "LINUX") == 0)
9982 return elfcore_grok_ppc_tm_cfpr (abfd, note);
9983 else
9984 return TRUE;
9985
9986 case NT_PPC_TM_CVMX:
9987 if (note->namesz == 6
9988 && strcmp (note->namedata, "LINUX") == 0)
9989 return elfcore_grok_ppc_tm_cvmx (abfd, note);
9990 else
9991 return TRUE;
9992
9993 case NT_PPC_TM_CVSX:
9994 if (note->namesz == 6
9995 && strcmp (note->namedata, "LINUX") == 0)
9996 return elfcore_grok_ppc_tm_cvsx (abfd, note);
9997 else
9998 return TRUE;
9999
10000 case NT_PPC_TM_SPR:
10001 if (note->namesz == 6
10002 && strcmp (note->namedata, "LINUX") == 0)
10003 return elfcore_grok_ppc_tm_spr (abfd, note);
10004 else
10005 return TRUE;
10006
10007 case NT_PPC_TM_CTAR:
10008 if (note->namesz == 6
10009 && strcmp (note->namedata, "LINUX") == 0)
10010 return elfcore_grok_ppc_tm_ctar (abfd, note);
10011 else
10012 return TRUE;
10013
10014 case NT_PPC_TM_CPPR:
10015 if (note->namesz == 6
10016 && strcmp (note->namedata, "LINUX") == 0)
10017 return elfcore_grok_ppc_tm_cppr (abfd, note);
10018 else
10019 return TRUE;
10020
10021 case NT_PPC_TM_CDSCR:
10022 if (note->namesz == 6
10023 && strcmp (note->namedata, "LINUX") == 0)
10024 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10025 else
10026 return TRUE;
10027
10028 case NT_S390_HIGH_GPRS:
10029 if (note->namesz == 6
10030 && strcmp (note->namedata, "LINUX") == 0)
10031 return elfcore_grok_s390_high_gprs (abfd, note);
10032 else
10033 return TRUE;
10034
10035 case NT_S390_TIMER:
10036 if (note->namesz == 6
10037 && strcmp (note->namedata, "LINUX") == 0)
10038 return elfcore_grok_s390_timer (abfd, note);
10039 else
10040 return TRUE;
10041
10042 case NT_S390_TODCMP:
10043 if (note->namesz == 6
10044 && strcmp (note->namedata, "LINUX") == 0)
10045 return elfcore_grok_s390_todcmp (abfd, note);
10046 else
10047 return TRUE;
10048
10049 case NT_S390_TODPREG:
10050 if (note->namesz == 6
10051 && strcmp (note->namedata, "LINUX") == 0)
10052 return elfcore_grok_s390_todpreg (abfd, note);
10053 else
10054 return TRUE;
10055
10056 case NT_S390_CTRS:
10057 if (note->namesz == 6
10058 && strcmp (note->namedata, "LINUX") == 0)
10059 return elfcore_grok_s390_ctrs (abfd, note);
10060 else
10061 return TRUE;
10062
10063 case NT_S390_PREFIX:
10064 if (note->namesz == 6
10065 && strcmp (note->namedata, "LINUX") == 0)
10066 return elfcore_grok_s390_prefix (abfd, note);
10067 else
10068 return TRUE;
10069
10070 case NT_S390_LAST_BREAK:
10071 if (note->namesz == 6
10072 && strcmp (note->namedata, "LINUX") == 0)
10073 return elfcore_grok_s390_last_break (abfd, note);
10074 else
10075 return TRUE;
10076
10077 case NT_S390_SYSTEM_CALL:
10078 if (note->namesz == 6
10079 && strcmp (note->namedata, "LINUX") == 0)
10080 return elfcore_grok_s390_system_call (abfd, note);
10081 else
10082 return TRUE;
10083
10084 case NT_S390_TDB:
10085 if (note->namesz == 6
10086 && strcmp (note->namedata, "LINUX") == 0)
10087 return elfcore_grok_s390_tdb (abfd, note);
10088 else
10089 return TRUE;
10090
10091 case NT_S390_VXRS_LOW:
10092 if (note->namesz == 6
10093 && strcmp (note->namedata, "LINUX") == 0)
10094 return elfcore_grok_s390_vxrs_low (abfd, note);
10095 else
10096 return TRUE;
10097
10098 case NT_S390_VXRS_HIGH:
10099 if (note->namesz == 6
10100 && strcmp (note->namedata, "LINUX") == 0)
10101 return elfcore_grok_s390_vxrs_high (abfd, note);
10102 else
10103 return TRUE;
10104
10105 case NT_S390_GS_CB:
10106 if (note->namesz == 6
10107 && strcmp (note->namedata, "LINUX") == 0)
10108 return elfcore_grok_s390_gs_cb (abfd, note);
10109 else
10110 return TRUE;
10111
10112 case NT_S390_GS_BC:
10113 if (note->namesz == 6
10114 && strcmp (note->namedata, "LINUX") == 0)
10115 return elfcore_grok_s390_gs_bc (abfd, note);
10116 else
10117 return TRUE;
10118
10119 case NT_ARM_VFP:
10120 if (note->namesz == 6
10121 && strcmp (note->namedata, "LINUX") == 0)
10122 return elfcore_grok_arm_vfp (abfd, note);
10123 else
10124 return TRUE;
10125
10126 case NT_ARM_TLS:
10127 if (note->namesz == 6
10128 && strcmp (note->namedata, "LINUX") == 0)
10129 return elfcore_grok_aarch_tls (abfd, note);
10130 else
10131 return TRUE;
10132
10133 case NT_ARM_HW_BREAK:
10134 if (note->namesz == 6
10135 && strcmp (note->namedata, "LINUX") == 0)
10136 return elfcore_grok_aarch_hw_break (abfd, note);
10137 else
10138 return TRUE;
10139
10140 case NT_ARM_HW_WATCH:
10141 if (note->namesz == 6
10142 && strcmp (note->namedata, "LINUX") == 0)
10143 return elfcore_grok_aarch_hw_watch (abfd, note);
10144 else
10145 return TRUE;
10146
10147 case NT_ARM_SVE:
10148 if (note->namesz == 6
10149 && strcmp (note->namedata, "LINUX") == 0)
10150 return elfcore_grok_aarch_sve (abfd, note);
10151 else
10152 return TRUE;
10153
10154 case NT_ARM_PAC_MASK:
10155 if (note->namesz == 6
10156 && strcmp (note->namedata, "LINUX") == 0)
10157 return elfcore_grok_aarch_pauth (abfd, note);
10158 else
10159 return TRUE;
10160
10161 case NT_PRPSINFO:
10162 case NT_PSINFO:
10163 if (bed->elf_backend_grok_psinfo)
10164 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10165 return TRUE;
10166 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10167 return elfcore_grok_psinfo (abfd, note);
10168 #else
10169 return TRUE;
10170 #endif
10171
10172 case NT_AUXV:
10173 {
10174 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10175 SEC_HAS_CONTENTS);
10176
10177 if (sect == NULL)
10178 return FALSE;
10179 sect->size = note->descsz;
10180 sect->filepos = note->descpos;
10181 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10182
10183 return TRUE;
10184 }
10185
10186 case NT_FILE:
10187 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10188 note);
10189
10190 case NT_SIGINFO:
10191 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10192 note);
10193
10194 }
10195 }
10196
10197 static bfd_boolean
10198 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10199 {
10200 struct bfd_build_id* build_id;
10201
10202 if (note->descsz == 0)
10203 return FALSE;
10204
10205 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10206 if (build_id == NULL)
10207 return FALSE;
10208
10209 build_id->size = note->descsz;
10210 memcpy (build_id->data, note->descdata, note->descsz);
10211 abfd->build_id = build_id;
10212
10213 return TRUE;
10214 }
10215
10216 static bfd_boolean
10217 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10218 {
10219 switch (note->type)
10220 {
10221 default:
10222 return TRUE;
10223
10224 case NT_GNU_PROPERTY_TYPE_0:
10225 return _bfd_elf_parse_gnu_properties (abfd, note);
10226
10227 case NT_GNU_BUILD_ID:
10228 return elfobj_grok_gnu_build_id (abfd, note);
10229 }
10230 }
10231
10232 static bfd_boolean
10233 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10234 {
10235 struct sdt_note *cur =
10236 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
10237 + note->descsz);
10238
10239 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10240 cur->size = (bfd_size_type) note->descsz;
10241 memcpy (cur->data, note->descdata, note->descsz);
10242
10243 elf_tdata (abfd)->sdt_note_head = cur;
10244
10245 return TRUE;
10246 }
10247
10248 static bfd_boolean
10249 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10250 {
10251 switch (note->type)
10252 {
10253 case NT_STAPSDT:
10254 return elfobj_grok_stapsdt_note_1 (abfd, note);
10255
10256 default:
10257 return TRUE;
10258 }
10259 }
10260
10261 static bfd_boolean
10262 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10263 {
10264 size_t offset;
10265
10266 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10267 {
10268 case ELFCLASS32:
10269 if (note->descsz < 108)
10270 return FALSE;
10271 break;
10272
10273 case ELFCLASS64:
10274 if (note->descsz < 120)
10275 return FALSE;
10276 break;
10277
10278 default:
10279 return FALSE;
10280 }
10281
10282 /* Check for version 1 in pr_version. */
10283 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10284 return FALSE;
10285
10286 offset = 4;
10287
10288 /* Skip over pr_psinfosz. */
10289 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10290 offset += 4;
10291 else
10292 {
10293 offset += 4; /* Padding before pr_psinfosz. */
10294 offset += 8;
10295 }
10296
10297 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10298 elf_tdata (abfd)->core->program
10299 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10300 offset += 17;
10301
10302 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10303 elf_tdata (abfd)->core->command
10304 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10305 offset += 81;
10306
10307 /* Padding before pr_pid. */
10308 offset += 2;
10309
10310 /* The pr_pid field was added in version "1a". */
10311 if (note->descsz < offset + 4)
10312 return TRUE;
10313
10314 elf_tdata (abfd)->core->pid
10315 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10316
10317 return TRUE;
10318 }
10319
10320 static bfd_boolean
10321 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10322 {
10323 size_t offset;
10324 size_t size;
10325 size_t min_size;
10326
10327 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10328 Also compute minimum size of this note. */
10329 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10330 {
10331 case ELFCLASS32:
10332 offset = 4 + 4;
10333 min_size = offset + (4 * 2) + 4 + 4 + 4;
10334 break;
10335
10336 case ELFCLASS64:
10337 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10338 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10339 break;
10340
10341 default:
10342 return FALSE;
10343 }
10344
10345 if (note->descsz < min_size)
10346 return FALSE;
10347
10348 /* Check for version 1 in pr_version. */
10349 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10350 return FALSE;
10351
10352 /* Extract size of pr_reg from pr_gregsetsz. */
10353 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10354 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10355 {
10356 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10357 offset += 4 * 2;
10358 }
10359 else
10360 {
10361 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10362 offset += 8 * 2;
10363 }
10364
10365 /* Skip over pr_osreldate. */
10366 offset += 4;
10367
10368 /* Read signal from pr_cursig. */
10369 if (elf_tdata (abfd)->core->signal == 0)
10370 elf_tdata (abfd)->core->signal
10371 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10372 offset += 4;
10373
10374 /* Read TID from pr_pid. */
10375 elf_tdata (abfd)->core->lwpid
10376 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10377 offset += 4;
10378
10379 /* Padding before pr_reg. */
10380 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10381 offset += 4;
10382
10383 /* Make sure that there is enough data remaining in the note. */
10384 if ((note->descsz - offset) < size)
10385 return FALSE;
10386
10387 /* Make a ".reg/999" section and a ".reg" section. */
10388 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10389 size, note->descpos + offset);
10390 }
10391
10392 static bfd_boolean
10393 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10394 {
10395 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10396
10397 switch (note->type)
10398 {
10399 case NT_PRSTATUS:
10400 if (bed->elf_backend_grok_freebsd_prstatus)
10401 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10402 return TRUE;
10403 return elfcore_grok_freebsd_prstatus (abfd, note);
10404
10405 case NT_FPREGSET:
10406 return elfcore_grok_prfpreg (abfd, note);
10407
10408 case NT_PRPSINFO:
10409 return elfcore_grok_freebsd_psinfo (abfd, note);
10410
10411 case NT_FREEBSD_THRMISC:
10412 if (note->namesz == 8)
10413 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10414 else
10415 return TRUE;
10416
10417 case NT_FREEBSD_PROCSTAT_PROC:
10418 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10419 note);
10420
10421 case NT_FREEBSD_PROCSTAT_FILES:
10422 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10423 note);
10424
10425 case NT_FREEBSD_PROCSTAT_VMMAP:
10426 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10427 note);
10428
10429 case NT_FREEBSD_PROCSTAT_AUXV:
10430 {
10431 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10432 SEC_HAS_CONTENTS);
10433
10434 if (sect == NULL)
10435 return FALSE;
10436 sect->size = note->descsz - 4;
10437 sect->filepos = note->descpos + 4;
10438 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10439
10440 return TRUE;
10441 }
10442
10443 case NT_X86_XSTATE:
10444 if (note->namesz == 8)
10445 return elfcore_grok_xstatereg (abfd, note);
10446 else
10447 return TRUE;
10448
10449 case NT_FREEBSD_PTLWPINFO:
10450 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10451 note);
10452
10453 case NT_ARM_VFP:
10454 return elfcore_grok_arm_vfp (abfd, note);
10455
10456 default:
10457 return TRUE;
10458 }
10459 }
10460
10461 static bfd_boolean
10462 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10463 {
10464 char *cp;
10465
10466 cp = strchr (note->namedata, '@');
10467 if (cp != NULL)
10468 {
10469 *lwpidp = atoi(cp + 1);
10470 return TRUE;
10471 }
10472 return FALSE;
10473 }
10474
10475 static bfd_boolean
10476 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10477 {
10478 if (note->descsz <= 0x7c + 31)
10479 return FALSE;
10480
10481 /* Signal number at offset 0x08. */
10482 elf_tdata (abfd)->core->signal
10483 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10484
10485 /* Process ID at offset 0x50. */
10486 elf_tdata (abfd)->core->pid
10487 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10488
10489 /* Command name at 0x7c (max 32 bytes, including nul). */
10490 elf_tdata (abfd)->core->command
10491 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10492
10493 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10494 note);
10495 }
10496
10497 static bfd_boolean
10498 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10499 {
10500 int lwp;
10501
10502 if (elfcore_netbsd_get_lwpid (note, &lwp))
10503 elf_tdata (abfd)->core->lwpid = lwp;
10504
10505 if (note->type == NT_NETBSDCORE_PROCINFO)
10506 {
10507 /* NetBSD-specific core "procinfo". Note that we expect to
10508 find this note before any of the others, which is fine,
10509 since the kernel writes this note out first when it
10510 creates a core file. */
10511
10512 return elfcore_grok_netbsd_procinfo (abfd, note);
10513 }
10514
10515 /* As of Jan 2002 there are no other machine-independent notes
10516 defined for NetBSD core files. If the note type is less
10517 than the start of the machine-dependent note types, we don't
10518 understand it. */
10519
10520 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10521 return TRUE;
10522
10523
10524 switch (bfd_get_arch (abfd))
10525 {
10526 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10527 PT_GETFPREGS == mach+2. */
10528
10529 case bfd_arch_alpha:
10530 case bfd_arch_sparc:
10531 switch (note->type)
10532 {
10533 case NT_NETBSDCORE_FIRSTMACH+0:
10534 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10535
10536 case NT_NETBSDCORE_FIRSTMACH+2:
10537 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10538
10539 default:
10540 return TRUE;
10541 }
10542
10543 /* On all other arch's, PT_GETREGS == mach+1 and
10544 PT_GETFPREGS == mach+3. */
10545
10546 default:
10547 switch (note->type)
10548 {
10549 case NT_NETBSDCORE_FIRSTMACH+1:
10550 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10551
10552 case NT_NETBSDCORE_FIRSTMACH+3:
10553 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10554
10555 default:
10556 return TRUE;
10557 }
10558 }
10559 /* NOTREACHED */
10560 }
10561
10562 static bfd_boolean
10563 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10564 {
10565 if (note->descsz <= 0x48 + 31)
10566 return FALSE;
10567
10568 /* Signal number at offset 0x08. */
10569 elf_tdata (abfd)->core->signal
10570 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10571
10572 /* Process ID at offset 0x20. */
10573 elf_tdata (abfd)->core->pid
10574 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10575
10576 /* Command name at 0x48 (max 32 bytes, including nul). */
10577 elf_tdata (abfd)->core->command
10578 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10579
10580 return TRUE;
10581 }
10582
10583 static bfd_boolean
10584 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10585 {
10586 if (note->type == NT_OPENBSD_PROCINFO)
10587 return elfcore_grok_openbsd_procinfo (abfd, note);
10588
10589 if (note->type == NT_OPENBSD_REGS)
10590 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10591
10592 if (note->type == NT_OPENBSD_FPREGS)
10593 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10594
10595 if (note->type == NT_OPENBSD_XFPREGS)
10596 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10597
10598 if (note->type == NT_OPENBSD_AUXV)
10599 {
10600 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10601 SEC_HAS_CONTENTS);
10602
10603 if (sect == NULL)
10604 return FALSE;
10605 sect->size = note->descsz;
10606 sect->filepos = note->descpos;
10607 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10608
10609 return TRUE;
10610 }
10611
10612 if (note->type == NT_OPENBSD_WCOOKIE)
10613 {
10614 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10615 SEC_HAS_CONTENTS);
10616
10617 if (sect == NULL)
10618 return FALSE;
10619 sect->size = note->descsz;
10620 sect->filepos = note->descpos;
10621 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10622
10623 return TRUE;
10624 }
10625
10626 return TRUE;
10627 }
10628
10629 static bfd_boolean
10630 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10631 {
10632 void *ddata = note->descdata;
10633 char buf[100];
10634 char *name;
10635 asection *sect;
10636 short sig;
10637 unsigned flags;
10638
10639 if (note->descsz < 16)
10640 return FALSE;
10641
10642 /* nto_procfs_status 'pid' field is at offset 0. */
10643 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10644
10645 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10646 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10647
10648 /* nto_procfs_status 'flags' field is at offset 8. */
10649 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10650
10651 /* nto_procfs_status 'what' field is at offset 14. */
10652 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10653 {
10654 elf_tdata (abfd)->core->signal = sig;
10655 elf_tdata (abfd)->core->lwpid = *tid;
10656 }
10657
10658 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10659 do not come from signals so we make sure we set the current
10660 thread just in case. */
10661 if (flags & 0x00000080)
10662 elf_tdata (abfd)->core->lwpid = *tid;
10663
10664 /* Make a ".qnx_core_status/%d" section. */
10665 sprintf (buf, ".qnx_core_status/%ld", *tid);
10666
10667 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10668 if (name == NULL)
10669 return FALSE;
10670 strcpy (name, buf);
10671
10672 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10673 if (sect == NULL)
10674 return FALSE;
10675
10676 sect->size = note->descsz;
10677 sect->filepos = note->descpos;
10678 sect->alignment_power = 2;
10679
10680 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10681 }
10682
10683 static bfd_boolean
10684 elfcore_grok_nto_regs (bfd *abfd,
10685 Elf_Internal_Note *note,
10686 long tid,
10687 char *base)
10688 {
10689 char buf[100];
10690 char *name;
10691 asection *sect;
10692
10693 /* Make a "(base)/%d" section. */
10694 sprintf (buf, "%s/%ld", base, tid);
10695
10696 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10697 if (name == NULL)
10698 return FALSE;
10699 strcpy (name, buf);
10700
10701 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10702 if (sect == NULL)
10703 return FALSE;
10704
10705 sect->size = note->descsz;
10706 sect->filepos = note->descpos;
10707 sect->alignment_power = 2;
10708
10709 /* This is the current thread. */
10710 if (elf_tdata (abfd)->core->lwpid == tid)
10711 return elfcore_maybe_make_sect (abfd, base, sect);
10712
10713 return TRUE;
10714 }
10715
10716 #define BFD_QNT_CORE_INFO 7
10717 #define BFD_QNT_CORE_STATUS 8
10718 #define BFD_QNT_CORE_GREG 9
10719 #define BFD_QNT_CORE_FPREG 10
10720
10721 static bfd_boolean
10722 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10723 {
10724 /* Every GREG section has a STATUS section before it. Store the
10725 tid from the previous call to pass down to the next gregs
10726 function. */
10727 static long tid = 1;
10728
10729 switch (note->type)
10730 {
10731 case BFD_QNT_CORE_INFO:
10732 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10733 case BFD_QNT_CORE_STATUS:
10734 return elfcore_grok_nto_status (abfd, note, &tid);
10735 case BFD_QNT_CORE_GREG:
10736 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10737 case BFD_QNT_CORE_FPREG:
10738 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10739 default:
10740 return TRUE;
10741 }
10742 }
10743
10744 static bfd_boolean
10745 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10746 {
10747 char *name;
10748 asection *sect;
10749 size_t len;
10750
10751 /* Use note name as section name. */
10752 len = note->namesz;
10753 name = (char *) bfd_alloc (abfd, len);
10754 if (name == NULL)
10755 return FALSE;
10756 memcpy (name, note->namedata, len);
10757 name[len - 1] = '\0';
10758
10759 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10760 if (sect == NULL)
10761 return FALSE;
10762
10763 sect->size = note->descsz;
10764 sect->filepos = note->descpos;
10765 sect->alignment_power = 1;
10766
10767 return TRUE;
10768 }
10769
10770 /* Function: elfcore_write_note
10771
10772 Inputs:
10773 buffer to hold note, and current size of buffer
10774 name of note
10775 type of note
10776 data for note
10777 size of data for note
10778
10779 Writes note to end of buffer. ELF64 notes are written exactly as
10780 for ELF32, despite the current (as of 2006) ELF gabi specifying
10781 that they ought to have 8-byte namesz and descsz field, and have
10782 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10783
10784 Return:
10785 Pointer to realloc'd buffer, *BUFSIZ updated. */
10786
10787 char *
10788 elfcore_write_note (bfd *abfd,
10789 char *buf,
10790 int *bufsiz,
10791 const char *name,
10792 int type,
10793 const void *input,
10794 int size)
10795 {
10796 Elf_External_Note *xnp;
10797 size_t namesz;
10798 size_t newspace;
10799 char *dest;
10800
10801 namesz = 0;
10802 if (name != NULL)
10803 namesz = strlen (name) + 1;
10804
10805 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10806
10807 buf = (char *) realloc (buf, *bufsiz + newspace);
10808 if (buf == NULL)
10809 return buf;
10810 dest = buf + *bufsiz;
10811 *bufsiz += newspace;
10812 xnp = (Elf_External_Note *) dest;
10813 H_PUT_32 (abfd, namesz, xnp->namesz);
10814 H_PUT_32 (abfd, size, xnp->descsz);
10815 H_PUT_32 (abfd, type, xnp->type);
10816 dest = xnp->name;
10817 if (name != NULL)
10818 {
10819 memcpy (dest, name, namesz);
10820 dest += namesz;
10821 while (namesz & 3)
10822 {
10823 *dest++ = '\0';
10824 ++namesz;
10825 }
10826 }
10827 memcpy (dest, input, size);
10828 dest += size;
10829 while (size & 3)
10830 {
10831 *dest++ = '\0';
10832 ++size;
10833 }
10834 return buf;
10835 }
10836
10837 /* gcc-8 warns (*) on all the strncpy calls in this function about
10838 possible string truncation. The "truncation" is not a bug. We
10839 have an external representation of structs with fields that are not
10840 necessarily NULL terminated and corresponding internal
10841 representation fields that are one larger so that they can always
10842 be NULL terminated.
10843 gcc versions between 4.2 and 4.6 do not allow pragma control of
10844 diagnostics inside functions, giving a hard error if you try to use
10845 the finer control available with later versions.
10846 gcc prior to 4.2 warns about diagnostic push and pop.
10847 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10848 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10849 (*) Depending on your system header files! */
10850 #if GCC_VERSION >= 8000
10851 # pragma GCC diagnostic push
10852 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10853 #endif
10854 char *
10855 elfcore_write_prpsinfo (bfd *abfd,
10856 char *buf,
10857 int *bufsiz,
10858 const char *fname,
10859 const char *psargs)
10860 {
10861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10862
10863 if (bed->elf_backend_write_core_note != NULL)
10864 {
10865 char *ret;
10866 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10867 NT_PRPSINFO, fname, psargs);
10868 if (ret != NULL)
10869 return ret;
10870 }
10871
10872 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10873 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10874 if (bed->s->elfclass == ELFCLASS32)
10875 {
10876 # if defined (HAVE_PSINFO32_T)
10877 psinfo32_t data;
10878 int note_type = NT_PSINFO;
10879 # else
10880 prpsinfo32_t data;
10881 int note_type = NT_PRPSINFO;
10882 # endif
10883
10884 memset (&data, 0, sizeof (data));
10885 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10886 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10887 return elfcore_write_note (abfd, buf, bufsiz,
10888 "CORE", note_type, &data, sizeof (data));
10889 }
10890 else
10891 # endif
10892 {
10893 # if defined (HAVE_PSINFO_T)
10894 psinfo_t data;
10895 int note_type = NT_PSINFO;
10896 # else
10897 prpsinfo_t data;
10898 int note_type = NT_PRPSINFO;
10899 # endif
10900
10901 memset (&data, 0, sizeof (data));
10902 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10903 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10904 return elfcore_write_note (abfd, buf, bufsiz,
10905 "CORE", note_type, &data, sizeof (data));
10906 }
10907 #endif /* PSINFO_T or PRPSINFO_T */
10908
10909 free (buf);
10910 return NULL;
10911 }
10912 #if GCC_VERSION >= 8000
10913 # pragma GCC diagnostic pop
10914 #endif
10915
10916 char *
10917 elfcore_write_linux_prpsinfo32
10918 (bfd *abfd, char *buf, int *bufsiz,
10919 const struct elf_internal_linux_prpsinfo *prpsinfo)
10920 {
10921 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10922 {
10923 struct elf_external_linux_prpsinfo32_ugid16 data;
10924
10925 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10926 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10927 &data, sizeof (data));
10928 }
10929 else
10930 {
10931 struct elf_external_linux_prpsinfo32_ugid32 data;
10932
10933 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10934 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10935 &data, sizeof (data));
10936 }
10937 }
10938
10939 char *
10940 elfcore_write_linux_prpsinfo64
10941 (bfd *abfd, char *buf, int *bufsiz,
10942 const struct elf_internal_linux_prpsinfo *prpsinfo)
10943 {
10944 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10945 {
10946 struct elf_external_linux_prpsinfo64_ugid16 data;
10947
10948 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10949 return elfcore_write_note (abfd, buf, bufsiz,
10950 "CORE", NT_PRPSINFO, &data, sizeof (data));
10951 }
10952 else
10953 {
10954 struct elf_external_linux_prpsinfo64_ugid32 data;
10955
10956 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10957 return elfcore_write_note (abfd, buf, bufsiz,
10958 "CORE", NT_PRPSINFO, &data, sizeof (data));
10959 }
10960 }
10961
10962 char *
10963 elfcore_write_prstatus (bfd *abfd,
10964 char *buf,
10965 int *bufsiz,
10966 long pid,
10967 int cursig,
10968 const void *gregs)
10969 {
10970 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10971
10972 if (bed->elf_backend_write_core_note != NULL)
10973 {
10974 char *ret;
10975 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10976 NT_PRSTATUS,
10977 pid, cursig, gregs);
10978 if (ret != NULL)
10979 return ret;
10980 }
10981
10982 #if defined (HAVE_PRSTATUS_T)
10983 #if defined (HAVE_PRSTATUS32_T)
10984 if (bed->s->elfclass == ELFCLASS32)
10985 {
10986 prstatus32_t prstat;
10987
10988 memset (&prstat, 0, sizeof (prstat));
10989 prstat.pr_pid = pid;
10990 prstat.pr_cursig = cursig;
10991 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10992 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10993 NT_PRSTATUS, &prstat, sizeof (prstat));
10994 }
10995 else
10996 #endif
10997 {
10998 prstatus_t prstat;
10999
11000 memset (&prstat, 0, sizeof (prstat));
11001 prstat.pr_pid = pid;
11002 prstat.pr_cursig = cursig;
11003 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11004 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11005 NT_PRSTATUS, &prstat, sizeof (prstat));
11006 }
11007 #endif /* HAVE_PRSTATUS_T */
11008
11009 free (buf);
11010 return NULL;
11011 }
11012
11013 #if defined (HAVE_LWPSTATUS_T)
11014 char *
11015 elfcore_write_lwpstatus (bfd *abfd,
11016 char *buf,
11017 int *bufsiz,
11018 long pid,
11019 int cursig,
11020 const void *gregs)
11021 {
11022 lwpstatus_t lwpstat;
11023 const char *note_name = "CORE";
11024
11025 memset (&lwpstat, 0, sizeof (lwpstat));
11026 lwpstat.pr_lwpid = pid >> 16;
11027 lwpstat.pr_cursig = cursig;
11028 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11029 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11030 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11031 #if !defined(gregs)
11032 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11033 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11034 #else
11035 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11036 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11037 #endif
11038 #endif
11039 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11040 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11041 }
11042 #endif /* HAVE_LWPSTATUS_T */
11043
11044 #if defined (HAVE_PSTATUS_T)
11045 char *
11046 elfcore_write_pstatus (bfd *abfd,
11047 char *buf,
11048 int *bufsiz,
11049 long pid,
11050 int cursig ATTRIBUTE_UNUSED,
11051 const void *gregs ATTRIBUTE_UNUSED)
11052 {
11053 const char *note_name = "CORE";
11054 #if defined (HAVE_PSTATUS32_T)
11055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11056
11057 if (bed->s->elfclass == ELFCLASS32)
11058 {
11059 pstatus32_t pstat;
11060
11061 memset (&pstat, 0, sizeof (pstat));
11062 pstat.pr_pid = pid & 0xffff;
11063 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11064 NT_PSTATUS, &pstat, sizeof (pstat));
11065 return buf;
11066 }
11067 else
11068 #endif
11069 {
11070 pstatus_t pstat;
11071
11072 memset (&pstat, 0, sizeof (pstat));
11073 pstat.pr_pid = pid & 0xffff;
11074 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11075 NT_PSTATUS, &pstat, sizeof (pstat));
11076 return buf;
11077 }
11078 }
11079 #endif /* HAVE_PSTATUS_T */
11080
11081 char *
11082 elfcore_write_prfpreg (bfd *abfd,
11083 char *buf,
11084 int *bufsiz,
11085 const void *fpregs,
11086 int size)
11087 {
11088 const char *note_name = "CORE";
11089 return elfcore_write_note (abfd, buf, bufsiz,
11090 note_name, NT_FPREGSET, fpregs, size);
11091 }
11092
11093 char *
11094 elfcore_write_prxfpreg (bfd *abfd,
11095 char *buf,
11096 int *bufsiz,
11097 const void *xfpregs,
11098 int size)
11099 {
11100 char *note_name = "LINUX";
11101 return elfcore_write_note (abfd, buf, bufsiz,
11102 note_name, NT_PRXFPREG, xfpregs, size);
11103 }
11104
11105 char *
11106 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11107 const void *xfpregs, int size)
11108 {
11109 char *note_name;
11110 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11111 note_name = "FreeBSD";
11112 else
11113 note_name = "LINUX";
11114 return elfcore_write_note (abfd, buf, bufsiz,
11115 note_name, NT_X86_XSTATE, xfpregs, size);
11116 }
11117
11118 char *
11119 elfcore_write_ppc_vmx (bfd *abfd,
11120 char *buf,
11121 int *bufsiz,
11122 const void *ppc_vmx,
11123 int size)
11124 {
11125 char *note_name = "LINUX";
11126 return elfcore_write_note (abfd, buf, bufsiz,
11127 note_name, NT_PPC_VMX, ppc_vmx, size);
11128 }
11129
11130 char *
11131 elfcore_write_ppc_vsx (bfd *abfd,
11132 char *buf,
11133 int *bufsiz,
11134 const void *ppc_vsx,
11135 int size)
11136 {
11137 char *note_name = "LINUX";
11138 return elfcore_write_note (abfd, buf, bufsiz,
11139 note_name, NT_PPC_VSX, ppc_vsx, size);
11140 }
11141
11142 char *
11143 elfcore_write_ppc_tar (bfd *abfd,
11144 char *buf,
11145 int *bufsiz,
11146 const void *ppc_tar,
11147 int size)
11148 {
11149 char *note_name = "LINUX";
11150 return elfcore_write_note (abfd, buf, bufsiz,
11151 note_name, NT_PPC_TAR, ppc_tar, size);
11152 }
11153
11154 char *
11155 elfcore_write_ppc_ppr (bfd *abfd,
11156 char *buf,
11157 int *bufsiz,
11158 const void *ppc_ppr,
11159 int size)
11160 {
11161 char *note_name = "LINUX";
11162 return elfcore_write_note (abfd, buf, bufsiz,
11163 note_name, NT_PPC_PPR, ppc_ppr, size);
11164 }
11165
11166 char *
11167 elfcore_write_ppc_dscr (bfd *abfd,
11168 char *buf,
11169 int *bufsiz,
11170 const void *ppc_dscr,
11171 int size)
11172 {
11173 char *note_name = "LINUX";
11174 return elfcore_write_note (abfd, buf, bufsiz,
11175 note_name, NT_PPC_DSCR, ppc_dscr, size);
11176 }
11177
11178 char *
11179 elfcore_write_ppc_ebb (bfd *abfd,
11180 char *buf,
11181 int *bufsiz,
11182 const void *ppc_ebb,
11183 int size)
11184 {
11185 char *note_name = "LINUX";
11186 return elfcore_write_note (abfd, buf, bufsiz,
11187 note_name, NT_PPC_EBB, ppc_ebb, size);
11188 }
11189
11190 char *
11191 elfcore_write_ppc_pmu (bfd *abfd,
11192 char *buf,
11193 int *bufsiz,
11194 const void *ppc_pmu,
11195 int size)
11196 {
11197 char *note_name = "LINUX";
11198 return elfcore_write_note (abfd, buf, bufsiz,
11199 note_name, NT_PPC_PMU, ppc_pmu, size);
11200 }
11201
11202 char *
11203 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11204 char *buf,
11205 int *bufsiz,
11206 const void *ppc_tm_cgpr,
11207 int size)
11208 {
11209 char *note_name = "LINUX";
11210 return elfcore_write_note (abfd, buf, bufsiz,
11211 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11212 }
11213
11214 char *
11215 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11216 char *buf,
11217 int *bufsiz,
11218 const void *ppc_tm_cfpr,
11219 int size)
11220 {
11221 char *note_name = "LINUX";
11222 return elfcore_write_note (abfd, buf, bufsiz,
11223 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11224 }
11225
11226 char *
11227 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11228 char *buf,
11229 int *bufsiz,
11230 const void *ppc_tm_cvmx,
11231 int size)
11232 {
11233 char *note_name = "LINUX";
11234 return elfcore_write_note (abfd, buf, bufsiz,
11235 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11236 }
11237
11238 char *
11239 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11240 char *buf,
11241 int *bufsiz,
11242 const void *ppc_tm_cvsx,
11243 int size)
11244 {
11245 char *note_name = "LINUX";
11246 return elfcore_write_note (abfd, buf, bufsiz,
11247 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11248 }
11249
11250 char *
11251 elfcore_write_ppc_tm_spr (bfd *abfd,
11252 char *buf,
11253 int *bufsiz,
11254 const void *ppc_tm_spr,
11255 int size)
11256 {
11257 char *note_name = "LINUX";
11258 return elfcore_write_note (abfd, buf, bufsiz,
11259 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11260 }
11261
11262 char *
11263 elfcore_write_ppc_tm_ctar (bfd *abfd,
11264 char *buf,
11265 int *bufsiz,
11266 const void *ppc_tm_ctar,
11267 int size)
11268 {
11269 char *note_name = "LINUX";
11270 return elfcore_write_note (abfd, buf, bufsiz,
11271 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11272 }
11273
11274 char *
11275 elfcore_write_ppc_tm_cppr (bfd *abfd,
11276 char *buf,
11277 int *bufsiz,
11278 const void *ppc_tm_cppr,
11279 int size)
11280 {
11281 char *note_name = "LINUX";
11282 return elfcore_write_note (abfd, buf, bufsiz,
11283 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11284 }
11285
11286 char *
11287 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11288 char *buf,
11289 int *bufsiz,
11290 const void *ppc_tm_cdscr,
11291 int size)
11292 {
11293 char *note_name = "LINUX";
11294 return elfcore_write_note (abfd, buf, bufsiz,
11295 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11296 }
11297
11298 static char *
11299 elfcore_write_s390_high_gprs (bfd *abfd,
11300 char *buf,
11301 int *bufsiz,
11302 const void *s390_high_gprs,
11303 int size)
11304 {
11305 char *note_name = "LINUX";
11306 return elfcore_write_note (abfd, buf, bufsiz,
11307 note_name, NT_S390_HIGH_GPRS,
11308 s390_high_gprs, size);
11309 }
11310
11311 char *
11312 elfcore_write_s390_timer (bfd *abfd,
11313 char *buf,
11314 int *bufsiz,
11315 const void *s390_timer,
11316 int size)
11317 {
11318 char *note_name = "LINUX";
11319 return elfcore_write_note (abfd, buf, bufsiz,
11320 note_name, NT_S390_TIMER, s390_timer, size);
11321 }
11322
11323 char *
11324 elfcore_write_s390_todcmp (bfd *abfd,
11325 char *buf,
11326 int *bufsiz,
11327 const void *s390_todcmp,
11328 int size)
11329 {
11330 char *note_name = "LINUX";
11331 return elfcore_write_note (abfd, buf, bufsiz,
11332 note_name, NT_S390_TODCMP, s390_todcmp, size);
11333 }
11334
11335 char *
11336 elfcore_write_s390_todpreg (bfd *abfd,
11337 char *buf,
11338 int *bufsiz,
11339 const void *s390_todpreg,
11340 int size)
11341 {
11342 char *note_name = "LINUX";
11343 return elfcore_write_note (abfd, buf, bufsiz,
11344 note_name, NT_S390_TODPREG, s390_todpreg, size);
11345 }
11346
11347 char *
11348 elfcore_write_s390_ctrs (bfd *abfd,
11349 char *buf,
11350 int *bufsiz,
11351 const void *s390_ctrs,
11352 int size)
11353 {
11354 char *note_name = "LINUX";
11355 return elfcore_write_note (abfd, buf, bufsiz,
11356 note_name, NT_S390_CTRS, s390_ctrs, size);
11357 }
11358
11359 char *
11360 elfcore_write_s390_prefix (bfd *abfd,
11361 char *buf,
11362 int *bufsiz,
11363 const void *s390_prefix,
11364 int size)
11365 {
11366 char *note_name = "LINUX";
11367 return elfcore_write_note (abfd, buf, bufsiz,
11368 note_name, NT_S390_PREFIX, s390_prefix, size);
11369 }
11370
11371 char *
11372 elfcore_write_s390_last_break (bfd *abfd,
11373 char *buf,
11374 int *bufsiz,
11375 const void *s390_last_break,
11376 int size)
11377 {
11378 char *note_name = "LINUX";
11379 return elfcore_write_note (abfd, buf, bufsiz,
11380 note_name, NT_S390_LAST_BREAK,
11381 s390_last_break, size);
11382 }
11383
11384 char *
11385 elfcore_write_s390_system_call (bfd *abfd,
11386 char *buf,
11387 int *bufsiz,
11388 const void *s390_system_call,
11389 int size)
11390 {
11391 char *note_name = "LINUX";
11392 return elfcore_write_note (abfd, buf, bufsiz,
11393 note_name, NT_S390_SYSTEM_CALL,
11394 s390_system_call, size);
11395 }
11396
11397 char *
11398 elfcore_write_s390_tdb (bfd *abfd,
11399 char *buf,
11400 int *bufsiz,
11401 const void *s390_tdb,
11402 int size)
11403 {
11404 char *note_name = "LINUX";
11405 return elfcore_write_note (abfd, buf, bufsiz,
11406 note_name, NT_S390_TDB, s390_tdb, size);
11407 }
11408
11409 char *
11410 elfcore_write_s390_vxrs_low (bfd *abfd,
11411 char *buf,
11412 int *bufsiz,
11413 const void *s390_vxrs_low,
11414 int size)
11415 {
11416 char *note_name = "LINUX";
11417 return elfcore_write_note (abfd, buf, bufsiz,
11418 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11419 }
11420
11421 char *
11422 elfcore_write_s390_vxrs_high (bfd *abfd,
11423 char *buf,
11424 int *bufsiz,
11425 const void *s390_vxrs_high,
11426 int size)
11427 {
11428 char *note_name = "LINUX";
11429 return elfcore_write_note (abfd, buf, bufsiz,
11430 note_name, NT_S390_VXRS_HIGH,
11431 s390_vxrs_high, size);
11432 }
11433
11434 char *
11435 elfcore_write_s390_gs_cb (bfd *abfd,
11436 char *buf,
11437 int *bufsiz,
11438 const void *s390_gs_cb,
11439 int size)
11440 {
11441 char *note_name = "LINUX";
11442 return elfcore_write_note (abfd, buf, bufsiz,
11443 note_name, NT_S390_GS_CB,
11444 s390_gs_cb, size);
11445 }
11446
11447 char *
11448 elfcore_write_s390_gs_bc (bfd *abfd,
11449 char *buf,
11450 int *bufsiz,
11451 const void *s390_gs_bc,
11452 int size)
11453 {
11454 char *note_name = "LINUX";
11455 return elfcore_write_note (abfd, buf, bufsiz,
11456 note_name, NT_S390_GS_BC,
11457 s390_gs_bc, size);
11458 }
11459
11460 char *
11461 elfcore_write_arm_vfp (bfd *abfd,
11462 char *buf,
11463 int *bufsiz,
11464 const void *arm_vfp,
11465 int size)
11466 {
11467 char *note_name = "LINUX";
11468 return elfcore_write_note (abfd, buf, bufsiz,
11469 note_name, NT_ARM_VFP, arm_vfp, size);
11470 }
11471
11472 char *
11473 elfcore_write_aarch_tls (bfd *abfd,
11474 char *buf,
11475 int *bufsiz,
11476 const void *aarch_tls,
11477 int size)
11478 {
11479 char *note_name = "LINUX";
11480 return elfcore_write_note (abfd, buf, bufsiz,
11481 note_name, NT_ARM_TLS, aarch_tls, size);
11482 }
11483
11484 char *
11485 elfcore_write_aarch_hw_break (bfd *abfd,
11486 char *buf,
11487 int *bufsiz,
11488 const void *aarch_hw_break,
11489 int size)
11490 {
11491 char *note_name = "LINUX";
11492 return elfcore_write_note (abfd, buf, bufsiz,
11493 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11494 }
11495
11496 char *
11497 elfcore_write_aarch_hw_watch (bfd *abfd,
11498 char *buf,
11499 int *bufsiz,
11500 const void *aarch_hw_watch,
11501 int size)
11502 {
11503 char *note_name = "LINUX";
11504 return elfcore_write_note (abfd, buf, bufsiz,
11505 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11506 }
11507
11508 char *
11509 elfcore_write_aarch_sve (bfd *abfd,
11510 char *buf,
11511 int *bufsiz,
11512 const void *aarch_sve,
11513 int size)
11514 {
11515 char *note_name = "LINUX";
11516 return elfcore_write_note (abfd, buf, bufsiz,
11517 note_name, NT_ARM_SVE, aarch_sve, size);
11518 }
11519
11520 char *
11521 elfcore_write_aarch_pauth (bfd *abfd,
11522 char *buf,
11523 int *bufsiz,
11524 const void *aarch_pauth,
11525 int size)
11526 {
11527 char *note_name = "LINUX";
11528 return elfcore_write_note (abfd, buf, bufsiz,
11529 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11530 }
11531
11532 char *
11533 elfcore_write_register_note (bfd *abfd,
11534 char *buf,
11535 int *bufsiz,
11536 const char *section,
11537 const void *data,
11538 int size)
11539 {
11540 if (strcmp (section, ".reg2") == 0)
11541 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11542 if (strcmp (section, ".reg-xfp") == 0)
11543 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11544 if (strcmp (section, ".reg-xstate") == 0)
11545 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11546 if (strcmp (section, ".reg-ppc-vmx") == 0)
11547 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11548 if (strcmp (section, ".reg-ppc-vsx") == 0)
11549 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11550 if (strcmp (section, ".reg-ppc-tar") == 0)
11551 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11552 if (strcmp (section, ".reg-ppc-ppr") == 0)
11553 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11554 if (strcmp (section, ".reg-ppc-dscr") == 0)
11555 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11556 if (strcmp (section, ".reg-ppc-ebb") == 0)
11557 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11558 if (strcmp (section, ".reg-ppc-pmu") == 0)
11559 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11560 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11561 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11562 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11563 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11564 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11565 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11566 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11567 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11568 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11569 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11570 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11571 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11572 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11573 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11574 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11575 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11576 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11577 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11578 if (strcmp (section, ".reg-s390-timer") == 0)
11579 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11580 if (strcmp (section, ".reg-s390-todcmp") == 0)
11581 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11582 if (strcmp (section, ".reg-s390-todpreg") == 0)
11583 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11584 if (strcmp (section, ".reg-s390-ctrs") == 0)
11585 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11586 if (strcmp (section, ".reg-s390-prefix") == 0)
11587 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11588 if (strcmp (section, ".reg-s390-last-break") == 0)
11589 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11590 if (strcmp (section, ".reg-s390-system-call") == 0)
11591 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11592 if (strcmp (section, ".reg-s390-tdb") == 0)
11593 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11594 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11595 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11596 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11597 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11598 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11599 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11600 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11601 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11602 if (strcmp (section, ".reg-arm-vfp") == 0)
11603 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11604 if (strcmp (section, ".reg-aarch-tls") == 0)
11605 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11606 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11607 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11608 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11609 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11610 if (strcmp (section, ".reg-aarch-sve") == 0)
11611 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11612 if (strcmp (section, ".reg-aarch-pauth") == 0)
11613 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11614 return NULL;
11615 }
11616
11617 static bfd_boolean
11618 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11619 size_t align)
11620 {
11621 char *p;
11622
11623 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11624 gABI specifies that PT_NOTE alignment should be aligned to 4
11625 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11626 align is less than 4, we use 4 byte alignment. */
11627 if (align < 4)
11628 align = 4;
11629 if (align != 4 && align != 8)
11630 return FALSE;
11631
11632 p = buf;
11633 while (p < buf + size)
11634 {
11635 Elf_External_Note *xnp = (Elf_External_Note *) p;
11636 Elf_Internal_Note in;
11637
11638 if (offsetof (Elf_External_Note, name) > buf - p + size)
11639 return FALSE;
11640
11641 in.type = H_GET_32 (abfd, xnp->type);
11642
11643 in.namesz = H_GET_32 (abfd, xnp->namesz);
11644 in.namedata = xnp->name;
11645 if (in.namesz > buf - in.namedata + size)
11646 return FALSE;
11647
11648 in.descsz = H_GET_32 (abfd, xnp->descsz);
11649 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11650 in.descpos = offset + (in.descdata - buf);
11651 if (in.descsz != 0
11652 && (in.descdata >= buf + size
11653 || in.descsz > buf - in.descdata + size))
11654 return FALSE;
11655
11656 switch (bfd_get_format (abfd))
11657 {
11658 default:
11659 return TRUE;
11660
11661 case bfd_core:
11662 {
11663 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11664 struct
11665 {
11666 const char * string;
11667 size_t len;
11668 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11669 }
11670 grokers[] =
11671 {
11672 GROKER_ELEMENT ("", elfcore_grok_note),
11673 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11674 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11675 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11676 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11677 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11678 };
11679 #undef GROKER_ELEMENT
11680 int i;
11681
11682 for (i = ARRAY_SIZE (grokers); i--;)
11683 {
11684 if (in.namesz >= grokers[i].len
11685 && strncmp (in.namedata, grokers[i].string,
11686 grokers[i].len) == 0)
11687 {
11688 if (! grokers[i].func (abfd, & in))
11689 return FALSE;
11690 break;
11691 }
11692 }
11693 break;
11694 }
11695
11696 case bfd_object:
11697 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11698 {
11699 if (! elfobj_grok_gnu_note (abfd, &in))
11700 return FALSE;
11701 }
11702 else if (in.namesz == sizeof "stapsdt"
11703 && strcmp (in.namedata, "stapsdt") == 0)
11704 {
11705 if (! elfobj_grok_stapsdt_note (abfd, &in))
11706 return FALSE;
11707 }
11708 break;
11709 }
11710
11711 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11712 }
11713
11714 return TRUE;
11715 }
11716
11717 static bfd_boolean
11718 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11719 size_t align)
11720 {
11721 char *buf;
11722
11723 if (size == 0 || (size + 1) == 0)
11724 return TRUE;
11725
11726 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11727 return FALSE;
11728
11729 buf = (char *) bfd_malloc (size + 1);
11730 if (buf == NULL)
11731 return FALSE;
11732
11733 /* PR 17512: file: ec08f814
11734 0-termintate the buffer so that string searches will not overflow. */
11735 buf[size] = 0;
11736
11737 if (bfd_bread (buf, size, abfd) != size
11738 || !elf_parse_notes (abfd, buf, size, offset, align))
11739 {
11740 free (buf);
11741 return FALSE;
11742 }
11743
11744 free (buf);
11745 return TRUE;
11746 }
11747 \f
11748 /* Providing external access to the ELF program header table. */
11749
11750 /* Return an upper bound on the number of bytes required to store a
11751 copy of ABFD's program header table entries. Return -1 if an error
11752 occurs; bfd_get_error will return an appropriate code. */
11753
11754 long
11755 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11756 {
11757 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11758 {
11759 bfd_set_error (bfd_error_wrong_format);
11760 return -1;
11761 }
11762
11763 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11764 }
11765
11766 /* Copy ABFD's program header table entries to *PHDRS. The entries
11767 will be stored as an array of Elf_Internal_Phdr structures, as
11768 defined in include/elf/internal.h. To find out how large the
11769 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11770
11771 Return the number of program header table entries read, or -1 if an
11772 error occurs; bfd_get_error will return an appropriate code. */
11773
11774 int
11775 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11776 {
11777 int num_phdrs;
11778
11779 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11780 {
11781 bfd_set_error (bfd_error_wrong_format);
11782 return -1;
11783 }
11784
11785 num_phdrs = elf_elfheader (abfd)->e_phnum;
11786 if (num_phdrs != 0)
11787 memcpy (phdrs, elf_tdata (abfd)->phdr,
11788 num_phdrs * sizeof (Elf_Internal_Phdr));
11789
11790 return num_phdrs;
11791 }
11792
11793 enum elf_reloc_type_class
11794 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11795 const asection *rel_sec ATTRIBUTE_UNUSED,
11796 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11797 {
11798 return reloc_class_normal;
11799 }
11800
11801 /* For RELA architectures, return the relocation value for a
11802 relocation against a local symbol. */
11803
11804 bfd_vma
11805 _bfd_elf_rela_local_sym (bfd *abfd,
11806 Elf_Internal_Sym *sym,
11807 asection **psec,
11808 Elf_Internal_Rela *rel)
11809 {
11810 asection *sec = *psec;
11811 bfd_vma relocation;
11812
11813 relocation = (sec->output_section->vma
11814 + sec->output_offset
11815 + sym->st_value);
11816 if ((sec->flags & SEC_MERGE)
11817 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11818 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11819 {
11820 rel->r_addend =
11821 _bfd_merged_section_offset (abfd, psec,
11822 elf_section_data (sec)->sec_info,
11823 sym->st_value + rel->r_addend);
11824 if (sec != *psec)
11825 {
11826 /* If we have changed the section, and our original section is
11827 marked with SEC_EXCLUDE, it means that the original
11828 SEC_MERGE section has been completely subsumed in some
11829 other SEC_MERGE section. In this case, we need to leave
11830 some info around for --emit-relocs. */
11831 if ((sec->flags & SEC_EXCLUDE) != 0)
11832 sec->kept_section = *psec;
11833 sec = *psec;
11834 }
11835 rel->r_addend -= relocation;
11836 rel->r_addend += sec->output_section->vma + sec->output_offset;
11837 }
11838 return relocation;
11839 }
11840
11841 bfd_vma
11842 _bfd_elf_rel_local_sym (bfd *abfd,
11843 Elf_Internal_Sym *sym,
11844 asection **psec,
11845 bfd_vma addend)
11846 {
11847 asection *sec = *psec;
11848
11849 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11850 return sym->st_value + addend;
11851
11852 return _bfd_merged_section_offset (abfd, psec,
11853 elf_section_data (sec)->sec_info,
11854 sym->st_value + addend);
11855 }
11856
11857 /* Adjust an address within a section. Given OFFSET within SEC, return
11858 the new offset within the section, based upon changes made to the
11859 section. Returns -1 if the offset is now invalid.
11860 The offset (in abnd out) is in target sized bytes, however big a
11861 byte may be. */
11862
11863 bfd_vma
11864 _bfd_elf_section_offset (bfd *abfd,
11865 struct bfd_link_info *info,
11866 asection *sec,
11867 bfd_vma offset)
11868 {
11869 switch (sec->sec_info_type)
11870 {
11871 case SEC_INFO_TYPE_STABS:
11872 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11873 offset);
11874 case SEC_INFO_TYPE_EH_FRAME:
11875 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11876
11877 default:
11878 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11879 {
11880 /* Reverse the offset. */
11881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11882 bfd_size_type address_size = bed->s->arch_size / 8;
11883
11884 /* address_size and sec->size are in octets. Convert
11885 to bytes before subtracting the original offset. */
11886 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11887 }
11888 return offset;
11889 }
11890 }
11891 \f
11892 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11893 reconstruct an ELF file by reading the segments out of remote memory
11894 based on the ELF file header at EHDR_VMA and the ELF program headers it
11895 points to. If not null, *LOADBASEP is filled in with the difference
11896 between the VMAs from which the segments were read, and the VMAs the
11897 file headers (and hence BFD's idea of each section's VMA) put them at.
11898
11899 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11900 remote memory at target address VMA into the local buffer at MYADDR; it
11901 should return zero on success or an `errno' code on failure. TEMPL must
11902 be a BFD for an ELF target with the word size and byte order found in
11903 the remote memory. */
11904
11905 bfd *
11906 bfd_elf_bfd_from_remote_memory
11907 (bfd *templ,
11908 bfd_vma ehdr_vma,
11909 bfd_size_type size,
11910 bfd_vma *loadbasep,
11911 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11912 {
11913 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11914 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11915 }
11916 \f
11917 long
11918 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11919 long symcount ATTRIBUTE_UNUSED,
11920 asymbol **syms ATTRIBUTE_UNUSED,
11921 long dynsymcount,
11922 asymbol **dynsyms,
11923 asymbol **ret)
11924 {
11925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11926 asection *relplt;
11927 asymbol *s;
11928 const char *relplt_name;
11929 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11930 arelent *p;
11931 long count, i, n;
11932 size_t size;
11933 Elf_Internal_Shdr *hdr;
11934 char *names;
11935 asection *plt;
11936
11937 *ret = NULL;
11938
11939 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11940 return 0;
11941
11942 if (dynsymcount <= 0)
11943 return 0;
11944
11945 if (!bed->plt_sym_val)
11946 return 0;
11947
11948 relplt_name = bed->relplt_name;
11949 if (relplt_name == NULL)
11950 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11951 relplt = bfd_get_section_by_name (abfd, relplt_name);
11952 if (relplt == NULL)
11953 return 0;
11954
11955 hdr = &elf_section_data (relplt)->this_hdr;
11956 if (hdr->sh_link != elf_dynsymtab (abfd)
11957 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11958 return 0;
11959
11960 plt = bfd_get_section_by_name (abfd, ".plt");
11961 if (plt == NULL)
11962 return 0;
11963
11964 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11965 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11966 return -1;
11967
11968 count = relplt->size / hdr->sh_entsize;
11969 size = count * sizeof (asymbol);
11970 p = relplt->relocation;
11971 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11972 {
11973 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11974 if (p->addend != 0)
11975 {
11976 #ifdef BFD64
11977 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11978 #else
11979 size += sizeof ("+0x") - 1 + 8;
11980 #endif
11981 }
11982 }
11983
11984 s = *ret = (asymbol *) bfd_malloc (size);
11985 if (s == NULL)
11986 return -1;
11987
11988 names = (char *) (s + count);
11989 p = relplt->relocation;
11990 n = 0;
11991 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11992 {
11993 size_t len;
11994 bfd_vma addr;
11995
11996 addr = bed->plt_sym_val (i, plt, p);
11997 if (addr == (bfd_vma) -1)
11998 continue;
11999
12000 *s = **p->sym_ptr_ptr;
12001 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12002 we are defining a symbol, ensure one of them is set. */
12003 if ((s->flags & BSF_LOCAL) == 0)
12004 s->flags |= BSF_GLOBAL;
12005 s->flags |= BSF_SYNTHETIC;
12006 s->section = plt;
12007 s->value = addr - plt->vma;
12008 s->name = names;
12009 s->udata.p = NULL;
12010 len = strlen ((*p->sym_ptr_ptr)->name);
12011 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12012 names += len;
12013 if (p->addend != 0)
12014 {
12015 char buf[30], *a;
12016
12017 memcpy (names, "+0x", sizeof ("+0x") - 1);
12018 names += sizeof ("+0x") - 1;
12019 bfd_sprintf_vma (abfd, buf, p->addend);
12020 for (a = buf; *a == '0'; ++a)
12021 ;
12022 len = strlen (a);
12023 memcpy (names, a, len);
12024 names += len;
12025 }
12026 memcpy (names, "@plt", sizeof ("@plt"));
12027 names += sizeof ("@plt");
12028 ++s, ++n;
12029 }
12030
12031 return n;
12032 }
12033
12034 /* It is only used by x86-64 so far.
12035 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12036 but current usage would allow all of _bfd_std_section to be zero. */
12037 static const asymbol lcomm_sym
12038 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12039 asection _bfd_elf_large_com_section
12040 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12041 "LARGE_COMMON", 0, SEC_IS_COMMON);
12042
12043 void
12044 _bfd_elf_post_process_headers (bfd * abfd,
12045 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12046 {
12047 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12048
12049 i_ehdrp = elf_elfheader (abfd);
12050
12051 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12052
12053 /* To make things simpler for the loader on Linux systems we set the
12054 osabi field to ELFOSABI_GNU if the binary contains symbols of
12055 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
12056 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
12057 && elf_tdata (abfd)->has_gnu_symbols)
12058 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12059 }
12060
12061
12062 /* Return TRUE for ELF symbol types that represent functions.
12063 This is the default version of this function, which is sufficient for
12064 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12065
12066 bfd_boolean
12067 _bfd_elf_is_function_type (unsigned int type)
12068 {
12069 return (type == STT_FUNC
12070 || type == STT_GNU_IFUNC);
12071 }
12072
12073 /* If the ELF symbol SYM might be a function in SEC, return the
12074 function size and set *CODE_OFF to the function's entry point,
12075 otherwise return zero. */
12076
12077 bfd_size_type
12078 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12079 bfd_vma *code_off)
12080 {
12081 bfd_size_type size;
12082
12083 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12084 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12085 || sym->section != sec)
12086 return 0;
12087
12088 *code_off = sym->value;
12089 size = 0;
12090 if (!(sym->flags & BSF_SYNTHETIC))
12091 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12092 if (size == 0)
12093 size = 1;
12094 return size;
12095 }
This page took 0.297971 seconds and 5 git commands to generate.